
Detlef Krömker und Ulrik Schroeder (Hrsg.): Die 16. E-Learning Fachtagung Informatik,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 23

Using data to improve programming instruction

Educational Data Mining in CS1 classes

Alisan Öztürk1, Petra Bonfert-Taylor2 and Armin Fügenschuh3

Abstract: Programming classes are difficult by nature and educators are eager to find ways to deal
with high dropout rates. Today’s technologies allow us to capture programming-related student data,
which can be used to identify students in need of assistance and in getting insights in student
learning. In order to assist novice programming students in learning how to program, we developed
a web-based programming environment, which is used by students throughout the whole course.
While it also provides students with enhanced error messages, all data of students’ interactions are
captured. Through this data, we identified two metrics, related to small programming assignments,
which highly correlate with student performance. These metrics along other features further enabled
us to implement machine learning algorithms that could accurately predict dropout-prone students,
early on in the course. Overall, methods of educational data mining can be utilized to assist both,
students and educators in introductory programming courses.

Keywords: E-Learning, Machine Learning, Introductory Programming, Prediction, Enhanced Error
Messages

 Introduction

Programming skills are in increasing demand in today’s workforce, leading to a growth of
introductory programming classes with a diverse student body. Many students struggle in
these classes, resulting in high student dropout rates in universities. There are different
approaches to tackle these issues and to understand how students learn to code. Because
of today’s abilities to inexpensively store and analyze data, the area of educational data
mining evolved, which allows for the identification of relevant data that comes from an
educational setting. One area of educational data mining focuses on predicting student
success in introductory programming classes. While past studies mainly collected and
analyzed demographic data, more recent studies analyzed data that was directly collected
from the platform within the coding platform. The ultimate goal is to eventually link
student success in programming classes to such coding data. The Thayer School of
Engineering at Dartmouth teaches a 10-week introductory programming course. The

1 Helmut Schmidt Universität, Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg,

Alisan.Oeztuerk@outlook.de
2 Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, 03755 Hanover, New Hampshire,

USA, Petra.B.Taylor@dartmouth.edu
3 Helmut Schmidt Universität, Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043, currently at

Brandenburgische Technische Universität Cottbus, Platz der Deutschen Einheit 1, 03046 Cottbus,
Fuegenschuh@b-tu.de

24 Alisan Öztürk et al.

course is taught via an online coding environment, in which students take their first
programming steps without hurdles to overcome, such as installation and compiler
commands. At the same time, the data gathered from the coding environment enables us
to apply educational data mining techniques to gather insights on student learning, as well
as allows us to predict student success. These predictions can then be used as a decision
support tool for instructors to provide targeted assistance for struggling students early on
in the course. Whereas other studies analyzed data that was solely collected in a laboratory
environment, the data from our study was collected during the entire course. We propose
a number of methods to analyze and improve an introductory programming course, based
on our course setting and the data collected therein. First, we show how compiler data can
be captured and utilized to provide enhanced error messages to students. Then, we present
a decision support tool for instructors that flags students based on a prediction of risk of
them dropping the course.

 Similar Work

Educators have been interested in understanding how students learn to program for more
than fifty years. Research in the field of educational data mining focuses on many different
aspects. [Ih15] categorizes work on student-focused research, such as predicting students’
performance or programming related confusion and boredom, programming-focused
research, aiming to identify programming behavior and lastly work on learning
environments concerned with finding tools for instructors and various mechanisms for
automated testing and grading of programming assignments. [FCJ04] introduces a system
that responds with an easy to understand message on the most frequent java compiler error
messages, as well as motivating feedback when a student compiles error-free code. [Ha10]
presents another approach with an advanced system that stores compiler errors and student
solutions in a database, which are suggested to help-seeking students. This has the
advantage to provide assistance in situations, when it is impossible to find the root cause
of the error message, which is especially true for the C programming language. [Fe12]
shows an intelligent agent that detects student affective states based on key log data.
[Be16a] presents a system that provides enhanced error messages which are further
customized using parts of the student’s source code. Recent work has focused on
predicting student performance, which started with data sets that contained demographic
data, see [Ko03] and [Ly09]. [MD10] and [Hu14] analyze data from a student’s online
learning management systems activity. Most recently, studies focus on predicting student
performance in introductory programming courses by using data that is directly extracted
from programming work. [Ta11], [Wa13] and [Be16b] propose various error compilation
metrics and show a significant correlation to student performance. [Ah15] and [Ca17]
present machine learning models to predict student performance with data sets containing
features on the assignment level.

Educational Data Mining in CS1 classes 25

 Methodology

In order to evaluate possible student performance metrics, we use linear regression models
in combination with the coefficient of determination R², which describes the amount of
variance explained by a regression model. Since it is important for these metrics to be as
accurate as possible early on in a course, R² is calculated at different points of time for
comparison purposes.

For the prediction models, we built machine learning classifiers which were, similar to the
regression models, evaluated for every day of the week leading to the first midterm exam.
A machine learning classifier is trained on a training data set, based on a set of pre-selected
features, which optimally show a relationship with the target variable, in our case student
overall performance. We selected our features by using a recursive feature elimination
algorithm, based on [Gu02]. To train our models, we limited the number of selected
features to five. This is one method to prevent overfitting, in order to not train a model
that fits the data too well. There are various algorithms to train a classification model and
we compared their performance. A logistic regression model performed best with our data
set and was therefore selected to build our classifiers. Since we desire the ability of a
classifier to accurately predict student success as early as possible in the course, we treat
every day as a separate instance for our model, by training one classifier per day in the
week before the first midterm exam. The classifiers predict a student’s performance on the
first midterm exam, which in turn is predictive via a high correlation with a student’s
overall course performance. The models were fine tuned in order to have a high specificity,
which means the classifier correctly predicts all negative samples, which are in our case
students with a low midterm performance. In addition, we used several other metrics, such
as receiver operating characteristic (ROC) curve and the kappa-score κ. The ROC curve
displays the trade-off between a classifiers false positive rate and true positive rate and
allows to compare different classifiers. The area under the curve (AUC) is used to quantify
this metric, see [PFK97] for more information. κ compares the observed accuracy with the
expected accuracy, which measures how well the predictions agree with the ground truth,
see [Co60]. All metrics were calculated by using a 10-fold cross validation, a technique to
evaluate a model, by partitioning the data into ten equal slices and repeatedly training the
model on nine slices and testing it on the remaining slice.

 Course Setting

The course is taught as a traditional on-campus introductory C programming class with
around 100 students. Throughout the term students have to solve various programming
assignments in different contexts. This includes assignments completed in preparation for
class, work performed during class as well as homework assignments. In addition, students
take two midterm exams and one final exam. The first midterm exam is administered by
the end of week three. The course grade is a composition of these efforts.

26 Alisan Öztürk et al.

4.1 The Coding Environment

Development of an online coding environment started in 2015, with infrequent,
experimental use prior to this study. We worked on a full integration of this environment
into the course structure, which demanded a rework of the auto-grader system and an
adaptation of several coding assignments. The online coding environment is embedded
into the learning management system which provides students with all assignments,
important deadlines and a course overview. It is a simple editor with syntax highlighting
that allows to compile code on a server, reset a coding assignment to a starting state
provided by the instructor and allow to provide user-input. Time-stamped data is collected
on the level of individual keystrokes. Each data point is linked to a unique student and an
assignment. In addition, every compile-attempt is saved with a snapshot of the source code
and the compiler output. Fig. 1 shows an example of a coding assignment that is embedded
in the learning management system.

Fig. 1: Interface of the embedded coding editor

For the small programming assignment shown in Fig. 1, students were provided a pre-
populated source code. In addition, such small programming assignments, which are part
of the pre-class preparation, are automatically checked via our auto-grader. While in the
assignment displayed in Fig. 1 we use input/output checking, since the assignment
involves print statements, most assignments are checked via a function embedded but
hidden to students within the pre-populated source code. This requires students to include
a call to our ‘check function’ to pass their variable to this ‘check_function’. It allows us to
identify whether a student solved a programming problem without having to rely on output
checking.

Educational Data Mining in CS1 classes 27

In addition, the instructor has access to an admin dashboard, which not only serves as an
overview of a student’s progress on a specific assignment, but also allows the instructor
to join the student’s programming session in order to provide help.

From the collected data we extracted up to 300 features of different types. Some are not
engineered and are taken straight from the database, whereas some are inferred from the
data and so we will refer to them as “engineered” features. Engineering new features from
the data has no limits, which means that there is still unexplored potential in our data set
that requires further analysis. Beyond that, features can be either categorized as
assignment-level features or course-level features. Because every log entry is linked to a
unique student and a specific assignment, we can calculate different metrics by only
considering data pertaining to a specific assignment. For example, we can not only extract
the total number of compiler errors a student encountered during the course, but also get
the number of compiler errors a student encountered on a single assignment.

 Results

This section is split into two parts. We start by presenting our implementation of enhanced
error messages. Next, we briefly discuss our findings on student performance metrics, as
well as our classification models. For a more detailed analysis see [Oe17].

5.1 Enhanced Error Messages

In the process of finding appropriate simplified explanations for compiler error messages
it is important to not be too specific, because the same compiler error message can be the
result of many different scenarios. At the same time the explanation must not be too
general, in order to still be helpful for students.

We aggregated results from past student data and created explanations for the 50 most
frequent compiler error messages, which cover 95 % of the error messages that students
encountered. After the course ended, we compared this data to data from the current course
and we were able to show that 15 out of 20 errors from the historic data set were also in
the top 20 of the current data set. Out of over 150 unique error messages, the top 50 errors
also covering 95 % of all errors encountered by the students. This shows that a data-driven
approach to extract the most frequent errors proved effective, even when only a fraction
of the data was available. The most frequent errors that were extracted from 68,248
submissions of 95 students are displayed in Table 1.

28 Alisan Öztürk et al.

 Error Occurrence

1 error: ’X’ undeclared (first use in this function) 2903
2 error: expected expression before ’X’ token 1189
3 error: expected ';' before 'X' 1108
4 error: expected identifier or '(' before 'X' 860
5 error: expected ';' before 'X' token 768
6 error: conflicting types for 'X' 761
7 error: expected '=', ',', ';', 'asm' or '__attribute__' before 'X' 644
8 error: parameter name omitted 643
9 error: ld returned 1 exit status 618
10 error: expected '=', ',', ';', 'asm' or '__attribute__' before 'X' token 571

Tab. 1: Most common C errors from our CS1 course

If the compile process fails, the enhanced error message is displayed below the original
error message, see Fig. 2.

Fig. 2: Example of an enhanced error message

By the end of the course students should be able to use the original compiler error
messages to help them debug their source code, without the need of enhanced error
messages. Nonetheless, the benefits are intensely discussed. While [Be16] showed
positive effects on students learning based on their own developed metric, [De14] claims
that enhanced error messages were ineffective. We believe this is highly dependent on the
course setting and the quality of the enhanced error messages.

Educational Data Mining in CS1 classes 29

Within our course we conducted a post course survey, where students did indeed find the
enhanced error messages helpful, but this needs to be verified in future courses. In the
future, we plan to integrate a rating system that allows us to identify unhelpful
explanations that require a rework. The error compilation metrics were developed and
tested with data from a different language and course setting, thus findings of our study
might not be directly transferable to other studies, although our results strongly indicate
an invariance of these metrics across programming languages.

5.2 Predicting student performance

In our analysis we evaluated several error compilation metrics. With our data set, we found
that the error quotient performed best, and the regression model could explain up to 41 %
of the variance. In addition, we found two metrics, linked to small programming
assignments, that also showed a significant correlation with student performance. The first
metric is the amount of time a student spent on small programming assignments. For this
metric, we had to exclude many students that only used the coding environment when they
had to. These students chose to code in other environments. Nonetheless, a regression
model based on the time spent on the small programming assignments could explain up to
34 % of the variance. Lastly, we engineered a metric called solved ratio, which is
calculated by dividing the sum of the solved small programming assignments, by the
maximum of assignments solved by a student in the same course. The solved ratio could
explain up to 50 %.

To assess the ability to predict student performance early on in the course, we built a
classifier for each day of the third week into the course, leading to the first midterm exam.
There is a high correlation between a student's first midterm performance and overall
course performance, which indicates that a student who struggled on the first midterm
exam is more likely to have difficulties in the course and might drop out of it. Due to this,
it is sufficient enough to build classifiers that predict a student's midterm performance. We
considered two scenarios, for the first scenario we only provided general features for the
feature selection process, whereas for the second scenario all 300 features were available.
Tab. 2 shows the performance of each classifier in the first scenario and the metrics we
chose to evaluate the prediction performance.

∆ days Acc AUC κ Specificity At-risk Precision

-7 0.76 0.82 0.39 0.71 0.45
-6 0.77 0.83 0.52 1.0 0.50
-5 0.81 0.90 0.58 1.0 0.54
-4 0.77 0.90 0.60 0.86 0.60
-3 0.82 0.90 0.56 0.71 0.62
-2 0.8 0.89 0.56 0.71 0.62
-1 0.82 0.90 0.66 0.86 0.67

Tab. 2: Classifier performance on the midterm exam using general features

30 Alisan Öztürk et al.

Classifiers that predict student success are usually trained on highly imbalanced data sets.
As such it would be possible for a classifier to score high accuracy (Acc) solely by
classifying all students as high performing, which would be of no use. We instead use
metrics such as AUC that compares the performance of a classifier to a random prediction
(AUC = 0.5) and the kappa score κ both of which take into account imbalanced data sets.
Recall that our goal is to have a high specificity. The at-risk precision of a classifier reflects
its ability to only classify at-risk students as those, which definitely is a good goal, but in
the end, the output of the classifier is a ranking based on the prediction probabilities
assigned by the classifier. We found that even seven days before the midterm exam our
model correctly predicts 71 % of the dropout-prone students. In the second scenario, the
classifiers performed even better, which is as expected, because features unrelated to
programming performance are omitted.

Building classifiers with assignment-level features revealed three distinct assignments,
whose features were repeatedly favored by the feature selection algorithm, see Tab. 3.

Feature

Number of compiler errors encountered in assignment A
Amount of time spent on assignment A
Assignment B solved (binary variable)
Assignment C solved (binary variable)

Tab. 3: Important assignment-level features

All three assignments cover the basic concepts of programming and it was the first time
students had to apply these concepts, which are branch statements (A), functions (B) and
loops (C). By knowing this, instructors can make sure that all students understood these
concepts by, for example, provide additional assignments about these concepts or spend
additional lecture time reviewing these assignments.

Nonetheless, the second scenario has few uses beyond the current offering of the course.
This is so since a future course would need to have an identical structure in order for the
predictions to remain accurate. But this is impossible because instructors seek to
continuously improve and adapt their course to student needs. For this reason, it is
important to find general features, such as student performance metrics that can be
extracted from heterogonous data sets and be therefore of use across institutions.
Additionally, this would allow us to validate the classifiers with external data sets, which
is a necessary step for further development of a reliable decision support tool for
instructors.

 Conclusion

This study shows the integration of an online coding environment within an on-campus
course. In addition, we provide suggestions on how to implement enhanced error messages

Educational Data Mining in CS1 classes 31

for the C programming language as a simple but effective feature for novice programming
students. At the same time, enhanced error messages can reduce the amount of time
students spend on fixing simple syntax errors and instructor time, which instead could be
used to help students with more serious problems. Moreover, we demonstrate how features
and student performance metrics can be engineered from programming log data, which
then can be utilized to train classifiers that are able to predict student performance early
on in the course. A decision support tool that ranks students based on prediction
probabilities can then help to meaningfully allocate instructor time to students who might
be in need of assistance. While we need to measure the effects of the enhanced error
messages on student learning within our own course, we are required to validate the
machine learning models on external data sets, which were similarly obtained from a full
on-campus course. If predictions on student performance should be reliable early on in the
course, then students need to start coding as soon as possible to increase the amount of
available data. Ultimately, more findings extracted from these kinds of data sets have the
potential to reveal more information on how students learn to code, which can then be
applied to improve programming education.

References

[Ah15] Ahadi, A. et al.: Exploring Machine Learning Methods to Automatically Identify
Students in Need of Assistance. In: Proceedings of the Eleventh Annual International
Conference on International Computing Education Research. ACM, New York,
pp. 121–130, 2014.

[Be16a] Becker, B.: An Effective Approach to Enhancing Compiler Error Messages. In:
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
ACM, New York, pp. 126–131, 2016.

[Be16b] Becker, B.: A New Metric to Quantify Repeated Compiler Errors for Novice
Programmers. In: Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, New York, pp. 296–301, 2016.

[Ca17] Castro-Wunsch, K. et al.: Evaluating Neural Networks as a Method for Identifying
Students in Need of Assistance. In: The 2017 ACM SIGCSE Technical Symposium.
ACM, New York, pp. 111–116, 2017.

[Co60] Cohen, J.: A coefficient of agreement for nominal scales. In: Educational and
Psychological Measurement vol. 1, pp. 37–46, 1960.

[De14] Denny, P. et al.: Enhancing Syntax Error Messages Appears Ineffectual. In: Proceedings
of the 19th ACM Conference on Innovation & Technology in Computer Science
Education. ACM, New York, pp. 273–278, 2014.

[FCJ04] Flowers, T.; Carver, C.; Jackson, J.: Empowering students and building confidence in
novice programmers through Gauntlet. In: 34th Annual Frontiers in Education, IEEE,
Savannah, pp. 433–436, 2004.

32 Alisan Öztürk et al.

[Fe12] Felipe, D. et al.: Towards the development of intelligent agent for novice C/C++
programmers through affective analysis of event logs. In: Lecture Notes in Engineering
and Computer Science vol. 1, pp. 511–518, 2012.

[Gu02] Guyon, I. et al.: Gene Selection for Cancer Classification using Support Vector
Machines. In: Machine Learning vol. 46, no. 1, pp. 389–422, 2002.

[Ha10] Hartmann, B. et al.: What Would Other Programmers Do: Suggesting Solutions to Error
Messages. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, New York, pp. 1019–1028, 2010.

[Hu14] Hu, Y. et al.: Developing early warning systems to predict students’ online learning
performance. In: Computers in Human Behavior vol. 36, no. C, pp. 469–478, 2014.

[Ih15] Ihantola, P. et al.: Educational Data Mining and Learning Analytics in Programming:
Literature Review and Case Studies. In: Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, New York, pp. 41–63, 2015.

[Ko03] Kotsiantis, S. et al.: Preventing Student Dropout in Distance Learning Using Machine
Learning Techniques. In: Knowledge-Based Intelligent Information and Engineering
Systems. Berlin, Heidelberg, pp. 267–274, 2003.

[Ly09] Lykourentzou, I. et al.: Dropout prediction in e-learning courses through the
combination of machine learning techniques. In: Computers & Education vol. 53, Nr. 3,
pp. 950–965, 2009.

[MD10] Macfadyen, L.; Dawson, S.: Mining LMS data to develop an “early warning system” for
educators: A proof of concept. In: Computers & Education vol. 54, no. 2, pp. 588–599,
2010.

[Oe17] Oeztuerk, A.: A Data-Driven Approach to Improve the Teaching of Programming,
Master’s Thesis, Applied Mathematics and Optimization Series AMOS#57, 2017.

[PFK97] Provost, F.; Fawcett, T.; Kohavi, R.: The Case Against Accuracy Estimation for
Comparing Induction Algorithms. In: Proceedings of the 15th International Conference
on Machine Learning. Morgan Kaufmann, San Francisco, pp. 445–453, 1997.

[Ta11] Tabanao, E. et al.: Predicting at-risk novice Java programmers through the analysis of
online protocols. In: Proceedings of the Seventh International Workshop on Computing
Education Research. ACM, New York, p. 85, 2011.

[Wa13] Watson, C. et al.: Predicting Performance in an Introductory Programming Course by
Logging and Analyzing Student Programming Behavior. In: Proceedings of the 13th
International Conference on Advanced Learning Technologies, IEEE, pp. 319–323,
2013.

