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Using data to improve programming instruction 

Educational Data Mining in CS1 classes 

Alisan Öztürk1, Petra Bonfert-Taylor2 and Armin Fügenschuh3 

Abstract: Programming classes are difficult by nature and educators are eager to find ways to deal 
with high dropout rates. Today’s technologies allow us to capture programming-related student data, 
which can be used to identify students in need of assistance and in getting insights in student 
learning. In order to assist novice programming students in learning how to program, we developed 
a web-based programming environment, which is used by students throughout the whole course. 
While it also provides students with enhanced error messages, all data of students’ interactions are 
captured. Through this data, we identified two metrics, related to small programming assignments, 
which highly correlate with student performance. These metrics along other features further enabled 
us to implement machine learning algorithms that could accurately predict dropout-prone students, 
early on in the course. Overall, methods of educational data mining can be utilized to assist both, 
students and educators in introductory programming courses.  
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Messages 

 Introduction 

Programming skills are in increasing demand in today’s workforce, leading to a growth of 
introductory programming classes with a diverse student body. Many students struggle in 
these classes, resulting in high student dropout rates in universities. There are different 
approaches to tackle these issues and to understand how students learn to code. Because 
of today’s abilities to inexpensively store and analyze data, the area of educational data 
mining evolved, which allows for the identification of relevant data that comes from an 
educational setting. One area of educational data mining focuses on predicting student 
success in introductory programming classes. While past studies mainly collected and 
analyzed demographic data, more recent studies analyzed data that was directly collected 
from the platform within the coding platform. The ultimate goal is to eventually link 
student success in programming classes to such coding data. The Thayer School of 
Engineering at Dartmouth teaches a 10-week introductory programming course. The 
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course is taught via an online coding environment, in which students take their first 
programming steps without hurdles to overcome, such as installation and compiler 
commands. At the same time, the data gathered from the coding environment enables us 
to apply educational data mining techniques to gather insights on student learning, as well 
as allows us to predict student success. These predictions can then be used as a decision 
support tool for instructors to provide targeted assistance for struggling students early on 
in the course. Whereas other studies analyzed data that was solely collected in a laboratory 
environment, the data from our study was collected during the entire course. We propose 
a number of methods to analyze and improve an introductory programming course, based 
on our course setting and the data collected therein. First, we show how compiler data can 
be captured and utilized to provide enhanced error messages to students. Then, we present 
a decision support tool for instructors that flags students based on a prediction of risk of 
them dropping the course. 

 Similar Work 

Educators have been interested in understanding how students learn to program for more 
than fifty years. Research in the field of educational data mining focuses on many different 
aspects. [Ih15] categorizes work on student-focused research, such as predicting students’ 
performance or programming related confusion and boredom, programming-focused 
research, aiming to identify programming behavior and lastly work on learning 
environments concerned with finding tools for instructors and various mechanisms for 
automated testing and grading of programming assignments. [FCJ04] introduces a system 
that responds with an easy to understand message on the most frequent java compiler error 
messages, as well as motivating feedback when a student compiles error-free code. [Ha10] 
presents another approach with an advanced system that stores compiler errors and student 
solutions in a database, which are suggested to help-seeking students. This has the 
advantage to provide assistance in situations, when it is impossible to find the root cause 
of the error message, which is especially true for the C programming language. [Fe12] 
shows an intelligent agent that detects student affective states based on key log data. 
[Be16a] presents a system that provides enhanced error messages which are further 
customized using parts of the student’s source code. Recent work has focused on 
predicting student performance, which started with data sets that contained demographic 
data, see [Ko03] and [Ly09]. [MD10] and [Hu14] analyze data from a student’s online 
learning management systems activity. Most recently, studies focus on predicting student 
performance in introductory programming courses by using data that is directly extracted 
from programming work. [Ta11], [Wa13] and [Be16b] propose various error compilation 
metrics and show a significant correlation to student performance. [Ah15] and [Ca17] 
present machine learning models to predict student performance with data sets containing 
features on the assignment level.  
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 Methodology 

In order to evaluate possible student performance metrics, we use linear regression models 
in combination with the coefficient of determination R², which describes the amount of 
variance explained by a regression model. Since it is important for these metrics to be as 
accurate as possible early on in a course, R² is calculated at different points of time for 
comparison purposes. 

For the prediction models, we built machine learning classifiers which were, similar to the 
regression models, evaluated for every day of the week leading to the first midterm exam. 
A machine learning classifier is trained on a training data set, based on a set of pre-selected 
features, which optimally show a relationship with the target variable, in our case student 
overall performance. We selected our features by using a recursive feature elimination 
algorithm, based on [Gu02]. To train our models, we limited the number of selected 
features to five. This is one method to prevent overfitting, in order to not train a model 
that fits the data too well. There are various algorithms to train a classification model and 
we compared their performance. A logistic regression model performed best with our data 
set and was therefore selected to build our classifiers. Since we desire the ability of a 
classifier to accurately predict student success as early as possible in the course, we treat 
every day as a separate instance for our model, by training one classifier per day in the 
week before the first midterm exam. The classifiers predict a student’s performance on the 
first midterm exam, which in turn is predictive via a high correlation with a student’s 
overall course performance. The models were fine tuned in order to have a high specificity, 
which means the classifier correctly predicts all negative samples, which are in our case 
students with a low midterm performance. In addition, we used several other metrics, such 
as receiver operating characteristic (ROC) curve and the kappa-score κ. The ROC curve 
displays the trade-off between a classifiers false positive rate and true positive rate and 
allows to compare different classifiers. The area under the curve (AUC) is used to quantify 
this metric, see [PFK97] for more information. κ compares the observed accuracy with the 
expected accuracy, which measures how well the predictions agree with the ground truth, 
see [Co60]. All metrics were calculated by using a 10-fold cross validation, a technique to 
evaluate a model, by partitioning the data into ten equal slices and repeatedly training the 
model on nine slices and testing it on the remaining slice.  

 Course Setting 

The course is taught as a traditional on-campus introductory C programming class with 
around 100 students. Throughout the term students have to solve various programming 
assignments in different contexts. This includes assignments completed in preparation for 
class, work performed during class as well as homework assignments. In addition, students 
take two midterm exams and one final exam. The first midterm exam is administered by 
the end of week three. The course grade is a composition of these efforts.  
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4.1 The Coding Environment 

Development of an online coding environment started in 2015, with infrequent, 
experimental use prior to this study. We worked on a full integration of this environment 
into the course structure, which demanded a rework of the auto-grader system and an 
adaptation of several coding assignments. The online coding environment is embedded 
into the learning management system which provides students with all assignments, 
important deadlines and a course overview. It is a simple editor with syntax highlighting 
that allows to compile code on a server, reset a coding assignment to a starting state 
provided by the instructor and allow to provide user-input. Time-stamped data is collected 
on the level of individual keystrokes. Each data point is linked to a unique student and an 
assignment. In addition, every compile-attempt is saved with a snapshot of the source code 
and the compiler output. Fig. 1 shows an example of a coding assignment that is embedded 
in the learning management system.  

 
Fig. 1: Interface of the embedded coding editor 

For the small programming assignment shown in Fig. 1, students were provided a pre-
populated source code. In addition, such small programming assignments, which are part 
of the pre-class preparation, are automatically checked via our auto-grader. While in the 
assignment displayed in Fig. 1 we use input/output checking, since the assignment 
involves print statements, most assignments are checked via a function embedded but 
hidden to students within the pre-populated source code. This requires students to include 
a call to our ‘check function’ to pass their variable to this ‘check_function’. It allows us to 
identify whether a student solved a programming problem without having to rely on output 
checking.   
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In addition, the instructor has access to an admin dashboard, which not only serves as an 
overview of a student’s progress on a specific assignment, but also allows the instructor 
to join the student’s programming session in order to provide help. 

From the collected data we extracted up to 300 features of different types. Some are not 
engineered and are taken straight from the database, whereas some are inferred from the 
data and so we will refer to them as “engineered” features. Engineering new features from 
the data has no limits, which means that there is still unexplored potential in our data set 
that requires further analysis. Beyond that, features can be either categorized as 
assignment-level features or course-level features. Because every log entry is linked to a 
unique student and a specific assignment, we can calculate different metrics by only 
considering data pertaining to a specific assignment. For example, we can not only extract 
the total number of compiler errors a student encountered during the course, but also get 
the number of compiler errors a student encountered on a single assignment.  

 Results 

This section is split into two parts. We start by presenting our implementation of enhanced 
error messages. Next, we briefly discuss our findings on student performance metrics, as 
well as our classification models. For a more detailed analysis see [Oe17].  

5.1 Enhanced Error Messages 

In the process of finding appropriate simplified explanations for compiler error messages 
it is important to not be too specific, because the same compiler error message can be the 
result of many different scenarios. At the same time the explanation must not be too 
general, in order to still be helpful for students. 

We aggregated results from past student data and created explanations for the 50 most 
frequent compiler error messages, which cover 95 % of the error messages that students 
encountered. After the course ended, we compared this data to data from the current course 
and we were able to show that 15 out of 20 errors from the historic data set were also in 
the top 20 of the current data set. Out of over 150 unique error messages, the top 50 errors 
also covering 95 % of all errors encountered by the students. This shows that a data-driven 
approach to extract the most frequent errors proved effective, even when only a fraction 
of the data was available. The most frequent errors that were extracted from 68,248 
submissions of 95 students are displayed in Table 1.  
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 Error Occurrence 

1 error: ’X’ undeclared (first use in this function) 2903 
2 error: expected expression before ’X’ token 1189 
3 error: expected ';' before 'X' 1108 
4 error: expected identifier or '(' before 'X' 860 
5 error: expected ';' before 'X' token 768 
6 error: conflicting types for 'X' 761 
7 error: expected '=', ',', ';', 'asm' or '__attribute__' before 'X' 644 
8 error: parameter name omitted 643 
9 error: ld returned 1 exit status 618 
10 error: expected '=', ',', ';', 'asm' or '__attribute__' before 'X' token 571 

Tab. 1: Most common C errors from our CS1 course 

If the compile process fails, the enhanced error message is displayed below the original 
error message, see Fig. 2. 

 
Fig. 2: Example of an enhanced error message 

By the end of the course students should be able to use the original compiler error 
messages to help them debug their source code, without the need of enhanced error 
messages. Nonetheless, the benefits are intensely discussed. While [Be16] showed 
positive effects on students learning based on their own developed metric, [De14] claims 
that enhanced error messages were ineffective. We believe this is highly dependent on the 
course setting and the quality of the enhanced error messages.   
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Within our course we conducted a post course survey, where students did indeed find the 
enhanced error messages helpful, but this needs to be verified in future courses. In the 
future, we plan to integrate a rating system that allows us to identify unhelpful 
explanations that require a rework. The error compilation metrics were developed and 
tested with data from a different language and course setting, thus findings of our study 
might not be directly transferable to other studies, although our results strongly indicate 
an invariance of these metrics across programming languages.  

5.2 Predicting student performance 

In our analysis we evaluated several error compilation metrics. With our data set, we found 
that the error quotient performed best, and the regression model could explain up to 41 % 
of the variance. In addition, we found two metrics, linked to small programming 
assignments, that also showed a significant correlation with student performance. The first 
metric is the amount of time a student spent on small programming assignments. For this 
metric, we had to exclude many students that only used the coding environment when they 
had to. These students chose to code in other environments. Nonetheless, a regression 
model based on the time spent on the small programming assignments could explain up to 
34 % of the variance. Lastly, we engineered a metric called solved ratio, which is 
calculated by dividing the sum of the solved small programming assignments, by the 
maximum of assignments solved by a student in the same course. The solved ratio could 
explain up to 50 %.  

To assess the ability to predict student performance early on in the course, we built a 
classifier for each day of the third week into the course, leading to the first midterm exam. 
There is a high correlation between a student's first midterm performance and overall 
course performance, which indicates that a student who struggled on the first midterm 
exam is more likely to have difficulties in the course and might drop out of it. Due to this, 
it is sufficient enough to build classifiers that predict a student's midterm performance. We 
considered two scenarios, for the first scenario we only provided general features for the 
feature selection process, whereas for the second scenario all 300 features were available. 
Tab. 2 shows the performance of each classifier in the first scenario and the metrics we 
chose to evaluate the prediction performance.  

∆ days Acc AUC κ Specificity At-risk Precision 

-7 0.76 0.82 0.39 0.71 0.45 
-6 0.77 0.83 0.52 1.0 0.50 
-5 0.81 0.90 0.58 1.0 0.54 
-4 0.77 0.90 0.60 0.86 0.60 
-3 0.82 0.90 0.56 0.71 0.62 
-2 0.8 0.89 0.56 0.71 0.62 
-1 0.82 0.90 0.66 0.86 0.67 

Tab. 2: Classifier performance on the midterm exam using general features 



 
30 Alisan Öztürk et al. 

 

Classifiers that predict student success are usually trained on highly imbalanced data sets. 
As such it would be possible for a classifier to score high accuracy (Acc) solely by 
classifying all students as high performing, which would be of no use. We instead use 
metrics such as AUC that compares the performance of a classifier to a random prediction 
(AUC = 0.5) and the kappa score κ both of which take into account imbalanced data sets. 
Recall that our goal is to have a high specificity. The at-risk precision of a classifier reflects 
its ability to only classify at-risk students as those, which definitely is a good goal, but in 
the end, the output of the classifier is a ranking based on the prediction probabilities 
assigned by the classifier. We found that even seven days before the midterm exam our 
model correctly predicts 71 % of the dropout-prone students. In the second scenario, the 
classifiers performed even better, which is as expected, because features unrelated to 
programming performance are omitted.  

Building classifiers with assignment-level features revealed three distinct assignments, 
whose features were repeatedly favored by the feature selection algorithm, see Tab. 3. 

Feature 

Number of compiler errors encountered in assignment A 
Amount of time spent on assignment A 
Assignment B solved (binary variable) 
Assignment C solved (binary variable) 

Tab. 3: Important assignment-level features 

All three assignments cover the basic concepts of programming and it was the first time 
students had to apply these concepts, which are branch statements (A), functions (B) and 
loops (C). By knowing this, instructors can make sure that all students understood these 
concepts by, for example, provide additional assignments about these concepts or spend 
additional lecture time reviewing these assignments.  

Nonetheless, the second scenario has few uses beyond the current offering of the course. 
This is so since a future course would need to have an identical structure in order for the 
predictions to remain accurate. But this is impossible because instructors seek to 
continuously improve and adapt their course to student needs. For this reason, it is 
important to find general features, such as student performance metrics that can be 
extracted from heterogonous data sets and be therefore of use across institutions. 
Additionally, this would allow us to validate the classifiers with external data sets, which 
is a necessary step for further development of a reliable decision support tool for 
instructors. 

 Conclusion 

This study shows the integration of an online coding environment within an on-campus 
course. In addition, we provide suggestions on how to implement enhanced error messages 
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for the C programming language as a simple but effective feature for novice programming 
students. At the same time, enhanced error messages can reduce the amount of time 
students spend on fixing simple syntax errors and instructor time, which instead could be 
used to help students with more serious problems. Moreover, we demonstrate how features 
and student performance metrics can be engineered from programming log data, which 
then can be utilized to train classifiers that are able to predict student performance early 
on in the course. A decision support tool that ranks students based on prediction 
probabilities can then help to meaningfully allocate instructor time to students who might 
be in need of assistance. While we need to measure the effects of the enhanced error 
messages on student learning within our own course, we are required to validate the 
machine learning models on external data sets, which were similarly obtained from a full 
on-campus course. If predictions on student performance should be reliable early on in the 
course, then students need to start coding as soon as possible to increase the amount of 
available data. Ultimately, more findings extracted from these kinds of data sets have the 
potential to reveal more information on how students learn to code, which can then be 
applied to improve programming education. 
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