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Embedding Textual Languages in MagicDraw1
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Abstract: Stakeholders in model-based systems engineering projects often rely on heterogeneous
modeling languages and tools. Efficient and seamless model-based engineering requires analyzing
consistency, maintaining tracing information, and propagating changes of models of these languages
even in different technological spaces. However, research on software language integration and inter-
model consistency often only considers modeling languages and tools within the same technological
space. We present a method for language composition across the technological spaces of the graphical
modeling framework MagicDraw and the language workbench MontiCore. We realized language
integration between these technological spaces by applying concepts of language aggregation to
exchange essential model information and performing analysis on this information in an automated
toolchain. The presented concepts can guide software language engineers and modeling tool developers
on how to combine concepts of language composition to bridge technological spaces.
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1 Introduction

The development of large, complex, model-based systems [Ni15] necessitates the collabora-
tion of experts from different fields, which may use a variety of modeling languages and tools.
Managing intermodel consistency and supporting interpreting models together across the
boundaries of technological spaces is crucial for seamless model-based engineering but costs
a lot of effort and is prone to errors if not done automatically. Software language engineer-
ing [Kl08] has given rise to various language composition mechanisms [VV10, HRW18], of
which language aggregation enables models of different languages to be interpreted together.
However, these mechanisms are mostly constipated for modeling languages originating from
the same technological space [GVM12], whereas domain experts may operate in different
technological spaces. Furthermore, software languages and workbenches come in different
shapes as they may be textual, graphical, or projectional.

Aggregating languages of different shapes and across technological spaces can facilitate
automated and seamless model analyzes in model-based systems engineering projects.
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We, therefore, investigate the challenges of integrating textual and graphical languages
between different technological spaces at the example of the graphical modeling framework
MagicDraw 3 and the language workbench MontiCore 4. We do this by making essential
model information explicit that can then be exchanged between languages. Using the
example of embedding textual expressions into graphical state machines, we then show
how this model information can be utilized in modeling tools to analyze inter-model
conformity automatically. The presented results can guide language engineers on how to
combine language embedding with language aggregation to systematically develop a shared
understanding of models from different technological spaces.

In the remainder, we illustrate the challenges of language integration across technological
spaces in section 2. We then present the background of MontiCore and MagicDraw
in section 3 before we then present a systematic concept for language embedding in
MagicDraw through essential model information in section 4. Next, we explore language
embedding using the example of embedding textual expression languages into graphical
state machines in MagicDraw in section 5. Finally, we present related work on language
composition and tool integration in section 6 and discuss our solution in section 7.

2 Challenges

Integrating textual with graphical modeling languages across heterogeneous technological
spaces poses several challenges. The different language constituents must be embedded
appropriately, capable of interacting with each other and provided to the user in a convenient
form. With respect to ISO 25010 [IS10], the norm for software product quality, the occurred
challenges are related to functional suitability, compatibility, and usability.

Functional suitability refers to providing the required functionalities in the product. For
embedding textual languages in graphical MagicDraw diagrams, this involves enabling the
modeler to seamlessly define graphical and textual portions in the MagicDraw editor, which
are automatically checked for validity. An integrated editing environment is essential to
prevent the modeler from switching back and forth between multiple tools, which could
disturb the overall modeling effort. Compatibility basically means the ability of a software
system to interoperate with others. This is particularly important in our case, as the main
task is to connect two different technological spaces. Thus, model elements of both spaces
must be able to interact with each other, and well-formedness must be checked on the
integrated (i.e., the entire) model. Usability refers to the applicability of a product to the
end-user, considering usability, intuitiveness of functionalities, and general user interface.
Accordingly, textual languages must be seamlessly integrable into graphical model elements.
Furthermore, the modeler requires direct feedback on the well-formedness of the modeled
elements and support for the modeling process itself.

3 https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
4 https://monticore.de/
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This leads to the following overall challenges:

C1 Textual model elements must be editable and storable in MagicDraw’s graphical
editor.

C2 Textual model parts must be checkable for correctness with respect to the context of
the graphical model components.

C3 Graphical model parts must be referencable via textual qualifiers.

C4 Textual model parts and corresponding functionalities must be embedded seamlessly
into MagicDraw.

C5 The user requires direct feedback on modeled elements and modeling support.

Since this paper focuses on embedding textual languages into MagicDraw, functional
suitability (C1) and compatibility (C2, C3) are mandatory goals. While usability (C4, C5)
often cannot be determined objectively and requires user studies, we can at least qualitatively
evaluate whether these challenges have been addressed appropriately.

3 Preliminaries

MontiCore [HKR21] is a workbench and a framework for engineering modular textual
modeling languages from context-free grammars (CFGs), which define a language’s concrete
and abstract syntax. From a CFG, MontiCore generates the basic infrastructure for the
engineering of modeling languages, which includes a parser, a symbol table, model
consistency and model transformation infrastructure, and a common workflow. Language
engineers can implement language specifics by filling provided extension points and
extending the generated infrastructure. The common workflow of modeling languages
engineered with MontiCore starts with parsing a textual model to construct its abstract
syntax tree, deriving a model’s symbol table, performing handcrafted context-condition
checks, and serializing essential model information in exchangeable artifacts. To facilitate
modular development, MontiCore provides syntax-focused mechanisms for composing
language constituents. A provided library of literals, expressions, and types further facilitates
language composition [Bu20].

MagicDraw is a graphical collaborative and extendable modeling tool that implements
various standardized languages, including the UML, SysML, and BPMN. In MagicDraw,
profiling enables language engineers to adapt predefined language profiles and create
custom and specialized languages on top of the provided profiles. MagicDraw furthermore
enables customization of modeling language-specific tools by supporting the development
of custom plugins. MagicDraw provides an open development API whose code can be
reused, extended, and modified, to facilitate profiling and plugin development.
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4 Embedding Textual Languages

Besides the graphical modeling capabilities, MagicDraw offers a set of predefined textual
languages. These include scripting languages such as Groovy or JavaScript and a specific
OCL dialect. Additionally,MagicDraw supports structured expressions, which are assembled
in a tree-like fashion via the editor and are encoded in XML.Nevertheless, the possibilities for
textual modeling are severely limited. The existing textual languages have only rudimentary
access to the elements of the containment tree in MagicDraw, and thus elements can often
only be referenced very unintuitively via detours. Otherwise, there is only the possibility of
inserting plain text. However, the resulting string is neither checked in itself nor concerning
the context of other model elements. An integrated language requires a seamless connection
between graphical and textual modeling. Furthermore, MagicDraw does not provide any
direct hook points for mounting additional textual languages besides the existing ones.

Therefore, to embed an external, textual language into an otherwise graphical DSL in
MagicDraw, it must be integrated in such a way that it: (1) accepts only the allowed
set of syntactic sentences, and (2) these are validated for well-formedness concerning
their context. To meet the first requirement, we have to integrate a parser for the textual
language into MagicDraw. The basic idea is to use MagicDraw’s plain text panels to
enable textual modeling. For this purpose, we can either reuse existing plain text fields or
create new fields for the MagicDraw language under development by creating them in the
corresponding metamodel. In both cases, we have to bind a parser to the plain text field
for validation. This parser can be provided externally by using appropriate technology to
create textual domain-specific languages, such as MontiCore [HKR21]. Here we provide a
context-free grammar that defines the concrete and abstract syntax of the textual language
and automatically generates a parser for its models. MagicDraw allows adding customized
validation rules for model elements. These rules are checked at modeling time and return
an error message to the modeler in case of a violation. We exploit this extension point by
specifying a validation rule for the designated plain text field for embedding the textual
language. The input string is forwarded to the parser, which converts it to an AST, or in case
of erroneous input, returns an error message, which in turn is displayed to the modeler.

The second requirement must be validated on the created AST (thus, after parsing the textual
input), checking if the syntactically correct model is also well-formed. Therefore, the nodes
of the textual model’s AST must be checked against the other elements, both textual and
graphical. The particular characteristic of the well-formedness rules is highly dependent on
the language. Thus, in the following, we discuss the different types of validation rules, as
well as a general approach for addressing these. Generally, these rules arise from known
context conditions for modeling languages [HKR21] but pose a special challenge in the
case of language embedding and aggregation across different technological spaces. First,
basic direct checks exist on an AST node, such as whether the name of an element begins
with an uppercase letter. Furthermore, it can be checked whether certain elements can be
referenced in a textual model, such as variables or method calls. This also includes checking
whether these elements are accessible and, e.g., in the case of methods, the signature of
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the definition fits the signature applied in the usage. Finally, the types of the referenced
elements must be compatible with each other.

While basic validation rules on a few AST nodes of the textual model can usually be
implemented easily, references between model elements pose a major challenge, especially
for references between the different technological spaces. To resolve these references,
programming and textual modeling languages introduce the concept of the symbol table
[HMSNR15, Ha15]. A symbol table is an infrastructure that stores uniquely named model
elements (so-called symbols) and enriches them with additional information. It elevates
the tree structure of the AST to a graph structure allowing for quick navigation and
cross-referencing. To achieve referencing of graphical model elements in embedded textual
language models, we extend this symbol table concept to the entire containment tree in
MagicDraw. We traverse the entire containment tree and create a symbol for each model
element uniquely identifiable by its qualified name. Here, we opt for the application of
the Visitor Pattern, which is supported by in MagicDraw. For each relevant element, a
corresponding symbol is created.

Depending on the element’s type, we instantiate a symbol of a respective kind. Thus, the
symbol for, e.g., an attribute is distinct from a method’s as they need to provide different
information and should be referenceable separately. The precise assignment of symbols
is language-specific, although there are common candidates, such as (object-oriented)
type definitions, fields, functions, or methods. After creating the symbols, they are bound
to their model elements (e.g., via a map). Sophisticated language workbenches such as
MontiCore follow a more integrated approach between AST nodes and symbols. In the case
of MagicDraw, we have opted for a more straightforward binding mechanism for simplicity.
Ultimately, the referenced symbols can be resolved, thus accessing the heterogeneous model
elements throughout the entire containment tree. Well-formedness rules for referencing
other model elements can be added via a validation rule in MagicDraw, similar to the parser.

Finally, the implemented validation rules can be packed into a MagicDraw plugin together
with the customized language and the embedded parser. Since MagicDraw is based on the
Java programming language, it is useful to rely on compatible technologies for parsing and
symbol table creation.

5 Case Study

To evaluate our concept for tool interoperability, we extend MagicDraw’s graphical state
machines with textual expressions. Our goal is to use state machines to model the behavior
of distributed systems. To this end, we want to interpret state machines together with internal
block diagrams and block definitions. Unfortunately, while MagicDraw offers behavior
descriptions, these don’t fulfill the specific semantics we require. Using strongly typed
expressions consisting of boolean operations, variable assignments, and method calls, we
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want to enable modelers to define transition triggers and effects that can reason over port
and variable values.

MagicDraw’s API enables us to embed expressions into transition guards and effects on a
syntactical level. Using an expression parser provided by MontiCore’s library of literals,
types, and expressions and attaching it to a plain text panel in MagicDraw’s state machines,
we can now parse plain text input and derive their abstract syntax tree. While this provides
us with at least the most basic checks for ensuring correct concrete syntax, we can not
yet check the well-formedness of expressions with respect to the availability of referenced
symbols and type conformity; that is, we can not yet check inter-model well-formedness.

To enable well-formedness checks between models, we need to make the available system
elements, ports, variables, and types known to the type system. However, here two problems
arise. First, MagicDraw does not provide a straightforward way to export such information;
secondly, and more importantly, type access differs significantly for graphical and textual
languages. The graphical framework MagicDraw stores elements in a containment tree and
enables access to elements through direct object inks, whereas textual languages manage
access to symbols either through namespaces or scopes, with MontiCore supporting the
latter. That is, symbols are available in certain scopes, and access to elements is provided
through their fully qualified name. Not all symbols in scope are available from the outside,
though, as scopes may only export certain symbol kinds. Furthermore, a symbol may shadow
another symbol of the same name in another scope.

Using the above-presented concept for language aggregation, we make symbol information
explicit to type check on expressions and thus bridge the gap between the technological
spaces of MagicDraw and MontiCore. We do this by traversing the containment tree using a
visitor that collects element information along the way. We then synthesize, aggregate, and
serialize the symbol table of the stored model elements from this information. While the
serialized symbol table functions as a pivot model between the two technological spaces, it
is pruned down to the essential model information for conformity checks.

To integrate well-formedness and type checks provided by MontiCore, we rely on the
MagicDraw’s validation suite, which provides validation rules which can be applied to
model elements to check conformity. Filtering model elements for textual elements of state
machines, we can use these to check the conformity of the embedded expressions. First, the
embedded parser receives the abstract syntax tree. Then, the type check is applied to the
abstract syntax tree, consuming aggregated symbol information to check well-formedness.
Usages of names must be available in the symbol table as names of ports and fields.
Their symbols provide information about their type, visibility, and access rights. Symbol
information is made visible to the scope of an expression through import statements, with the
containment tree hierarchy of elements defining their fully qualified name. The type check
then consumes this information to check the conformity of the left-hand and right-hand
sides of expressions, or that expressions in transition guards evaluate to Boolean.
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EngineRunning

DrivingIdleEngineOff DrivingIdle

 [accelerate && timer > 10] / 
engineCntrl = ENGINE_IDLE;

 [accelerate == true] / timer = 0;
engineCntrl = ENGINE_ON;

 [!accelerate] / 
 timer++;

 [accelerate] / 
timer = 0;

 [accelerate == true] / timer = 0;
engineCntrl = ENGINE_ON;

 [accelerate && timer > 10] / 
engineCntrl = ENGINE_IDLE;

 [keyPos == KEY_ON] / 
lightCntrl = LIGHTS_ON;

engineCntrl = ENGINE_IDLE;

 [keyPos == KEY_OFF] / 
lightCntrl = LIGHT_OFF;

engineCntrl = ENGINE_OFF;

 [!accelerate] / 
 timer++;

 [accelerate] / 
timer = 0;

 [keyPos == KEY_OFF] / 
lightCntrl = LIGHT_OFF;

engineCntrl = ENGINE_OFF;

 [keyPos == KEY_ON] / 
lightCntrl = LIGHTS_ON;

engineCntrl = ENGINE_IDLE;

Fig. 1: A visual MagicDraw model of a car integrating textual model elements of our language
both inside the rectangular brackets and after the slashes; The car may be turned on or off. When
accelerating with the engine in its idle state the engine is turned on. After not accelerating for a while,
the engine returns to its idle state.

Example: In Fig. 1 in the top left the guard keyPos == KEY_ON can be seen. When validating
the model, the provided text is parsed to an AST with an equality expression containing two
names. Afterward, referenced names are resolved in the symbol table. As both symbols have
the same type, they are comparable, and thus the type of the expression is of type Boolean.

To report on ill-formed elements, we use the annotations-Application Programming Interface
(API) provided by MagicDraw. Error messages are annotations on elements which are
then displayed in the Graphical User Interface (GUI). By adding the annotations-API,
MagicDraw will highlight annotated elements as erroneous. In addition, the errors are also
listed in an additional window of GUI, which results from fetching the error output of the
embedded expression language.

6 Related Work

Most related work on language composition only considers homogeneous technological
spaces, e. g., languages developed in a common language workbench. MontiCore supports
systematic, syntax-oriented reuse of individually developed language components through
language aggregation, language embedding, and language inheritance [KRV10, Lo13, Ha15].
These mechanisms mostly enable language integration as defined in [EGR12]. Furthermore,
language aggregation enables to combine independent modeling languages such that models
of varying aspects defined in different artifacts can be interpreted together. Serialization
and deserialization of model essentials provides a basic foundation for integration of
languages of heterogeneous technological spaces. However, MontiCore only focuses on
syntactic language composition and does not provide support for composing semantics or
development environments.
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The language workbench MPS [Vo13] supports language composition of concrete syntax
with mechanisms similar to MontiCore, though they are called differently. In addition
to syntax-oriented reuse of languages, MPS also addresses modularity of type systems,
generators, and development environments. However, mechanisms that enable composition
of modeling languages of heterogeneous technological spaces, such as language aggregation,
are missing in MPS.

Another approach [Se17] describes integrating the textual modeling language Alf [Se14]
into MagicDraw UML diagrams. As an action language, a modeler can use Alf code snippets
to specify behavior. For instance, the operation body of a method could be written in Alf, or
smaller snippets could be used in conjunction with graphical UML behavior diagrams (such
as activity diagrams or state machines). In general, this concept is similar to our work. A
textual language is also embedded inMagicDraw, which is evaluated context-sensitively with
respect to the graphical model elements. The main difference lies in the actual application,
as the described Alf plugin adds additional modeling capability and does not, as in our
case, formalize existing model elements syntactically through a language. Furthermore, the
article describes the features and benefits of the Alf plugin rather than providing a general
concept for embedding textual languages in MagicDraw.

Generally related are various works in the area of tool integration. Highly heterogeneous
models are linked together, and information is exchanged between them. For example,
the FTG+PM framework [Mu12] defines model transformations as graph structures to
automatically pass information between different representations. Furthermore, there are
attempts to represent information of different models via knowledge base systems [Fe15],
via which rules for the consistency of information can then be derived and inferred. Besides
many other works describing the linking of information across heterogeneous models and
tool landscapes [Br10, Ch15, ZLVH18, DDFV09, SWA10, Mi09, CMM09, Zi07, Ba10],
these approaches are usually only loosely related to our solution. While generally, an
aggregation of models and their information takes place, our approach describes a concrete
embedding in the MagicDraw modeling platform. Consequently, elements do not have to be
exchanged between different tools but are directly implemented together in an integrated
environment.

7 Discussion

Our presented approach of embedding textual languages into graphical languages is based
on the modeling framework MagicDraw. For designing and integrating the textual language,
we rely on the MontiCore language workbench because it is based on the same technological
space (i.e., Java) and highly fosters the use of a symbol management infrastructure, which
is heavily used in our solution. The particular challenge in our work was not only to make a
textual language accessible within a predominantly graphical modeling environment but
also to integrate it seamlessly into the graphical model. This means that the model must be
not only syntactically correct in itself but also well-formed under the context of the graphical
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model elements. Table 1 presents the evaluation results of our approach concerning the
initially identified challenges (cf. section 2).
Tab. 1: Fulfillment of embedding challenges for textual languages in MagicDraw (• = fulfilled, ⊙ =
partially fulfilled, ◦ = not fulfilled)

Challenge Description Fulfilled
C1 Textual model elements must be editable and storable inMagicDraw’s

graphical editor.
•

C2 Textual model parts must be checkable for correctness with respect
to the context of the graphical model components.

•

C3 Graphical model parts must be referencable via textual qualifiers. ⊙
C4 Textual model parts and corresponding functionalities must be em-

bedded seamlessly into MagicDraw.
•

C5 The user requires direct feedback on modeled elements and modeling
support.

⊙

Generally, our approach extends language composition techniques known from textual
languages and applies these to the graphical modeling space of MagicDraw (C1). Using
the symbol table to resolve elements by their qualified name enables the modeler to cross-
reference elements over the boundaries of the textual model. By integrating the resolve
mechanism into a custom validation suite, we can check the well-formedness of the textual
elements automatically (C2). However, the overall referencing could be seen as incomplete
from a graphical modeling point of view, as not all parts are uniquely accessible by their
names (C3). In MagicDraw, all model elements are theoretically accessible independent
of their name. Referencing is accomplished via internal identifiers enabling arbitrary
cross-referencing. Therefore, both ways of referencing are not fully compatible, resulting in
potential conflicts and ambiguities. However, since internal identifiers are unintuitive in
textual modeling and we can usually assume that relevant model elements have meaningful
(and uniquely qualified) names in graphical modeling as well, we decided to follow this
approach. A potential extension could combine these concepts by presenting the textual
representation to the user while simultaneously managing MagicDraw’s identifiers in the
symbol table.

Finally, we primarily concentrated on the general feasibility and interoperability of the
languages’ constituents in an integrated fashion (C4). Accordingly, there is still a considerable
lack of editor functionalities for the embedded textual language, such as syntax highlighting
or autocompletion. However, by integrating validation rules, we can provide instant feedback,
which satisfies at least the most rudimentary requirements of this challenge (C5). The
integration of these functionalities, for example, via the language server protocol [BK19],
still needs to be explored. In this context, extending the integration regarding refactorings
of the graphical elements (such as renaming or deletion) and automatically tracing these
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changes into the textual model parts is important. Currently, the integrated validation rules
would directly detect the results of such modifications but without automated adaptations.

Our solution demonstrates the integration of textual MontiCore languages into the predomi-
nantly graphical modeling environment of MagicDraw. While the approach is specific to
both technological spaces, it also provides a foundation for generally integrating textual
languages into graphical tools. First, although strongly established by MontiCore, the
general concept for building a symbol table, which maps individual model elements to
uniquely resolvable symbols, can be applied commonly. Moreover, the realization approach
can also be considered generalizable as it is based on the prevalent visitor pattern. Here,
we assume that most modeling tools manage the model internally in a tree-like construct,
which immensely benefits the use of this pattern. Otherwise, the underlying technology
stack and the supported extensibility of the tools used are crucial for the integrability of
different languages. Our approach benefits heavily from the fact that MagicDraw supports
Java extensions, and MontiCore can easily fill this hook point. However, for too diverse or
hardly extensible tools, realizing such integration can be difficult.

8 Conclusion

We presented a concept for embedding textual modeling languages in graphical languages
of MagicDraw, discussing different challenges for usability and interoperability. At its core,
the required infrastructure to resolve textual references on graphical model elements and
vice versa is elaborated. Additionally, we presented a case study, realizing our concept
based on context-free grammars written in MontiCore. We integrated a textual language in
consideration of mutual access to the different technological spaces by leveraging integrated
symbol tables, thus bridging the gap not only between heterogeneous languages but also
tools. Ultimately, our approach provides a contribution to fostering a seamless transition
between graphical and textual modeling.
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