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ABSTRACT

The IoT is set to permeate our lives as a new and global
super infrastructure, where billions of devices with an un-
precedented variety of hardware architectures will interact.
To enable IoT applications and services to run everywhere
without major adaptation, operating systems (OS) provide
standardized interfaces to the heterogeneous hardware. As
a consequence, an operating system for IoT devices must
be available for a huge number of target platforms, from
low-end to high-end devices, and it must guarantee differ-
ent levels of dependability (e.g., safety, security, real-time,
maintainability) that each application will require. Some of
these hardware architectures do already exist, others will
emerge over time and introduce new or improved features
that must be supported or exploited by the OS. In order to
succeed, an OS must thus be portable, not only concerning
its functionality, but also its verified dependability.

This paper tries to answer the question of how portable
existing IoT OSs are, analyzing five popular OSs on their
design, development, and testing processes, as well as the
quality of available ports. We close with a suggestion on how
to improve portability for future OS designs.
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1 INTRODUCTION

An Operating System (OS) is expected to ease the devel-
opment of applications by providing a unified execution
environment on supported hardware, and relieving the ap-
plication developer from the burden of performing micro-
management on limited system resources like memory, pro-
cessor cores, execution time, etc. In this context, an OS is
also responsible for ensuring the properly interleaved execu-
tion and interaction of concurrent tasks without bothering
the developer with scheduling, synchronization, security or
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hardware-specific mechanisms demanding low-level knowl-
edge about the hardware.

The Internet of Things (IoT) is set to permeate our lives as
a new super-infrastructure, with applications ranging from
monitoring our health to controlling our cars and manag-
ing our cities. Billions of devices are expected to interact in
the IoT, and we can already see a growing variety of hard-
ware architectures, communication stacks and programming
paradigms, each specializing on specific purposes and differ-
ent requirements or constraints. An OS that aims to become
the Linux or Android for the IoT will need to be able to run
on several platforms, ranging from low-end sensor nodes to
high-end automotive electronic control units (ECUs), guar-
anteeing different levels of dependability [4] that each ap-
plication will require. Thus, the OS must be portable, not
only concerning its functionality, but also its verified de-
pendability with respect to safety, security, real-time, and
maintainability.

A Port is the realization of a software (here: OS) for a
specific target environment. A Port can be created by im-
plementing a specification (i.e., from scratch) or by porting
(i.e., adapting) an existing Port for a new target environ-
ment. A piece of software is said to be portable if the ef-
fort of porting it is lower than the effort of implementing
it from scratch [22]. In other words, the lower the porting
effort, the more portable the software. For low-level (i.e.,
hardware-dependent) software, such as OSs and drivers, this
environment is the hardware platform (e.g., the processor)
they run on, and, due to different hardware configurations
and features, just recompiling the source code is not enough
to create a new port. Today, rewriting parts of the software is
then unavoidable, and it is thus crucial for its longevity that
the software architecture is designed such that the related
effort is kept minimal. Other factors that affect the actual
porting effort of low-level software are the level of exper-
tise the developers have on both the software and the target
platform, as well as the question to which extent the already
supported platforms differ from the new target platform.
Besides, for many systems in the IoT, the mere existence
of executing code in a port is not enough: each port must
guarantee to retain both functional behavior as well as non-
functional properties for safety, security, real-time operation,
maintenance, etc.
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This paper tries to answer the question of how portable
existing IoT OSs really are, considering their design, develop-
ment, and testing processes, as well as the quality of already
available ports. It is organized as follows: Section 2 explains
our evaluation methods and presents the portability aspects
of each analyzed OS. In Section 3, we assess how portable
we found the OSs to be, summarizing positive and negative
aspects. We complement the OS analysis with a literature re-
view on porting experiences and porting errors in Section 4.
Finally, Section 5 draws a conclusion and gives a short look
ahead on how OS portability could be improved in existing
and future OS architectures.

2 PORTABILITY ASPECTS

In this section, we present the portability aspects of five
open-source OSs commonly used in the IoT and related do-
mains, such as Wireless Sensor Networks (WSN) and auto-
motive. Since portability strongly depends on the software
design and source code, our deliberate choice of open-source
projects enables us to dig deep into each OS, instead of rely-
ing only on user-level information given by the providers.
This study is based on our experience in both using and
developing Real Time Operating Systems (RTOSs), and also
considers, besides the source code, the website and available
documentation of each OS.

In advance: a high number of supported platforms does
not necessarily mean the OS is easily portable, nor does a
low number indicate that it is difficult to port. First, support-
ing several similar devices requires much less effort than
supporting very different devices, e.g., processors with com-
pletely different Instruction Set Architectures (ISAs). Also,
the number of ports often depends on other factors, e.g., the
time the OS had to mature, the size of its developer com-
munity, and the focus it gives to the amount of supported
devices versus the quality of the ports (which is a common
trade-off in software development).

This is not an exhaustive study of all IoT OSs, but a detailed
study of some representative OSs:

o FreeRTOS! is one of the most used RTOSs in the IoT,
and has ports to several platforms;

e RIOT? is another well known RTOS for the IoT, and
also supports several platforms;

e selL4’ is an example of a formally verified and secure
RTOS;

e Contiki-NG* is an event-driven OS that is widely
used in WSN, specially for low-end devices;

1FreeRTOS v10.2.1, released on 13th May 2019
2RIOT repository on 25th October 2019

3seL4 repository on 12th November 2019
4Contiki-NG repository on 14th November 2019
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Figure 1: Relation between platform, MCU, cores and
architecture variant.

e ERIKA3’ is an OSEK/VDX implementation, mainly
used in the automotive industry.

Table 1 summarizes the number of devices each OS cur-
rently claims to support. In order to unify the wording that
is used by the different providers, we define that a platform
is composed of a Microcontroller Unit (MCU) and attached
off-chip peripherals. An MCU contains on-chip peripherals
and one or more cores, each implementing an architecture
variant, as shown in Figure 1. We consider an architecture
as the specification of the instruction set, for example ARM,
RISC-V, x86, etc, while an architecture variant is e.g., 32 or
64-bit versions of an architecture, or versions and variations,
such as the ARM Cortex-MO0, Cortex-M4, Cortex-A9, etc.

Table 1: Number of supported devices in each OS

[0} Arch. | Arch. variants | MCUs | Platforms
FreeRTOS 23 49 106 117
RIOT 7 15 39 167
selL4 3 10 20 23
Contiki-NG 5 6 8 28
ERIKA3 7 10 18 22

The portability aspects in this section try to assess how
easy it is to port each of the OSs considering how the hard-
ware abstraction layer is specified, how easily low-level code
can be reused, and how ports are tested. We have tried to
asses how their source code is organized and how it was
ported so far, and whether common code, that avoids code
replication, is available for similar platforms. We also sur-
veyed the features of available ports, whether some are in-
complete or unimplemented, and if there were functional
and non-functional differences between them. Concerning
testing or verification, we tried to asses how ported code is
checked for completeness and correctness, and whether or
how e.g., specifications or requirements are provided. The
results of the portability aspects of each studied OS follow
in the next subsections.

SERIKA3 repository on 12th September 2019
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2.1 FreeRTOS

FreeRTOS [1] is one of the most used open source RTOSs
in the embedded domain [2], with the highest number of
supported architectures and MCUs among the studied OSs.
Developed since 2003, it is now owned by Amazon Web
Services and distributed under the MIT license, meaning it
can be used for any purpose without restriction.

The source code is organized in two main directories:
Source contains the generic kernel code in its root, include
files in a subdirectory, and low-level code in another, called
portable. Interestingly, the portable directory has subdi-
rectories for different compilers, instead of the classic sep-
aration by architecture or MCU. The implementation is in
MCU directories inside the compiler directories. An excep-
tion is for the ARM Cortex variants, that are specific to each
variant (e.g., Cortex-M0, Cortex-A9) but not to MCUs that
implement them. MCUs with ARM7 or ARM9 have their own
specific implementations, without any shared code between
the ones with the same architecture variant. In fact, many
ports are available for the same MCU or architecture variant
on different compilers and still, no code is shared. It is instead
mostly replicated, with differences limited to pragmas, casts
that silence compiler warnings, and compiler-specific de-
fines. In some cases, the code has a different structure, but its
expected functionality is the same. There are “master copies”
implemented for Cortex-M23 and Cortex-M33 (ARMv8-M)
that are, prior to each release, copied into each correspond-
ing compiler port. Demo contains demo applications with
subdirectories for each platform-compiler combination. A
lot of additional low-level code, such as board initialization,
drivers, and even interrupt and watchdog handling are im-
plemented inside the demos, at application layer, instead
of a clear separation into reusable board support packages.
While there is some code sharing for some tests, demos for
some platforms on different compiler replicate large chunks
of code. Similar platforms also have a considerable amount
of replicated code.

The low-level kernel functionality is limited to context
switching and some housekeeping, while other vital func-
tionality of the kernel, such as initialization, clock, interrupt,
and watchdog handling are outsourced to the demos. We
also found evidence that the OS does not clean up memory
allocated (by the kernel) to deleted tasks, nor guarantees that
itself will run on supervisor mode, even if it will not work
correctly otherwise.

There is no real specification for the low-level code, and
according to the porting guide®, one should simply copy two
files to be ported from another existing port, delete function
and macro bodies, and then implement the new port. Turns
out that some ports have more than the two mentioned files,

Shttps://www.freertos.org/FreeRTOS-porting-guide.html
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the functions to be implemented are not at all commented,
and there are functions implemented for some ports that
are not present on others. The porting guide also states that
porting to a “completely different and as yet unsupported
MCU is not a trivial task”. In fact, there is even a company
selling porting and testing services.

There are tests that “attempt to provide ‘branch’ test cover-
age” for generic kernel code, and some low-level code testing
inside the demos, including a test for the context switches.
The context switch tests seem to be manually written, and it
is not clear if by the same or another developer. While such
tests may reveal software bugs, it is not clear how efficient
they really are.

2.2 RIOT

RIOT [3, 10] is an open source OS for the 10T that started
in 2008 as an OS for WSN. It is supported by the Freie Uni-
versitit Berlin, INRIA, and Hamburg University of Applied
Sciences, and developed by a community composed of com-
panies, academia, and hobbyists. Its microkernel architecture
supports multi-threading with a fixed-priority scheduler that
allows for soft real-time capabilities, Inter-Process Commu-
nication (IPC), and synchronization primitives. There is also
support for some network stacks and external libraries.

The source code is organized with a clear distinction be-
tween hardware-dependent and hardware-independent code.
The hardware-dependent code is separated in the directories
cpu, boards, and drivers: cpu contains the implementation
for the supported MCUs. It is organized such that common
code for the same architecture or variant can be defined. The
porting guide requires that common code is used in more
specific ports, and that it is implemented as soon as a second
platform of an existing architecture is introduced. boards
contains configuration and initialization code for each sup-
ported platform, as well as a common directory where shared
code can be found for similar platforms. drivers contains
drivers for off-chip peripherals.

An interesting feature of RIOT is its driver concept: all
off-chip peripheral drivers are platform agnostic, only com-
municating with the MCU via the so called Peripheral Driver
Interface. Each MCU implementation must provide the driver
interface for its on-chip peripherals. There are also Appli-
cation Programming Interfaces (APIs) for common off-chip
peripherals, such as for networking, CAN buses, ADC, etc.,
and a generic abstract layer for sensors and actuators.

In our analysis concerning the completeness of the avail-
able ports, we discovered several unimplemented features,
and major and minor issues that lead to inconsistencies
across different ports and may lead to critical bugs. We found
cases where unimplemented functions return an error at
runtime, but no documentation informing about it could be
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found. For example, the common code for Cortex-M CPUs
implements the Memory Protection Unit (MPU) configura-
tion function only for the Cortex-M23 variant, while for other
variants, it will silently fail. Another example is the real-time
clock driver for the esp8266 MCU, which is completely unim-
plemented, and it is not clear from the documentation how
to avoid running into errors when using this platform. Other
issues include comments in the source code, such as “this
implementation needs major rework”, “this file is incomplete,
(...) there are some inconsistencies throughout the family
which need to be addressed”, “generalize to handle more
timers and make them configurable”, “only disable watchdog
on debug builds”.

RIOT uses the Murdock Code Integration framework that
executes static, unit, and compile tests automatically for sev-
eral build configurations, besides functional tests on selected
platforms. The code base also has a tests directory with
several tests, some of which can be performed automatically.
Well defined processes for the developing community also
try to ensure high code quality and solid documentation in
the code base.

2.3 sel4

The seL4 microkernel [12] is an open source RTOS designed
for security and high performance, and developed with the
aim for formal verification. It is developed, maintained, and
formally verified at Data61 by the Trustworthy Systems
Group (formally NICTA) and owned by General Dynam-
ics C4 Systems. The sel4 is the most advanced member of
the L4 family, which is developed since 1993, and is a general-
purpose microkernel for application areas that target security
and reliability and run on embedded systems with a Memory
Management Unit (MMU).

The sel4 is composed of several repositories containing
parts of the project, such as the kernel, its specification and
proofs, test and benchmarking suites, etc. We have mainly
analyzed the kernel repository, while considering the others
when assessing selL4’s verification, testing, and benchmark-
ing.

The kernel’s repository [21] has C and assembly source
code in the directories include and src, as well as C bind-
ings for the kernel’s Abstract Binary Interface (ABI) in the
directory libsel4. Their subdirectories are named or pre-
fixed with arch if they contain architecture-specific code and
plat if they contain platform or MCU-specific code. If the
code is hardware-independent, the subdirectory name only
reflects the OS module it contains. Those subdirectories with
hardware-specific code have further subdirectories to reflect
the target hardware. Most have one subdirectory for each
supported architecture (ARM, RISC-V, and x86), and further
variants of those architectures (such as 32/64 bits or ARM
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versions) are implemented within subdirectories. Common
code is always as close to the root as possible, meaning it
can easily be reused by more specific ports. While the ker-
nel only has drivers for serial communication and a timer,
other device drivers and libraries are provided outside the
trusted computing base and run in user space. They are in
the device-specific files in drivers, and are related to the
respective platform with a device tree scheme.

Verification in seL4 uses formal mathematical proof in the
theorem prover Isabelle/HOL. The fully verified ARM port
on the Sabre Lite board is proved to be functionally correct
from the C implementation down to the binary, i.e., there is
proof that the C implementation adheres to its specification,
and that the binary code is a correct translation of the C
code. It also has proofs that security properties (integrity
and confidentiality) are enforced by the specification (as long
as the specification is used properly), and guarantees hard
real-time with a sound and complete timeliness analysis. On
other platforms, with ARM and x86-64 architectures, the
functional correctness proof is complete, while it is ongoing
for the RISC-V port. There is no information on when other
proofs will be available.

2.4 Contiki-NG

Contiki started in 2002 as a light-weight OS for WSN. In 2017,
a fork of Contiki, now known as Contiki-NG [8], was started
focusing on reliable and secure communication, modern IoT
platforms, and more modern and agile structure and devel-
opment processes. Contiki-NG aims at resource-constrained
devices in the IoT, is open source and community driven,
and comes with a BSD license that allows the free use and
distribution of the code, as long as the license is retained in
the source code.

Contiki-NG only supports cooperative multitasking, which
reduces its complexity and memory footprint, but transfers
some of the multi-threading burden to the application layer.
While a process never preempts other processes, interrupts
might do so, and care must be taken with code that may
run in interrupt context, since some system and library func-
tions are not interrupt context safe. Also, according to the
wiki’, the “(application) developer must make sure that pro-
cesses do not keep control for too much time and that long
operations are split into multiple process schedulings”.

The source code has a generic OS code directory, while
arch contains hardware-dependent code. Inside it, dev con-
tains drivers for e.g., sensors, transceivers, and disks. Another
directory, platform, has platform-specific code and configu-
ration. Similar platforms have replicated code, and there is
no shared code between them. Code specific to architectures

"https://github.com/contiki-ng/contiki-ng/wiki
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and MCUs is on the same level inside cpu. The MSP430 ar-
chitecture implementation shares code with the supported
MCUs, which are implemented inside the architecture’s di-
rectory. ARM, on the other hand, has an ARM architecture
directory with support for Cortex-M3 and Cortex-M4 cores,
with shared code, and another three directories supporting
Cortex-M3 or Cortex-M4 MCUs, without any shared code.

Contiki-NG’s porting guide is rather complete, clearly
stating what must be supported for MCUs and for platforms,
and there is a well defined API for what must be implemented
when creating a new port. On the existing ports, we only
found few unimplemented features, all documented, and
some features still to be implemented on drivers.

The source base provides several example and test appli-
cations. One benchmark example on communication runs
on a testbed and results are posted online®. To ensure non-
regression, the available tests are automatically run on a
continuous integration service, called Travis, for every pull
request and merge.

2.5 ERIKA3

Erika Enterprise [9] is an open source RTOS from Evidence
Srl for the automotive domain. Development started in 2000
aiming to be an open source OSEK/VDX OS that could be
used both by industry and academia, in research, develop-
ment, and production. ERIKA v2 is OSEK/VDX-certified
on an ARM Cortex-M4 and on the Infineon Tricore 26x
MCUs. From 2014, the OS started to be completely reimple-
mented, giving birth to ERIKA3. The new OS still implements
OSEK/VDX, but is not yet certified. It focuses on proper mul-
ticore support and is designed to eventually implement the
AUTOSAR OS specification. Now it also offers a better li-
censing scheme: the free GPLv2 license allows users to link
their own code, as long as it is also made open source, while
paid licenses can be purchased by companies willing to have
ERIKA3 in their products. Erika Enterprise is open source,
however its development is not community driven: Evidence
Srl is the main developer, and some companies contribute
code for their own platforms. External contributors must
sign a contribution agreement.

The source code is located in the pkg directory in the
source base. Inside it, common contains shared code and in-
cludes for tooling and compilers. The OS generic code is in
kernel, while generic code for context switching and hard-
ware abstractions is in std. Hardware-dependent code is
located in arch. Inside it, each supported architecture vari-
ant has a corresponding directory with code for e.g., context
switching and interrupt handling, as well as directories for
the supported platforms and example applications. The sep-
aration between MCU and architecture variant code is not

8https://contiki-ng.github.io/testbed

FGBS 21, March 11-12, 2021, Wiesbaden, Germany

consistent: some variants have MCU directories for the more
specific code, while others have MCU-specific files in their
root. Another example of this inconsistency is that code
related to timers is in architecture variant files with MCU-
specific defines, instead of explicitly configured within MCU
code. Platform-specific code can only be found in some of
the given examples, where code is often replicated with few
differences, if any.

In order to provide a stable working environment for users,
regression tests are automatically executed in a Jenkins en-
vironment, guaranteeing that the code keeps working on a
set of boards.

In our analysis concerning the completeness of the avail-
able ports, we discovered some unimplemented functions,
and potential critical bugs, such as untested sign extensions.
Some features that should be configurable are hard-coded
on some ports, and some of the ports do not yet support
multicore. Commercial technical support offers ports to new
MCUs.

3 ASSESSMENT

In this section, we discuss our findings from Section 2, as-
sessing how portable the analyzed OSs are, and highlighting
the main strengths and weaknesses to their portability.
Despite supporting 23 different architectures, we see sev-
eral hindrances to FreeRTOS’s portability. First, the separa-
tion of code by compilers, instead of by architectures, seems
odd, and it is not clear why it would be so central in the code
base. On the one hand, it might ease the user’s first contact
with the OS and the toolchain they shall use. On the other
hand, it makes the code base much harder to maintain, and
changes on the low-level software are hard to deploy on all
affected ports. Additionally, the outsourcing of vital OS func-
tionality into the application layer (see “demos” in the code)
hides a big part of the actual effort of porting the OS. The lack
of specification on the low-level kernel and on other relevant
functionality also requires a developer to self-investigate ex-
isting code in order to understand and port the OS. The high
number of architectures that FreeRTOS supports might be
explained not due to the OS’s portability itself, but by the
focus given on supporting as many platforms as possible,
together with over 17 years of development time and the
fact that hardware providers themselves work together with
FreeRTOS developers to create ports for their devices.
RIOT is very well structured to support easy portabil-
ity through code separation, specification of what must be
ported, as well as specific APIs for driver communication,
making the code reusable and relatively easy to port. Its solid
test system also positively contributes to its portability and
quality. Allied with the large development community, they
manage to have the highest number of supported platforms,
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and to support seven completely different architectures. De-
spite advantages on portability and their quality-striving
approach, there are still many open issues (see “todos” in
the code) to be addressed in many ports, which show that
porting is still not a straightforward task.

While seL4 only supports three architectures, we find
its approach to formal specification, along with its well-
structured code, very positive for its portability. Its verifica-
tion, testing, and benchmarking assures quality and correct-
ness of the ports, and makes it the only OS to seriously go
beyond functional properties. The related complexity affects
the trade-off on how many ports are already available and
explains the limited number of supported platforms.

Contiki-NG is a simple OS and supports simpler plat-
forms when compared to the other OSs we have analyzed.
This likely reduces the effort of porting it. Nevertheless, there
are few supported MCUs, and inconsistencies in the code
separation leave room for improvement. Still, the ports that
are available seem to have high quality and the sound pro-
cesses of testing and benchmarking along with the large
development community are positive to Contiki-NG’s porta-
bility.

ERIKAS3 is a rather complex OS, created to support high-
end devices and implement complex functions for the auto-
motive domain. This increases the effort of porting it. We be-
lieve, however, that the code base can be made more portable
through a clear separation of hardware-specific code and
configurations. The testing process could be extended, and a
bigger development community would probably improve its
portability as well.

4 PORTING EXPERIENCES IN THE
LITERATURE

In addition to analyzing some existing OSs, we have also
searched the literature for experiences on porting and for
studies that analyze the (bad) consequences of porting errors.

Among the OSs we have analyzed, Oikonomou and Phillips
[23] resume the port of Contiki to Sensinode devices, which
had been discontinued, and reveals problems with choosing
the ideal memory model and stack sizes. They show that a
port needs to consider not only the ISA, but also compilation
and memory model relations, code size versus code simplic-
ity, stack sizes, etc. Also porting Contiki, Stan [26] reports
difficulties in porting the low-level code, even though it rep-
resents only a little part of what had to be ported. Zhang
et al. [29] have ported an AUTOSAR-compliant OS, similar
to ERIKA3, to a Raspberry Pi. The port is still missing some
functionality, and they needed inspiration from other OSs in
order to understand how to write an OS for their target.

Of course, this is not an exclusive problem of these OSs.
Even Linux and UNIX, generally considered to be portable,
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pose challenges: back in 1984, Bodenstab et al. [5] found
UNIX to be “extremely portable”, but pointed out that several
software changes were needed to account for hardware dif-
ferences between the base and the new targets, even though
the base port was selected based on the similarity its target
had with the new target. An entire section is dedicated to the
effects of hardware architectures on porting. More recent
works show that the problem remains, impacting porting of
Linux from x86-32 to x86-64 [18], and to the Renesas M32R
processor [27], where kernel headers with extensive use of
assembly statements were “very difficult to port” and their
“insufficient and inadequate rewriting easily caused very hard
to debug problems”.

Even on the application side, especially for embedded
systems, porting often becomes difficult, as Horman [14]
shows. Lewis [19] proposes MetaH, a tool to improve port-
ing of avionic application software that provides target-
independent timing semantics. MetaH tackles problems caused
by timing dependencies, complex processor architectures,
and specialized devices that drive software integration and
maintenance costs up. Smith et al. [25] propose a framework
to make robotic software more portable, since its high special-
ization results in an “almost non-existent level of software
portability”.

Several works have already shown that a significant num-
ber of bugs come from porting errors and described their
consequences for the overall quality of OSs. Chou et al. [7]
found a high rate of errors in the drivers, listing as possible
explanations that the driver developer is usually less famil-
iar with the OS than the kernel developers, and that drivers
are not as heavily tested as the kernel. Li et al. [20] iden-
tify errors in Linux and FreeBSD resulting from developers
forgetting to rename identifiers after porting code. In [24],
Ray et al. confirm these findings with an empirical study of
porting errors in Linux and FreeBSD, where they also found
other common error categories and presented a “semantics
porting analysis algorithm”. Code duplication, common prac-
tice when porting code, is another common source of bugs.
In a case study of bugs related to duplicated (cloned) code,
Juergens et al. [17] discovered that “nearly every second,
unintentional inconsistent changes to clones lead to a fault™.
Gabel et al. [11] discuss the difficulty to maintain duplicated
code that is supposed to evolve together when bugs are fixed
or new features are introduced. In [16], Jiang et al. discov-
ered many previously unknown bugs in the Linux kernel
and Eclipse, confirming that code duplication is error-prone.

The source of these problems when porting code might
be found in the porting process. Cho and Bae [6] have found
that typical software development processes do not work
for the porting process, since often the documentation and
methods available are not helpful for the developer. They
propose a new process that tries to tackle this, improving
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communication between developers and enhancing the doc-
umentation used when porting. Hu et al. [15] also reckon
the problem with the porting process. They tried to solve it
by synthesizing an OS instead, and report on the problems
found when trying to do so, such as scalability of models,
solvers and synthesis, as well as the difficulty of modeling
low-level functionality in a machine-independent way.

From our own and other’s experiences we also suggested
to replace manual coding (according to a specification) by
formal modeling [13]. This paradigm shift in the develop-
ment process allows to first model the OS functionality on
an abstract hardware, and then instantiate it to different
targets. Significant parts of the model can thus be reused,
even when modeling low-level OS functionality. The final
instantiations can then be used to both verify for correctness
and automatically generate the executable OS code.

5 CONCLUSION AND OUTLOOK

During this study, we have seen that porting an embedded
OS is not a trivial task, and that it is a common source of
bugs. Beyond the code structure, several other factors im-
pact on how portable and reusable existing OS code can be.
Well-structured testing and benchmarking improves the code
quality of each port, and open source releases can gather a
large developer community to further increase the quality
and quantity of ports. However, we have seen that this is not
enough. Especially in contexts where dependability must be
guaranteed, such as the IoT, software development must go
beyond intense testing and a large work force of program-
mers. Formal methods greatly ensure software quality and
dependability [28], and seL4 shows that it is feasible to model
and verify significant parts of an OS.

We also continue to integrate and establish formal meth-
ods in the software development process to support verifi-
cation and reduce manual implementation effort. Our code
generator that is currently under development, automatically
generates target-specific code from instantiated OS models,
keeping the ports for different target architectures consistent
when the model changes.

A challenge that remains is scalability with respect to
the code and model size, as formalizations and proofs will
demand much effort for feature-rich OSs. We still believe
that it is worth the effort and that processes and training on
formal methods must become standard in embedded software
development. In fact, formal modeling can be combined with
code generation to further reduce manual implementation
effort and simplfiy portability, guarantee dependability, and
improve the overall quality of embedded OS in general.
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