
Jaint: A Framework for User-Defined Dynamic

Taint-Analyses based on Dynamic Symbolic Execution of

Java Programs

Malte Mues1, Till Schallau1, Falk Howar1

Abstract: We summarize the paper „Jaintȷ A Framework for User-Defined Dynamic Taint-Analyses
Based on Dynamic Symbolic Execution of Java Programs“, published at the sixteenth international
conference on integrated formal methods in November 2020 [MSH20]. Reliable and scalable methods
for security analyses of Java applications are an important enabler for a secure digital infrastructure.
In this paper, we present a security analysis that integrates dynamic symbolic execution and dynamic
multi-colored taint analysis of Java programs, combining the precision of dynamic analysis with
the exhaustive exploration of symbolic execution. We implement the approach in the Jaint tool,
based on Jdart [Lu16], a dynamic symbolic execution engine for Java PathFinder, and evaluate its
performance by comparing precision and runtimes to other research tools on the OWASP benchmark
set. The paper also presents a domain-specific language for taint analyses that is more expressive than
the source and sink specifications found in publicly available tools and enables precise, CWE-specific
specification of undesired data flows. This summary presents Jaint’s language and the evaluation.

Keywords: Dynamic Symbolic Execution; Domain Specific Languages; Java Bytecode Analysis;

Dynamic Taint Analysis

Specification of Taint Analyses

Jaint provides a domain-specific language for specifying undesired data flows from tainted

sources to protected sinks that may be interrupted by flow through sanitization methods.

The paper presents the grammar of the language along with usage examples. Here, we only

present one small exampleȷ command injection attacks (CWE 782) use parameters of a

HTTP request as executable commands in a shell, i.e., in a command that is executed as a new

process. Methods that match patterns Runtime.exec(*) and ProcessBuilder.*(command)

are considered protected sinksȷ

𝑆𝑟𝑐 ::= 𝑐𝑚𝑑𝑖 + ← (_ : ∗HttpServletRequest) .get∗()

𝑆𝑖𝑛𝑘 ::= 𝑐𝑚𝑑𝑖 → (_ : java.lang.Runtime) .exec(∗) , (_ : java.lang.ProcessBuilder) .∗(command)

The zenodo archive accompanying the paper contains a version of Jaint with taint

specifications for the eleven classes of CWEs in the OWASP benchmark set.«

1 TU Dortmund, LS XIV Software Engineering - Automated Quality Assurance Group, Otto-Hahn-Str. 12, »»227

Dortmund, Deutschland {malte.mues,till.schallau,falk.howar}@tu-dortmund.de
2httpsȷ//cwe.mitre.org/data/definitions/78.html
«http://doi.org/10.5281/zenodo.4060244

cba doi:10.18420/SE2021_27

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 77

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{malte.mues, till.schallau, falk.howar}@tu-dortmund.de
http://doi.org/10.5281/zenodo.4060244
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_27


Fig. 1ȷ Precision of Jaint on the OWASP benchmark set [MSH20].

Performance of Jaint on the OWASP benchmark set

Figure 1 shows the precision of Jaint on the OWASP benchmark set. The paper contains a

detailed discussion and more obtained results, including runtimes. Most of the compared

tools fall in one of two categoriesȷ dynamic analyses are precise but miss many vulnerabilities

(lower left corner in the plot). Static analyses discover many vulnerabilities but suffer from

high false positive rates (upper right corner of the plot). Jaint, in contrast, combines the

exhaustive exploration of symbolic execution with the precision of dynamic analysis (upper

left corner of the plot).

In the paper, we showed that Jaint beats the OWASP benchmark. This, of course, can only

serve as initial validation of the approachȷ most benchmark instances consist only of few,

easy to hit execution paths. We plan future work in two directionsȷ (1) validation of Jaint

on real-world examples, and (2) development of a more realistic benchmark set.

Bibliography

[Lu16] Luckow, Kasper Sůe; Dimjasevic, Marko; Giannakopoulou, Dimitra; Howar, Falk; Is-
berner, Malte; Kahsai, Temesghen; Rakamaric, Zvonimir; Raman, Vishwanathȷ JDartȷ A
Dynamic Symbolic Analysis Framework. In (Chechik, Marsha; Raskin, Jean-Franęois,
eds)ȷ Proceedings of TACAS 2016. volume 96«6 of LNCS. Springer, pp. »»2–»59, 2016.

[MSH20] Mues, Malte; Schallau, Till; Howar, Falkȷ Jaintȷ A Framework for User-Defined Dynamic
Taint-Analyses Based on Dynamic Symbolic Execution of Java Programs. In (Dongol,
Brijesh; Troubitsyna, Elena, eds)ȷ Proceedings of IFM 2020. volume 125»6 of LNCS.
Springer, pp. 12«–1»0, 2020.

78 Malte Mues, Till Schallau, Falk Howar


