
A User Centered Approach to Requirements Modeling

Heinrich C. Mayr, Christian Kop

Institute of Business Informatics and Information Systems
University of Klagenfurt1

{mayr|chris}@ifit.uni-klu.ac.at

Abstract: The paper argues that the conventional methods for object oriented
analysis and conceptual modeling suffer from lacks in requirements elicitation and
validation by the end-user. Therefore, an intermediate level called ‘conceptual pre-
design’ is introduced between natural language requirements specification and
conceptual design. The paper introduces the basic notions of a conceptual predes-
ign model and discusses heuristic rules for their automatic mapping to the concep-
tual level, e.g. to UML.

1  Introduction

The use of object oriented models is widely seen as a means to collect, to analyze and to
document the user requirements w.r.t. an information system which is intended to be
developed. A couple of different object oriented modeling methods has been introduced
since the late eighties under the heading of ‘Object Oriented Analysis’ (OOA) e.g.
[Bo94], [CY91], [Ja93], [Ki94], [Ru91], which today are mostly replaced by the use of
the ‘Unified Modeling Language’ UML [BRJ99]. On the other hand, many designers in
practice still work with classical extended entity-relationship diagrams. Apart from many
differences, both modeling languages share a common ontology w.r.t. static/structural
modeling aspects: the real world and especially those parts (Universes of Discourse,
UoD) that are relevant for concrete information system development projects are as-
sumed to consist of „objects“ which have particular characteristics and which may be
somehow related to each other. In addition, both languages provide concepts for man-
aging complexity, namely semantic abstraction relationships like generalization and
aggregation.

Despite of all this, information system projects often suffer from incomplete or inade-
quate models which are, using the before mentioned (object oriented) modeling methods,
conceptual schemes. In our opinion, the reason for these problems results from the fact,
that conceptual models are too complex and abstract as to be easily understood and vali-
dated by average users. Moreover, they demand early design decisions, e.g. between

                                                            
1 The work presented within this paper is part of the NIBA project (“Natürlichsprachige Informationsbedarf-

sanalyse”, “Natural Language Based Requirements Analysis”) which has been funded by the Klaus Tschira
Stiftung, Heidelberg.

75



classes and value sets, or between associations and attributes, which are not application
domain concepts and thus unfamiliar to the end-user.
On the other hand, end-users and their consultants are the stake-holders of the relevant
concepts, notions and requirements of their Universe of Discourse (UoD). Requirements
engineering, therefore, should start with collecting this knowledge and representing it in
a way the end-user understands and is able to validate. We propose for that purpose the
use of glossary-like schemes that are composed by means of a rather lean semantic
model which we call KCPM (Klagenfurt Conceptual Predesign Model). The notion
‘conceptual predesign’ is used since it is based on a semantic (meta)model and since it
precedes the usual conceptual design. KCPM may be seen as an object oriented exten-
sion of an approach called DATA-ID which was presented first in the early eighties
[Ce83].

KCPM offers a set of semantic concepts for modeling static and dynamic UoD aspects.
It is based on an NIAM-like [NH89] ontological approach which treats UoD´s as sys-
tems consisting of interrelated elements (things) that are able to perform services (opera-
tions) and that are activated by events (messages sent by other things). Thus, there is a
strong relationship to object-oriented approaches which allows for a rather natural way
to map KCPM concepts to OOA concepts.

By this approach we try to reach the following three objectives:
• to provide for an user centered form of requirements documentation,
•  to automate as far as possible the process of producing the predesign scheme by

extracting the important UoD notions from natural language requirements specifica-
tions and collecting them2,

• to automate as far as possible the mapping from the predesign scheme entries to a
first cut conceptual scheme, e.g. formulated with the means of UML. Thus, a system
analyst must not ‘think’ in UML-terms when analyzing requirements but can con-
centrate on collecting and relating glossary (i.e. predesign schema) entries repre-
senting relevant UoD aspects.

Within this paper we will concentrate on the first and on the third objective. For that
purpose, section 2 outlines KCPM and it’s notions. Section 3 explains the usage of our
model. Section 4 then gives an overview of the mapping process. In particular we will
show how our modeling notions thing-type and connection-type can be transformed into
a scheme consisting of classes, associations, attributes and value-types by applying spe-
cial rules which interpret the entries in our glossaries for a target UML scheme. In sec-
tion 5 we will illustrate the mapping with a short example. Section 6 sketches first prac-
tical experiences.

2  KCPM

An important aim for the development of KCPM was to harmonize the developer’s and

                                                            
2 NIBA results concerning this issue may be found in [Fl97], [Fl98]

76



the end-user’s view of a given UoD, i.e. to provide an interface for their mutual under-
standing. As mentioned in the previous section, the approach was influenced by the
DATA-ID model which we extended and specialized to provide at least the same se-
mantic expressiveness as modern approaches to object oriented analysis do. The most
important modeling notions of the static part of our approach are: thing-type, connec-
tion-type, perspective and constraint. We shortly explain these notions and show by
examples which meta-attributes are used for their representation in glossaries.

Thing-type is a generalization of the conceptual notions class (entity type or entity set,
respectively) and attribute or a legal domain (value-type). Thus, typical things (instances
of thing-types) are
• natural or juridical persons,
• material or immaterial objects,
• abstract notions.
as well as
• descriptive characteristics of the above mentioned examples (e.g. a customer name,

a product number, a product description) which can be seen as attributes or as spe-
cific legal domain determiner.

UoD-area:   publishing UoD:  publishing companies    Project: P5      

id# name classifi-
cation

quantity-
description

examples value 
domain

synonym descri-
ption

requirement
source

D001 thing-typeauthor

book

ISBN number

D002

D004

thing-type

thing-type

...

500

e.g. „.
T. Mann“

S1, S2, 

S1, S2, S3

S3

Figure 1:  Part of a thing-type glossary3

Things are related within the real world. To capture this, we introduce the notion of
connection-type. Two or more thing-types can be involved in a connection-type. To
define a connection-type completely, it must be described from the point of view  (per-
spective) of all of the involved thing-types. This corresponds to the NIAM object/role
model. Sentences leading to connections (and perspectives) are e.g. the following:

(S1) Authors write books. (perspective of author)
(S2) Books are written by authors. (perspective of book)

                                                            
3   There are two forms of KCPM schema representations: A graphical one and (tabular) one using glossaries.

Within this paper we restrict ourselves to the latter. Especially for business people, glossaries seem to be
more easy read and checked, in particular in the case of large schemes where tool supported groupings and
aggregations are not interfered with layout rearrangements as may happen in graphical representations. The
column headers of the glossaries represent KCPM meta-attributes of the resp. modeling notions. Traceabil-
ity between all the glossary entries and their source (the natural language text) is given by means of so-
called requirement source references.

77



The abstractions generalization („is-a“, with set inclusion on the instance level) and
component/object („is part of“) are treated as specific connection-types. Furthermore we
provide an identification connection-type with the perspectives identifies and identi-
fied_by, e.g.

(S3) A ISBN number identifies a book.

Figure 2: Part of a connection-type glossary

The model is open for further semantic connection-types (e.g. possession). Static UoD
aspects that cannot be modeled using these notions are captured by (textual) constraints.
This is not very sophisticated, but allows the designer to specify functional requirements
as well as non functional requirements [So96].

The known conceptual models have different conceptions concerning the relations be-
tween attributes and classes, between two or more classes, and between attributes they
permit. Hence design decisions often depend on the particular modeling concept of the
model in use. The generalized KCPM approach allows to separate these model specific
aspects from the requirements elicitation, because there is no a priori restriction. Moreo-
ver, the distinction between class and value type, and consequently between association
and attribute, as is requested by conceptual models, is not quite natural to end-users and
often leads to early design decisions that have to be revised later on. The generalization
chosen by KCM induces a simplification for the end-user whose world just continues to
consist of related (connected) things, and defers the conceptual distinction to later design
steps.

3  Usage of KCPM

The glossaries form the basis of an information resource dictionary for the application in
question and emphasize the scratch pad character. As such they are a link between natu-

UoD-area:   publishing

c-id# name
connection

type
determiner

perspective

pers-
pective#

involved
thing-type

name min/
max

persp-
det.

req.
source

C001
write/
is_written

D001, 
author

D002, 
book

p001a

p001b

write

is_written

S1, S2

C002 identification p002a D004,  ISBN
number

identifies

is_identified_byD002, 
bookp002b

... ...

S3

UoD:  publishing companies    Project: P5      

78



ral language requirements specifications and the corresponding conceptual schema. The
use of dictionaries that contain all relevant business notions of a given UoD, their syno-
nyms etc. is quite common in application software development. However, such diction-
aries mostly do not contain structural information. In contrast to that, KCPM supports
such structural information and, therefore, comes with the following benefits:
- extended semantic power (e.g. connections, quantity descriptions of thing types, ex-

amples etc.) which leads to an
- enhanced transformation of dictionary entries to a succeeding conceptual model;
-  more explicit information gathered in columns triggers more questions in the re-

quirements elicitation phase. In a glossary like representation each empty field trig-
gers at least the following question for all stakeholders:  “Why is this column empty?”,
“Is it necessary to fill the column with a value?”, “If so, what is/are the right
value(s)?”. Clearly, this supports completeness of the subsequent models/design.

Thus, the effort of filling structured glossaries instead of just generating a list of notions
will be paid back. The stakeholder will have both, a dictionary of all relevant UoD as-
pects, which is easily to validate, and a conceptual predesign model4, which may be
systematically transformed into a first cut conceptual schema.

Taken into account our current practical experiences (see also sect. 6) and the structure
of the glossaries, KCPM seems to be most useful in classical business information sys-
tem projects, where data and databases play a major role (e.g. banking, insurance etc.).

Clearly, filling KCPM glossaries is a cumbersome task, which must be supported by
appropriate tools. Any kind of requirements elicitation technique may be applied within
that context. A more sophisticated way is to derive glossary entries by a linguistic ap-
proach out of natural language requirements specifications (texts, interview transcripts
etc.). This is the main issue of the before mentioned NIBA project.

4   The mapping process

For the derivation of a conceptual scheme from glossary entries we propose an iterative
process consisting of several phases and steps. It starts with a check of the glossaries
w.r.t. completeness and inconsistencies (validation). If the entries are consistent and if
both parties (designer and stakeholders) agree that the listed entries reflect all relevant
UoD aspects and their interrelationships, then a stepwise mapping to the conceptual
scheme is initiated. In this second step, mapping rules are applied which help to associ-
ate concepts of the target model to the glossary entries.  In the case of UML, e.g., thing-
types are mapped to classes or (attribute) value-types5, connections to associations or

                                                            
4
 Note that because of the nature of KCPM its usage is again a kind of conceptual design.

5 Note that UoD aspects like customer name often are modeled as attributes in conceptual models, having, e.g.,
String as associated type (expression). In our approach, if a thing-type is not seen as a class on the conceptual
level, it is mapped to a value-type. In this case, there must be a connection-type which relates the given
thing-type to another one (e.g. customer) by a perspective, e.g. has_customer_name. This connection-type
then will be mapped to an attribute of class customer  and named by the perspective name. We then define,
e.g. String as the value domain of customer name.

79



attributes or generalizations or aggregations. The next steps after the mapping aim at a
refinement of the target model by restructuring and completion.

The mapping itself is guided by heuristic rules which we distinguish into direct and
indirect ones according on how we can derive a decision. Direct rules determine a target
notion immediately from glossary entries. Indirect rules use in addition results from
previous mapping steps. Furthermore we distinguish laws and proposals: A law forces a
specific mapping (e.g. a given thing-type to a class). If a designer does not follow the
law, the conceptual scheme will become inconsistent. Proposal means, that the proposed
mapping is more likely than another one. Thus, the designer may accept the proposal or
take another decision. The set of 18 rules presented here concentrate on using informa-
tion from the thing-type and connection-type glossary. Additional rules might be formu-
lated, if the other KCPM glossaries (operation-type, co-operation-type etc.) are consid-
ered.

Rule 1 (Law)
A thing-type T is mapped to a class CT, if T is specified as such by the designer in the
classification column (previous designer decision).

Rule 2 (Law)
A thing-type T is mapped to a class CT, if T is the only involved thing-type of a connec-
tion-type (reflexive connection-type; note that reflexive attributes make no sense).

Rule 3 (Law)
A thing-type T is mapped to a class CT (an association class in particular), if T is a con-
nection-type determiner of connection-type C1 and is involved thing-type of another
connection-type  C2 with C1 ≠ C2 (objectified association).

Rule 4 (Law)
A thing-type T is mapped to a class CT, if T is involved in a connection-type A by a per-
spective which has a perspective determiner.

To understand this rule consider our example in section 2: perspective determiners
strongly correspond to what is called a role in UML and other conceptual models.
Consequently, a thing-type the instances of which play a role within a connection
should be mapped to a class.

Rule 5 (Law)
A thing-type T is mapped to a class CT, if T is involved in a connection-type A by a per-
spective ‘is_ identified_by’.

Rule 6 (Proposal)
A thing-type T may be mapped to a class CT, if T is involved in a connection  type A by a
perspective having the minimal cardinality 0.

This proposal considers the minimal cardinality of a perspective as an existence
dependence indicator: if the minimal cardinality is 0 then the resp. thing-type may
exist without a connection to another thing-type.  Such a  situation is in our opinion
a hint that the thing-type might be mapped to a class.

80



The following two rules  have a linguistic background. We could have employed these
rules in an earlier step, e.g. during linguistic analysis. However, if such an analysis is not
performed during requirements analysis, we need it now for the mapping process.

Rule 7 (Proposal)
A thing-type T may be mapped to a class CT, if T is involved in a connection-type A by a
perspective whose perspective name matches with a predefined verb in a lexicon.

This proposal is based on the fact that perspective names are derived from verbs
and on the assumption, that there are verbs from which we can conclude on the
nature of the subject within a sentence built around that verb. E.g. ‘X buys/sells Y’
allows to conclude that X is a natural or a juridical person. Usually, person is mod-
eled as a class.

Rule 8 (Proposal)
A thing-type T may be mapped to a value-type if its name is the second member of a
composition (the first member being mapped to a class).

The idea of this rule is, that value-type names often are members of a linguistic
composition like number and name in the compositions article number and cus-
tomer name respectively.

Rule 9 (Law)
A thing-type T is mapped to a value-type, if it is specified as such by the designer in the
classification column (previous designer decision).

Rule 10 (Law)
A thing-type T is mapped to a value-type if T identifies another thing-type.

Rule 11 (Law)
A thing-type T is mapped to a value-type if T has an entry in the value-domain column.

This rule starts from he assumption that entries in the value-domain column always
refer to atomic value-types.

Rules 1-11 are direct rules. In contrast to that the following rule 12-19 relate to preced-
ing mapping decisions.

Rule 12 (Law)
A thing-type T is mapped to a class (to a value-type), if it is connected by a generaliza-
tion connection-type to another thing-type which already has been mapped to a class (to
a value-type).

This rule is derived from the fact that generalization is only possible between
equivalent concept types.

Rule  13 (Law)
A thing-type T is mapped to a class (to a value-type), if it is connected by a aggregation
connection-type to another thing-type which already has been mapped to a class (to a
value-type).

81



Rule  14 (Proposal)
A thing-type T may be mapped to a class, if it is connected by connection-types to at
least one thing-type, which has been previously mapped to a class and to at least one
thing-type which has been previously mapped to a value-type.

Rule 15 (Proposal)
A thing-type T may be mapped to a value-type, if it is involved in only one connection-
type (by minimal cardinality 1) and if it is neither a connection-type determiner nor a
perspective determiner.

Rule 16 (Law)
A thing-type T is mapped to a class CT, if T is involved in a binary connection-type and
the other involved thing-type is already mapped to a value-type.

Rule 17 (Law)
A connection-type Co is mapped to an Attribute AtCo, if it is a  binary connection-type
and if one of its involved thing-type is mapped to a class whereas the other is mapped to
a value-type.

Rule 18 (Law)
A connection-type Co with involved thing-types T1 ... Tn is mapped to an  Association  if
at least  two of the  involved thing-types have been mapped to classes previously

All the laws and proposals are now used together to get the mapping result. In particular
the “mapping game” is as follows: Tell me what you know about a glossary entry (thing
type).  The idea behind this proces is: We cannot prevent stake holders to make mistakes
and inconsistencies (please note that this is not a lack of our model). In fact with the
mapping process we do not only want to classify glossary entries but we also detect
some modeling inconsistencies.  To achieve this, the rules given above must work
acording to meta rules. They process indicate the ’priority’ of laws w.r.t proposals, if
more than one rule are applicable to a given situation.

Class value-type mapping
1 law/proposal --- class
2 --- law/proposal value-type
3 Law proposal class
4 Proposal law value-type
5 Proposal proposal design decision
6 Law law contradiction

Table: meta mapping rules

As can be seen in the table a (at least one) law overrules a proposal (lines 3 and 4).  A
designer decision and a maintenance activity is necessary in two cases (lines 5 and 6). In
the first case for both, classes and value-types only proposals are found. The designer
should decide which mapping should be used. In the second case contradicting mapping

82



results indicate that the input is wrong. The reason could be wrong requirements or sim-
ply a wrong glossary entry. According to the contradicting rules, the designer has to
check the glossary entries and optionally ask the stakeholder for a better specification.
Then he has to change the entries to solve the conflicting situation.

The distinction between direct and indirect rules gives the mapping step an internal se-
quence. At the end of the mapping, meta-rules are applied to make a final check (E.g. in
a n-ary connection-type at least two classes and mapping solutions for the others - e.g.
mapping to  value-type must exist).

5   A simple example

We are now going to illustrate the previously outlined theory in the light of an example.
This example completes the example sentences in chapter 2. For reasons of brevity it is a
rather simple example and thus does not cover all aspects of KCPM, however, it should
allow for a first impression of how our approach works. Nevertheless, it explains, that
we do not only focus on notions but also on the interrelationships between these notions.
Let us therefore suppose an UoD were we have do deal with publishing companies. The
description of structural aspects is as follows:

(1) Publishers publish books. (2) Authors write books. (3) A book can be written by sev-
eral authors.(4) An author has a unique name, a birth date and an address. (5) A book
has a unique title and a prize. (6) An ISBN number identifies a book (7) Each book is
published by exactly one publisher. (8) A publisher has a unique denomination and an
address. (9) A publisher has employees. (10) An employee has a unique social insurance
number, a name and a birth date.

For a better understanding of the mapping, assume that all entries (connection-types and
thing-types) together generate a network of information as given in figure 3.

publisher

author

book

employee

writes/
is_written_by[0,N]

name

identifi-
cation

has

address birthdate

has has

title

price
has

identification

denomination

has

has

has has

sno.

identifi-
cation

book

ISBN number

has

Figure 3:  Graphical representation of the thing-type and connection type glossaries
Further assume that the phrases “An author has a unique name”, “An ISBN number
identifies a book” and “An employee has a unique social insurance number.” express

83



that name, ISBN number, social insurance no. (sno.) identify author , book, employee,
respectively. Thus they led to special semantic connection-types between those thing-
types.  Now, the idea behind the mapping process is as follows: Start with thing-types
and apply the mapping rules to them at first; then proceed to the connection types. E.g.,
we can apply rule 5 and rule 10 to the entries name , title, social insurance no., author,
book, employee. We can also apply rule 6 to author. If we have context information and
know that every string which ends up with “...name”, “...title”, “...denomination”,
“...no.”, “...number”,  “...price”, “date” is a candidate for a value-type then rule 8 will
work. The underlying idea is simple, namely, seek for nouns which do not describe
complex structures. Such nouns could be collected in a separate dictionary. According to
these rules, we will derive the classes book, employee, author and the value-types name,
title, sno, denomination, price, ISBN number. Now it is time to apply indirect rules. E.g.,
indirect rule 14 may be applied to map publisher to a class, since it is connected to at
least one value-type (see: denomination) and at least one class (see: book, resp. em-
ployee). No rule supports us to classify  the thing-type address. In this case the designer
has to decide. Let’s say address will become a value-type. It is also possible, that a thing-
type is classified as a value-type and a class by different laws. This is not a failure but an
advantage. In that case, the designer gets aware that he has not modeled correctly. Fi-
nally we may apply rule 17 and rule 18 (mapping connection-types to associations and
attributes). The resulting UML object model is depicted in figure 4. As can be seen,
value-types, or in terms of UML named type-expressions, are user defined ones and not
implementation oriented ones (like Integer, Date, String etc.).

author
has_birthdate : birthdate
has_address : address
has_name : name

book

has_title : title
has_price : price
has_ident_isbn : isbnnumber

writes/is_written

employee
has_sno : sno
has_name : name
has_birthdate : birthdate

publisher
has_ident_denomination : denomination
has_address : address

is_published/publishes

employs/is_member_of

Figure 4: First cut UML-Schema

6  Experiences in practice

Though the whole approach including the automatic linguistic parsing and interpretation
has not yet been tested in a comprehensive application project, there is a lot of experi-
ences in evaluating the appropriateness of the KCPM approach in real life projects. The
first project concerned the whole logistics of a big newspaper producer. All stake holders
(from workers  via clerks to managers) were confronted (after the requirements elicita-
tion phase) with the static and dynamic parts of our model in order to validate them from

84



their point of view. We were very confirmed in our approach by the fact, that nobody
had – after a short introduction into the glossaries and their intention – problems to un-
derstand and discuss these models. Based on the KCPM schema a contract with a big
software producer was established and, in addition, the schema is used as a kind of ‘en-
terprise handbook’.

Another interesting experience was made in the context of a master thesis [St00] which
was intended to check possibilities to extend KCPM for business process modeling.
Since this student works with a software producer supplying software for county gov-
ernment, the latter was chosen as a real life UoD for modeling and validation. The stu-
dent checked his modeling results with employees of 5 different county governments.
Four of them were immediately able to work with the static part of the schema and to
validate its entries. Also, they gave rather positive and encouraging comments. In one
case, a graphical notation of the schema (which, obviously is possible, see figure 3) was
preferred. Difficulties arose in understanding the dynamic part of the schema. We actu-
ally work at a more intelligible form of representation for that part.

From all our practical studies we learned that a tool supporting the usage of KCPM is
strictly necessary. A beta-version of such a tool is actually under development in the
framework of the above-mentioned NIBA project. It’s actual version supports the whole
process (from natural language sentences via KCPM glossaries to the UML object
model) for static UoD aspects based on a certain normalization of German sentences.
Moreover it also performs a first cut function point analysis based on the resulting
KCPM schema.

7  Conclusion

Conceptual predesign precedes the conceptual design and allows a more user centered
way for requirements elicitation, analysis and validation. Clearly, to fill up KCPM glos-
saries is a cumbersome and time-consuming task even if it is supported by an appropriate
tool. We therefore currently exploit mechanisms to extract glossary entries automatically
from natural language requirements specifications. This is done in the joint project
NIBA ([Fl00]).  Within this paper we have focused on usage of KCPM and  the mapping
of the static part of an UoD model. The mapping provides a first modeling language
transformation (transformation of basic notions). Clearly, KCPM also provides notions
for the dynamic aspects of an UoD, and we are actually finishing the definition of rules
for their mapping to the dynamic modeling concepts of UML (activity diagrams, state
charts). This mapping is done in equivalent steps.

References

[Bo94] Booch, G.: Object-Oriented Analysis and Design with Applications. Benja-
min/Cummings Publ. Comp., 1994.

85



[BRJ99] Booch, G.,; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language User Guide.
Addison Wesley Publ. Comp. 1999.

[Ce83] Ceri, S. (ed.): Methodology and Tools for Database Design. North Holland 1983.

[CY91] Coad, P.; Yourdon, E.: Object-oriented Analysis, Prentice Hall, 1991.

[Fl97] Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.; Winkler, Ch.: „NTS based Deriva-
tion of KCPM perspective determiners“. In: Proceedings of the 3rd International Work-
shop on Applications of Natural Language to Information Systems (NLDB'97),26-27,
Vancouver, Canada 1997, Vancouver, Canada;  pp. 215 - 226

[Fl98] Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.; Winkler, Ch.: „Disambiguation of
Part of Relationships within the NIBA Project“. In: DEXA98 Workshop Proceedings,
Vienna, August 1998; pp. 171 - 175

[Fl00] Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.; Winkler, Ch.:  Linguistically based
requirements engineering – The NIBA Project.  In: Data & Knowledge Engineering,
Vol. 35, 2000,  pp. 111 – 120.

[Ja93] Jacobson, I.; Christerson, M.; Jonson, B.; Övergaard, G.:  Object-Oriented Software
Engineering: A Use Case driven Approach. ACM Press,  Addison-Wesley Publ. Comp.,
Wokingham, 1993.

[Ki94] Kristen, G.: Object Orientation, the KISS Method - From Information Architecture to
Information Systems. Addison Wesley, 1994.

[KM98] Kop, C.; Mayr, H.C.: “Conceptual Predesign – Bridging the Gap between Requirements
and Conceptual Design”. In: Proceeding of the 3rd  International Conference on Re-
quirements Engineering ICRE’98, Colorado Springs, April, 1998.

[NH89] Nijssen, G.; Halpin, T.A.: Conceptual Scheme and Relational Database Design – A fact
oriented approach. Prentice Hall Publ. Comp. 1989.

[Ru91] Rumbaugh, J.; Blaha, M.;  Premelani, W.; Eddy, F.; Lorensen, W.: Object oriented mod-
eling and design, Englewood Cliffs, NJ, Prentice Hall, 1991.

[So96] Sommerville, I.: Software Engineering. Addison Wesley Publ. Comp., 3rd edition, 1996

[St00] Stark, M.: Business process modeling with konceptual Predesign (Geschäftsprozessmo-
dellierung im konzeptuellen Vorentwurf) Master Thesis, Universität Klagenfurt, 2000.

86


