
W. Karl, J. Keller (Eds.): PARS 2017
Proc. 27th PARS-Workshop

Efficient Simulation of PRAM Algorithms on Shared
Memory Machines1

Nicolas Berr2

Abstract: The parallel random-access machine (PRAM) is an abstract shared memory register
machine used in computer science to model the algorithmic performance of parallel algorithms.
Although being used as theoretical model for many years, only few attempts have been made to prove
technical feasibility of the model for the use in real world applications. One of these attempts was the
SB-PRAM Project, which included the development of a real PRAM hardware, a high-level PRAM
programming language and a compiler. It offered programmers the ability to implement algorithms
designed for a PRAM in a natural way. Today, the hardware based prototype no longer exists, but a
simulation software is still available. Even though the simulated hardware contains a huge amount
of inherent parallelism, it turned out to be hard to provide an efficient parallel implementation of
the simulation. In this article a promising new approach for this problem, its implementation and
evaluation is presented. Experiments have shown the high potential of its efficiency and discover
even more potential that can be exploited by future work.

Keywords: PRAM, Simulator, parallel, Multicore-Architecture

1 Introduction

The parallel random-access machine (PRAM) is an abstract register machine used in
computer science to model the algorithmic performance of parallel algorithms. Although
being used as theoretical model for many years, only few attempts have been made
to upraise the model to practical usability. One of these attempts was the SB-PRAM
Project. It was intended to be a “proof of concept” that the theoretical model of the
PRAM is technically feasible for use in real world applications. The project included
the development of a real PRAM hardware, the high-level PRAM programming language
Fork, and a Fork compiler [KKT01]. In addition, a simulation of the hardware has been
provided in the form of a software called pramsim.

The simulation of PRAM algorithms can provide a practical access to the theory of parallel
algorithms. Even more, scientific developers of parallel algorithms are able to exemplaryly
verify if the result and the assumptions about runtime complexity are correct. However, the
PRAM simulation is running very slow compared to programs natively running on present
desktop computer systems. Therefore, a significant runtime improvement is required in
order to be able to observe more than toy size problems. The inherent parallelism of
the simulation suggests parallel computation as a solution. However, there were several

1 based on the master thesis: “New Parallelization Approaches for PRAM Simulations”
2 ACS / EON ERC RWTH Aachen University, Mathieustraße 10, 52074 Aachen, nberr@eonerc.rwth-aachen.de



previous attempts to parallelize the simulator with different approaches that did not achieve
any significant performance improvement, or were restricted to certain classes of PRAM
programs.

This article describes the basic approach followed in order to achieve significantly more
parallel performance. Details about the implementation and measured results of the
parallel performance are given. It will conclude on the work done and will offer some
ideas that potentially can lead to even more parallel performance.

2 Background and Related Work

The PRAM-Model The PRAM was introduced as generalization from the random-
access machine (RAM) by Fortune and Wyllie in 1978 [FW78, KKT01, Vi10]. In theory,
a PRAM employs an unbounded number of processors, synchronized by a common clock,
all having unit time access to a common shared memory, and a private local memory in
addition. If the model is used to discuss the performance of a concrete parallel algorithm,
the actual number of processors used often is assumed to be set to a certain number p,
typically calculated in relation to the size of the input n, e. g. p :=

√
n.

At each time step a processor can write into the shared memory, read from shared memory,
or perform some computation on its local memory. If a program is processed in parallel,
each single instruction will be done in parallel by all PRAM processors synchronously.
Thus, either all processors are reading from shared memory, all are writing to the shared
memory or all are doing some computation based only on local (private) memory. While
synchronous computing on processor local data does not cause any possible conflicts,
accesses to the same memory cell do. There is a variety of rules to resolve such conflicts
that are typically divided into three main variants: exclusive-read exclusive-write (EREW),
concurrent-read exclusive-write (CREW) and concurrent-read concurrent-write (CRCW)
[KKT01]. The former does not allow any concurrent access to a shared memory cell, the
latter allows concurrent read as well as write accesses.

The CRCW variant requires additional rules for the conflict resolution, such as Weak (only
a certain predefined value is allowed for simultaneous writing), Common (all processors
writing to the same location have to write the same value), Arbitrary (only one arbitrary
processor’s value will be written to the memory), Priority (the value is determined by a
predefined processor priority) and Combining (a reduction function, such as minimum
or maximum, is applied to all written values) [KKT01]. It has been shown that an
implementation of a PRAM supporting at least the Priority and the Combined CRCW-
PRAM variants will also be able to generate valid results when running algorithms
designed for most of the other variants [KKT01].

The SB-PRAM Project The SB-PRAM Project was intended to be a “proof of
concept” that the theoretical model of the PRAM is technically feasible for use in real
world applications [FGK97]. It included everything needed to program and run such an



application: a programming language, a compiler, a hardware and an operating system.
The SB-PRAM hardware is a scalable shared memory architecture with uniform access
time. It basically emulates the Priority CRCW-PRAM model. Additionally, powerful
multi-prefix operations, like multi-prefix addition (mpadd), have been implemented,
which practically empowers the SB-PRAM to support nearly all relevant models. To
take full advantage of the PRAM-like programming model supported by the hardware
on the low level of assembly, the C based language Fork has been developed to enable the
programming on a higher level. In order to enable software developers programming the
SB-PRAM without having access to the real hardware, a simulation of the hardware has
been provided in the form of a software called pramsim. It is available for free3 and is
part of a collection of compiler and system tools for the SB-PRAM. Besides the usage for
research purposes, pramsim has enabled the practical experience of PRAM programming
also as a complementation of classical theory courses on PRAM algorithms [Ke04].

Fork Fork is a high-level programming language for PRAMs [KKT01]. It was developed
as part of the SB-PRAM project introduced in Section 2. Like other shared memory
based parallel programming languages, Fork offers explicitly assignable shared (sh) and
private (pr) variables with comparable restrictions, except for the additional concept of a
group level shared memory. Fork offers two different program execution modes that are
associated with source code regions: the asynchronous and the synchronous mode.

In synchronous execution mode processors remain synchronous on the statement level
(which is passed through the compiler’s output on instruction level), i. e., the instruction
counters of the processors are equal at each machine cycle. This is called the synchronicity
invariant. If a conditional jump occurs that evaluates differently for parts of the participat-
ing processors, they are split into two groups. The synchronicity invariant remains guaran-
teed for the processors belonging to the same group. This also implies,that all expressions
consisting only of shared objects always evaluate to the same value for all processors of
the group. If groups are joined again, their processors have to be synchronized in order to
maintain the synchronicity invariant.

In asynchronous execution mode, the synchronicity invariant is not enforced. The instruc-
tion pointers of the processors may differ at any time and there are no implicit synchroniza-
tion points, hence the use of explicit synchronization is required to guarantee that accesses
to shared objects occur at the points in time intended by the algorithm. Programming asyn-
chronous regions is very similar to the programming model used in today’s popular and
well known thread based shared memory programming extensions like OpenMP. An ex-
emplary use of the Fork language for both, synchronous and asynchronous algorithms, is
illustrated in Appendix A in Section 6.

Previous Work on the Parallelization of the SB-PRAM Simulator Although the
SB-PRAM simulator pramsim is simulating a massively parallel computer architecture,
it is coded as a pure sequential program. It appears likely that a parallel version of

3 http://www.ida.liu.se/~chrke/fork.html

http://www.ida.liu.se/~chrke/fork.html


the simulator would be easy to develop by exploiting the inherent parallelism of the
simulation. However, there were several previous attempts to parallelize the simulator
with different approaches that did not achieve any significant performance improvement,
or were restricted to certain classes of PRAM programs.

There are several publications related to the topic of PRAM simulation that can be
classified into three categories. The first category includes approaches based on the
assembly model of the SB-PRAM processor directly without any knowledge about any
semantics from a higher level [Cl07, CLB12, Bl07]. All these approaches have in common
that all read and write operations in parallel simulations must lead to the same result
as in sequential simulation. In order to achieve this, they mainly followed the idea of
read optimistic (continue unsynchronized operation until a checkpoint, rollback in case
of conflicts) or conservative (block operation if a conflict may occur until all processes
are blocked) approaches. They were applied to the original simulator code or even to a
full parallel discrete event simulation (PDES) implementation. The attempts were based
on Message-Passing implementations and were only successful for algorithms that tend to
cause very few conflicts, i. e. make use of shared memory write accesses very sparingly.

The second category of approaches is based not only on the semantics of the SB-PRAM
assembly model, but rather includes additional knowledge about the higher programming
language level. One of this kind is introduced in [KKW09]. The idea is based on the Fork
semantic of synchronous groups. As already stated in Section 2, the synchronicity invariant
is only guaranteed for processors belonging to the same group. Thus processors that split
into different groups can be simulated by different threads without any synchronization
until they reunite again. In order to avoid overhead in detecting group splitting from within
the simulator, the Fork compiler was extended to add hints for the simulator in the form of
a new (pseudo) instruction shint. Even though the implementation was based on shared
memory, there was no significant performance gain in using multiple threads. However,
besides the mechanism of shints, this work also provided a slim version of the sequential
pramsim that introduced some other simplifications to the code, representing a good basis
for further work on the parallelization of the simulation, based on the combination of
assembly model and fork semantics.

The third category of approaches completely gets away from the idea of simulating a
PRAM and is based only on the semantics of Fork. An example of this kind is the source-
to-source compilation approach presented in [BKK12] which was very successful. It relies
completely on creating general-purpose computing on graphics processor units (GPGPU)
compatible code from synchronous fork code regions but does not maintain the capability
to simulate and analyze the runtime behavior of PRAM algorithms. In addition there is no
direct support for the Priority CRCW collision resolution or multi-prefix operations.

With respect to the previous work done and to the value of being able to analyze the
runtime behavior of a huge class of PRAM algorithms it was decided to follow new ideas
based on the second approach.



3 Concept and Implementation

The Simple and the Extended Approach The simple approach is mentioned here to
provide a basis for extensions to the approach and to illustrate the main problem of fine-
grained parallelism. It is one of the first category of approaches introduced in Section 2,
since it is based only on the assembly model of the SB-PRAM.

The concept is realized by SPMD fashioned shared memory programming: the simulation
loop presented in Figure 1 is run by several threads having a unique id. The complete set
of physical PRAM processors (PPs) is divided as equally as possible into disjunct subsets
PPid . As soon as all PPs have processed one instruction, the memory processing phase is
done by a single thread (for later reference this procedure will be called SimulateMem).
Hence, the actual parallel processing is limited to the simulation of the instruction in lines
2 to 4. Furthermore, synchronization is needed in every simulation step to make sure that
instruction- and memory-processing does not overlap.

1: while not end of simulation, with thread 0..n-1 as id parallel do
2: for pp ∈ PPid do
3: execute one instruction of physical processor pp
4: end for
5: barrier
6: if id = 0 then
7: for pp ∈ PP do
8: perform the memory request of physical processor pp, if any
9: end for

10: end if
11: barrier
12: end while

Fig. 1: Simple Parallel Pramsim Simulation Loop (based on [Bl07])

The basic idea of extending the simple approach is coarsening the synchronization
granularity by executing several instead of just one instruction per simulation round. This
principle is illustrated in Figure 2. The execution of the instruction stream by a single PP is
continued until a certain instruction or condition is met (for later reference this procedure
will be called SimulateMultipleStepsPP). The occurrence of such an event is called
synchronization point since the resulting simulation will be synchronized only at these
points. One of the approaches outlined in Section 2 – [Bl07] – already introduced this
principle, but was based only on the semantics of the assembly model, i. e., any access to
the global memory represented a synchronization point.

A new approach combines this principle with some knowledge about Fork semantics and
has been inspired by the bulk-synchronous parallel model [Va90]. The basic idea is to think
of the simulation as a sequence of segments being connected by global synchronization
phases. Inside such segments, it is assumed that no relevant information is propagated
between PPs, i. e., the simulation can be run in parallel without further constraints.
Information that has to be accessible by other PPs is written to the global memory only
during the global synchronization phases.



1: while not end of simulation, with thread 0..n-1 as id parallel do
2: for pp ∈ PPid do
3: execute instructions of pp until a synchronization point is reached
4: end for
5: barrier
6: if id = 0 then
7: for pp ∈ PP do
8: perform the memory request of pp according to certain constraints
9: end for

10: end if
11: barrier
12: end while

Fig. 2: Extended Simple Parallel Pramsim Simulation Loop

A simple variant of this approach is to consider any write access to the global memory as a
relevant propagation of information. In this case, a segment – the PP simulation in lines 2
to 4 (Figure 2) – is run in parallel for each PP until its instruction stream reaches a global
write instruction. The global synchronization phase in lines 5 to 11 actually performs all
write operations requested in a strictly sequential order by a single thread while the other
threads stay idle. Then the next segment is processed.

For a better understanding, this scenario is illustrated using the example code-snippet
shown in Figure 3(a). The example shows a part of a simulation where all PPs are part
of a single synchronous group, actually running the same code sequence. The result for a
and b at the end of the code-snippet is expected to be the same as if only one processor
was used. In the present case actually a = 2 and b = 1. Figure 3(b) shows this scenario for
the sequential simulation of four PPs P0, ...,P3 and Figure 3(c) shows the parallel version
of this simulation using two threads T0 and T1. The instructions are noted in a simplified
format. There are read (R), write (W ) and arithmetic (+) instructions. Read and write
instructions are denoted by a subscript, the name of the variable, and followed by the
value actually read or written. Just as expected, the result at the end of the simulation part
is a = 2 and b = 1 for both, the sequential and the parallel simulation.

As mentioned before, the global synchronization divides the simulation into consequtive
segments. This is visualized in Figure 3(c) for the two segments Si and Si+1. The write
instructions within these segments are treated as write requests while read instructions
are processed directly. The processing of write requests is delayed until the next global
synchronization. Therefore, the read operations Ra for P1 and P3 in Si result in the value
of a as at the beginning of Si. Moreover, any read operation for any PP results in the value
of the accessed variable as at the beginning of the segment, hence is guaranteed to be the
same for all PPs. For the special case of a single synchronous group this also guarantees
the result of sequential and parallel simulation being exactly the same, since all PPs are
executing the same sequence of instructions in all segments.



1: start {
2: sh int a=0;
3: sh int b=1;
4:
5: a = a + b;
6: a = a + b;
7: }

(a) code-snippet

P0

Ra:0

Rb:1

+

Wa:1

Ra:1

Rb:1

+

Wa:2

P1

Ra:0

Rb:1

+

Wa:1

Ra:1

Rb:1

+

Wa:2

P2

Ra:0

Rb:1

+

Wa:1

Ra:1

Rb:1

+

Wa:2

P3

Ra:0

Rb:1

+

Wa:1

Ra:1

Rb:1

+

Wa:2

t

(b) sequential

T0

P0

Ra:0
Rb:1
+

Wa:1

P1

Ra:0
Rb:1
+

Wa:1

T1

P2
Ra:0
Rb:1
+

Wa:1

P3

Ra:0
Rb:1
+

Wa:1

global synchronization

T0

P0

Ra:1
Rb:1
+

Wa:2

P1

Ra:1
Rb:1
+

Wa:2

T1

P2
Ra:1
Rb:1
+

Wa:2

P3

Ra:1
Rb:1
+

Wa:2

t

Si

Si+1

(c) parallel

Fig. 3: Simulation of a Single Synchronous Group

Coarsening the Synchronization Granularity The coarsening of the synchronization
granularity is the main source of optimization potential. The objective is to maximize the
number of instructions that can be simulated in the function SimulateMultipleStepsPP
without breaking the rules for the correct processing of Fork programs. This can be done
by the successive extension of the meaning of “relevant propagation of information”.
Therefore, the implementation includes a function that decides when the simulation of a
single PP has to be stopped for the actual segment. The function can be configured to make
decisions according to the following levels of granularity. The number of write accesses
actually not considered being a relevant propagation of information (RPI) increases with
the level.

Level 1 Any write operation to the global memory is considered as RPI.

Level 2 Extending Level 1, write requests to the private partition of the global memory
are not considered being an RPI. Accesses to the private partition can be easily
identified by the highest bit of the virtual address.



Level 3 Extending Level 2, accesses to the actual private stack-frame of the accessing PP
are detected and not considered as RPI. It was investigated that the private stack-
frames of the PPs are not located in the private partition of the global memory.
Therefore, accesses to the private stack-frame have to be detected by comparing
the virtual address to the current private frame-pointer (fpp) and the current private
stack-pointer (spp) of the accessing PP.

Level 4 Extending Level 3, the check for private accesses is extended to the whole stack,
not just the current stack-frame. This could only be achieved by using shint

instrumentation of the fork-lib startup routine. It is used by the simulator in order to
trigger the recording of the first stack-frame address.

Level 5 Extending Level 4, the fifth level of granularity introduces the aspect of determin-
ing if an explicitly globally visible information actually is considered to be relevant
or not. In an asynchronous region this relevance is marked and enforced by the use
of explicit synchronization. For that purpose, the implementation distinguished be-
tween PPs actually running in asynchronous execution mode and PPs running in
synchronous execution mode. In order to support the simulator to make this dis-
tinction, the Fork compiler has been extended to insert shint instructions when
asynchronous program regions are entered or left.

It should be noted that the current implementation of the fifth level is not completely Fork
compliant: if a synchronous group and at least one PP running in asynchronous mode are
executed simultaneously, it may happen that not all PPs of the synchronous group read
the same value from the same memory location at the same read instruction. However, the
implementation has been developed in order to evaluate its possibilities and nevertheless
can be safely used for simulations consisting only of phases where either all PPs are in
synchronous mode or all PPs are in asynchronous mode.

Barrier The Fork barrier has the most important function for the whole concept to work
correctly. since it has to ensure that all PPs waiting in the barrier will continue the execution
at the beginning of the same segment. This constraint is derived from the idea of the exact
barrier introduced in [KKT01]. The exact barrier is actually stricter than a standard barrier.
It ensures that all PPs of the same group will continue the execution of the next instruction
after the barrier at the same CPU cycle. This functionality is absolutely essential for the
reunion of groups or switching between asynchronous and synchronous execution mode.
Please refer to [KKT01, p. 142-147] for more detailed information about the concept and
the implementation of the exact barrier.

Several problems arise if the barrier is executed in the parallel simulation without
modifications. The first problem of the parallel simulation concept is that the simulation of
a PP is only stopped if a write request occurs. This means a PP running into the barrier will
enter a loop that does not include any write requests and then will be simulated forever,
since no synchronization point can be reached if all threads running the simulation are
actually busy waiting for a PP stuck in the barrier. Therefore the concept is modified to



include read requests from inside the barrier code into the list of conditions that will stop
the simulation of the actual PP. Such requests are detected by shints added to the Fork
library at the beginning and at the end of the barrier function.

The next problem is that read and write accesses inside the barrier will occur in the
same synchronization phase. According to the basic implementation of parallelism in
this section, SimulateMem will process all memory accesses that are pending which now
includes read accesses. This causes a serious problem: not all PPs will be released at the
same time. Since memory processing is done sequentially in the priority order of the PPs, a
PP entering the barrier last will trigger the release only for those PPs processed afterwards.
The other PPs will not be released until the next synchronization phase. The problem of
simultaneous read and write accesses was prevented for the original SB-PRAM by dividing
read and write instructions into odd and even processor cycles. With this concept in mind,
it was decided to process read accesses only in the PPs simulation phase and write accesses
detected as relevant propagation of information only in the synchronization phase. For the
special case of the read access inside the barrier, the processing is delayed to the beginning
of the next segment.

The final problem is that the releasing PPs will be one global synchronization behind the
already waiting PPs. The solution is derived from the early wave delay technique used for
the original SB-PRAM, which used two additional nop instructions to counteract a similar
problem. The second nop is replaced by a special shint. This shint then triggers an
additional synchronization phase for the PPs being early.

The handling of the barrier as described in this chapter has a major advantage over the
handling by the sequential simulation. In the parallel simulation the barrier loop is only
simulated once per segment. The actual length of the instruction stream processed by
certain PPs in the same segment may be very different, i. e., this handling introduces a
noticeable performance improvement, especially in sequential program regions processed
only by one PP.

Runtime Estimation of Simulated Algorithms There are two major purposes for the
simulation of PRAM algorithms: testing if the algorithm works correctly and observing
its runtime behavior. The former purpose remains fully served by the parallel simulation,
since it is Fork compliant. Serving the latter purpose may be only possible to a limited
extent. The observation of the runtime behavior typically is done by using the program
trv in order to visualize trace file outputs generated by a profiling run of of the algorithm
[KKT01, Ke04]. Since the tracing ability was not subject of this work it can be considered
as not present for the parallel simulation. Nevertheless, a basic form of observing runtime
behavior is still possible: runtime estimation.

The Fork library offers read access to the processor cycle counter of the PPs via the getct
function. This can be used to calculate the wall clock time of a certain part of the program,
i. e., to determine the exact runtime of a parallel algorithm for a certain problem size and
processor count. On the original SB-PRAM and in the sequential simulation, the cycle
counts of all PPs are equal at every point in time. Hence, it does not matter which PP



actually obtains the result of getct. However, the individual progress of the PPs diverges
during the parallel simulation. At the end of the program, the values of the cycle counters
may be completely different. and possibly none of them represents the real time taken by
the execution of the algorithm. In addition, the barrier implementation, as described in
Section 3, introduces the new feature of temporarily suppressing the simulation of waiting
PPs. This also implies it will be missing some processor cycles.

From a different point of view, the barrier itself can be used as global time reference. The
barrier semantic guarantees all PPs belonging to the same group to leave the barrier at
the same time – or from the view of the simulation: they have the same cycle count. In
the sequential simulation, the waiting PPs are released when the last PP enters the barrier.
In the parallel simulation ”the last” PP actually means the PP that has made the most
progress before entering the barrier. This point of view offers a conclusive image of the
runtime behavior. The PPs may have diverging cycle counts during the simulation, but
from their point of view this count represents the actual time, if it is synchronized to a
global time reference whenever a barrier is left. This global time reference is determined
by the maximum of all cycle counts of all PPs that entered the barrier and belong to the
same group.

Therefore, the handling of the barrier is extended. The shint handler for the barrier
enter event is extended by the procedure of determining the maximum cycle count. The
shint handler for the barrier leave event is extended by the procedure of setting the
cycle to this maximum plus the instruction length of the barrier itself. Of course, this has
to be done with respect to the actual group topology. This is done by using the shared
group-pointer (gps) as the key for a group individual maximum entry in a tree-map. This
highly increases the accuracy of the simulation concerning the observation of the runtime
behavior based on the processor cycle count.

4 Evaluation

Evaluation Setup and Definitions Subject of the evaluation was the runtime of original
and parallel implementation of pramsim for several different algorithms as well as
comparison of the algorithm’s result (correctness) and the result of the estimated PRAM
runtime (simulated SB-PRAM hardware processing time). All measurements were done
on the same shared memory computer system utilizing up to 16 cpu cores. For comparison
purposes the relative and the real speedup was calculated. The relative speedup was
calculated by dividing the runtime of the parallel implementation using only one thread by
the runtime of the same implementation using 16 threads. The real speedup was calculated
by dividing the runtime of the original implementation by the runtime of the parallel
implementation using 16 threads.

Summary of Results Obtained The Fork compiler package contains several example
algorithms with very different characteristics regarding the number and the frequency of
change between asynchronous and synchronous regions and groups. Extensive evaluations



using a set of these algorithms have shown that the parallel simulation of all these
algorithms could achieve an real speedup between 12 and 31, depending on the algorithm.
For some of them this was achieved without any modification whereas some others
have been modified slightly. The outputs of the algorithms simulated by original and
parallel simulation were identical for all cases – with exceptions at Level 5, as expected.
The overall accuracy of the runtime estimation had an acceptable relative deviation
between original and parallel simulation of at most 1%. Algorithms with dominating
synchronous regions even do better up to exact results. A more detailed view on results
and investigations is presented in Appendix B in Section 6, including the identification of
further optimization potential.

5 Conclusions and Future Work

The SB-PRAM simulator in conjunction with the Fork programming language represents
a good basis for the simulation of PRAM algorithms. In the past, there were several
attempts to implement an efficient parallel version of this simulator which did not achieve
any significant performance improvement or were restricted to certain classes of PRAM
programs. The attempt described in this article introduced and enabled the concept of
successive coarsening of the synchronization granularity. The basic mechanism of the
concept is simulating single PPs until a situation occurs that requires synchronization.
The actual decision if and when such a situation is considered to be present can be
done by several extensible criteria. As part of this work, several levels of synchronization
granularity have been introduced, implemented, and evaluated. This was mostly done with
the assistance of instrumentation instructions inserted by an extension to the Fork compiler.
The resulting parallel simulation showed a reasonable parallel performance without any
restrictions to certain classes of PRAM algorithms while maintaining the possibility of
runtime analysis. Even more, the concept still leaves room for even more improvement,
which could be addressed in future work by the introduction of new compiler optimizations
and/or an efficient parallel implementation of the mpadd instruction.

References

[BKK12] Brenner, Jürgen; Keller, Jörg; Kessler, Christoph: Executing PRAM Programs on GPUs.
Procedia Computer Science, 9(0):1799 – 1806, 2012. Proceedings of the International
Conference on Computational Science, ICCS 2012.

[Bl07] Blaar, Holger; Keller, Jörg; Kessler, Christoph; Wesarg, Bert: Emulating a PRAM on
a Parallel Computer. In: PARS-2007 21. PARS-Workshop, Hamburg, Germany. GI
Gesellschaft für Informatik eV, 2007.

[Cl07] Clauß, Carsten: Paralleler PRAM-Simulator. Master’s thesis, FernUniversität in Hagen,
Germany, January 2007.

[CLB12] Clauss, Carsten; Lankes, Stefan; Bemmerl, Thomas: Mapping the PRAM model onto
the Intel SCC many-core processor. In: High Performance Computing and Simulation
(HPCS), 2012 International Conference on. IEEE, pp. 395–402, 2012.



[FGK97] Formella, A; Grün, T.; Kessler, C.W.: The SB-PRAM: concept, design and construction.
In: Massively Parallel Programming Models, 1997. Proceedings. Third Working Confer-
ence on. pp. 163–172, Nov 1997.

[FW78] Fortune, Steven; Wyllie, James: Parallelism in Random Access Machines. In: Proceed-
ings of the Tenth Annual ACM Symposium on Theory of Computing. STOC ’78, ACM,
New York, NY, USA, pp. 114–118, 1978.

[Ke04] Kessler, Christoph: A Practical Access to the Theory of Parallel Algorithms. SIGCSE
Bull., 36(1):397–401, March 2004.

[KKT01] Keller, J.; Kessler, C.W.; Träff, J.: Practical PRAM programming. Wiley series on
parallel and distributed computing. J. Wiley, 2001.

[KKW09] Keller, Jörg; Kessler, Christoph; Wesarg, Bert: Efficient Simulation of Fork Programs on
Multicore Machines. In: Proc. 22nd PARS-Workshop. PARS’09, 2009.

[Va90] Valiant, Leslie G.: A Bridging Model for Parallel Computation. Commun. ACM,
33(8):103–111, August 1990.

[Vi10] Vishkin, U.: , Thinking in Parallel: Some Basic Data-Parallel Algorithms and Tech-
niques, 2010. In use as class notes since 1993.

6 Appendix

A: Fork Example Algorithms An example PRAM algorithm in asynchronous mode
was already mentioned and evaluated in [Cl07, CLB12]: a Jacobi over-relaxation solver
for the well-known two-dimensional Laplace problem. The core of this solver is shown
in Figure 4. The solver iterates K times over a two dimensional N×N mesh. As one can
see, the work for the physical PRAM processors (PPs) is shared statically in lines 8 and
14 by the forall loop (# evaluates the actual number of PPs in the current group). If N
is divisible by the number of processes, then the load will be evenly divided, since all PPs
will process the same number of instructions. The iteration is divided into two phases: the
calculation of the values for the next iteration and a copy phase. Both phases reside inside
two asynchronous regions, each marked by a farm statement. The outer start statement
marks a synchronous region, i. e. the asynchronous regions are synchronized by an implied
barrier at the end of the region.

Since Fork was designed as a PRAM programming language, it offers much more potential
to express parallel algorithms than just the OpenMP like fashion presented in Figure 4. The
previously introduced algorithm solving the Laplace problem by Jacobi over-relaxation
does not make use of real PRAM specific capabilities. Figure 5 outlines a CREW-PRAM
variant of the algorithm utilizing P := N2 processors. As one can see, the copy phase
is not necessary any more. Additionally, the two nested inner loops are replaced by a
complete static distribution of cells to processors (identified by the actual group processor
id $). The complete algorithm is now running in synchronous execution mode, hence
the synchronicity invariant applies. It guarantees for each iteration that first all PPs will
simultaneously read the same, old values stored in src, then simultaneously compute the
new result and, finally, simultaneously write their result to a distinct memory location
inside the src array.



1: start {
2: pr int i, j, k;
3:
4: // iterate K times
5: for(k=0; k<K; k++) {
6:
7: // calculate new destination values
8: farm forall(i,1,N-1,#)
9: for(j=1; j<N-1; j++)

10: dst[i][j] = 0.25 * (src[i-1][j] + src[i+1][j]
11: + src[i][j-1] + src[i][j+1]);
12:
13: // copy destination to source values
14: farm forall(i,1,N-1,#)
15: for(j=1; j<N-1; j++)
16: src[i][j] = dst[i][j];
17: }
18: }

Fig. 4: Core of Laplace Solver (based on [Cl07, CLB12])

1: start {
2: pr int i, j, k;
3:
4: i = $ / SQRT_P + 1;
5: j = $ % SQRT_P + 1;
6:
7: // iterate K times
8: for(k=0; k<K; k++) {
9: src[i][j] = 0.25 * (src[i-1][j] + src[i+1][j]

10: + src[i][j-1] + src[i][j+1]);
11: }
12: }

Fig. 5: Core of Synchronous Laplace Solver

B: Closer Inspection of the Introduced Laplace Algorithm In order to enable deeper
insight into the design of the parallel SB-PRAM simulation, the performance of the
Laplace solver algorithms, as described in Figure 4 and Figure 5 in Appendix A, are
discussed in more detail.

For the case of the asynchronous solver (Figure 4) there will be the following points of
synchronization depending on the level of granularity: Level 1 and 2 will result in any
write to private or shared variables (see lines 5, 8, 9, 10, 14, 15 and 16) being a trigger for
a synchronization phase. Level 3 and 4 will only trigger synchronization phases for writes
into shared variables (lines 10 and 16). Level 5 will only synchronize at implicit points
located at the end of the two farm statements outside the inner loops. This corresponds to
the increasing relative speedup of the parallel simulation of a 64 PP PRAM (p = n) shown
in Table 1 (second column).

For the case of the synchronous solver (Figure 5) synchronization will take place at the
following locations: Level 1 and 2 will result in synchronization at any write to private or



shared variables (see lines 4, 5, 8 and 9). Level 3 and 4 will only trigger synchronization
phases for writes into shared variables (line 9 only). Level 5 will have no benefit since
there are no asynchronous regions. This corresponds to the relative speedup of the parallel
simulation of a 4096 PP PRAM (p = n2) also shown in Table 1 (third column). Obviously,
the relative speedup is limited to the amount of Level 4 Graining – which seems to
be similar for both asynchronous and synchronous Laplace solver. However, since the
number of visible synchronization phases obviously is far less for the synchronous solver
(only the k loop is present), a further examination of the presence of additional, implicit
synchronization was done. It was investigated through revision of the Fork compiler
and its assembly output that a major source of synchronization is caused by an mpadd

instruction that is inserted into the assembly for each loop iteration. This is done by the
Fork compiler since after any conditional branch the number of participating PPs in the
current synchronous group may have changed. It is one of the mechanisms the compiler
uses in order to enforce the synchronicity invariant.

Since mpadd is the most expensive instruction – from the perspective of the parallel
simulation – a third variant of the Laplace solver was created. It was called semi-
synchronous because it based on explicitly telling the Fork compiler that he should run the
complete loop in Figure 5 line 8 to 11 in asynchronous execution mode by simply adding
a farm to the beginning of line 8. As the compiler does not enforce the synchronicity
invariant for asynchronous regions, it does not insert the mpadd instruction. However,
even running in asynchronous execution mode – where PP instruction pointers may differ
– does not mean that the instruction pointers of PPs necessarily have to be different. In this
special case, all instruction sequences for all PPs will be the same. Hence, the output of
the algorithm will be the same as the output of the synchronous variant. This applies even
for the parallel simulation of the algorithm except for Graining Level 5. As one can see
in Table 1 (fourth column), this results in a noticeable boost of the relative speedup from
about 8 up to 12.

The insight of this experiment discovers the potential of further improvements. Future
work may focus on the development of an efficient mpadd implementation. Even inves-
tigations on compiler based optimization is possible. One could focus on path prediction
techniques in order to avoid the mpadd instruction (branch out only in last iteration). Also
one could define k as a shared variable and try to implement detection and handling for
parallel operations that will result in equal results for all PPs (since all PPs operate on the
same k the results of increment and comparison will be equal, thus have to be computed
only once).

Graining Laplace async. Laplace sync. Laplace semisync.

Level 1 & 2 4.3 5.9 7.4
Level 3 & 4 8.2 8.2 12.1
Level 5 13.6 8.2 (invalid result) 15.4

Tab. 1: Relative Speedup for Parallel Simulation of Laplace Algorithms


	Introduction
	Background and Related Work
	Concept and Implementation
	Evaluation
	Conclusions and Future Work
	Appendix

