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Abstract  

We compare three different rescheduling schemes for statically scheduled processor architectures. One of the 

rescheduling schemes is software-based while the others are based on hardware support. The rescheduling becomes 

necessary if the compiler generated schedule for a static scheduled processor architecture must be changed in-the-field 

because of a permanent fault in the data path of the processor. By comparing the hardware and software-based 

rescheduling schemes we can show that our proposed software-based rescheduling scheme in many cases reduces the 

worst-case latency of the executed program in the presence of a permanent fault. 

 

 

1 Introduction 

The development of silicon IC technology during the last 

decades has yielded an unprecedented exponential 

improvement of the performance per cost ratio for 

integrated circuits and devices. Complex integrated 

systems on a chip (SoCs) have become the mainstay of 

electronics in many applications, specifically automotives, 

appliances, and communications. Recent forecasts for the 

properties of circuits that have a feature size below 50 nm 

predict several critical features [2, 5, 7, 21, 29, 30]: 

� First, relative deviations of device- and circuit 

parameters such as transistor threshold voltages will 

increase due to quantum mechanical effects, making 

a certain share of basic devices non-functional even 

in the absence of physical defects [5, 29]. Such 

effects will result in permanent faults of devices. 

� Second, nano-scale devices are going to exhibit a 

stronger vulnerability to distorting influences such as 

radio-active particle radiation from cosmic or 

terrestrial sources [3, 8]. Such effects are likely to 

produce transient fault and error conditions without a 

permanent damage. 

� Third, nano-scale devices are likely to have a higher 

level of inherent stress conditions due to higher 

electric field strength in insulation layers and higher 

current density on interconnects. This may result in 

permanent faults that occur in the field. 

As a consequence, devices which are fully operational 

after production have a higher probability of failure by a 

later point of time. Therefore nano-electronic systems that 

are used in long-living and safety-critical applications are 

likely to need architectures that can repair permanent faults 

in the field by a kind of  build-in self-repair (BISR) 

capability [4, 11, 22, 28, 29]. But also the increasing 

complexity of SoCs makes BISR capability a must for 

future designs. The semiconductors industry’s ITRS 

Roadmap predicts that, due to the high complexity of 

SoCs, a full functional test after production becomes 

extremely expensive or even impossible [1]. Production 

costs could be reduced by relaxing the requirement for 

100% correct devices. Then architectures are needed that 

facilitate repair functions at least after production, and, 

considering both test escapes and  wear-out in operation, 

built-in test and self-repair in the field.  

Furthermore, in recent years application specific 

processors became more and more popular as components 

in SoCs, due to their good ratio between power 

consumption, performance and flexibility. Due to the 

required self-repair functionality of SoCs, also a self-repair 

possibility for the included processors is necessary. The 

simplest solution would be to replace the whole processor 

by a backup processor in the case of a permanent fault. 

However, this would be also the most expensive solution. 

For this reason, we consider application specific statically 

scheduled programmable processor architectures with 

instruction level parallelism (e.g. a very long instruction 

word processors - VLIWs), and how to make them tolerate 

permanent faults that may occur in their data path in the 

field. Usually this type of architecture contains many 

redundant operators in the data path. Thus, if there occurs 

a permanent fault in an operator, it may not be necessary to 

replace the whole processor. Rather another operator may 

overtake the work of a faulty one. A picture of our 

supposed architectural framework is shown in figure 1.  

It uses a 4-stage instruction pipeline with the well known 

stages fetch, decode, execute and write-back and supports 

instruction level parallelism. I.e., the data path contains a 

single register file that is accessed by several function units 

(FUs) that run in parallel. Each of the FUs contains several 

operators (e.g. adder, multiplier) and can execute one 

operation (e.g. addition, multiplication) per clock cycle.  
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Figure 1: Data Path of our supposed static scheduled 

processor architecture. 

The operations are scheduled statically (i.e. at compile 

time) by the compiler into instructions, and each operation 

is also bound statically to a FU. Thus, in each clock cycle, 

one instruction is executed by the processor as it was 

generated by the compiler. A schematic picture of an 

instruction is shown in figure 2. 

- + - + +
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Figure 2: Example of an instruction that contains five 

operations. The number below each operation is the 

number of the FU to which the operation is bound. 

The advantage of statically scheduled processor architec-

tures in the context of application specific processor design 

is its simple control path that can be generated automa-

tically. The control path can be kept very simple, because 

all work according to scheduling, binding and hazard-

avoidance, is done by the compiler. The disadvantage of 

statically scheduled processor architectures in the context 

of fault-tolerant computing is that an operation, that is 

bound to a faulty FU, can not simply be executed by 

another FU. 

2 Related Work 

Fault-tolerant computing is an established research area, 

and a lot of techniques for detection and handling of 

transient faults have been developed and implemented [15, 

16, 20]. These techniques may be also adequate for 

detecting a permanent fault, but not for repairing it 

permanently. For this reason, a faulty component in a self-

repairing system must be identified and its allocated tasks 

must be moved to other components. This requires either a 

reconfiguration of the interconnects in the data path or a 

redistribution of tasks, i.e. in our architectural framework a 

new binding1 in the static schedule in order to avoid the 

usage of the faulty component. 

Hardware can be reconfigured in the field by providing 

mechanisms for activating and deactivating certain parts of 

                                                 
                                                1 Changing the binding of an operation to a functional unit 

means that the operation is executed in the same instruction 

but by another FU. 

the hardware (e.g. by pass-transistor or fuses) together 

with mechanisms for re-routing the data [18, 19, 25]. Such 

approaches require a sophisticated configuration data 

management and a considerable hardware overhead for 

configuring the system by selectors, pass-transistors or 

transmission gates. They can be integrated directly into the 

design of a special ASIC, but they require either a 

relatively regular structure of an ASIC, or they produce a 

high hardware overhead for control structures.  

Another popular technique is provided by field-

programmable gate arrays (FPGAs). The usage of a faulty 

area in such devices can be avoided by moving 

functionality from a faulty area to a non-faulty area by a 

reconfiguration that is performed by a repair procedure 

[23]. This reconfiguration can be done in the field. 

However, in order to have enough area available for a 

reconfigured system, the original FPGA must provide 

backup areas. Thus, a lot of resources are unused and 

preserved for the repair capability [12, 23]. Furthermore, 

the area and power consumption overhead for 

implementing a system in a FPGA is about an order of 

magnitude compared to the implementation in optimized 

digital hardware.  

Another possibility is simply to avoid the usage of a faulty 

component in the data path instead of reconfiguring the 

data path. A processor can avoid the usage of a faulty 

component by rebinding and/or rescheduling operations in 

the compiler generated schedule. This means that the 

compiler generated schedule must be changed. This is 

done in existing approaches by rebinding and 

rescheduling2 the operations in the schedule either in 

hardware [6] or by pre-computing several schedules, one 

for each possible fault situation [13, 14]. 

In the first case, a rebinding or even a rescheduling and 

rebinding is done on-the-fly in hardware before each 

instruction is executed. This requires a substantial amount 

of additional hardware in the control path of the processor 

and leads to the loss of one of the big advantages of a static 

scheduled architecture; the simplicity of its control path. 

As mentioned in section 1, this simplicity makes statically 

scheduled processor architectures very attractive as an 

architectural framework for scalable application specific 

processors that are adapted to a given set of applications 

by a design space exploration. Thus, the simplicity of the 

control path should be maintained. 

In the second case, the usage of a faulty component is 

avoided without hardware support. I.e., another schedule, 

which was pre-computed, is executed. This schedule does 

not use the faulty component. Such an approach has two 

important drawbacks. First – depending on the application 

– maybe many schedules must be pre-computed and saved 

in the program memory. Second, these schedules must be 

available for the whole application. This becomes 

impractical especially for large applications. 

 
2 Changing the time in the schedule (i.e. the instruction) when 

the operation is executed. 



3 Software-Based Rescheduling 

To overcome the mentioned drawbacks, we propose a new 

software-based rescheduling scheme that can be executed 

in-the-field. It rebinds the operations in each instruction if 

a permanent fault is detected in the data path of the 

processor. In this paper we present an evaluation which 

shows that our approach decreases the worst-case delay 

during the execution of the program, compared to the 

hardware based rescheduling schemes, but still keeps the 

architectural framework simple. Moreover, only a single 

schedule for the application must be generated by the 

compiler. This schedule is adapted in-the-field by the 

software-based rescheduling scheme to an occurred fault 

situation. Therefore, pre-computation of many schedules is 

not necessary. 

The remainder of this paper is organized as follows. In the 

next sections we introduce the three rescheduling schemes 

that we use for our estimation. Then we give an overview 

about the overall system architecture that implements the 

software-based rescheduling scheme. Finally, we explain 

our experimental setup, give results for some benchmarks 

and draw our conclusions. 

3.1 Rescheduling Schemes 

We have evaluated three different rescheduling schemes. 

Two of them are hardware based. We use them for 

comparison with our software-based rescheduling scheme. 

Simple Hardware Solution (SHS)  

The SHS extends the decode stage of the processor 

pipeline such that, in the case of a permanent fault, the 

following behaviour is obtained: We assume a detected 

permanent fault in an operator of type x in functional unit 

a. If the current instruction in the decode stage requires the 

execution of an operation of type x on FU a, that operation 

is delayed by one clock cycle. All other operations of the 

current instruction are routed to the execution stage, and 

the next instruction is delayed for one clock cycle. Thus, in 

the next clock cycle, an empty instruction can be routed to 

the execution stage by the control logic that contains only 

the delayed operation. The delayed operation is executed 

on a FU that contains a working operator of type x. This 

rebinding is computed by the control logic of the 

processor. 

The behaviour is illustrated in the example in figure 3 

where we have a data path with five functional units 

(shown in the execution stage) including the shown 

operators. Furthermore, the operator for the multiplication 

in FU 5 is assumed to be faulty. The instruction at the 

beginning of the execution stage in figure 3 is executed as 

it was fetched, because it does not use the faulty operator 

in FU 5. However, the instruction at the beginning of the 

decode stage would use the multiplier in FU 5. Therefore 

the control logic delays the multiplication, and the 

instruction at the beginning of the fetch stage. 
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Figure 3: Example for the behavior of the simple 

hardware rescheduling scheme. 

Figure 4 shows the configuration of the data path in the 

next clock cycle. 
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Figure 4:  Example for a delayed multiplication. 

The multiplication has been delayed, and all other 

operations were routed to their corresponding FU. FU 5 

executes a NOP (no operation) instead of a multiplication. 

The multiplication is executed one clock cycle later as 

shown in figure 5. 
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Figure 5: Example for executing the delayed 

multiplication. 

It must be noticed that the source operands of the 

multiplication must be read from the register file by the 

same time while the operands for the non-delayed 

operations are read. This is necessary to avoid overwriting 

of these operands in the register file with results from the 

execution stage.  

Complex Hardware Solution (CHS)  

The complex hardware rescheduling scheme is an 

extension of the simple one presented in the previous 

section. The decode logic is modified such that, in the case 



of a detected permanent fault in an operator of type x in 

functional unit a, the following behaviour is obtained: If 

the current instruction in the decode stage requires the 

execution of an operation of type x on a FU a, and there is 

another FU b with operator x that executes a NOP in that 

instruction, then the operation of type x is executed on FU 

b. Therefore, no delay will occur.  
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Figure 6: Example for the behavior of the complex 

hardware rescheduling scheme. 

For example, the instruction at the beginning of the decode 

stage in figure 6 can not be executed as it was scheduled 

by the compiler, because the multiplication would be 

executed on the faulty multiplier in FU 5. However, the 

multiplication can be re-routed to FU 2 and be executed 

there. Thus, no delay will occur. Figure 7 shows the 

modified instruction as it is routed to the execution stage in 

the next clock cycle. 
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Figure 7: Example of re-bounded multiply-operation. 

However, if there is no such FU b available, the operation 

of type x must be delayed as in the simple hardware 

solution. An example for such a situation is given in figure 

3. Thus the complex hardware solution is an extension of 

the simple hardware solution. Rebinding and delayed 

execution is controlled by the control logic of the 

processor on-the-fly. 

Software Solution (SWS)  

The software rescheduling scheme allows a more complex 

rescheduling, because it is not done by hardware, but by a 

software routine that is executed on a processor3. The 

                                                 
3 For the moment let us assume that there is such a processor. 

Which processor can be used for this task is discussed in 

section 3.3. 

software routine computes a rebinding of the operations 

for each instruction of the program. Again, we assume that 

there is a fault in the operator of type x in FU a. Then the 

rebinding is a permutation of the operations in each 

instruction, such that FU a with the faulty operator x does 

not execute an operation of type x. For example, the 

instruction in figure 8 (b) can not be executed, if the 

multiplier in FU 5 in figure 8 (a) is faulty. But the 

instruction in figure 8 (c) with permutated operations can 

be executed. 

- + - + * - + + *
FU 1 FU 2 FU 3 FU 4 FU 5  

(a) 
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(b) 

- * - + +  

(c) 

Figure 8: (a) Configuration of the data path. (b) Original 

Instruction. (c) Instruction with permutated operations. 

As for the complex hardware solution, the statically 

scheduled processor must provide a mechanism as in the 

simple hardware solution, because such a permutation may 

not exist. For example, consider the instruction in figure 9.  

- - - + *
 

Figure 9: Example of a not permutable instruction. 

Again we assume the multiplier in FU 5 in figure 8 (a) to 

be faulty. Then there exists no permutation of the 

operations such that the multiplication can be executed by 

FU 2, because the FUs 1 to 3 must execute a subtraction. 

In contrast to the hardware solutions, the rebinding is 

computed for the binary program, which is saved in the 

program memory. I.e., the processor must have read and 

write access to its program memory, and the permutation 

cannot be computed on-the-fly. 

3.2 Software Rescheduling Algorithm 

The permutation can be computed efficiently. The 

algorithm is presented in the following. We can model the 

problem of finding a permutation for a given instruction w 

and an occurred fault in FU f as a rebinding-graph. A 

rebinding-graph is a directed graph (N,E), where N is a set 

of nodes and E � N × N is a set of edges. The nodes 

represent the functional units in the data path. An edge 

(u,v) represents the possibility that an operation, which is 

executed on FU u, can be executed on FU v, too. Thus, 

there is an edge (u,v) from node u to node v, if and only if: 

� FU u executes an operation of type t in instruction 

w and 

� FU v includes an operator of type t and 

� the operator of type t in FU v is not faulty and 

� u � v. 



In order to compute the permutation, let G be a set of 

functional units that contains the FU f (i.e. the functional 

unit which is faulty) and all FUs that execute a NOP in the 

given instruction w.  

The goal is to find a path in the constructed rebinding-

graph, with the source node f and a sink node that is in the 

set G. The permutation is obtained by shifting each 

operation that is executed by an FU on that path along one 

edge on that path to another FU. By the construction of the 

graph we made sure that the operation can be executed on 

the FU to which it was shifted. Furthermore, the last node 

on the path is either a FU that executed a NOP or the first 

node of the path from which we have shifted away the 

executed operation. Consider the following example. We 

use the data path from figure 8 (a) and the instruction from 

figure 8 (b) and we assume that the multiplier in FU 5 is 

faulty. The corresponding rebinding-graph is shown in 

figure 10. 

FU 1 FU 2 FU 3 FU 4 FU 5

 

Figure 10: Example of a rebinding-graph. 

For example, the multiplication that is executed on FU 5 

can also be executed on FU 2. Thus, we have the edge 

(5,2). The subtraction that is executed on FU 2 can also be 

executed on FU 1 and FU 3. Hence, we have the edges 

(2,1) and (2,3). In this example is G = {5}, because the 

instruction in figure 8 (b) contains no NOP. A path that 

starts at source node 5 and ends at a node in G is 5, 2, 1, 5. 

Now we have to shift each operation from the instruction 

in figure 8 (b) along one edge on the path 5, 2, 1, 5. I.e., 

operation * is shifted from FU 5 to FU 2, operation – is 

shifted from FU 2 to FU 1 and operation + is shifted from 

FU 1 to FU 5. By doing this we obtain the permutation that 

is already shown in figure 8 (c). 

In order to find the requested path in a given rebinding-

graph for a given source node s and a given set G, formally 

we have to compute the transitive closure E+ of the edges 

E and check whether (s,d) � E+ for any d � G or not. The 

solution can be obtained faster, if a breadth-first-search 

(bfs) in G is performed starting at node s. For all nodes u 

that are reached by the bfs, we determine the next 

unreached nodes v that can be reached from a node u via 

an edge and keeping in mind for each of these nodes v the 

node u from which v was reached. The bfs ends, if we 

reach a node that belongs to G, or we can not reach a new 

node. In our example, the bfs would start at node 5. From 

node 5 we can reach only node 2, keeping in mind that we 

arrived from node 5. From node 2 we can reach nodes 1 

and 3, keeping in mind that we arrived from node 2. From 

node 3 we can not reach a new node (i.e., a node we have 

not reached before). But from node 1 we can reach nodes 4 

and 5, keeping node 1 in mind. The bfs ends because node 

5 belongs to G. With the nodes we kept in mind we can 

reconstruct the path in the reverse order. This means we go 

back from node 5 to node 1, then from node 1 to node 2, 

and finally from node 2 to node 5. 

3.3 Overall System Architecture 

Up to now we have explained how the software 

rescheduling algorithm should work, but not on which 

processor it should be executed. Two possible system 

architectures will be discussed in this section. The first 

architecture is shown in figure 11. 
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Figure 11: System Architecture where the SoC contains 

an additional test processor. 

The SoC contains an extra test processor [9, 10]. This is a 

very simple and small processor4 that is used in the field 

for executing and controlling a self-test-routine in the SoC. 

This test processor can also be used for testing the VLIW 

processor. This can be done by initiating a test routine in 

the VLIW that computes several values in its data 

memory. From there, the values can be read and compared 

with the values computed by the test processor. If a fault is 

detected, the test processor executes the software 

rescheduling algorithm. However, it needs access to the 

program memory of the VLIW processor in order to 

modify the instructions in the program memory of the 

VLIW. This type of architecture does not need extensive 

modifications in the VLIW itself. The most expensive 

modification is the read- and write-access to program and 

data memory of the VLIW processor. 

The second system architecture is somewhat more unusual 

and shown in figure 12. There, the VLIW-processor itself 

executes the software rescheduling algorithm. But how can 

                                                 
4 Please note, that the computation performance of the VLIW is 

much bigger than that of the test processor. Thus, the test 

processor is not able to overtake the work of the VLIW. 



a processor with a faulty component execute the 

rescheduling algorithm in a correct manner? Please recall 

that the VLIW supports a simple hardware rescheduling 

scheme. This means, even in the presence of a permanent 

fault in the data path, the rescheduling algorithm is 

executed in the right way, because the hardware rebinds 

operations of that algorithm to other FUs on-the-fly if this 

is necessary. 
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Figure 12: System Architecture where the VLIW 

processor itself executes the software rescheduling 

algorithm. 
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However, this may increase the execution time of the 

rescheduling algorithm. One drawback of this system 

architecture is that more modifications in the control path 

of the VLIW are necessary. I.e., the VLIW itself needs 

write-access to its own program memory, which is not 

common in Harvard-Architectures. This can be 

accomplished by two new machine instructions. The first 

one loads an instruction word in a consecutive sequence of 

processor registers. The rescheduling algorithm can 

perform the needed modifications in the instruction word 

and by a second new instruction the same or modified 

instruction word can be written back to the program

memory. The advantages of this system architecture are: 

� No extra test processor is needed. 

� The full performance (except for the faulty

VLIW processor is used for rescheduling. 

The detection of permanent faults in the second system 

architecture can be done by a software-based s

4 Experimental Setup 

We have explained in the previous section that each of the 

rescheduling schemes may cause a delay during the 

execution of the program in the presence of a permanent 

fault in the data path. The most important question we 

want to answer with our experimental setup was: How big 

is this delay for a typical application that runs on a static 

scheduled pr f its 

operators?  

To answer this question, we have investigated several 

schedules for several benchmark programs, each of them 

running on an application specific VLIW architecture. The 

benchmark programs are inner loop kernels, which are 

executed frequently. The VLIW architectures were adapted 

by a design space exploration [27] to the considered 

application. This means that there are no spare operators in 

the data path. Every available operator is really needed for 

the execution of the program, and a fault in one of them 

must cause a delay. Table 1 sho

ed benc schedules. 

Name ng dd Mul op

DCT-DIT 9 24 12 12 6 

DCT-LEE 12 17 11 21 11 

DCT-DIF 8 17 12 12 7 

DCT-DIF 9 17 12 12 4 

DCT-DIF 11 17 12 12 3 

Table 1: Characteristics of the used benchmark schedules. 

re adapted to each of these 

sch  

F F

The schedules are the inner loop of different discrete 

cosine transformations (DCT). The number of instructions 

into which the operations were scheduled, i.e. the length of 

the schedule, is shown in the column Length. The number 

of operations of a certain type in each schedule is shown in 

the columns Add, Sub, Mul and Nop. The characteristics of 

the VLIW architectures that we

edules are shown in table 2. 

Name/L U1 FU2 FU3 FU4 U5 FU6 

DCT-DIT/9 - + * - * + * + + * 

DCT-LEE/12 + * -* + + * n.a. - + 

DCT-DIF/8 - + + * - + - * - 

DCT-DIF/9 - + - + * - + + * n.a. 

DCT-DIF/11 - + - + * - * - + n.a. n.a. 

Table 2: Characteristics of the VLIW-architectures that 

were adapted to the corresponding schedules in table 1. 

and corresponding 

d in section 

e, where an 

of type x 

Every column FUx shows the operators that are included 

into the FU x. Thereby, n.a. means that the architecture 

does not include the corresponding FU. More 

characteristics of the used benchmarks 

architectures can be found in [26].  

We estimated the delay related with each rescheduling 

scheme under the assumption that one operator is faulty. 

For each possible fault of such a type in the architecture 

and each rescheduling scheme, we estimated the delay 

during the execution of the program by the following rules 

that are derived from the behaviour explaine

3.1: We assume a fault in operator x of FU a.  

� In the simple hardware solution, a delay of one 

occurs for each instruction in the schedul

operation of type x is executed on FU a.  

� In the complex hardware solution, a delay of one 

occurs only for those instructions in the schedule, 

where an operation of type x is executed on FU a and 

all other FUs that include an operator 

execute an operation that is not a NOP.  

� In the software solution, a delay of one occurs for 

those instructions in the schedule, for which no 



permutation of the operations exists such that FU a 

executes an operation different from type x.  

The worst case fault is the fault of an operator for whose 

fault the sum of the delays for all instructions in the 

schedule is maximal according to the rules above. This 

delay is called the worst case delay. In the same way the 

y executing 

nt amount of time for software 

egligible small. 

olumn 

are solution. But by software-based 

y can be decreased by 

an be the case for example in image 

 

rather be optimized when, the system is not in use for a 

short time or concurrently, if a test processor is available. 

 

Resche DIT/9 LEE/12 DIF/1

best case delay is defined. It is the minimal delay that 

occurs for a possible fault in the data path. 

From these considerations we excluded the time for 

detecting a permanent fault and also the time for 

rescheduling the application by the software-based 

approach. This is done, because we assume that for all 

three rescheduling schemes the fault detection must be 

done off-line, i.e. the system is not in use. Thus, there will 

be also some additional time for executing the software-

based rescheduling algorithm. Furthermore, we do not add 

this rescheduling time to the execution time of the software 

rescheduled program, because it is a fixed amount of time. 

The estimated delay for the execution of the inner loop 

kernel appears in each loop iteration. Thus, b

enough iterations, the consta

based rescheduling becomes n

5 Results  

Table 3 shows the worst and best case delay in percentage 

of the original execution time of the corresponding 

schedule (the number before /). Each operator may be 

faulty and represents a possible fault case. In each c

the number behind the / is the number of fault cases where 

a faulty operator leads to the worst/best case delay.  

The results show that in one case the execution time of the 

corresponding application is increased by the simple 

hardware solution by 91%. For the same schedule, the 

execution time is increased by the complex hardware 

solution by 82%. The software solution is able to find 

much more freedom in the given schedule and increases 

the execution time only by 36%. In general, the results 

show that the simple hardware solution produces the 

highest execution overhead (between 90% and 100%), 

which is no surprise. In most cases the complex hardware 

solution is better (approximately 10% faster) than the 

simple hardware solution, because most schedules contain 

some instructions with NOPs. The better performance is at 

the price of a more complex control path. The software 

solution outperforms both approaches (approximately 10% 

faster then the complex hardware solution). It finds 

freedom for rebinding even in instructions without NOPs. 

Moreover, it avoids a complex control path that is error-

prone itself. The control path is almost the same as the one 

for the simple hardw

rescheduling the worst-case dela

approximately 20%.  

6 Conclusions 

Our results show that the worst case delay of a schedule 

can be reduced by approximately 20% with our proposed 

software-based rescheduling, compared to the simple 

hardware rescheduling. However, the results also show 

that there is still a huge delay compared with the execution 

time in the non-faulty data path, which is a critical point 

especially for hard real-time applications. If it is not 

permitted to increase the original execution time in the 

case of a permanent fault, either more operators must be 

included in the data path to give more freedom to the 

rescheduling algorithm, or another schedule with less 

resource utilization must be used that is adapted to the 

occurred fault by software-based rescheduling. That 

schedule implements the same function as the original 

schedule, but it computes the results with less accuracy 

[24]. If the application tolerates the reduced accuracy for a 

certain time, which c

and audio processing applications, this is an alternative to 

redundant hardware. 

Unfortunately, the software solution still needs the simple 

hardware solution as backup rescheduling mechanism for 

the case that there is no valid permutation of the operations 

in an instruction. This disadvantage may turn out to be an 

advantage because it provides a simple way to improve the 

performance only in parts of the schedule, i.e. in inner 

loops. Less frequently executed parts of the application are 

not optimized by the software rescheduling algorithm. 

There the hardware support is used automatically. This 

means, the software-based rescheduling can be also 

understood as an optimization of the executed program in 

the field. Delays which are introduced by the simple 

hardware solution are minimized by the optimization (i.e. 

the software-based rescheduling). Moreover, this 

optimization must not be done immediately after the 

detection of a permanent fault. The executed program can

duling DCT- DCT- DCT/DIF8 DCT/DIF9 DCT- 1 

Scheme Worst Best Worst Best Worst Best Worst Best Worst Best 

SHS 89% / 2 11% / 1 83% / 1 17% / 1 13% / 1 100% / 1100% / 1 11% / 2 91% / 1 9% / 1 

CHS 67% / 3 11% / 1 58% / 2 8% / 1 100% / 1 0% / 1 89% / 1 11% / 2 82% / 1 0% / 1 

SWS 67% / 1 36% / 2 0% / 3 11% / 3 50% / 2 0% / 3 88% / 1 0% / 1 78% / 1 0% / 2 

Table 3: Worst and best case delay for the benchmark schedules. 
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