
A Delay Estimation of Rescheduling Schemes for Static Scheduled

Processor Architectures

M. Schölzel, Brandenburg University of Technology, Computer Engineering Group, Cottbus, Germany,

E-Mail: mas@informatik.tu-cottbus.de

Abstract

We compare three different rescheduling schemes for statically scheduled processor architectures. One of the

rescheduling schemes is software-based while the others are based on hardware support. The rescheduling becomes

necessary if the compiler generated schedule for a static scheduled processor architecture must be changed in-the-field

because of a permanent fault in the data path of the processor. By comparing the hardware and software-based

rescheduling schemes we can show that our proposed software-based rescheduling scheme in many cases reduces the

worst-case latency of the executed program in the presence of a permanent fault.

1 Introduction

The development of silicon IC technology during the last

decades has yielded an unprecedented exponential

improvement of the performance per cost ratio for

integrated circuits and devices. Complex integrated

systems on a chip (SoCs) have become the mainstay of

electronics in many applications, specifically automotives,

appliances, and communications. Recent forecasts for the

properties of circuits that have a feature size below 50 nm

predict several critical features [2, 5, 7, 21, 29, 30]:

� First, relative deviations of device- and circuit

parameters such as transistor threshold voltages will

increase due to quantum mechanical effects, making

a certain share of basic devices non-functional even

in the absence of physical defects [5, 29]. Such

effects will result in permanent faults of devices.

� Second, nano-scale devices are going to exhibit a

stronger vulnerability to distorting influences such as

radio-active particle radiation from cosmic or

terrestrial sources [3, 8]. Such effects are likely to

produce transient fault and error conditions without a

permanent damage.

� Third, nano-scale devices are likely to have a higher

level of inherent stress conditions due to higher

electric field strength in insulation layers and higher

current density on interconnects. This may result in

permanent faults that occur in the field.

As a consequence, devices which are fully operational

after production have a higher probability of failure by a

later point of time. Therefore nano-electronic systems that

are used in long-living and safety-critical applications are

likely to need architectures that can repair permanent faults

in the field by a kind of build-in self-repair (BISR)

capability [4, 11, 22, 28, 29]. But also the increasing

complexity of SoCs makes BISR capability a must for

future designs. The semiconductors industry’s ITRS

Roadmap predicts that, due to the high complexity of

SoCs, a full functional test after production becomes

extremely expensive or even impossible [1]. Production

costs could be reduced by relaxing the requirement for

100% correct devices. Then architectures are needed that

facilitate repair functions at least after production, and,

considering both test escapes and wear-out in operation,

built-in test and self-repair in the field.

Furthermore, in recent years application specific

processors became more and more popular as components

in SoCs, due to their good ratio between power

consumption, performance and flexibility. Due to the

required self-repair functionality of SoCs, also a self-repair

possibility for the included processors is necessary. The

simplest solution would be to replace the whole processor

by a backup processor in the case of a permanent fault.

However, this would be also the most expensive solution.

For this reason, we consider application specific statically

scheduled programmable processor architectures with

instruction level parallelism (e.g. a very long instruction

word processors - VLIWs), and how to make them tolerate

permanent faults that may occur in their data path in the

field. Usually this type of architecture contains many

redundant operators in the data path. Thus, if there occurs

a permanent fault in an operator, it may not be necessary to

replace the whole processor. Rather another operator may

overtake the work of a faulty one. A picture of our

supposed architectural framework is shown in figure 1.

It uses a 4-stage instruction pipeline with the well known

stages fetch, decode, execute and write-back and supports

instruction level parallelism. I.e., the data path contains a

single register file that is accessed by several function units

(FUs) that run in parallel. Each of the FUs contains several

operators (e.g. adder, multiplier) and can execute one

operation (e.g. addition, multiplication) per clock cycle.

Program Memory

FU 1 FU n

Fetch/Decode

Decode/Execute

Execute/Write BackR
eg

is
te

r F
ile

D
at

a
M

em
or

y

MMU

Figure 1: Data Path of our supposed static scheduled

processor architecture.

The operations are scheduled statically (i.e. at compile

time) by the compiler into instructions, and each operation

is also bound statically to a FU. Thus, in each clock cycle,

one instruction is executed by the processor as it was

generated by the compiler. A schematic picture of an

instruction is shown in figure 2.

- + - + +
1 2 3 4 5

Figure 2: Example of an instruction that contains five

operations. The number below each operation is the

number of the FU to which the operation is bound.

The advantage of statically scheduled processor architec-

tures in the context of application specific processor design

is its simple control path that can be generated automa-

tically. The control path can be kept very simple, because

all work according to scheduling, binding and hazard-

avoidance, is done by the compiler. The disadvantage of

statically scheduled processor architectures in the context

of fault-tolerant computing is that an operation, that is

bound to a faulty FU, can not simply be executed by

another FU.

2 Related Work

Fault-tolerant computing is an established research area,

and a lot of techniques for detection and handling of

transient faults have been developed and implemented [15,

16, 20]. These techniques may be also adequate for

detecting a permanent fault, but not for repairing it

permanently. For this reason, a faulty component in a self-

repairing system must be identified and its allocated tasks

must be moved to other components. This requires either a

reconfiguration of the interconnects in the data path or a

redistribution of tasks, i.e. in our architectural framework a

new binding1 in the static schedule in order to avoid the

usage of the faulty component.

Hardware can be reconfigured in the field by providing

mechanisms for activating and deactivating certain parts of

 1 Changing the binding of an operation to a functional unit

means that the operation is executed in the same instruction

but by another FU.

the hardware (e.g. by pass-transistor or fuses) together

with mechanisms for re-routing the data [18, 19, 25]. Such

approaches require a sophisticated configuration data

management and a considerable hardware overhead for

configuring the system by selectors, pass-transistors or

transmission gates. They can be integrated directly into the

design of a special ASIC, but they require either a

relatively regular structure of an ASIC, or they produce a

high hardware overhead for control structures.

Another popular technique is provided by field-

programmable gate arrays (FPGAs). The usage of a faulty

area in such devices can be avoided by moving

functionality from a faulty area to a non-faulty area by a

reconfiguration that is performed by a repair procedure

[23]. This reconfiguration can be done in the field.

However, in order to have enough area available for a

reconfigured system, the original FPGA must provide

backup areas. Thus, a lot of resources are unused and

preserved for the repair capability [12, 23]. Furthermore,

the area and power consumption overhead for

implementing a system in a FPGA is about an order of

magnitude compared to the implementation in optimized

digital hardware.

Another possibility is simply to avoid the usage of a faulty

component in the data path instead of reconfiguring the

data path. A processor can avoid the usage of a faulty

component by rebinding and/or rescheduling operations in

the compiler generated schedule. This means that the

compiler generated schedule must be changed. This is

done in existing approaches by rebinding and

rescheduling2 the operations in the schedule either in

hardware [6] or by pre-computing several schedules, one

for each possible fault situation [13, 14].

In the first case, a rebinding or even a rescheduling and

rebinding is done on-the-fly in hardware before each

instruction is executed. This requires a substantial amount

of additional hardware in the control path of the processor

and leads to the loss of one of the big advantages of a static

scheduled architecture; the simplicity of its control path.

As mentioned in section 1, this simplicity makes statically

scheduled processor architectures very attractive as an

architectural framework for scalable application specific

processors that are adapted to a given set of applications

by a design space exploration. Thus, the simplicity of the

control path should be maintained.

In the second case, the usage of a faulty component is

avoided without hardware support. I.e., another schedule,

which was pre-computed, is executed. This schedule does

not use the faulty component. Such an approach has two

important drawbacks. First – depending on the application

– maybe many schedules must be pre-computed and saved

in the program memory. Second, these schedules must be

available for the whole application. This becomes

impractical especially for large applications.

2 Changing the time in the schedule (i.e. the instruction) when

the operation is executed.

3 Software-Based Rescheduling

To overcome the mentioned drawbacks, we propose a new

software-based rescheduling scheme that can be executed

in-the-field. It rebinds the operations in each instruction if

a permanent fault is detected in the data path of the

processor. In this paper we present an evaluation which

shows that our approach decreases the worst-case delay

during the execution of the program, compared to the

hardware based rescheduling schemes, but still keeps the

architectural framework simple. Moreover, only a single

schedule for the application must be generated by the

compiler. This schedule is adapted in-the-field by the

software-based rescheduling scheme to an occurred fault

situation. Therefore, pre-computation of many schedules is

not necessary.

The remainder of this paper is organized as follows. In the

next sections we introduce the three rescheduling schemes

that we use for our estimation. Then we give an overview

about the overall system architecture that implements the

software-based rescheduling scheme. Finally, we explain

our experimental setup, give results for some benchmarks

and draw our conclusions.

3.1 Rescheduling Schemes

We have evaluated three different rescheduling schemes.

Two of them are hardware based. We use them for

comparison with our software-based rescheduling scheme.

Simple Hardware Solution (SHS)

The SHS extends the decode stage of the processor

pipeline such that, in the case of a permanent fault, the

following behaviour is obtained: We assume a detected

permanent fault in an operator of type x in functional unit

a. If the current instruction in the decode stage requires the

execution of an operation of type x on FU a, that operation

is delayed by one clock cycle. All other operations of the

current instruction are routed to the execution stage, and

the next instruction is delayed for one clock cycle. Thus, in

the next clock cycle, an empty instruction can be routed to

the execution stage by the control logic that contains only

the delayed operation. The delayed operation is executed

on a FU that contains a working operator of type x. This

rebinding is computed by the control logic of the

processor.

The behaviour is illustrated in the example in figure 3

where we have a data path with five functional units

(shown in the execution stage) including the shown

operators. Furthermore, the operator for the multiplication

in FU 5 is assumed to be faulty. The instruction at the

beginning of the execution stage in figure 3 is executed as

it was fetched, because it does not use the faulty operator

in FU 5. However, the instruction at the beginning of the

decode stage would use the multiplier in FU 5. Therefore

the control logic delays the multiplication, and the

instruction at the beginning of the fetch stage.

- + - + * - + + *

+ + - + +

E
xe

cu
te

D
ec

od
e

Fe
tc

h

+ - - + *

- + - + +

Decode Control Logic

Fetch Control Logic

FU 1 FU 2 FU 3 FU 4 FU 5

Figure 3: Example for the behavior of the simple

hardware rescheduling scheme.

Figure 4 shows the configuration of the data path in the

next clock cycle.

- + - + * - + + *

+ - - + NOP

E
xe

cu
te

D
ec

od
e

Fe
tc

h

NOP NOP NOP NOP *

- + - + +

Decode Control Logic

Fetch Control Logic

FU 1 FU 2 FU 3 FU 4 FU 5

Figure 4: Example for a delayed multiplication.

The multiplication has been delayed, and all other

operations were routed to their corresponding FU. FU 5

executes a NOP (no operation) instead of a multiplication.

The multiplication is executed one clock cycle later as

shown in figure 5.

- + - + * - + + *

NOP * NOP NOP NOP

E
xe

cu
te

D
ec

od
e

Fe
tc

h

+ + - + +

Decode Control Logic

Fetch Control Logic

FU 1 FU 2 FU 3 FU 4 FU 5

- + - + +

Figure 5: Example for executing the delayed

multiplication.

It must be noticed that the source operands of the

multiplication must be read from the register file by the

same time while the operands for the non-delayed

operations are read. This is necessary to avoid overwriting

of these operands in the register file with results from the

execution stage.

Complex Hardware Solution (CHS)

The complex hardware rescheduling scheme is an

extension of the simple one presented in the previous

section. The decode logic is modified such that, in the case

of a detected permanent fault in an operator of type x in

functional unit a, the following behaviour is obtained: If

the current instruction in the decode stage requires the

execution of an operation of type x on a FU a, and there is

another FU b with operator x that executes a NOP in that

instruction, then the operation of type x is executed on FU

b. Therefore, no delay will occur.

- + - + * - + + *

+ + - + +

E
xe

cu
te

D
ec

od
e

Fe
tc

h

+ NOP - + *

- + - + +

Decode Control Logic

Fetch Control Logic

FU 1 FU 2 FU 3 FU 4 FU 5

Figure 6: Example for the behavior of the complex

hardware rescheduling scheme.

For example, the instruction at the beginning of the decode

stage in figure 6 can not be executed as it was scheduled

by the compiler, because the multiplication would be

executed on the faulty multiplier in FU 5. However, the

multiplication can be re-routed to FU 2 and be executed

there. Thus, no delay will occur. Figure 7 shows the

modified instruction as it is routed to the execution stage in

the next clock cycle.

- + - + * - + + *

E
xe

cu
te

D
ec

od
e

Fe
tc

h

+ NOP- +*

+ + - + +

Decode Control Logic

Fetch Control Logic

FU 1 FU 2 FU 3 FU 4 FU 5

- + - + +

Figure 7: Example of re-bounded multiply-operation.

However, if there is no such FU b available, the operation

of type x must be delayed as in the simple hardware

solution. An example for such a situation is given in figure

3. Thus the complex hardware solution is an extension of

the simple hardware solution. Rebinding and delayed

execution is controlled by the control logic of the

processor on-the-fly.

Software Solution (SWS)

The software rescheduling scheme allows a more complex

rescheduling, because it is not done by hardware, but by a

software routine that is executed on a processor3. The

3 For the moment let us assume that there is such a processor.

Which processor can be used for this task is discussed in

section 3.3.

software routine computes a rebinding of the operations

for each instruction of the program. Again, we assume that

there is a fault in the operator of type x in FU a. Then the

rebinding is a permutation of the operations in each

instruction, such that FU a with the faulty operator x does

not execute an operation of type x. For example, the

instruction in figure 8 (b) can not be executed, if the

multiplier in FU 5 in figure 8 (a) is faulty. But the

instruction in figure 8 (c) with permutated operations can

be executed.

- + - + * - + + *
FU 1 FU 2 FU 3 FU 4 FU 5

(a)

+ - - + *

(b)

- * - + +

(c)

Figure 8: (a) Configuration of the data path. (b) Original

Instruction. (c) Instruction with permutated operations.

As for the complex hardware solution, the statically

scheduled processor must provide a mechanism as in the

simple hardware solution, because such a permutation may

not exist. For example, consider the instruction in figure 9.

- - - + *

Figure 9: Example of a not permutable instruction.

Again we assume the multiplier in FU 5 in figure 8 (a) to

be faulty. Then there exists no permutation of the

operations such that the multiplication can be executed by

FU 2, because the FUs 1 to 3 must execute a subtraction.

In contrast to the hardware solutions, the rebinding is

computed for the binary program, which is saved in the

program memory. I.e., the processor must have read and

write access to its program memory, and the permutation

cannot be computed on-the-fly.

3.2 Software Rescheduling Algorithm

The permutation can be computed efficiently. The

algorithm is presented in the following. We can model the

problem of finding a permutation for a given instruction w

and an occurred fault in FU f as a rebinding-graph. A

rebinding-graph is a directed graph (N,E), where N is a set

of nodes and E � N × N is a set of edges. The nodes

represent the functional units in the data path. An edge

(u,v) represents the possibility that an operation, which is

executed on FU u, can be executed on FU v, too. Thus,

there is an edge (u,v) from node u to node v, if and only if:

� FU u executes an operation of type t in instruction

w and

� FU v includes an operator of type t and

� the operator of type t in FU v is not faulty and

� u � v.

In order to compute the permutation, let G be a set of

functional units that contains the FU f (i.e. the functional

unit which is faulty) and all FUs that execute a NOP in the

given instruction w.

The goal is to find a path in the constructed rebinding-

graph, with the source node f and a sink node that is in the

set G. The permutation is obtained by shifting each

operation that is executed by an FU on that path along one

edge on that path to another FU. By the construction of the

graph we made sure that the operation can be executed on

the FU to which it was shifted. Furthermore, the last node

on the path is either a FU that executed a NOP or the first

node of the path from which we have shifted away the

executed operation. Consider the following example. We

use the data path from figure 8 (a) and the instruction from

figure 8 (b) and we assume that the multiplier in FU 5 is

faulty. The corresponding rebinding-graph is shown in

figure 10.

FU 1 FU 2 FU 3 FU 4 FU 5

Figure 10: Example of a rebinding-graph.

For example, the multiplication that is executed on FU 5

can also be executed on FU 2. Thus, we have the edge

(5,2). The subtraction that is executed on FU 2 can also be

executed on FU 1 and FU 3. Hence, we have the edges

(2,1) and (2,3). In this example is G = {5}, because the

instruction in figure 8 (b) contains no NOP. A path that

starts at source node 5 and ends at a node in G is 5, 2, 1, 5.

Now we have to shift each operation from the instruction

in figure 8 (b) along one edge on the path 5, 2, 1, 5. I.e.,

operation * is shifted from FU 5 to FU 2, operation – is

shifted from FU 2 to FU 1 and operation + is shifted from

FU 1 to FU 5. By doing this we obtain the permutation that

is already shown in figure 8 (c).

In order to find the requested path in a given rebinding-

graph for a given source node s and a given set G, formally

we have to compute the transitive closure E+ of the edges

E and check whether (s,d) � E+ for any d � G or not. The

solution can be obtained faster, if a breadth-first-search

(bfs) in G is performed starting at node s. For all nodes u

that are reached by the bfs, we determine the next

unreached nodes v that can be reached from a node u via

an edge and keeping in mind for each of these nodes v the

node u from which v was reached. The bfs ends, if we

reach a node that belongs to G, or we can not reach a new

node. In our example, the bfs would start at node 5. From

node 5 we can reach only node 2, keeping in mind that we

arrived from node 5. From node 2 we can reach nodes 1

and 3, keeping in mind that we arrived from node 2. From

node 3 we can not reach a new node (i.e., a node we have

not reached before). But from node 1 we can reach nodes 4

and 5, keeping node 1 in mind. The bfs ends because node

5 belongs to G. With the nodes we kept in mind we can

reconstruct the path in the reverse order. This means we go

back from node 5 to node 1, then from node 1 to node 2,

and finally from node 2 to node 5.

3.3 Overall System Architecture

Up to now we have explained how the software

rescheduling algorithm should work, but not on which

processor it should be executed. Two possible system

architectures will be discussed in this section. The first

architecture is shown in figure 11.

Part of the SoC

VLIW

VLIW Program Memory

VL
IW

 D
at

a
M

em
or

y

Test
Processor

Test
Processor
Memory

Rescheduling
Algorithm

Figure 11: System Architecture where the SoC contains

an additional test processor.

The SoC contains an extra test processor [9, 10]. This is a

very simple and small processor4 that is used in the field

for executing and controlling a self-test-routine in the SoC.

This test processor can also be used for testing the VLIW

processor. This can be done by initiating a test routine in

the VLIW that computes several values in its data

memory. From there, the values can be read and compared

with the values computed by the test processor. If a fault is

detected, the test processor executes the software

rescheduling algorithm. However, it needs access to the

program memory of the VLIW processor in order to

modify the instructions in the program memory of the

VLIW. This type of architecture does not need extensive

modifications in the VLIW itself. The most expensive

modification is the read- and write-access to program and

data memory of the VLIW processor.

The second system architecture is somewhat more unusual

and shown in figure 12. There, the VLIW-processor itself

executes the software rescheduling algorithm. But how can

4 Please note, that the computation performance of the VLIW is

much bigger than that of the test processor. Thus, the test

processor is not able to overtake the work of the VLIW.

a processor with a faulty component execute the

rescheduling algorithm in a correct manner? Please recall

that the VLIW supports a simple hardware rescheduling

scheme. This means, even in the presence of a permanent

fault in the data path, the rescheduling algorithm is

executed in the right way, because the hardware rebinds

operations of that algorithm to other FUs on-the-fly if this

is necessary.

Part of the SoC

VLIW

VLIW Program Memory

VL
IW

 D
at

a
M

em
or

y

Rescheduling Algorithm

Figure 12: System Architecture where the VLIW

processor itself executes the software rescheduling

algorithm.

 FU) of the

elf-test [17].

ocessor that has a permanent fault in one o

ws some characteristics of

the us hmark

Le th A Sub N

However, this may increase the execution time of the

rescheduling algorithm. One drawback of this system

architecture is that more modifications in the control path

of the VLIW are necessary. I.e., the VLIW itself needs

write-access to its own program memory, which is not

common in Harvard-Architectures. This can be

accomplished by two new machine instructions. The first

one loads an instruction word in a consecutive sequence of

processor registers. The rescheduling algorithm can

perform the needed modifications in the instruction word

and by a second new instruction the same or modified

instruction word can be written back to the program

memory. The advantages of this system architecture are:

� No extra test processor is needed.

� The full performance (except for the faulty

VLIW processor is used for rescheduling.

The detection of permanent faults in the second system

architecture can be done by a software-based s

4 Experimental Setup

We have explained in the previous section that each of the

rescheduling schemes may cause a delay during the

execution of the program in the presence of a permanent

fault in the data path. The most important question we

want to answer with our experimental setup was: How big

is this delay for a typical application that runs on a static

scheduled pr f its

operators?

To answer this question, we have investigated several

schedules for several benchmark programs, each of them

running on an application specific VLIW architecture. The

benchmark programs are inner loop kernels, which are

executed frequently. The VLIW architectures were adapted

by a design space exploration [27] to the considered

application. This means that there are no spare operators in

the data path. Every available operator is really needed for

the execution of the program, and a fault in one of them

must cause a delay. Table 1 sho

ed benc schedules.

Name ng dd Mul op

DCT-DIT 9 24 12 12 6

DCT-LEE 12 17 11 21 11

DCT-DIF 8 17 12 12 7

DCT-DIF 9 17 12 12 4

DCT-DIF 11 17 12 12 3

Table 1: Characteristics of the used benchmark schedules.

re adapted to each of these

sch

F F

The schedules are the inner loop of different discrete

cosine transformations (DCT). The number of instructions

into which the operations were scheduled, i.e. the length of

the schedule, is shown in the column Length. The number

of operations of a certain type in each schedule is shown in

the columns Add, Sub, Mul and Nop. The characteristics of

the VLIW architectures that we

edules are shown in table 2.

Name/L U1 FU2 FU3 FU4 U5 FU6

DCT-DIT/9 - + * - * + * + + *

DCT-LEE/12 + * -* + + * n.a. - +

DCT-DIF/8 - + + * - + - * -

DCT-DIF/9 - + - + * - + + * n.a.

DCT-DIF/11 - + - + * - * - + n.a. n.a.

Table 2: Characteristics of the VLIW-architectures that

were adapted to the corresponding schedules in table 1.

and corresponding

d in section

e, where an

of type x

Every column FUx shows the operators that are included

into the FU x. Thereby, n.a. means that the architecture

does not include the corresponding FU. More

characteristics of the used benchmarks

architectures can be found in [26].

We estimated the delay related with each rescheduling

scheme under the assumption that one operator is faulty.

For each possible fault of such a type in the architecture

and each rescheduling scheme, we estimated the delay

during the execution of the program by the following rules

that are derived from the behaviour explaine

3.1: We assume a fault in operator x of FU a.

� In the simple hardware solution, a delay of one

occurs for each instruction in the schedul

operation of type x is executed on FU a.

� In the complex hardware solution, a delay of one

occurs only for those instructions in the schedule,

where an operation of type x is executed on FU a and

all other FUs that include an operator

execute an operation that is not a NOP.

� In the software solution, a delay of one occurs for

those instructions in the schedule, for which no

permutation of the operations exists such that FU a

executes an operation different from type x.

The worst case fault is the fault of an operator for whose

fault the sum of the delays for all instructions in the

schedule is maximal according to the rules above. This

delay is called the worst case delay. In the same way the

y executing

nt amount of time for software

egligible small.

olumn

are solution. But by software-based

y can be decreased by

an be the case for example in image

rather be optimized when, the system is not in use for a

short time or concurrently, if a test processor is available.

Resche DIT/9 LEE/12 DIF/1

best case delay is defined. It is the minimal delay that

occurs for a possible fault in the data path.

From these considerations we excluded the time for

detecting a permanent fault and also the time for

rescheduling the application by the software-based

approach. This is done, because we assume that for all

three rescheduling schemes the fault detection must be

done off-line, i.e. the system is not in use. Thus, there will

be also some additional time for executing the software-

based rescheduling algorithm. Furthermore, we do not add

this rescheduling time to the execution time of the software

rescheduled program, because it is a fixed amount of time.

The estimated delay for the execution of the inner loop

kernel appears in each loop iteration. Thus, b

enough iterations, the consta

based rescheduling becomes n

5 Results

Table 3 shows the worst and best case delay in percentage

of the original execution time of the corresponding

schedule (the number before /). Each operator may be

faulty and represents a possible fault case. In each c

the number behind the / is the number of fault cases where

a faulty operator leads to the worst/best case delay.

The results show that in one case the execution time of the

corresponding application is increased by the simple

hardware solution by 91%. For the same schedule, the

execution time is increased by the complex hardware

solution by 82%. The software solution is able to find

much more freedom in the given schedule and increases

the execution time only by 36%. In general, the results

show that the simple hardware solution produces the

highest execution overhead (between 90% and 100%),

which is no surprise. In most cases the complex hardware

solution is better (approximately 10% faster) than the

simple hardware solution, because most schedules contain

some instructions with NOPs. The better performance is at

the price of a more complex control path. The software

solution outperforms both approaches (approximately 10%

faster then the complex hardware solution). It finds

freedom for rebinding even in instructions without NOPs.

Moreover, it avoids a complex control path that is error-

prone itself. The control path is almost the same as the one

for the simple hardw

rescheduling the worst-case dela

approximately 20%.

6 Conclusions

Our results show that the worst case delay of a schedule

can be reduced by approximately 20% with our proposed

software-based rescheduling, compared to the simple

hardware rescheduling. However, the results also show

that there is still a huge delay compared with the execution

time in the non-faulty data path, which is a critical point

especially for hard real-time applications. If it is not

permitted to increase the original execution time in the

case of a permanent fault, either more operators must be

included in the data path to give more freedom to the

rescheduling algorithm, or another schedule with less

resource utilization must be used that is adapted to the

occurred fault by software-based rescheduling. That

schedule implements the same function as the original

schedule, but it computes the results with less accuracy

[24]. If the application tolerates the reduced accuracy for a

certain time, which c

and audio processing applications, this is an alternative to

redundant hardware.

Unfortunately, the software solution still needs the simple

hardware solution as backup rescheduling mechanism for

the case that there is no valid permutation of the operations

in an instruction. This disadvantage may turn out to be an

advantage because it provides a simple way to improve the

performance only in parts of the schedule, i.e. in inner

loops. Less frequently executed parts of the application are

not optimized by the software rescheduling algorithm.

There the hardware support is used automatically. This

means, the software-based rescheduling can be also

understood as an optimization of the executed program in

the field. Delays which are introduced by the simple

hardware solution are minimized by the optimization (i.e.

the software-based rescheduling). Moreover, this

optimization must not be done immediately after the

detection of a permanent fault. The executed program can

duling DCT- DCT- DCT/DIF8 DCT/DIF9 DCT- 1

Scheme Worst Best Worst Best Worst Best Worst Best Worst Best

SHS 89% / 2 11% / 1 83% / 1 17% / 1 13% / 1 100% / 1100% / 1 11% / 2 91% / 1 9% / 1

CHS 67% / 3 11% / 1 58% / 2 8% / 1 100% / 1 0% / 1 89% / 1 11% / 2 82% / 1 0% / 1

SWS 67% / 1 36% / 2 0% / 3 11% / 3 50% / 2 0% / 3 88% / 1 0% / 1 78% / 1 0% / 2

Table 3: Worst and best case delay for the benchmark schedules.

References

 [1] ITRS Roadmap - Design: 2005.

 [2] R. I. Bahar, M. B. Tahoori, S. K. Shukla and F.

Lombardi: Challenges for Reliable Design an the
Nanoscale. IEEE Design & Test of Computers,

22(4), pp. 295-297, 2005.

 [3] R. Baumann: Soft Errors in Advanced Computer
Systems. IEEE Design & Test of Computers,

22(3), pp. 258-266, 2005.

 [4] A. Benso, S. D. Carlo, G. Di Natale and P.

Prinetto: Online Self-Repair of FIR Filters. IEEE

Design & Test of Computers, 20(3), pp. 50-57,

2003.

 [5] M. A. Breuer, S. K. Gupta and T. M. Mak: Defect
and Error Tolerance in the Presence of Massive
Numbers of Defects. IEEE Design & Test of

Computers, 21(3), pp. 216-227, 2004.

 [6] Y.-Y. Chen, H. Shi-Jinn and L. Hung-Chuan: An
Integrated Fault-Tolerant Design Framework for
VLIW Processors. 18th IEEE International

Symposium on Defect and Fault Tolerance in

VLSI Systems (DFT'03), pp. 555-562, 2003.

 [7] A. DeHon and H. Naeimi: Seven Strategies for
Tolerating Highly Defective Fabrication. IEEE

Design & Test of Computers, 22(4), pp. 306-315,

2005.

 [8] P. E. Dodd and L. W. Massengill: Basic
Mechanisms and Modeling of Single-Event
Upsets in Digital Microelectronics. IEEE

Transactions on Nuclear Science, 50(3), pp. 583-

602, 2003.

 [9] C. Galke, M. Pflanz and H. T. Vierhaus: A Test
Processor Concept for Systems-on-a-Chip. Int.

Conference of Computer Design (ICCD'02),

2002.

 [10] C. Galke, H. Schwabe, H. Fröschke, et. al.:

Processor Design for Functional Self Test: A
Strategy and it's Limits. Dresdner Arbeitstagung

für Schaltungs- und Systementwurf (DASS'05),

2005.

 [11] L. Guerra, M. Potkonjak and J. M. Rabaey: High
Level Synthesis Techniques for Efficient Built-In-
Self-Repair. IEEE Workshop on DFT in VLSI

systems, pp. 41-48, 1993.

 [12] S. Habermann, R. Kothe and H. T. Vierhaus:

Built-in Self Repair by Reconfiguration of
FPGAs. 12th IEEE International On-Line Testing

Symposium (IOLTS 2006), pp. 187-188, 2006.

 [13] R. Karri, K. Hogstedt and A. Orailoglu:

Computer-Aided Design of Fault-Tolerant VLSI
Systems. IEEE Design & Test of Computers,

13(3), pp. 88-96. 1996.

 [14] R. Karri, K. Kim and M. Potkonjak: Computer
Aided Design of Fault-Tolerant Application
Specific Programmable Processors. IEEE

Transactions on Computers, 49(11), pp. 1272-

1284, 2000.

 [15] M. E. Kavanaugh: The Twenty-Fifth
International Symposium on Fault-Tolerant

Computing - Highlights from 25 Years. IEEE

Computer Society Press, 1995.

 [16] I. Koren and C. M. Krishna: Fault-Tolerant
Systems. Morgan Kaufmann, 2007.

 [17] R. Kothe, C. Galke, S. Schultke, et. al.:

Hardware/Software Based Hierarchical Self Test
for SocS. 9th IEEE Workshop on Design &

Diagnostics of Electronic Circuits & Systems

(DDECS'06), pp. 159-160, 2006.

 [18] R. Kothe and H. T. Vierhaus: Repair Functions
and Redundancy Management for Bus Structures.

Workshop on Dependability and Fault Tolerance

at ARCS'07, 2007.

 [19] R. Kothe, H. T. Vierhaus, T. Coym, et. al.:

Embedded Self Repair by Transistor and Gate
Level Reconfiguration. Proc. of the IEEE

Workshop on Design and Diagnostics of

Electronic Circuits and Systems (DDECS'06), pp.

210-215, 2006.

 [20] P. K. Lala: Self-Checking and Fault Tolerant
Digital Design. Morgan Kaufmann, 2000.

 [21] M. Mishra and S. C. Goldstein: Defect Tolerance
at the End of the Roadmap. Proc. of the IEEE Int.

Test Conference, pp. 1201-1210, 2003.

 [22] S. Mitra, W.-J. Huang, N. R. Saxena et. al.:

Reconfigurable Architecture for Autonomous Self
Repair. IEEE Design & Test of Computers,

21(3), pp. 228-240, 2004.

 [23] S. Mitra, W.-J. Huang, N. R. Saxena et. al.:

Reconfigurable Architecture for Autonomous
Self-Repair. IEEE Design & Test of Computers,

23(3), pp. 228-240. 2004.

 [24] P. Pawlowski and M. Schölzel: A Case-Study for
Built-In-Self-Repair in Application Specific
Processors By Decreasing the Arithmetic
Accuracy. Proc. of the IEEE Workshop Signal

Processing'2006, pp. 77-82, 2006.

 [25] D. Scheit: Built-in self-repair of interconnect
strucures on system-on-a-chip. Computer Science

Report 03/07, pp. 31-36, 2007.

 [26] M. Schölzel: Automatisierter Entwurf
anwendungsspezifischer VLIW-Prozessoren.

Dissertation, BTU Cottbus, 2006.

 [27] M. Schölzel and P. Bachmann: DESCOMP: A
New Design Space Exploration Approach. Proc.

of the 18th Int. Conference on Architecture of

Computing Systems (ARCS'05), pp. 178-192,

2005.

 [28] S. Shoukourian, V. Vardanian and Y. Zorian:

SoC Yield Optimization via an Embedded-
Memory Test and Repair Infrastructure. IEEE

Design & Test of Computers, 21(3), pp. 200-207,

2004.

 [29] S. Sirisantana, B. C. Paul and K. Roy: Enhancing
Yield at the End of the Technology Roadmap.

IEEE Design & Test of Computers, 21(6), pp.

563-571, 2004.

 [30] Y. Zorian and D. Gizopoulos: Design for Yield
and Reliability (Guest Editor's Introduction).
IEEE Design & Test of Computers, 21(3), pp.

177-182, 2004.

