
Towards Evolution Scenarios of Integrated Software Artifacts

Johannes Meier, Andreas Winter
Carl von Ossietzky University, Oldenburg, Germany

{meier,winter}@se.uni-oldenburg.de

Abstract

In software development different artifacts like
source code, requirements, test cases and diagrams are
involved, which are interrelated on content level, but
separated on technical level. To link and synchronize
such artifacts with each other, they have to be inte-
grated. After integrating them into one comprehensive
model, this paper discusses several evolution scenarios
which arise in such integrated software artifacts.

1 Motivation

In software development lots of different artifacts
like source code, requirements, test cases, architecture
diagrams and documentation are used. Although they
are often stored in different files and used by different
tools and stakeholders, they are interrelated strongly
on content level. As ongoing example in this paper,
Java source code is complemented with textual require-
ments, and UML class diagrams: Each requirement is
linked with parts of the source code which fulfill this
requirement. UML class diagrams describe data struc-
tures which are realized in Java.

To link and synchronize different artifacts automati-
cally, they need to be integrated. As described in more
detail in Section 2, the models and conforming meta-
models of each artifact will be integrated into one com-
prehensive model with a conforming metamodel which
integrates all information of all artifacts.

After this initial integration, models and metamod-
els of all artifacts evolve over time with impact on all
other artifacts: Renaming methods in UML class di-
agrams has to be synchronized into the Java source
code automatically. Releasing new versions of Java or
UML requires manual changes in the integration itself.
This paper presents and discusses different evolution
scenarios which arise in integrated software artifacts.

2 Metamodel Integration

To automatically link and synchronize artifacts with
each other which are separated on technical, but inter-
related on content level, these artifacts has to be inte-
grated somehow. [1] proposes to create Single Under-
lying Models (SUM) which contain the information of
all artifacts in an integrated way. Each SUM conforms
to a Single Underlying MetaModel (SUMM) and does
not contain duplicated information [1]. Additional re-
lations between artifacts are realized by adding new
associations in the SUMM. Synchronization effort for
duplicated information is saved, because the SUM does
not contain duplicated information anymore.

An approach to create such SUM(M)s in bottom-up
way is presented in [2] and used in this paper: Each
artifact is used as data source in form of its model
and a conforming metamodel. All (Meta-)Models are
integrated by step-wise applying special operators on
them. These operators are coupled, as they combine
a small change in the metamodel with changes in the
model to keep it conform [3], and bidirectional, as they
are executable in forward and backward direction. Fig-
ure 2 shows a simplified integration of Java source code,
textual requirements, and UML class diagrams. The
operators IntegrateMetamodel before 1 and 3 are
used to load the single (meta-)models into the current
(meta-)model. To link requirements and source code
with each other, an operator AddRelation 1→ 2 is
used to add a new association between the meta-classes
which represent single requirements and parts of the
source code. In backward direction, DeleteRelation
deletes the new association in 2 to get the previous
version 1 . After executing all operators, both the
SUM and the conforming SUMM are created as ini-
tial integration of all artifacts.

Additionally, new views and conforming viewpoints
can be defined on top of the SUM(M) by configuring
another chain of operators. As example, Figure 2 im-
plies a new viewpoint ReqJavaTable listing all require-
ments with their linked source code in form of a table.
This is another benefit of the SUM, because all inte-
grated information can be reused in new views.

3 Evolution Scenarios

After the initial integration of all artifacts, as de-
scribed in Section 2, seven different evolution scenarios
can appear, depicted as 1 . . . 7 in Figure 1. Since

Artifact Location Model Metamodel

SUM(M) external 1 5
Data Source external 2 6
View(point) external 3 7
Intermediate internal 4 –

Figure 1: Classification of Evolution Scenarios

SUM(M), data sources, and new view (points) are vis-
ible to and usable by external tools and user, the evo-
lution scenarios of these artifacts are classified as ex-
ternal. Internal scenarios describe changes in the in-
termediate models and metamodels during the integra-
tion, drawn as 1 . . . 6 in Figure 2.

In this approach, each software artifact has an ex-
plicit metamodel (schema) and a conforming model
(instance) [4]. Therefore, the evolution scenarios are

{meier,winter}@se.uni-oldenburg.de

Requirements 1
Integrate

Metamodel

Java

Integrate

M
etam

odel 2
Add Re-
lation

3
Integrate

Metamodel

ClassDiagram

Integrate

M
etam

odel 4
Extract

Sub Class

5
Merge Two

Classes

SUM(M)
Merge Two
Attributes

ReqJavaTable 6

A
d
d
. . .

Delete . . .

Figure 2: Simplified operator chain to integrate Java source code, textual requirements, and UML class diagrams

distinguished into the evolution of the model (1 . . . 4)
and of the metamodel (5 . . . 7). In general, the model
evolution scenarios occur often by working with the ar-
tifacts and are automated by executing the configured
operators. The metamodel evolution scenarios occur
rarer, e.g. when a new tool version or a new Java
version arise, and are realized only once by manually
changing the configured operator chain.

In Scenario 1 , the integrated model containing all
information (the SUM) is changed. This scenario is au-
tomated by executing the complete operator chain in
backward direction from the SUM to all data sources
and new views, which are updated accordingly. This
scenario exploits the bidirectionality of all operators
and is important for reengineering tasks, because the
SUM allows to analyze and improve all artifacts to-
gether at the same time.

In Scenario 2 , one data source is changed, e.g. by
changing the Java source code through an IDE. This
scenario is automated by executing the operators be-
tween this data source and the SUM in forward direc-
tion to update the SUM accordingly. After that, the
resulting change in the SUM is propagated to all data
sources and views as in Scenario 1 . This scenario is
important to support tools which work only with that
data source and to update legacy data sources.

In Scenario 3 , a new view is changed, if it supports
changes in it (in contrast to read-only views). This
scenario is automated in the same way as Scenario 2
and supports maintaining integrated information, e.g.
linking requirements and Java source code.

Scenario 4 appears internally within the integra-
tion structure by executing operators during the other
scenarios 1 , 2 , and 3 . This scenario is automated by
applying a configured operator (e.g. AddRelation) to
the current model 1 . After its execution, the model
2 is available. Since the metamodels of 1 and 2

are the same for each execution, no further evolution
appears (no Scenario 8 in Figure 1).

Scenario 5 describes changes in the SUMM, because
of bugs, refactorings, or additional information. This
scenario is realized by manually adding more operators
into the current chain to describe SUMM↔ SUMM’ .

Scenario 6 describes changes in the metamodel of
data sources, e.g. because of new versions for Java or
UML. The manual realization of this scenario depends
on the size and impact of the metamodel change: Only
additional meta-classes and -associations requires no
additional effort, while refactorings in the metamodel
require changes of the operator chain 1 . . . 5 . In the
worst case of a completely changed metamodel, the
complete integration has to be done again.

Scenario 7 arises when the new viewpoint should
be changed because of bugs, refactorings, or ad-
ditional information. Depending on the amount
of changes, only some more operators describe
Viewpoint←→ Viewpoint’ . In the worst case, all op-
erators between this viewpoint and its starting node
has to be changed manually (Figure 2: only 6).

4 Application

For the described metamodel integration in Sec-
tion 2, a supporting framework is under development in
Java using ECore to describe metamodels and reusing
some coupled operators from Eclipse EDapt [3]. A first
chain of bidirectional operators was configured to in-
tegrate Java, textual requirements and class diagrams.
The resulting SUM(M) allows to automatically evolve
the integrated model 1 , while the automated handling
of changes in data sources 2 and new views 3 is under
development. The internal evolution of intermediate
models 4 is already automated by the operators. The
evolution of the metamodels (5 to 7) is handled by
manually extending the configured chain of operators
as described in Section 3.

5 Conclusion

This paper discussed the evolution of interrelated
software artifacts. As solution, all the models and con-
forming metamodels of these artifacts are integrated
by using bidirectional coupled operators. This integra-
tion of artifacts works bottom-up and therefore enables
the evolution of existing, interrelated legacy artifacts.
Evolution appears in scenarios regarding the evolution
of the artifacts itself in form of their models with au-
tomation as well as the evolution of schemata of the
artifacts in form of their metamodels as manual step.
As result, legacy artifacts are kept synchronized with
each other, while reengineering tasks benefit from the
integration of all legacy artifacts.

References

[1] C. Atkinson, D. Stoll, and P. Bostan, “Supporting
View-Based Development through Orthographic Soft-
ware Modeling,” Evaluation of Novel Approaches to
Software Engineering (ENASE), pp. 71–86, 2009.

[2] J. Meier and A. Winter, “Traceability enabled by Meta-
model Integration,” Softwaretechnik-Trends, vol. 38,
no. 2, 2018.

[3] M. Herrmannsdoerfer, S. D. Vermolen, and
G. Wachsmuth, “An Extensive Catalog of Opera-
tors for the Coupled Evolution of Metamodels and
Models,” Software Language Engineering, LNCS, 2011.

[4] D. Jin, J. Cordy, and T. Dean, “Where’s the schema?
A taxonomy of patterns for software exchange,” Int.
Workshop on Program Comprehension. IEEE, 2002.

	Motivation
	Metamodel Integration
	Evolution Scenarios
	Application
	Conclusion

