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Abstract: This paper presents a novel approach to efficiently perform early system
level design space exploration (DSE) of MultiProcessor System-on-Chip (MPSoC)
based embedded systems. By modeling dynamic multi-application workloads using
application scenarios, optimal designs can be quickly identified using a combination
of a scenario-based DSE and a feature selection algorithm. The feature selection algo-
rithm identifies a representative subset of scenarios, which is used to predict the fitness
of the MPSoC design instances in the genetic algorithm of the scenario-based DSE.
Results show that our scenario-based DSE provides a tradeoff between the speed and
accuracy of the early DSE.

1 Introduction

A significant amount of research has been performed on system-level DSE for MPSoCs

[Gri04] during the last two decades. The majority of this work is focused on the analysis

of MPSoC architectures under a single, static application workload. The current trend,

however, is that application workloads executing on embedded systems become more and

more dynamic. This is not only the time-dependent behavior of a single application, the in-

teraction between different applications can also be hard to predict. This dynamic behavior

can be classified and captured using so-called workload scenarios [G+09].

In this paper, we propose a novel scenario-based DSE method that allows for capturing

the dynamic behavior of multi-application workloads in the process of system-level DSE.

An important problem that needs to be solved by such scenario-based DSE is the rapid

evaluation of MPSoC design instances during the search. Because the number of different

workload scenarios can be large, it is infeasible to rapidly evaluate a MPSoC design in-

stance during DSE by exhaustively analyzing (e.g., via simulation) all possible workload

scenarios for that particular design point. As a solution, a representative subset of work-

load scenarios can be used to make the evaluation of MPSoC design instances as fast as

possible. The difficulty is that the representativeness of a subset of workload scenarios is

dependent on the target MPSoC architecture. But since the evaluated MPSoC architectures

are not fixed during the process of DSE, we need to simultaneously co-explore the MPSoC

design space and the workload scenario space to find representative subsets of workload

scenarios for those MPSoC design instances that need to be evaluated. To this end, we pro-
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pose a scenario-based DSE method combining a multi-objective genetic algorithm (GA)

and a feature selection algorithm.

The remainder of this paper is organized as follows. In the next section, we briefly sum-

marize the concept of scenario-based DSE. Section 3 describes the proposed framework

to perform scenario-based DSE. In Section 4, we present experimental results in which

we evaluate our scenario-based DSE approach, and also compare our method to a coevo-

lutionary scenario-based DSE approach. Section 5 discusses related work, after which

Section 6 concludes the paper.

2 Scenario-based Design Space Exploration

With the introduction of multiple applications that can execute (possibly simultaneously)

on a single embedded system, the interactions on the system become more complex. If

traditional DSE is applied, there are two options: 1) isolate the different applications on

the MPSoC platform or 2) design the system for the situation where all the applications

are running simultaneously. In both situations, the system will typically be over-designed.

In case of an isolated design, each application must run on a separate part of the platform

to prevent interaction at runtime. This can take up more resources on the MPSoC than
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Figure 1: High level scenario-based
MPSoC simulation

required. The same is true for running all applica-

tions simultaneously, as they must meet their dead-

line while assuming that all applications are run-

ning. To avoid such worst case design, and to opti-

mize the system for cost and efficiency, we propose

to model the interactions of the applications using

workload scenarios. Workload scenarios allow the

designer to exactly describe the usage of the sys-

tem. To prevent over-design, scenarios can describe

which applications can be active simultaneously.

More precisely, scenario-based DSE bundles two

concepts. The first concept is the early DSE of MP-

SoC based embedded systems. During such early

DSE, MPSoC platform instances are quickly eval-

uated in order to find a set of promising candidate

designs. For evaluation purposes, we are using the

high-level MPSoC simulation framework Sesame [PEP06]. This framework, which is il-

lustrated in Figure 1, enables fast performance evaluation using separate application and

architectural models. An application model describes an application using a Kahn Pro-

cess Network (KPN), while the architecture model models the MPSoC architecture in a

cycle-approximate fashion. Subsequently, there is an explicit mapping of the application

model(s) onto the architecture model, implemented using trace-driven co-simulation of

the two aforementioned models. Mapping solves two aspects concurrently: 1) allocation

and 2) binding. Allocation selects the architectural components used on the MPSoC plat-

form, whereas the binding defines on which architectural component the application tasks
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and communications are executed. During the evaluation of a mapping, each process in

an application model generates a trace of application events, representing the application

workload at a high level of abstraction. These event traces are simulated by the architecture

model to obtain non-functional metrics like execution time and energy consumption.

The other concept that is used in scenario-based DSE is the deployment of workload sce-

narios [G+09]. In this work, we distinguish two types of workload scenarios: intra and

inter application scenarios. Intra-application scenarios describe the different behaviors, or

operation modes, within an application. For example, an MP3 application can play music

in mono or stereo sound. An inter-application scenario describes the behavior of multiple

applications. In our case, it specifies which applications can run concurrently. In the exam-

ple of Figure 1, the inter-application scenario describes simultaneous execution of the MP3

application and the video application. In order to fully describe what a system is doing,

a complete application scenario bundles the possible intra-application scenarios of all the

active applications. The set of active applications is described using an inter-application

scenario, whereas each intra-application scenario specifies a particular operation mode of

an individual application. An example application scenario in Figure 1 is that the MP3

application is playing music in mono sound, while the video decodes at a low bitrate.

Incorporating the concept of application scenarios in the process of early DSE of MPSoCs

should pave the road for exploring modern embedded systems that are executing dynamic

multi-application workloads. Earlier work in this direction [vSP10a] already showed that

a random pick of a set of application scenarios does not result in the best set of candidate

design instances. Therefore, scenario-based DSE aims at efficiently searching for a set of

candidate MPSoC design instances that perform well when considering all the potential

situations that can occur in a dynamic multi-application workload.

3 Proposed Framework

In this paper, we propose a new framework for scenario-based DSE. The framework is

illustrated in Figure 2. The left-hand side of the diagram shows the general flow of our

scenario-based DSE. As input, the description of the target multi-application workload and

a MPSoC platform are supplied, as well as search parameters for the GA.

The multi-application workload is described using KPN application models for each sep-

arate application in the multi-application workload and a scenario database in which the

inter and intra application scenarios are made explicit. For the latter, we use the work

from [vSP10b], in which a scenario-aware extension of the Sesame simulation framework

is presented. This means that the input KPN application models specify the structure of

each individual (concurrent) application allowing for mapping exploration of the applica-

tion tasks, while the different possibilities for multi-application workload behavior (e.g.,

which applications or application modes are active at the same time) are characterized in

the scenario database.

As was mentioned earlier, the number of different application scenarios can be very large.

Consequently, it is infeasible to rapidly evaluate MPSoC design instances during early
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DSE by exhaustively analyzing all possible workload scenarios for these particular design

instances. As a solution, a representative subset of application scenarios can be used. The
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Figure 2: The framework for scenario-
based DSE using feature selection

representativeness of a subset of application sce-

narios is, however, dependent on the target MP-

SoC architecture, which is in our case not fixed as

we are performing MPSoC DSE. The solution is

to co-explore the MPSoC design instances and the

representative subset. The right-hand side of Fig-

ure 2, which zooms in on our scenario-based DSE,

shows the two co-exploration processes. One pro-

cess, called the design explorer, is similar to classi-

cal MPSoC DSE as it uses a metaheuristic, which

is in our case a GA, to search for optimal map-

pings (i.e., optimal MPSoC design instances). The

second process, referred to as the subset selector,

tries to identify the best representative subset of

application scenarios. As will be explained later

on, the subset selector is implemented using fea-

ture selection. Both processes are asynchronous,

and inter-process communication is performed via

shared memory.

The primary reason for asynchronous execution is

that both processes are independent. To provide a

trade-off between DSE and subset training effort,

the user can manually assign a fixed number of worker threads to the design explorer and

subset selector. After termination of the design explorer, the scenario-based DSE finishes

by returning a Pareto front of MPSoC design instances (in the case of this paper a trading

off performance, energy consumption and cost).

3.1 Design Explorer

The design explorer is responsible for searching and identifying optimal MPSoC design

instances by exploring different mappings of the multi-application workload on the MP-

SoC platform architecture model. To actually perform the search, a NSGA-II [D+02]

based multi-objective GA is used. NSGA-II is an elitist selection algorithm that uses

non-dominated sorting to select the offspring individuals. An example of non-dominated

sorting is given in Figure 4. Non-dominated sorting ranks all the design points based on

their dominance depth [C+07]. Conceptually, this dominance depth can be obtained by

iteratively obtaining and removing the set of non-dominated individuals. The main rea-

son of choosing NSGA-II is its use of the dominance depth for the optimization. In the

subset selector, the scalar value of the dominance depth can easily be used for rating the

subset quality independent of the number of objectives. This will be explained in the next

subsection.
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In order to couple the GA to the feature selection algorithm inside the subset selector, some

communication is required. Figure 3 shows the extended algorithm of the GA. Before any

Selection

Get Scenario
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Write
Population
Sample

Reproduction

Initialize

Figure 3: The GA to find the optimal
mapping extended with steps to com-
municate data with the subset selector

evaluation can be done, the current representative

subset must be retrieved from the shared memory.

Using the obtained subset of application scenarios,

the candidate mappings can be quickly evaluated

using Sesame [PEP06]. The design explorer has a

pool of worker threads, where each thread can sim-

ulate and evaluate a single mapping in parallel, to

fully utilize multi-core systems. A sample of the

simulated mappings is sent to shared memory. After

the evaluation, the GA can select individuals based

on their estimated fitness. In case of a representative

scenario subset, the decisions made by the NSGA-II

selector are similar to the case where the real fitness

would have been used. The real fitness is equal to the average fitness of all possible appli-

cation scenarios as stored in the scenario database. The selected individuals can be used

for reproduction after which the whole procedure will repeat itself in the next generation.

3.2 Subset Selector

To obtain an estimated fitness of the MPSoC design instances in the GA population of the

design explorer, a good representative subset of scenarios is required. We have chosen

to select this representative subset of scenarios using feature selection. Feature selection

is a technique of selecting a subset of relevant features for building classifiers. This fits

our needs well since we want to select a set of application scenarios (the features) to

classify the dominance depth of a mapping (i.e., a MPSoC design instance). An important

consequence of this decision is that we need to have a set of training mappings of the multi-

application workload from the design explorer to be able to score a subset of scenarios

within the subset selector. Moreover, we need to have the real fitness in order to judge if

the estimation of the dominance depth is correct.

For this purpose, we added a trainer. The trainer keeps a small set of mappings which

are exhaustively evaluated with Sesame (using all application scenarios in the scenario

database) to obtain their real fitness. The trainer is updated at runtime, using the current

sample of mappings originating from the design explorer. In this way, we train the sce-

nario subset exactly with respect to the part of the design space where the design explorer

is currently searching. To isolate the exhaustive mapping evaluation from the GA in the

design explorer, we have introduced a separate pool of worker threads in the subset selec-

tor. These worker threads are managed by the ”updater thread”. This updater thread will

read out the sample mappings from the shared memory. Based on their estimated fitness, it

will select a small portion of interesting mappings to add to the trainer, from which the real

fitness is determined. To fully parallelize the simulation of these mappings (i.e., exploit-

ing multi-core host systems), we do not only evaluate the different mappings in parallel,
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but also the total set of application scenarios is divided in multiple chunks. In this way, a

single mapping can be evaluated quicker using multiple worker threads, each simulating a

different scenario for the respective mapping.

Simultaneously with the updater thread, a feature selection algorithm is executed. Every

time this algorithm finds a better subset, it updates the best subset in the shared memory.

We have chosen to use the sequential oscillation search [SP00] as our feature selection

algorithm. Oscillating search uses a kind of hill climbing technique to improve the current

subset of scenarios. We have chosen to use the oscillating search for two reasons. As it
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Figure 4: An example of non-
dominated sorting. All design
points are annotated with their
dominance depth.

iteratively improves the scenario subset, it can provide pre-

mature results that can already be used in the design explorer.

Additionally, it starts from an existing subset. As a result,

we can keep using the current representative subset after the

trainer has been updated.

The misclassification rate is used to judge the quality of the

scenario subset. The misclassification rate is equal to the

percentage of incorrectly predicted dominance depths (Fig-

ure 4). The lower the misclassification rate, the better the

subset is able to identify the Pareto front that consists of the

non-dominated solutions. The benefits of using the domi-

nance depth are twofold. First, the better the estimation of

the dominance depth is, the better our selection algorithm

NSGA-II will perform its work. Second, the quality metric

of the subset is independent of the number of the objectives in the mapping space.

At the startup phase, the trainer is empty. Therefore, a random subset is created as the

quality of the subset can not be judged. Once the updater thread has issued mappings to

the trainer, the sequential oscillating search can be started. When a better subset is found

during this search, it is communicated to the mapping space using the shared memory.

Periodically, the updater thread has a new group of exhaustively evaluated mappings for

the trainer. In this case, the oscillating search is temporarily halted.

4 Experiments

To verify our framework, a number of experiments have been performed with a stochastic

multi-application workload with 10 different applications. The multi-application workload

with 4607 application scenarios is generated using a Python tool that is loosely based on

[Ors09]. We decided to use stochastic applications because it provides us full control over

the workload. On top of that, stochastic applications can be instrumented to mimic the

abstract behavior of real applications. The workload is mapped onto a MPSoC platform

with four general purpose processors, two ASIPs and two ASICs. In addition to these

processing elements, the platform contains a shared memory, a crossbar network, and four

point-to-point FIFO communication channels. As our framework performs mapping DSE,

handling both the allocation and the binding, not all the components in the platform are

used in the final design. As a result, we consider three objectives: execution time, energy
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and cost (with respect to silicon area).

The early DSE of an embedded system like this can only be done using heuristic search

methods such as a GA. The number of possible mappings is exponential with respect to

the number of potential architectural components. Our example multi-application work-

load has more than 6.8 ∗ 1058 different mappings onto the architecture. Moreover, the

exponential number of scenarios (with respect to applications) makes fitness prediction –

based on a representative subset of scenarios – a necessity for a feasible early DSE. Two

types of experiments have been performed. The first experiment focusses on the feature

subset selection. Based on the results of this experiment, we have performed our second

experiment in which we demonstrate the functionality of the scenario-based DSE.

4.1 Subset Selection

One of the parameters of our framework is the size of the scenario subset. This size

involves a tradeoff with respect to quality and speed. The smaller a subset is, the faster

our early DSE will be performed. On the other hand, a larger subset will result in a better

fitness prediction and thus a better average outcome of the GA. The potential design space

of possible subsets is huge: in our example multi-application workload there are already

6.6 ∗ 1042 different subsets of size 15.

To investigate the exact influence of the subset size, we have applied our subset selector in

isolation. For this purpose, the updater thread is disabled and replaced by a fixed trainer.

The fixed trainer is selected in beforehand and contains 518 exhaustively evaluated map-

pings. As a result, we are able to investigate the properties of the subset selection without

any external influences. We have restricted the execution time of the subset selector to 10

minutes (wallclock time). A longer execution time is likely to get better scenario subsets,

but in early DSE the time available for training is limited.

4.1.1 Quality versus size

In our framework, we have decided to perform feature selection with a deterministic al-

gorithm. To substantiate this decision, we have compared our subset selector using a

deterministic feature selection (FS) algorithm to a genetic algorithm (GA) approach (com-

parable with the subset search method in [vSP10a]). Figure 5 shows the result of the

experiment. The horizontal axis shows the wallclock time in seconds, whereas the vertical

axis shows the quality of the best subset at that point in time. Quality is defined by the

misclassification rate: the lower the number of incorrectly predicted dominance depths,

the better the subset is. Each time a new subset is found, a marker is placed. The experi-

ment is done for different subset sizes, where each line refers to the misclassification of a

subset with a specific size.

Both approaches start with random subsets and therefore their initial quality is similar.

This can be clearly seen in the figure. In general, a larger subset means a better quality. A

subset with a size of 60 starts with a misclassification rate of 54 percent, whereas a subset

with 15 scenarios incorrectly classifies 68 percent of the individuals. During the startup
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phase of the search, the GA-based selector

has better quality subsets than our FS-based

subset selector. The oscillating search ap-

plies a hill climbing technique. As a result,

the changes to the subset are minor and the

subset can only be changed slowly. The GA,

on the other hand, can apply crossover to

quickly change large parts of the represen-

tative subset of scenarios. However, the de-

terministic approach of our FS-based subset

selector will eventually outperform the GA.

For a subset of size 15, it takes only 30 sec-

onds. This time grows to 170 and 300 sec-

onds for the subset size of 60 and 240 scenarios, respectively. As comparison, a large

subset of 3000 scenarios is also added. Within 600 seconds, our subset selector does not

outperform the GA-based approach of [vSP10a]. However, after a certain period it is

expected to outperform the GA.

Since a larger subset means a larger evaluation time of the design explorer, the better

eventual quality of the subset is more important than the better selection of the approach

of [vSP10a] in the startup phase. In this phase, the quality improvements in the MPSoC

designs (execution time, energy, etc.) are still quite significant and it is relatively easy

to discriminate between different MPSoC designs. Later in the DSE, differences become

smaller, but at this point in time our deterministic subset selector will have a better repre-

sentative subset than is achieved with the stochastic GA-based approach. The larger the

representative subset is, the more time there is to find a high quality representative subset.

This large representative subset results in a longer evaluation period in the design explorer,

resulting in more time for the subset selection.

Based on the above results, we have decided to use a subset with 240 scenarios. We believe

that it provides a good trade-off between size (fast evaluation time in the design explorer)

and quality. Compared to the large subset of 3000 that achieves a misclassification of 5%, a

subset of 240 scenarios drops below 15% within 5 minutes. After five minutes, the trainer

will likely be updated and the subset can quickly be adjusted for better representativity.

4.1.2 Misclassification: how does it look like

To give a feeling of how the misclassification looks like, consider Figure 6. This figure

uses a density graph for the relationship between the predicted and the real values of the

dominance depths. The color legend (density) shows the number of mappings that have

a predicted dominance depth of x (the x-axis) and a real dominance depth of y (the y-

axis). To get this relationship, we used a set of 1933 mappings which is disjunct to the

set of mappings with which the scenario subset is trained. Ideally, the predicted and real

dominance depth are equal. In the density graph, this would manifest itself with a straight

line (y = x). In our experiment, this straight line is also visible. However, the line becomes

wider for high dominance depths.
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and the real dominance depth.

In our case, we are interested in good mappings. These

mappings have a dominance depth that is as low as pos-

sible. Looking at the real Pareto front (the mappings

with dominance depth 1), Figure 6 indicates that 84

percent is classified correctly. Looking at the other 16

percent, we see that 14 percent has a predicted domi-

nance depth of 2. Once the population of the NSGA-II

based GA is large enough, it is quite likely that also

these mappings are added to the population of individ-

uals that is carried to the next generation. The larger

discrepancy between prediction and reality is mainly

observed at the individuals with a high value of the real

dominance depth. This is, however, not problematic for

our case, as we are not interested in low quality map-

pings anyway.

4.2 Design Space Exploration

Now that the subset selector has been validated, the complete framework can be validated.

This is done using two experiments. First, we will show that the scenario-based DSE with

feature selection can deliver results much faster than traditional early DSE. In such tradi-

tional DSE, MPSoC design points in the design explorer’s GA are evaluated exhaustively

using all application scenarios. Subsequently, in the second experiment, we investigate the

quality of our proposed scenario-based DSE method.

The parameters of the GA in the design explorer are fixed for all experiments. The GA

uses a population size of 300 and an offspring size of 100. For the fitness prediction in

the experiments with scenario-based DSE, we use a subset of 240 scenarios. To compare

the quality of the resulting Pareto fronts, we use the hypervolume [ZT98] metric. The

hypervolume is equal to the area of the Pareto front and the larger it is, the better the

Pareto front. We have normalized the hypervolume values such that the combined Pareto

fronts of all performed experiments equal to a hypervolume of 1.0.

4.2.1 The evaluation time of early DSE

In the first experiment the evaluation time of traditional DSE and the proposed scenario-

based DSE with feature selection (FS) is compared. The traditional DSE uses 12 threads

to evaluate the individuals in the GA, whereas the scenario-based DSE with FS uses 10
threads for the design explorer (the mapping GA) and 2 threads for the subset selector.

This ratio determined using calibration of time versus precision. The experiment is done

on a dedicated server with 2 Intel six-core Xeon L5640 processors running at 2.26Ghz.

From Figure 7, it can be clearly seen that our framework is much faster than the traditional

DSE. While the traditional DSE only performs 34 generations, the scenario-based DSE

with FS can execute 300 generations. As a consequence, the resulting Pareto front of the
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Figure 7: Time-based comparison

traditional DSE after 90 minutes is clearly

outperformed by the faster scenario-based ap-

proach. We would like to note, however, that

although the convergence rate of the tradi-

tional DSE looks more slowly and bumpy,

this is only due to the small number of gen-

erations. The scenario-based DSE is capa-

ble of doing more generations, resulting in a

smoother and faster convergence. However, it

is as expected that the final result of the ex-

act traditional DSE is better as can be seen in

Figure 8.
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Figure 8: Generation-based comparison

For early DSE, it is key that a large number

of candidate designs can be rapidly evaluated.

Hence, the traditional DSE method takes too

much time (12 hours and 40 minutes) for a

quick feedback loop in which the designer

is able to manipulate the application(s) and

the MPSoC components based on the candi-

date designs. Moreover, as the number of ap-

plications grows, the larger the gap between

the evaluation time of the scenario-based DSE

and the traditional DSE.

4.2.2 The quality of the scenario-based DSE

In the previous experiment, we have shown that it is necessary to speed up the early DSE

of a multi-application workload by using scenario-based DSE. As a next step, we show

that the deterministic approach of selecting a subset of scenarios improves our result of

the early DSE. To this end, we compare our approach to an alternative scenario-based

DSE approach which has been proposed in [vSP10a]. In this alternative approach, a co-

evolutionary GA is used to perform scenario-based DSE. The experiment is performed

on a sixteen core machine and thus we have used 12 threads for the design explorer and

4 threads for the subset selector. For both the FS and the GA approach ([vSP10a]), the

experiment is repeated five times.

Figure 9 shows the results of the experiments. The hypervolume is averaged over all the

runs and the standard error over the different experiments is shown with an error bar. Dur-

ing the first 50 generations, the FS and the GA approaches are comparable. In this initial

phase, the differences between the fitness of the different platform instances is still large

enough to tolerate inaccurate predictions of a subset with a moderate misclassification rate.

As of approximately 50 generations, our FS method starts to outperform the GA approach,

and the gap between both approaches steadily increases. After a startup period, the FS ap-

proach is able to find a better scenario subset with a higher accuracy. The higher accuracy

results in a good and valid distinction between mappings which have fitness values that
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are relatively close. As a consequence, the

FS approach can find a higher number of

better candidate designs. The GA approach

is less capable of making a distinction be-

tween the highly ranked mappings and its

hypervolume starts to flatten earlier.

Moreover, it can be seen that the FS ap-

proach is more deterministic than the GA

approach. The standard error of the differ-

ent experiments is significantly smaller after

250 generations have passed. On the final

result, the standard error of the mean is 3.6
times as small as compared to the GA ap-

proach. This is because the GA approach is

dependent on the stochastic nature of the GA to find good scenario subsets. A stochastic

approach will eventually find a good subset, but the larger the subset is, the tougher it

becomes.

5 Related work

There is a large body of research dedicated to early DSE of MPSoC based embedded

systems [Gri04]. However, the majority of this work still evaluates the embedded systems

with a single (fixed) application workload. Recently, research has begun to apply workload

scenarios [G+09] for making the design phase scenario aware [PSZ08, P+06, S+10a].

In [vSP10a] a scenario-based DSE technique using a coevolutionary GA is described.

The scenario-based DSE approach proposed in this paper has been inspired by the work

of [vSP10a], but as shown in Section 4.2.2, the scenario subset selection is significantly

improved and thereby the quality of the entire DSE process.

In our scenario-based DSE, fitness prediction[JB05] is used to deal with the large number

of application scenarios. For this purpose feature subset selection[S+10b] is used. An

example of a case where feature selection is used for ranking can be found in [L+04].

This work uses a hybrid method, which is a combination of a so called kNN classifier and

a NSGA-II based GA, to estimate the Pareto front of a hydrological model. These parts

are running in lockstep and not independent as in our approach.

6 Conclusions

In this paper, we have presented a framework for scenario-based DSE with feature selec-

tion. Scenarios enable the modeling of the dynamism in multi-application workloads. Our

framework performs simultaneous co-exploration using a design explorer and a subset se-

lector. The design explorer uses the current scenario subset to predict the fitness of the

MPSoC design instances. The subset selector, on the other hand, uses a sample of design
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instances to train a scenario subset using feature selection. Our experiments show that,

based on the size of the subset of scenarios, we are able to make a tradeoff between quality

and the evaluation time of the early DSE.
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