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Abstract: Hao, Ryan, and Zieliński (2010) propose a two-round decentralized voting protocol that
is efficient in terms of rounds, computation, and bandwidth. However, the protocol has two
drawbacks. First, if some voters abort then the election result cannot be announced, that is, the
protocol is not robust. Secondly, the last voter can learn the election result before voting, that is,
the protocol is not fair. Both drawbacks are typical of other decentralized e-voting protocols. This
paper proposes a recovery round to enable the election result to be announced if voters abort, and
we add a commitment round to ensure fairness. In addition, we provide a computational security
proof of ballot secrecy.1,2

1 Introduction

Paper-based elections derive security properties from physical characteristics of the real
world. For example, marking a ballot in isolation inside a polling booth and depositing
the completed ballot into a locked ballot box provides privacy; the polling booth also
ensures that voters cannot be influenced by other voters, and the locked ballot box
prevents the announcement of early results, thereby ensuring fairness; and the
transparency of the whole election process from ballot casting to tallying alongside the
impossibility of altering the markings on a paper ballot sealed inside a locked ballot box
gives an assurance of correctness and facilitates verifiability. Moreover, the combination
of these physical constraints ensures a robust voting scheme. Replicating these attributes

1 Smyth’s work was partly done at Loria, CNRS & INRIA Nancy Grand Est, France as part of the ProSecure
project, which is funded by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement n0258865, and the ANR-07-SeSur-002
AVOTE project. Khader & Ryan conducted their work as part of the SeRVTS-C09/IS/06 project, funded by
the FNR.

2 This paper has been published in Word format after conversion from Latex. We have tried to eliminate the
errors introduced during this conversion process, however, we suspect some errors remain. Accordingly, we
refer the reader to the LaTeX created document, which is available on the authors' web pages.
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in a digital setting has proven to be difficult and, hence, the provision of secure
electronic voting systems is an active research topic, first inspired by Chaum [Cha81].
Two classes of e-voting systems can be distinguished: (i) Decentralized e-voting
systems, where voters run a multi-party computational protocol without any additional
parties, for example [Sch99, KY02, Gro04, HRZ10] and (ii) Centralized e-voting
systems, where election administrators run the election, for example [JCJ05, XSH+07,
RT09]. Decentralized systems are typically designed for small-scale elections with a
focus on security with minimal trust assumptions; whereas, centralized schemes are
typically designed for large-scale elections and rely upon stronger trust assumptions to
enable scalability, usability, and robustness. In this paper we focus on decentralized
voting schemes.

Kiayias & Yung [KY02], Groth [Gro04] and Hao, Ryan, and Zieliński [HRZ10] have
come to a consensus that the following properties are essential for decentralized voting
schemes:

• Perfect ballot secrecy: A voter’s vote is not revealed to anyone else, modulo
what can be computed from the published tally.

• Self-tallying: At the end of the protocol, voters and observers can tally the
election result from public information.

• Fairness: Nobody has access to partial results before the deadline. The precise
definition of deadline varies in the literature. In this paper, we suppose fairness
is satisfied if no one has access to partial results before casting their vote. (Note
that our definition would permit a voter to abort the protocol after having
observed partial results but could not change their vote.)

• Dispute-freeness: A scheme is dispute-free if anyone can verify that the
protocol was run correctly and that each voter acted according to the rules of
the protocol.

In addition, we also consider robustness.
• Robustness: A corrupt voter cannot prevent the election result from being

announced.

Hao, Ryan, and Zieliński [HRZ10] propose an election scheme, which makes some
progress toward satisfying these properties. However, their scheme is neither robust nor
fair: in particular, a single voter can prevent the election result from being announced
and the last voter can cast her vote with full knowledge of the election result.

1.1 Contribution

We propose a variant of the Hao, Ryan, and Zieliński [HRZ10] election scheme that
ensures fairness and robustness, and we formally prove ballot secrecy using provable
security techniques.
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2 Preliminaries

This section presents the assumptions and cryptographic primitives that will be used to
construct our scheme. We shall start with some notations and conventions used
throughout the paper. Let denote a hash function and be cryptographic

parameters, where and are large primes such that and is a generator

of the multiplicative subgroup of of prime order . In some of our security proofs
we rely on the assumption that the Decisional Diffie-Hellman (DDH) problem is hard,
which is a logical consequence of using ElGamal-style encryption as a building block for
our protocol .

Definition (Decisional Diffie-Hellman problem)

Given integers and are chosen randomly.

The distribution is computationally indistinguishable from
.

Our scheme is reliant on signatures of knowledge to ensure secrecy and integrity and to
ensure voters encrypt valid votes; we now recall suitable primitives.

2.1 Knowledge of Discrete Logs

Proof Statement: Proving knowledge of , given where
[CEGP87, CEG88, Sch90]3.

Sign: Given , select a random nonce and compute
- Witness

- Challenge
- Response .

Output Signature
Verify: Given and signature , check , where

.

A valid proof asserts knowledge of such that , i.e., .

3 The challenge can also include the ID of the participant to prevent replay attacks such that
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2.2 Equality Between Discrete Logs

Proof Statement: Proving knowledge of the discrete logarithm to bases ,

given where and [Ped91, CP93].
Sign: Given , select a random nonce . Compute

- Witnesses and
- Challenge
- Response .

Output signature as

Verify: Given and signature , check
and , where .

A valid proof asserts , i.e., there exists an such that

and . This signature of knowledge scheme can be
extended to a disjunctive proof of equality between discrete logs (see below.)

2.3 Disjunctive Proof of Equality Between Discrete Logs

Proof Statement: Given that contains message , prove
that for some parameters , where

[CGS97, CDS94].

Sign: Given such that and for some nonce

, where plaintext .

For all , compute challenge ,

response , and witnesses and .
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Select a random nonce . Compute witnesses and
,

challenge

and response .

To summarize, we have

- Witnesses
- Challenge
- Response

Output signature of knowledge for all .

Verify: Given and ,

for each check and

.

Finally, check. .

A valid proof asserts that contains the message such that
.

3 Voting Scheme

In this section, we present a variant of the Hao, Ryan, and Zieliński [HRZ10] election
scheme, which guarantees fairness without any computational overhead and, moreover,
we introduce a recovery procedure to ensure robustness.

In [HRZ10, Gro04, KY02] the authors assume authenticated public channels to prevent a
participant from voting multiple times and to ensure eligibility of voters: we adopt the
same assumption.
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3.1 Toward Fairness

In this section, we extend the Hao, Ryan, and Zieliński [HRZ10] protocol to include an
additional Commitment Round to ensure fairness.

Given a number of voters , the scheme proceeds as follows:

Setup Round: Each voter selects a private key and computes the
corresponding public key . Each voter has to prove that has
been constructed correctly by proving knowledge of ( 2.1).

Commitment Round: Each voter computes as follows.

The voter constructs , where is the voter’s vote.
A disjunctive proof of equality between discrete logarithms

and

is computed to prove that
( 2.3). Note that the signature includes challenge , which acts as a computationally
binding commitment to values and . Furthermore, the value is not published in
this round.

Voting Round: Each voter publishes .

In the above protocol description, the pair is an ElGamal-style encryption of the
voter’s vote, where is the plaintext, is a nonce, and is the public encryption
key; ballot secrecy is ensured because no coalition can recover a voter’s vote.

As an alternative to the above commitment round, a voter could publish a hash of the
values output during the voting round in [HRZ10], however, we have observed that the
signature of a knowledge scheme has a computationally binding and computationally
hiding commitment to the vote since the value is hashed among the other
elements of the signature of knowledge. Thus, a hash of the values output in the voting
round in [HRZ10] is not necessary.
In [HRZ10] the last voter can vote having complete knowledge of the election result.
This limitation is avoided in our scheme with an additional round, more precisely, the
commitment round and the voting round correspond to a single voting round
in [HRZ10]. The separation of rounds exploits the result by Cramer et al. [CFSY96]
(Lemma 1). Namely, no partial results are available during the commitment round in
order to ensure Fairness.
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Lemma 1: The signature of knowledge produced during the commitment round

demonstrates without releasing the actual value of .

Once all voters have completed the protocol, the self-tallying property allows the
election result to be derived by observers and voters.

Self-Tallying: Given some protocol output such that all the signatures of knowledge

hold the result , where is defined below:

In our scheme, the result is the sum of the votes for ; the votes for can be trivially

derived as .

Formally, the computation follows from Proposition 2, as shown by Hao, Ryan,
and Zieliński. Although the computation of the discrete logarithm is hard in general, we

know that the election result is such that and, therefore, the search for
the value is feasible with complexity of by linear search or using the
Pollard-Lambda [Pol00] or baby-step giant-step algorithm [Sha71] (see also [LL90,3.1]).

Proposition 2:
Given integer , we have for all and

the .
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3.2 Robustness

In the protocol by Hao, Ryan, and Zieliński a voter can prevent the election result from
being announced by aborting. In this section, we introduce an efficient recovery round to
enable the election result to be announced even if voters abort. Moreover, our recovery
round maintains the security of the scheme; in particular, no votes can be modified or
revealed during the recovery round.

Let us suppose is the set of voters that submitted valid ballots in the voting round,

where , that is, a subset of voters either did not vote or submitted an invalid
signature of knowledge. A recovery round can be executed as follows to allow the
election result to be announced:

Recovery Round: Each voter computes as follows:

Each voter publishes together with a signature of knowledge asserting

(§2.2).

In the recovery round, the outputs act as cancellation tokens during tallying
to eliminate the need for private keys of voters whom did not participant in the voting
round (see Table 1 for a simple illustration).

No First
round

Second
round Third round Recovery

1 commitment

2 commitment Abort --

3 commitment

4 commitment Abort --

5 commitment

Table 1. Example of recovery: With no loss of generality, we assume and all participating voters
send ``no'' votes. Also, we have omitted the mention of ZKPs, as it is not needed for this illustration. Notice
that data sent in the recovery round cancel out the effects of the drop-outs from the final tallying.
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Suppose is the set of voters that broadcast valid values in the recovery round such
that , then the self-tallying property allows the election result to be derived by

observers and voters; otherwise, another recovery round is required by voters .
Given the output of the recovery round for all voters , such that all the signatures of

knowledge hold, the result is , where is defined below:

Once again, the result is the sum of the votes for 1.

Formally, the computation follows from Proposition 3.3.

Proposition 3.3:
Given the integer and set ,
we have for all ,

and

that .

Proof:
We have

and

.

Note that if a voter decides is too small to maintain privacy (e.g., when ),
then she can decide not to join the recovery round and abort; in this case, the voter
obtains an assurance of ballot secrecy (under the DDH assumption), but her vote is not
included in the tallying procedure, i.e., her vote is discarded.
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Discussion: Re-running an Election is not Equivalent to Recovery.
Critics may argue that the recovery round is not necessary because elections can be
efficiently re-run. However, two runs of an election protocol do not gaurantee the same
result and this may lead to attacks. For example, suppose there is a referendum to decide
whether electronic voting should be adopted.I In this setting, opponents of electronic
voting could force a re-run of the referendum in the hope that the system's failure to
announce the election result in the first run will sway the electorate’s opinion in a re-run.
This can occur in [HRZ10]. For example, all voters behave honestly except Mallory,
who forces a re-run and thus has the opportunity to influence the opinion of the
electorate; moreover, Mallory can plausibly deny that she is malicious, for example, by
claiming that she dropped her laptop and lost her key.

3.3 Multi-Candidate Voting Scheme

We adopt the technique used in [HRZ10] to extend our scheme to multi-candidate

elections. Assuming we have voters and candidates. A value is chosen such
that it is the smallest integer where . The main modification to handle multi-
candidate elections is during the voting round: the voter's choice is

.

The setup and recovery rounds are unchanged. The commitment round uses a signature

of knowledge ( 2.3) where and .

The tallying will cause , however

, where is the number of
votes that went for candidate for any . The value
can be efficiently computed (the maximum value is if all voters vote for the last
candidate) using a baby-step giant-step algorithm (this is possible because the values of

tend to be small), and can be recovered using the super-increasing nature
of the encoding with the help of algorithms such as the knapsnack algorithm.
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4 Security and Performance Analysis

This section presents a computational security proof of ballot secrecy (§1) and compares
our scheme with existing decentralized voting protocols in the literature (§2).

4.1 Ballot Secrecy

Hao, Ryan & Zieliński [HRZ10] provide strong arguments to show that ballot secrecy is
satisfied in their scheme under the DDH assumption.
In this work we add a formal proof of Ballot Secrecy using provable security techniques
and game models, assuming honest-but-curious voters. This implies participants are
honestly creating the input of the protocol but curious to know the others’ inputs. This
assumption is a common practice [Gro04]. Under this assumption, the signatures of
knowledge can be dropped from the game model. This game model is for proving ballot
secrecy. Since these signatures of knowledge reveal minimum information, the first
signature reveals one bit proving knowledge of ; the signatures of knowledge in the
commitment and voting round reveal that belongs to a set of values (the adversary
already knows this set); and the last signature reveals another bit proving equality of

to the bases . None of the information revealed by the signatures of knowledge is
related to the final value of the vote in an interesting manner. In our game model, we

allow the adversary to query an oracle where the challenger responds
with .

Ballot Secrecy (BS-Security): We say a decentralized voting scheme is BS-Secure, if

no polynomially-bounded adversary has a non-negligible advantage against the
challenger in the following ballot secrecy game:

• Set-up Round: chooses all and publishes all , for

• Challenge: The adversary chooses voters and that have not been queried
in . The challenger randomly chooses one of to have voted as

and the other as . We refer to the voter who voted as . The challenger

randomly chooses to vote and the remaining voter to vote .
• Voting Round: The adversary can call for the voting round to start. The

adversary gets to vote on behalf of the corrupted voters. Furthermore, the
adversary gets to abort certain voters causing the need for a recovery round to
be executed; he can select the voters to abort.

• Recovery Round: If a voter aborts, then the recovery round is executed. The
adversary is permitted to select voters to abort during the recovery round,
forcing the recovery round to be re-run.

• Guess Phase: The adversary outputs a .

295



The adversary may query the oracle , with the restriction that
just after the game is setup and until the guess phase.

To win the game the adversary must select such that
with a probability greater than guessing, we say that ballot secrecy is satisfied when this
is not the case.
Definition 1, (Ballot Secrecy Security):
The voting scheme is BS-Secure if for all polynomial time adversaries, the

,, is negligible.

Now we show that if an adversary who can win the game above exists, then there exists
a simulator that can break the DDH Problem. We shall prove the following theorem via
contradiction.

Theorem 2: If there exist an adversary that wins the model above, then there exist a
simulator that can solve the DDH problem.

Proof.:
Assume we have a tuple where . The simulator

assumes and . For the setup round the values and
are submitted. Simulating the vote round is done as follows:

• For : The simulator tosses a fair coin of , is equal to the
output of the coin and is the opposite value.

• For : Simulator needs to compute . The value is simple to
compute given the previous coin toss. Compute:

= = .
= .

Note that all values of are known to the challenger except , and the
simulator replaces the term . This becomes a valid input in the
voting round if and only if . The same technique can be used to run the
recovery round. If , then the round would be simulating the real
protocol, regardless of the number of times the round is executed.

• For : Simulator performs the same computations as for and replaces
the term .
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If and, given the assumption that there an adversary that wins the privacy game
exists, then the adversary will definitely return the right value among and the

simulator will guess that , but if the adversary of the privacy game aborts, then

.

Note that the same proof can be extended to hold for multi-candidate schemes

4.2 Performance Comparison

We compare our scheme with existing decentralized voting protocols (Table 1). It is
immediately apparent that our scheme provides better performance than [KY02] and
[Gro04], and we add an additional round in comparison with [HRZ10], this additional
round is introduced to achieve fairness.

Protocol [KY02] [Gro04] [HRZ10] Our scheme
Rounds 3 n+1 2 3

Exponentials 2n + 2 4 2 2
Knowledge of d.logs n + 1 2 1 1

Equality of d.logs n 1 0 0
Disjunctive equality of d.logs 1 1 1 1

Table 2: Performance summary per voter

Performance of Recovery: We omit the cost of the recovery round from Table 2 since
the other schemes are not robust. The additional costs associated with recovery are as
follows: one additional exponential and one additional equality of d.logs, per voter, per
round.

Performance of Multi-Candidates: The scalability of the schemes in Table 2 to multi-
candidate elections are all similar. In our scheme, the additional computation during the
commitment round is linear to the number of candidates and self-tallying requires
execution of the Knapsnack algorithm.
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Optimisations: We highlight two optimizations:

1. In [HRZ10, Gro04, KY02] the authors assume that each voter has a one-way
authenticated broadcast channel. This assumption was made for two reasons: to
detect a voter who is casting more than one vote and to ensure that only eligible
voters can vote. One might be able to relax this assumption: authenticated
channels are only needed in the first round. Under this assumption, the
signatures of knowledge can be used to ensure that security is preserved in later
rounds, in particular, witness that the value (implicitly implying ) has
been used in every round of the protocol and also during tallying; it should
follow that authentication of is sufficient for security. This could be
achieved by authenticating the first round only. We therefore think the
assumption that all communication must use authenticated channels might be
relaxed in our protocol and in the protocol proposed in [HRZ10]. The savings
associated with this weaker assumption are dependent upon the implementation
of an authenticated channel and studying this optimization remains as a
possibility for future work.

2. Let us consider a variant of our scheme with two rounds: the voter sends the
ballot during the commitment round. If all voters participate in two rounds, then
we have the original scheme [HRZ10]; in this case, fairness is not provided.
However, if one voter completes three rounds, then fairness is provided, as we
shall now argue: Let be the private keys of voters. Suppose voters
publish during the commitment round (as per the
original scheme [HRZ10]) and the remaining voter only publishes her signature
of knowledge. Self-tallying the published ballots produces the following:

Witness that no partial election result can be derived from without ,
hence fairness is achieved assuming one voter completes three rounds of the
protocol.

5 Conclusion

We present a fair and robust variant of the decentralized electronic voting protocol
proposed by Ryan & Zieliński [HRZ10], and prove that our scheme satisfies perfect
ballot secrecy under the DDH assumption. Moreover, our scheme is self-tallying and
dispute-free. Furthermore, we have shown that our scheme is efficient when compared to
existing decentralized voting schemes from the literature.
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