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Abstract: The regulation of many cellular processes is influenced by miRNAs, and
bioinformatics approaches for predicting miRNA targets evolve rapidly. Here, we
propose conditional profile HMMs that learn rules of miRNA-target site interaction
automatically from data. We demonstrate that conditional profile HMMs detect the
rules implemented into existing approaches from their predictions. And we show that
a simple UTR model utilizing conditional profile HMMs predicts target genes of miR-
NAs with a precision that is competitive compared to leading approaches, although it
does not exploit cross-species conservation.

1 Introduction

miRNAs are short (∼ 22 nt) endogeneous RNAs that bind to partially complementary
sites on mRNA target sequences. They induce cleavage of the miRNA-mRNA duplex
or repress translation of the bound mRNA [BSRC05]. Hence, miRNAs influence gene
expression and introduce a novel level of gene regulation. For instance, several miRNA
signatures have already been successfully associated with human cancers. In animals,
miRNAs preferentially bind to the 3’ untranslated region (UTR) of the mRNA, and for
binding a high complementarity between miRNA and target is required only at the 5’ end
of the miRNA. Computational miRNA target prediction plays a key role in deciphering
the functional role of miRNAs. Several dozen programs have been therefore developed in
the last years, and in the following, we describe the main idea behind some of the most
widely used programs.

[LSJR+03] propose an algorithm for the prediction of targets of vertebrate miRNAs called
TargetScan. TargetScan requires perfect complementarity between positions 2 and 8 at the
5’-end of the miRNA and a potential target, and the free energy of binding between miRNA
and target is computed. Predictions are verified using orthologous UTR sequences from
other organisms. [LBB05] propose a refined version called TargetScanS, which demands
a shorter region of the target to be complementary to nucleotides 2 − 7 of the miRNA.
TargetScan 5.0 [FFBB09] additionally considers the distance from the 3’ UTR and AU
content.
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In contrast to TargetScan, miRanda [EJG+03] does not require perfect complementarity
at the seed region, but uses an algorithm similar to Smith-Waterman sequence alignment
with similarity scores of +5 for G:C and A:U basepairs, +2 for G:U basepairs, and −3
for mismatches, and the scores for the first 11 positions of the alignment are weighted by
a factor of 2. Potential target sites (TSs) are filtered for a minimum similarity score and a
minimum free energy.

PicTar [KGP+05] searches for perfectly complementary seed regions of 7 nt starting from
position 1 or 2 of the miRNA. Mismatches in the seed region are allowed if these do
not increase the free energy. Additionally, a filter with respect to the free energy of the
complete miRNA-mRNA duplex is applied.

DIANA-microT [MRS+09] prefers perfect complementarity of 7 to 9 nt starting from
position 1 or 2 of the miRNA. However, if the considered TS shows good complementarity
to the 3’ end of the miRNA, the length of this seed region may be reduced to 6 nt, and
single G:U basepairs are allowed. DIANA-microT uses orthologous UTRs from up to 27
organisms for assessing the conservation of TSs. Finally, the score of a potential UTR
target is computed as a weighted average of all predicted TSs.

In contrast to previous approaches, we propose a fully statistical approach for predicting
TSs of given miRNAs that is capable of learning rules of miRNA-TS binding from data
sets comprising pairs of miRNAs and associated TSs. This approach employs an extension
of profile hidden Markov models (HMMs) [KBM+94], which we call conditional profile
HMM (CoProHMM), and learns parameters by the discriminative maximum supervised
posterior (MSP) principle [CdM05, GKK+07]. Since all parameters of CoProHMMs are
learned from training data, this approach is not biased towards heuristic assumptions about
miRNA-TS interaction like the existence or length of a seed region.

2 Methods

In the following, we introduce CoProHMMs for modeling the binding between miRNA
and TS. We describe how we learn CoProHMMs from data, and explain how we combine
several predictions of a learned CoProHMM to predict target genes of a given miRNA.

2.1 Conditional profile HMMs

At the basis of the CoProHMM modeling miRNA TSs, we use a standard profile HMM
architecture [KBM+94], which is illustrated in Fig. 1. This architecture is also referred
to as “plan9” due to its 9 transitions at each layer of the model. We define a total of K
match states Mk, which emit a nucleotide of the TS with a probability that is conditional
on the nucleotide at position k of the miRNA. Here, we use K = 22, since this is the
length of a typical miRNA and, hence, the model covers all positions of the miRNA that
are potentially interacting with the TS. If a TS and the associated miRNA are perfectly
complementary, we anticipate that only match states are visited for emitting the complete
sequence of the TS. Otherwise, silent delete states Dk allow for the insertion of gaps into
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Figure 1: Plan9 architecture of the proposed CoProHMMs. Circles represent silent delete states that
do not emit nucleotides of the TS, diamonds represent insert states that emit nucleotides of the TS
without considering the nucleotides of the miRNA, and rectangles represent match states that emit
nucleotides of the TS with probabilities conditional on the nucleotides of the miRNA. Admissible
paths start at D0 and end at DK+1. States with dashed borders are not visited in admissible paths.

the TS, insert states Ik allow for including gaps in the miRNA, and match states also
allow to replace nucleotides. In Fig. 1, edges represent transition probabilities not fixed
to 0. From each node of column k, we can reach node Ik in the same column, and nodes
Mk+1 and Dk+1 in the next column. Each admissible path starts at D0 and ends at DK+1.
Hence, the states M0, IK+1, and MK+1 are never visited in admissible paths, and are only
included to simplify recursive definitions in the following.

We parameterize the transition probabilities and the emission probabilities by normalized
exponentials [Mac98, BB01] using real-valued parameters, since this allows for an uncon-
strained numerical optimization of the parameters with respect to the discriminative MSP
principle.

According to the plan9 architecture, we define the transition probability PT (V |Sk, βT,Sk
)

of going from node Sk ∈ {Ik,Mk, Dk} to node V given parameters βT,Sk
as

PT (V |Sk, βT,Sk
) =

{
exp(βV |Sk

)P
Ṽ ∈{Ik,Mk+1,Dk+1} exp(βṼ |Sk

) if V ∈ {Ik,Mk+1, Dk+1}
0 otherwise

,

where βT,Sk
= (βIk|Sk

, βMk+1|Sk
, βDk+1|Sk

), βV |Sk
∈ R.

In contrast to standard profile HMMs, we use conditional probabilities depending on the
nucleotides of the miRNA for the emissions of the match states. For match state Mk, we
define the conditional emission probability PMk

(a|rk, βMk
) of symbol a in the TS given

the k-th symbol rk of the miRNA and parameters βMk
as

PMk
(a|rk, βMk

) =
exp(βa|rk,Mk

)∑
ã∈Σ exp(βã|rk,Mk

)
, (1)

where βMk
= (βA|A,Mk

, βC|A,Mk
, . . . , βU |U,Mk

), βa|b,Mk
∈ R. Finally, we parameterize

the emission probability PIk
(a|βIk

) of symbol a at insert state Ik given parameters βIk
in

analogy to equation (1).

We define forward variables FSk
( , x|r, β) as the probability of observing the first   sym-

bols of the TS sequence x and visiting node Sk in state interval s( , x|r) given parameters
β and the sequence r of the miRNA, i.e.,

FSk
( , x|r, β) = P (x1, . . . , x , Sk ∈ s( ,x|r)|r, β) . (2)
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A node Sk is visited in state interval s( , x|r) if it is contained in a path from D0 to DK+1,
and the symbols x1 to x  have been emitted either by predecessors of Sk in the path or by
Sk itself, whereas x +1 is emitted by a successor of Sk in this path. We use these forward
variables for defining the likelihood P (x|ts, r, βts) of TS x given the class ts of TS, the
sequence of the miRNA r, and parameters βts , i.e.

P (x|ts, r, βts) = FDK+1(L,x|r, βts). (3)

Using this definition, the likelihood P (x|ts, r, βts) is not necessarily normalized over all
possible sequences x ∈ ΣL of given length L.

Similar to original profile HMMs, we recursively derive the forward variables of match
state Mk using its predecessors Sk−1 ∈ {Ik−1, Dk−1,Mk−1} from the previous column
of the plan9 architecture (cf. Fig. 1) as

FMk
( , x|r, β) = PMk

(x |rk, βMk
)∑

Sk−1

FSk−1( − 1, x|r, β) PT (Mk|Sk−1, βT,Sk−1). (4)

In analogy, we derive the forward variables of insert states and delete states.

We initialize the forward variables as follows: We can observe D0 only before the emission
of the first symbol. Hence, we set FD0( , x|r, β) to 1 if   = 0 and to 0 otherwise. We
cannot reach M0 in any admissible path and, thus, FM0( , x|r, β) = 0. Finally, we set
FSk

(0, x|r, β) = 0 for all emitting states Sk.

2.2 Discriminative training

For learning the parameters of the CoProHMM discriminatively, we need an additional
background model. Here, we use a homogeneous Markov model of order 1 with parame-
ters βbg that do not depend on the miRNA r, i.e.,

P (x|bg , r, βbg) = PhMM(1)(x|βbg). (5)

We derive the class posterior of class c ∈ {ts, bg} using the likelihoods P (x|c, r, βc) of
equations (3) and (5) as

P (c |x, r, β) =
P (c|β)P (x|c, r, βc)∑
c̃ P (c̃|β)P (x|c̃, r, βc̃)

, (6)

where P (c|β) denotes the a-priori probability of class c, which we parameterize in analogy
to equation (1).

For Bayesian inference, we define a prior on the parameters β. For the homogeneous
Markov model of class bg , we use a transformed product-Dirichlet prior [Mac98] with
equivalent sample size (ESS) [HGC95] αbg ·K. We define another transformed product-
Dirichlet prior with ESS αts for the parameters of the CoProHMM, which is the product of
independent transformed Dirichlet priors for each set of transition parameters and each set
of emission parameters. We use Dirichlet priors, since these are conjugate to the likelihood
of the homogeneous Markov model and to the distribution of transitions and (conditional)
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emissions. Hence, their hyper-parameters can be intuitively interpreted as pseudo counts.
In the following studies, we use αbg = αts = 4.

We learn all parameters β on a set of labelled training data (x1, r1, c1), . . . , (xN , rn, cN ).
These training data comprise a sufficient number of TSs, i.e. cn = ts , and non-TSs of
several miRNAs. Learning the parameters on the TSs of multiple miRNAs conjointly is
motivated by the expectation that by this means, CoProHMM may detect general rules
of miRNA-TS binding, that could not be detected if we, for instance, learned a standard
profile HMM on the TSs of a single miRNA.

We optimize the parameters with respect to the discriminative MSP principle [CdM05,
GKK+07], i.e.,

β∗ = argmax
β

[
N∏

n=1

P (cn |xn, rn, β)

]
q (β |αbg , αts) , (7)

where q (β |αbg , αts) denotes the product-Dirichlet priors on the parameters β. This opti-
mization must be carried out numerically, which we accomplish by a quasi-Newton second
order method.

2.3 Predicting target genes

In the following, we describe how we utilize a CoProHMM for predicting target genes of a
miRNA r. We assume that the CoProHMM has already been trained on a set of miRNAs –
not necessarily including r – and associated TSs and non-TSs. To this end, we extract the
UTR yn of each gene n. Using a sliding window of width |r|, we apply the CoProHMM
to each sub-sequence of yn and compute the log-likelihood according to equation (3)
given miRNA r. For each UTR, we consider the I sub-sequences yielding the largest
log-likelihoods sn,i, which end at positions qn,i. Let dn = qn,1 and d′n = |yn| − qn,1

be the distance of the sub-sequence with the largest log-likelihood to the 3’ and 5’ end
of the UTR, respectively. Let (pn,1, . . . , pn,I) denote the positions (qn,1, . . . , qn,I) sorted
ascendingly. Let zn = (sn,1, . . . , sn,I , dn, d′

n, pn,1, . . . , pn,I) denote the vector of these
features representing UTR yn.

By inspecting histograms of the scores sn,i, we find that these may be modeled by a
mixture of two Gaussian densities, i.e.,

P (sn,i|βs
c,i) = P (us= 1|βs,m

c,i ) N (si|µ1,i,c, κ1,i,c)+P (us= 2|βs,m
c,i ) N (si|µ2,i,c, κ2,i,c),

where βs
c,i = (βs,m

c,i , µ1,i,c, κ1,i,c, µ2,i,c, κ2,i,c), µk,i,c and κk,i,c denote the mean and
the log-precision of Gaussian density k, respectively, and the component probabilities
P (us = u|βs,m

c,i ) are parameterized in analogy to equation (1).
To allow for variability in TS positioning, we model dn and d′n each by a mixture of two
gamma densities, i.e.,

P (dn|βd
c ) = P (ud = 1|βd,m

c ) G(dn|αd
1,c, β

d
1,c) + P (ud = 2|βd,m

c,i ) G(dn|αd
2,c, β

d
2,c),

where βd
c = (βd,m

c , αd
1,c, β

d
1,c, α

d
2,c, β

d
2,c), and αd

k,c and βd
k,c denote the log-shape and

log-rate of gamma density k, respectively. We define the density P (d′n|βd′
c ) in analogy.
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We model the distances pn,i+1 − pn,i by another gamma density, i.e.,

P (pn,i+1 − pn,i|βp
c ) = G(pn,i+1 − pn,i|αp

c , β
p
c ),

where βp
c = (αp

c , β
p
c ).

The complete likelihood of zn representing UTR yn of gene n employing convenient
independence assumptions amounts to

P (zn|c, βc) ∝
I∏

i=1

P (sn,i|βs
c,i) P (dn|βd

c ) P (d′n|βd′
c )

I−1∏
i=1

P (pn,i+1 − pn,i|βp
c ). (8)

In the following studies, we use I = 5.

In analogy to equation (6), we define the class posterior in terms of likelihoods P (zn|c, βc)
and a-priori class probabilities P (c|β). As for the training of the TS model, we optimize
the parameters with respect to the discriminative MSP principle (cf. equation (7)) using
a training data set of target and non-target genes. In this case, we use beta priors on the
parameters of the component probabilities, normal-gamma priors on the parameters of the
Gaussian densities, and the conjugate prior according to the definition of the exponential
family for the gamma densities. Again, we use an ESS of 4 for both classes. We finally
predict target genes based on the class posterior.

3 Results & Discussion

In the following, we first investigate if CoProHMMs can learn characteristics of TSs from
data. To this end, we use TSs predicted by existing approaches. Second, we evaluate the
utility of CoProHMMs for the prediction of target genes of miRNAs on benchmark data.

3.1 Pilot study: Learning CoProHMMs from predictions

We learn CoProHMMs on the predictions of miRanda and TargetScan to investigate if
CoProHMMs can learn the rules implemented into these approaches from their predic-
tions. We choose miRanda and TargetScan, because their approaches differ notably. If
CoProHMMs can detect such characteristics from predictions, we might expect that they
are also capable of learning novel or refined rules of miRNA-TS binding from experimen-
tally verified TS.

We extract all human TSs and associated miRNAs predicted by TargetScan and miRanda
from miRNAMap1 [HCT+08]. For TargetScan, we use all 244,389 TSs, while we ran-
domly sample 500,000 TSs from the predictions of miRanda. We generate a non-target
data set by randomly selecting miRNAs from the mature human miRNAs listed at miR-
Base2 [GJSvDE08]. As non-TSs of these miRNAs, we randomly draw 500,000 sub-

1ftp://mirnamap.mbc.nctu.edu.tw/miRNAMap2/miRNA Targets/Homo sapiens/
miRNA targets hsa.txt.tar.gz

2http://www.mirbase.org
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sequences of length |r| ± 3 from 3’-UTRs of human genes according to NCBI Genbank3

human genome build 37.1.

We present a graphical representation of the CoProHMMs learned on the miRanda data
set and the TargetScan data set in Fig. 2. Here, we depict only the most interesting region
around the seed, while the complete CoProHMMs for miRanda and TargetScan as well as
other approaches are available online4. For the states, we use the same shapes as in Fig. 1.
The thickness of outgoing edges represents the transition probabilities to the successors
of a node. We illustrate the emission probabilities of insert states by a row of grayscale
boxes, where the first box corresponds to A, the second box corresponds to C, the third
box corresponds to G, and the fourth box corresponds to U. The darker a box, the higher is
the corresponding emission probability. In analogy, the conditional emission probabilities
of match states are represented by a matrix comprising such rows, where each row corre-
sponds to the conditional probability distribution given one nucleotide of the miRNA. The
probabilities of visiting a state are visualized by the darkness of the background of each
node. The darker the background of a node the higher the probability of visiting this node.

seed regionz }| {
5’- 1 2 3 4 5 6 7 8 9 10 11

· · ·

(a) miRanda data set

seed regionz }| {
5’- 1 2 3 4 5 6 7 8 9 10 11

· · ·

(b) TargetScan data set

Figure 2: CoProHMMs learned on the miRanda data set (a) and TargetScan data set (b).

Considering the CoProHMM learned on the miRanda data set, we recover many rules built
into miRanda. From the conditional emission probabilities of the match states, we observe
a general tendency to complementary base pairings between the TS and the miRNA. This
tendency is especially pronounced for the match states in the seed region, but can also be
observed for the match states at position 1 and positions 9 to 11. We also detect a slight
preference for G:U wobble basepairs. These observations are most likely a result of the
Smith-Waterman like alignment employed by miRanda. Additionally, miRanda assigns a

3http://www.ncbi.nlm.nih.gov
4http://www.jstacs.de/index.php/MiRNAs
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weight of 2 to the first 11 positions of the alignment, which is reflected by the increased
probabilities of visiting match states in the seed region, although this preference already
begins to decline at position 8 of the learned CoProHMM.

As a second example, we consider the CoProHMM learned on the TargetScan data set in
Fig. 2(b). Notable differences between the CoProHMM for the TargetScan data set and the
miRanda data set can be observed for the conditional emission probabilities at the match
states. At positions 2 to 8 of Fig. 2(b), we find complementary basepairs almost exclu-
sively, while a slight preference for complementary basepairs is present at the bordering
positions 1 and 9. In contrast, the remaining positions exhibit only very slight preferences
for specific basepairs. Again, these findings are closely related to the main characteristics
built into TargetScan. The perfect complementarity at positions 2 to 8 of the CoProHMM
reflects the requirements of TargetScan. We also observe a preference for complementary
basepairs at positions 1 and 9, which most likely can be attributed to the fact that initial
perfect matches in the seed region may be elongated to either side in TargetScan.

These findings suggest that CoProHMMs are indeed capable of recovering the rules built
into miRanda and TargetScan from prediction and, hence, may also be capable of inferring
the rules underlying miRNA-TS binding from experimentally verified TSs, once these
become available in sufficient quantity.

3.2 Benchmark study: Predicting miRNA target genes

We investigate the utility of CoProHMMs for the prediction of miRNA target genes using
the pSILAC data of Selbach et al., which have also been used in recent benchmark studies
[SST+08, AMP+09]. To this end, we learn a CoProHMM using a foreground data set
that comprises 12 verified TSs and 667 predicted TSs within UTRs of verified target genes
extracted from mirecords5 v. 1 [XZC+09]. As these TSs are too few to reliably learn the
models, we also include the TargetScan data set and 405,569 TSs predicted by DIANA-
microT. We use predictions of these two approaches, since they yield reasonable precisions
in the benchmark studies. We use the same background data set as in the pilot study. We
assign a weight of 500 to all verified TSs and a weight of 50 to all predicted TSs in verified
target genes to reflect our increased confidence in these data, while we assign a weight of
1 to all other TSs. All TSs of miRNAs contained in the Selbach benchmark data set are
excluded when training the CoProHMM to allow for unbiased evaluation.

We extract the UTRs of all genes considered in [SST+08] according to [AMP+09]. For
these genes, Selbach et al. measured the influence of overexpression or underexpression
of a miRNA on the abundance of the corresponding proteins for 5 different miRNAs. For
each of these miRNAs, we partition the UTRs into target and non-target UTRs using a
threshold of −0.2 on the protein log-fold changes. We assess the performance of the
UTR model using the predictions of the CoProHMM in a 5-fold cross validation. In each
iteration of the cross validation, we train the parameters of the UTR model on the numeric
vectors zn obtained for 4 of the 5 miRNAs, and we compute the log-likelihood ratios
using this trained UTR model for the numeric vectors obtained for the remaining miRNA.

5http://mirecords.biolead.org/download data.php?v=1
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Figure 3: ROC curve (a) and precision-recall curve (b) of the classifier using the UTR model (solid
black line) and the classifier using the best score of the CoProHMM within each UTR sequence
(dotted black line) compared to other approaches.

In analogy to [AMP+09], we finally use all log-likelihood ratios to compute sensitivity,
precision, and false positive rate for different thresholds.

In Fig. 3, we compare the performance of the classifier using the UTR model (solid black
line) to other approaches by means of the precision-recall curve and the ROC curve. As
a reference, we also include the performance of a classifier that only uses the best score
of the CoProHMM over each UTR sequence, i.e., sn,1, (dotted black line). Considering
Fig. 3(a), we find that even this classifier using only the best score yields a substantially
higher sensitivity than miRanda and Seed for a broad range of false positive rates. Sur-
prisingly, the classifier using the simple UTR model, which does not exploit conservation
across species, achieves comparable or slightly improved sensitivities compared to mi-
Randa, Seed, PicTar, and microT, while it performs only slightly worse than TargetScan
5.0 for false positive rates below 0.06.

Turning to the precision-recall curve in Fig. 3(b), we find a similar picture. Notably, the
classifier using the UTR model again achieves comparable or even higher precisions than
miRanda, Seed, PicTar, and microT. However, it can outperform TargetScan 5.0 only for
very low sensitivities and yields lower precisions for sensitivities between 0.03 and 0.28.

The performance of both classifiers using CoProHMMs is astonishing, because, in con-
trast to most of the other approaches, they do not exploit conservation across different
species. Hence, the inclusion of cross-species conservation into CoProHMMs and the
proposed UTR model, and the integration of CoProHMMs into other approaches might be
a worthwhile direction of future research.

Grau et al. 89



4 Conclusions

miRNAs are involved in the regulation of many cellular processes, and the prediction of
miRNA targets is one of the most active fields of bioinformatics. Here, we propose a novel
statistical model called conditional profile HMM (CoProHMM) for learning the rules of
miRNA-TS interaction from data. We demonstrate that CoProHMMs are capable of re-
constructing patterns of miRNA-TS binding built into existing programs from predictions
of these approaches.

Conservation is key feature of most miRNA target prediction approaches leading to higher
precision at the expense of sensitivity. Interestingly, we find in a benchmark study that
a simple UTR model utilizing CoProHMMs yields a competitive precision compared to
leading approaches for predicting target genes, although it does not exploit conservation
across species.

We anticipate that the number of experimentally verified TSs will rapidly increase in the
next years. Only recently, [CZMD09, HLB+10] have independently published novel bio-
logical data that shed light on miRNA targeting. Briefly, the two experimental approaches
use in-vivo crosslinking, Ago2 immunoprecipitation and cDNA sequencing, and have been
able to determine TSs of several miRNAs with high accuracy. Since the power of statis-
tical approaches like CoProHMMs highly depends on the quality of the training data, we
might speculate that the performance of CoProHMMs will even increase using these data.
Additionally, CoProHMMs might be a suitable approach to extract new and refined rules
of miRNA-TS binding from such verified TSs.

We make an implementation of CoProHMMs and the UTR model available to the scientific
community with the next release of the open source Java library Jstacs6.
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