
A Context Map as the Basis for a Microservice Architecture 
for the Connected Car Domain 

Sebastian Abeck1, Michael Schneider², Jan-Philip Quirmbach³, Heiko Klarl⁴, Christof 
Urbaczek⁵ and Shkodran Zogaj 

Abstract: In the near future cars will have two properties: They will be electrically powered and 
they will be connected to the Internet. Such cars will provide a huge amount of sensor data which 
can be accessed via web APIs in order to develop innovative connected car applications, such as 
traffic control, hazard warning, assisted or even autonomous driving. However, current software 
solutions in this field are mainly monoliths solving single problems in an isolated way. Therefore, 
we propose a systematic approach by which each single connected car application becomes part of 
a microservice architecture. This approach requires a sound and well-elaborated domain model 
from which the microservices' APIs and implementation of the applications can be systematically 
derived. The main contribution of this paper is a context map for the connected car domain. We 
demonstrate a structured software development approach with the example of a mobile applica-
tion, the Electric Car Charger, by showing how this application is integrated into the context map 
and, thus, into a connected car microservice architecture. 

Keywords: Connected car, microservice architecture, domain modeling, context map, bounded 
context, API 

1 Introduction 

Connected cars are in the center of innovative and complex mobility concepts for our 
society [Co+16]. Such mobility solutions, in which cars are only one means of transpor-
tation besides bus, train, bikes etc., requires the exchange of data between all involved 
transportation means (vehicle-to-vehicle) and the transportation infrastructure (vehicle-
to-infrastructure) via the Internet. Therefore, the Internet of Things (IoT) aspect plays an 
important role in the field of integrated mobility solutions [DK+18]. Connected cars are 
one of these "things" of the Internet for which such new mobility services are offered. 
They can be seen as the drivers of IoT-based mobility solutions resulting from the eco-
nomic power of the automotive industry. The necessary movement towards e-cars and 
their integration into an overall Internet-based mobility infrastructure lead to disruptive 
changes in this industrial domain. Besides the traditional automobile manufacturers 
offering cars as a product to their customers, new companies from the IT domain appear 
                                                           
1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, sebastian.abeck@kit.edu 
² Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, michael.schneider@kit.edu 
³ Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, jan-philip.quirmbach@student.kit.edu 
⁴ xdi360, Munich, Germany, heiko.klarl@xdi360.com 
⁵ xdi360, Munich, Germany, christof.urbaczek@xdi360.com 

cba doi:10.18420/inf2019_18

David, Geihs, Lange, Stumme (Hrsg.): INFORMATIK 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 125

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2019_18


on stage. They perceive the cars as things of the Internet and provide connected car ser-
vices. Examples of such services are shown in Fig. 1. 

 

 

Figure 1: Examples of Connected Car Services 

To be able to develop flexible and maintainable connected car solutions, a software ar-
chitecture is needed which can be easily extended by new functional services. These 
services are provided by, and offered to, different organizations. We believe that a 
microservice architecture [Ne15] is an adequate concept to build a connected car system. 
This system consists of loosely coupled connected car services using other services via 
web APIs specified in a standardized language (e.g. OpenAPI). The microservice archi-
tecture is based on a domain model [Ev03] which prescribes the functional structure of 
the connected car domain. 

Starting from the related work (Section 2), this paper elaborates a context map and its 
included bounded contexts of the connected car domain model (Section 3). The usage of 
the elaborated domain model artifacts is shown with the example of an Electric Car 
Charger (ECC) service (Section 4). The main advantage of our approach is the integra-
tion of the connected car service, in our case the ECC, into the overall connected car 
domain. The domain model and the derived microservice architecture provide the basis 
for all connected car services leading to a non-monolithic, loosely coupled connected car 
system (Section 5). 

126 Sebastian Abeck et al.



2 Related Work 

Intensive work on digital technology and software engineering in the automotive sector 
started about the turn of the millennium [Br03]. The main competence of car companies 
traditionally lies in the field of mechanical and electrical engineering. In order to cope 
with the high complexity of automotive software, frameworks specific for the automo-
tive domain were developed, such as the Volvo Cars Architecture Framework [PK+16] 
or the Automotive Architecture Framework [BG+09]. A characteristic of this work is the 
focus on the architecture of the software that is needed in a car. In [PK+16] the aspect of 
connected cars is covered in two so-called viewpoints, namely "connected cars and safe-
ty" and "security and privacy of connected cars". Although such automotive frameworks 
cover certain aspects of the automotive domain, they do not provide a domain model 
which is one of the main goals of this paper. 

The Domain-Driven Design (DDD) [Ev03, Ve13] provides the conceptual foundation of 
our approach. As shown by [SH+18, HG+17], DDD can be applied in a structured soft-
ware development process in order to derive a sound and comprehensible microservice 
architecture. A central part of the domain model is the so-called context map which is 
the result of DDD's strategic modeling. A context map is used to decompose the domain 
into subject-specific (especially not technically-driven) parts which are called bounded 
contexts. Since each bounded context is a candidate for a microservice [Ne15], the con-
text map can be seen as a blueprint of the microservice architecture for the modeled 
domain. In [TH+18] a systematic approach to derive the bounded contexts in order to 
identify microservices is presented. The functional decomposition is carried out based on 
the requirements on the software system. A characteristic of this approach is given by 
the fact that a concrete software system, and not the domain, is in the focus. Therefore, a 
context map of the domain is not part of this approach. 

Existing white papers from different companies (e.g. [KA+16, VA+14, DK12]) provide 
a fine-grained decomposition of a connected car's application landscape into different 
categories, such as navigation, vehicle management, or safety. This related work de-
scribes the domain in a more or less informal way. Nevertheless, for our work they pro-
vide a valuable practical input for the formal connected car domain model which we 
develop in the next Chapter 3 and apply to build a microservice-based application in 
Chapter 4. 

3 Connected Car Categories 

In the related work, different categories for the connected car domain are proposed 
which are illustrated in Figure 2. Vehicle management and driving management are 
directly related to the core functionality of a car. The category vehicle management is 
divided into the sub-categories remote control, diagnosis and maintenance; sub-
categories of driving management are driver assistance, parking, and refueling [KA+16]. 

A Context Map as the Basis for a Microservice Architecture 127



Further, there exists a cross-cutting functionality safety and security. Safety and security 
need to be concerned by all other categories, most important for vehicle management 
and driving management, because critical functionalities need to be secure. For example, 
it should not be possible that one can remotely control a car without permission. Safety 
and security can be divided into further sub-categories, such as emergency and theft 
protection. 

Vehicle Management S
afety &

 
S

ecurity

Infotainment

Driving Management

Fleet Management

Comfort and Convenience

 

Figure 2: Existing Connected Car Categories 

Infotainment as well as comfort and convenience provide less critical, but relevant func-
tionalities. The infotainment category implies entertainment, information and 
smartphone integration and deals with streaming music and videos, interacting with 
social networks and providing news and weather information. Hand-free calls are an 
example of smartphone integration. Furthermore, information about the current traffic 
and navigation are also attributed to this category. Comfort and convenience are divided 
into the sub-categories well-being, interaction, and payment. Comfort and convenience 
include personalizing the vehicle, for example by pre-setting seats, temperature or ambi-
ence lighting. 

In addition, issues referring to the governance of services across many cars deal with the 
category fleet management which consists of sub-categories like policies and optimiza-
tion [DK12]. 

4 Formalization Based on UML and Domain-Driven Design 

We use the existing proposals of a decomposition of the connected car domain to devel-
op a formalized domain model based on the Domain-Driven Design (DDD, [Ev03]). 
This domain model serves as a design artifact from which we derive the microservice 
architecture for all connected car applications we are developing.  The approach is not 
specific to the connected car domain since we use it also for other complex domains.  

The context map displays the strategical relationships of a domain [HS+19, HG+17]. A 
context map consists of subdomains, bounded contexts and relationships between the 
bounded contexts. Following DDD, the bounded contexts are assigned to domain-
specific subdomains, which further improve the overview of the domain. According to 
our approach, subdomains are modeled as a UML package which is extended by the 
stereotype <<subdomain>>. 

128 Sebastian Abeck et al.



A bounded context represents a candidate for a microservice which can be developed by 
an independent team [Ne15]. We formalize a bounded context as a packaging compo-
nent which is annotated with the stereotype <<bounded context>>. Each bounded con-
text contains tactical models like the relation view which describes the inner structure of 
this bounded context [SH+18]. 

Relationships between bounded contexts are formalized using UML associations extend-
ed by stereotypes corresponding to the context map relation. Depending on the type of 
relationship, the team communication between the bounded contexts is defined. [Ev14] 
provides several communication patterns for the relationships between bounded con-
texts. For example, the pattern <<conformist>> is a directed association between two 
bounded contexts. The consuming service has no influence on the offering service. For-
eign bounded contexts are encapsulated by an <<anti-corruption layer>> (ACL). The 
ACL is formalized as a package which is part of the bounded context that uses the for-
eign bounded context. 

5 Context Map for the Connected Car Domain 

A decomposition of the connected car domain into subdomains and bounded contexts 
based on the formalization is derived. The context map, as shown in Figure 3 displays 
the result of the formalized connected car domain and suggests a separation of the differ-
ent software services. For an easy overview and a better understanding, we put the main 
subdomains and bounded contexts in the center. Cross-section bounded contexts are 
placed on the right side of the context map diagram. Domain-enhancing bounded con-
texts that have a stronger user interaction are placed above the central area, and, finally, 
domain-supplementing bounded contexts, which express a more technical content, are 
located below the central area. Subdomains and bounded contexts that are close together 
are modeled in close proximity. 

The context map is a design artifact of a structured software development process for 
microservice-based applications. Typically, CamelCase and PascalCase are used as a 
naming convention in such software development artifacts (e.g. VehicleManagement 
instead of vehicle management or Vehicle Management). 

The category vehicle management offers a good starting point for the derivation of the 
subdomain VehicleManagement. We see these sub-categories as services for the vehicle 
management and therefore, bounded contexts for vehicles, sensor processing, remote 
control, diagnostics, and maintenance are established for this subdomain. The bounded 
context SensorProcessing processes the raw sensor data and provides semantically 

A Context Map as the Basis for a Microservice Architecture 129



 

Figure 3: Proposed Context Map of the Connected Car Domain 

enriched IoT data via an API. An example of how IoT platforms manage their sensor 
data with an IoT gateway and offer their sensor data by providing an API is given in 
[MK+17]. Functionalities for one remote controlling the vehicle are offered by the 
bounded context RemoteControl. The bounded context Diagnostic includes aspects like 
driving behavior analysis and telemetry data transmission. The bounded context Mainte-
nance uses diagnostic data to perform predictive maintenance. If necessary, remote 
maintenance is handled by this bounded context. In addition, information from the 
bounded context Vehicle can be used to determine the functions supported by the vehi-
cle. The bounded context Vehicle is one of the most important ones, because it offers the 
data base for many other bounded contexts. 

In addition to the vehicle management, a customer management is required. This sub-
domain is needed in a connected car domain and the derived microservice architecture, 
even though no such category exists. Therefore, we added the subdomain 
CustomerManagement. This subdomain manages the data of the customer. For example, 
only the owner (or privileged users) of the car should be allowed to use the remote-
control service for locking and unlocking the vehicle. The user-specific information is 
handled by the bounded context Driver. Since the customer is bound to contracts, we 
added a bounded context Contract. The customer data could be provided by a foreign 
identity and access management (IAM) system. The bounded context Driver uses the 
foreign bounded context UserDirectory. The UserDirectoryACL provides an additional 

130 Sebastian Abeck et al.



layer and handles the transformation of the external and internal data for the bounded 
context Driver. Thus, the bounded context Driver can use its own data representation. 

In our context map, the category driving management results in a subdomain 
DrivingManagement. An assisting system for parking helps the driver to simplify the 
parking process, whereas a parking system supports the driver to find free parking lots. 
In addition, services offering information about gas stations are part of this subdomain. 
Thus, we derived the bounded contexts Parking and GasStation which provide the neces-
sary information. A connection to an external payment service could simplify or fully 
automate the payment process. 

Further, there is the infotainment category which implies entertainment, information and 
smartphone integration. These services are outsourced into independent bounded con-
texts as Traffic, Multimedia, Weather, and Navigation, in order to be able to adequately 
handle the underlying domain logic. This is necessary to guarantee the understanding 
and uniform representation of the information. For example, multimedia can also be 
separated into a bounded context, which takes over the connection to third parties and 
ensures uniform formats for video, image, and audio. 

One of the most relevant subdomains in the context map of the connected car domain is 
SafetySecurity. We established a bounded context for each of the subcategories, since 
each of these can be encapsulated as a separate service: The bounded context 
TheftProtection may offer an alarm (locally and on the smartphone), as well as the track-
ing of the vehicle on the smartphone and automatic associated damage reports. In case of 
a technical defect or an accident, the bounded context Emergency can process the data. 
Through the connection to the bounded context Vehicle, relevant vehicle-specific data 
can be automatically retrieved and transmitted for the intervention teams. 

The classification of the category comfort into the microservice architecture is not 
straightforward because the subdomain Comfort does not fit the connected car domain. 
However, several subdomains can be derived from this category. A payment provider is 
required to process the payment. Therefore, a new bounded context Payment is derived 
and placed into the subdomain PaymentManagement. Further, the category comfort 
contains the automatically pre-setting of the seat position for the driver. For this reason, 
the bounded context Driver manages the driver together with their data and personalized 
vehicle settings which could be used for a car sharing application. 

The fleet management is particularly relevant for car sharing or for company fleets. A 
distinction between analysis, optimization, and guidelines is important for this area. The 
owner of the vehicle is a company, while the driver is an employee. Based on this, the 
functionalities and authorizations differ in the context of fleet management; the company 
is given access to data such as locations (logistics/just-in-time) and fleet consumption. 
These issues are captured in the subdomain FleetManagement. The bounded context 
Fleet is responsible for cross-fleet analysis, while the bounded context Policy can be 
used to define certain rules that must be observed by the vehicles in the fleet. 

A Context Map as the Basis for a Microservice Architecture 131



6 Case Study: Electric Car Charger Application 

The connected car context map we have developed in the last chapter builds the funda-
ment for all applications of this domain. One such application is the Electric Car Charger 
(ECC) which we informally describe in Section 6.1. In the following Section 6.2, we 
show how ECC fits into the connected car context map and we illustrate the develop-
ment process with the example of the ECC application. We summarize the benefits of 
the context map's use for software development in Section 6.3. 

6.1 ECC Domain Objects and Relationships 

The ECC application implements a software solution for charging stations for electric 
cars. This application allows the user to search for charging stations displayed on a map 
view. Furthermore, it is possible to filter these stations based on several attributes, e.g. 
by plug type. The ECC also enables a monitoring function during the charging process to 
obtain further information during the charging.  

 

Figure 4: Domain Sketch of the ECC Application 

Figure 4 shows a sketch of all relevant subjects and objects and their relations. The 
sketch provides an overview of the application-related part of the domain. The central 
element of the sketch is the charging station. A charging station can be a public station 
which could be installed, for example, at a parking lot or a private station which can be 
installed from a company at its private property. A customer is also the driver of the e-
car. A driver can use the ECC application to (i) get information about the charging sta-
tion, (ii) monitor the charging process, (iii) search a public station, and (iv) show all 

132 Sebastian Abeck et al.



public stations along a certain route the driver wants to take. An e-car can charge its 
battery at a charging station which a provider provides. When an e-car is charged at a 
public station the station generates a bill. 

6.2 Use of the Context Map 

The ECC context map was developed with the help of the overall context map of the 
introduced connected car domain. The proposed context map in Figure 3 shows the 
placement of the ECC by dyeing the relevant ECC objects in grey. The ECC-relevant 
parts of the context map were identified as follows: The main part for the ECC is the 
bounded context ChargingStation in which the ECC application was developed. The 
bounded context Vehicle is required to access the information concerning the battery of 
the vehicle. Due to the fact that the vehicle is related to the bounded context Driver, it is 
possible to get information about the driver. The driver also provides the contracts of the 
driver through the bounded context Contract. The contract for the usage of a private 
charging station is stored in this bounded context. The relationship to the bounded con-
text Payment is required for the payment of the charging process. 

The development process that is used during the development of the ECC application is 
based on Behavior-Driven Development (BDD) [SM15] and Domain-Driven Design 
(DDD) [Ev03]. Figure 5 shows how the context map is related to software development 
artifacts. During the analysis phase, the required functionalities are written in Gherkin 
features which are the central BDD artifact. The advantage of Gherkin is that the fea-
tures can not only be written in a human-readable way, but also be executed and tested. 
Each Gherkin feature belongs to one bounded context, which is also a candidate for a 
microservice. A bounded context usually consists of several features. 

A Context Map as the Basis for a Microservice Architecture 133



 

Figure 5: Context Map and related Software Development Artifacts 

One feature of the ECC is searching for a public station (see Figure 5). This feature 
should display all public stations on a map view. During the design phase, the context 
map for the ECC application was designed. The ECC application was realized in the 
bounded context ChargingStation. For the technical interface of the resulting 
microservice, a web API based on the architectural style REST (REpresentational State 
Transfer, [Fi00]) was designed which offers the required functionality of the ECC. Fig-
ure 6 shows an excerpt of the Swagger UI for the request GET/public-stations/{id}. 

The implementation of the backend and frontend was split and developed by two teams 
that could work almost independently of each other. The frontend team implemented the 
graphical user interface for the ECC, whereas the backend team implemented the re-
quired functionality in the backend and exposed it via the web API. The data of the pub-
lic stations can be accessed via one of the web API methods, in particular the GET 
/public-stations method. 

134 Sebastian Abeck et al.



 

Figure 6: GET Request for a Specific Charging Station 

Figure 7 illustrates the map view as the central frontend element of ECC. Charging sta-
tions that are in close proximity are clustered, as shown by the numbered black dots on 
the map. 

 

Figure 7: Map View of the ECC Application 

Depending on the zoom level, the points are clustered together. When the zoom level is 
increased the clusters are resolved. Single charging stations are indicated by the bolt 
icon. An orange bolt icon means that the charging station is currently not available, 
whereas a green icon indicates a currently available charging station. The blue dot repre-
sents the current position of the user. The filter options described in Section 6.1 can be 
applied in the left menu. Further and detailed information about a charging station is 
available when one clicks the icon of a charging station. 

A Context Map as the Basis for a Microservice Architecture 135



6.3 Benefits of the Context Map for the Development of Microservices 

A context map introduces a structure of a domain that is elaborated by domain experts 
over a long period of time. The knowledge of the domain is processed in a way that the 
microservice architecture can be derived from the context map and the microservices 
from the including bounded contexts. Whenever a new application adhering to the do-
main should be developed the software development team benefits from the domain 
knowledge captured by the context map. In the example of the Electric Car Charger, the 
connected car context map provides a primary architectural structuring of this applica-
tion (e.g. VehicleManagement including Vehicle, DrivingManagement including 
ChargingStation, etc., see Figure 3) in a way that the connected car application, ECC, 
fits into the overall domain structure, and thus into the overall connected car 
microservice architecture derived from this structure. This enables the re-use of 
microservices that were implemented during the development of former connected car 
applications. In our specific case, before the ECC application, a car sharing application 
was developed which, among others, required the implementation of the Vehicle and the 
Driver bounded context as microservices. Since the car sharing application and the ECC 
application are based on the same connected car context map, they can share parts of the 
map, in this specific case microservices related to the vehicle and the driver. The more 
applications based on the context map are developed the more microservices can be re-
used by newly developed applications. 

7 Conclusion 

A sound understanding of the domain for which a software application should be devel-
oped is necessary. A misunderstanding of the stakeholders who should have the domain 
knowledge and the developer of the software is the main reason why software projects 
often fail [Sm15]. In the connected car domain a common understanding is constantly 
growing because there is a high demand on flexible and environmentally friendly mobili-
ty solutions. So far, this understanding is documented in an informal way mostly in 
white papers from companies. We presented an approach on how to formalize the do-
main knowledge that is available in the field of connected car. Our approach is based on 
the widely accepted software design concept of Domain-Driven Design. Since this con-
cept provides no formalization on the level of the modeling language, we extended the 
(also well accepted) Unified Modeling Language to be able to specify the strategic and 
tactical modeling parts of the domain model by different diagrams. A central diagram 
which expresses the main structure of the domain is the context map. In this paper, we 
proposed an initial draft of a context map for the connected car domain. Certainly, the 
concrete subdomains and including bounded contexts are subject for further discussions. 
The real value of our contribution is the systematic and formally sound approach on 
which the discussion of the domain knowledge with experts from the domain can be 
started – and documented in a way that this knowledge can be directly used in a struc-
tured development process. We believe that the close connection of domain knowledge 

136 Sebastian Abeck et al.



capturing (also called knowledge crunching) with the software development process is a 
main advantage of our approach. 

We demonstrated our approach with the example of the microservice-based software 
system Electric Car Charger. We have shown how the context map becomes a central 
design artifact of the software development process. The context map expresses the main 
structure of the domain and makes sure that the independently developed microservices 
are fitting into an overall connected car service landscape. Our approach guarantees that 
the model and its implementation are always in sync – according to our practical experi-
ence this is one of the most important demands of Domain-Driven Design. So far, the 
alignment of model and implementation is mainly done manually leaving room for mod-
el-to-code and code-to-model automation. 

References 

[Br03]  Manfred Broy: Automotive Software Engineering. 25th International Conference on 
Software Engineering, 2003. 

[BG+09]  Manfred Broy, Mario Gleirscher, Stefano Merenda, Doris Wild, Peter Kluge, Wolfgang 
Krenzer: Automotive Architecture Framework: Towards a Holistic and Standardised 
Sys-tem Architecture Description, Technical Report of the of the Technische Universität 
München and White Paper of the IBM Cooperation, June 2009. 

[Co+16]  Riccardo Coppola, Maurizio Morisio:  Connected Car: Technologies, Issues, Future 
Trend. ACM Computing Surveys, Vol. 49, No. 3, Article 46, Publication date: October 
2016. 

[DK12]  Vivek Diwanji; Nilesh Karamarkar: Exploring the Connected Car, Whitepaper, cogni-
zant. 2012, URL: https://www.cognizant.com/InsightsWhitepapers/Exploring-the-
Connected-Car.pdf, [retrieved: 2019.04.02]. 

[DK+18] Soumya Kanti Datta, Mohammad Irfan Khan, Lara Codeca, B. Denis, Jerome Haerri, 
Christian Bonnet: IoT and Microservices Based Testbed for Connected Car Services, 
IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia 
Networks" (WoWMoM), p. 14 – 19, 2018. 

[Ev03]  Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Ad-
dison-Wesley Professional, 2003. 

[Fi00] Roy T. Fielding.: Architectural Styles and the Design of Network-based Software Archi-
tectures, University of California, Irvine, Dissertation, 2000. 
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf, [re-
trieved: 2019.04.02].  

[HG+17]  Benjamin Hippchen, Pascal Giessler, Roland H. Steinegger, Michael Schneider, Sebas-
tian Abeck: Designing Microservice-Based Applications by Using a Domain-Driven De-
sign Approach, International Journal of Advances in Software, ISSN 1942-2628, vol. 10, 
no. 3&4, pages 432 - 445, 2017 

[HS+19] Benjamin Hippchen, Michael Schneider, Iris Landerer, Pascal Giessler, Sebastian 

A Context Map as the Basis for a Microservice Architecture 137



Abeck: Methodology for Splitting Business Capabilities into a Microservice Architec-
ture: Design and Maintenance Using a Domain-Driven Approach, Conference on Ad-
vances and Trends in Software Engineering (SOFTENG 2019), Valencia, 2019. 

[KA+16] Per-Henrik Karlsson, Hong K. Ahn; Byeongmin Choi: Connected Car – A New Eco-
system, Ipsos Business Consulting. 2016, URL: 
https://www.ipsos.com/sites/default/files/2016-06/022.1-connected-car-a-new-
ecosystem.pdf, [retrieved: 2019.04.02]. 

[MK+17] Arthur de M. Del Esposte, Fabio Kon, Fabio M. Costa, Nelson Lago: InterSCity- A 
Scalable Microservice-based Open Source Platform for SmartCities, In Proceedings of 
the 6th International Conference on Smart Cities and Green ICT Systems 
(SMARTGREENS), pages 35-46, 2017. 

[Ne15]  Sam Newman: Building Microservices, O’Reilly Media, Inc., 2015. 

[PK+16] Patrizio Pelliccione, Eric Knauss, Rogardt Heldal, Magnus Agren, Piergiuseppe Mal-
lozzi Anders Alminger, Daniel Borgentun: A proposal for an Automotive Architecture 
Frame-work for Volvo Cars, IEEE Workshop on Automotive Systems/Software Archi-
tectures, 2016. 

[SH+18]  Michael Schneider, Benjamin Hippchen, Sebastian Abeck, Michael Jacoby, Reinhard 
Herzog: Enabling IoT Platform Interoperability Using a Systematic Development Ap-
proach by Example, Global Internet of Things Summit (GIoTS). IEEE, 2018. pages 1 – 
6, 2018. 

[Sm15]  John Ferguson Smart: BDD in Action – Behavior-Driven Development for the whole 
software lifecycle. Manning Publications, 2015. 

[TH+18]  Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu: Identifying Micro-
services Using Functional Decomposition. International Symposium on Dependable 
Software Engineering: Theories, Tools, and Applications. Springer, Cham, 2018. 

[VA+14]  Richard Viereckl, Jörg Assmann; Christian Radüge: In the fast lane – The bright future 
of connected cars, strategy&., 2014, URL: 
https://de.scribd.com/document/379805993/Strategyand-In-the-Fast-Lane-pdf, [re-
trieved: 2019-04-02]. 

[Ve13]  Vaughn Vernon: Implementing Domain-Driven Design. 1st. Addison-Wesley Profes-
sional, 2013. 

138 Sebastian Abeck et al.


