
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 43

Learning how to prevent return-oriented programming

efficiently

David Pfaff 1 Sebastian Hack1 Christian Hammer1

1 Extended Abstract

The discovery of recent zero-day exploits against Microsoft Word, Adobe Flash Player and

Internet Explorer demonstrate that return-oriented programming (ROP) is the most severe

threat to software system security. Microsoft’s 2013 Software Vulnerability Exploitation

trend report found that 73% of all vulnerabilities are exploited via ROP. The core idea of

ROP is to exploit the presence of so-called gadgets, small instruction sequences ending

in a return instruction. By chaining gadgets together, an attacker is able to build complex

exploits. The apparent popularity of ROP is explained by its power to bypass most con-

temporary exploit mitigation mechanisms, such as data execution prevention (DEP) and

address space layout randomization (ASLR). DEP and similar page-protection schemes

prevent the execution of injected binary code, but ROP re-uses code already present in the

executable memory segments, eliminating the need to inject code. ASLR randomizes the

location of most libraries and executables, however, finding code segments left in a few

statically known locations is often enough to leverage a ROP attack. Since the inception

of ROP by Shacham [Sh07], research on ROP resembles an arms race: emerging defense

techniques are continuously circumvented by increasingly subtle attacks [CW14].

In our paper [PHH15], we take a novel, statistical approach on detecting ROP programs.

Modern microprocessors spend most of their circuits on machinery that optimizes the exe-

cution of programs generated by compilers from “high-level” languages. Among this ma-

chinery are caches, translation look-aside buffers, branch predictors, and so on. To assist

programmers in detecting performance problems, a modern CPU can record several hun-

dred different kinds of micro-architectural events that occur during program execution

(e.g. mispredicted branches, L1 cache misses, etc.). These events are counted by the CPU

in special registers, the so-called hardware performance counters (HPCs).

In this paper, we claim and experimentally verify that the execution of a ROP program

triggers such hardware events in a significantly different way than a conventional program

that has been generated by a compiler. Essentially, micro-architectural events are a side

channel by which a ROP program becomes distinguishable from a normal program at run

time. There are several considerations that support this hypothesis: First, ROP programs

use only indirect jumps (returns) to control the program flow. Common processor heuri-

stics to detect the target of the return are useless in a ROP program because they do not

1 CISPA, Saarland University, lastname@cs.uni-saarland.de



44 David Pfaff et al.

follow the call/return policy. Second, ROP gadgets are small and scattered all over the code

segment. Thus, there is no spatial locality in the executed code which should be observable

in counters relevant to the memory subsystem.

We exploit the deviant micro-architectural behavior of ROP programs by training (using

existing ROP exploits and benign programs) a support vector machine (SVM) based on

profiles of hardware performance counters. Note, that despite our intuition we did not

short-list any HPC types for training. We receive a classifier to distinguish ROP from

benign programs and use it in a monitor kernel module that tracks the evolution of the per-

formance counters and classifies them periodically. If the classifier detects a ROP program,

defensive actions, like killing the process, can be taken.

We quantitatively evaluate the performance impact of HadROP on benign program runs

using the SPEC2006 benchmark: HadROP incurs a run time overhead of 5% on average

and of 8% in the worst case. We also establish the effectiveness and practical applicabi-

lity of HadROP in several case studies that show that HadROP detects and prevents the

execution of a ROP payload of an in-the-wild exploit on Adobe Flash Player, 25 new

ROP payloads generated by the ROP-payload generator Q that exploit manually injected

vulnerabilities in GNU coreutils, Blind ROP [Bi14] of an nginx web server and multiple

recent enhancements [CW14, Da14] that allow ROP to bypass previous hardware-assisted

detection schemes. HadROP detects and prevents those attacks in any practical scenario.

References

[Bi14] Bittau, Andrea; Belay, Adam; Mashtizadeh, Ali; Mazieres, David; Boneh, Dan: Hacking
blind. In: Proceedings of the 35th IEEE Symposium on Security and Privacy, S&P. 2014.

[CW14] Carlini, Nicholas; Wagner, David: ROP is Still Dangerous: Breaking Modern Defenses.
In: 23rd USENIX Security Symposium (USENIX Security 14). USENIX Association,
San Diego, CA, pp. 385–399, August 2014.

[Da14] Davi, Lucas; Sadeghi, Ahmad-Reza; Lehmann, Daniel; Monrose, Fabian: Stitching the
Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow Integrity Protection. In:
23rd USENIX Security Symposium (USENIX Security 14). USENIX Association, San
Diego, CA, pp. 401–416, August 2014.

[PHH15] Pfaff, David; Hack, Sebastian; Hammer, Christian: Learning How to Prevent Return-
Oriented Programming Efficiently. In: Engineering Secure Software and Systems, pp.
68–85. Springer, 2015.

[Sh07] Shacham, Hovav: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proceedings of the 14th ACM conference on Computer
and Communications Security. ACM, pp. 552–561, 2007.


