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Abstract: This work proposes an implementation of the glass maze algorithm pro-
posed by Carlo A. Trugenberger and presents a short summary of its theoretical basis.
The implementation is roughly tested with synthetic fingerprints and the experimental
results and findings during the testing phase regarding security issues and performance
are discussed. It could be seen, that even though from a theoretical standpoint the sys-
tem seems to be stable against brute force attacks, under certain circumstances the
system may still be vulnerable to brute force attacks.

1 Introduction

With the help of cryptography it is possible to provide confidentiality, non-repudiation, in-

tegrity and authenticity. One of the big problems of traditional cryptography is the size of

its keys. The size of the keys limits the possible applications of cryptographic functions.

While on the one hand, longer keys often guarantee for a higher level of security and a

wider search space for brute force attacks, they are also in most cases not usable for mem-

orization by a human. This problem gets intensified by the fact that most service providers

use different cryptographic techniques and most of the time issue their own keys which

makes it even harder for the user to remember the keys. One way around this problem

is the idea of biometric cryptosystems. Biometric cryptosystems combine biometric and

cryptographic systems and methods in order to make them more human usable. Biometric

features, depending on the type that is used, can under normal circumstances neither be

forgotten nor lost. The biometric trait is used as the key of the system. These so called

templates of the user need to be saved in order to use them. This fact leads to a new prob-

lem: How can be made sure, that the biometric template data can not be stolen or abused in

any way? The protection of these templates is not only a privacy issue but also an issue of

security. In order to solve this problem the fuzzy fingerprint vault was developed [CKL03].

The fuzzy fingerprint vault is used to protect the minutiae data of a fingerprint. The se-

curity of the fuzzy vault is based on the difficulty of polynomial reconstruction [Tru11].

While the fuzzy fingerprint vault helps in decreasing the risk of stolen biometric template

data and reduces privacy issues, it was shown to be vulnerable to brute force [Mih07] as
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well as cross-matching attacks [SB07]. Due to these problems another scheme is needed

in order to replace the fingerprint vault. Because of this, Carlo A. Trugenberger proposed

the idea of the glass maze algorithm as a new way for template protection.

2 The Hopfield Model

The Hopfield model is a neural network which is based on the Spin Glass Model. The

Hopfield model was designed to model the associative memory of the human brain. It

is able to recognize patterns which it previously learned [AGS85]. A mechanic that can

be used for key retrieval as proposed by Trugenberger in [Tru11]. The Hopfield model

consists of N binary neurons which may take one of two different states: firing (1) and

resting (−1). The states of all neurons combined is considered the current state of the

system. The neurons are connected by symmetric synapses with coupling strength wij =
wij and wii = 0 which makes them interact with each other. Depending on the sign

of the coupling strength it can either be interpreted as inhibitory (< 0) or exhibitory (>
0). The process of recognizing a pattern is done via evolution of the network state. The

dynamic evolution of the current state by random sequential updating of neurons is defined

as follows:

si(t+ 1) = sign[hi(t)] (1)

hi(t) =
∑

i )=j

wijsj(t) + θi (2)

hi is called the local magnetization of neuron si. The value θi is a threshold value that

can be used to control when a neuron should change it’s state. Trugenberger proposes this

factor should be set to 0 [Tru11]. The synaptic coupling strength wij is chosen according

to the Hebbian learning rule [Mov90] which is described by the following formula:

wij =
1

N

∑

µ=1...p

σµ
i σ

µ
j (3)

The σµ
i , µ = 1...p are binary patterns that should be memorized by the neural network. The

associative memory is defined as a dynamical memory that, upon preparing the network in

an initial state s0i , retrieves the stored pattern σλ
i that most closely resembles the presented

pattern s0i . Resemblance is defined by minimizing the Hamming distance between both

of these configurations. The described mechanic encodes all the information that is stored

in the neural network into the synaptic coupling strengths [Tru11]. As stated before, the

neural network will try to retrieve patterns by dynamically updating the network state with

the previously defined functions. With these neuron updates the neural network uses a

hill climbing dynamic to retrieve patterns. The patterns which were stored in the neural

network correspond to local minima of the system. This means that the stored patterns
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are attractors for the dynamic network updates which in turn means that the system will

evolve till it overlaps with the closest stored pattern. At that point the state will not change

anymore. The behavior of the Hopfield model depends on the so called loading factor

a = p/N which is the ratio between the stored patterns and the number of neurons of

the system. By analyzing this factor in the thermodynamic limit p → ∞, N → ∞ it is

possible to find three distinct sectors which are further described in [Tru11]:

a < 0.051: In this sector the system is in a ferromagnetic phase. This means that there are

global minima that correspond to all stored pattern. This means that an exhaustive search

for all stored patterns may be organized.

a > 0.138: The system is in a state of chaos where all retrieval capabilities are lost and no

information can be retrieved successfully.

0.051 < a < 0.138: In this sector the system is in a mixed spin and ferromagnetic phase.

This is the ideal sector for hiding and retrieving the key because the number of minima is

increased exponentially and network states that are close to a stored pattern will converge

to the closest (in Hamming distance) stored pattern. If the state is sufficiently different

from the stored patterns it will converge to a minimum that was not stored.

3 The Glass Maze Algorithm

The enrollment of a fingerprint consists of a number of non-trivial steps. The first of these

steps is the so called quantization. In this step the fingerprint is provided in the form

of M pixel coordinates (xi, yi), where M corresponds to the amount of minutiae of the

fingerprint. These coordinates are now used to generate a system configuration for the

Hopfield model to remember. This is done by dividing the image of the fingerprint into N
squares of almost equal size. Every one of these N squares corresponds to a neuron. A

neuron can take two states: -1 if there is no minutiae in the corresponding square and 1

if at least one minutiae is in the square. The configuration that is generated out of this is

called σfp. The next step is to generate the key configuration σkey . The key is created by

randomly flipping k bits of σfp. This means that σkey and σfp have a Hamming distance

of k. This way the fingerprint of the user is never directly stored in the system. After

generating the key the next step is to generate p − 1 random bit patterns. These patterns

are then used to bind the key. The key binding mechanism is described by the following

function:

wij =
1

N

∑

µ=1...p

σµ
i σ

µ
j (4)

σ1

i = σkey
i (5)

σµ
i ε{−1, 1}N , µ = 2...p (6)

The number of patterns must be chosen according to loading factor 0.051 < a < 0.138 as
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it was described in section 2. Trugenberger proposes a = 0.1 as a good choice. In the last

step the it must be assured that the fingerprint can actually retrieve the generated key. This

is done by simply trying to retrieve it via key retrieval. If key retrieval fails, the key must

be generated by lowering the value k and trying it again. The key retrieval corresponds to

the dynamic network updates of the Hopfield model. The key retrieval is achieved by first

quantizing the fingerprint and the resulting configuration σfp is then chosen as the systems

initial state s0i . The state is then dynamically evolved as described in 2 until the system

reaches a minimum. If the provided fingerprint was part of the keys basin of attraction, the

key will be retrieved successfully [Tru11].

4 Implementation

The implementation of the glass maze algorithm was mostly done the way it was proposed

by Trugenberger in [Tru11]. Some parts were altered and will be discussed in further

detail. The enrollment process was split up into five different non-trivial steps:

1. Quantization of the fingerprint

2. Key generation

3. Random pattern generation

4. Coefficient matrix calculation

5. Enrollment verification

The quantization (1) of a fingerprint is the process of creating σfp from raw fingerprint

data. The fingerprint data is provided in the form of a list of minutiae coordinate pairs M.

Coordinate pairs (x, y) represent minutiae. Other necessary parameters are the dimension

D of the fingerprint scanner image, as well as the number of neurons N . During quanti-

zation the minutiae are mapped directly to the neurons which are represented by a vector

S of size N . The overall number of pixels on one image of the scanner can be calculated

with the given dimension parameter which are interpreted as width and height. These

two are used to calculate the number of pixels the image consists of. With the help of the

given number of neurons N we can compute the amount of pixels that represent the same

neuron field. All pixels together are then interpreted as a long string of points. The minu-

tiae are placed on this string and afterwards are mapped onto their corresponding field in

the neuron vector via the following formulas:

pi = yi · width+ xi, i = 1...M (7)

Si = ⌈(
N · (pi + 1)

width · height
)⌉, i = 1...M (8)
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The described method is not the best way to quantize a fingerprint, but it is one of the

easier and faster ways to implement it. This part of the implementation is probably the

part that can be improved the most. The big problem with this method of quantization

is that it does not make use of the fingerprints properties. There are positions that are a

lot more likely to contain minutiae as others. The edges of an image for example will be

a lot less likely to contain minutiae than the rest of the image. This makes it easier for

an attacker since he may exclude those areas in brute force attacks which decreases the

overall search space. The main decision for this approach was the ease of implementation

and flexibility for different image sizes.

The key generation (2) depends on the quantized fingerprint σfp and the number of flipped

bits k. The flipping of bits is done in rounds. In each round a value between 1 and N is

chosen at random and used as the index of the neuron that will be flipped. The algorithm

repeats the rounds until the Hamming distance between the currently derived key σkey and

σfp is k.

The random pattern generation (3) takes the number of neurons N and the loading factor

a. It uses a to calculate the number of random patterns p− 1 and generates a N × (p− 1)
matrix R of random patterns. Each field of these patterns represents a neuron as it was

described in section 2. A random pattern is generated by creating a vector of N random

values between 0 and 1. The values in this vector are then rounded and mapped in a way

that values ≥ 0.5 are mapped to 1 and values < 0.5 are mapped to -1. Each of these

vectors represents one column of the matrix.

The coefficient matrix calculation (4) was not directly mentioned in [Tru11] but in [Tru12].

This step is done in order to hide the stored patterns. This is achieved by applying the Heb-

bian learning rule, which was mentioned in section 2, to the previously generated random

patterns and the key. The function takes the parameters N , σkey as well as the previously

created matrix R and outputs a N × p matrix W containing the coupling strengths.

In the last step the enrollment verification (5) is done to ensure that the provided fingerprint

is able to retrieve the previously generated key. This is done by calling the key retrieval

mechanism with the fingerprint M and the matrix W and check if it returns the key σkey .

If it works, the enrollment is finished. If it did not work, k is decreased by one and from

step (2) onwards all steps are repeated. The overall output of the enrollment is the matrix

W which contains the key as well as the random patterns.

The key retrieval mechanism was mostly implemented the way it was proposed by Tru-

genberger. The key retrieval takes the parameters W , the fingerprint coordinates M , the

dimension D of the scanner image as well as the number of neurons N . It starts by quan-

tizing the given fingerprint coordinates M . The quantized fingerprint σfp is then used as

the initial state of the network. The neurons are then evolved as described in 3 until the

Hamming distance between the old neuron state si−1 equals the newly evolved neuron

state si. An important thing to note is, that Trugenberger defines the updating of neurons

as random and sequential. In order to ease the implementation, it was decided to update

each neuron in strict rotation. Such an update may be considered as a round. After each

round it is checked, whether the system has reached a minimum or if further updating is

required. If updating was done randomly it would be harder or more error prone to deter-
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Figure 1: Number of untrained minima

mine if the system has reached a minimum. During testing no significant differences could

be found between different rotations, though this would need further testing.

5 Experimental Results

For all experiments described only synthetic fingerprints were used to avoid problems

due to alignment and in order to test the algorithms on a more general level. During the

implementation and testing phases a first glimpse on possible problems could be examined

pretty early on. One problem was the resemblance between quantized fingerprint, key and

randomly generated patterns. In relation to the number of neurons the fingerprints and the

key resemble each other a lot more then they would with the randomly generated patterns.

This would mean that the FAR can be quite high. This stems from the fact that the used

random generator most of the time creates a rather uniform pattern while fingerprints often

do not tend to have a uniform pattern. The associative memory will relate fingerprints to

each other more often then it would with random patterns or any other minimum at all.

Another factor that plays into this can be seen in figure 1. The greater we chose the factor

N of neurons, the more likely it is that key retrieval will actually return a previously trained

pattern rather then a random minimum. The test was done with 1000 synthetic fingerprints

per value of N . The factor a was kept at 0.1 which was proposed by Trugenberger to be

close to a good choice. This also makes the hiding of patterns within the coefficient matrix

a rather useless trial, because an attacker may brute force and guess most of the saved

patterns in minimal time given that N was chosen big enough. A way to circumvent this

problem could be in choosing parameter k according to the randomly generated patterns to

make the pattern more uniform or by improving the quantization step to generate a more

uniform distribution which will make the quantized fingerprint more similar to the saved

patterns.

Another experiment was done testing the false acceptance rate for fixed values of N . In

these experiments the loading factor a was varied. For each chosen value of a 5000 key

retrievals were executed. What can be seen is that for low values of a the system often
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(a) N = 64 (b) N = 128

Figure 2: Falsely accepted fingerprints for fixed N and variable a

falsely accepts the presented fingerprint while for rather high values of a the system rarely

falsely accepts a fingerprint. What is to note though is, that the higher the value N is

chosen, the better the false acceptance rate gets for smaller values of a. Figure 2 displays

this asymmetric observation. For N = 128 the curve is a lot steeper then for N = 64. As

Trugenberger described in [Tru11], higher values of a set the system in a state of chaos so

that saved patterns are not retrievable. Further testing this effect may be able to loosen the

lower bound for higher values of N .

As for performance the system was tested according to the number of iterations the key

retrieval mechanism needs to find a minimum, as well as the average execution time of

finding a minimum. The results of the experiment can be seen in figure 3. For every

chosen value of N 5000 key retrievals were executed. For the testing a simple Intel i5

processor with 2.26Ghz was used. Something to note is, that per 16 additional neurons the

average number of iterations is increased by 38−40%. But while the system is exponential

and not linear, it is still growing rather slow. The average execution time on the other hand

is growing fast and is also exponential. This seems logical, as the number of computations

for one iteration grows with the number of neurons, as well as the number of iterations.

6 Conclusion and Future Work

Overall the proposed idea of Trugenberger seems promising. In order to protect the tem-

plates the system is required to make it hard for the attacker to get the stored pattern. The

privacy issue may be solved, but the security issues of the system can not be dismissed. A

big problems seems to be that, while the number of minima increases with higher numbers

of neurons, the actual search space seems to decrease because these minima are scarcer

reached. This limits the system to smaller numbers of neurons, which in return reduces

the time of its usefulness a lot. Further testing is needed to determine if this problem can

be circumvented and check the influence of the loading factor, k and neurons more. Also a
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(a) Iterations (b) Time

Figure 3: Performance measurements for time and iterations

better method for quantization should be implemented to increase the overall search space

by distributing the minutiae more. Further tests have to be conducted with real minutiae

data in order to check for FAR and FRR with real user data and check for the influence of

alignment.
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