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Locating mobile terminals is an important requirement not only for of-

fering location based services but also for handling emergency cases of non-

subscribed users, and radio surveillance. We propose a blind localization approach

which takes advantage of multipath propagation by using additional information

about the known locations of the main scattering objects, e.g. buildings. This in-

formation is processed by means of a simple ray tracing technique based on a 2D

geographic data base. We assume a single observation station equipped with mul-

tiple antennas which is able of estimating the directional and relative temporal

structure of the received multipath components. Exploiting the parameters of the

multipath components we propose a mobile terminal tracking algorithm based on

particle filtering technique.

Various methods have been proposed for estimating the location of mobile terminals for

example in cellular networks. Most of them are based on trilateration utilizing the Re-

ceived Signal Strength (RSS), Time of Arrival (ToA), Time Delay of Arrival (TDoA),

Angle of Arrival (AoA) of the signal as well as diverse combinations [SC05]. Those

methods presume close cooperation between the network infrastructure and the Mobile

Station (MS) and Line-of-Sight (LoS) connection.

However, there are many relevant application scenarios where no cooperation between

the terminal and the network infrastructure can be exploited. These include nonsub-

scribed MS localization for emergency and security aspects [KS06]. In this case, no a-

priori information about the transmitted signal and the timing reference is available.

Therefore, we need “blind” detection methods. Moreover, single station localization is

preferred which means that there is only one multi-antenna observing station (OS) which

is capable of AoA estimation.

It is well known that urban scenarios are affected by multipath propagation. Further-

more, the LoS connection between the base and mobile station is not always available.

Whereas missing LoS detrimentally affects trilateration techniques, there are methods

which can take advantage of the multipath structure of wave propagation. So-called
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fingerprint methods [SC05] belong to this class of algorithms. They are based on the

comparison (correlation) of measured radio parameters, e.g. DoA’s, to pre-calculated or

pre-measured reference data. This, however, needs an extensive and accurate database

which is not always available, especially for the applications considered here. A modi-

fied version which includes an on-site calculation of spatial fingerprints by 3D ray trac-

ing was proposed in [KS06]. This method uses a detailed 3D geographic data-base and

relies on a single elevated base station.

An alternative localization method which uses the proximity between the measured and

predicted multipath parameters has been defined in [AD06], and in [AK06] the verifica-

tion of this method on the measurement data has been carried out. Hereby, instead of 3D

terrain data 2D terrain data have been exploited which is justified by the low height of

both, OS and MS, on street level. On the other hand, access to 2D data is much easier

and algorithm complexity which is essential for the real-time requirements is considera-

bly reduced. Moreover, the electromagnetic properties of the propagating waves like the

signal strength have not been used since the material information of the surrounding

buildings is not available. Due to the remarkable differences the term geometrical mod-

eling approach (GMA) instead of ray-tracing prediction model has been submitted in

[AK06] in order to avoid the confusion. Other than the method proposed in [KS06] it

was furthermore assumed that blind space-time-filtering techniques [Wi04] can be used

to obtain the spatial and temporal characteristics of the radio channel even without prior

information about the transmitted signal. Still we should take into account that the “blind

case” implies missing temporal synchronization between OS and MS resulting in loss of

base delay information. That is, we possess only excess (or relative to LoS) delays and

DoA’s of multipath components.

Recording the OS measurements made at different positions and fusing them by means

of the Bayesian theory in [AK06] we achieved a better localization accuracy of the MS.

In this contribution we focus on the problem of tracking of a single moving MS using a

single static OS. Hereby, we apply the particle filtering techniques and analyze the per-

formance in synthetic urban scenarios. In the second section we present the dynamic

model with an implemented particle filter and in the third we will show some simulation

results.

In this section we will define a simple dynamic model for the moving MS and static OS.

Let us introduce the state vector

4T
Rkkkkk yxyx , (1)

where R is a set of real numbers, k is the time index and is a set of natural

numbers. and are the Cartesian coordinates of the MS and and specify

it’s

N

kx ky kx ky
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speed along the x - and - axis respectively. The position of the OS is assumed to be

known and constant . We assume that the target state evolves according

to the following discrete-time linear stochastic model:

y

T
000 yx

11111 , kkkkkk , (2)

where
T

1,1,1,21,21
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kykxky
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T

k vTvTvv is the process noise sequence

according to [BR01] and is the system matrix. Whereas
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1, ,0~ rkr Nv with and is the sampling interval. The measurements are

related to the target state via the nonlinear measurement equation:

yxr , T

kkk 0, . (3)

The measurement vector has the following structure:k

, (4)
T

11 PPk

where p is the excess/relative delay of the i -th multipath component ( ) andPp 1

p it’s DoA. P is the number of detected multipaths. 0,k is the measurement

function, which depends on the position of the MS and the OS. We would like to empha-

size that is a nonlinear function since the number and the values of the multi-

path parameters depend in a nonlinear fashion on the position of the MS and OS. The

measurement noise sequence

0,k

T

11 PPk consists of realizations

from the Gaussian distributions 2,0~
pp

N and 2,0~
pp

N .

In general, the modelled parameter values k
~ from the output of the GMA cannot be

identical to the observed values for two reasons: measurement uncertainties and

model imperfections. Here we assume that we have no modelling mismatch, that means

e.g. that the real measurement environment is perfectly reproduced by the GMA, the

measurement is influenced only by additive noise, so there are no other disturbing fac-

tors which can produce e.g. the “virtual” multipaths. The modelling mismatch issue will

be an object of our future investigation.

k

The dynamic model is now complete and we proceed to the tracking part of the algo-

rithm. Since the measurement equation is nonlinear we propose to use particle filtering,

which is able to cope with such types of problems. Particle filtering is a sequential
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Monte Carlo method where densities are approximated by a weighted set of samples.

There is a rich variety of particle filters. We selected the auxiliary sampling importance

resampling (ASIR) filter and will use the notation proposed in [RA04] in the sequel. Its

basic idea is to perform the resampling step at time 1k (using the available measure-

ment at time ), before the particles are propagated to time . In a first step of every

iteration, all weights are updated using the actual measurement and the likelihood

function

k k

k

i
kkp | according to

i
k

i
kk

i
k wpw 1| , whereby we choose

. The likelihood function is defined in [AD06] and its maximum cor-

responds to the most probable position of the MS. In the second step we normalize the

weights and resample using the algorithm described in [RA04]. Between the normaliza-

tion and resampling we calculate the mean and covariance of the state estimate. The

resampling eliminates the samples with low importance weights, multiplies the samples

with high importance weights, and stores the index of their parents, denoted by . In

the third step we generate the new set of particles according to this index

i
k

i
kk 1|E

ji

ji
kk

j
k p 1|~ and calculate the new weights using

ji
kk

j
kk

j
k ppw || (see

[RA04]). Finally, we normalize the weights and propagate to the next iteration. In the

next section we present the simulation results.

In this section we present some Monte Carlo simulation results of the previously ex-

plained tracking algorithm. We used a synthetic scenario depicted in Figure 1 with the

OS located at . We have generated 40 MS trajectories according to the

following dynamic parameters and initial values. The initial positions of the MS were

uniformly drawn from 2 rectangular regions centred at

m4060
T

0

m5m5 m120130
T

and

respectively. The initial value of the velocity was set to

for the first region and

m4080
T T

00 yx

m/s04
T

m/s40
TT

00 yx for the second region.

The sample interval T was assumed as 1s and the measurement period was limited to

50s, so . The process noise, which models the acceleration along the50,,1k x - and

- axis, was represented by 2 independent white Gaussian sequences with equal stan-

dard deviations (STD’s) of (see (2)). The measurements consisting

of the multipath parameters corrupted by additive noise are also assumed to be white

Gaussian processes (see (3)). The noise level of the delay and DoA parameters of all

multipaths among each other was identical during the same simulation run. Each trajec-

tory was tracked with different combinations of measurement noise STD values of

y

2m/s5,0yx

m7,3,1lightc
p

for path length and 5,3,1
p

for DoA. Furthermore, the multi-

paths with a single bounce scattering were considered and the number of detected multi-

paths lied between 3 and 12. The number of particles was 300.
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Figure 2 shows the mean position error over all 40 trajectories for all possible combina-

tions of path length and DoA STD values. We observe that the cases with higher STD

lead to a larger position error. A very important issue in every filter design is the consis-

tency test. There are three consistency criteria defined in [BR01], however we test only

the first one accepted to be the most important. It demands that the state errors should

have zero mean and magnitude corresponding to the state covariance as yielded by the

filter. We have tested the trajectories starting in the first region separately from those

starting in the second region. It was observed that in the first case the consistency crite-

rion was fulfilled whereas in the second case the consistency could not be accepted. The

reason for this behaviour could be the distinct multimodality of the likelihood function

resulting in the filter mismatch for certain MS tracks. That means that further investiga-

tions on this topic are required [Ko01].

OS

region1

region2

Example

trajectories

Figure 1: Measurement scenario Figure 2: Mean position error
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