
Exploring Software Variance with Hypermodelling
An exemplary approach

Tim Frey, Veit Köppen

Institut für Technische und Betriebliche Informationssysteme
Otto-von-Guericke University

Magdeburg, Germany
tim.frey@tim-frey.com; veit.koeppen@iti.cs.uni-magdeburg.de

Abstract: Framework manufacturers face the challenge to determine which parts
of frameworks are used and varied. Application developers want to know on which
framework elements their application is depending. Currently, programs need to be
parsed to extract information about framework usage what consumes time and
effort and makes information mining inflexible. Hypermodelling utilizes Data
Warehouse technologies for source code investigations to overcome the current
limitations. In this paper, we demonstrate that Hypermodelling is suitable to
explore software variance. We present reports based on real application data of one
project example to reveal multiple facts about the software variance. We show
visualizations at different granularity levels. This supports our theory that
Hypermodelling can be used to explore software variance in an easy way.

1 Introduction

Source code reuse is one of the key concepts in modern application development.
Programmers develop applications by using already encoded functionalities of
frameworks. Commonly, object-oriented inheritance of framework classes or interfaces
is used to employ predefined functionalities [Sc97]. Without loss of generality, we
restrict ourselves to Java as programming language in our examples. The types that get
inherited are in Java called superclasses and superinterfaces. In the following, we refer to
both as supertypes. Developers vary such supertypes by adding or altering functionalities
in subclasses, what we call children or inheritors [BMM10]. Hence, all distinct
inheritors, i.e. extenders or implementers, create a huge amount of diversification of the
original superclasses of the framework.

Framework manufacturers and application developers face the challenge to understand
how, where, and which framework elements are used. For instance, there is the desire to
know which methods are commonly implemented and overridden in subclasses. The
implemented methods point out a variation of the originally offered methods by the
frameworks supertype. Developers want to point out how different frameworks are used
within an application. The diversity of inherited classes and implemented methods gives
developers details on the variation of the frameworks used within the application. The
variation is important to draw conclusions on dependencies within a framework.

121

However, researchers put a lot of effort on source code mining [BMM10, GHH09,
ZZ11]. Source code mining is about extracting facts of source code and associated
artifacts to analyze them via machine learning algorithms [BMM10]. A main issue in
mining is that there is no standardized infrastructure to extract facts. Thus, before mining
starts, facts need to be specified and extracted. This consumes a lot of time and effort. In
order to advance source code analysis, we develop the Hypermodelling approach, see for
instance [Fr11, FKS11, Fr12]. Hypermodelling utilizes Data Warehouse (DW)
technologies to enable and infrastructure an analysis of source code with Online
Analytical Processing (OLAP) queries [HKP11]. This enables fast and flexible
investigations of source code through queries without having a complex fact-extract
scenario.

In our former work on Hypermodelling we visualized rudimentary queries on
annotations and inheritance [FKS11]. In this paper, we show that Hypermodelling can be
used to explore diverse facts on variances of frameworks. We depict reports and
visualizations that reveal facts on software variances at different granularity levels.
Hence, our contribution is to demonstrate that Hypermodelling can be used to do
investigations on software variance. Our reports give first clues what types of queries
can be composed with Hypermodelling. This supports our hypothesis that DW
mechanisms can be beneficial for software investigations.

First, we give some background information about Hypermodelling and our used
exemplarily used project. In the following, we present and discuss various reports. Then,
we describe related approaches and point out their similarity to the usage of our
Hypermodelling approach. Lastly, we draw conclusions and give an outlook to future
work.

2 Background

In this section, we recap the most important facts of Hypermodelling. Then, we describe
details about the project that served as base to generate reports with our Hypermodelling
approach.

2.1 Hypermodelling

Hypermodelling is developed on the idea to program analysis and DW. A more detailed
description is available in our former work [Fr11, FKS11, Fr12].1 DW systems are an
integrative component in business computing [In05]. They are used to assemble data of
different sources together. The integrated data are arranged into multi-dimensional data
structures, i.e. so called cubes, which serve as base for queries [HKP11]. The queries
allow aggregating different relations and hierarchies that occur in the data. For instance,
the revenues for a specific salesman in a specific area can be computed for a given time
period. Thereby, this query aggregates the region, the salesman and the time in relation

1Http://hypermodelling.com

122

to revenue indicator. Likewise, hierarchies can be abstracted. For instance, the region of
the salesman can be split into continents, countries and counties and the aggregates are
associated with the distinct revenues for those. Likewise, this can be done for other
hierarchies, like customer group, year, or department. Generally, the idea is that different
aggregations enable detailed investigations.

With Hypermodelling we introduce the idea that programming elements, like
annotations or classes, are similar to the data that is used within a DW. For instance,
classes are defined within a package hierarchy. Annotations are associated with classes
and their members. They are also defined in their own package. This is like the
association of a salesman to a region, time period, and revenues. The hierarchies in code
are similar to hierarchies of region or time. All together, we load source code into a DW
and realize the associations of classes, their inheritance, packages, and annotations as a
DW cube. This enables us to built queries on top of this cube and it creates the
possibility to compute different aggregations for code. For this paper, we combined the
cubes that were presented in our former work [FKS11] and built queries on it. The
results of queries on this cube are the reports that we present in this paper.

2.2 The Alfresco Project

In order to have valid and real world application data, we downloaded a head revision of
the Alfresco project2 from the corresponding version control system. Alfresco is a
popular open source content management system, written in Java. Then, we loaded two
subprojects (core and repository) of the whole Alfresco project into our DW. Thereby,
we also created types, coming out of other projects or the Java standard that were
referenced by classes of the Alfresco project. The following measures were computed by
queries against the processed cubes that were generated out of the loaded data. The total
amount of types in the Alfresco package is 3,651. These 3,651 types consist out of 2,866
classes, 658 interfaces, 124 enumerations, and 3 annotations. The total amount of
members is 42,823. These members are divided into three different annotation
parameters, 13,694 fields and 29,126 methods. It is interesting that the interfaces
declared in the Alfresco project define 4,612 members from which 3,770 are methods
and 842 are fields. This means a huge amount of constants is defined by interfaces.
Classes define 25,279 methods and 12,852 fields. Enumerations define 77 methods and
zero fields. The three Annotations defined in the project define three parameters
altogether. In the following, we use this project to exemplarily present reports with the
Hypermodelling approach. Note, other projects could be used similarly, e.g., [FKS11].

3 Hypermodelling Inheriting Variance

In the following, we present different reports based on the loaded project. First, we
provide an overview on project inheritance statistics. Then, we discuss how and which
packages get varied. Afterwards, we drill down to method and type level.

2 http://www.alfresco.com

123

3.1 Inheritance Overview

We present the amount of total inherited types and distinct inherited types in Table 1.
Types that are inherited are divided into superclasses and superinterfaces. The total
inherited types are the amount of children classes. The distinct types depict how many
different types serve as supertypes. The supertype and superinterface row indicates the
kinds of used supertypes. It can easily been seen that more classes are extended (2,798)
than interfaces are implemented (1,435). We compare the distinct types and see that the
situation is different for those. The diversity of classes is less as that for interfaces, but
they get more often extended than interfaces get implemented.

Table 1: Which kind of type is used as a supertype

Total inherited
types

Distinct inherited
types

Implementation ratio
(Total/Distinct)

Superclasses 2,798 377 7.42
Superinterfaces 1,435 625 2.3
Total 4,233 1,002 4.22

We use the indicator implementation ratio. With it, we enable a more concrete
comparison of distinct supertypes to the amount of subclassed types: The indicator
enables to compare the amount of distinct types with the total inherited types in one
number. Since classes or interfaces that implement or extend other types add commonly
new functionality to the existing one, they vary the original types. Therefore, we see
figure of implementation ratio as one indicator to measure the variance of supertypes.

The figure of the implementation ratio is useful to depict a standard variation. A high or
low value is a first indicator how intense supertypes are varied. When the figure is at a
high value, we can conclude that the defined standard of the supertype gets aligned a lot.
This means that the same types are often implemented or extended. Every time a type is
used it gets adapted to the specific application needs. This way, developers have a
starting point for further investigations to determine the types, responsible for high
variance. This is especially useful, when varied supertypes are updated. If supertypes
with a high ratio get updated, many children will be dependent on them. Thus, it is
recommendable to investigate how the children adjust the supertype to keep its future
version compatible to the inheritors. Furthermore, framework manufacturers can use the
ratio indicator to determine which types are mostly adapted. With that information they
can investigate how most developers varied the types. It is possible to depict if there is a
common use or functionality in the extending types. If so, this functionality can be
encapsulated into a new version of the supertype.

Additionally, we provide another perspective in Table 2. There, we show what type of
children inherits a supertype. As before, the figure of the implementation ratio is
presented. It is important to note that this table does not distinguish between type of the

124

supertype, i.e., if the supertype is a class or an interface.3 In total, most of the
implementing types are classes, followed by interfaces, and enumerations. Likewise, this
is the same for the distinct inherited types.

Table 2: Which kind of types are the children types

Total
inherited

Distinct
inherited

Implementation ratio
(Total/Distinct)

Implementing classes 3934 967 4,07
Implementing interfaces 171 75 2,28
Implementing enumerations 128 4 32

Total 4233 1002 4,22

The implementation ratio is very interesting in this table. We assume indicators are led
by classes, but we were surprised by enumerations. We can see that 128 enumerations
exist in the project and extend only four different supertypes. Since the number of
implementing interfaces is in total not much higher (171), we do a drill down
(refinement in the hierarchy level). There, we see that 104 children are directly derived
from the Enum class. 18 from the EnumLabel enum, two from the Comparable interface
and two from Serializable interface. Enumerations that have no supertype are derived, by
the Java language specification, from the “pure” enum supertype. Therefore, the
enumerations show a higher diversity than classes or interfaces. However, we learn from
the abstract views of Table 1 and Table 2 that the implementation ratio of classes
exceeds interfaces. This means: Classes seem to have a higher variance then interfaces.

3.2 Inheritance and Packages

We present a more detailed view of the variance of inherited types at the package level
in this section. First, we describe the source data that we used to generate various
diagrams. Secondly, we present an analysis which package is used most in total
numbers. Afterwards, the same analysis is done for distinct numbers. Finally, we show
an overview that depicts packages with a high implementation ratio.

3.2.1 Source Data
Table 3 presents an excerpt of the source data that we use to create our reports. The table
shows a query for packages and inherited type indicators. The package hierarchy is
expanded to a level where a developer can derive the original or meaning of the package.
In total, we split the report into 38 packages that contained the 1,002 distinct supertypes.

We show, that the supertypes used within the project are from the Alfresco project itself.
Nearly, half of the total used types is from org.alfresco. Likewise, over ¾ of the distinct
types are out of the project itself. Therefore, we compute the implementation ratio
without the project itself: It increases over 11.5.

Remarkably is also the ratio for the java.lang package. We perform a drill down into the

3We leaved this out to avoid a complex anything with anything table.

125

used types and discover that 1,195 classes inherit the object class. Likewise, there are
enumerations extending the “main” Enum and other classes that are extending language
functionalities. We conclude that also the java.lang package should be excluded. When it
is excluded the average implementation ratio drops down to 4.68. These operations are
comparable to drill down, roll-up, and drill-across in the DW domain. This illustrates the
application of the Hypermodelling approach. Note that all indicators are directly
computed within the cube and only “navigation” is required.

Table 3: Exemplary source data of inheritance at the package level

Package hierarchy Total
inherited types

Distinct
inherited types

Implementation ratio
(Total/Distinct)

org.alfresco 1,972 808 2.441
java.lang 1,404 11 127.64
org.springframework 214 40 5.35
junit.framework 184 2 92.0
org.antlr 87 6 14.5
Total 4,233 1,002 4.22
Without org.alfresco 2,261 194 11:65
Without org.alfresco
and java.lang 857 183 4.68

3.2.2 Dependency on Total Packages
In Figure 1, we visualize dependencies of the Alfresco project on super types. As
described before, the java.lang package and the Alfresco package are dominant,
therefore we kept them aside. The three emphasized slices, java.io, java.util, and
javax.jcr visualize dependencies on java.lang itself. We can also identify a heavy type
usage of the spring framework. Furthermore, we can conclude that the index code base
contains unit tests, since nearly a quarter is depending on the junit framework.

Figure 1: Dependency on total used types

126

3.2.3 Dependency on Distinct Packages
Figure 2 visualizes the distinct used types within the project. The two main used
packages are the Spring framework and the javax.jcr package. The jcr package is widely
used, because the analyzed application is a content management system.

Figure 2: Dependency on distinct types

Jcr contains the java content repository types. The Spring framework is used because it
is a web and Java enterprise application. All together it is interesting that the chart of
distinct types differs from Figure 1. For instance, the Junit framework that is extensively
used does not occur, because not many different types of it seem to be used.

3.2.4 Package Variance
In order to visualize variances of the packages we need a different kind of graphic that
does not limit the visualization of one variance on the costs of another. Therefore, we
use a bar chart. Figure 3 shows a bar chart of the implementation ratio of the different
packages in the project. We only show three packages with the ratio of one as proxy out
of space issues. Furthermore, we excluded the java.lang package and the
junit.framework package out of their high indicator value. Such outliers would crush the
diagram view and differences would hard to be recognized. Lastly, we show the average
implementation ratio line with value 4.68 (mean).

Figure 3 enables to depict the packages containing types that have a high variance in
their implementation. Therefore, we can see that java.io has a high variation. Likewise,
not much distinct types are used often of the aopalliance package. Probably, these are the
aspect enhancements. Antlr provides a grammar parser. The high ratio indicates that

127

various grammars are parsed. Additionally, quartz offers functionality to built timers into
the application, what indicates that the Alfresco application uses timers.

Lastly, it is interesting that ibatis, a database table-class mapper, and the Spring
framework are used at an average ratio. We interpret this out of the circumstance that
spring and ibatis are large frameworks. Thus, the total amount in the package of spring
and ibatis is much larger what leads to the different ratio.4

Figure 3: Implementation ratio for packages

However, like all other figures, the data of Figure 3 has been retrieved with a simple
multi-dimensional expression (MDX-Queries).5 The query language is declarative and
especially created to query multi-dimensional data easily. In order to give an impression
about the used query language, we present exemplarily the query that served as
foundation to generate Figure 3:

with member [Implementation Ratio] as
[Measures].[Type Inheritance Count] /
(count(([Parent - Type].[Id].children, [Measures].[Type Inheritance Count]) ,

EXCLUDEEMPTY)

SELECT {[Implementation Ratio]} ON COLUMNS ,
{[Parent - Package hierarchy].[Parent].[All].children} ON ROWS
FROM [Inheritance-Annotations-Cube]
WHERE ([Package Hierarchy].[Parent].&[‘org.alfresco’])

Listing 1: The query of Figure 3

4At this point it would be necessary to compare the children packages of the frameworks with the packages of
quartz and so on. We do not show them, to stick to the main focus to demonstrate exemplary applications of
our approach.
5For further information about the MDX language, see the language reference:
http://msdn.microsoft.com/en-us/library/ms145595.aspx and the XMLA standard: http://xmlforanalysis.com

128

In short, the query in Listing 1 computes dynamically the indicator [Implementation
Ratio]. The quotient is computed by the aggregation of the [Measures].[Type
Inheritance Count]) as dividend and the distinct count of the amount of
[Measures].[Type Inheritance Count]) measures as divisor. The SELECT applies the
computation to different packages of the corresponding cube (FROM [Inheritance-
Annotations-Cube]). Lastly, all other packages, except the org.alfresco ones, are
excluded as inheritors from the computation (WHERE ([Package
Hierarchy].[Parent].&[‘org.alfresco’])).

3.3 Method Variance Drilldown

With the information that is uncovered in the previous section we know that a huge
amount of types of the Spring framework is used within the application. Furthermore, a
few types out of Junit are intensively used. We present the top used types of the two
packages in Table 4. Three columns are already known and show the origin package of
supertypes, supertype name, and total inheriting types. We introduce a new indicator of
distinct method names in inheriting types to credit our drill down. This measure counts
the distinct method names occurring in types. This way, we see how many types subclass
a supertype and how much a supertype is varied in total.6

Table 4: Excerpt of the top used types of the spring and junit package

Supertype package Supertypename Distinct method names
occurring in inheriters

Total
Inheriting

org.springframework ApplicationContextAware 580 26
InitializingBean 578 56
AbstractLifecycleBean 351 42
ApplicationListener 175 7
… in total 40 types … in total 2,374 … in total

214
junit.framework TestCase 1326 170

TestSuite 2 14
Total 2 types Total ,1328 Total: 184

3.3.1 Method Variance
In order to explore the concrete usage of the InitializingBean and TestCase in detail, we
generate a report for supertypes and method names of their children. We present an
excerpt of the report, sorted after the most implemented method name, in Table 5. The
column distinct inherited types shows the amount of children types that use the same
method name. For instance 55 of 56 children of the InitializingBean use the name
afterPropertiesSet for a method.

6Clearly, this enables to create an abstract indicator similar to the implementation ratio at the type level. We do
not show it to focus on further possibilities to stick new ways of exploration.

129

We also see that a huge amount of 578 method names for the InitializingBean and 1,326
method names for the TestCase turn up in their subclasses. Currently, we can depict
common method names from the table. However, we cannot derive if the intention of a
developer is actually to override a method of a supertype. Therefore, we show in the
following section how we enhance this approach with source code metadata to get
common methods for improved reporting.

Table 5: Excerpt of the most used method names in supertypes children

Supertype
package

Supertype Methodname Distinct inherited
types (i.e.: extenders
sharing the method

name)
org.
springframework

InitializingBean afterPropertiesSet 55
setAuthenticationService 10
setNodeService 9
setBeanName 7
destroy 6
… in total 578 distinct
member names

Total distinct types: 56

junit.framework TestCase setUp 139
tearDown 73
testSetUp 35
create 6
… in total 1326 distinct
member names

Total distinct types: 184

3.3.2 Slice by @Override
Before, we address the problem of the immense amount of different method names
within the children of a class, we propose to solve this problem by the usage of metadata
annotations that are defined within the Java programming language7. Java’s annotations
allow developers to enrich source code with various structural and logical information.
Specifically, the @Override annotation out of the Java standard is of interest in our
current case. The Java standard describes the Annotation usage as follows:

@Override
“Indicates that a method declaration is intended to override a method declaration in a
superclass. If a method is annotated with this annotation type but does not override a
superclass method, compilers are required to generate an error message.”8

This means that the override annotation can be used, but there is no compulsion to do so.
Thus, @Overwride marked methods override a method for sure, but overriding can also
take place without this annotation. In fact, modern development environments, like
Eclipse9 remind programmers through messages and markers to use the annotation.

7 http://jcp.org/ja/jsr/detail?id=175
8 http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Override.html
9 http://eclipse.org

130

Hence, we assume that most overriding methods are marked with the annotation in
modern programs. We query how often the annotation is occurring on methods of the
Alfresco project. 2,067 methods are annotated with this annotation. In total 3,139
annotations are occurring at methods of the analyzed project. Therefore, we assume that
we can use annotation to specialize our former query.

3.3.3 The Report Filtered by @Override
We present the modified query result for the @Override marked methods of children of
TestCase and InitializingBean in Table 6. In contrast to our expectation, the most
overridden methods of InitializingBean are not marked @Override. In fact, the
annotation is used scarcely, like the distinct inherited type numbers indicate.
Nevertheless, we get the methods that are intended to be overridden by developers. The
most interesting fact about the distribution of the @Override annotation is that 21
distinct types seem to use the override annotation at different methods. Only at four
methods the override annotation is occurring at the same method name. In contrast to the
InitializingBean children, project developers seem to have been more sincere about
annotating test cases with the annotation. 113 types out of 184 in total got at least one
annotation.

Lastly, the result gets even more interesting, when regarding at the Javadoc of the two
parent classes. InitializingBean defines only one method: afterpropertiesSet10. TestCase11
defines the two @Override marked methods. Hence, InitializingBean extenders override
methods out of the supertypes supertype.

Table 6: Excerpt of the most used method names with @Override

Supertype
package

Supertype Methodname Distinct inherited types (In
this case: extenders sharing
the method name

org.
springframework

InitializingBean equals 2
Implementation
AllowsGuestLogin

2

toString 2
transformInternal 2
afterPropertiesSet 1
… in total 21
distinct method

Total distinct types that got an
@Override Annotation

junit.framework TestCase setUp 95
tearDown 53
Total: 2 Total distinct types that got an

@Override Annotation: 113

3.3.4 An Additional Type-Method Report Filtered by @Override
Surprised, by the previous results of overridden methods, we depict further inherited
types that have a huge amount of overridden methods. Our choice for the concrete types
is made out of their name, indicating what they are used for. Additionally, we investigate

10 http://static.springsource.org/spring/docs/2.5.x/api/org/springframework/beans/factory/InitializingBean.html
11 http://www.junit.org/apidocs/junit/framework/TestCase.html

131

the methods that are defined by the supertype themselves and compared those method
names with the ones defined by the inheritors. In the following, we present different
types shown in Table 7.

Serializable is a well known Java flag interface. However, the Serializable interface does
not define any methods. It is interesting that inheritors seem to be attracted to override
toString, equals, and hashCode that are originally coming out of the object class. Thus, if
we ask an Alfresco programmer which methods serializable class needs, he will
probably answer: “toString, equals, and hashCode”.

The TransactionListenerAdapter offers five methods whereby three get overridden by
subclasses. All together, it seems if the “after the transaction methods” are more
common to be adjusted by the application logic. Methods of the Object class get
overridden what brings up the idea that those should maybe excluded in a query if the
focus is purely set to be on other types.

The EntityLookupCallbackDAOAdapter is highly customized within the application.
This is quite logical, since data access objects (DAO) are used to persist different classes
of the domain model of an application. All together is seems that the delete methods
seem to work more generically than the retrial or update methods since they do not get
adapted this much.

Table 7: Common inherited types and @Override marked methods in children

Supertype Methodname Overriding
Types

Exists in
Supertype?

Additional
methods in
supertype

Serializable toString 42 no
equals 33 no
hashCode 32 no
getInviteeEmail 2 no
getInviteeFirstName 2 no
getInviteeLastName 2 no
clone 2 no
getInvitationType 2 no
initialiseHandler 1 no

Transaction
Listener
Adapter

afterCommit 21 yes flush

beforeCompletion
afterRollback 11 yes
beforeCommit 6 yes
equals 4 no
hashCode 3 no
toString 1 no

Entity
Lookup
Callback
DAOAdaptor

updateValue 5 yes deleteByValue
findByValue 5 yes
getValueKey 5 yes
deleteByKey 2 yes

132

3.3.4 Method Variance Roll Up Enriched with @Override
Overall, we learn that override annotations are used within the project. Even if they are
not applied consequently the amount of 2,067 annotated methods is immense. Hence, we
present a roll up to all types that contain overridden methods.

Report Source Data
Table 8 shows an excerpt of the report that we generate through a roll up from the Spring
and Junit package. The distinct inheriting types specify the amount of types that extend
or implement the supertype. The overridden methods specify how many methods of the
children carry the @Override annotation. The total methods amount is sliced by the
method names (distinct method names). The C and I indicate if the supertype is a class
or a method. Lastly, we introduce the overridden method implementation ratio. This
ratio indicates the average amount of overridden methods per type. A higher ratio means
that more methods in total of the type get overridden and the variation of the children is
probably higher. Such, framework manufacturers can determine the types that get varied
the most by developers.

Table 8: Excerpt of the most used method names with @Override

Class/
Interface

Type name Distinct
inheriting
types

Total
overridden
methods

Distinct
method
names

Implementation ratio
(Total methods/
Distinct types)

C Object 184 353 47 1,918
C TestCase 113 150 2 1,327
I Serializable 42 88 9 2,095
C Transaction

ListenerAdapter
26 46 6 1,769

Relations with Figures
We present how different figures of the report relate to each other in Figure 4. We
eliminate outliers from the source report data to have a clear distribution of the points of
the data. We exclude the Object class that serves as parent class, if no other is given and
TestCase out of its extreme usage. Additionally, we exclude types having less children
then three to avoid an intense cluster. All together, 63 adequate values left as base for
visualization. Founded on those values, we present the charts to have a first look for
trends that maybe excel out of the diverse variance figures.

Figure 4a shows the relation of the total amount of overridden methods to inheriting
types. We see that the amount of overridden methods grows with the types. We added a
linear trend based on these values. The big picture is that a linear growth seems to exist.
We conclude that it seems when types inherit a supertype they also override methods.

Figure 4b shows the relation of inheriting types to distinct overridden methods within the
children types. We assume that the circled space marks a cluster. This would be logical,
since we guess that the amount of methods of a type is in most cases within a certain
range. However, there are outliers in the X and Y direction. The Y direction seems to be
the case for a tiny amount of inheritors, what means: A large amount of methods of
supertypes is overridden, but not many other types inherit from the same supertype. In

133

contrast to the Y direction, the X direction shows many inheritors that map to a small
amount of distinct overridden method names.

We present the implementation ratio distribution for various types in Figure 4c. The
inheritance ratio values are sequenced following the amount of the inheritors of a type.
For us it seems that the ratio values are mostly arranged within a certain range and a few
outliers exist. All the more, the median of all values is arranged at 3.33, what is on top of
the guessed range.

Out of the guessed range of the ratio before, we reorder the ratio values in Figure 4d.
The ratio expresses the average overridden methods for a type. Since distinct method
names are not expressed in this relation, we order the ratio values following the amount
of types in Figure 4d. The outliers seem to grow in value in relation to methods. In the
graphic we show a linear trend for this. However, the trend is not supported by many
values to make any predictions. There exists a cluster that we emphasize through a
circle. This cluster seems to map the prior mentioned range in Figure 4c to one spot.
Thus, we assume all our values seem to have a relation and be dependent on each other.
Though, more detailed investigations are required to verify our assumptions we depict
from the diagrams.

Figure 4: Relations of different inheritance indicators

4 Related Work

Related to the idea of Hypermodelling is the area of source code mining [GHH09]. Our
approach to study software variance based on subclassing is especially near the idea to
mine subclassing directives from existing code [BMM10]. Mining subclassing directives

134

is about to uncover which methods are most used by extenders of classes to create a
recommender system for developers to assist them in the integrated development
environment. In order to generate these directives, the code is parsed and facts get
extracted into a binary matrix by static analysis. Then, an algorithm is applied to
generate directives. Our Hypermodelling approach overcomes the limitation to do a
static analysis to uncover facts. Facts can be revealed via a query from the DW.
Furthermore, we show that Hypermodelling is not limited to one fixed fact set: Plenty of
facts can be extracted and visualized. Therefore, we already show that there exist more
complex subclassing directives. For instance, methods that extend the Serializable
interface often override three different methods of the object class. The method
presented in the mining subclasses paper [BMM10] would not uncover this information.
Moreover, our reports showed that different kinds of slices can be built to investigate
source code and to visualize them to gain more knowledge. However, we do not see
Hypermodelling in competition to such traditional mining approaches. Rather,
Hypermodelling as integrative component to access the different facts about source code.

The usage of Business Intelligence is already mentioned in the literature. Since Business
Intelligence is often used as a term for all associated technologies, like OLAP or DW
this can be seen related. Software Intelligence (SI) [HX10] describes this idea on an
abstract level. In spite of the relation to SI, Hypermodelling is still unique. SI neither
proposes multi-dimensional models nor takes the fact into account how DW technology
can be used. Lastly, no reports about code are shown and mentioned.

In [Pa03] a method to control a software development project with metrics is described.
There, a Metrics Warehouse is mentioned. Since the measures computed in the paper
represent somehow metrics of source code this seems first to be related. However, the
metrics described are economic project figures, not representing code metrics. Even
though, we think the idea to steer a project based on reports similar to the ones presented
in this paper can be an interesting trail for the future.

5 Conclusions and Future Work

We presented different reports based on the Alfresco application. We explored different
types of parent – children relations of software variance. We showed a difference in the
variance of classes and interfaces at the exemplarily project level. Through drill downs
we depicted variance differences of frameworks. Furthermore, we depicted two different
figures to express the dependency on a framework. Investigations about the method
variance of subclasses illuminated the fact: The methods of subclasses exceed probably a
pure relation to supertypes methods. Commonly, there exists an undercurrent that
methods of a supertypes subclasses share method names of another supertype. Thereby,
we also demonstrated that Hypermodelling reports can be discriminated with dynamic
factors, like metadata annotations, to enhance results. We showed diagrams that
supported the following: The indicators, used within the paper to draw conclusions about
inheritance variance seem to be linked. Lastly, we presented related work that described
research that has potentially synergy effects with Hypermodelling.

135

However, the main intention of this paper is to present how the Hypermodelling
approach can be applied to investigate software variance. We described at various points
that we adjusted the queries. Thus, the key figure is that all statistics shown in this paper
can be redone with queries. Those can easily be adjusted to the specific need. The
diversity of the reports showed that we were capable to use the Hypermodelling
approach to reveal facts about software variance that would be complex and expensive to
be uncovered otherwise. The diversity of the reports was only possible because
Hypermodelling is designed to uncover such facts with queries. All together, we see the
flexibility of Hypermodelling as support that Hypermodelling can advance source code
mining.

We see future work divided into two different trails. First, we think it is necessary to
advance the Hypermodelling approach itself. That means that more facts and different
cubes need to be built to enable other investigation of source code. Currently, we are
planning extensions like caller-callee relationships. Secondly, we see the need to load a
larger code base and different projects into the same warehouse to intensify and evaluate
our investigations. Thereby, we see the necessity to derive standard reports for software
variance. In order to create those, we see the presented reports as origin for further
developments.

Nonetheless, Hypermodelling is mainly about the infrastructure to explore source code
with queries. Therefore, we feel the emerging need to work together with source code
mining experts and widen the possibilities of source code mining.

References

[Sc97] H.-A. Schmid. Systematic Framework Design by Generalization.
Communications of the ACM, Vol.40/No.10, Oct. 97, pp. 48-51

[BMM10] M. Bruch, M. Mezini, and M. Monperrus, “Mining subclassing directives to improve
framework reuse,” in Proc. Working Conference on Mining Software Repositories.
IEEE Computer Society, 2010, pp. 141–150.

[GHH09] M. W. Godfrey, A. E. Hassan, J. D. Herbsleb et al.. Future of mining software archives:
A roundtable. IEEE. 2009

[ZZ11] J. Sliwerski, T. Zimmermann, A. Zeller. Don't Program on Fridays! How to Locate Fix-
Inducing Changes. In Proceedings of the 7th Workshop Software Reengineering, 2005

[Fr11] T. Frey. Vorschlag Hypermodelling: Data Warehousing für Quelltext. 23rd GI
Workshop on Foundations of Databases. CEUR-WS, pages. 2011. pp.55-60.

[FKS11] T. Frey, V. Köppen, G. Saake. Hypermodelling - Introducing Multi-dimensional
Concern Reverse Engineering. In 2nd International ACM/GI Workshop on Digital
Engineering (IWDE),Magdeburg, Germany, 2011. http://hypermodelling.com

[Fr12] T. Frey, Hypermodelling for Drag and Drop Concern Queries. Proceedings of Software
Engineering 2010 (SE2012). Gesellschaft für Informatik (GI), Berlin, Germany. 2012

[In05] W. H. Inmon. Building the Data Warehouse. 4th ed., J.Wiley & Sons, New York. USA.
2005.

[HX10] A. E. Hassan, T. Xie. Software Intelligence: Future of Mining Software Engineering
Data. In Proceedings of FSE/SDP Workshop on the Future of Software Engineering
Research. Santa Fe. 2010

[Pa03] C. R. Pandian. Software metrics: a guide to planning, analysis and application.
Auerbach Publications. 2003

[HKP11] J. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann.
3rd edition. 2011.

136

Zeertifizieru
s
ung und m
sicherer S

modellget
Software (

riebene E
(ZeMoSS

Entwicklu
S)

ung

ZeMoSS-Workshop: Zertifizierung und modellgetriebene

Entwicklung sicherer Software

Michaela Huhn1 Stefan Gerken2 Carsten Rudolph3

1 Institut für Informatik, Technische Universität Clausthal
2 IC MOL RA R&D, Siemens AG, Braunschweig

3 Fraunhofer Institut für Sichere Informationstechnologie (SIT), Darmstadt

Mit dem vielfältigen Einsatz softwaregesteuerter Produkte und Infrastrukturen in unserem

Alltag wachsen die Software-Qualitätsanforderungen, sowohl bezüglich der funktionalen

Sicherheit als auch bezüglich der Informationssicherheit. In der Luft- und Raumfahrt, der

Energieerzeugung und im Schienenverkehr, aber auch in der Medizintechnik, der Automo-

biltechnik und bei mobilen Systemen sind Zertifizierung und der Nachweis der Sicherheit

kritischer Systeme und softwarespezifische Sicherheitsnormen international etabliert und

bindend. Zwei aktuelle, domänenübergreifende Herausforderungen bei der Entwicklung

sicherer Software werden im Workshop adressiert:

• Modellgetriebene Entwicklung eingebetteter Software wird in der Industrie immer

wichtiger und in ihren Grundlagen für höhere Sicherheitsanforderungsstufen seit

langem in Sicherheitsnormen als dringend empfohlen klassifiziert. Da Normen aber

immer nur die etablierten Regeln der Technik darstellen, entsteht für den Herstel-

ler mit jedem Schritt hin zum erweiterten Einsatz modellgetriebener Methoden und

Werkzeuge die Herausforderung, dass diese im Zertifizierungsprozess neu akzeptiert

werden müssen, selbst wenn noch keine normativen Aussagen zu ihnen vorliegen.

• Durch die zunehmende Vernetzung kritischer Infrastrukturen und die Anbindung

mobiler Endgeräte entstehen neue Risiken aus der wechselseitigen Abhängigkeit

von Informationssicherheit und funktionaler Sicherheit. Hier sind eine Integration

von Safety- und Security-Prozess und neue Methoden gefragt, die eine verbindende

Behandlung von funktionaler Sicherheit und Informationssicherheit in der Risiko-

analyse, der Entwicklung und beim Sicherheitsnachweis unterstützen.

Der ZeMoSS-Workshop soll den Austausch über offene Fragen und Lösungsansätze zu

diesen Herausforderungen domänenübergreifend zwischen Teilnehmern aus Industrie und

Forschung fördern.

Die Einladung zur Einreichung von Beiträgen führte zu sieben Einreichungen. Jede Einrei-

chung wurde von mindestens drei Programmkomiteemitgliedern, assistiert durch externe

Gutachter, begutachtet. Das Programmkomitee nahm fünf Beiträge zur Veröffentlichung

im Tagungsband an, ein weiterer, nachträglich eingereichter Beitrag konnte für einen Vor-

trag zugelassen werden. Zusätzlich konnten wir mit Prof. Dr. Jens Braband, einen ausge-

wiesenen Experten für Sicherheit in der Bahntechnik, eine Key Note gewinnen:

139

Jens Braband: Security und Safety in der Eisenbahnsignaltechnik

Am Beispiel der Eisenbahnsignaltechnik wird die Wechselwirkung der Produktei-

genschaften Safety und Security motiviert und erläutert. Dabei wird sowohl die Nor-

menlandschaft beleuchtet als auch Beispiele für Anwendungen gezeigt. Es werden

Erfahrungen bei der Erstellung eines Schutzprofils nach Common Criteria disku-

tiert.

Die folgenden Beiträge wurden angenommen:

• Kristian Beckers und Stephan Faßbender: Supporting the Context Establishment ac-

cording to ISO 27005 using Patterns

• Marcus Mews und Steffen Helke: Towards Static Modular Software Verification

• Frank Ortmeier, Simon Struck und Michael Lipaczewski: Using model-based ana-

lysis in certification of critical software-intensive systems

• Patrick Werner, Stefan Gerken und Michaela Huhn: GSNM -Edit: Ein modellgetrie-

bener Editor für modulare GSN-Argumentationen

• Christian Wessel, Thorsten Humberg, Sven Wenzel und Jan Jürjens: Frühzeitige

modellbasierte Risikoanalyse für mobile, verteilte Anwendungen

Wir möchten allen Beteiligten für ihren Beitrag zum Gelingen des ZeMoSS-Workshops

danken: Unser Dank gilt den Autoren und dem eingeladenen Vortragenden für ihre Bei-

träge zum Programm. Wir danken den Programmkomiteemitgliedern und externen Gut-

achtern. Sie haben die Einreichungen in kurzer Zeit begutachtet und den Autoren nützliches

Feedback gegeben. Das Programmkomitee, geleitet durch Michaela Huhn, Stefan Gerken

und Carsten Rudolph, bestand aus:

Jan Jürjens Technische Universität Dortmund

Volkmar Lotz SAP AG

Marco Hauri Ascom Systec AG

Hardi Hungar Offis, Oldenburg

Stephan Katzenbeißer Technische Universität Darmstadt

Lothar Pfeifer Esterel Technologies

Heiko Saalbach Movares Deutschland GmbH

Bernhard Schätz fortiss, München

Schließlich möchten wir den lokalen Organisatoren der SE’12 für ihre Unterstützung im

gesamten Prozess danken.

Wir hoffen, dass der ZeMoSS-Workshop für alle Teilnehmenden ein interessantes und

stimulierendes Ereignis wird, aus dem sich neue Perspektiven für das Gebiet ergeben.

Februar 2012 Michaela Huhn (TU Clausthal)

Stefen Gerken (Siemens AG)

Carsten Rudolph (Fraunhofer SIT)

PC Chairs ZeMoSS’12

140

