
Enhancing Automotive AUTOSAR Environments with

Artificial DNA

Eric Hutter1

Abstract: In order to cope with the ever-increasing complexity of automotive embededded systems,
bio-inspired techniques can be employed. We propose an organic concept based on artificial DNA
(ADNA) and an artificial hormone system (AHS) that can be used to realize highly reliable, robust
and flexible automotive systems.

However, computational resources and communication bandwidth are often limited in automotive
environments. Additionally, the AUTOSAR Classic Platform as the de facto standard for automotive
Electronic Control Units (ECUs) does not support dynamic system behavior. Nevertheless, in this
paper we show that the dynamic concept of ADNA and AHS can be successfully applied to a statically
configured Classic AUTOSAR environment with moderate computational resource usage. While the
communication via CAN bus (Controller Area Network) imposes some limitations, we propose ways
of resolving them.

Keywords: Artificial DNA; Artificial Hormone System; Self-organization; Automotive; CAN Bus;

AUTOSAR

1 Introduction

Automotive embedded systems are growing more and more complex due to highly de-

manding application fields (e.g. autonomous driving) that require sophisticated system

and software designs. In order to cope with this ever-increasing complexity, bio-inspired

techniques like self-organization can be employed.

The previously developed artificial DNA (ADNA) [Br16a] adapts the biological principle of

DNA to computing systems: A copy of a system’s ADNA is stored in each of its processing

elements and serves as the system’s blueprint. This allows healthy processing elements to

replicate the functions of failed elements.

The ADNA describes the system’s tasks and their communication patterns while the

distribution of the tasks to the available processing elements is performed decentrally by an

artificial hormone system (AHS) [BPR08]. The AHS in turn is inspired by the biological

hormone system and uses message-based control loops for the task distribution.

1 Institute for Computer Science, Goethe-University, Frankfurt am Main, Germany, hutter@es.cs.uni-frankfurt.de

cba doi:10.18420/inf2019_ws51

Draude, Lange, Sick (Hrsg.): INFORMATIK 2019 Workshops,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 469

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2019_ws51

The combination of ADNA and AHS makes the described system robust and flexible by

realizing several self-X properties such as self-configuration, self-optimization and self-

healing. This concept has already been demonstrated, e.g. in an autonomous self-balancing

robot vehicle [Br; Br17].

In this publication, we investigate the applicability of the ADNA/AHS concept to automo-

tive environments based on AUTOSAR (Automotive Open System Architecture [AUc])

platforms. Modern cars contain a multitude of processors (electronic control units, ECUs)

that perform various tasks to control the car’s functions that belong to various domains,

e.g. powertrain, driving assistants and board infotainment. Most of these functions have to

operate at a very high level of robustness and fault-tolerance. Additionally, fail-operational

behavior is a hard requirement for autonomous cars as there is no human driver to fall

back to. Thus, the application of system architectures like the ADNA/AHS approach to

automotive environments is an interesting field of research.

Previous work has shown that ADNA and AHS can be successfully adapted to common

automotive microcontrollers with limited resources by using a minimal operating system

(AtomThreads) and a CAN bus for communication [BF19]. However, with AUTOSAR

being the de facto standard for automotive software architectures, ADNA-based systems

need to integrate with AUTOSAR-based systems in order to be accepted by the automotive

industry.

Therefore, this paper deals with the ADNA concept’s adaption to AUTOSAR environments

and is structured as follows: Section 2 presents related work. The concepts of ADNA and

AHS as well as their application to automotive environments are described in Section 3.

Section 4 describes how these concepts can be adapted to the AUTOSAR Classic Platform

while section 5 shows evaluation results of this adaption. Section 6 concludes this paper.

2 Related Work

Our approach relies on the realization of several self-X properties like self-organization and

self-healing in automotive application fields.

In [HKW14], a redundancy scheme for processors in automotive environments is proposed

that uses a voting algorithm to determine the validity of the redundant processors’ results.

This is different than our approach, which better exploits available redundancy using the

ADNA: Our concept does not require identical redundant processors in order to enable

fail-operational behavior, but can rather migrate failed processors’ tasks to other processors.

AUTOSAR defines two automotive system architectures. The AUTOSAR Classic Platform

[AUb] describes an embedded automotive system as a composition of individual compo-

nents that communicate through well-defined ports interconnected by a Virtual Function

Bus (VFB). During system generation, each component is statically mapped to a specific

ECU. Additionally, a Runtime Environment (RTE) is generated for each of these ECUs as

470 Eric Hutter

a specialized implementation of the VFB. While the composition of a system from multiple

parts is also a fundamental concept of our approach, the AUTOSAR Classic Platform

requires the operating and communication systems to be statically configured and doesn’t

offer support for dynamic system (re)configuration at run time.

AUTOSAR’s second system architecture, the AUTOSAR Adaptive Platform [AUa], is

meant to complement the Classic Platform by dealing with scenarios requiring higher

degrees of dynamics at run time, e.g. applications for autonomous driving which are out

of the Classic Platform’s scope. However, even the Adaptive Platform does not offer any

support for improved fault-tolerance by dynamic reconfiguration as our approach does.

In [Tr07], the authors propose an organic computing middleware on top of the hard-

ware abstractions specified by the AUTOSAR Classic Platform in order to provide self-

configuration and self-healing capabilities in automotive environments. However, they only

present behavioral simulations of their architecture and no real implementation is shown.

While our concept is also based on middleware to realize self-X properties in automotive ap-

plications, we show ways to implement this middleware on top of the AUTOSAR platform

and conduct tests on real hardware that include communication via CAN bus.

AutoKonf [Au; Os18] is an ongoing research project that strives to implement fail-safe

actor controls for autonomous driving. This is achieved by generic redundant ECUs in

hot-stand-by modes that can each replicate one failed specialized ECU. This is different

from our approach in multiple ways: The ADNA concept enables a much more fine-grained

system composition based on individual tasks in contrast to AutoKonf’s composition on the

ECU level. Therefore, our approach allows better exploitation of available redundancy as no

hot-stand-by ECUs are needed. Instead, a failed ECU’s tasks may be migrated individually

to the remaining ECUs. However, the AutoKonf project also develops hardware to support

switching the actors’ controls between different ECUs, while our approach is currently

focused on the software side of (re)configuration only.

3 ADNA and Automotive Applications

This section briefly describes the concept of artificial DNA and artificial hormone system

(AHS). For detailed information, see [BPR08; Br16a; Br16b].

3.1 Artificial DNA

The idea of artificial DNA is based on the observation that many embedded systems

can be composed from a limited number of basic elements (such as controllers, filters,

arithmetic logic units (ALUs) etc). Thus, a library consisting of a sufficient amount of such

basic elements allows to build embedded real-time systems by simply parameterizing and

combining these elements.

Enhancing Automotive AUTOSAR Environments with ArtiĄcial DNA 471

Basic Element

Id

Parameters

Sourcelink

1

…

 n

C
h
a
n
n
e
ls

Destinationlink

C
h
a
n
n
e
ls

1

…

m

Fig. 1: ADNA basic element structure

ALU

 (Id = 1, parameter = Minus)

PID

(Id = 10, parameters = P,I,D,
period)

Sensor

(Id = 500, parameters =
resource, period)

Actor

(Id = 600, parameter =
resource)

Constant

(Id = 70, parameter =
constant value, period)

1

1

1

1

1

1

1

2

Fig. 2: ADNA realizing a closed control loop

Figure 1 shows the general structure of a basic element. It has two possible types of links to

communicate with other elements: The Sourcelink is a reactive link that is used to react to

incoming requests while the Destinationlink is an active link that can be used to initiate

such requests. Both links may have multiple channels with different semantics.

Figure 2 shows a simple closed control loop realized as a composition of different basic

elements as building blocks: An actor is controlled by a sensor with a constant setpoint

value applied. It shall be noted that each basic element describes a software component

implementing the element’s functionality (e.g. reading a sensor’s value or performing a

calculation), the ADNA does not describe the system’s hardware topology.

Given this simple example, it becomes obvious that ADNA-based systems are not pro-

grammed. Instead, they can fully be described by an appropriate representation of their

composition. Thus, this representation is referred to as the system’s ADNA. Further exam-

ples as well as details on the specifics of this representation can be found in [Br16a] and

[Br17].

3.2 Building the System from its ADNA

A system typically consists of different functions. Using ADNA, each of these functions is

further divided into various basic elements. Each of those basic element represents a task.

Every processing element in the system stores a local copy of the system’s ADNA and thus

knows all tasks as well as their interconnections. It passes this information to its local AHS

instance to assign the tasks.

The AHS is a completely decentralized organic middleware that assigns tasks to distributed

computing nodes (see [BPR08]). It uses messages that emulate hormones to assign each

task to the most suitable computing node based on the node’s capabilities, current load and

the tasks’ interconnections. Additionally, it can detect node and task failures by missing

hormone messages and reassign the corresponding tasks to different nodes, providing

self-healing features as long as enough computing power is left in the system.

This approach composes a system at run-time by creating a task for each basic element

of the system’s ADNA and distributing all tasks to the available computing resources in

the best possible way. In case of failures, measures are taken to reassign the affected tasks.

472 Eric Hutter

Assignment and re-assignment are both done in real-time with a time complexity of O(n)
where n is the number of tasks (see [BPR08]). Thus, the ADNA approach enables a fine-

grained and robust distribution of functions to processors: In contrast to other approaches

like AutoKonf, functions are not bound to specific processors but are further divided

into tasks that may run on different processors, thus leading to a very fine-grained task

distribution.

3.3 Automotive Applications of the ADNA

In automotive applications, the car’s various functions are executed by its ECUs. Especially

in autonomous driving scenarios, there are many functions for which a failure cannot be

tolerated. Thus, a highly robust system design is necessary.

Classical system architectures have used a redundancy concept where each critical ECU

is duplicated. More recent approaches like the aforementioned AutoKonf share a single

backup ECU in hot-stand-by between multiple different ECUs to reduce the overhead

incurred.

In contrast, the ADNA’s application to automotive environments further reduces this over-

head by means of a much more fine-grained system composition. Here, the car’s functions

are no longer directly mapped to ECUs. Instead, their individual tasks are dynamically

mapped to the available ECUs. This allows a much more flexible task distribution as well as

fail-operational behavior without backup ECUs – provided the system’s total computational

resources suffice to take over the failed ECUs’ tasks – or at least graceful degradation.

Of course, this dynamic system behavior incurs a higher overhead compared to the static

mappings of functions to ECUs. Thus, the question arises whether typical automotive ECUs

are powerful enough in terms of computational, memory, bandwidth and operating system

resources to realize this concept. This will be investigated in the next sections.

4 Adaption of the ADNA to the AUTOSAR Classic Platform

This section discusses the steps taken to adapt the ADNA and AHS to the AUTOSAR

Classic Platform.2 Our development target was an implementation conforming to the

AUTOSAR Classic Platform specification in version 4.0.3 running on an evaluation board

utilizing a Renesas R7F701310EAFP microcontroller which is a common controller for

safety-critical ECUs. This controller contains a RH850/P1M 32 bit processor core clocked

at 160 MHz, 1 MB ROM and 128 kB RAM [Re].

2 In the following two sections, the terms “AUTOSAR Classic Platform” and “AUTOSAR” are used interchange-

ably for the sake of brevity.

Enhancing Automotive AUTOSAR Environments with ArtiĄcial DNA 473

The ADNA/AHS system is completely written in ANSI C 90 and could therefore easily be

compiled for the target platform using the Green Hills C compiler for this microcontroller

family. Mainly, two modules had to be adapted:

• AHSBasicOSSupport, which implements the basic multithreading and synchroniza-

tion mechanisms for AHS and ADNA. The AUTOSAR Classic Platform’s operating

system component is based on OSEK OS [IS05] and employs a static task mapping

specified at compile time. This conflicts with the ADNA’s dynamic task concept and

thus requires elaborate adaption.

• AHSBasicCommunication, which implements all basic communication functions for

AHS and ADNA. Since the AUTOSAR Classic Platform requires all communication

patterns to be statically defined and forbids arbitrary bus accesses, additional measures

had to be taken to adapt this module.

In the following sections, we therefore describe the necessary adaptions in detail.

4.1 Basic Operating System Support

This module implements the ADNA/AHS system’s thread model as well as synchronization

primitives like mutexes, semaphores and events on top of the underlying operating system.

Instead of building our implementation as a software component on top of the AUTOSAR

Runtime Environment (RTE), we decided to directly base it on AUTOSAR’s operating

system as this approach offered more flexibility by skipping the RTE layer.

Since AUTOSAR’s operating system is statically configured, implementing this operating

support module was not as straightforward compared to other AHS implementations on e.g.

Windows and Linux: On these, the operating system support module can nearly directly

map the functions required by ADNA/AHS to the operating system’s equivalents. Therefore,

we will briefly describe the challenges that had to be overcome in the following.

Firstly, ADNA and AHS need support for dynamic memory management which isn’t

provided by AUTOSAR. Therefore, a heap was created manually for use with the memory

management routines provided by Green Hills’ C standard library.

Secondly, the ADNA/AHS system requires functions to dynamically create, manage and

stop threads in order to execute the tasks instantiated from the system’s ADNA. Mapping

this dynamic thread model to AUTOSAR’s statically configured operating system was

achieved by implementing a thread pool consisting of n tasks. This allows the dynamic

creation of up to n threads as long as their stack requirements are satisfied by the statically

configured stack sizes of the tasks they shall be mapped to.

474 Eric Hutter

Thirdly, threads in ADNA and AHS are synchronized by mutexes, semaphores and events

that can also be created dynamically. Contrarily, AUTOSAR’s operating system synchro-

nizes tasks using statically configured events and achieves mutual exclusions by acquiring

resources and an associated priority ceiling protocol. Since these concepts could not directly

be adapted to match the primitives required by ADNA/AHS, those primitives were instead

re-implemented on top of AUTOSAR, using a single AUTOSAR event to suspend and

resume waiting threads.

Lastly, support for ADNA/AHS timers and waiting for events with a timeout was imple-

mented by utilizing AUTOSAR alarms.

4.2 Basic Communication with CAN Bus

The ADNA/AHS system sends messages and hormones via the AHSBasicCommunication

module. Hormones are bundled into telegrams of up to 256 Bytes length. The maximum

length of message telegrams is also 256 Bytes. Therefore, the AHSBasicCommunication

module has to offer functionality to send and receive telegrams up to that size.

Since the classical CAN bus only supports up to 8 bytes of payload per frame, a transport

protocol is required to segment longer telegrams into multiple frames. AUTOSAR’s COM

module supports the ISO 15765-2 protocol [IS16] (also known as “ISO-TP”) for this

purpose. However, since this protocol is primarily intended for diagnostic communication

via unicasts, it employs flow control for messages split into multiple frames. Therefore, it

can’t be used for broadcasts as required for the AHS’ hormone communication.

As a consequence, our implementation uses a simplified variant of ISO-TP without flow con-

trol for transporting telegrams. Figure 3 shows the frame types used in our implementation.

The first byte’s upper half-byte specifies a frame’s type:

Byte 0 Byte 1 Byte 2 Byte 7

SF 0 0 0 0 l3 · · · l0 a7 · · · a0 b7 · · · b0 · · · g7 · · · g0

FF 0 0 0 1 l11 · · · l8 l7 · · · l0 a7 · · · a0 · · · f7 · · · f0

CF 0 0 1 0 s3 · · · s0 a7 · · · a0 b7 · · · b0 · · · g7 · · · g0

FSF 1 a6 · · · a0 b7 · · · b0 c7 · · · c0 · · · h7 · · ·h0

Fig. 3: Frame types used in our transport protocol

• Single Frames (SF) are used to transmit telegrams with lengths of 0 ≤ l ≤ 7 bytes.

• Longer telegrams are transported by first sending a First Frame (FF) containing the

telegram’s total length l and the first 6 bytes of payload. The remaining bytes are

sent in chunks of 7 bytes using Consecutive Frames (CF) which also include the

Enhancing Automotive AUTOSAR Environments with ArtiĄcial DNA 475

chunk’s sequence number s modulo 16, thus allowing to detect a limited number of

lost frames.

• Full Single Frames (FSF) are not specified by ISO-TP but rather specific to our

protocol. In case a telegram consists of exactly 8 bytes, it can be transmitted using a

FSF instead of requiring a FF and a subsequent CF provided that its first byte’s MSB is

0. This condition is more often than not satisfied in the ADNA/AHS implementation,

so this frame type reduces the protocol’s overhead for many telegrams of exactly 8

bytes length.

According to AUTOSAR, segmentation of telegrams should not be done in the applica-

tion layer as this would introduce bus-specific properties into bus-independent software

components. However, for our initial implementation, we decided to segment telegrams

in the application layer nonetheless due to two reasons: On the one hand, implementing

a new transport protocol within AUTOSAR would have required appropriate support in

the configuration tools in order to properly configure the different signals’ routing within

AUTOSAR’s communication stack. On the other hand, telegram segmentation in the ap-

plication layer allowed to share a single implementation with other platforms running the

ADNA/AHS system on CAN bus and thus providing interoperability between them as

required for our evaluation.

Therefore, we implemented telegram segmentation on top of AUTOSAR’s COM module.

Since communication patterns are also statically configured in AUTOSAR, we defined one

CAN signal per ECU for a total of 15 potential ECUs.

The AUTOSAR version we used did not yet support signals of dynamic length to be

transmitted, so each signal was configured to exactly 8 bytes payload, thus increasing the

protocol overhead slightly for frames that are not completely filled (which can happen for

SFs and the last CF of each telegram).

AUTOSAR’s communication model is primarily geared to cyclic signal transmission.

Unfortunately, this doesn’t align nicely with our intended communication pattern, so we

configured the COM module’s transmission function to be invoked once per millisecond,

thus allowing us to send up to 1000 CAN frames per second and AUTOSAR-based ECU.

4.3 Additional Measures

Additionally, we implemented hooks that are called upon entry and exit of AUTOSAR’s

idle loop to measure the time spent in it using a timer with a sufficiently high precision,

thus allowing to calculate the CPU’s utilization.

476 Eric Hutter

5 Evaluation of the ADNA on the AUTOSAR Classic Platform

Our evaluation setup consisted of four configurations with one to four ECUs each:

• The AUTOSAR-based ADNA/AHS implementation running on the evaluation board

described in section 4. The thread pool was configured to 15 tasks, making it possible

to run up to 12 basic elements on the AUTOSAR ECU alone (the ADNA/AHS uses

3 threads for internal management and communication). Since the evaluation board

was equipped with 128 kB RAM, 2 kB of stack were assigned to each task without

any further optimization.

• Zero to three additional virtual ECUs simulated by ADNA/AHS instances running

on a Linux PC.

All ECUs were interconnected with each other via CAN bus. Sensors and actors were

provided by a simulator that was communicating via UDP while the UDP/COM intercon-

nection was provided by a gateway that also collected statistics about parameters like the

CAN bus load (see figure 4).

The CAN bus’ bit rate was set to 500 kbit/s as this is the typical rate that is currently used

by the automotive industry.

CAN (500 kbit/s)

ECU 1
(AUTOSAR)

ECU 2
(virtual)

ECU 3
(virtual)

ECU 4
(virtual)

UDP/CAN
gateway

Bus load,
statistics

UDP (Ethernet)

Simulator

Sensor/actor data

Fig. 4: Overview of evaluation setup

We used several experimental automotive ADNAs realizing various features. The ADNA

nomenclature is as follows:

Slow ADNA variant with fastest message cycle time of 60 ms

Med ADNA variant with fastest message cycle time of 30 ms

Enhancing Automotive AUTOSAR Environments with ArtiĄcial DNA 477

Fast ADNA variant with fastest message cycle time of 15 ms

Abs ADNA realizes an anti-lock braking system

Tcs ADNA realizes a traction control system

St Maximum steering angle is controlled by velocity

Cr ADNA has a cruise control

Cmp ADNA consists of fewer but less generic basic elements (“compound elements”)

Table 1 shows the evaluation results with the CPU load of the AUTOSAR-based ECU,

CAN bus load and a rating of the system’s observed behavior as given by the following

scheme:

+ The system was working as intended

◦ The system was working as intended, but the CAN bus load exceeded a critical bound

of 90%

− The system did not work at all or exhibited incorrect behavior

Empty cells denote that the ADNA consists of too many basic elements to be fully instanti-

ated in the given configuration.

Tab. 1: Evaluation results

ADNA 1 ECU 2 ECUs 3 ECUs 4 ECUs

Name # Tasks CPU CAN Rtg CPU CAN Rtg CPU CAN Rtg CPU CAN Rtg

SlowCr 18 10% 43% + 10% 43% + 10% 50% +
FastCr 18 16% 70% + 13% 76% + 15% 89% +

SlowAbsCr 26 13% 60% + 13% 72% − 13% 70% +
MidAbsCr 26 17% 84% + 15% 94% − 17% 100% −

FastAbsCr 26 18% 100% − 15% 100% − 16% 99% −

FastAbsTcsStCr 35 18% 99% − 20% 100% −

SlowAbsTcsCmp 9 9% 34% − 9% 45% + 8% 44% + 9% 44% +
MidAbsTcsCmp 9 9% 35% − 11% 65% − 11% 65% + 11% 65% +
FastAbsTcsCmp 9 9% 35% − 13% 89% − 13% 90% − 13% 95% −

SlowAbsTcsStCrCmp 11 10% 34% − 10% 50% + 10% 55% + 10% 54% +
MidAbsTcsStCrCmp 11 10% 34% − 11% 68% − 12% 77% + 12% 74% +
FastAbsTcsStCrCmp 11 9% 34% − 13% 92% − 15% 98% ◦ 14% 97% −

It can be observed that the AUTOSAR ECU’s CPU utilization is rather low and poses no

issue at all. However, most configurations are rated with ‘−’ even though the CAN bus load

does not reach a critical limit. This is due to the fact that the AUTOSAR ECU’s throughput

is limited to 1000 sent CAN frames per second (which corresponds to approx. 22% bus

load) as explained in section 4. Depending on the actual task distribution achieved by the

AHS, the inter-ECU communication load may require the AUTOSAR ECU to send more

478 Eric Hutter

than 1000 frames per second and its failure to do so results in instable or incorrect system

behavior. The communication load’s dependence on the resulting task distribution can for

example be seen for the “SlowAbsCr” ADNA which is not working as intended when

exactly three ECUs are present.

5.1 Evaluation with Optimized Communication Implementation

The aforementioned throughput limitation imposed by our communication module imple-

mentation made nearly all real-world applications of the ADNA concept on AUTOSAR

impossible. Additionally, no configuration consisting of only a single AUTOSAR ECU was

sufficient to completely realize any system.

Therefore, we decided to adapt our implementation by deviating from the AUTOSAR

standard even further in order to overcome this limitation: Instead of sending CAN frames

by routing signals through AUTOSAR’s communication stack, we invoked its CAN driver

directly. However, such bus write requests may fail (if e.g. no hardware transmit buffer is

available). Since we did not want to maintain our own queue (that would have interfered

with AUTOSAR’s internal message queues), we used our first implementation as a fallback

method in these cases. Based on our experiments, this way of sending CAN frames improved

the maximum throughput to about 2400 frames sent per second (corresponding to approx.

53% bus load and thus an improvement by a factor of 2.4). While not being standards-

compliant at all, this alternative implementation provided an easy way of improving the

throughput for a second evaluation run. The results of this run are shown in table 2.

Tab. 2: Evaluation results of second run

ADNA 1 ECU 2 ECUs 3 ECUs 4 ECUs

Name # Tasks CPU CAN Rtg CPU CAN Rtg CPU CAN Rtg CPU CAN Rtg

SlowCr 18 11% 46% + 10% 43% + 11% 49% +
FastCr 18 18% 76% + 15% 77% + 17% 89% +

SlowAbsCr 26 15% 60% + 14% 65% + 14% 66% +
MidAbsCr 26 19% 88% + 18% 88% + 18% 97% ◦

FastAbsCr 26 19% 93% ◦ 17% 100% − 18% 98% −

FastAbsTcsStCr 35 19% 100% − 21% 100% −

SlowAbsTcsCmp 9 10% 46,7 + 9% 43% + 9% 46% + 9% 49% +
MidAbsTcsCmp 9 14% 62,0 + 12% 66% + 12% 66% + 12% 66% +
FastAbsTcsCmp 9 18% 80,4 − 15% 95% ◦ 15% 96% ◦ 15% 97% ◦

SlowAbsTcsStCrCmp 11 12% 45,8 + 11% 57% + 11% 53% + 11% 59% +
MidAbsTcsStCrCmp 11 16% 65,3 + 14% 73% + 14% 78% + 14% 77% +
FastAbsTcsStCrCmp 11 19% 80,2 − 15% 96% ◦ 16% 100% − 15% 97% ◦

As can be seen, the AUTOSAR ECU is now able to run several “Cmp” ADNAs by itself.

Many configurations work fine, only most of the “Fast” variants as well as one “Med”

configuration still have either higher send throughput demands than can be met using our

new communication module implementation or higher total bandwidth demands than can

be satisfied by the CAN bus.

Enhancing Automotive AUTOSAR Environments with ArtiĄcial DNA 479

Generally, most ratings improved from ‘−’ to ‘◦’ or even ‘+’. Only the “FastAbsTcsStCr-

Cmp” ADNA’s results for 3 ECUs (that already only just worked before) worsened from ‘◦’

to ‘−’.

Overall, the CAN bus load is still quite high. The CPU utilization remains rather low, albeit

being tendentially higher than in the previous evaluation run.

These results show that it is possible to dynamically map tasks to AUTOSAR ECUs despite

its static operating system model. Inter-ECU communication however poses more problems,

at least when utilizing a classical CAN bus and segmenting telegrams to CAN frames in the

application layer rather than directly inside AUTOSAR’s communication stack. Thus, with

regard to further research concerning the ADNA/AHS concept in automotive applications,

it is inevitable to integrate the transport protocol directly into AUTOSAR’s core modules in

order to maximize the achievable throughput.

Additionally, real-world applications require a sufficient safety margin with regards to

the bus load. As our results show, the classical CAN bus with a bit rate of 500 kbit/s

cannot satisfy this requirement. Thus, the use of CAN FD or at least classical CAN with

its maximum bit rate of 1 Mbit/s seems to be crucial for our concept’s applicability in the

automotive domain.

6 Conclusion

In this paper we have shown that it is possible to apply the self-organizing ADNA/AHS

concept to the AUTOSAR Classic Platform despite its static system configuration. Due to

its self-healing capabilities, this approach can improve the fail-operational behavior and

flexibility of automotive systems.

Our basic operating system support module uses a statically configured task pool to map

the ADNA/AHS’s dynamic thread model and synchronization primitives to the Classic

Platform’s static operating system. This works remarkably well and results in rather low

CPU load. However, since all tasks’ stack sizes also have to be configured statically, the

number of threads that can be started by the ADNA/AHS is limited by this configuration

and not the threads’ actual stack requirements at runtime, thus possibly limiting the system’s

dynamic behavior.

Our communication module is built on top of the Classic Platform’s communication stack

and limits the maximum achievable throughput, thus preventing most system configurations

from working correctly. Therefore, we resorted to sending CAN frames directly through

AUTOSAR’s CAN driver if possible. This improves the throughput sufficiently and allows

most of the tested ADNAs to work.

480 Eric Hutter

With regard to real-world applications of our concept, our custom transport protocol will

need to be integrated into AUTOSAR’s core modules for full compliance to the AUTOSAR

standard as well as improved reliability.

Further research will need to be conducted as we have shown that the classical CAN bus

can quickly become a bottleneck, even for rather small ADNAs. Therefore, more powerful

buses like CAN FD have to be evaluated.

The self-X properties realized by our approach already add completely new qualities to

the AUTOSAR Classic Platform. Since the AUTOSAR Adaptive Platform is designed to

complement the Classic Platform rather than replace it, implementing a single ADNA/AHS

network spanning across Classic and Adaptive AUTOSAR ECUs could facilitate even

more interesting use cases. Thus, we plan to apply our concept to the AUTOSAR Adaptive

Platform as well.

Besides these adaptions to automotive environments, we plan to conduct more research on

the ADNA/AHS approach itself. A priority-based task assignment strategy could be used to

implement a system’s most important features in case too many failures occurred to realize

the system completely. Alternative paths of execution could be used to implement features

with either specialized and more efficient basic elements on suitable processor cores or

generic but less efficient basic elements on other cores in case those cores fail.

References

[AUa] AUTOSAR: Adaptive Platform, URL: https : / / www . autosar . org /

standards/adaptive-platform/, visited on: 04/12/2019.

[AUb] AUTOSAR: Classic Platform, URL: https : / / www . autosar . org /

standards/classic-platform/, visited on: 04/12/2019.

[AUc] AUTOSAR: Home Page, URL: https://www.autosar.org/, visited on:

04/12/2019.

[Au] AutoKonf: Homepage, URL: http://www.autokonf.de/, visited on:

04/12/2019.

[BF19] Brinkschulte, U.; Fastnacht, F.: Applying the Concept of Artificial DNA and

Hormone System to a Low-Performance Automotive Environment. In (Schoe-

berl, M.; Hochberger, C.; Uhrig, S.; Brehm, J.; Pionteck, T., eds.): Architecture

of Computing Systems – ARCS 2019. Springer International Publishing, Cham,

pp. 87–99, 2019.

[BPR08] Brinkschulte, U.; Pacher, M.; von Renteln, A.: An Artificial Hormone System

for Self-Organizing Real-Time Task Allocation in Organic Middleware. In:

Organic Computing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 261–

283, 2008.

Enhancing Automotive AUTOSAR Environments with ArtiĄcial DNA 481

[Br] Brinkschulte, U.: Video of the ADNA Controlled Robot Vehicle, URL: http:

//www.es.cs.uni-frankfurt.de/index.php?id=252, visited on:

06/17/2019.

[Br16a] Brinkschulte, U.: An artificial DNA for self-descripting and self-building

embedded real-time systems. Concurrency and Computation: Practice and

Experience 28/14, pp. 3711–3729, 2016.

[Br16b] Brinkschulte, U.: Prototypic Implementation and Evaluation of an Artificial

DNA for Self-Descripting and Self-Building Embedded Systems. In: 2016

IEEE 19th International Symposium on Real-Time Distributed Computing

(ISORC). Pp. 10–18, May 2016.

[Br17] Brinkschulte, U.: Prototypic implementation and evaluation of an artificial

DNA for self-descripting and self-building embedded systems. Springer

EURASIP Journal on Embedded Systems/, Feb. 2017.

[HKW14] Hong Yi, C.; Kwon, K.; Wook Jeon, J.: Method of improved hardware re-

dundancy for automotive system. In: 2014 14th International Symposium on

Communications and Information Technologies (ISCIT). Pp. 204–207, Sept.

2014.

[IS05] ISO: Road vehicles – Open interface for embedded automotive applications

– Part 3: OSEK/VDX Operating System (OS), Standard ISO 17356-3:2005,

Geneva, CH: International Organization for Standardization, Nov. 2005.

[IS16] ISO: Road vehicles – Diagnostic communication over Controller Area Network

(DoCAN) – Part 2: Transport protocol and network layer services, Standard

ISO 15765-2:2016, Geneva, CH: International Organization for Standardiza-

tion, Apr. 2016.

[Os18] Oszwald, F.; Becker, J.; Obergfell, P.; Traub, M.: Dynamic Reconfiguration

for Real-Time Automotive Embedded Systems in Fail-Operational Context.

In: 2018 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). Pp. 206–209, May 2018.

[Re] Renesas: RH850/P1M, URL: https : / / www . renesas . com / eu / en /

products/microcontrollers-microprocessors/rh850/rh850p1x/

rh850p1m.html, visited on: 01/09/2019.

[Tr07] Trumler, W.; Helbig, M.; Pietzowski, A.; Satzger, B.; Ungerer, T.: Self-

Configuration and Self-Healing in AUTOSAR. In: SAE Technical Paper. SAE

International, Aug. 2007.

482 Eric Hutter

