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Chairs’ Message

Welcome to the annual international conference of the Biometrics Special Interest Group
(BIOSIG) of the Gesellschaft für Informatik (GI) e.V.

GI BIOSIG was founded in 2002 as an experts’ group for the topics of biometric person
identification/authentication and electronic signatures and its applications. For almost two
decades the annual conference in strong partnership with the Competence Center for Ap-
plied Security Technology (CAST) established a well known forum for biometrics and
security professionals from industry, science, representatives of the national governmental
bodies and European institutions who are working in these areas.

The BIOSIG 2020 international digital conference is jointly organized by the Biometrics
Special Interest Group (BIOSIG) of the Gesellschaft für Informatik e.V., the Competence
Center for Applied Security Technology e.V. (CAST), the German Federal Office for In-
formation Security (BSI), the European Association for Biometrics (EAB), the TeleTrusT
Deutschland e.V. (TeleTrusT), the Norwegian Biometrics Laboratory (NBL), the National
Research Center for Applied Cybersecurity (ATHENE), the Institution of Engineering and
Technology Biometrics Journal (IET Biometrics), and the Fraunhofer Institute for Com-
puter Graphics Research (IGD). This year’s international conference BIOSIG 2020 is once
again technically co-sponsored by the Institute of Electrical and Electronics Engineers
(IEEE) and is enriched with digital satellite workshops by the TeleTrust Biometric Work-
ing Group and the European Association for Biometrics. BIOSIG 2020 is held the very
first time as a pure international digital conference due to the global pandemic situation.

The international program committee accepted full scientific papers strongly according to
the LNI guidelines (acceptance rate ~32%) within a scientific double-blinded review
process of at minimum five reviews per paper. All papers were formally restricted for the
digital proceedings up to 12 pages for regular research contributions including an oral
presentation and up to 8 pages for further conference contributions.

Furthermore, the program committee has created a program including selected contribu-
tions of strong interest (further conference contributions) for the outlined scope of this
conference. All paper contributions for BIOSIG 2020 will be published additionally in the
IEEE Xplore Digital Library.

We would like to thank all authors for their contributions and the numerous reviewers for
their work in the program committee.
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BIOSIG 2020 – Biometrics Special Interest Group
“2020 International Conference of the Biometrics Special Interest Group”
16th -18th September 2020

Biometrics provides efficient and reliable solutions to recognize individuals. With increas-
ing number of identity theft and misuse incidents we do observe a significant fraud in e-
commerce and thus growing interests on trustworthiness of person authentication.

Nowadays we find biometric applications in areas like border control, national ID cards,
e-banking, e-commerce, e-health etc. Large-scale applications such as the European Union
Smart-Border Concept, the Visa Information System (VIS) and Unique Identification
(UID) in India require high accuracy and also reliability, interoperability, scalability and
usability. Many of these are joint requirements also for forensic applications.

Multimodal biometrics combined with fusion techniques can improve recognition perfor-
mance. Efficient searching or indexing methods can accelerate identification efficiency.
Additionally, quality of captured biometric samples can strongly influence the perfor-
mance.

Moreover, mobile biometrics is an emerging area and biometrics based smartphones can
support deployment and acceptance of biometric systems. However, concerns about secu-
rity and privacy cannot be neglected. The relevant techniques in the area of presentation
attack detection (liveness detection) and template protection are about to supplement bio-
metric systems, in order to improve fake resistance, prevent potential attacks such as cross
matching, identity theft etc.

BIOSIG 2020 addresses these issues and will present innovations and best practices that
can be transferred into future applications. Once again a platform for international experts’
discussions on biometrics research and the full range of security applications is offered to
you.



Table of Contents

BIOSIG 2020 – Regular Research Papers ………………………….……..1

Naser Damer, Jonas Henry Grebe, Cong Chen, Fadi Boutros,
Florian Kirchbuchner, Arjan Kuijper
The Effect of Wearing a Mask on Face Recognition Performance:
an Exploratory Study………………………………..………………………………………....3

Fernando Alonso-Fernandez, Kevin Hernandez Diaz, Silvia Ramis,
Francisco J. Perales, Josef Bigun
Soft-Biometrics Estimation In the Era of Facial Masks…………….…………….............

Manuel Günther, Akshay Raj Dhamija, Terrance E. Boult
Watchlist Adaptation: Protecting the Innocent……………………………………………...

Lázaro J. González-Soler, Marta Gomez-Barrero, Christoph Busch
Fisher Vector Encoding of Dense-BSIF Features for Unknown Face Presentation
Attack Detection……………………………………….………………………………………...

Jannis Priesnitz, Christian Rathgeb, Nicolas Buchmann, Christoph Busch
Touchless Fingerprint Sample Quality: Prerequisites for the Applicability of
NFIQ2.0…………………………………….……………………………………………....…….

Johannes Schuiki, Andreas Uhl
Improved Liveness Detection in Dorsal Hand Vein Videos using
Photoplethysmography…………………………………………………..................................

Iurii Medvedev, Nuno Gonçalves, Leandro Cruz
Biometric System for Mobile Validation of ID And Travel Documents...…………….......

Aleksandar Mitkovski, Johannes Merkle, Christian Rathgeb, Benjamin Tams,
Kevin Bernardo, Nathania E. Haryanto, Christoph Busch
Simulation of Print-Scan Transformations for Face Images based on Conditional
Adversarial Networks.…………..………………………..…………………………..................

Thomas Nielsen, Ali Khodabakhsh, Christoph Busch
Unit-Selection Based Facial Video Manipulation Detection…...……………………….......

Sandip Purnapatra, Priyanka Das, Laura Holsopple, Stephanie Schuckers
Longitudinal study of voice recognition in children................................................…........

Hoang (Mark) Nguyen, Ajita Rattani, Reza Derakhshani
Eyebrow Deserves Attention: Upper Periocular Biometrics................…….………….........

1

11

21

33

45

57

67

77

89

97

107



Ehsaneddin Jalilian, Mahmut Karakaya, Andreas Uhl
End-to-end Off-angle Iris Recognition Using CNN Based Iris Segmentation………..........

Sashi K. Saripalle, Adam McLaughlin, Reza Derakhshani
Iris Recognition in Postmortem Enucleated Eyes …………………….….……………………

João Ribeiro Pinto, Jaime S. Cardoso
Explaining ECG Biometrics: Is It All In The QRS?……………………………………………

Ali Khodabakhsh, Hugo Loiselle
Action-Independent Generalized Behavioral Identity Descriptors for Look-alike
Recognition in Videos…………………………………..………………....….……………………

Deepak Yeleshetty, Luuk Spreeuwers, Yan Li
3D Face Recognition For Cows….……………………………………....….……………………

BIOSIG 2020 – Further Conference Contributions…………………..….……

Jascha Kolberg, Pawel Drozdowski, Marta Gomez-Barrero, Christian Rathgeb,
Christoph Busch
Efficiency Analysis of Post-quantum-secure Face Template Protection Schemes
based on Homomorphic Encryption….……………………………………………………...…...

Joao Afonso Pereira, Ana F. Sequeira, Diogo Pernes, Jaime S. Cardoso
A robust fingerprint presentation attack detection method against unseen attacks
through adversarial learning.…...........................................................................................

Ali Khodabakhsh, Christoph Busch
A Generalizable Deepfake Detector based on Neural Conditional Distribution
Modelling………………………..………………………………………………………..........…...

Hoang (Mark) Nguyen, Reza Derakhshani
Eyebrow Recognition for Identifying Deepfake Videos……................….….………….........

Dirk Siegmund, Florian Kerckhoff, Javier Yeste Magdaleno, Nils Jansen,
Florian Kirchbuchner, Arjan Kuijper
Face Presentation Attack Detection in Ultraviolet Spectrum via Local and Global
Features.………………………………………………………………………….…………………..

Philipp Terhörst, Marco Huber, Naser Damer, Peter Rot, Florian Kirchbuchner,
Vitomir Struc, Arjan Kuijper
Privacy Evaluation Protocols for the Evaluation of Soft-Biometric Privacy-Enhancing
Technologies…………………...…………………………………...........................................

117

129

139

159

163

173

175

183

191

199

207

215



Katy Castillo-Rosado, Michael Linortner, Andreas Uhl, Heydi Mendez-Vasquez,
José Hernandez-Palancar
Minutiae-based Finger Vein Recognition Evaluated with Fingerprint Comparison
Software…………………………………………………………………………………………......

Mahshid Sadeghpour, Arathi Arakala, Stephen A. Davis,
Kathy J. Horadam
Application of affine-based reconstruction to retinal point patterns…….………………......

Malak Alamri, Sasan Mahmoodi
Facial Profiles Recognition Using Comparative Facial Soft Biometrics………….……......

Tommy Bergmann, Sebastian Gottschall, Enrico Fuchs, Oliver Berlipp,
Dirk Labudde
Development and empirical optimization of an electrochemical analysis cell for the
visualization of latent fingerprints and their chemical adhesives……..…………………......

Praveen Kumar Chandaliya, Aditya Sinha, Neeta Nain
ChildFace: Gender Aware Child Face Aging………………………………………………......

Mathias Fredrik Hedberg
Effects of sample stretching in face recognition……………………………………………......

Olaf Henniger, Biying Fu, Cong Chen
On the assessment of face image quality based on handcrafted features….……………......

David Molina, Leonardo Causa, Juan Tapia
Toward to Reduction of Bias for Gender and Ethnicity from Face Images using
Automated Skin Tone Classification.....................................................................................

Fadi Boutros, Naser Damer, Meiling Fang, Kiran Raja, Florian Kirchbuchner,
Arjan Kuijper
Compact Models for Periocular Verification Through Knowledge Distillation…….…......

Pawel Drozdowski, Daniel Fischer, Christian Rathgeb, Julian Geissler,
Jan Knedlik, Christoph Busch
Can Generative Colourisation Help Face Recognition?......……..………………………......

223

231

239

247

255

265

273

281

291

299





BIOSIG 2020

Regular Research Papers





A. Brömme, C. Busch, A. Dantcheva, K. Raja, C. Rathgeb and A. Uhl (Eds.): BIOSIG 2020,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

The Effect of Wearing a Mask on Face Recognition

Performance: an Exploratory Study

Naser Damer12 , Jonas Henry Grebe1, Cong Chen1, Fadi Boutros12,

Florian Kirchbuchner1, Arjan Kuijper 12

Abstract: Face recognition has become essential in our daily lives as a convenient and contactless
method of accurate identity verification. Process such as identity verification at automatic border
control gates or the secure login to electronic devices are increasingly dependant on such technolo-
gies. The recent COVID-19 pandemic have increased the value of hygienic and contactless identity
verification. However, the pandemic led to the wide use of face masks, essential to keep the pandemic
under control. The effect of wearing a mask on face recognition in a collaborative environment is
currently sensitive yet understudied issue. We address that by presenting a specifically collected
database containing three session, each with three different capture instructions, to simulate realistic
use cases. We further study the effect of masked face probes on the behaviour of three top-performing
face recognition systems, two academic solutions and one commercial off-the-shelf (COTS) system.

Keywords: Face recognition, COVID-19, masked face recognition.

1 Introduction

Given the current COVID-19 pandemic, it is essential to enable contactless and smooth

running operations, especially in contact sensitive facilities like airports. Face recognition

have been been praised as such an accurate and contactless mean of verifying identities.

Wearing masks is essential to prevent the spread of contagious diseases and have been

currently forced in public places in many countries. However, the performance, and thus

the trust, of contactless identity verification through face recognition can be effected by

wearing a mask.

Face occlusion have been repeatedly addressed in the scope of face detection solutions

[Op16]. Moreover, developing occlusion invariant face recognition solutions has been a

growing research challenge [So19]. However, most of these works address general occlu-

sion that commonly appear in in-the-wild capture conditions, such as sunglasses and par-

tial captures. Given the current COVID-19 pandemic, it is essential to study the specific

effect of wearing face masks on the behaviour of face recognition system in a collabora-

tive environment. Our work aims at studying this effect to enable the future development

of solutions addressing accurate face recognition in such scenarios. To achieve that, we

present a database that simulates a realistically variant collaborative face capture scenario.

This database is a first version of an on-going data collection process that includes three

session, each with three capture variations, per subject. We study the behaviour of three of

1 Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
2 Mathematical and Applied Visual Computing, TU Darmstadt, Darmstadt, Germany
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the top performing face recognition solutions (one commercial and two academic) when

encountering masked faces, in comparison to the typical no-mask baseline. We conclude

with pointing out strong signs of negative effect on face recognition systems, showing the

need to develop appropriate evaluation databases and recognition solutions.

2 Related work

Face recognition deployment faces a number of operational challenges. Many of these

challenges, and thus the research efforts, are related to attacks on face recognition sys-

tems, such as presentation attacks (spoofing) [DD16], morphing attacks [Da19], or other

unconventional attacks [Da18]. However, issues related to the biometric sample presenta-

tion, such as face occlusion, can also effect face recognition deployability. The detection of

occluded faces is a well-studied issue in the computer vision domain. An example of that

is the work of Optiz et al. [Op16] that proposed a novel grid loss targeting a more accurate

detection of occluded faces. Focusing on masked faces, Ge et al. [Ge17] presented a so-

lution to enhance the detection (not biometric recognition) of masked faces in in-the-wild

scenarios. Their experiments did not focus on masks worn specifically for health protection

reasons, but included other forms of face occlusions. However, their solution is relevant to

face recognition as our experiments will show later that the investigated face recognition

solutions fails in some cases to detect a face.

As stated, detecting occluded faces is a challenge that affect the operation of face biometric

systems. However, the biometric recognition of these faces is a more dominant challenge.

An example of the works addressing this challenge is that of Song et al. [So19] where

they aim at enhancing face recognition for faces with general occlusions. Their approach

tries to learn finding and discarding corrupted feature elements, linked to occlusions, from

the recognition process. Focusing on masks, in a very recent work, Wang et al. [Wa20]

presented, in a brief and undetailed work, crawled databases for face detection, recognition

and simulated masked faces. The authors claim to enhance the recognition accuracy from

50% to 95% without providing information on their baseline, proposed algorithmic details,

or clearly specifying the evaluation database. Given the current COVID-19 pandemic, a

specifically collected database and evaluation of wearing real face mask on collaborative

face recognition is necessary and is still missing.

3 The database

The goal of the collected database is to enable the study of face recognition performance

on masked faces and drive future innovation in this domain. The database presented in

this work is an initial version and further data collection efforts is on going. The data

tries to simulate a collaborative, yet varying, scenario. Such as the situation in automatic

border control gates or unlocking personal devices with face recognition, where the mask,

illumination, and background can change.
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Each of the participants was asked to collect the data on three different, not necessary

consecutive days. We consider each of these days as one session. On each day, the par-

ticipant will collect three videos, each of a minimum length of 5 seconds. All videos are

collected from static (not hand held) webcams and the users were asked to simulate a login

scenario by looking at the capture device. The images were all captured indoors, each at

their residence during home-office. The capture was performed during the day (day-light)

and the participants were asked to remove eyeglasses only when the frame is considered

very thick. No other restrictions were imposed, such as background or mask type and its

consistency over days, to simulate realistic scenarios. The three videos captured each day

were as follows: 1) Face with no mask and no additional electric illumination, this will be

noted as baseline (BL). 2) Face with mask on and no additional electric illumination, this

will be noted as mask one (M1). 3) Face with mask on and the existing electric light in the

room is turned on, this will be noted as mask two (M2). The M2 is considered to study the

unknown effect of illumination variation in the case of masked face recognition, given that

the mask might result in different reflection and shadow patterns.

The first session (day) is considered as the reference data (R), resulting in the baseline

reference (BLR), the mask one reference (M1R), and mask two reference (M2R). The

second and third sessions (days) were considered as probe data (P) and they result in the

baseline probe (BLP), the mask one probe (M1P), and mask two probe (M2P), and the

joint probe data from M1P and M2P referred to as M12P. From each captured video,

the first second was neglected to avoid any biases related to the user interaction with the

capture device. From the following three seconds, 10 frames were selected with 9 frames

gap between them, as all videos are recorded at 30 frames per second. The total number

of participant at this first version of the database is 24, and they all participated in all

sessions. Given the number of sessions, participants and the considered frames from each

video, Table 1 provide an overview on the database structure. Samples of the database are

shown in Figure 1.

Session Session 1: References Session 2 and 3: Probes

Data split BLR M1R M2R BLP M1P M2P M12P

Illumination No No Yes No No Yes Both

Number of Captures 240 240 240 480 480 480 960

Tab. 1: An overview of the database structure.

4 Face recognition

To provide a wide view on the effect of wearing a mask on face recognition performance,

we analyse the performance of three face recognition algorithms. Two of these algo-

rithms are of the top performing academic approaches, namely the ArcFace [De19] and

SphereFace [Li17]. The third algorithm is a COTS algorithm from the vendor Neurotech-

nology [Ne]. In the following, this section provides more details on these algorithms.



4 Naser Damer et al.

(a) BL (b) M1 (c) M2

Fig. 1: Samples of the collected database from the three capture types (BL, M1, and M2)

SphereFace: We chose SphereFace as it achieved competitive verification accuracy on

Labeled Face in the Wild (LFW) [Hu07] 99.42% and Youtube Faces (YTF) [WHM11]

95.0% using 64-CNN layers trained on CASIA-WebFace dataset [Yi14]. SphereFace is

trained using angular Softmax loss function (A-Softmax). The key idea behind A-Softmax

loss is to learn discriminative features from the face image by formulating the Softmax as

angular computation between the embedded features vector X and their weights W .

ArcFace: ArcFace achieved state-of-the-art performance of several face recognition bench-

marks such as LFW 99.83% and YTF 98.02%. ArcFace introduced Additive Angular Mar-

gin loss (ArcFace) to enhance the discriminative power of the face recognition model. We

employed ArcFace based on ReseNet-100 [He16] architecture pretrained on refined ver-

sion of MS-Celeb-1M dataset [Gu16] (MS1MV2).

COTS: We used the MegaMatcher 11.2 SDK [Ne] from the vendor Neurotechnology.

We chose this COTS product as Neurotechnology achieved one of the best performances

in the recent NIST report addressing the performance of vendor face verification products

[GP20]. The face quality threshold was set to zero to minimize neglecting masked faces.

The full processes of detecting, aligning, feature extraction, and matching are part of the

COTS and thus we are not able to provide their algorithmic details. Matching two faces by

the COTS produces a similarity score.

For the ArcFace [De19] and SphereFace [Li17], the Multi-task Cascaded Convolutional

Networks (MTCNN) [Zh16] solution is used, as recommended in [Li17], to detect (crop)

and align (affine transformation) the face. Both network process the input aligned and

cropped image and produce a feature vector of the size 512. To compare two faces, a

distance is calculated between their respective feature vectors. This is calculated as Eu-

clidean distance for ArcFace features, as recommended in [De19], and as Cosine distance

for SphereFace features, as recommended in [Li17]. The Euclidean distance (dissimilar-

ity) is complemented to show a similarity score and the Cosine distance shows similarity

score by default.
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5 Experimental setup

To baseline the performance, we evaluate the face verification performance without masks.

This is done by N:N comparison of the data splits BLR and BLP (BLR-BLP). To measure

the performance when wearing a mask, we perform an N:N comparison between the data

splits BLR and M1P (BLR-M1P). To evaluate any induced performance change by hav-

ing an additional illumination (room light) when wearing a mask, we perform an N:N

comparison between the data splits BLR and M2P (BLR-M2P). To measure the overall

performance including both considered illumination, we perform an N:N comparison be-

tween the data splits BLR and M12P (BLR-M12P). These four experiments are used to

evaluate each of the three considered face recognition solutions.

To study the effect of wearing a mask on the recognition performance, we plot the genuine

and imposter distributions of the BLR-BLP (baseline) comparisons along with the genuine

and imposter score distributions of the BLR-(M1P or M2P or M12P) (mask). This allows

analysing the shifts in the distributions induced by wearing a mask. We also report the

mean of the genuine scores (G-mean) and mean of imposter scores (I-mean) for each

experiment, to get a quantitative measure of the comparison scores shifts.

Based on the standard ISO/IEC 19795-1 [Ma06], we also enrich our performance study

by a number of verification performance metrics. As the face mask induces a strong ap-

pearance change on the face, face detection might be challenging. Therefore, we report

the failure to extract rate (FTX) for each experiment. FTX is proportion of failures of the

feature extraction process to generate a template from the captures sample. Besides re-

porting the FTX, and only for the samples where a template can be created, we report

algorithmic verification performance metrics. These metrics include the general Equal Er-

ror Rate (EER), which is defined as the common value of false mathc rate (FMR) and

false non match rate (FNMR) at the decision threshold where they are identical. We also

show the algorithmic verification performance by listing the FNMR at different operation

points by presenting the achieved FMR100, FMR1000, and ZeroFMR, which are the low-

est FNMR for an FMR ≤1.0%, ≤0.1%, and ≤0%, respectively. To provide an algorithmic

verification performance illustration on the complete range of operation points, we plots

the receiver operating characteristic (ROC) curves for all the experimental setups, for each

of the investigated face recognition systems.

6 Evaluation results

Figure 2 presents the comparison between the baseline (BLR-BLP) genuine and imposter

score distributions and the different masked faces experiments (BLR-M1P, BLP-M2P,

BLR-M12P) on the three considered face recognition solutions. It is noticeable in all ex-

perimental setups that, when comparing masked faces probes to unmasked references, the

genuine score distributions strongly shift towards the imposter distributions in comparison

to the BLR-BLP setup. This indicates an expected decrease in performance and general

trust in the matcher decision, as the separability between genuine and imposter samples

decreases. This unwanted shift seems to be slightly stronger when the masked faces are
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captured under additional artificial illumination (BLR-M2P) when compared to the nat-

ural light condition (BLR-M2P). On the other hand, the imposter score distributions do

not seem to be significantly affected by the masked probes (BLR-M1P, BLP-M2P, BLR-

M12P) in comparison to the unmasked baseline (BLR-BLP).

(a) ArcFace: BLR-BLP and

BLR-M1P

(b) ArcFace: BLR-BLP and

BLR-M2P

(c) ArcFace: BLR-BLP and

BLR-M12P

(d) SphereFace: BLR-BLP and

BLR-M1P

(e) SphereFace: BLR-BLP and

BLR-M2P

(f) SphereFace: BLR-BLP and

BLR-M12P

(g) COTS: BLR-BLP and BLR-

M1P

(h) COTS: BLR-BLP and BLR-

M2P

(i) COTS: BLR-BLP and BLR-

M12P

Fig. 2: The comparison score (similarity) distributions comparing the ”baseline” BLR-BLP genuine

and imposter distributions to those of the distributions including ”masked” faces probes (BLR-M1P

(a, d, g)), BLR-M2P (b, e, h), BLR-M12P (c, f, i). The shift of the genuine scores towards the

imposter distribution is clear when faces are masked for all investigated system (ArcFace(a, b, c),

SphereFace (d, e, f), and COTS (g, h, i)).

Tables 2, 3, and 4 present the achieved performance, given by the different evaluation met-

rics, on all experimental setups by the ArcFace, SphereFace, and COTS solutions, respec-

tively. In all systems, wearing a face mask affected the ability to detect the face properly,

resulting in a higher than zero (as in the baseline) FTX. Interestingly, additional illumi-

nation (typically from the top) increased the FTX in all systems (BLR-M2P compared to

BLR-M1P). This is probably due to the different reflection and shadow patterns induced

by the illumination, see samples in Figure 1. The FTX values for the SphereFace and Arc-

Face in tables 2 and 3 are identical as they both use the MTCNN network for face detection

and alignment.
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The verification performance (EER, FMR100, FMR1000, ZeroFMR) of the ArcFace and

SphereFace is negatively affected when the probe faces are masked (BLR-M1P and BLR-

M2P), see tables 2 and 3. This negative effect is stronger when the faces are captured under

the effect of artificial illumination (BLR-M2P), probably due to unexpected reflections and

shadowing and the fact that the BLR references were captured without such illumination.

The reduction in the performance is much more dominant in the SphereFace solution in

comparison to the ArcFace. For both systems, the G-mean values decreased significantly

when considering the masked probes. This, despite the small size of the evaluation data,

indicates a strong negative effect of the masks on the face recognition performance. On

the other hand, the I-mean value when considering the masked faces, in comparison to the

baseline (BLR-BLP), was not changed under the the ArcFace solution and only slightly

changed under the SphereFace solution.

ArcFace EER FMR100 FMR1000 ZeroFMR G-mean I-mean FTX

BLR-BLP 0.000% 0.000% 0.000% 0.000% 0.666 0.417 0.000%

BLR-M1P 3.163% 3.517% 3.831% 5.069% 0.511 0.417 3.750%

BLR-M2P 5.504% 6.163% 6.628% 7.616% 0.509 0.417 5.833%

BLR-M12P 4.380% 4.888% 5.229% 6.468% 0.510 0.417 4.792%

Tab. 2: The verification performance measures, the G-mean, and I-mean achieved by ArcFace on the

different experimental setups. Note the performance degradation induced by the masked face probes.

SphereFace EER FMR100 FMR1000 ZeroFMR G-mean I-mean FTX

BLR-BLP 0.216% 0.065% 0.217% 0.390% 0.825 0.033 0.000%

BLR-M1P 9.312% 27.35% 52.95% 72.91% 0.384 0.026 3.750%

BLR-M2P 12.36% 28.22% 47.66% 73.16% 0.374 0.025 5.833%

BLR-M12P 10.85% 27.86% 50.01% 73.38% 0.380 0.025 4.792%

Tab. 3: The verification performance measures, the G-mean, and I-mean achieved by SphereFace

on the different experimental setups. Note the performance degradation induced by the masked face

probes.

COTS EER FMR100 FMR1000 ZeroFMR G-mean I-mean FTX

BLR-BLP 0.249% 0.000% 0.251% 0.668% 110.8 2.281 0.000%

BLR-M1P 0.443% 0.304% 0.684% 2.253% 68.09 2.221 2.500%

BLR-M2P 0.004% 0.000% 0.009% 0.050% 70.88 2.298 3.542%

BLR-M12P 0.239% 0.152% 0.341% 1.237% 69.49 2.259 3.021%

Tab. 4: The verification performance measures, the G-mean, and I-mean achieved by COTS on the

different experimental setups. Although the change in the performance caused by the masked face

probes is insignificant, the shift in the average genuine score towards the imposter scores is very

dominant in these cases.

When it comes to verification performance metrics (EER, FMR100, FMR1000, ZeroFMR),

the COTS is not significantly affected by masked faces. This is apparent in Table 4, where

these performance metrics are not significantly different in all experimental setups. This

might be due to the robust and high performance of the COTS solution and the limited size

of the evaluation database. However, the change in the G-mean from 110.8 in the BLR-

BLP to 69.46 in the BLR-M12P, while maintaining a similar I-mean, indicates a large
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(a) ArcFace (b) SphereFace

(c) COTS

Fig. 3: The verification performance for the three investigated system (ArcFace(a), SphereFace (b),

and COTS (c)) is presented as ROC curves. For each of the systems, four curves are plotted to repre-

sent the three settings that include ”masked” faces probes (BLR-M1P, BLR-M2P, and BLR-M12P)

and the unmasked baseline (BLR-BLP). The area under curve (AUC) is also listed for each of the

ROC curves. As in Tables 2, 3, and 4, the effect of masked probes is apparent on the performance

of the ArcFace and SphereFace, while the performance of the COTS is almost perfect in all experi-

mental settings (however, with shift in genuine scores values).

change in the separability (between genuine and imposter) in the COTS decisions. This

can lead to an increase in the error rate given a larger and more challenging evaluation.

Such an evaluation is planned as the data presented in this paper is an initial version of

a larger data being collected at the moment. To show the verification performance over a

wider range of operation points, Figure 3 presents the ROC curves for the different exper-

imental settings for each of the three investigated systems. Similar conclusions to those

established from Tables 2, 3, and 4 can be made. The ArcFace and SphereFace verification

performance is effected by the masked probe faces, while the COTS maintains an almost

perfect verification performance. However, one must keep in mind the significant shift in

the genuine score values in all three systems, as illustrated in Figure 2.
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In general, the effect of wearing face masks on the face recognition behaviour is apparent

on all investigated systems. The effect is most significant on the genuine scores distribu-

tion, rather than the imposter scores distribution. This renders the current face recognition

solutions undependable to match masked faces with unmasked faces and, at least, requires

re-evaluation.

7 Conclusion

Addressing the wide spread use of face masks as a preventive measure to the COVID-

19 pandemic spread, we presented an exploratory study on the effect of wearing masks

on face recognition performance in collaborative scenarios. We presented a specifically

collected database captured in three different sessions, with and without wearing a mask,

and is part of an ongoing effort to gather a larger scale database with realistic variations.

We analysed the behaviour of two high-performing academic face recognition solutions

and one of the top performing COTS solutions. Our analyses pointed out the significant

effect of wearing a mask on comparison scores separability between genuine and imposter

comparisons in all the investigated systems. Moreover, we point out a large drop in the

verification performance of the academic face recognition solutions, even on a limited

evaluation data, when considering masked face probes.

Acknowledgment

This research work has been funded by the German Federal Ministry of Education and Re-

search and the Hessen State Ministry for Higher Education, Research and the Arts within

their joint support of the National Research Center for Applied Cybersecurity ATHENE

References

[Da18] Damer, Naser; Wainakh, Yaza; Boller, Viola; von den Berken, Sven; Terhörst, Philipp;
Braun, Andreas; Kuijper, Arjan: CrazyFaces: Unassisted Circumvention of Watchlist
Face Identification. In: 9th IEEE International Conference on Biometrics Theory, Ap-
plications and Systems, BTAS 2018, Redondo Beach, CA, USA, October 22-25, 2018.
IEEE, pp. 1–9, 2018.

[Da19] Damer, Naser; Saladie, Alexandra Mosegui; Zienert, Steffen; Wainakh, Yaza; Terhörst,
Philipp; Kirchbuchner, Florian; Kuijper, Arjan: To Detect or not to Detect: The Right
Faces to Morph. In: 2019 International Conference on Biometrics, ICB 2019, Crete,
Greece, June 4-7, 2019. IEEE, pp. 1–8, 2019.

[DD16] Damer, Naser; Dimitrov, Kristiyan: Practical View on Face Presentation Attack Detec-
tion. In (Wilson, Richard C.; Hancock, Edwin R.; Smith, William A. P., eds): Proceed-
ings of the British Machine Vision Conference 2016, BMVC 2016, York, UK, September
19-22, 2016. BMVA Press, 2016.

[De19] Deng, Jiankang; Guo, Jia; Xue, Niannan; Zafeiriou, Stefanos: ArcFace: Additive Angu-
lar Margin Loss for Deep Face Recognition. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp.
4690–4699, 2019.



10 Naser Damer et al.

[Ge17] Ge, Shiming; Li, Jia; Ye, Qiting; Luo, Zhao: Detecting Masked Faces in the Wild with
LLE-CNNs. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, pp. 426–
434, 2017.

[GP20] Grother Patrick, Ngan Mei, Hanaoka Kayee: Ongoing Face Recognition Vendor Test
(FRVT). NIST Interagency Report, 2020.

[Gu16] Guo, Yandong; Zhang, Lei; Hu, Yuxiao; He, Xiaodong; Gao, Jianfeng: MS-Celeb-1M:
A Dataset and Benchmark for Large-Scale Face Recognition. In: Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part III. pp. 87–102, 2016.

[He16] He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian: Deep Residual Learning for
Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society,
pp. 770–778, 2016.

[Hu07] Huang, Gary B.; Ramesh, Manu; Berg, Tamara; Learned-Miller, Erik: Labeled Faces in
the Wild: A Database for Studying Face Recognition in Unconstrained Environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[Li17] Liu, Weiyang; Wen, Yandong; Yu, Zhiding; Li, Ming; Raj, Bhiksha; Song, Le:
SphereFace: Deep Hypersphere Embedding for Face Recognition. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017. pp. 6738–6746, 2017.

[Ma06] Mansfield, A: Information technology–Biometric performance testing and reporting–
Part 1: Principles and framework. ISO/IEC, pp. 19795–1, 2006.

[Ne] Neurotechnology MegaMatcher 11.2 SDK. "https://www.neurotechnology.com/
mm_sdk.html".

[Op16] Opitz, Michael; Waltner, Georg; Poier, Georg; Possegger, Horst; Bischof, Horst: Grid
Loss: Detecting Occluded Faces. In: Computer Vision - ECCV 2016 - 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III.
volume 9907 of Lecture Notes in Computer Science. Springer, pp. 386–402, 2016.

[So19] Song, Lingxue; Gong, Dihong; Li, Zhifeng; Liu, Changsong; Liu, Wei: Occlusion Ro-
bust Face Recognition Based on Mask Learning With Pairwise Differential Siamese Net-
work. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019. pp. 773–782, 2019.

[Wa20] Wang, Zhongyuan; Wang, Guangcheng; Huang, Baojin; Xiong, Zhangyang; Hong, Qi;
Wu, Hao; Yi, Peng; Jiang, Kui; Wang, Nanxi; Pei, Yingjiao; Chen, Heling; Miao, Yu;
Huang, Zhibing; Liang, Jinbi: , Masked Face Recognition Dataset and Application,
2020.

[WHM11] Wolf, Lior; Hassner, Tal; Maoz, Itay: Face recognition in unconstrained videos with
matched background similarity. In: CVPR 2011. IEEE, pp. 529–534, 2011.

[Yi14] Yi, Dong; Lei, Zhen; Liao, Shengcai; Li, Stan Z.: Learning Face Representation from
Scratch. CoRR, abs/1411.7923, 2014.

[Zh16] Zhang, Kaipeng; Zhang, Zhanpeng; Li, Zhifeng; Qiao, Yu: Joint face detection and align-
ment using multitask cascaded convolutional networks. IEEE Signal Processing Letters,
23(10):1499–1503, 2016.



A. Brömme, C. Busch, A. Dantcheva, K. Raja, C. Rathgeb and A. Uhl (Eds.): BIOSIG 2020,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 11

Soft-Biometrics Estimation In the Era of Facial Masks

Fernando Alonso-Fernandez1, Kevin Hernandez Diaz2, Silvia Ramis3,

Francisco J. Perales4, Josef Bigun5

Abstract: We analyze the use of images from face parts to estimate soft-biometrics indicators. Par-
tial face occlusion is common in unconstrained scenarios, and it has become mainstream during the
COVID-19 pandemic due to the use of masks. Here, we apply existing pre-trained CNN architec-
tures, proposed in the context of the ImageNet Large Scale Visual Recognition Challenge, to the
tasks of gender, age, and ethnicity estimation. Experiments are done with 12007 images from the
Labeled Faces in the Wild (LFW) database. We show that such off-the-shelf features can effectively
estimate soft-biometrics indicators using only the ocular region. For completeness, we also evaluate
images showing only the mouth region. In overall terms, the network providing the best accuracy
only suffers accuracy drops of 2-4% when using the ocular region, in comparison to using the en-
tire face. Our approach is also shown to outperform in several tasks two commercial off-the-shelf
systems (COTS) that employ the whole face, even if we only use the eye or mouth regions.

Keywords: Soft-Biometrics, Periocular, Gender, Age, Ethnicity.

1 Introduction

Recent research has explored the use of ancillary information, known as soft biometrics,

which includes attributes like gender, age, ethnicity, etc. [DER16]. While they may not be

sufficiently distinctive to allow accurate recognition, they can be used in a fusion frame-

work to complement the primary system [Go18]. Automated soft-biometrics extraction has

other applications as well, such as reducing the search space of subjects in large databases,

locating specific individuals based on such semantic attributes, providing age-dependant

access control, or customizing advertisements or customer recommendations [DER16].

Face is a natural way to recognize many soft-biometrics indicators. However, in uncon-

strained conditions, it may be partially occluded, accidentally or intentionally, as for ex-

ample by the use of masks. Accordingly, we address the challenge of estimating soft-

biometrics indicators when only images of face parts are available. This has been sug-

gested in several studies with traditional features such as Local Binary Patterns or His-

tograms of Oriented Gradients [AFB16]. Here, we leverage the power of Convolutional

Neural Networks (CNNs) pre-trained in the context of the ImageNet challenge with more

than a million images to classify images into 1000 object categories. Based on [Ng18], the

1 School of Information Technology, Halmstad University, Sweden, feralo@hh.se
2 School of Information Technology, Halmstad University, Sweden, kevin.hernandez-diaz@hh.se
3 Computer Graphics and Vision and AI Group, University of Balearic Islands, Spain, silvia.ramis@uib.es
4 Computer Graphics and Vision and AI Group, University of Balearic Islands, Spain, paco.perales@uib.es
5 School of Information Technology, Halmstad University, Sweden, josef.bigun@hh.se
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Input ROI

Soft-Biometrics Classi�cation

Fig. 1: Top: Extraction of the regions of interest. Bottom: Soft-biometrics classification framework.

authors in [HDAFB18, Al19] investigated the use of these off-the-shelf CNNs for perioc-

ular recognition, eliminating the necessity of designing and training new networks. Here,

we further investigate their behaviour in soft-biometrics classification. Our experiments

show that these off-the-shelf features are capable of measuring soft-biometrics using only

the ocular or mouth regions, with negligible accuracy drops or even better performance

in comparison to using the whole face. The proposed approach also compares favourably

with two commercial off-the-shelf systems (COTS), outperforming them in several tasks.

2 Soft-Biometrics Classification Approach

We extract features from different regions (Figure 1): face, left/right periocular, or mouth.

For feature extraction, the following networks are used: AlexNet [KSH12], ResNet50 and

ResNet101 [He16], DenseNet201 [Hu17], VGG-Face [PVZ15], and MobileNetv2 [Sa18].

These networks have gained in sophistication and depth, starting from AlexNet (with only

5 convolutional layers), to ResNet (50/101 layers) and DenseNet (201 layers). The latter

were made possible thanks to concepts like residual connections [He16] and densely con-

nected architectures [Hu17], with allowed the training of deeper networks. We also employ

VGG-Face. Based on the generic VGG16, it is trained to recognize faces, so we believe

that it can provide effective recognition in our tasks with data from facial regions. Finally,

we use the network MobileNetv2, designed to have a smaller size while keeping accu-

racy. With these choices, we aim at comparing networks of different depths, and a network

trained with faces as well. In using them, images are fed into each CNN. But instead of

using the vector from the last layer, we employ as descriptor the intermediate layer iden-

tified as giving the best performance in periocular recognition [HDAFB18, Al19]. Since

we will employ a similar type of data, we speculate that these layers will be useful for

soft-biometrics as well. In particular, we use the layers: 14 (AlexNet), 73 (ResNet50), 165

(ResNet101), 223 (DenseNet201), 25 (VGG-Face) and 121 (MobileNetv2). Classification

with each network is then done by training a linear Support Vector Machine (SVM) with

the extracted feature vectors [Va95]. The complete procedure is shown in Figure 1 (bot-

tom), whereas Table 1 indicates the size of the feature vector for each network.
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Network Layer Size Network Layer Region Size

AlexNet 14 43264 MobileNetv2 121 - 7840

ResNet50 73 100352 MobileNetv2 121 face 4763

ResNet101 165 50176 + PCA left eye 4332

DenseNet201 223 6272 right eye 4327

VGG-Face 25 100352 mouth 4396

Tab. 1: Size of the feature vector per classification network.

Attribute

Gender Male (77.6%) Female (22.4%)

Age Baby (<1%) Child (<1%) Youth (12.9%) Adult (62.9%) Senior (23.6%)

Ethnicity White (81.6%) Black (3.8%) Asian (5.5%) Indian (2.4%) Other (6.7%)

Tab. 2: Statistics of soft-biometrics attributes of the LFW database.

3 Database and Protocol

We use the Labeled Faces in the Wild (LFW) database [Hu07]. It contains images of

celebrities from the web with a large range of variations in pose, lightning, expression, etc.

In particular, we use 12007 images, for which annotation of face landmarks is available.

All images are rotated w.r.t. the axis crossing the eyes, and resized to an eye-to-eye distance

of 42 pixels (average of the database). Then, a face image of 109×109 is extracted, together

with the two periocular regions (43×43 each), and the mouth (49×49). Images are further

resized to the input size of the networks. An example of this procedure is given in Figure 1.

To train and evaluate our classification approach, we employ the ground-truth of [Go18].

Table 2 indicates the attributes employed and the statistics of the database. When there

are more than two classes, a one-vs-one multi-class approach is used. For every feature

and N classes, N(N −1)/2 binary SVMs are used. Classification is made based on which

class has most number of binary classifications towards it (voting scheme). Evaluation is

done with k-fold cross-validation (k=5), with k sets containing the same number of (non-

overlapped) people. On each iteration, a set is retained for validation, and the remaining

k− 1 sets are used to train the SVMs. The average accuracy of the k iterations are then

reported. The software employed was Matlab r2019a, which contains pre-trained models

of all the CNNS, except VGG-Face which is from the Caffe Model Zoo.

4 Results

The performance of our soft-biometrics classification approach is reported in Figures 2-4

for gender, age, and ethnicity respectively. Accuracy is reported for each class (images of

the class classified correctly), and for the whole database (images of the database classified

correctly). We provide results using as input: i) the whole face, ii) the left/right eye sepa-

rately, iii) both eyes together (by concatenating feature vectors), and iv) the mouth region.
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Fig. 2: Accuracy of gender estimation using different facial regions.

The size of some age groups (“baby”, “child”) is very small, see Table 2, so these groups

been merged with the class “youth” into a single class that we call “minors”.

The red circles indicate the top results for each class. A quick look reveals that three net-

works concentrate the top results (with few exceptions): DenseNet201, VGG-Face and

MobileNetv2. The best networks overall (‘total’ accuracy) are DenseNet201 and Mo-

bileNetv2. This is interesting, since DenseNet201 is the deepest network employed, while

MobileNetv2 is a lighter network designed to have much less depth and parameters. With

DenseNet201, gender is estimated with an accuracy of 87.1-94.2% (depending on the im-

age region), while age is estimated with 57.6-62%, and ethnicity with 76.8-81.6%. With

MobileNetv2, gender is estimated with an accuracy of 87.9-94%, age with 55.5-63.8%,

and ethnicity with 70.3-80.5%. It is also relevant that VGG-face does not systematically

outperform the other networks, even if it is trained with facial data. DenseNet201 and

MobileNetv2 are also the best network with the classes having more samples (Table 2):

gender-male, age-adult, and ethnicity-white classes. On the other hand, VGG-Face wins

with the classes that are less represented; a downside though is that its performance with

the biggest classes is poor. The latter is also seen in the ResNet variants.

Interestingly, the feature vectors of DenseNet201 and MobileNetv2 are the smallest among

those employed (Table 1). Therefore, a bigger feature vector does not correlate with a

better performance, but the opposite. Also, MobileNetv2 stands out as a very balanced

network, with top results with the biggest classes, and also relatively good performance

with the others (with very few exceptions like ethnicity-indian or ethnicity-other classes,

whose performance is very poor with any network). Given that the networks employed

have not been specifically trained for soft-biometrics, and to eliminate feature redundancy,

we carry out dimensionality reduction by Principal Component Analysis (PCA) [Jo02]. We

retain the elements with 99% of the variance, with the PCA basis learnt using images from
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Fig. 3: Accuracy of age estimation using different facial regions.

the training set on each validation iteration. In our experiments, we have observed that PCA

provides further performance improvement with DenseNet201 and MobileNetv2 in the

majority of classes. On the other hand, results with the other networks are not consistent,

showing improvement with some classes, while decreasing substantially in others. Due

to space, we only show results of MobileNetv2 (Table 3). Also, Table 1 (right) gives the

average number of retained coefficients for the different regions.

As it can be observed in Table 3, in overall terms (‘total’ columns), PCA provides an

extra improvement. The performance of the biggest classes (gender-male, age-adult, and

ethnicity-white) is better, and improvements happen as well with several less-represented

classes. It happens though that some small classes worsen after PCA, e.g. age-senior,

ethnicity-black, or ethnicity-other. Regarding the use of different facial regions, it can

be observed that using only the periocular or mouth regions is not necessarily worse than

using the whole face. This is not only seen with MobileNetv2 (Table 3), but with other net-

works as well (Figures 2-4). When estimating gender with MobileNetv2, the best accuracy

is obtained with the whole face (95.8%). With a combination of both eyes, accuracy is just

2.4% below (93.4%), and with only one eye, it drops a further 0.8% only (92.6%). Accu-

racy with only the mouth region is also comparably good (90.5%), although its accuracy

with the gender-female class is much worse than the other facial regions. In a similar vein,

the whole face provides the best overall performance in age (64.5%) and ethnicity (83.3%)

estimation, and the use of facial parts results in a small accuracy drop only. Age with only

the mouth is estimated with an accuracy of 59.6%, which goes up to 60% when both eyes

are used, and even better with the left eye only (60.2%). Similarly, ethnicity with both eyes

or the mouth is estimated with an accuracy of 81.3%/81.5%, and even better with the right

eye only (82.9%). It is worth noting as well that combining both eyes does not necessarily
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Fig. 4: Accuracy of ethnicity estimation using different facial regions.

produces better accuracy, in comparison to using one eye only. In addition, uncorrelated

areas such as the eye or mouth provides a relatively similar performance.

We also provide (Table 4) the results of two COTS systems, Face++3 and Microsoft Cog-

nitive Toolkit4, given in [Go18]. These systems estimate soft-biometrics attributes based

on deep learning architectures. The results in Table 4 have been obtained using images of

the whole face. Note that not all the classes employed in this paper are provided. Ethnic-

ity is only given by Face++, giving only the classes white (caucasian), black and asian.

Regarding age, the results in [Go18] are separated by the five age groups of Table 2. By

comparing Tables 3 and 4, we observe that the performance of our suggested framework

using MobileNetv2 outperforms the gender estimation of these COTS systems. Regard-

ing age estimation, the COTS systems are better for age classes involving minors (which

represent only about 13% of the data), but they show poorer performance with age-adult

or age-senior groups. Regarding ethnicity, our approach outperforms the COTS systems

for white and black classes. It is also worth noting that in the classes where our approach

outperforms the COTS systems, the superiority is observed as well if we only employ the

eye or mouth regions.

5 Conclusions

We suggests the use of off-the-shelf CNN architectures, pre-trained in the context of the

ImageNet Large Scale Visual Recognition Challenge, for the task of soft-biometrics clas-

sification with facial images. More importantly, giving the current context where face en-

3 https://www.faceplusplus.com/
4 https://www.microsoft.com/cognitive-services/
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GENDER AGE

male female total minors adult senior total

face 93.9 93.4 94 39.8 71.8 64.5 63.8

face + PCA 97.6 90.1 95.8 45 75.6 53.1 64.5

left eye 88.5 87.6 87.9 45.1 66.1 50.1 58.8

left eye + PCA 95.8 80.8 92.5 46.1 69.4 46.7 60.2

right eye 93.5 84.1 91.1 46.6 61.3 58.2 55.5

right eye + PCA 94.6 85.3 92.6 39.9 70.5 46 57.8

both eyes 93 87.6 92 55.4 56.5 64.2 57.3

both eyes + PCA 94.6 89.7 93.4 45.9 72.8 45.9 60

mouth 91.2 79.4 88.3 39.5 67.9 48.9 57.8

mouth + PCA 95.2 74.6 90.5 41.9 71.9 44 59.6

ETHNICITY

white black asian indian other total

face 84.3 72.2 66.3 9.8 38.4 77.9

face + PCA 91.1 78.1 66.8 7.7 32 83.3

left eye 89.6 68.6 58 10.7 18.9 80.5

left eye + PCA 90.2 68.5 60.4 13.4 23.5 81.4

right eye 85.5 70.1 65 8.6 17.4 77.3

right eye + PCA 93.2 63.8 55.3 8.2 17 82.9

both eyes 75.3 74 69.8 12.3 28.2 70.3

both eyes + PCA 88.8 70.8 76.8 11.1 25.3 81.3

mouth 81.7 71.6 45.4 5.4 25.7 73.6

mouth + PCA 92 69.5 38.8 4.3 21.7 81.5

Tab. 3: MobileNetv2 network: Accuracy of soft-biometrics estimation with and without PCA reduc-

tion using different facial regions. For each region, the best accuracy (between using/not using PCA)

is highlighted with a grey background. The best overall accuracy of each class is marked in bold.

gines are forced to work with images of people wearing masks, we evaluate the feasibility

of using partial images containing only the ocular or mouth regions (Figure 1). In this pa-

per, we test popular generic architectures, with features extracted from intermediate layers

identified in previous studies as providing good person recognition with ocular images.

Prediction is then done with SVM classifiers. They are evaluated with 12007 annotated

images of the LFW database [Hu07, Go18]. Our results indicate the possibility of per-

forming soft-biometrics classification using images containing only the ocular or mouth

regions, without a significant drop in performance in comparison to using the entire face.

An overall accuracy of 95.8/64.5/83% in gender/age/ethnicity estimation is obtained with

images of the entire face using the MobileNetv2 architecture. Using only images of one

eye, the best accuracy in these tasks is 92.6/60.2/82.9% respectively, and using images of

the mouth area, we obtain an accuracy of 90.5/59.6/81.5%. The proposed approach also

compares well with two COTS systems by Face++ and Microsoft, outperforming them in

the gender estimation task, and in several classes of the age and ethnicity tasks.

A limitation to overcome is the class imbalance of our database. Also, the CNN layers

employed were optimized for periocular recognition, but it might be that the best layer for

soft-biometrics or for the entire face or the mouth region is different. We are also looking
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GENDER AGE

Face++ Microsoft Face++

male female total male female total baby child youth adult senior total

92.2 87.5 91.1 93.5 91.1 92.9 100 53.2 81.4 32 33.4 38.8

ETHNICITY AGE

Face++ Microsoft

white black asian indian other total baby child youth adult senior total

88.3 76.2 83.1 - - 87.4 100 45.2 92.2 52.5 59.6 59.3

Tab. 4: Performance of Face++ and Microsoft COTS [Go18].

into fine-tuning CNN architectures to do the classification directly, thanks to newer anno-

tated repositories [MFV19]. We also foresee that improvements can be obtained by joint

estimation of soft-biometrics indicators by sharing weights between different networks,

since a single facial feature carry information about different soft-biometrics [DER16].
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Watchlist Adaptation: Protecting the Innocent

Manuel Günther1, Akshay Raj Dhamija2, Terrance E. Boult2

Abstract: One of the most important government applications of face recognition is the watchlist
problem, where the goal is to identify a few people enlisted on a watchlist while ignoring the majority
of innocent passersby. Since watchlists dynamically change and training times can be expensive, the
deployed approaches use pre-trained deep networks only to provide deep features for face comparison.
Since these networks never specifically trained on the operational setting or faces from the watchlist,
the system will often confuse them with the faces of innocent non-watchlist subjects leading to difficult
situations, e.g., being detained at the airport to resolve their identity. We develop a novel approach
to take an existing pre-trained face network and use adaptation layers trained with our recently
developed Objectosphere loss to provide an open-set recognition system that is rapidly adapted to the
gallery while also ignoring non-watchlist faces as well as any background detections from the face
detector. While our adapter network can be quickly trained without the need of re-training the entire
representation network, it can also significantly improve the performance of any state-of-the-art face
recognition network like VGG2. We experiment with the largest open-set face recognition dataset,
the UnConstrained College Students (UCCS). It contains real surveillance camera stills including
both known and unknown subjects, as well as many non-face regions from the face detector. We
show that the Objectosphere approach is able to reduce the feature magnitude of unknown subjects as
well as background detections, so that we can apply a specifically designed similarity function on
the deep features of the Objectosphere network, which works much better than the direct prediction
of the very same network. Additionally, our approach outperforms the VGG2 baseline by a large
margin by rejecting the non-face data, and also outperforms prior state-of-the-art open-set recognition
algorithms on the VGG2 baseline data.

Keywords: Open-Set Face Recognition, Watchlist, Gallery Adaptation.

1 Introduction

In recent years, face biometric systems using deep networks have matured into an age of

high performance. These advances have lead face biometrics into daily-use applications

such as access control for mobile devices or tagging friends on social media, but also

an increasing usage by governments and law-enforcement for security can be observed.

However, there remains at least one application for which their performance is insufficient

and where errors impact innocent citizens: watchlists. A watchlist is an open-set problem

and, because most people are not in the gallery of subjects of interest, the system must

operate at a very low false alarm rate to reject the predominately unknown people. Recently,

one of the vendors faced considerable criticism for matching US congress members to

mugshots of criminals [Ro17]. That research was an eye-opener on the state of such

commercial recognition systems since false alarms can substantially bias the interaction

of security personnel with the person in question while increasing the responsibility for

officers to verify the outputs of the system. Consequently, the latest NIST evaluations

[GNH19] also include watchlist protocols, though only on images in controlled conditions.

1 University of Zurich, Department of Informatics, Binzmühlestrasse 14, CH-8050 Zurich, guenther@ifi.uzh.ch
2 University of Coloado Colorado Springs, Vision and Security Technology Lab, 1420 Austin Bluffs Parkway,

CO-80933 Colorado Springs, {adhamija,tboult}@vast.uccs.edu
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Fig. 1: OBJECTOSPHERE. (a) Features from pre-trained face recognition networks often leave

innocent subjects (?) near watchlist subjects (numbers), so any distance-based rejection fails. Gallery

adaptation, e.g. using linear SVMs, can leave innocent subjects (*?, ?? #?) associated with a

watchlist subject, often with high confidence. In our watchlist adaptation approach (b), we use an

Objectosphere-based deep feature adapter to learn to specialize the features to the watchlist samples

while mapping innocent unknown (*?, @? #?) samples to be near the origin. Watchlist subjects

(numbers) have more compact representations, and when an innocent unknown (?) is presented, it has

reduced magnitude and its weighted cosine distance to any class allows for rejection. Known samples

will still map to be near their training samples, and the weighted cosine will correctly match them.

In our recent work [DGB18], we showed that one of the difficulties with open-set recog-

nition in deep networks is that deep features for unknown inputs will often map near

or directly on top of the features of known inputs, as indicated in Fig. 1. If the features

overlap, no distance-based algorithm can separate them. Thus we argue that for dealing

with unknown subjects in a watchlist, we ideally want to learn deep features that separate

the known subjects from unknown inputs. Note that unlike prior work, our ”unknowns”

include very different objects, e.g., backgrounds that make it through the face detector as

well as faces of unknown subjects. The latter are very similar to the known subjects, which

makes this a more difficult separation.

Currently, face research/practice eschews ”training” on the gallery [Lu12]. That deeply

ingrained decision is more folklore than science and we argue that difficult open-set

problems such as watchlists require adapting the deep features to the specific gallery, what

we call watchlist adaptation. There are two primary arguments against gallery training: cost

and generalizability. For large face recognition, such as passport or visa management, there

are many people in the gallery, and the gallery is constantly changing so training on it is

impractical. However, watchlists tend to be small and rarely modified, and as we shall show

in this paper, with the right design, retraining/fine-tuning for a modified watchlist is quick.

The question of generalizability is more subtle. Systems are trained across demographics

to ensure that they generalize well. To obtain such a large training dataset, the data is not

likely consistent with the domain of the watchlist problem. We argue that face watchlist

adaptation is not generalization but a rather proper specialization to the operational domain.

Our contributions in this paper are: (a) We develop the first system with watchlist

adaptation, providing features tuned to separate the watchlist identities from unknown

identities and objects. (b) We develop the first novel approach to adapt a pre-trained

network using Objectosphere loss. (c) We demonstrate that the Objectosphere adapter

learns feature representations that are more robust and help to protect innocents in watchlist

scenarios. (d) We provide state-of-the-art results on the UCCS face watchlist dataset.
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2 Related Work

Since deep learning was introduced to face recognition, all modern face recognition algo-

rithms [PVZ15, SKP15, CPC16, Sa16, Ca18, De19] rely on deep neural networks (DNNs).

Many algorithms implemented special ways of training the networks in order to provide

better performance on difficult images, such as triplet loss embedding [PVZ15, Sa16] or

different network topologies [SKP15, Ca18]. Since these networks require large amounts

of training data, usually these algorithms are trained on secondary datasets [Ba17, Ca18]

that cannot have overlapping identities with tested datasets. Deep feature representations

extracted from the penultimate layer are compared using simple distances such as Euclidean

[PVZ15] or cosine [Sa16, CPC16, De19]. While these networks provide brilliant perfor-

mance on imagery with relatively high quality, they cannot handle facial images with low

(optical) resolution, or even background detections of the face detector. Generally, images

with difficult content have very similar deep features and cluster in the center of the deep

feature space [O’18]. Thus, none of these networks is able to reject background detections

in a principled way and, therefore, they cannot be applied in real-world applications where

(false) alarms need to be handled by a human operator.

A few prior works also saw the need for gallery-related training. Klare et al. [Kl15] argue

that “training could occur on an active gallery to learn the nuances of subjects that are

labeled in a gallery” but did not experiment with such gallery/subject-specific modeling.

Chowdhury et al. [Ch16] trained one-vs-rest linear SVMs on the gallery. In neither case

did they explore gallery specific features or design to separate the features of known and

unknown inputs.

The most well-known open-set face recognition datasets come from the IARPA Janus

benchmark (IJB) series [Kl15, Wh17, Ma18]. The biggest issue with the IJB datasets is

that their protocols only include detected and manually marked faces but no background

detections. In contrast, the UnControlled College Students (UCCS) dataset [SB13] and its

corresponding protocol [Gü17b] mandate for faces to be detected as part of the recognition

pipeline. Hence, the recognition system needs to classify both background detections and

unknown faces as unknown. Due to this unique property and its true open-set nature, we

use this dataset for our experiments.

3 Approach

Watchlist is a typical open-set recognition scenario where a probe may include an unknown

identity. The system should only provide an alert if the probe belongs to one of the known

subjects from the gallery G, but not when the probe sample is of an unknown subject

u ∈U with G∩U = /0. Given a probe sample xp of subject g ∈ G, the system D needs to

produce D(xp)→ g. If xp does not belong to any subject in G, the system needs to produce

D(xp)→U , even when the system never saw this specific subject.

A real-world face watchlist system consists of two sub-systems, i.e., D = Dd → Dr where

Dd is a detection system and Dr is a representation system that is used to represent the

output of Dd for recognition. Thus, the performance of the complete system D is tied to the

performance of the detector Dd , and the representation system Dr should act as the last line

of defense for overcoming the drawbacks of Dd . Therefore, Dr is susceptible to two types
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of samples that it should identify as unknown, i.e., when xp is a face that does not belong to

G, or when xp is not even a face. In either case, Dr should be able to mark this probe image

as not belonging to one of the known faces.

Traditionally, the use of deep networks in face watchlists is limited to representational

networks, which enable researchers to decouple the training and the testing pipelines and

recognize subjects that the network was not initially trained to identify. During enrollment,

representations Rg = Dr(xg) are obtained for faces belonging to subject g ∈ G. These

representations are used to create a gallery template Gg for the subject g. To avoid enrolling

bad samples, the detection step Dd is either avoided by hand-labeling the face or at least

monitored. During inference, a representation Rp = Dd → Dr(xp) is obtained for a probe

image xp and a similarity score s(Gg,Rp) is calculated between the representations of the

probe and the gallery. This score is then thresholded in order to reject probe samples with

low similarity to all gallery templates as unknown.

In this paper, we present a new approach to the watchlist problem, where we use the gallery

for training new features so that we separate feature representations for persons of interest

from representations of unknown samples. Since this approach creates a drastic difference

between gallery subjects and unknown faces, it is not possible to perform enrollment for

a new subject without retraining. Fortunately, since we rely on features extracted from

another representational network, retraining the network is fast and could be performed

whenever a new subject needs to be enrolled.

3.1 Training

We use a secondary network (Dc) containing multiple fully connected layers to classify

a given feature representation R = Dr(x). We use two different loss functions to train Dc,

namely the Objectosphere loss as introduced in [DGB18] and the standard softmax loss

with an additional background class, which is often seen for training object detectors.

Objectosphere The Objectosphere loss introduced in [DGB18] is based on the entropic

open-set loss JE . The entropic open-set loss works similarly to the traditional softmax loss

for the samples xg belonging to the known subjects, where each node Sg of the softmax

output represents one of the G known subjects. Unknown samples xu are considered as

equal members of each of the possible classes:

JE(x) =




− logSg(Dc(R)) if x belongs to g

−
1
G

G

∑
g′=1

logSg′(Dc(R)) if x is unknown
(1)

It addition to JE , Objectosphere applies a constraint on the magnitudes of the features

representations. For unknown samples, the objective function forces the magnitudes of

the penultimate layer Dc(R) to be close to zero, while pushing the feature magnitudes of

known samples to at least ξ , a predefined hyperparameter, which we have set to ξ = 5 in

our experiments:

JR = JE +λ

{
max(ξ −||Dc(R)||,0)

2 if x is known

||Dc(R)||
2 if x is unknown

(2)
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Softmax For comparison, we apply a technique that is commonly used in object detectors.

Similar to the above, we utilize softmax to classify a given input as one of the subjects

present in the gallery, and we add an additional output node for the unknown samples.

Hence, the last layer of the softmax network has |G|+1 nodes.

3.2 Inference

During inference, a representation for the probe image xp is obtained using the representa-

tional network, i.e., Rp = Dr(xp). This representation is then fed into the secondary network

Dc to identify the sample as belonging to one of the subjects in the gallery or not belonging

to any of them. We achieve this using the following two approaches:

Classification In this approach, we use the scores of the softmax layer Sg of the classifi-

cation network Dc to link the probe to a known subject: s(g,xp) = Sg(Dc(Rp)). To obtain

an open-set measure, we threshold the softmax score at θ and reject the probe sample as

unknown if the softmax score is below θ .

Similarity This approach is the traditional use of deep networks as feature extractors for

face recognition. Since our classification network Dc contains multiple fully connected

layers, it is able to learn its own representation of the incoming samples. As common,

we remove the last fully-connected and the softmax layers of the network and extract

Pp = Dc(Rp) from the deep feature layer of the network. We enroll gallery templates Gg by

averaging the normalized gallery features Pg =Dc(Rg) of each known subject. For inference,

we compute similarity scores between the probe and the gallery using two different similarity

functions. First, we compute the cosine similarity cos(Gg,Pp) between gallery template Gg

and probe feature Pp. Since Objectosphere specifically aims at manipulating the magnitude

of the deep features Pp, we also multiply the cosine similarity with the magnitude of the

probe feature:

mcos(Gg,Pp) = cos(Gg,Pp) · ||Pp||=
Gg

T Pp

||Gg||
(3)

As before, the maximum similarity to any gallery template is thresholded to reject probe

samples as unknown.

4 Experiments

4.1 Evaluation

To evaluate the open-set face recognition performance, we employ an adaptation of the

detection and identification rate (DIR) curve [Gü17a], which usually is plotted against the

probability of false alarms [PGM11]. The DIR (here we only evaluate the DIR at rank 1)

is computed solely on the probe samples of known subjects K. In the DIR, we consider

probes to be correctly identified if the similarity to the correct subject g∗ is the highest and

above similarity threshold θ :

DIR(θ)=
1

|K|

∣∣∣{Pp | argmax
g

s(Gg,Pp) = g∗∧

s(Gg∗ ,Pp)≥ θ ; Pp ∈ K
}∣∣∣.

(4)
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(a) Sunny Day (b) Snowy Day

Fig. 2: UCCS DATASET EXAMPLES. Two images show examples from the UCCS dataset [Gü17b]

including their ground-truth bounding boxes and labels. Identical subjects are marked with identical

color, while unknown subjects are marked in white.

The original definition of the DIR curve plots the detection and identification rate (4) over

the probability of false alarms PFA [PGM11]. The PFA is computed on the unknown

samples U only. A false alarm is issued when the similarity of an unknown probe sample

Pp to any of the known subjects Gg is larger than θ :

PFA(θ) =
1∣∣U∣∣

∣∣∣{Pp | max
g

s(Gg,Pp)≥ θ ; Pp ∈ U
}∣∣∣ . (5)

Using the PFA in our evaluation has the issue that the number of unknown samples U might

vary based on the quality of the employed face detector. Hence, a poor face detector that

provides many background detections that are easy to reject by the face recognition system

would be favored since it lowers the PFA. Therefore, in [Gü17b] we only computed the total

number of false alarms (which we called false identifications), i.e., without normalizing by

the number of unknown samples |U|. Unfortunately, the total number of false alarms is not

very intuitive and might vary based on the number of probe images. Hence, we divide the

number of false alarms by the total number of probe images I, where each image contains

several probe faces, to obtain the average number of false alarms per image (FAI):

FAI(θ) =
1∣∣I∣∣
∣∣∣{Pp | max

g
s(Gg,Pp)≥ θ ; Pp ∈ U

}∣∣∣ . (6)

We believe that this metric is best suited for selecting a threshold θ according to specific

requirements. For example, if a CCTV camera captures an image every 6 seconds, and we

want to limit the impact on innocent subjects by needing human operator intervention once

every ten minutes, then the threshold θ should be based on an FAI of 0.01.

4.2 Dataset and Experimental Setup

We evaluate our experiments on the validation set of the UCCS dataset [Gü17b], examples

of which are shown in Fig. 2. We use the source code package3 of the challenge, which

includes the evaluation scripts that we used in our evaluation. We actually found a small

bug in the evaluation code, which we corrected. Additionally, we modified the false alarms

axis to divide by the number of probe images to arrive at the FAI.

3http://pypi.org/project/challenge.uccs
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In our experiments, we use the publicly available MTCNN2 face detector [Zh16] and the

VGG2 face recognition [Ca18] network as our detection Dd and representation systems Dr,

respectively. Since the images in the UCCS dataset are very difficult and most of the faces

were not detected with the default face detector parameters, we had to lower the detection

thresholds to (0.1,0.2,0.2). With this setting, most of the faces were detected, but also a

large number of background regions were marked as faces.

We detected all faces in all images and extracted the 2048-dimensional deep features of

the VGG2 face recognition network for all detected bounding boxes. In total, we obtained

11299 of the 11315 known and 15792 of the 15551 unknown faces,4 as well as 74962

background detections in the training set. Additionally to the deep features from the training

set images of the known and the unknown subjects, we added all background detections of

the face detector, which we used as additional unknown samples.5

The topology of our Objectosphere adapter network is a simple three-layer fully-connected

network with 128 and 64 neurons in the first two layers, and the number of known faces

in the UCCS dataset in the last layer. We trained the network with our Objectosphere loss

on 90 % of the training data that contained known and unknown subjects, leaving 10 % for

validation and ran 1000 training epochs using tensorflow [Ab16]. The training procedure

took around 20 minutes on a regular desktop computer with a single NVidia Titan X GPU

until convergence on the validation set, which was achieved after around 100 epochs. If

more speed is required, the network topology can surely be adapted without a significant

loss in accuracy, or more GPU resources could be used.

After training, we extracted the features from our Objectosphere network for all of the

known subjects. We enrolled the gallery templates by a simple average of the normalized

features so that we had a 64-dimensional template representation Gg of each subject g.

Particularly, we also enrolled one gallery template for the unknown faces by computing

the average 64-dimensional feature vector over all unknown faces.6 During testing, for

each detected bounding box in the validation set, we used the VGG2 features and the

64-dimensional Objectosphere features as probes.

4.3 Deep Feature Magnitudes

One of the goals of Objectosphere is that the deep features P = Dc(R) of unknown samples

have a much smaller magnitude than those of known samples. Fig. 3 shows histograms

of the feature magnitudes of all probe features of the validation set. When looking at the

distribution of the Objectosphere feature magnitudes ||P|| in Fig. 3(b), we can observe that

the background samples are well-separated from the known samples and have very low

magnitudes. The known samples are distributed around the desired target magnitude of

ξ = 5, while the unknown samples have a peak close to 0, but are distributed throughout

the range of magnitudes, which might be an effect of badly labeled images in the UCCS

4Several faces were detected multiple times and we used all of the detections.
5The additional unknown samples provide only a minor improvement. The background detections are to

dissimilar to real faces, whereas Objectosphere requires hard negative samples to obtain good results.
6This additional template does not change the shape of the DIR in Fig. 4, neither for Objectosphere nor for

Softmax. It only reduces the number of false alarms with very low scores and, thus, the plots in the DIR do not

extend further to the right. It can be removed in an operational setting that relies on a low FAI.
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(a) Original VGG2 features (b) Objectosphere Features

Fig. 3: FEATURE MAGNITUDE HISTOGRAMS. Histograms of magnitudes of deep features are shown

for known subjects, unknown subjects, and background detections, with deep features being extracted

(a) from the original VGG2 network and (b) from the Objectosphere network. For visualization

purposes, histograms are normalized individually to have the same maximum value.

dataset, cf. Sec. 4.6. Hence, it is very easy to separate background detections from faces,

but a little bit more difficult to separate known from unknown faces.

For comparison, the magnitudes ||R|| of the original VGG2 features are shown in Fig. 3(a).

As expected, the known and unknown samples have similar magnitudes, though many of

the unknown samples still have lower values, which we attribute to the fact that many of the

unknown faces are of very bad quality. Also, the background detections have relatively low

magnitudes, but the overlap with the known samples is large. Hence, the feature magnitude

||R|| of the original VGG2 network cannot be taken directly as an indicator if features

belong to faces or to the background.

4.4 Softmax vs. Objectosphere

To show the advantage of our Objectosphere training procedure over softmax, we trained a

network with identical topology and training strategy with softmax loss, where the negative

class contained the same combination of unknown subjects and background detections from

the training set. For both networks, we apply three different strategies to identify probe

samples. First, we take the network predictions Sg(Dc(R)) as similarity values between the

probe and all gallery samples. For the softmax-trained network, we ignore the unknown class

prediction, but threshold on the predictions of the known classes. For the Objectosphere-

trained network, we also obtain the predictions, but we additionally multiply them with the

feature magnitude ||Pp||. As the second alternative, we extract the deep features from both

networks, enroll a template Gg for each training subject, and compare template and probe

features Pp using the simple cosine similarity. Third, we use the same templates and probes

as before, but this time we multiply the cosine distance by the probe feature magnitude

(mcos) as in (3). From the DIR plots in Fig. 4(a), we can observe that the extraction of

deep features from our networks performs considerably better than the predictions. As

anticipated, comparing deep features from the softmax-trained network works far better

with the simple cosine similarity rather than the weighted cosine. On the other hand, for

Objectosphere the exact opposite is the case, and the Objectosphere network performs

considerably better than the softmax-trained network, particularly at lower FAIs.
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(a) Softmax vs. Objectosphere
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Fig. 4: DIR PLOTS. In (a), DIR curves are generated for two approaches: using the final network

prediction as well as enrolling models from deep features and comparing them with two similarity

functions; on two different networks: softmax trained with a background class and Objectosphere. In

(b), we show the comparison of our two watchlist-adapted networks (Softmax and Objectosphere)

with respect to the results of the best participant (EVM) of the face recognition challenge on the

UCCS dataset [Gü17b] and the original VGG2 features.
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(b) Background Detections

Fig. 5: REJECTION RATES BY TYPE. Unknown samples are split into (a) unknown subjects and

(b) background detections. We plot, how many samples are correctly rejected (i.e., not identified as

any known subject) for given thresholds that are based on the number of correctly identified known

subjects. Both adapters (Softmax and Objectosphere) significantly improve rejection of unknowns.

4.5 Comparison to the State of the Art

In order to compare our results to other work that reported on the UCCS dataset, we plot the

results of the best participant, who used the extreme value machine (EVM). We generated

the DIR curves on the validation set, where we include the VGG2 baseline that was the

basis of our networks trained with softmax and Objectosphere, the results of those two

networks, and the current state of the art on the UCCS dataset. The resulting DIR curve can

be found in Fig. 4(b). Compared to the VGG2 baseline, which is the state of the art [Ca18]

on the IARPA Janus Benchmark-A dataset, our Objectosphere improved results drastically,

especially at relevant FAI thresholds. Our improved performance might be due to the very

different imagery in the UCCS and IJB-A dataset and, in opposition to VGG2, we trained

our networks on this type of data. More importantly, we outperform the EVM algorithm,

which also trained on the UCCS dataset.

To further investigate the performance of the different systems, we evaluate the number of

correctly rejected unknown samples as these samples are disregarded in DIR plots. Basing

our score threshold θ on the number of correctly identified known subjects, in Fig. 5 we
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(b) Incorrect Predictions

Fig. 6: ERROR ANALYSIS. This figure includes six probe images (left in each triplet) and a selection

of two automatically assigned gallery images (right in the triplets, green boxes). In (a) indicated

by blue boxes, we present faces for which Objectosphere provided correct labels. As evident, some

of these are difficult cases. (b) shows failure cases, indicated by red boxes, where Objectosphere

provided an incorrect label.

plot the percentage of unknown samples that are correctly rejected under this threshold. We

separate the unknown samples into unknown subjects and background detections. From

Fig. 5(a) we can observe that Objectosphere is able to identify 2000 out of the 4171 known

probe faces while rejecting almost all unknown subjects. This is better than all of the related

algorithms and particularly much better than the VGG2 baseline. Only the softmax-trained

network comes close to our proposed Objectosphere network and exceeds it slightly on the

right-hand side of the plot. Checking the rejection performance for background detections

in Fig. 5(b) it is clear that Objectosphere is able to reject almost all of the background

samples. Even with a threshold that allowed 3000 out of the 4171 known probe faces to be

identified correctly, the rejection rate of background detections is very close to 100 %, which

is considerably higher than all other algorithms. Even the softmax trained network starts

accepting background detections as known subjects. Thus, we can conclude that background

detections cannot harm the Objectosphere network anymore, they are successfully rejected

by providing very low mcos similarity scores for all subjects in the gallery.

4.6 Failure Analysis

To analyze the errors made by our Objectosphere network, we checked the first 1000 false

alarms, i.e., the detected face bounding boxes that were labeled to be unknown in the dataset

but that Objectosphere identified as a certain known subject. Out of these error cases, we

identified 621 faces, where the automatic label was assigned to a subject that had images

from the same time stamp, but for which the assigned subject label and the ground-truth

label disagreed. We manually checked those faces by showing a pair of probe face and faces

from the anticipated gallery to a human who decided if the pair contains the same face. We

selected to use only images with the same time stamp since in this case, additional cues

like clothes and neighboring subjects could be included into the manual decision process.

With this process, we found that 573 of the 621 faces actually have a wrong label, most

of the faces are labeled as unknown, and our Objectosphere approach was correct. Only

in 48 of the 621 cases, our assigned label was actually wrong. Therefore, we assume that

the plots shown in Fig. 4 do not reflect the reality, but false alarms actually happen far less
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frequently. A few examples are presented in Fig. 6, wherein Fig. 6(a) shows difficult cases

where Objectosphere was able to identify the correct subject, which would have been a very

hard task for face recognition systems a decade ago. On the other hand, the failure cases

displayed in Fig. 6(b) indicate that the network still uses different features than humans

would since many of the failure cases are really obvious to humans, at least when the local

context around the face is included.

5 Conclusion

Pre-trained networks are widely used for recognition tasks. This is the first paper to

demonstrate how they can be adapted to improve open-set recognition in a detection-

recognition pipeline. Our approach should adapt any existing state-of-the-art detection

and recognition approaches to improve support for rejecting both unknown inputs and

background detections.

In this paper, we approached face recognition watchlist as an open-set problem by focusing

on decreasing the false alarms of the non-gallery subjects while maintaining/improving the

performance of identifying the watchlist subjects. For this purpose we used a novel open-set

classification technique called Objectosphere and evaluated its effectiveness on popular

face recognition metrics. With the UnConstrained College Students (UCCS) dataset, we

employed the largest open-set face dataset to demonstrate this effectiveness. Using the

deep features from the VGG2 face recognition network for all the detections, we trained an

Objectosphere adapter with background detections and unknown faces and demonstrated

the generalization to the test set. We also demonstrate that our adapter network can be used

for its representation ability rather than just classification ability it was originally trained for.

For probe detections, we showed that enrolling gallery templates and computing similarity

scores perform better than using the raw features from a pretrained network, especially

when we applied our specifically designed mcos similarity. We found that Objectosphere

performs better than the state-of-the-art algorithms that were reported on the UCCS dataset.

The protocol of the UCCS dataset permits training on the gallery, which is known to favor

certain types of algorithms [Lu12]. In this paper, we followed that protocol and trained on

the gallery, but we are confident that the proposed algorithm would also work in rejecting

background detections in protocols that do not allow gallery adaptation. However, since

for the representation network all faces from the evaluation dataset are unknown, there is

naturally no way of telling apart known from unknown faces without training on the gallery.

Our focus in this paper is on face watchlists which we see as a critically under-studied and

socially important problem. While government/system operators may prefer the simplicity

of a pre-trained system, this paper shows a significant improvement from using watchlist

adaptation. We argue that modern watchlists operators should accept the mild cost of doing

watchlist/gallery adaptation to protect the innocent.
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Fisher Vector Encoding of Dense-BSIF Features for

Unknown Face Presentation Attack Detection

Lázaro J. González-Soler1, Marta Gomez-Barrero2, Christoph Busch1

Abstract: The task of determining whether a sample stems from a real subject (i.e, it is a bona
fide presentation) or it comes from an artificial replica (i.e., it is an attack presentation) is a manda-
tory requirement for biometric capture devices, which has received a lot of attention in the recent
past. Nowadays, most face Presentation Attack Detection (PAD) approaches have reported a good
detection performance when they are evaluated on known Presentation Attack Instruments (PAIs)
and acquisition conditions, in contrast to more challenging scenarios where unknown attacks are
included in the evaluation. For those more realistic scenarios, the existing approaches are in many
cases unable to detect unknown PAI species. In this work, we introduce a new feature space based
on Fisher vectors, computed from compact Binarised Statistical Image Features (BSIF) histograms,
which allows finding semantic feature subsets from known samples in order to enhance the detection
of unknown attacks. This new representation, evaluated over three freely available facial databases,
shows promising results in the top state-of-the-art: a BPCER100 under 17% together with a AUC
over 98% can be achieved in the presence of unknown attacks.

Keywords: Presentation attack detection, probabilistic visual vocabulary, common feature space,

unknown attacks, face.

1 Introduction

The deployment of biometric systems has increased over the last decades. In spite of their

advantages, facial recognition systems are also vulnerable to Presentation Attacks (PAs):

with the broad development experienced by social networks, an attacker can easily down-

load a photo or video of a given person, thereby gaining access to several applications in

which face recognition systems are commonly deployed. Moreover, the recent advances

in creating synthetic videos, or deep fakes, also poses a serious threat [To20].

In order to address those concerns, several Software-based face Presentation Attack Detec-

tion (PAD) methods have been proposed. In general, many PAD approaches have reported

a high detection performance for identifying Presentation Attack Instruments (PAIs) when

both the attack type and acquisition conditions are known a priori (i.e., known attacks

scenario). In contrast, a rather limited number of works have addressed so far a more real-

istic and challenging scenario where the PAI species in the test set remain unknown in the

training set (i.e., unknown attacks). Back in 2013, de Freitas Pereira et al. [Fr13] already

reported poor generalisation capabilities to unknown attacks of state-of-the-art face PAD

methods based on local binary patterns (LBP) and support vector machines (SVMs). In

1 dasec - Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany,

{lazaro-janier.gonzalez-soler;christoph.busch}@h-da.de
2 Hochschule Ansbach, Germany, marta.gomez-barrero@hs-ansbach.de
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particular, the error rates increased by at least 100%. Motivated by these findings, Arashloo

et al. [AKC17] experimented over several unknown attack scenarios and concluded that

anomaly detection approaches trained only on bona fide data can reach a detection per-

formance comparable to two-class classifiers. However, the results are reported only in

terms of the area under the Receiving Operating Characteristic curve (AUC), thus lacking

a proper quantitative analysis in line with the ISO/IEC 30107-3 standard on biometric PAD

[IS17].

More recently, Nikisins et al. [Ni18] showed how a one-class Gaussian Mixture Model

(GMM) can outperform two-class classifiers, depending on the PAI species included in

the test set. The experimental evaluation reported an error rate increase with respect to the

known scenario and two-class classifiers. Following the same anomaly detection paradigm,

Xiong and AbdAlmageed studied in [XA18] the detection performance of one-class SVMs

and autoencoders in combination with LBP descriptors for PAD purposes. In most of the

scenarios tested, the detection rates increased with respect to common two-class classi-

fiers. Finally, Liu et al. also analysed in [Li19] the performance of a Deep Tree Network

(DTN) for facial PAD, which clusters the PAI species into semantic sub-groups. Over a

new database comprising 13 PAI species, and following a leave-one-out testing protocol,

an average D-EER of 16% is achieved, which is still above the state-of-the-art for known

attacks.

To tackle those open issues with unknown attacks, we focus on a different approach which

has already shown remarkable results in cross-sensor and unknown attacks scenarios for

fingerprint PAD [Go19a]. Gonzalez-Soler et al. proposed in [Go19a] a combination of lo-

cal feature descriptors and global feature encoding to model a new feature space in which

the generalisation capabilities of the PAD module are enhanced. In fact, this approach

achieved the best detection accuracy in the LivDet 2019 competition [Or19]. Whereas

some keypoint based descriptors such as SIFT and SURF have shown to be an appropri-

ate choice for fingerprint samples [Go19a, Go19b], in which minutiae can be regarded as

landmarks within the image, we anticipate that for facial images the textural information

is more relevant than the geometric information related to facial landmarks. Therefore, we

propose a new face PAD approach, which encodes accurate and compact dense Binarized

Statistical Image Features (dense-BSIF), extracted from local patches of the facial image,

and projects them into a new feature space with Fisher vectors. By assuming that the un-

known attacks share more texture, shape and appearance features with known PAIs than

with those BP samples, this FV representation allows in turn a definition of semantic sub-

groups from known samples to tackle the aforementioned issues on PAD generalisation

to unknown attacks. In order to validate the detection capabilities of the proposal, a thor-

ough evaluation compliant with the ISO/IEC 30107-3 standard on biometric PAD [IS17] is

also carried out over three well-established databases: CASIA Face Anti-Spoofing [Zh12],

REPLAY-ATTACK [CAM12] and REPLAY-MOBILE [Co16].

The remainder of this paper is organised as follows. The proposed PAD method is pre-

sented in Sect. 2. Sect. 3 describes the experimental protocol and presents the results.

Finally, conclusions and future work directions are presented in Sect. 4.
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Fig. 1: Face PAD approach overview which comprises three steps: i) BSIF descriptors are densely

extracted; ii) the BSIF data distribution is subsequently learnt by training an unsupervised Gaussian

Mixture Model (GMM) from known samples; iii) an unknown sample at hand is then encoded by

computing the gradient among their BSIF components and parameters obtained by the GMM; and

iv) the final features are finally classified using a linear SVM.

2 Proposed Method

We build upon the fingerprint PAD approach presented in [Go19a]. Fig. 1 shows an overview

of the proposed PAD approach, which consists of four main steps: (1) dense-BSIF his-

tograms are extracted from a face sample, which has been detected by the Viola and Jones

method [VJ04]; (2) our new feature space is built by learning an unsupervised Gaussian

Mixture Model (GMM) model from the aforementioned features; (3) the final descriptors

are subsequently encoded by computing the differences of first- and second-order statis-

tics with respect to the learned model parameters; and (4) a bona fide presentation (BP) or

presentation attack (PA) decision is taken by a linear SVM.

2.1 Dense-BSIF Descriptors

Usually, PAIs include artefacts (e.g. acute edges in the cut eyes of the CASIA images [Zh12])

which can be successfully detected by the quantization of filtered features. BSIF [KR12]

is a local image descriptor computed by binarising the responses of a given image to a set

of pre-learned filters to obtain a statistically meaningful representation of the data. More

specifically, let X be an image patch of size l × l and W = {W1, . . . ,WN} a set of linear

filters of the same size as X . Then, we compute binarised responses bn:

bn =

{
1 ∑u,v Wn(u,v)X(u,v)> 0

0 otherwise
(1)
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Fig. 2: BSIF feature extraction. a) BSIF histograms are densely computed at fixed points on a regular

grid with a stride of S pixels, b) average number of zero and non-zero components of dense-BSIF his-

tograms for different numbers of filters N, and c) a reduction example where a local BSIF histogram

of size 2N = 512 is represented as a 128-component vector.

All the filter responses bn are subsequently stacked to form a bit string b with size N for

each pixel. Subsequently, b is transformed to a decimal value, and then a 2N histogram for

X is computed. In our work, 60 filter sets with different sizes l = {3,5,7,9,11,13,15,17}

and number of filters N = {5,6,7,8,9,10,11,12} were obtained from [KR12].

Now, given that artefacts can be detected at any point in the image, not only at relevant

facial landmarks, BSIF-histograms are densely extracted over a regular grid with a fixed

stride S of 3. Furthermore, in order to capture local and global information of the artefacts

produced in the fabrication of the PAIs, histograms are computed over four circular patches

with different radii r = {4,6,8,10}, as depicted in Fig. 2a). Therefore, each point in the

grid is represented by four dense-BSIF histograms.

In addition, we have observed that the histograms become sparse vectors as the number

of linear filters N increases. Therefore, we computed the number of zero and non-zero

components per number of filters over the CASIA Face Anti-Spoofing database [Zh12]

in Fig. 2b), and noted that the number of non-zero components remains under 223 in all

cases, having an average value of 128. We will thus represent each 2N BSIF histogram as

a 128-component vector by summing the elements for each sequential 2N
/128 sub-set in

the original histogram (see an example in Fig 2c)). This representation reduces the storage

requirements down to 12.5% for N = 10 or 3.1% for N = 12.
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2.2 Fisher Vector Encoding

The Fisher vector (FV) feature encoding approach transforms local features into an new

feature space based on the parameters learnt by a generative model, known as visual vo-

cabulary [PSM10]. This representation describes how the distribution of these local de-

scriptors extracted from unknown PAIs differs from the known PAI distribution previously

learned. In particular, a Gaussian Mixture Model (GMM) with K-components, which is

represented by their mixture weights (πk), means (µk), and covariance matrices (σk), with

k = 1, . . . ,K, allows discovering semantic sub-groups from known PAIs and BP samples,

which could successfully enhance the detection of unknown attacks. In order to compute

those semantic groups, the compact dense-BSIF descriptors (see Sect. 2.1) are decorre-

lated using Principal Component Analysis (PCA) [Je12], hence reducing their size to

d = 64 components while retaining 98% of the variance. Then, the average first-order

and second-order differences between the given decorrelated features and each semantic

sub-group are computed, thereby obtaining a 2Kd dimensional vector. For the GMM com-

putation, we selected K = 1024, since it allows representing a more complex structure

from data while preserving low computational requirements. Therefore, each facial image

is finally represented by a vector with size 2Kd = 2 ·1024 ·64 = 131072.

3 Experimental Evaluation

3.1 Experimental Protocol

The experimental evaluation was conducted over three well-established databases for fa-

cial PAD, whose images were captured with different resolutions and several acquisi-

tion conditions: CASIA Face Anti-Spoofing [Zh12], REPLAY-ATTACK [CAM12], and

REPLAY-MOBILE [Co16].

The experimental protocol aims to address the following goals: i) analyse the impact of

different BSIF filter configurations in terms of number of filters and filter’s size on the

detection performance of our PAD approach, ii) study its detection performance for each

RGB colour component under known and unknown attacks, and iii) benchmark the detec-

tion performance of our proposed PAD approach against the top state-of-the-art. Keeping

these goals in mind, we defined two different scenarios:

• Known-attacks: which includes an analysis of all PAI species. In all cases, PAI

species for testing are included in the training set, as described in [Zh12].

• Unknown-attacks, in which the PAI species used for testing are not incorporated in

the training set. In particular, we consider using the leave-one-out testing protocol

explained in [AKC17], in which a PAI is only evaluated whilst the remaining PAI

species are employed for training.

Finally, the experimental evaluation is conducted in compliance with the international met-

rics of ISO/IEC 30107-3 [IS17]: i) Attack Presentation Classification Error Rate (APCER)
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Tab. 1: Benchmark in terms of D-EER(%) of our PAD approach per colour component and the whole

RGB colour space against the top state-of-the-art methods.

Method Warped Cut Video Overall

BSIF + SVM [RB14] - - - 10.21

MBSIF-TOP [AKC15] 1.40 10.10 4.30 7.20

Texture fusion [BKH18] - - - 4.60

ResNet-15 on 3D [Gu19] - - - 2.22

shallowCNN-LE [QDN19] - - - 4.00

SPMT + SSD [So19] 0.35 0.20 0.03 0.04

Hybrid residual DL [MH19] - - - 0.02

Proposed Method (R) 1.42 ± 1.04 2.20 ± 0.83 0.28 ± 0.56 2.92 ± 0.93

Proposed Method (G) 1.44 ± 1.11 2.22 ± 0.79 0.50 ± 0.72 2.52 ± 1.18

Proposed Method (B) 1.59 ± 1.01 2.78 ± 1.27 0.59 ± 0.77 2.53 ± 0.99

Proposed Method (RGB) 1.20 ± 0.77 1.74 ± 0.75 0.30 ± 0.54 1.79 ± 0.82

which is defined as the proportion of attack presentations wrongly classified as bona fide

presentations, and ii) Bona Fide Presentation Classification Error Rate (BPCER) which

is the proportion of bona fide presentations missclassified as attack presentations. We

therefore report: i) the Detection Error Trade-off (DET) curves between both APCER and

BPCER, ii) the BPCER values for several security thresholds (BPCER10, BPCER20 and

BPCER100), and iii) the Detection Equal Error Rate (D-EER), which are defined as the

error rate value at the operating point where APCER = BPCER.

3.2 Results and Discussion

3.2.1 Known Attacks

First, we need to find the optimal configuration of our proposed method in terms of the

filter size l, the number of BSIF filters N, and the best performing RGB component. To

that end, we compute error rates for each of sixty filter configuration and report in Table. 1

the mean and standard deviation (std) of the D-EER achieved by each particular RGB

component and their fusion (i.e., RGB) over the Attack test and Overall test protocol in

the CASIA Face Anti-Spoofing database [Zh12]. As it could be expected, the entire RGB

space reports on average the best detection performance, since it fuses the information of

the three channels. In addition, it reports for N = 11 filters of size l = 11 a minimum D-

EER of 0.0% for warped, 1.11% for cut photo attacks, 0.0% for video replay attacks, and

0.37% for the overall test, which achieve the top state-of-the-art.

On the other hand, it may also be observed that among the three individual RGB colour

components, the R channel appears to be the one which contains the most discriminative

features for the PAD task. Specifically, it achieves for N = 9 filters of size l = 6, a D-EER of

0.0% for warped photo attacks, 2.22% for cut photo attacks, 0.0% for video replay attacks,
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Tab. 2: D-EER(%) values under the Unknown-attacks protocol for RGB and benchmark, in terms

of AUC(%), for the best unknown attack setting (i.e., N = 10 filters of size l = 9), against the top

state-of-the-art approaches.

CASIA REPLAY-ATTACK REPLAY-MOBILE

Cut Warped Video Digital Printed Video Digital Printed Video

OC-SVMRGB+BSIF [AKC17] 60.7 95.9 70.7 88.1 73.7 84.3 - - -

NN+LBP [XA18] 88.4 79.9 94.2 95.2 78.9 99.8 - - -

DTL [Li19] 97.3 97.5 90.0 99.9 99.6 99.9 - - -

our proposal (AUC) 99.6 97.9 99.9 100 99.9 100 100 100 100

our proposal (D-EER) 4.11 ± 1.99 6.15 ± 2.42 1.37 ± 1.60 0.00 ± 0.00 1.35 ± 1.73 0.00 ± 0.00 0.00 ± 0.00 0.34 ± 0.63 0.02 ± 0.12

and 0.37% for the overall test, which are almost the same minimum D-EER reported by

the entire RGB colour space.

In order to validate the detection performance of our PAD approach under different RGB

configurations, we select the non-parametric Mann-Whitney test with a 95% of confidence

and verify the statistical significance of error rates reported by each RGB component. To

that end, we define as null and alternative hypothesis:

• H0: two colour components provide the same discriminative information for PAD.

• H1: two colour components do not provide the same discriminative information for

PAD.

Then, an all-against-all comparison per database is performed. As a result of this test, we

do confirm that error rates for the three RGB colour components stem from the same pop-

ulation, thereby showing the same discriminative information for facial PAD. In contrast,

results for the entire RGB colour space claim to be statistically better than each particular

component. Therefore, we do confirm that even if each individual RGB component is cor-

related with each other, the entire RGB colour space includes some additional information

which allows learning more discriminative features for facial PAD.

3.2.2 Unknown Attacks

As it was mentioned in Sect. 1, one of the goals of our work is to successfully identify

unknown PAIs. To that end, a set of experiments is carried out over the three selected

databases following the leave-one-out protocol described in [AKC17]: two PAI species

are included in the training set, and the last one in the test set. Table 2 reports the corre-

sponding D-EER values, a benchmark against the top state-of-the-art PAD approaches and

the complete DET curves are depicted in Fig. 3.

Taking a look at Table 2, we can observe how error rates for each particular unknown PAIs

with respect to the corresponding known attack are multiplied by a factor of 2.36% for cut

photo attacks, 4.57% for video replay attacks and 5.13% for warped photo attacks, respec-

tively, for the CASIA database. However, for a fixed filter configuration, it should be noted
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Fig. 3: Unknown-attacks DET curves and BPCER(%) values over the leave-one-out protocol for the

CASIA and REPLAY-ATTACK databases. The REPLAY-MOBILE database reports a BPCER =

0.0% for any APCER.

that our proposed approach outperforms, in terms of AUC, the top state-of-the-art for all

attack types. Since we lack a proper quantitative analysis of the top state-of-the-art meth-

ods in compliance with the ISO/IEC 30107-3 standard on biometric PAD [IS17], we can

only establish a benchmark in terms of AUC. For the REPLAY’s databases, a higher de-

tection performance outperforming the top-state-of-the-art techniques can be observed: an

AUC of almost 100% for the entire set of attacks confirms the soundness of our proposed

method to identify PAIs stemming from this challenging scenario.

In addition, Fig. 3 confirms the detection performance showed by our approach: a low

BPCER100 of 0.0%, 0.0%, 13.3% and 16.7% are achieved by video replay, digital, cut

photo and warped photo attacks, respectively for a high security threshold (i.e., APCER of

1%). This in turn yields, in this challenging scenario, a secure (only one in 100 attacks are

not detected) and convenient (zero to seventeen in 100 bona fide presentation attempts are

rejected) system.

Finally, a t-SNE visualisation in Fig. 4 of BP and PA samples are in the CASIA database

confirms the aforementioned hypotheses, which state that the PAIs share more texture,

shape and appearance features with known PAIs than with those BP samples. Whereas the

FV representations of attack presentations (blue, red and yellow) are separated of the bona

fide presentations (green spots), they are close to each other. However, we can also observe

that some PAIs, such as warped (yellow) and cut photo attacks (blue), still overlap with
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t-SNE visualisation of the FV

common feature space for CASIA

bona fide

cut photo attack

video replay attack

warped photo attack

Fig. 4: t-SNE visualisation for BP vs. PA samples in the CASIA Face Anti-spoofing database.

BP samples, thereby indicating that the data distribution learned by a GMM model using

the BSIF features needs to be improved in order to get a better detection performance.

4 Conclusions

In this work, a new face PAD approach to generalise to unknown attacks was proposed.

In essence, it projects compact dense-BSIF descriptors into a new feature space, which al-

lows discovering semantic feature sub-groups from known samples in order to improve the

PAD generalisation capability. In addition, a new strategy for computing compact dense-

BSIF histograms was presented, which can be applied to any other texture recognition

application. In more details, a reduction down to 95% in the feature vector length can

be achieved with no significant impact on the recognition accuracy but strongly reducing

the time required for PAD analysis. The experimental evaluation over three freely avail-

able databases confirmed the soundness of our proposal for detecting both known and

unknown PAIs. Specifically, experimental results indicated the statistical advantage of the

entire RGB colour space with respect to each of its particular components, thereby result-

ing in a minimum D-EER of 0.37% for known attack detection. Finally, BPCER100 in

a range of 0.0% to 17% for unknown attack detection, which outperform the top state-

of-the-art, showed that our PAD approach is able to yield a secure and convenient system

under that challenging scenario. As future work, we plan to evaluate our proposal on larger

databases for other colour spaces, which have shown to be superior in terms of detection

performance. In addition, a more thorough analysis on larger databases including a higher

number of different PAI species will be carried out.
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Touchless Fingerprint Sample Quality:

Prerequisites for the Applicability of NFIQ2.0

Jannis Priesnitz1 2, Christian Rathgeb1, Nicolas Buchmann2, Christoph Busch1

Abstract: The impact of fingerprint sample quality on biometric performance is undisputed. For
touch-based fingerprint data, the effectiveness of the NFIQ2.0 quality estimation method is well
documented in scientific literature. Due to the increasing use of touchless fingerprint recognition
systems a thorough investigation of the usefulness of the NFIQ2.0 for touchless fingerprint data is
of interest.

In this work, we investigate whether NFIQ2.0 quality scores are predictive of error rates associated
with the biometric performance of touchless fingerprint recognition. For this purpose, we propose
a touchless fingerprint preprocessing that favours NFIQ2.0 quality estimation which has been de-
signed for touch-based fingerprint data. Comparisons are made between NFIQ2.0 score distributions
obtained from touch-based and touchless fingerprint data of the publicly available FVC06, MCYT,
PolyU, and ISPFDv1 databases. Further, the predictive power regarding biometric performance is
evaluated in terms of Error-versus-Reject Curves (ERCs) using an open source fingerprint recog-
nition system. Under constrained capture conditions NFIQ2.0 is found to be an effective tool for
touchless fingerprint quality estimation if an adequate preprocessing is applied.

Keywords: Biometrics, Fingerprint, Touchless Fingerprint, Sample Quality.

1 Introduction

In the past decade, many research efforts have been devoted to robust fingerprint quality

estimation, for comprehensive surveys the reader is referred to [OŠB16,BVS14]. It is gen-

erally conceded that fingerprint quality assessment is vital to achieve competitive recogni-

tion accuracy, i.e. quality estimation serves as a predictor of biometric performance. NIST

published the first open algorithm for finger image quality assessment which is referred

to as NIST Fingerprint Image Quality (NFIQ) in 2004 [TWW04]. Its improved successor,

NFIQ2.0 [NI], represents a well-established tool for quality estimation which is used in

many operational fingerprint recognition systems. NFIQ2.0 has been specifically designed

to assess the quality of fingerprints acquired by touch-based sensors which are optical

capture devices and provide fingerprint images of 500dpi spacial resolution.

Touchless fingerprint recognition represents a rapidly growing field of research, for over-

views of published scientific literature the reader is referred to [La14,Ma17]. A comparison

of a touch-based and touchless fingerprint representation is depicted in Figure 1. In touch-

less fingerprint recognition methods, effective quality control is of utmost importance as

1 da/sec - Biometrics and Internet Security Research Group, Hochschule Darmstadt, Schöfferstraße 9, 64295

Darmstadt, Germany, firstname.lastname@h-da.de
2 Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany, firstname.lastname@fu-berlin.de
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(a) touch-based (b) touchless

Fig. 1: Touch-based and touchless fingerprint representations of a single finger: touch-based finger-

print acquired with a Crossmatch Guardian 200 (left); touchless fingerprint image captured with a

Samsung Galaxy S8 smartphone (right).

numerous factors may negatively impact fingerprint quality.In many proposed touchless

systems captured fingerprint images are pre-processed in a way that these resemble prop-

erties of touch-based fingerprint imagery, e.g. in terms of contrast or image resolution.

This entails two major advantages: on the one hand, sub-systems of touch-based recogni-

tion systems for quality control, feature extraction, and comparison can be maintained; on

the other hand, acquired touchless imagery can be compared to legacy data.

Focusing on touchless fingerprint recognition, some dedicated quality estimation meth-

ods have been proposed, e.g. [YLB13, LPS10, Li13]. Labati et al. [LPS10] showed that

a direct application of NFIQ (version 1) to touchless fingerprint images generally yields

low quality scores. The authors conclude that NFIQ1.0 is not usable for touchless finger-

print imagery. In contrast, Salum et al. [Sa17] showcased that good NFIQ1.0 scores can

be obtained in case touchless fingerprints are pre-processed adequately. To the best of the

authors’ knowledge the applicability of NFIQ2.0 to touchless fingerprint data has not been

investigated.

This work investigates the usefulness of NFIQ2.0 in the context of touchless fingerprint

recognition. First, the NFIQ2.0 score distributions of well-known touch-based fingerprint

databases and publicly available touchless fingerprint databases are compared. For this

purpose, a pre-processing pipeline is proposed which favours the extraction of NFIQ2.0

scores from touchless fingerprints. Further, the predictive power of NFIQ2.0 on touchless

fingerprint data is estimated in terms of Error-versus-Reject Curves (ERCs) as suggested

by Grother and Tabassi [GT07]. Based on biometric performance rates, quality score dis-

tributions, and shapes of ERCs different conclusions w.r.t. the applicability of NFIQ2.0 for

touchless fingerprint data are reached.
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Tab. 1: Overiew of used fingerprint databases. The DPI value is listed if it is specified in the database

description.

Database Subset Type Sensor Color Resolution Instances Samples

FVC06

DB2-A touch-based optical grayscale
400×560

(569 dpi)
140 1,680

DB3-A touch-based
thermal

sweeping
grayscale

400×500

(500 dpi)
140 1,680

DB4-A synthetic – grayscale 288×384 140 1,680

MCYT

dp (Digital Persona) touch-based optical grayscale
256×400

(500 dpi)
3,300 39,600

pb (Precise Biometrics) touch-based capacitive grayscale
300×300

(500 dpi)
3,300 39,600

PolyU

CB-S1

(contact-based session 1)
touch-based optical grayscale 328×356 336 2,016

CB-S2

(contact-based session 2)
touch-based optical grayscale 328×356 160 960

CL-S1

(contactless session 1)
touchless

digital camera,

LED light
RGB 1,400×900 336 2,016

CL-S2

(contactless session 2)
touchless

digital camera,

LED light
RGB 1,400×900 160 960

ISPFDv1

LS (live scan) touch-based optical grayscale
544×253

(250 dpi)
128 1,024

NI (natural indoor) touchless Apple iPhone 5 RGB 3,264×2,448 128 1,024

NO (natural outdoor) touchless Apple iPhone 5 RGB 3,264×2,448 128 1,024

WI (white indoor) touchless Apple iPhone 5 RGB 3,264×2,448 128 1,024

W0 (white outdoor) touchless Apple iPhone 5 RGB 3,264×2,448 128 1,024

This paper is organized as follows: Section 2 summarizes the used fingerprint databases.

In Section 3 the proposed evaluation pipeline is described in detail. Experimental results

are presented in Section 4. Finally, Section 5 concludes.

2 Databases

We employ four different databases, which comprise touch-based as well as subsets of

touchless fingerprint images. The use of touch-based fingerprint databases allows for a

detailed comparison of NFIQ2.0 quality scores as well as their predictive power w.r.t. bio-

metric performance on touchless and touch-based data. Used databases and their properties

are listed in Table 1 and briefly summarized as follows:

• FVC06 [Ca07]: the database of the fourth international Fingerprint Verification Com-

petition (FVC), containing four disjoint fingerprint subsets. The first three subsets

are each collected with a different touch-based sensor while the fourth database is

generated using Synthetic Fingerprint Generator (SFinGe) [Ma09]. Example images

of the FVC06 database are depicted in Figure 2 (a)-(c).

• MCYT [Or03]: the fingerprint subcorpus of the MCYT bimodal database contains

fingerprint images captured with two different touch-based sensors. Figure 2 (d)-(e)

show example fingerprints of this database.

• PolyU [LK18]: the Hong Kong Polytechnic University contactless 2D to contact-

based 2D fingerprint images database version 1.0 comprises touchless and touch-
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(a) FVC06 DB2-A (b) FVC06 DB3-A (c) FVC06 DB4-A (d) MCYT dp (e) MCYT pb

Fig. 2: Example fingerprint images of used subsets of the FVC06 database (a)-(c) and of the MCYT

fingerprint subcorpus (d)-(e).

(a) CB-S1 (b) CB-S2 (c) CL-S1 (d) CL-S2

Fig. 3: Example fingerprint images of the subsets of the PolyU database.

based fingerprint images of the same data subjects. In two sessions, touch-based

fingerprints were captured with an optical sensor while touchless were acquired us-

ing a digital camera with LED illumination. Touchless images, which are provided

in pre-segmented form, appear to be captured in a constrained environment. Finger-

print images of this databases are shown in Figure 3.

• ISPFDv1 [Sa15]: the IIITD SmartPhone Fingerphoto Database v1 consists of touch-

based fingerprints captured with an optical sensor as well as touchless fingerprint

images collected with a smartphone in four different environmental conditions, in-

cluding indoor and outdoor images with natural and white background. Figure 4

depicts example images of the ISPFDv1 database. It should be noted that the 250dpi

resolution of sensor used to capture the live scan database does not correspond to

the NFIQ2.0 target resolution of 500dpi.

3 Evaluation Pipeline

In the proposed evaluation pipeline, touchless fingerprint data is pre-processed, NFIQ2.0

quality scores are estimated, and their predictive power is estimated.
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(a) LS (b) WI (c) NI (d) WO (e) NO

Fig. 4: Example fingerprint images of the subsets of the ISPFDv1 database.

Fig. 5: Proposed touchless fingerprint pre-processing pipeline.

3.1 Touchless Fingerprint Pre-processing

To enable a processing of touchless data with a tool designed for the touch-based domain a

pre-processing has to be applied which transforms a touchless fingerprint image to a touch-

based equivalent fingerprint image [Sa17,LK18]. The equivalence relates to the resolution

of the image respectively to the ridge-to-ridge distance, that can be expected with 10-11

pixels for a 500dpi adult fingerprint. This pre-processing pipeline is necessary since a

direct application of a touch-based fingerprint recognition system to touchless fingerprint

imagery is not possible [Li13]. Figure 5 depicts the pre-processing pipeline which is used

for touchless fingerprint data.

Focusing on the employed touchless databases, two acquisition scenarios can be distin-

guished: (1) unconstrained acquisition in terms of sensor-to-finger distance, finger rota-

tion, illumination and background properties, which is the case for the ISPFDv1 database,

and (2) constrained acquisition, which is the case for the PolyU database. In the latter

database, the fingerprint images are already segmented, c.f. Figure 3 (c, d). That is, on the

PolyU database we skip the segmentation part of the pre-processing pipeline.

To extract the finger area from the background a color-based segmentation method is

used [SVC17]. To achieve an accurate segmentation performance, the threshold param-

eters are adapted for the different environmental situations, i.e. subsets of the ISPFDv1

database. In order to present only the fingerprint region to NFIQ2.0 and the feature extrac-

tor, a fingertip detection and cropping is performed. Here a brightness-based approach as

proposed by Raghavendra et al. [RBY13] is used, which searches for the most prominent

local minimum on the smoothed gray scale distribution along the horizontal axis. This

minimum corresponds to the first finger knuckle. After the cropping step the finger image
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only contains the relevant fingertip region. Since the samples of the ISPFDv1 database are

represented in a horizontal orientation, samples are rotated by 90 or 270 degree in order

to achieve consistency in terms of orientation, i.e. upright fingerprint impression. Then the

angle between the longitudinal axis of the finger and the horizontal axis is 90 degree.

As can be seen in Table 1, considered touchless datasets consist of color images. Hence, a

conversion to gray scale is computed using the very common RGB to gray scale conversion

parameters: Y ← 0.299R+0.587G+0.114B. Touchless fingerprint samples might be cap-

tured at various distances leading to a varying ridge-line frequency. However, the NFIQ2.0

algorithm is designed to achieve optimal results on touch-based fingerprint data captured

with a resolution of 500dpi [NI]. For this reason, all touchless samples are normalized to

an image width of 225pixel which resembles a ridge-line frequency comparable to that

of touch-based fingerprint data captured at a resolution of 500dpi. Due to varying finger

sizes and inaccuracies during the finger segmentation a further scaling of ±20% on the

normalized image is executed. Assuming that NFIQ2.0 reveals the best scores on 500dpi

images we present all three versions of the sample to the NFIQ2.0 method expecting that

the one with the highest quality score is the one which is most equivalent to a touch-based

capture condition with 500dpi. A max filter is applied and the best quality score represents

the final one and the corresponding fingerprint sample is used for further processing.

3.2 Biometric Performance Prediction

For evaluating the predictive power of a quality assessment algorithm for a biometric

recognition system Grother and Tabassi [GT07] introduced the ERC. This method evalu-

ates whether a rejection of low quality samples results in a reduce false-non-match error

rate (FNMR).Each genuine comparison is associated with a similarity score sii and two

quality scores q
(1)
i and q

(2)
i in order to aggregate the pair of quality scores from a pair of

samples to be compared. As combination function H the min function is chosen:

qi = H
(

q
(1)
i ,q

(2)
i

)
= min

(
q
(1)
i ,q

(2)
i

)
(1)

Then a set R(u) is formed containing the pairwise minima which are less than a fixed

threshold of acceptable quality u:

R(u) =
{

i : H
(

q
(1)
i ,q

(2)
i

)
< u

}
(2)

Subsequently, R(u) is used to exclude comparison scores and computing the FNMR on

the rest. Starting with the lowest of the pairwise minima, comparisons are excluded up to

a threshold t which is obtained by using the empirical cumulative distribution function of

the comparison scores, which corresponds to a FNMR of interest denoted by f :

t = M−1(1− f ) (3)
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The ERC is then computed by iteratively excluding a portion of samples and recomputing

the FNMR on the remaining comparison scores which are below the threshold:

FNMR(t,u) =

∣∣{sii : sii ≤ t, i /∈ R(u)}
∣∣∣∣{sii : sii ≤ ∞}

∣∣ (4)

Due to the effect that a fraction of low quality samples are excluded in every iteration step

the FNMR should decrease constantly if the quality measure is a good predictor for the

biometric performance.

In order to compare the different ERCs, the area under each curve minus the area under

the optimal curve value is computed and denoted as partial area under curve (PAUC). Here

the threshold is set to x = 0.2 to consider the most relevant part of the curve only.

4 Experimental Results

In experiments, we first estimate the distributions of NFIQ2.0 scores for touch-based and

touchless fingerprint data sets applying the proposed evaluation pipeline. Additionally, the

biometric performance is evaluated on the used fingerprint databases employing open-

source fingerprint recognition systems. The features (minutiae triplets – 2-D location and

angle) are extracted using neural-network based approaches. In particular, the feature ex-

traction method of Tang et al. [Ta17] is employed for all databases except for touchless

fingerprint images of ISPFDv1 for which the algorithm of Nguyen et al. [NCJ18] is ap-

plied. The latter feature extractor is designed for more challenging scenarios and hence is

more suitable for said image subsets. For both feature extractors pre-trained models are

made available by the authors. To compare such templates, a minutiae pairing and scoring

algorithm of the sourceAFIS system of Važan [Va19] is used3. Moreover, we evaluate the

predictive power of NFIQ2.0 regarding biometric performance using the ERC method.

4.1 Sample Quality Estimation

The score distributions of NFIQ2.0 quality scores obtained from the considered databases

are plotted in Figure 6. Table 2 lists means and standard deviations of said score distribu-

tions together with resulting biometric performance in terms of Equal Error Rates (EERs).

EERs are estimated by performing all possible genuine and impostor comparisons. A wide

range of quality scores is represented in the NFIQ2.0 score distributions of the FVC06 and

MCYT database, c.f. Figure 6 (a)-(b). Competitive performance rates are obtained on most

subsets of theses databases except for the FVC DB3-A, see Table 2.

By incorporating the proposed pre-processing pipeline for touchless fingerprint imagery,

similar NFIQ2.0 quality score distributions can be obtained, e.g. for the PolyU database,

3 The original algorithm uses minutiae quadruplets, i.e. additionally considers the minutiae type (e.g. ridge ending

or bifurcation). Since minutiae triplets are extracted by the used minutiae extractors, the algorithm has been

modified to ignore the type information.
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Tab. 2: Average NFIQ2.0 scores and biometric performance obtained from the considered databases.

DB Subset Preproc.
Avg. NFIQ2.0

score
EER (%) PAUC

FVC06

DB2-A – 36.07 (±9.07) 0.15 0.01261

DB3-A – 40.92 (±12.85) 6.71 0.00883

DB4-A – 27.80 (±12.28) 2.90 0.01261

MCYT
dp – 37.58 (±15.17) 0.48 0.00868

pb – 33.02 (±13.99) 1.35 0.00970

PolyU

CB-S1 – 42.64 (±11.96) 0.67 0.00890

CB-S2 – 40.97 (±13.14) 1.75 0.00893

CL-S1 proposed 47.71 (±10.86) 3.91 0.00998

CL-S2 proposed 47.08 (±13.21) 3.17 0.01106

ISPFDv1

LS – 58.19 (±7.70) 0.51 0.01275

NI proposed 9.62 (±7.65) 34.64 0.01205

NO proposed 14.70 (±9.39) 28.12 0.01214

WI proposed 16.86 (±7.02) 35.67 0.01465

WO proposed 18.60 (±9.77) 25.29 0.01246

c.f. Figure 6 (c). In contrast, for the ISPFDv1 database two extreme cases can be observed:

touch-based fingerprints exhibit very high quality while touchless fingerprint data are of

rather very low quality in terms of NFIQ2.0, c.f. Figure 6 (d). This can be explained by

the fact that the touchless fingerprint data of the ISPFDv1 database was acquired under

rather unconstrained conditions, i.e. at variable distance, lightning, and focus. This is also

reflected by the biometric recognition performance obtained on the subsets of the ISPFDv1

database, see Table 2. In such unconstrained environments dedicated feature extractors are

required, as showcased by Sankaran et al. [Sa15].

Focusing on the relation of biometric performance and quality score distributions a clear

inter-relation between recognition accuracy and quality can be observed from Table 2.

However, we also observe that the biometric performance strongly depends on the ap-

plied feature extractor. More specifically, lower EERs are obtained for touch-based finger-

print data which has been captured using an optical or capacitive sensor, e.g. the MCYT

database. In contrast, the fingerprint images of FVC DB3-A and DB4-A, which have

been captured with a thermal sensor and generated synthetically, respectively, yield sig-

nificantly higher EERs albeit exhibiting similar NFIQ2.0 score distributions. This also

hold for touchless fingerprint data, as it can be clearly observed from EERs obtained on

the PolyU database.

4.2 Biometric Performance Prediction

For the estimation of ERCs a FNMR of 10% is used as starting point for each database

as suggested in [OŠB16]. ERCs for the considered databases are depicted in Figure 7.

Strongly dropping ERCs indicate high predictive power, i.e. the FNMR is effectively re-

duced by rejecting fingerprint samples which exhibit low quality. Based on the obtained

ERCs the following conclusions can be drawn:

• If no significant biometric performance gains are to be expected, the predictive

power in terms of ERC is rather low. This corresponds to the cases were either very
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Fig. 6: Probability density functions of NFIQ2.0 scores obtained from the considered databases.

high or very low recognition accuracy is obtained and quality scores are distributed

in narrow ranges, c.f. ERCs, EERs, and NFIQ2.0 score distributions of FVC06 DB2-

A (PAUC: 0.01261) and ISPFDv1 (e.g. PAUC NO: 0.01214).

• In case rather low recognition accuracy is obtained or NFIQ2.0 quality score distri-

butions exhibit a wider range, the predictive power in terms of ERC is higher. This

can be observed from the ERCs, EERs, and NFIQ2.0 score distributions of FVC06

DB3-A (PAUC: 0.00883), MCYT (e.g. PAUC dp: 0.00868), and PolyU (e.g. PAUC

CB-S2: 0.00893).

• Under the aforementioned condition, the predictive power of NFIQ2.0 for touchless

fingerprint data is only slightly inferior compared to that of touch-based fingerprint

data. That is, ERCs drop less strongly (e.g. PAUC FVC06 DB2-A: 0.01261), c.f.

ERCs obtained for PolyU (e.g. PAUC CB-S2: 0.00893).

Further, it might be concluded that NFIQ2.0 has less predictive power on synthetic data

compared to real fingerprint data, c.f. ERCs for FVC DB4-A (PAUC: 0.00883).
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Fig. 7: ERCs obtained from the considered databases.

5 Conclusions

This work firstly investigated the applicability and predictive power of NFIQ2.0 for touch-

less fingerprint data. We conclude that NFIQ2.0 can be a viable tool for quality assessment

in touchless fingerprint recognition scenarios in case adequate pre-processing is employed.

Finally, it is important to emphasize that more a sophisticated pre-processing might further

favour the predictive power of NFIQ2.0 for touchless fingerprint data.
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Improved Liveness Detection in Dorsal Hand Vein Videos

using Photoplethysmography

Johannes Schuiki1, Andreas Uhl1

Abstract: In this study, a previously published infrared finger vein liveness detection scheme is
tested for its applicability on dorsal hand vein videos. A custom database consisting of five different
types of presentation attacks recorded with transillumination as well as reflected light illumination is
examined. Additionally, two different methods for liveness detection are presented in this work. All
methods described employ the concept of generating a signal through the change in average pixel
illumination, which is referred to as Photoplethysmography. Feature vectors in order to classify a
given video sequence are generated using spectral analysis of the time series. Experimental results
show the effectiveness of the proposed methods.

Keywords: near infrared, liveness detection, presentation attack detection, photoplethysmography,

dorsal hand vein, video sequence.

1 Introduction

The human body provides a great number of biometric traits which due to their inter-

personal uniqueness provide a high level of distinctiveness. Especially identification sys-

tems using vascular patterns, that is, structures in blood vessels, have become an important

field of research in the last decades. Two important properties of these biometric traits are

that they are a) not left behind like fingerprints or DNA and b) usually hidden inside the

human body which makes the use of specially designed imaging devices almost inevitable.

Common parts of the body for gathering recordings of these vessels are hands (including

wrists and fingers) and eyes. This research focuses on information captured from the dor-

sal view of hand vessels. Such systems make use of the fact that the hemoglobin in the

human vessels have a relatively high molar extinction coefficient, which is a measurement

for attenuation of electromagnetic waves with respect to a certain wavelength, in the near-

infrared (NIR) range. In general one differs between two types of illumination variants

(not counting the combination of both techniques into a hybrid version): Transillumina-

tion, where the hand is placed inbetween the light source and the imaging sensor and

Reflected light, where the NIR light comes from the same direction as the camera. By do-

ing so, and as the name suggests, the reflected light is then again captured by the imaging

sensor. An illustration of these two illumination variants is given in fig. 1 and examples of

the resulting images can be seen in fig. 2.

Biometric identification systems in general suffer from what is known as presentation at-

tacks [Ha15]. Here, data is presented to the biometric capturing subsystem with the goal

of interfering (e.g. for impersonation) with this system. Countermeasures are therefore

1 Department of Computer Sciences, University of Salzburg, AUSTRIA, {jschuiki,uhl}@cs.sbg.ac.at
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referred to as presentation attack detection (PAD). Usually, PAD methods try to classify

the data presented to the capturing subsystem into either attack presentations or bona fide

presentations. It has been shown also for the modalities used in this work that presentation

attacks exist [PBK16, TM15] and are a potential threat that has to be dealt with. In partic-

ular these presentation attacks are conducted by either printing previously acquired bona

fide images on paper or utilizing a digital display (e.g. from a smartphone) which is then

presented to the imaging sensor. The act of ensuring that the extracted features descent

from actual blood vessels is referred to as liveness detection and builds a subset of PAD

methods. Related work proposing countermeasures for presentation attacks on NIR vein

identification systems can be split into the following categories:

Multimodal approaches, that achieve liveness detection through additional hardware or by

looking at more than one trait [Kr18, CT17, CTC18, SBR08]. Other related works provide

algorithmic contributions, where authors try to distinguish real and spoof data by software.

Deep learning based approaches that employ convolutional neural networks (CNNs) build

one of those branches. Another idea for PAD is to utilize differences in quality, skin texture

and spatial frequency components in still images. A broad overview of the still image

approaches (including CNN, quality, texture and frequency) is given in table 14.1 from

[Ko20].

A different approach to accomplish PAD is to use video sequences that utilize differences

of features in adjacent frames. The idea proposed by [Ra15] applies a technique called

Eulerian motion magnification on transillumination finger vein videos. This method am-

plifies minor changes caused by active blood flow. Recently [HU20] analyzed this scheme

for a custom dorsal hand vein dataset that was captured with transillumination as well.

The following methods build upon a common pre-processing step that allows using the

video data for temporal analysis of blood flow in the human hand. With every frame, ei-

ther on single pixel level, on a region of interest (ROI), or with the image as a whole (for

the latter two the average pixel illumination is calculated), a time series is generated. The

series should resemble the characteristics of a beating heart, indicating life. This is a form

of Photoplethysmography which is explained in section 3. In 2008, [Zh08] used this form

of temporal analysis on a ROI of the human hand with reflected light imaging using two

different wavelengths, namely 660 and 880nm. The work already contained the observa-

tion that one dominant peak in the frequency spectrum around 1.4 hertz would most likely

be the heart rate. In [ZH13] the goal was actually to present a new method for palm vein

extraction using reflected light imaging, however the procedure includes the estimation

of the power spectral density over an 8 minute video sequence. Again, a dominant peak

around 1.4 hertz was reported. Another technique for discrimination of bona fide from

attack videos was proposed in [Di15]. Here, the average minima and maxima from the

time series form features for classification, but it is also shown that this method can be

spoofed by a blinking LED that imitates pulse. In [HKL18] again the similarity to blood

pressure signals is shown with videos from a custom built NIR transillumination finger

vein capturing device, but lacks information on how to use this information for liveness

detection.
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The work in this paper analyses the applicability of a finger vein liveness detection scheme

proposed by Bok et al. [BSL19] on a custom dorsal hand vein dataset explained in section

2. While the reference work uses a database which only consists of sequences captured

with transillumination, here we also evaluate the results on reflected light data. Further-

more, this work proposes two additional methods for the construction of a feature vector

in order to separate bona fide from presentation attack video sequences. Section 3 explains

the existing work and the contributions made by this paper. Section 4 describes the evalu-

ation methods and contains a discussion of the results.

2 Video Database

The imaging installation used to capture the video sequences is similar to the one that

was used in [Gr15, HU20]. The imaging sensor is a Canon EOS 5D MarkII DSLR with

removed IR blocking filter, that is placed on the top side of a wooden box. Additionally,

a 850mn pass-through filter is attached to the scanner. The installation is able to capture

data in two illumination variants, namely transillumination & reflected light. In order to

accomplish that, a NIR surveillance lamp including 50 940nm NIR LEDs is positioned

on the bottom of the capturing device, while 6 950nm LEDs are attached on the top side

of the box. Figure 1 illustrates the two modes of operation. The database contains both

hands from 13 participants, that were captured with both lighting versions, resulting in 52

genuine video sequences.

Fig. 1: Modes of operation of the capturing device: Transillumination (left) and Reflected Light

(right).

Every video has five presentation attack counterparts, namely a printed frame on cardboard

(in this work referred to as Paper), the same printed frame but moving back and forth ap-

proximately with a pace of 1 hertz to simulate heartbeat artefacts (Paper Moving), one

frame displayed on a smartphone (Smartphone), a frame displayed on a smartphone with a

programmed sinusoidal translation (Smartphone Moving) and the frame shown on a smart-

phone with a rhythmic zoom-in-zoom-out effect (Smartphone Zooming). Both variants of

motion, i.e. translation and scaling, are meant to simulate a heart-beat-like variation of

illumination on the dorsum of the hand. For the smartphone attacks a custom android ap-

plication was created to apply the transformations. Therefore, in total the whole database

consists of 312 video sequences, all of resolution 1920x1080. For generation of the at-

tacks, only a region of interest (ROI) was selected. Fig. 2 shows examples of genuine and



60 Johannes Schuiki, Andreas Uhl

attack frames in both illumination variants. The sequences are of varying length. Bona fide

videos range from 14.75 to 25.29 seconds, attack sequences from 10.41 to 21.49 seconds.

Every sample was captured with a constant frame rate of 29.97 frames per second.

Fig. 2: Example frames from NIR videos; top row: transillumination, bottom row: reflected light;

left: bona fide video frame, middle column: paper attack and right: smartphone attack, respectively

3 Remote NIR Photoplethysmography using Spectral Analysis

Plethysmography is the act of measuring changes in volume in different areas of the body.

Examples for such measurements are limb circumference, impedance (electric resistance)

on certain bodyparts or the amount of air that is being exhaled to conclude lung capac-

ity. One variant of Plethysmography is called Photoplethysmography (PPG) and refers to

analysis of optical signals acquired through imaging techniques. PPG makes use of the

observation that heart beats generate measureable changes in the human body resulting in

a periodical pattern that repeats every cardiac cycle. This non-invasive method is used in

devices such as pulse oxymeters or for heart rate estimation in sport watches. In the case

of NIR imaging, one utilizes the fact that the oxygen saturation in blood has its peak di-

rectly after the heart beat and reaches a minimum shortly before the next impulse. Wei et

al. [WHL09] have shown that such blood pressure measurements do not only contain the

heart rate, but due to their shape characteristics also include harmonics (i.e. integer multi-

ples of a dominant fundamental frequency) that can be mathematically modelled through

exponential decay. This paper exploits this observation for the construction of a feature

vector that indicates real blood flow.

A recent publication on presentation attack detection for finger vein image sequences has

shown that information from PPG analysis can be used as classification criteria [BSL19].

The proposed approach employs the concept of generating a one dimensional time series

by calculation of the average pixel brightness in every frame of the infrared finger vein

video. The time series is first zero padded to reach a higher frequency resolution and

then transformed into Fourier space using the discrete Fourier transform (DFT). Next,

frequency components less than 1.0 and higher than 3.0 hertz are dropped. By taking the

magnitude of every frequency component in this range, using a spacing of 0.04 hertz, a 50
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dimensional feature vector (FV) is constructed. For classification a support vector machine

(SVM) with a radial basis function kernel was used.

3.1 Proposed Methods

Two different ways for FV construction are explained in this section. Both build upon a

common basis. An overview is given in figure 3. The methods apply for both illumination

variants.

Fig. 3: Block diagram of the proposed methods.

Baseline: Due to the fact that the custom imaging device has two screwed pins where the

middle finger has to be placed inbetween, every hand is placed on the same predetermined

spot. The pins can also be seen on the subplots of figure 2. Therefore, as a first step, a

fixed 600x600 ROI is cropped such that only the dorsal view of the hand (from knuckles

to wrist) remains. Similar to the reference method, a time series is built containing values

of average pixel illumination (8 bit grey value) from this ROI. In order to center the time

series around the x axis, the mean value (DC component) is subtracted. A rectangular

window with a size of 150 frames is applied and shifted over the time series with a stepsize

of 1 frame. For detrending and removal of other artefacts, an infinite impulse response

high-pass filter with a steepness of 0.95 and a cutoff frequency fcut = 0.5 Hz is applied to

every window. As a final step for the baseline, a zero padding of 3000 zeros is attached to

the windowed and filtered signal before transformed to frequency space using DFT. The

highest frequency and resolution of the spectrum is given by fmax <
29.97

2
= 14.985 Hz and

∆ f = 29.97
150+3000

= 0.0095 Hz.

Method 1: For every window, the global argmax (i.e. the frequency where the spectrum

has its highest peak) is stored in a temporary list. From that list, a histogram is generated

with a bin size of 0.05 Hz ranging from 0.5 to 2 Hz covering all windows. Values outside

of that range do not contribute to the histogram. The histogram is normalized since video

sequences are of varying length and some windows may have its peak outside the range.



62 Johannes Schuiki, Andreas Uhl

The FV for method 1 is given by that normalized histogram and depicts a form of majority

voting per window.

Method 2: We define our global argmax(F ) as fHR and the max(F ) as mHR, where

F is the frequency spectrum ignoring phase information. If fHR is the heart rate, then

due to [WHL09] one would expect local maxima at the harmonic frequencies (integer

multiples of fHR) with a certain magnitude as well. Therefore, for the first 4 harmonics

(i.e. i∗ fHR , i ∈ {2...5}) a search window of ±
fHR

5
is defined. In addition to fHR and mHR,

we temporarily store the local argmax and corresponding maxima as the a quotient w.r.t

the global argmax & maxima as fi and mi. The final FV is constructed by taking the means

and medians (Md) for all stored values over every window, i.e.:

(
mHR,m1...m4,Md(mHR),Md(m1)...Md(m4), fHR, f1... f4,Md( fHR),Md( f1)...Md( f4)

)

Exceeding fmax with a search window counts as 0 for the entries in question. This case,

by construction, can only occur if fHR ∗5+ fHR

5
≥ fmax ⇒ fHR ≥ 2.88 Hz, which is out of

range for a reasonable heart rate.

4 Results

Bok et al. [BSL19] used a SVM classifier with a radial basis kernel function and param-

eters C = 10,γ = 0.001. Matlabs fitcsvm function was used for classification. Therefore

the parameters were set as: ’BoxConstraint’ = 10 and ’KernelScale’ = 1√
γ
. In addition, a

simple linear kernel was used for classification. The data under test was split into training

and evaluation data using the Leave One Out Cross Validation (LOOCV) principle. Re-

sults are reported in compliance with the ISO/IEC 30107-3:2017 standard [IS17], which

defines metrics for presentation attack detection such as Attack Presentation Classifica-

tion Error Rate (APCER) and Bona Fide Presentation Classification Error Rate (BPCER).

Table 1 contains the results of both test scenarios. For the proposed methods, the amount

of data was given as 26 videos per presentation attack and bona fide respectively. There-

fore, the error rate step is 1
26

= 3.85%. Since for the Bok et al. approach data was split

into chunks, between 92 and 109 sequences per category were available for training a

classifier. One can see that, with few exceptions, the proposed method 2 is superior to

the other two methods under test using the linear kernel classifier. Even with the settings

from Bok et al., except for paper based spoofs with reflected light illumination, method 2

yields acceptable results. In comparison to finger vein videos, where the imaging sensor

is relatively close to the finger, hand vein imaging offers a lot more possibilities for un-

wanted errors. As depicted in example time series in figure 4, even slight movements of

the hand have noticeable effects in the pixel-averaged time series. That is the reason why

using the whole video together with high-pass filtering yields very robust results in com-

parison to just cutting the sequence into chunks as proposed in [BSL19]. Another measure

to circumvent inconsistencies in the time series is given by the windowing. The step size

was set to one frame in order to assign more weight on spots where the pulse is clearly

visible, which is the case for the major part of the signal. Unfortunately, the proposed ap-

proaches are more costly in terms of computational resources which also reflects in the
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Fig. 4: Types of errors: ascending/descending trend, steps, peaks & fluctuation.

processing time. On average, processing a single video took 32.564 seconds using method

1 and 32.778 seconds using method 2. Compared to the approach from the reference work,

where processing all 312 videos (video-slicing included) took 246 milliseconds, this is a

downside of the introduced methods. The time consumption is caused by the fact that we

apply a fourier transform together with Matlabs highpass filter function on every window

with a step size of one frame. The average time consumption per window was 113 mil-

liseconds. As processing hardware, an AMD Ryzen 5 1600X six-core processor was used

for all experiments.

5 Conclusion

In this work, the applicability for a finger vein liveness detection scheme was tested on a

custom dorsal hand vein dataset in two illumination variants. Two additional classification

methods are described. One constitutes a windowed majority voting for the human heart

rate by looking for a maximum in the frequency spectrum. The other method exploits the

shape characteristic of a typical blood pressure measurement by looking around multiples

of the estimated heart rate for other spectral peaks, which has not been used for liveness

detection so far. Doing so, the method delivers a certain invariance to the value of the

actual pulse and has proven to be a fairly robust approach for both, transillumination and

reflected light video sequences. Although the methods are not very efficient in terms of

computational cost yet, they form a starting point for a robust unimodal approach for

presentation attack detection in dorsal hand vein videos.
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Spoof Method Bok et al. Method 1 Method 2

RBF: C=10, γ = 0.001 APCER BPCER APCER BPCER APCER BPCER

T
ra

n
si

ll
.

Paper 10.31 30.77 11.54 15.38 11.54 3.85

Paper Moving 4.35 37.50 26.92 11.54 11.54 0.00

Smartphone 0.00 89.42 3.85 7.69 0.00 0.00

Smartphone Mov. 77.36 89.42 0.00 19.23 19.23 0.00

Smartphone Zoom 59.43 17.31 3.85 19.23 11.54 0.00

R
efl

.
L

ig
h

t Paper 0.00 80.37 53.85 61.54 7.69 23.08

Paper Moving 49.06 5.61 23.08 3.85 42.31 7.69

Smartphone 63.55 6.54 7.69 3.85 3.85 3.85

Smartphone Mov. 23.08 6.54 3.85 0.00 0.00 3.85

Smartphone Zoom 15.24 7.48 3.85 0.00 0.00 3.85

linear APCER BPCER APCER BPCER APCER BPCER

T
ra

n
si

ll
.

Paper 11.34 18.27 7.69 26.92 11.54 0.00

Paper Moving 7.61 16.35 26.92 19.23 11.54 7.69

Smartphone 13.21 54.81 7.69 26.92 0.00 0.00

Smartphone Mov. 17.92 57.69 11.54 11.54 3.85 0.00

Smartphone Zoom 27.36 40.38 7.69 11.54 0.00 0.00

R
efl

.
L

ig
h

t Paper 12.84 71.03 61.54 53.85 0.00 3.85

Paper Moving 25.47 1.87 15.38 3.85 3.85 7.69

Smartphone 46.73 6.54 7.69 19.23 3.85 3.85

Smartphone Mov. 28.85 6.54 3.85 3.85 0.00 3.85

Smartphone Zoom 18.10 5.61 3.85 0.00 3.85 3.85

Tab. 1: The upper table shows the SVM results with a RBF kernel, BoxConstraint of 10 and a γ value

of 0.001 as proposed in [BSL19]; The second table contains results with a simple linear kernel; best

results are highlighted bold.

References

[BSL19] Bok, Jin; Suh, Kun; Lee, Eui Chul: Detecting Fake Finger-Vein Data Using Remote Pho-
toplethysmography. Electronics, 8:1016, 09 2019.

[CT17] Crisan, Septimiu; Tebrean, Bogdan: Low cost, high quality vein pattern recognition de-
vice with liveness Detection. Workflow and implementations. Measurement, 108:207 –
216, 2017.

[CTC18] Crisan, S.; Tebrean, B.; Crisan, T. E.: Multimodal Liveness Detection System for Hand
Vein Biometrics. In: 2018 IEEE International Symposium on Medical Measurements and
Applications (MeMeA). pp. 1–6, 2018.

[Di15] Ding, Henley: Anti-spoofing a Finger Vascular Recognition Device with Pulse Detec-
tion. In: 24th Twente Student Conference on IT. University of Twente, Enschede, The
Netherlands, 01 2015.

[Gr15] Gruschina, Alexander: VeinPLUS: A Transillumination and Reflection-based Hand Vein
Database. In: Proceedings of the 39th annual workshop of the Austrian association for
pattern recognition (OAGM15). 2015.



Improved Liveness Detection on Hand Veins using PPG 65

[Ha15] Hadid, A.; Evans, N.; Marcel, S.; Fierrez, J.: Biometrics Systems Under Spoofing Attack:
An evaluation methodology and lessons learned. IEEE Signal Processing Magazine,
32(5):20–30, 2015.

[HKL18] Han, Jae Hyun; Kim, Jinman; Lee, Eui Chul: Single-Camera Vision-Based Vein Biomet-
ric Authentication and Heart Rate Monitoring via Infrared Imaging Analysis. In (Park,
James J.; Loia, Vincenzo; Yi, Gangman; Sung, Yunsick, eds): Advances in Computer Sci-
ence and Ubiquitous Computing. Springer Singapore, Singapore, pp. 1307–1313, 2018.

[HU20] Herzog, Thomas; Uhl, Andreas: Analysing a Vein liveness detection scheme. In: Pro-
ceedings of the 8th International Workshop on Biometrics and Forensics (IWBF’20).
Porto, Portugal, pp. 1–6, 2020.

[IS17] ISO: Information technology Biometric presentation attack detection Part 3: Testing and
reporting. ISO ISO/IEC 30107-3:2017, International Organization for Standardization,
Geneva, Switzerland, 2017.

[Ko20] Kolberg, Jascha; Gomez-Barrero, Marta; Venkatesh, Sushma; Ramachandra, Raghaven-
dra; Busch, Christoph: Presentation Attack Detection for Finger Recognition. In: Hand-
book of Vascular Biometrics. Springer International Publishing, Cham, pp. 435–463,
2020.

[Kr18] Krishnan, Arya; Thomas, Tony; Nayar, Gayathri R.; Sasilekha Mohan, Sarath: Liveness
Detection in Finger Vein Imaging Device Using Plethysmographic Signals. In (Tiwary,
Uma Shanker, ed.): Intelligent Human Computer Interaction. Springer International Pub-
lishing, Cham, pp. 251–260, 2018.

[PBK16] Patil, I.; Bhilare, S.; Kanhangad, V.: Assessing vulnerability of dorsal hand-vein verifi-
cation system to spoofing attacks using smartphone camera. In: 2016 IEEE International
Conference on Identity, Security and Behavior Analysis (ISBA). pp. 1–6, 2016.

[Ra15] Raghavendra, R.; Avinash, M.; Marcel, S.; Busch, C.: Finger vein liveness detection us-
ing motion magnification. In: 2015 IEEE 7th International Conference on Biometrics
Theory, Applications and Systems (BTAS). pp. 1–7, 2015.

[SBR08] Shahin, M. K.; Badawi, A. M.; Rasmy, M. E.: A Multimodal Hand Vein, Hand Geom-
etry, and Fingerprint Prototype Design for High Security Biometrics. In: 2008 Cairo
International Biomedical Engineering Conference. pp. 1–6, 2008.

[TM15] Tome, P.; Marcel, S.: On the vulnerability of palm vein recognition to spoofing attacks.
In: 2015 International Conference on Biometrics (ICB). pp. 319–325, 2015.

[WHL09] Wei, Ching-Chuan; Huang, Chin-Ming; Liao, Yin-Tzu: The exponential decay charac-
teristic of the spectral distribution of blood pressure wave in radial artery. Computers in
Biology and Medicine, 39(5):453 – 459, 2009.

[Zh08] Zheng, Jia; Hu, Sijung; Azorin Peris, Vicente; Echiadis, Angelos; Chouliaras, V.A.; Sum-
mers, Ron: Remote simultaneous dual wavelength imaging photoplethysmography: A
further step towards 3-D mapping of skin blood microcirculation. Proc SPIE, 6850, 03
2008.

[ZH13] Zhang, Huan; Hu, Ding: A Novel Preprocessing Method for Palm Vein. Advanced Ma-
terials Research, 658:643–646, 01 2013.





A. Brömme, C. Busch, A. Dantcheva, K. Raja, C. Rathgeb and A. Uhl (Eds.): BIOSIG 2020,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 67

Biometric System for Mobile Validation of ID And Travel

Documents

Iurii Medvedev1, Nuno Gonçalves2, Leandro Cruz3

Abstract: Current trends in security of ID and travel documents require portable and efficient valida-
tion applications that rely on biometric recognition. Such tools can allow any authority and citizen to
validate documents and authenticate citizens with no need of expensive and sometimes unavailable
proprietary devices. In this work, we present a novel, compact and efficient approach of validating ID
and travel documents for offline mobile applications. The approach employs the in-house biometric
template that is extracted from the original portrait photo (either full frontal or token frontal), and
then stored on the ID document with use of a machine readable code (MRC). The ID document can
then be validated with a developed application on a mobile device with digital camera. The similar-
ity score is estimated with use of an artificial neural network (ANN). Results show that we achieve
validation accuracy up to 99.5% with corresponding false match rate = 0.0047 and false non-match
rate = 0.00034.

Keywords: Document security, biometric template, active appearance model, artificial neural net-

work.

1 Introduction

Nowadays, protecting portrait photos on ID and travel documents is of key importance

for issuing and legal authorities as face is one of the most largely deployed biometric

source [IB08]. That is why the face spoofing attacks widely affect high security field in the

companies, government sectors [KSK17]. These attacks usually can be hardly detected by

humans as even well trained officers usually perform poorly in matching unfamiliar faces

on photos of ID documents, that is why automated systems for efficient document valida-

tion are required [SJ19]. Despite all the recent evolution in the facial biometric verification

and recognition technologies, when designing security documents and systems, some as-

pects are relevant. On the one hand, the trend is to allow the validation of documents in

totally offline systems, which are designed for scenarios where connectivity may be com-

promised in terms of availability and security (thus avoiding hacking attacks - such as

man-in-the-middle). On the other hand, because of the use of mobile non-proprietary de-

vices, such as smartphones, which are nowadays almost ubiquitous in the hand of authority

agents and citizens.
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Consequently, many use cases that rely on facial verification or facial recognition using

physical documents are now being designed to allow a fully offline validation with a minu-

tia information extracted from sources of biometric data (such as faces, fingerprints, iris,

among others), without storing or accessing databases of face images.

In this paper we present a novel, efficient and compact method for offline mobile applica-

tions to secure ID and travel documents with the use of in-house designed facial biometric

template and machine readable codes. We are interested in the face photo of documents,

either full frontal or token frontal, according to the ISO specifications ISO/IEC 19794-

5 [IS11]. Although focused on the face photo, it is worth noting that any source of biomet-

ric data (like fingerprint pattern or iris) that can be acquired to perform validation may be

employed instead.

The presented approach then solves the document verification task, and does not demand

that the biometric samples and features to be stored in any database. This type of validation

is sometimes called a match-on-card process.

(a)

(b)

Fig. 1: Pipeline for ID generating(a) and validating(b) in the proposed system.

In our document validation system, we encode the biometric template, that is extracted

from a digital frontal face image, within a MRC, and print the resulting code image on the

document of an individual (Fig. 1). The approach assumes that the valid MRC for arbitrary

biometric sample cannot be recreated by impostors, thus preventing them from issuing the

fake identification document that matches different identity. In order to validate the docu-

ment, the two biometric templates, one from the frontal face photo on its surface and the

other from the machine-readable code, are extracted from the testing document to finally

be compared to determine if they belong to the same individual. As stated before, this

validation shall be performed totally offline. It is important to notice that the biographic

data (name, date of birth, etc.) can also be included into the MRC in order to prevent any

document ID with original photo and valid MRC to match the data of another individual.
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The presented method is related with face recognition problem, however we do not attempt

to solve it in its usual formulation. The main goal is to secure a document sample at the

moment of its personalization. That is why the problem being solved is the protection of

the single document face image itself from biometric impostor attacks like replacing or

changing it, into a different identity.

2 Related Work

Recent achievements in different types of face manipulation have made the topic of face

forensic recognition to become important for research and investigations [ADB19]. Con-

sequently, document security issues thus encounter new challenges and require efficient

methods for face photo security purposes. In [Am19] authors consider a number of differ-

ent face recognition methods (also including facial landmark-based) in forensics purposes.

The paper [DC15] was focused on developing a framework for facial forensics application

also related with ID cards fraud. Worth noting that most of the current solutions for doc-

ument validation are proprietary commercial systems that rely on unpublished algorithms

and methods, thus making them difficult to compare with. Consequently, existing bench-

marks [GN14] have some submission restrictions.

In relation to industry solutions for ID and travel documents, some products have been

developed recently. Two approaches are the Digital IPI from Jura [KA04] and both Lasink

and DocSeal from IDEMIA [JE19]. They are focused on validation solutions for ubiqui-

tous devices not only to make widely available the access to the authenticity of documents

and products, but also to reduce the considerable equipment costs. The main idea of these

approaches is to conceal a personalized data within the printed photo that can be further

decoded with use of mobile application. Our solution is comparable to these two products,

however as they are non-publicly available (both solution and validation dataset), this does

not allow one to perform a proper benchmark.

In purposes of face recognition and validation the approaches based on active appearance

model (AAM) has been widely used [CET01]. In [ASAAO13], authors use features ex-

tracted from AAM of a face and SVM for making a comparison decision. The approach

presented in [Ou14] is focused on analysing geometric face distances. The face recogni-

tion method in [JP17] is based on face geometric invariances. Modern face recognition

approaches usually rely on employing CNN based deep neural networks and use facial

landmarks only in alignment [SKP15] or frontalization processes [Ha14]. However, these

methods are still computationally heavy especially for application in mobile devices.

3 Facial Biometric Template

Due to limitations of computing power on target platforms, the choice of facial biometic

template implementation was made aiming to achieve a trade-off between the calculating

complexity and efficiency of its application. We consider the fact that ID and travel docu-

ments generally contain frontal face image, where a well-known active appearance model
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can be applied (Fig. 2). The model we use contains 68 facial landmarks and denotes the

external contour of the face, mouth, eyes, nose, and eyebrows [Re14]. This character of the

markup allows one to further determine the various parameters of the face from its image,

which can be used for processing by other algorithms.

(a) (b)

Fig. 2: Face image with detected facial landmarks of a man(a) and a woman(b) [Ps].

From the detected set of facial landmarks, we extract values of their coordinates. Nonethe-

less, those raw data require some normalisation due to the arbitrariness of face location,

size and pose on the source image. We solve that problem by performing the following

procedure. Firstly, we introduce some predefined set of face feature points. The goal of

introducing that supporting set of landmarks is to be the base for aligning other sets of

face feature points. If coordinates of two different sets of points are aligned to this sup-

porting set, they will be aligned to each other. As a supporting set in this paper, we choose

landmarks detected on artificially generated average face image depicted in Fig. 3a.

In order to align input set of points {xi,yi} with the supporting set of points, we transform

its coordinates to {x′i,y
′
i} by rotating, scaling, and shifting it (eq. (1)). The rotation angle α

is obtained in order to align input face contour with the horizon (supporting set is already

aligned). Although this is a standard procedure, the novelty presented by our work is the

scaling, which is performed by the values of face contour perimeter (Psup for supporting

set and P for the input set), which is defined by the subset of points with indices 0-26 (blue

points on Fig. 2). The shifting vector S(sx,sy) is an offset between the average points of

supporting and already scaled input sets.

[
x′i
y′i

]
=

Psup

P
∗

[
cos(α) −sin(α)

sin(α) cos(α)

]
∗

[
xi

yi

]
+

[
sx

sy

]
(1)

The set of values that will be a included into a facial biometric template is a result of

element-wise subtraction of input and supporting facial landmark coordinates. To avoid

depending upon characteristics of images, we divide all the elements of this set to the

supporting face contour perimeter Psup. This set of values to be included into the template

contains 136 values.

To make the template more robust against biometric distortion attacks (eg. the face image

of an impostor can be warped in order to be more geometrically similar to the original

identity), texture features are also included into it. In order to extract them, the input face

image is aligned with the supporting image, and further segmented in ten characteristic re-
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(a)

(b)

(c)

(d)
(e)

(f)

Fig. 3: The process of coordinate recalculating a) supporting face image; b) input face image to be

aligned; c) supporting facial landmarks (FL); d) input image FL; e) set of input FL (green) that is

aligned with supporting set of FL(red); e) face region contours for extracting HOG features.

gions which are chosen to distinguish face semantic areas (Fig. 3f).Finally for each region

features based on histograms of oriented gradients (HOG) are extracted [De11]. This re-

sults in 80 features that are concatenated into the resulting biometric template which then

contains D size = 216 elements {di}.

3.1 Template verification

From the ID document that is claimed to be validated, two facial biometric templates are

extracted. First {d testi} is from the physical face photo that might be forged, and the

second {d origi} that is stored on the document, which is assumed to be original. In order

to recognize the tested document as genuine, extracted biometric templates are compared

between each other. Such straightforward validation can be realised by applying Euclidean

distance (eq. (2)). The value of the resulting E in fact indicates the distance score between

the templates and can be compared with some threshold in order to trigger the validation

decision. Nonetheless, this trivial linear approach does not consider impact weights of

different landmarks and seems to be naive and simplistic.

E =
D size

∑
i=1

|(d testi −d origi)|=
D size

∑
i=1

|d subi| (2)

In order to perform a more robust verification, we solved a binary true-false classifica-

tion task by designing a multilayer perceptron, where the first layer receives the result of

element-wise subtraction of templates. For training that classifier, we employ a classical

random sequential back-propagation algorithm [YM98]. The final layer contains one node

and returns a response scalar S in the range [0,1].

The input layer of this network receives an element-wise absolute difference of two bio-

metric templates d subi normalised by the coefficient N (see eq. (3)). The purpose of in-
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troducing N and limiting the input values to 1 is to fit them within the range of the first

layer activation function. In our experiment, the best results are obtained with N = 0.015

for geometry based elements and N = 0.1 for texture based ones.

d inpi = max(1,
|d subi|

N
) (3)

3.2 Classifier Training and Tests

Due to specificity of the verification task, we have prepared an in-house dataset for train-

ing, testing and estimating the efficiency of the presented approach. 4 First, a set of frontal

face images of 89 individuals was prepared and printed with a size chosen in accordance

with [IS19]. In a process of a real document validation with a mobile device, we assume to

perform document acquisition with conventional digital camera. In order to follow these

conditions properly in training and tests the printing of the dataset is required. These im-

ages were used to perform acquisitions similar to Fig. 1a with use of conventional smart-

phone digital camera (Huawei P20 Pro was used in our tests) and further a perspective

transformation based on the structure of the ID document (see Fig. 1b). As a source of

frontal face images a dataset from [Ps] was chosen. We have acquired around 4.5 thou-

sand face image samples and in a combination with 89 original digital images, combined

around 9 thousand pairs in order to extract a balanced set of {d subi}. Each pair of sam-

ples contains an original digital image and a rectified capture of the printed image for

validating. Pairs with both images belonging to the same identity correspond to the true

comparison decision, while the opposite situation imitates a biometric impostor attack of

face image replacing. This data was divided into train (70%) and test (30%) parts with

different (disjoint) identities in both parts. On this dataset the network learns not only the

proper weights for the particular template elements but also learns to avoid noise related

with printing, acquisition and rectification inaccuracies.

3.3 Results

For the purpose of choosing a better architecture of the classifier, we have tested a number

of different ones. Here we aim to achieve the trade-off between the classifier performance

and computing complexity. To evaluate the performance, we build ROC (receiver oper-

ating characteristic) curves and estimate their AUC (area under curve) values. (Fig. 4).

Architecture with two hidden layers already gives reasonable classification efficiency for

our task (Fig. 4d). However the resulting ROC curves are irregular and not smooth, what is

not very convenient in practice while tuning to the required optimum between false match

and false non-match rates. In our experiments results with less hidden layers were even

more impractical. Increasing the number of classifier layers improves results in terms of

AUC value (Table 1). At the same time, enlarging the size of the hidden layers does not

impact to the performances (Fig. 4c).

4 https://github.com/visteam-isr-uc/trustfaces-template-verification
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(a) (b) (c) (d)

Fig. 4: ROC curves of ANN classifier with different architectures and different numbers of train-

ing epochs. Correspondence between labelled sub-figures and architecture is indicated in Table 1.

Different colour of curves indicates different numbers of training epochs.

ANN AUC

Layers Fig. 4 red 5ep cyan 10ep green 20ep blue 30ep purple 40ep

216-300-400-100-1 (a) 0.9996 0.9988 0.99994 0.9992 0.9990

216-300-400-200-100-1 (b) 0.9993 0.9987 0.99995 0.9998 0.9998

216-300-500-400-200-1 (c) 0.9985 0.9988 0.9989 0.9979 0.9984

216-300-150-1 (d) 0.9997 0.9988 0.9993 0.9996 0.9998

Tab. 1: AUC of classifiers with different architectures.

For the classifier from the Table 1 with the best value of AUC (architecture: 216-300-400-

200-100-1; 20 epochs) we estimated the value of maximum accuracy equal to 0.995 (with

the minimum of incorrect classifications). It corresponds to false match rate of 0.0047 and

false non-match rate of 0.00034 and is achieved for a threshold value of 0.275.

4 Application of MRC

In order to store the biometric template on the document and make it easily extractable by

using a digital camera, we employ machine readable code printed on the document Fig. 1b.

Namely we employ the Graphic Code from [CPG18] that can be customised for security

purposes. At the stage of creating Graphic Code, several layers of security, robustness and

data compressing can be added. The algorithm of creating Graphic Code remains open,

even though the Graphic code itself can provide enough computational cost of cryptanal-

ysis by specifying the alphabet that was used in the Graphic Code dictionary, the pattern

size, the writing order of cells along the image, the writing order of pixels along the cell,

and the dictionary itself. Here we follow the approach of symmetrical encryption where the

parameters listed above are the key used both for encryption and decryption, and must be

private and secured. Finally, one also can use different methods of cryptography over the

data itself, when highly security level is needed. As an example, the message containing

facial biometric template can be encrypted to ciphered text what can drastically increase

computation complexity of cryptanalysis and security.



74 Iurii Medvedev, Nuno Gonçalves, Leandro Cruz

Another option is to follow an asymmetric encryption approach. In that case during the

decoding process one just needs to prove the document issuer’s authority to be sure that

the document is not presented by impostor. To achieve that the template data is protected

with the digital signature. The issuer authority generates the pair of private and public key.

The first one is used to generate the digital signature for the created template that is added

to that template to be encoded into the graphic code. With the public key the issuer of

the document can be correctly validated. To keep the offline mode of the application that

public key must be pre loaded on the device.

4.1 Encoding And Decoding

As a base image for the Graphic Code outline, we use the one depicted on Fig. 5a. Based

on a variety of possible unit cells composed of 3 × 3 pixels, we have defined an alphabet

that contains N = 120 characters. In order to code the biometric template into the Graphic

Code, we transform it into the message in the alphabet space by quantisation process. Each

character in the message then correspond to the letter from the alphabet and is replaced

by the respective pattern in the dictionary. In addition to the biometric template some

information about the individual (ID card number, name) can be also encoded for purposes

of automatic document processing. The set of check digits is added to the end of the

message. Finally, the remaining cells are replaced using non-dictionary patterns.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5: a) - Graphic Code outline image, b) - example of created Graphic Code acquisition. The

process of Graphic Code decoding from physical image: c) - detected Graphic Code image, d) -

thresholding and corner detection, e) - base image rectifying, f) - code image extracting and g) -

Graphic Code reconstruction.

The decoding of MRC is the inverse to the encoding, and receives the same key parameters

that are stored on the device. However, the acquired code image is also needed to be

prepossessed and rectified, what is performed with common computer vision algorithms.

(Fig. 5c - 5g). During the decoding, the rectified image (Fig. 5f) is overlaid with the

grid, then scanned, to find patterns from the dictionary and add corresponding characters

to the result message. In that process multiple errors can occur due to various reflection,

distortion, MRC surface attrition. That is why after having the full message extracted, its

content is validated with the use of check digits. In order to prove the robustness of the

decoding we performed extensive tests with the various lighting conditions and applied

deformations to the MRC. Most of inaccuracies are mitigated by processing the sequence

of multiple camera frames. Only the deformations that significantly damage the MRC unit

cells (such as hard scratches) lead to the impossibility of valid decoding.
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6 Conclusion

In this paper, we present an efficient and compact method for offline mobile applications

to secure ID and travel documents using a facial biometric template and machine readable

code. The method demonstrates the high level of efficiency against biometric impostor

attacks. This approach solves the frontal face verification problem for purposes of securing

ID and travel documents with use of smartphones. Additionally, the presented method of

document validation can be expanded for usage with other biometric characteristics (such

as fingerprints, iris among others). The practical application does not require sophisticated

equipment, thus the approach is also quite cheap in production.
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Abstract: In many countries, printing and scanning of face images is frequently performed as part
of the issuance process of electronic travel documents, e.g., ePassports. Image alterations induced
by such print-scan transformations may negatively effect the performance of various biometric sub-
systems, in particular image manipulation detection. Consequently, according training data is needed
in order to achieve robustness towards said transformations. However, manual printing and scanning
is time-consuming and costly.

In this work, we propose a simulation of print-scan transformations for face images based on a Con-
ditional Generative Adversarial Network (cGAN). To this end, subsets of two public face databases
are manually printed and scanned using different printer-scanner combinations. A cGAN is then
trained to perform an image-to-image translation which simulates the corresponding print-scan trans-
formations. The goodness of simulation is evaluated with respect to image quality, biometric sample
quality and performance, as well as human assessment.

Keywords: Biometrics, face, print-scan transformation, simulation, generative adversarial network.

1 Introduction

Face recognition technologies are frequently utilized for the verification of electronic travel

documents, e.g., in automated border crossings. In various countries, the issuance process

of electronic travel documents requires applicants to provide face images in digital or

analogue form (printed). This has already been identified as security gap since an appli-

cant could manipulate his face image before submitting it to the issuance authority. Pos-

sible facial image alterations range from simple retouching [RDB19] to morphing [Sc19],

where the latter type of manipulation causes a serious security risk, as shown by Ferrara

et al. [FFM14]. It was found that human observers achieve only low accuracy in detect-

ing such face image manipulations [RKB17, Rö19]. This necessitates the integration of

automated procedures with the aim of reliably detecting face image manipulations.

Recently, different benchmarks [Rö19, Ng20, Ra20] have been conducted to compare the

performance of manipulation detection schemes proposed in the scientific literature. The

majority of state-of-the-art detection systems relies on machine learning techniques, e.g.,

deep learning, which usually require a huge amount of training data. In order to ensure

1 Hochschule Fulda, Fulda, Germany
2 secunet Security Networks AG, Essen, Germany, {johannes.merkle,christian.rathgeb}@secunet.com
3 da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Darmstadt, Germany,

christoph.busch@h-da.de
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high detection performance and generalizability, the used training data should resem-

ble variations present in real-world scenarios. In particular, detection algorithms which

are used to analyze face images stored in electronic travel documents are required to

exhibit robustness towards print-scan transformations. However, a manual creation of a

reasonable amount of printed and scanned face images is time-consuming and costly.

Ferrara et al. [FFM19] demonstrated that the simulation of print-scan transformations dur-

ing training can significantly improve the performance of face morphing attack detection

on real printed and scanned face images. For this purpose, they employed the scheme of

Lin and Chang et al. [LC99] which makes use of some mathematical models. Other simi-

lar schemes aiming at the simulation of print-scan transformations have been suggested in

different application contexts, e.g., [So05, Ei11].

In contrast to published works, we present a GAN-based approach for simulating print-

scan transformations. A GAN is a machine learning model in which two neural networks

compete with each other to become more accurate in their predictions and to be able to an-

alyze, capture, and resemble the variations within a dataset. A subclass are cGANs which

have been found to be suitabe for image-to-image translations [Go14, Is17, Zh17]. Specif-

ically, the term style transfer is used to describe the operation of recomposing one image

in the style of another (group of) image(s).

In this work, we train a cGAN to perform an image-to-image translation which resembles a

print-scan transformation. We obtain face images from two public face database which are

printed and scanned employing two printer-scanner combinations. These images are then

used together with their original counterparts to train a cGAN to perform an image-to-

image print-scan transformation. For each printer-scanner combination, 20 models trained

with a different number of epochs are applied to simulate print-scan transformations. Fi-

nally, resulting test images are assessed in a comprehensive manner considering many

relevant factors such as image quality, biometric sample quality, and human recognition.

The obtained results confirm that the proposed cGAN-based approach is capable of realis-

tically simulating print-scan transformations.

This paper is organized as follows: Sect. 2 summarizes the face databases used. The pro-

posed architecture and training of the cGAN is described in detail in Sect. 3. The assess-

ment of the simulated print-scan transformation is presented in Sect. 4. Finally, conclu-

sions are drawn in Sect. 5.

2 Databases

From two public databases, i.e., the FERET [Ph98] and FRGCv2 [Ph05], face images have

been manually selected which meet the face image quality standards for electronic travel

documents, as specified by the International Civil Aviation Organization (ICAO) [In15].

These images exhibit, among other requirements, full-frontal pose, uniform illumination,

good focus, a neutral face expression with open eyes and no visible teeth, and neutral

background. For these images, we adjusted the alignment of the face by suitable scaling,

rotation and padding/cropping to ensure that the ICAO requirements with respect to the
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eyes’ positions are met. Overall, 529 and 984 face images have been selected from the

FERET and FRGCv2 databases, respectively. Subsequently, all face images are printed

and scanned using two printer-scanner combinations listed in Table 1. The resulting image

sets are referred to as IS1 and IS2. That is, both image sets contain all 1,513 face images

selected from the FERET and FRGCv2 databases, but have been printed and scanned using

different devices. Example face images of the original database, IS1, and IS2 are shown in

Fig. 1.

Tab. 1: Printer-scanner combinations used for database creation.

Image set Printer Scanner Properties

IS1
Fujifilm Frontier

5700R Minlab
Epson DS-50000

300 dpi, 24-bit RGB,

print on matte photo paper

IS2
Developed by

professional photo studio

Canon Imagerunner

Advance 4535i

600 dpi, 24-bit RGB,

print on glossy paper

(a) original (b) IS1 (c) IS2

Fig. 1: Example images of used databases. Best viewed in electronic format (zoomed in).

The printing and scanning process was conducted in a semi-automatic manner. For this

purpose, a software tool was implemented which enables the arrangement of images in

the size of passport face images according to ICAO [In15] on A4 paper sheets, 20 images

per page. Additionally, markers were included in the top left and the right bottom corners

of each face image to facilitate a subsequent segmentation. Further, the filenames of im-

ages where included as QR-codes. The resulting sheets were then printed on photo paper

and scanned, cf. Table 1. Finally, the face images were automatically extracted from the

scanned sheets and the corresponding filenames were assigned. Fig. 2 shows examples of

face images after printing and scanning.

3 Proposed approach

A GAN architecture [Go14] consists of a generator model G for outputting synthetic im-

ages according to a given distribution, and a discriminator model D that classifies images

as real (from the dataset) or fake (generated). The discriminator model is updated directly,
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Fig. 2: Example images of after printing and scanning with segmentation makers and filenames in

form of QR-codes. Best viewed in electronic format (zoomed in).

whereas the generator model is updated via the discriminator model. As such, the two

models are trained simultaneously in an adversarial process where the generator seeks to

fool the discriminator and the discriminator seeks to better identify the generated images.

In a cGAN, G generates the images not just from internal noise z (as in a tradional GAN)

but also based on an input image x; the conditional distribution of the output image G(x,z)
given the input x is supposed to resemble that of real image translations (x,y). The dis-

criminator is provided both with a source image x and a target image, and must determine

whether the target is a real image y or an output G(x,z) of the generator. An example

is the well-known Pix2Pix framework of Isola et al. [Is17]. The generator is trained via

adversarial loss,

LcGAN(G,D) = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z))], (1)

which encourages the generator to generate plausible images in the target domain. The

generator is also updated via L1 loss measured between the generated image and the ex-

pected output image,

LL1(G) = Ex,y,z[||y−G(x,z)||1]. (2)

This additional loss helps the generator model to create translations nearer to the ground-

truth, resulting in,

G∗ = argmin
G

max
D

LcGAN(G,D)+λLL1(G). (3)

The Pix2Pix cGAN has been demonstrated on a range of image-to-image translation tasks

such as converting maps to satellite photographs, black and white photographs to color,

and sketches of products to product photographs [Is17].
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real or

fake?

Generator

G

Gaussian

noise z

digital x

Discriminator

D

printed-

scanned y

generated G(x, z) Fine tuning

Fig. 3: Concept of the proposed cGAN-based print-scan transformation.

Our approach builds on the Pix2Pix framework [Is17] and is depicted in Fig. 3. Alterna-

tively, a Cycle-Consistent Adversarial Network (CycleGAN) [Zh17] could be employed

which allows for the training of an unpaired image-to-image translation. However, since

a sufficient number of images is available in digital and printed and scanned form, the

Pix2Pix framework turns out to be suitable.

As suggested in [Is17], an image classifier named PatchGAN is used instead of a tradi-

tional discriminator. While a traditional discriminator maps the complete image to a single

scalar which expresses the probability whether the image is real or generated, the Patch-

GAN splits the image into small local patches. The L1 norm in the loss function already

encourage the generator to correctly represent the coarse structures of the target image.

Therefore, the discriminator must only assess if the generator’s outputs resemble the fine

structures in a realistic way. To this end, the discriminator only requires small patches of

the image as input. By restricting the input of the discriminator to small images patches,

the size of the discriminator, and number of its parameters can be greatly reduced. In our

case, the coarse structures, for which correct representation is encouraged by the L1 norm,

are the features of the subject depicted in the input image which are still visible in the

print-scan transformed image, and the fine structures investigated by the discriminator are

the artefacts induced by the print-scan transformation. For computing the loss function, the

images are divided in N ×N patches, and after passing the corresponding pairs of patches

to the discriminator the resulting outputs are averaged to estimate whether the image is

real or generated.

We used a PatchGAN with fixed kernel size of 4× 4, a fixed stride of 2× 2, and 70× 70

patches as input. During training, horizontal mirroring was applied for data augmentation.

This resulted in approximately 3,000 face images per image set. The training on each

image set has been performed with 2,400 randomly chosen face image pairs. Training

has been conducted separately for each image set with up to 200 epochs each and with

a batch size of 1, as suggested in [Is17]. Each epoch uses the entire training set. One
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data batch passes the neural network 480,000 times. For GANs, it is often difficult to

find the time when training should be stopped. Therefore, we save and evaluate the model

after every 10 epochs, resulting in 20 models for each image set. Subsequently, print-

scan transformations have been performed on 100 randomly chosen face images of the

remaining ones. Note that the number of test images was restricted by the database size as

well as time constraints. Examples of simulated print-scan transformations are depicted in

Fig. 4.

(a) digital (b) printed-scanned (c) generated

Fig. 4: Example images of IS1 (top row) and IS2 (bottom row). Models trained with 180 epochs were

used to generate images in the rightmost column. Best viewed in electronic format (zoomed in).

4 Assessment

Firstly, the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [MMB12] is

used to determine an appropriate number of epochs used during training. BRISQUE calcu-

lates a no-reference image quality score which is sensitive to various distortions, e.g. blur.

Three scores, sd , sp, and sg, are estimated for a digital face image and its printed-scanned

as well as generated counterpart, respectively. For such triples of face images we then es-

timate the distances of scores of digital images to printed-scanned, i.e., |sd − sp|, and to

generated ones, i.e., |sd − sg|. Eventually, the average distance µ is reported. Thereby, we
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measure whether the generated images resemble the effects of a real print-scan transforma-

tion. Note that BRISQUE scores of sd are generally smaller than those of sp or sg. Further,

note that since the generator models a probabilistic function that describes the image mod-

ifications induced by the print-scan transformation, its output cannot perfectly match the

target images. The results are plotted in Fig. 5. In partcular on IS1, higher variations can

be observed for training with less 100 epochs. For the subsequent experiments (including

human assessment) we only consider cGANs which have been trained with 180 or 190

epochs as these configurations yield good results on both image sets.

50 100 150 200
0

5

10

epochs

A
v
er
a
g
e
d
is
ta
n
ce

printed-scanned cGAN

(a) IS1

50 100 150 200
0

5

10

epochs

A
v
er
a
g
e
d
is
ta
n
ce

printed-scanned cGAN

(b) IS2

Fig. 5: Average distance of BRISQUE scores across training epochs on both image sets.

In the second experiment, the effects of printing and scanning on face recognition are

analyzed, in particular sample quality assessment and performance. To this end, the Face-

QNet algorithm [He19] and the ArcFace system [De19] are used for quality estimation

and comparison, respectively. The impact on sample quality is computed using the scores

of FaceQNet and ArcFace in the same manner as for BRISQUE scores before. In the case

of recognition, unconstrained probe face images have been additionally chosen from the

FERET and FRGCv2 face databases. Lastly, the Root-Mean-Square Error (RMSE) be-

tween the digital reference image and the printed-scanned as well as generated image is

estimated for each triple of face images. To do so, image pairs are firstly aligned using the

Scale-Invariant Feature Transform (SIFT)-based Fiji tool [Lo99, Sc12] and the RMSE is

estimated for each color channel. As final score, the average RMSE over all color channels

is calculated. All assessment algorithms process the cropped face regions since these facial

image parts are most relevant. It is important to note that the considered assessment algo-

rithms produce scores in different ranges. Obtained results including average distances µ

and the standard deviations σ for the real printed-scanned images and the cGAN-based

approach trained with different numbers of epochs (ep.) are summarized in Table 2.

Tab. 2: Obtained results for different quality assessment algorithms on both image sets.

Algorithm FaceQNet (×102) ArcFace (×102) BRISQUE RMSE

Image set IS1 IS2 IS1 IS2 IS1 IS2 IS1 IS2

Score µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Printed-scanned 1.01 0.796 0.892 0.634 1.96 1.52 0.524 0.421 5.64 4.1 5.46 3.73 12.4 2.55 21.0 2.75

cGAN (180 ep.) 0.995 0.746 0.946 0.671 2.68 2.12 0.471 0.348 5.1 3.92 4.55 3.57 12.9 2.95 22.4 2.47

cGAN (190 ep.) 1.12 0.78 1.02 0.654 2.87 1.95 0.512 0.382 5.48 3.92 4.52 3.4 12.9 2.97 22.0 2.75

It can be seen that for the considered assessment algorithms, the generated images yield

effects similar to those of the real printed-scanned images. With only a very few outliers,
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e.g., effects on ArcFace scores in IS1, this is true for both used printer-scanner combina-

tions. Note that the proposed approach also resemble image set specific variations which

can be observed from ArcFace and RMSE scores.

In addition to the above evaluation, a human assessment has been conducted in a second

experiment. For this purpose, 35 experts form secunet Security Networks AG were asked

to rate images with one to three stars depending on how closely these resemble real printed

and scanned face images. After an explanatory introduction to the experiment, they were

presented with 20 triples of face images, i.e. a real printed-scanned image, a cGAN-based

generated image, and an image to which a style transfer based on DeepArt3 has been

applied, see Fig. 6. The latter images were created by transforming the digital images pro-

viding their printed-scanned counterpart image as desired style image to the web-based

DeepArt style transfer application. Triples of face images were presented to the partic-

ipants in a randomized order. Obtained results in terms of average rating are shown in

Fig. 7.

Fig. 6: Screenshot of the rating application in the human assessment experiment.

In can be observed that the proposed cGAN-based approach outperforms the DeepArt style

transfer in terms of visual perception. The ratings obtained by the cGAN-based simulation

of print-scan transformations are close to those given for real printed-scanned face images.

5 Conclusions

The aim of this work was to generate cGAN-based images that are virtually indistinguish-

able from real printed and scanned images. In a comprehensive assessment it has been

3 DeepArt: https://deepart.io/
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Fig. 7: Obtained results for the human assessment experiment.

shown that the presented approach is capable of simulating the effects of real printed and

scanned face images for different printer-scanner combinations. That is, our cGAN-based

simulation of print-scan transformations can be used to automatically generate training

data as input for face image manipulation detection systems which is subject to future

work.
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Unit-Selection Based Facial Video Manipulation Detection

Thomas Nielsen1, Ali Khodabakhsh2, Christoph Busch3

Abstract: Advancements in video synthesis technology have caused major concerns over the authen-
ticity of audio-visual content. A video manipulation method that is often overlooked is inter-frame
forgery, in which segments (or units) of an original video are reordered and rejoined while cut-points
are covered with transition effects. Subjective tests have shown the susceptibility of viewers in mis-
taking such content as authentic. In order to support research on the detection of such manipulations,
we introduce a large-scale dataset of 1000 morph-cut videos that were generated by automation of
the popular video editing software Adobe Premiere Pro. Furthermore, we propose a novel differential
detection pipeline and achieve an outstanding frame-level detection accuracy of 95%.

Keywords: Morph-cut, Video Manipulation, Interframe Forgery, Dataset, Video Manipulation De-

tection, Video Authenticity.

1 Introduction

Following the evolution of artificial intelligence and the rapid increase in the computa-

tional capacity of computers in recent decades, many novel video manipulation techniques

have been introduced and became feasible. Despite the original intention of the developers

of these techniques, many of them have the potential of being misused by malicious actors

to spread disinformation for political and financial aims. Following the significant media

attention to this problem after the introduction of Deepfakes, many research groups attempt

to address the vulnerability [Ve20]. However, among video manipulation techniques, vul-

nerability to unit-selection based methods have been overlooked. Unlike Deepfakes and

similar generation methods for which synthesis still requires a significant amount of ex-

pert knowledge and computational capacity, unit-selection based video manipulation can

be flexibly done by commercial software such as Adobe Premiere Pro through their easy

to use graphical user interface. Furthermore, subjective tests have shown unit-selection

based manipulations to be more difficult to detect for humans than intra-frame manipu-

lations [KRB19]. The use of seamless cut-point transitions is commonplace in media for

shortening and summarizing the highlights of videos and they go unnoticed more often

than not4.

Due to the less computational cost and the higher video-realism of unit-selection based

generation methods, these methods have been explored for synthesis early-on for appli-

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Pe-

tersens Plads, Building 324, Kgs. Lyngby, Denmark, s144458@win.dtu.dk
2 Department of Information Security and Communication Technology, Norwegian University of Science and

Technology, Teknologiveien 22, Gjøvik, Norway, ali.khodabakhsh@ntnu.no
3 Department of Information Security and Communication Technology, Norwegian University of Science and

Technology, Teknologiveien 22, Gjøvik, Norway, christoph.busch@ntnu.no
4 https://metro.co.uk/2018/12/13/viewers-baffled-child-appears-teleport-tv-interview-8244024/
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cations like audio-visual synthesis and video dubbing [MV15]. Even though concatena-

tive generation methods require long videos with constrained recording conditions to be

seamless, thanks to searchable public archives of videos, there exists enough footage from

interviews on celebrities and political figures for these methods to be feasible. The first

automatic technique for face-animation was proposed by Bregler et al. in 1997 [BCS97].

They create a database of visemes5 from existing footage and, given an input text, they

retrieve the visemes and concatenate them using morphing to synthesize a new sentence.

More recently, Berthouzoz et al. [BLA12] introduced an editing tool to place visible cuts

and seamless transitions in interview videos based on text transcript, which was further de-

veloped into the morph-cut transition in Adobe Premiere Pro6 as a replacement for B-roll7

and jump-cut transitions8 for video summarization. Mattheyses and Verhelst [MV15] and

Johnston and Elyan [JE19] provide an overview of existing unit-selection based manipu-

lation methods. Among the existing datasets, the biggest that includes inter-frame forgery

is VTD 2016 [ASAS16] which is comprised of 33 videos, 6 of which contain inter-frame

forgery. Johnston and Elyan [JE19] provide a review of existing video tampering datasets.

In the context of facial video manipulation, a substantial amount of research is oriented to-

wards intra-frame facial video manipulation detection [Ve20]. However, there exists a gap

in knowledge with regards to detection of unit-selection based facial video manipulation,

and to the best of our knowledge, there are no dataset and no proposed detection method

that explicitly address this vulnerability. Nonetheless, Among the proposed methods for

the detection of intra-frame manipulations, some utilize inter-frame information for detec-

tion to a limited extent. The authors in [GD18] and [Sa19] exploit the inter-frame depen-

dencies to detect frame-by-frame manipulations via a convolutional long short-term mem-

ory (LSTM) network and a recurrent neural network respectively. Amerini et al. [Am19]

use estimation of the optical flow field as input to a convolutional neural network (CNN)

for the detection of inter-frame inconsistencies.

To reduce the visibility of concatenation points in inter-frame forgery, simple gradual tran-

sitions such as interpolation, warping, and morphing, as well as more advanced methods

such as face-specific warping [Da11] and intermediate frame mining [BLA12] can be used.

Examples of advanced transitions that are already available in video editing software are

Adobe Premiere Pro Morph-cut (Figure 1) and Avid9 Fluid Morph. Despite the core al-

gorithms of these transitions being trade secrets, the name of these transitions implies the

use of morphing in some form. Consequently, single-image face morphing detection algo-

rithms that are developed in the context of biometric presentation attack detection become

relevant for detection. Scherhag et al. [Sc19] provide a recent survey of existing morphing

attack detection methods. Asaad and Jassim [AJ17] used the responses of uniform local bi-

nary pattern (LBP) extractors on the image to build a Vietoris-Rips complex for detection.

5 Visemes denote the shape of the mouth when pronouncing specific phonemes. Visemes and phonemes do not

share a one-to-one correspondence.
6 https://www.adobe.com/products/premiere.html
7 In B-roll transition, a supplemental footage is intercut with the main shot to cover the cuts.
8 In jump-cut transition, the cut is kept as it is, causing an abrupt jump in the resulting footage.
9 https://www.avid.com/
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Wandzik et al. [WKG18] use high-level features of pretrained face recognition networks

as input for a linear SVM classifier.

Reference Frame Target FrameConstructed Frames

Fig. 1: An example of a morph-cut transition.

Another set of relevant detection methods can be adopted from general-purpose inter-

frame forgery detection, namely frame-insertion and frame-deletion detection methods.

Siatara and Mehtre [SM16] provide an overview of the existing inter-frame forgery de-

tection methods. Notably, Chao et al. [CJS12] detect manipulated videos by using the

consistency in the total optical flow values in the X and Y directions. More recently, Bakas

and Naskar [BN18] used 3D convolutional neural networks with a special difference layer

to detect out of place frames in the video sequence.

In this work, we introduce a large-scale dataset of videos containing morph-cut transitions

based on videos collected from the wild.10 To the best of our knowledge, the Morph Cut

dataset is the first of its kind and enables the training of deep learning solutions for the

detection task. Furthermore, we introduce a robust neural detection pipeline, capable of

detecting the morph-cut position at the frame level in a video. The rest of this article is

organized as follows: The dataset and the proposed detector are introduced in Section 2.

The experiment setup is explained in Section 3 and the results are discussed in Section 4.

Finally, the paper is concluded in Section 5.

2 Methodology

Due to the lack of datasets containing a sufficiently large number of unit-selection based

manipulation in the literature, we decided to generate a dataset and provide it publicly to

stimulate further research in inter-frame forgery detection. In this section, we summarize

the construction process of the new Morph Cut dataset along with the description of our

proposed method for detecting the inter-frame forgeries.

2.1 Morph Cut Dataset

The development of deep learning-based detectors requires large-scale datasets. Conse-

quently, as the manual generation of datasets of such scale is impractical, the generation

process needs to be automated. Adobe Premiere Pro is a well-known popular video editing

application that features a seamless morph-cut transition for cut-point concatenation. Fur-

thermore, Adobe Systems provide the scripting language named Extendscript which can

10 The instructions on how to download the Morph Cut dataset are available at http://ali.khodabakhsh.

org/research/morphcut/
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be used for automation of repetitive tasks in video editing. As such, Adobe Premiere Pro

morph-cut transition is the perfect candidate to be used for the generation of the dataset.

To achieve a seamless transition, the frames before and after transition need to be similar

with regards to the background as well as the general body posture.

To ensure the quality of the generated data, we relied on a much larger video dataset

consisting of interview videos as the basis for video selection. Thereafter, based on the

movements of face bounding-box after face detection in the videos and the structural sim-

ilarity of the frames to one another, the videos were ranked and the most suitable videos

were selected for the application of morph-cut. Subsequently, the transition is applied to

the videos at random points during the interview and the resulting manipulated videos

were manually investigated for videos with visible artifacts to be discarded.

2.2 Morph-cut Detection

The unit-selection based video synthesis requires smooth transitions at the cut-points to

cover the abrupt changes between the frame before and after. As such, it is safe to assume

the existence of frame interpolation during the transition in one form or another. During

frame interpolation, the content of the new frame in-between is generated based on the

information available in the frame before and after. In contrast, pristine frames contain a

natural variability that is not completely explainable based on the information in the frame

before and after. Let us consider the frame in the middle to be consisting of two factors,

p for the redundant information that is inferable from the frame before and after, and u

for the unpredictable natural variability. A good frame interpolation would be able to infer

p accurately, however, inference of u is an ill-defined problem. If during the design and

training of a frame interpolation method, no mechanism is considered for ignoring u, the

objective function would force the interpolation method to generate an average u which

minimizes the penalty, yet never occurs in the pristine data. This phenomenon often results

in synthetic samples described as over-smooth.

Considering any two frame interpolation methods with the aforementioned characteristics,

we hypothesize that the predicted intermediate frames would show more similarity to each

other than to the pristine data. The rationale behind this is that the p factor would exist in

both pristine and synthetic frames, yet the u factor would only properly occur in pristine

data while the frame interpolation methods each would generate an over-smooth average u.

Thus it is reasonable for the difference between the natural u and the average u to be greater

than the difference between two average us generated by the two synthesis methods. To

use this behavior for interpolation detection, for each frame, the interpolated parallel can

be generated from the frame before and after with any other good interpolation method

that fits the aforementioned description. Next, the prediction error can be measured as

the difference between the interpolated frame and the observed one. Consequently, this

difference can be used for distinguishing pristine frames from interpolated ones by using a

distance measure. Alternatively, this prediction error image can be fed to a classifier which

specializes in the detection of interpolated frames for better performance.
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3 Experiment Setup

We provide the large-scale Morph Cut dataset for the task of unit-selection based facial

video manipulation detection training and testing on which we empirically verify the de-

tection hypothesis. Furthermore, in our benchmark we perform the detection task with four

applicable detection methods from the literature. The details of the dataset along with the

experiment setup is explained in the following.

3.1 Morph Cut Dataset Details

The VoxCeleb2 [NCZ17] dataset is used as a basis for video selection, which contains

a collection of interview videos from celebrities hosted on the video-sharing platform

YouTube. The videos are ranked based on the face bounding-box movements, and on the

suitable videos, uniform random sampling is applied to select candidate points for morph-

cut. Next, the candidates with high structural similarity index [WB09] are selected and

two morph-cut transitions are automatically added to each video using Extendscript. The

Morph Cut dataset contains 1,000 videos with an average duration of 2.75 seconds. This

dataset adds up to ∼ 83,000 frames with ∼ 27,500 morphed frames and a ratio of 33%

morphed frames to pristine ones. The videos are split three sets corresponding to training,

validation, and the test data according to numbers in Table 1. The video parameters are

summarized in Table 2. The videos are accompanied by frame-level labels corresponding

to whether each frame is morphed or pristine. All reported results are based on frame-level

classification performance between the morphed frames and the pristine ones.

Set Count

Train 700

Dev 150

Test 150

Tab. 1: The number of videos in each set of

the constructed Morph Cut dataset.

Video parameters

MPEG-4 (Base Media / Version 2)

480p (854×480)

30 FPS (Frames-Per-Second)

AVC (NTSC)

Tab. 2: The parameters used to create each

video in the constructed Morph Cut dataset.

3.2 Proposed Detector

For the detector’s reference frame-interpolation method, the pre-trained CyclicGen [Li19]

convolutional neural network is used. For a given pair of frames, this network produces

a high-quality intermediate interpolated frame. Using this network, for each frame in a

video, a corresponding interpolated frame is synthesized based on the frame before and

after, and the prediction error is calculated in terms of a difference image. The resulting

prediction error images on cropped face regions are then converted to gray-scale and fed

to a simple convolutional neural network for frame-level classification. The input to the
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network is augmented with the context prediction error images of two frames before and

after, resulting in an input shape of 64× 64× 5 . The training and evaluation pipeline is

visualized in Figure 2 and the classifier network architecture is summarized in Table 3.

Frame t-1

Frame t

Frame t+1

Prediction for tPretrained
CyclicGen

Classifier Pristine | MorphedPrediction Error
(Grayscale) Prediction Error Stack

(t-2, t-1, t, t+1, t+2)

Fig. 2: The training and evaluation pipeline in the proposed method.

Layer Output Shape Parameters

Conv2D (62, 62, 128) Kernel=(3,3)

MaxPooling2D (31, 31, 128) Pool=(2,2)

Conv2D (29, 29, 128) Kernel=(3,3)

MaxPooling2D (14, 14, 128) Pool=(2,2)

Conv2D (12, 12, 256) Kernel=(3,3)

MaxPooling2D (6, 6, 256) Pool=(2,2)

Conv2D (4, 4, 512) Kernel=(3,3)

MaxPooling2D (2, 2, 512) Pool=(2,2)

Flatten (2048)

Dense (512)

DropOut (512)

Dense (2)

Tab. 3: The network architecture of the classifier. The network contains 1.6M trainable parameters.

3.3 Baseline Methods

For baseline methods to be used in our benchmark, we relied on recently published and

reproducible detection methods for face-morph detection [AJ17], time-aware Deepfake

detection [GD18], inter-frame forgery detection [BN18], and general purpose image clas-

sification [Ch17]. Among the four methods, [GD18] and [BN18] utilize temporal infor-

mation while [AJ17] and [Ch17] rely only on static face images. All methods provide

frame-level decision.

The first method is based on topological data analysis for image tampering detection de-

scribed in the paper of the same name [AJ17]. This method was originally created to detect

morphing attacks on face images by extracting features from the texture of the image itself,

making the method sensitive to image tampering through the degradation of the image. For

this method, we first extract the cropped faces from each frame in the dataset and construct
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a 1-skeleton of the full rips simplicial complex for each face image, which is then fed into

an SVM classifier to attempt and recognize the morphed faces against the pristine ones.

The second method relies on recurrent neural networks for Deepfake detection [GD18].

The cropped face images are used as input to the network and all parameters are kept

the same as described in the paper except we are training with fewer epochs. The third

method relies on 3D convolutional neural networks for the detection of inter-frame forgery

as described in [BN18]. Finally, due to the outstanding performance of the Xception-Net

[Ch17] for Deepfake detection task, the pre-trained network is fine-tuned on the task of

morph-cut detection on individual images.

4 Results and Discussion

Table 4 summarizes the detection accuracy of the proposed method in comparison to the

baseline methods. The proposed method achieves the highest detection accuracy of 95.1%

on the test set, followed surprisingly by the fine-tuned XceptionNet at 77.0%. The other

three baseline methods show limited success in the detection of morph-cut frames. The

detection-error-tradeoff (DET) curve for the top 3 best-performing methods is shown in

Figure 3. In this figure, APCER stands for attack presentation classification error rate

and BPCER stand for bona fide presentation classification error rate, which correspond to

the missed detection and the false alarm rate of a biometric presentation attack detection

system respectively following the ISO/IEC 30107 standard terminology11. The proposed

method achieves an acceptable detection equal-error-rate (EER) of 4.95%.

Method Test Accuracy

Topological Data Analysis [AJ17] 50.2%

Deepfake Video Detection [GD18] 59.0%

Inter-Frame Forgery C3D [BN18] 67.4%

Fine-tuned XceptionNet [Ch17] 77.0%

Proposed Method 95.1%

Tab. 4: The detection accuracy of the proposed method in comparison to the baseline methods. The

results show the frame-level performance.

Examples of the prediction errors which are used as input to the classifier in the proposed

method are visualized in Figure 4. Natural variations are clearly visible in prediction errors

in pristine frames, while these variations are not observed in the morphed (interpolated)

ones. Figure 5 shows the probability density distribution of average prediction error per

frame over pristine and morphed frames. The morphed frame average prediction error

distribution is shifted towards zero compared to the pristine distribution, confirming the

hypothesis proposed in Section 2.2. The clear distinction between the pristine and morphed

frame prediction errors visualized in Figure 4 and 5 show the effectiveness of prediction

error images in isolating useful features for morphed face detection.

11 https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en
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Fig. 3: The DET curve for the frame-level detection performance of the proposed method, the fine-

tuned Xception-Net[Ch17], and the inter-frame forgery detection method[BN18]. The equal-error-

rate (EER) value for the aforementioned methods is shown in the figure legend.

Fig. 4: Example of prediction error images of cropped faces in a six-frame sequence of pristine

frames (top) and morph-cut frames (bottom) in a video. The images visualize the absolute gray

value difference per pixel between the interpolation output and the actual frame.

Fig. 5: The probability density distribution of average prediction error per frame for pristine and

morphed frames across the dataset.
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5 Conclusion

In this article, we addressed the problem of unit-selection based facial video manipulation

by providing the first large-scale dataset of videos manipulated by popular video-editing

software. Furthermore, we proposed a detection method that relies on frame-interpolation

prediction-errors as discriminative features for the detection of morphed frames. The pro-

posed method outperforms the baseline methods by a wide margin. The high frame-level

performance of the proposed method shows its capacity in reliably detecting unit-selection

based video manipulation and confirms the detection hypothesis that synthetic frames

demonstrate higher similarity to each other than to pristine ones.
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Longitudinal study of voice recognition in children

Sandip Purnapatra1 , Priyanka Das2 , Laura Holsopple3 , Stephanie Schuckers4

Abstract: Speaker recognition as a biometric modality is on the rise in the consumer marketplace
for banking, online services, and personal assistant services with a potential for wider application
areas. Most current applications involve adults. One of the biggest challenges in speaker recognition
for children is the change in the voice properties as a child age. This work proposes a baseline
longitudinal dataset from the same 30 children in the age group of 4 to 14 years over a time frame
of 2.5 years and evaluates speaker recognition performance in children with the available speaker
recognition technology.

Keywords: Speaker verification, Children’s voice, MFCC, LFCC, GMM, JFA, ISV, Inter-session
variability.

1 Introduction

Biometric recognition has proliferated in the last two decades with applications in government (bor-
der security, immigration, identity at birth, distribution of benefits, refugee efforts) and consumer
market (e-commerce, banking, healthcare). Biometric recognition based on voice uses unique fea-
tures in the speaker’s voice to ascertain identity [Ma00]. Voice biometrics uses acoustic properties
specific to individual subjects and can be used in situations involving virtual presence over any tele-
phone or internet. Voice biometrics is applied mostly for speaker verification. Speaker verification
can be text-dependent or text-independent. For either, the biometric characteristic contains features
of the voice specific to a person. Voice biometrics for speaker recognition has been used sparsely
since late 1990s. However, in the past decade the application of speaker recognition proliferated
in the consumer market for personal assistant services in mobile devices, online services requiring
authentication like online banking services, call centers and other services.

Most of the prior research involving voices of children are based on physiological changes of voices
with targeted applications like gender recognition, and speech recognition. Speaker recognition per-
formance is still a relatively unexplored research area. One of the few studies in this area shows that
as a child ages, their vocal properties changes, impacting the performance of speaker recognition
[SRJ18]. The paper is described in more detail at the end of this section.

Studies have shown that developmental speech production, especially vocal tract growth, introduces
age-dependent spectral and temporal variability in the speech signal of children. Such variability
evoke challenges for robust automatic recognition of children’s speech [PN03]. However, no re-
search regarding the influence of vocal tract growth for automatic speaker recognition has been
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performed for children’s voices. According to [Ma00], changes in the voice properties in children
add to the basic challenges in voice recognition- background and channel noise; variable and inferior
microphones and telephones; and extreme hoarseness, fatigue, or vocal stress.

Extraction of useful information from speech has been researched actively in the last three decades.
Mel frequency cepstral coefficient (MFCC), which mimics the frequency response of the human ear,
is a well established feature used extensively in most voice/speaker recognition techniques [MBE10].
MFCC filters are designed in accordance to the critical bandwidth frequencies that the human ear
perceives. MFCC uses two types of filter- linearly spaced and logarithmically spaced [NS14]. Linear
frequency cepstral coefficients (LFCC) is another feature extraction technique that uses only linearly
spaced filters. LFCC provides equal details for all frequencies [Re94]. In the higher frequency region
of speech, LFCC uses higher number of filterbank compared to MFCC. Inter to intra class speaker
variability ratio or f-ratio is significantly higher in LFCC than MFCC [LL09].

In the 1990’s many methods like simple template matching, statistical pattern recognition, dynamic
time-warping methods were used for speaker recognition. Hidden markov models (HMM), Gaus-
sian mixture model (GMM), universal back ground model (UBM) and multi-layer perceptron gained
popularity as speaker recognition techniques in the early 2000’s [NS14]. In the last decade, speaker
recognition techniques that are based on different types of factor analysis i.e. joint factor analysis
(JFA), i-vectors, linear discriminant analysis (LDA) and probabilistic linear discriminant analysis
(PLDA) produced improved speaker recognition results [Ka14]. GMM based speaker recognition
techniques are not designed to compensate for the inter-session sound variability of different record-
ings and fails to minimize the the variation in enrollment and probe recordings induced by environ-
mental factors. JFA minimizes these season variability caused by the sound difference of a given
speaker’s different recordings [Ke07a] [Mc10]. JFA is the Gaussian distribution of HMM super-
vectors which are speaker and channel dependent and account a few hidden variables of speaker and
channel factors or high dimensional GMM super-vectors. JFA model assumes the speaker factor in
two different recordings remain same but the channel factor or the recording environment varies from
session to session [Ke05] [Ke07a]. JFA models does not work on the speaker verification on short
utterance recordings (<10 seconds). Rather than modelling the speaker or channel variability space,
intermediate-size vector or i-vector models speaker and channel variability in a low dimensional,
single total-variability space that can map the utterances (short utterances as well) of the speakers
and help convert the speaker recognition problem from a high dimensional to a low dimensional one
[Ka14] [De09]. Inter-session variability (ISV) is another modelling approach similar to JFA which
aims to reduce inter-session variability in GMM speaker model space [VS08] [Ke07b].The main
difference between ISV and JFA is, while ISV modelling assumes that within subject variability is
dominant in the linear domain of the GMM super vector low-dimensional subspace, JFA assumes
that the between-subject variability is contained in the low-dimensional subspace [Wa11]. i-vector
is also designed to mitigate the speaker variability caused by collecting data from different sources.
As i-vectors are computed from the hidden variables of the factor analysis model, it requires huge
amount of training data. However, i-vector does not address channel variability; it needs to be com-
bined with other models such as LDA, probabilistic LDA (PLDA), cosine similarity scoring (CSS),
within-class covariance normalization (WCCN), which divides the total variability space into ses-
sion and speaker variability sub-spaces [De09] [Ka11], to mitigate the discrepancy between channel
noise of different samples. Deep learning (DL) based speaker recognition systems have the capacity
to extract the low-dimensional features and achieve strong speaker recognition performance [Gu20]
[Li20b]. Although the DL models produce an improved speaker recognition performance compared
to classifiers that require hand-crafted features, they are more complex, requires massive amount of
labeled training data, has high computation and storage cost [Li20a].

There has been limited work on speaker verification in children. Safavi et al. [Sa16] [Sa14] [SRJ18]
performed automatic speaker, gender and age group identification of approximately 1100 children
of different age groups using MFCC, delta and delta-square features and GMM-UBM, GMM-SVM,
i-vector-PLDA based models to achieve maximum 99% identification accuracy using only 10 sec-
onds speech recording. However, the dataset details for speaker recognition analysis did not mention
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a multi-session collection. More study is needed where the enrollment and verification happen on
different days and in multiple sessions spaced by considerable time gap, particularly as a child ages.
To the best of our knowledge no report has been published on longitudinal voice biometric record-
ings for speaker recognition in children. Our study is the first work evaluating speaker verification
performance in children with data collected over multi-sessions. In this study, we analyzed longi-
tudinal speaker verification performance in children over a period of 2.5 years with data collected
from six sessions with inter-session gap of six months, in time frames of 6, 12, 18, 24 and 30 months
between enrollment and verification samples, for the age group of 4 to 14 years using the available
technology for adult speaker verification, with approximate recording duration of 90 seconds per
subject per session. We report on the longitudinal robustness of speaker verification in children as
they age. This work contributes to the research domain by-

1. providing a baseline longitudinal dataset for speaker recognition in children to advance research
in this field;

2. evaluating the robustness of established techniques for speaker recognition with child voice data;
3. analyzing the longitudinal speaker verification performance in children.

The rest of the paper is organized in four sections- Section 2 explains data collection protocol,
Section 3 details the experimentation steps, Section 4 highlights the results achieved and Section 5
provides a discussion of the limitations of this study, future scopes and concludes on the feasibility
of the state-of-art techniques of voice recognition in children.

2 Dataset

The dataset consists of data from the same 30 subjects, for over 2.5 years period, collected from
six sessions at an approximated interval of six months from subjects aged between 4 and 11 yrs at
enrollment. Using the first session data as the enrollment, longitudinal performance of the dataset
has been tested for five subsequent time instances at 6, 12, 18,24 and 30 months. Subject count for
each enrollment age between 4 and 11 years are 1, 1, 5, 3, 6, 2, 8 and 4, respectively. The data
used for this study is part of a multi-modal biometric dataset collected from the same children for
research purpose in cooperation with a local school. The research team sets up collection stations at
the school every six months for the collection days using the same equipment. The collection room
may vary based on availability which may impact the data.

Voice data is collected at a sampling rate of 44.1 KHz using a microphone by Audio-Technica with
frequency response 20Hz to 16KHz and bit depth of 16bit and a publicly available software, Audac-
ity. At each session the subjects are prompted by a series of images to speak simple common words
like numbering (1-10), name of animals and common objects known to children and at the end they
are asked to describe a scene displayed to them as an image. The speech duration varies based on the
speaking speed of the subjects including pauses in between words. Only one sample is collected at
each session from each subject of approximate duration of 90 seconds. The protocol and the content
was same in all collections. However, the order of images, and thus the words, may have varied.
This study focuses on text-independent verification and the content and the order are not considered.
Since the data is collected in a school environment, even with our best effort, the collected data have
inconsistent noise ranging from sound of people walking, opening or closing of doors, and people
talking nearby.
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3 Experimentation

3.1 Experimentation Platform: Bob

Bob [An12] [An17] is an open source, reproducible signal processing toolbox. bob.bio.spear is
a speaker recognition package in the Bob platform having supporting tools for speech data pre-
processing, feature extraction, matching and analysis. All experiments with our child voice data has
been performed in this platform.

3.2 Data Pre-processing

The data collected for this experiment is in a real life scenario i.e, the data includes channel noise
from devices and other environmental noise. Practical applications may not include noise free envi-
ronment. Thus, it is important to pre-process the data without losing the voice print and distorting
the features Our pre-processing includes three steps:

1. Band pass filtering between range 125 Hz and 8000 Hz
2. Mean-Variance Normalization
3. Silence Removal by identifying- (a) Short-time Energy and (b) Spectral Centroid

These data pre-processing steps were performed in MATLAB 2019a, prior to our experimentation
in Bob. The Bob experimentation also includes data pre-processing. For our experimentation we
used the inbuilt pre-processing resource- energy thr[ID], which is a thresholded energy based voice
detection function. The default threshold is 15% of the maximum energy of the input signal, which
was used for the secondary pre-processing of our data in the Bob platform. No data was removed due
to quality or noise purpose before experimentation in the Bob platform. However, the pre-processor
used in the bob-platform failed to process eight samples from eight different subjects at random
sessions.

3.3 Feature Extraction and Algorithm

State of art features and algorithms were tested to assess longitudinal speaker recognition perfor-
mance in children over 2.5 years. Two different feature sets- MFCC and LFCC, were tested with
20 and 60 coefficients for both the feature extraction techniques. Three algorithms- GMM, ISV and
JFA, were used to assess performance. Speaker recognition performance from 12 different feature-
algorithm combinations tested for our study are tabulated in Table 1.

4 Results and Analysis

Performance is evaluated in terms of False Accept Rate (FAR), False Reject Rate (FRR) and Equal
Error Rate (EER). Figure 1 - 12 shows the score distributions and Figure 13 - 24 shows the ROCs
for 12 different feature-algorithm combinations for each five longitudinal time instances (6,12,18,24
and 30 months) for the same 30 subjects. Table 1 summarizes the performance at each time instances
for each of 12 combination of feature-algorithm in terms of EER.

With MFCC60 and LFCC60, there is decaying variability in the score distribution with ISV algo-
rithm (refer Fig. 4, 10). ISV was reported in literature to have improved speaker verification perfor-
mance in adults [VS08]. However, we note a drastic degradation in performance with our children
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Tab. 1: Speaker Verification performance

Feature Algorithm EER (%)

6 month

EER (%)

12 month

EER (%)

18 month

EER (%)

24 month

EER (%)

30 month

MFCC 20 GMM 22 26 30 24 42

MFCC 20 ISV 48 46 56 52 54

MFCC 20 JFA 34 38 35 40 43

MFCC 60 GMM 36 38 40 43 42.5

MFCC 60 ISV 36 44 40 46 46

MFCC 60 JFA 43 37 44 46 52

LFCC 20 GMM 26 34 29 40 48

LFCC 20 ISV 48 47 50 59 56

LFCC 20 JFA 43 38 45 44 50

LFCC 60 GMM 38 35 41 45 51

LFCC 60 ISV 48 52 46 52 54

LFCC 60 JFA 44.5 36 42 52 47.5

dataset as reflected in the ROCs (refer Fig. 15, 16, 21, 22). Though the performance improves for 60
feature dimension compared to 20 feature dimension, the performance of ISV is poor compared to
both JFA and GMM (refer 1).

Joint Factor Analysis, which is an extension of ISV, is designed to reduce inter-session variability
for intra-subject data and to reduce the high enrollment requirement. The reduced inter-session vari-
ability is reflected in the score distributions in Figure 5, 6, 11 as well as in the reduced variability
in the performance between longitudinal time instances (6, 12, 18, 24 and 30 months). However, the
overall performance is poor compared to GMM with the same set of features.

MFCC20, MFCC60, LFCC20 and LFCC60 features has high variability across longitudinal time in-
stances (6,12,18,24 and 30) with GMM. There is a distinct decay in genuine match scores with GMM
for MFCC20 and LFCC20 (refer Fig. 1, 7). The score distribution for 60 dimensional features for
MFCC and LFCC show higher variability. However, GMM performs best with all 4 configurations-
MFCC-20, MFCC60, LFCC-20, LFCC-60, compared to ISV and JFA. The best performance is ob-
served for the MFCC20 and GMM combination in terms of FAR and FRR (EER varies from 22% at
6 month time instance to 42% at 30 month time instance) compared to other algorithms and features.
Overall, 20 dimensional feature vector for both MFCC and LFCC perform better compared to 60
dimensional features. Almost all feature-algorithm combination fails to perform at 30 month time
frame with EER ranging between 42% to 56 %.

5 Discussion, Limitation and Future Scope

In the last few years several speaker verification systems has been proposed. However, impact of
increased time between voice enrollment and probe samples on speaker recognition performance are
still an unexplored area, especially in children. This work is an attempt to answer the question- Are
the available voice recognition techniques robust enough to recognize children as they age? For this
purpose, a dataset has been collected from the same 30 children in six sessions over 2.5 years. The
data has been analyzed using state of art features and algorithms that have proved effective for adult
speaker verification.

From our analysis, we conclude that MFCC20 features and GMM algorithm performs best for lon-
gitudinal speaker verification in children. However, the best performance is not on par with the



102 Sandip Purnapatra, Priyanka Das, Laura Holsopple, Stephanie Schuckers

Score distribution for genuine matches as time increases between enrollment and verification

Fig. 1: Feature: MFCC20; Algo: GMM Fig. 2: Feature: MFCC60; Algo: GMM

Fig. 3: Feature: MFCC20; Algo: ISV Fig. 4: Feature: MFCC60; Algo: ISV

Fig. 5: Feature: MFCC20; Algo: JFA Fig. 6: Feature: MFCC60; Algo: JFA

Fig. 7: Feature: LFCC20; Algo: GMM Fig. 8: Feature: LFCC60; Algo: GMM

Fig. 9: Feature: LFCC20; Algo: ISV Fig. 10: Feature: LFCC60; Algo: ISV
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Fig. 11: Feature: LFCC20; Algo: JFA Fig. 12: Feature: LFCC60; Algo: JFA

expected biometric recognition performance. The state of art algorithms (ISV and JFA) designed
to reduce inter session variability and improve recognition performance, do perform well in chil-
dren. However, these are not commercially developed algorithms, which we assume might perform
differently. We note that there is need for improvement of speaker recognition in children with the
development of appropriate features and algorithms.

The data used in the study was collected in a real life scenario with background noise including sound
of people walking by, talking, opening and closing of doors and other miscellaneous noise. However,
not all data for all subjects have noise and the noise level varies between sessions and subjects. No
complete session was deleted due to noise. We removed pauses between utterances to reduce noise
in the data. Most noise frequencies are in the range of human voice frequencies. Thus, even with the
best effort it was not possible to eliminate noise frequencies from the signal without effecting the
voice properties. Thus it is expected to have degraded performance in recognition compared to ideal
voice samples. To the best of our knowledge, no publicly available multi-session voice dataset from
children is available to support research in this field. Pre-trained networks on adult data has proved
inefficient when used in applications involving children for other modalities like face, where high
variability is observed with aging [DNJ18]. However, it can be a work for future to test the viability
of such approach with child speaker verification. State of art algorithms with hand crafted features
do not require a large amount of data for supervised training has proved high efficiency. Cases with
limited amount of data needs robust algorithm pipeline for applications in terms of both features and
algorithm. We recognize that non-availability of dataset is a hindrance to our research community.
We also recognize privacy and sensitivity related to child biometric data. We are in the process of
sharing our dataset through BEAT platform to support research in this field while protecting data
privacy. All algorithms used for analysis are also available through an interface from BEAT to the
Bob platform.

This work initiates research in the field of child voice recognition impacted by aging. For future work
statistical modelling of the variation in voice signature features may help in modelling biometric
aging in child voices. The very basis of biometrics is temporal-stability. Time-invariant voice features
need to be defined for child in order to be useful for biometric applications. Research on robust
feature and classification techniques are required to address speaker recognition with intra-class
variability due to aging in children. Further research in this field is needed to support widespread
application of voice biometrics across all age groups. We conclude that the state of art algorithms for
speaker recognition performance in adults does not reflect similarly in the case of speaker recognition
in children for the age group of 4 to 14 years. There is a need for development of age-independent
features and algorithms for child speaker recognition for longitudinal biometric applications.
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ROCs as time increases between enrollment and verification with different feature sets and

algorithms

Fig. 13: Feature: MFCC20; Algo: GMM Fig. 14: Feature: MFCC60; Algo: GMM

Fig. 15: Feature: MFCC20; Algo: ISV Fig. 16: Feature: MFCC60; Algo: ISV

Fig. 17: Feature: MFCC20; Algo: JFA Fig. 18: Feature: MFCC60; Algo: JFA

Fig. 19: Feature: LFCC20; Algo: GMM Fig. 20: Feature: LFCC60; Algo: GMM

Fig. 21: Feature: LFCC20; Algo: ISV Fig. 22: Feature: LFCC60; Algo: ISV
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Fig. 23: Feature: LFCC20; Algo: JFA Fig. 24: Feature: LFCC60; Algo: JFA
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Eyebrow Deserves Attention: Upper Periocular Biometrics

Hoang (Mark) Nguyen1, Ajita Rattani2, Reza Derakhshani3

Abstract: Ocular biometrics is attracting exceeding attention from research community and indus-
try alike thanks to its accuracy, security, and ease of use in mobile devices, especially in the pres-
ence of occlusions such as masks worn during the COVID-19 pandemic. When considering the
extended periocular region, eyebrows have not been getting enough attention due to their perceived
low uniqueness. In this paper, we evaluate a mobile-friendly deep-learning model for eyebrow-based
user authentication. Specifically, we used a fine-tuned lightCNN model for eyebrow based user au-
thentication with promising results on a particularly challenging dataset and evaluation protocol
(open-set with simulated twins). The methods achieved 0.99 AUC and 4.3% EER in VISOB dataset
and 0.98 AUC and 5.6% EER on SiW datasets using closed-set and open-set analysis, respectively.

Keywords: Ocular biometrics, eyebrow biometrics, biometric recognition.

1 Introduction

Advances in deep learning has brought about remarkable improvement in the accuracy

and robustness of biometric systems [Su14, PVZ15, Ng17]. Biometric systems scan a

trait or modality such as face, finger or ocular region of interest in order to identify the

user requesting physical or digital access. Among ocular modalities, periocular and iris

have received much attention due to their accuracy and added security especially when

used in smartphones [Zh18, RDR19, RD17a]. Despite advances in face recognition, there

are pressing applications calling for ocular biometrics, such as users wearing face masks

for safety reasons due to the recent COVID-19 pandemic. The non-touch nature of oc-

ular biometrics adds to its utility for the aforesaid use case. However, studies have also

revealed challenges related to iris and periocular recognition, including occlusions and

image artifacts due to eyelids and cosmetic contact lenses, glasses, eye movements, and

makeup [Bh10, MRD19, RD17b, RRD20].

Expanding the periocular region, especially towards the upper region, one may consider

eyebrows and their possible utility as a biometric modality. Eyebrows, as a biometric trait,

have not been well studied despite several prior works indicating their potential [Zh18,

MRD19, JXS11]. Eyebrows may be used to supplement other ocular modalities such as

iris in cases when the eye is closed or off-axis (Figure 1). Furthermore, eyebrow recog-

nition can be achieved in RGB using the ubiquitous front-facing (selfie) mobile cameras,
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eschewing the need for dedicated near-infrared cameras and illumination necessary for

iris recognition. Due to its lower uniqueness, eyebrows are usually categorized as a soft-

biometric trait [Da11]. However, thanks to their texture and morphology consistency, at

least for short term mobile use cases, eyebrows maybe used for continuous user authenti-

cation or re-identification [MRD19, JXS11].

Moving from modalities to processing methods, deep learning based methods have brought

about significant improvement in ocular recognition. However, many prior works in [Al18]

use large neural network models, such as VGG-16 [SZ14] and ResNet [He16]. Despite ad-

vancements in mobile hardware technology, especially in inference speed, it is prudent to

use models with smaller computational footprint for lower CPU and battery usage (es-

pecially for high frequency applications), faster real-time operations, and smaller down-

load size. In this work, we employ lightCNN, a light weight convolutional neural network

which uses Max-Feature-Map activation to suppress the feature map output after every

convolutional layer in order to obtain compact (256-dimensional) but yet robust and accu-

rate feature vectors for eyebrow recognition.

Fig. 1: Scenarios where eyebrow maybe preferable over iris for user authentication.

The aim of this work is to demonstrate capabilities of an efficient mobile eyebrow-based

recognition system utilizing a single eyebrow as input for user verification under a chal-

lenging protocol including near identical eyebrows (simulated twins) and open-set evalu-

ation. The three main contributions of this work are:

1. Establishing the utility of eyebrows as a stand-alone biometric for human recogni-

tion using smartphones’ front facing cameras in presence of very challenging sam-

ples.

2. Fast and efficient end-to-end eyebrow based deep learning system including an effi-

cient feature extraction using a light-weight CNN.

3. A thorough evaluation of the aforementioned system using open and closed set pro-

tocols on VISOB [Ra16] and SiW [LJL18] datasets, captured under different light-

ing conditions, along with simulated twins.

2 Prior work

The study by Xu et al. [JXS11] was the first to compare eyebrows to face and ocular recog-

nition over a large dataset. The comparison was performed between face, eye-band, and
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full eyebrow band. The authors evaluated the performance of full eyebrow band which is

approximately 1/6 of the full face area using FRGC database under controlled and uncon-

trolled illumination settings. The study used three variants of Local Binary Patterns (LBP)

for feature extraction followed by Principal Component Analysis (PCA) for dimensional-

ity reduction. The average rank-one identification rate of the eyebrow was 31.7%.

Le et al. [LPS14] proposed an eyebrow segmentation and shape structure matching method.

They used a Local Eyebrow Active Shape Model which locates 64 landmark points on the

eyebrow. The model achieved 99.4% F-measure on NIST Multiple Biometric Grand Chal-

lenge (MBGC) dataset which consists of 200 images from 50 participants. For the identi-

fication task, the authors used two shape descriptors, inter-subject structure dissimilarities

and intra-subject asymmetry dissimilarities, to match subjects’ eyebrows. They reportedly

achieved a rank one identification rate of 85.0% on a small subset and 71.3% on a large

subset of the MBGC dataset.

Mohammad et al. [MRD19] investigated short-term eyebrow recognition in the presence

of eyeglasses using VISOB and FERET dataset. For the short term identification using eye-

brows, the authors proposed the fusion of GIST, histogram of oriented gradients (HOG),

and VGG-16 features. A Support Vector Machine (SVM) classifier was used for matching.

The best reported performance was 0.63% Equal Error Rate (EER) and 0.99 AUC using

the fusion of the aforesaid three feature descriptors of both the eyebrows.

The summary of the state-of-the-art methods is shown in Table 1. It is worth noting that

most of the existing methods used closed-set protocol/ analysis. Closed-set analysis, where

the identities in the training and testing set overlap, usually result in higher accuracy be-

cause the system better adapts to the subject-specific peculiarities in the dataset. On the

contrary, open-set evaluation identities between the training and testing set do not overlap.

To the best of our knowledge, there are no reported studies evaluating eyebrow recognition

in an open-set environment, let alone with an added (simulated) twins-matching scenario.

In order to be more relevant to real world applications at scale, the system needs to per-

form well in an open-set evaluation where identities in the test set are disjoint from those

in the training set. Furthermore, we introduce simulated identical twin samples into our

dataset, where the mirror image of users’ right eyebrows are construed as new identities

and matched against their left eyebrows, making our evaluation protocol even more chal-

lenging.

3 Proposed Method

3.1 Eyebrow Detection

The eyebrow region was segmented using Dlib [Ki09], an open source face landmark

detection library. We used the Dlib version 19.18 that used histogram of oriented gradi-

ents (HOG) along with an ensemble of regression trees to detect 68 facial landmarks such

as mouth and eye corners. We cropped the left and right eyebrow regions based on these
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Tab. 1: Summary of the Prior Work on Eyebrow Recognition.

Ref Method Performance Metrics Dataset Result

[MRD19] GIST, HOG, VGG-16, SVM Verification rate VISOB 99.72%

[JXS11]
LBP, WHT-LBP,

DCT-LBP, DFT-LBP
Rank-1 identification rate FRGC 31.7%

[LPS14] Shape-Based Descriptors Rank-1 identification rate AR 76.0%

MBGC 85.0%

[LLC13] Fast Fourier Transform Verification rate BJUT 98.12%

CFERET 89.22%

[LL07] Hidden Markov Model Verification rate In-house 92.6%

[YXL13] Sparsity Preserving Projection Verification rate In-house 92.5%

Fig. 2: Eyebrow images in SiW dataset: (a) original left eyebrow and (b) mirrored right eyebrow

landmarks. The right eyebrow crop is mirrored horizontally to synthesize a new ”twin”

subject given face’s reflective symmetry, making for a challenging case similar to biomet-

ric identification of identical twins. Besides the landmarks, Dlib also provides a bounding

box around the detected face.

3.2 Feature Extraction

We used lightCNN [WHS15] which has been widely used for face recognition. The general

architecture of lightCNN is shown in Figure 3. The model heavily applies Max-Feature-

Map (MFM) operation (see equation 1) instead of ReLu activation. This acts as feature

filter after each convolution layer. The operation takes two feature maps, eliminates the

element-wise minimum, and returns element-wise maximum. By doing so across feature

channels, only 50% of the information-bearing nodes from each layer reach the next. Con-

sequently, each layer is forced to preserve compact feature maps during training. The gen-

eral architecture is shown in Figure 3. During the training on VISOB dataset, we added a

softmax layer for classification. This layer was then removed and the remaining 256 di-

mensional output in MFM fc1 was used as the feature vector representing the input iden-

tity. Two versions of lightCNN were used in this work: a 9-layer and a 29-layer lightCNN.

The details of the two models can be found in [WHS15]. Thanks to their low dimensional

outputs and small computational footprint for inference, both the models are suitable for

mobile deployments.
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x̂k
i j = max(xk

i j,x
N
i j) (1)

3.3 Matching

Cosine similarity is used extensively in deep-learning based biometric matchers such as

face recognition systems. As such, we used this metric to generate eyebrow match scores

between enrollment-verification feature vector pairs obtained from our lightCNN models.

The function is given below:

dcos(A,B) =
∑

n
i=1 AiBi√

∑
n
i=1 A2

i

√
∑

n
i=1 B2

i

(2)

Fig. 3: Architecture of the lightCNN model used in this study.

4 Experimental Evaluation

4.1 Data and Experimental Protocol

Here we used VISible light mobile Ocular Biometric (VISOB) [Ra16] and Spoofs in the

Wild (SiW) [LJL18] face anti-spoofing database to evaluate our models.

VISOB Database This database consists of eye images of about 550 healthy adults cap-

tured using three different mobile phones in three different lighting conditions. The three

smartphones used in data collection are: OPPO N1, iPhone 5s, and Galaxy Note 4. During

the data collection, the volunteers were asked to take selfie-like images during two visits

(Visit 1 and Visit 2), 2-4 weeks apart. During each visit, images were captured in two

sessions 10-15 minutes apart, and under three illumination conditions: regular office light,

dim indoors, and natural daylight. In this experiment, we only used the images from OPPO

device under office and natural lighting conditions.
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SiW Database SiW consists of up to 8 live and 20 spoof videos from 165 participants

collected at various distances, poses, illuminations, and with different facial expressions.

In our experiment, we only used live videos to harvest frames. We generated more than

100,000 images from live videos by extracting one still frame from every 10 consecutive

video frames. We chose the SiW dataset for our experiment because of two reasons: the

rather large number of participants and the variations in eyebrow resolution. Based on the

size of the detected faces’ bounding boxes as delivered by Dlib, we divided the dataset into

low and high resolution subsets. An eyebrow was deemed as high resolution if the pixel

count in the corresponding face bounding box was larger than 200k, and considered as low

resolution if such pixel count was in the 50k to 80k range.

Enrollment and Verification Data: We arranged for a total of 7 different experiments

with different enrollment and verification data divisions shown in Table 2. To maintain

consistency between comparisons, a single model (trained on VISOB visit 1, session 1,

daylight) was used across all the experiments. In VISOB experiments, identities in the

training set re-appear in testing set, thus it follows a closed-set protocol. However, all

the experiments on the SiW dataset follow an open-set protocol (disjoint training-testing

identities).

Data Processing and Experimental Protocol: During model training, single crop eye-

brow input images were resized to 144×144 then randomly cropped to 128× 128 to fit

the model input size while presenting translation variations (data augmentation). For im-

age matching in validation and testing, we resized the image to 128× 128. We trained the

models with the initial learning rate of 1e-3 for a maximum of 200 epochs and used the

weights from the epoch that yielded the best validation loss (early stopping). The momen-

tum and weight decay parameters were set to 0.9 and 10e-4, respectively.

Tab. 2: List of Experiments Conducted for Eyebrow Recognition Across Lighting, Image resolution

and Time Lapse.

Dataset Experiments Enrollment Verification

VISOB Short term (Visit 1) (a) Daylight, Session 1 Daylight, Session 2

Short term (Visit 2) (b) Daylight, Session 1 Daylight, Session 2

Long term (c) Daylight, Session 1, Visit 1 Daylight, Session 2, Visit 2

Different illumination (d) Daylight, Session 1, Visit 1 Office, Session 2, Visit 1

SiW High vs. high (e) High resolution High resolution SiW

Low vs low (f) Low resolution Low resolution SiW

Low vs. high (g) Low resolution High resolution SiW

4.2 Experimental Protocol

In this study, we reflected the right eyebrow image across face’s longitudinal median to

double the number of identities in a way that makes the comparisons quite difficult. Given
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face’s reflective symmetry in the sagittal plane, such augmented dataset is similar to that

of identical twins, a challenging case for face and eyebrow matching. Figure 2 shows

examples of (a) left eyebrow images, (b) mirrored right eyebrow image processed using

Dlib [Ki09]. Table 2 list the details of all the seven experiments conducted in this study. As

mentioned earlier, we only used VISOB data collected in session 1 of visit 1 under natural

light to train our model with 80% set for training and the remaining 20% for validation.

We evaluated the trained models in various experiments. We used Equal Error Rate (EER)

and Area Under the Curve (AUC) from ROC analysis to report classifier performance for

each of the experiment in Table 2. The letter next to each experiment in table 2 indicates

the corresponding ROC curve in the figure 4.

Fig. 4: ROC curves of our study’s 7 experiments using (1) 9-layer and (2) 29-layer lightCNN. (a):

short term verification (VISOB visit 1), (b): short term verification (VISOB visit 2), (c): long term

verification, (d): different illumination, (e): high resolution vs high resolution, (f): low resolution vs

low resolution, (g): low resolution vs high resolution. See Table 2 for details.

4.3 Results and Discussions

Fig 4 shows the ROC curves of the seven experiments we conducted using the 9 and

29 layer lightCNNs. As expected, both models yielded their best results on short term

verification (VISOB dataset). The performance for long term verification is the worst,

indicating that eyebrow is not biometrically stable over time. Cosmetic manipulation of

eyebrows may also have played a role in the performance degradation. During our three

experiments using SiW dataset, the low resolution versus low resolution outperformed

the other two configurations. This might be due to SiW motion blur issues that are better

masked in the lower resolutions.

Table 3 shows the resulting EERs [%] and AUCs (in [0,1] range). The 29-layer lightCNN

yielded better results compared the 9-layer version in all the 7 experiments, meaning that

the former extracted more discriminative features. Best results came from VISOB’s short

term verification test with the 29-layer lightCNN (EER, 4.3%, AUC, 0.990). The same net-

work provided a 13.2% EER for VISOB long-term comparison. The 29-layer lightCNN

also achieved a better EER when enrollment and verification images came from different

lighting conditions (7.9% compared to 11.4% for the 9-layer model). The best open-set re-
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Tab. 3: EERs and AUCs of all the Experiments in Table 2 using 9 and a 29-layer lightCNN models.

Model LightCNN 9 LightCNN 29

Dataset Experiment EER(%) AUC EER(%) AUC

VISOB (Closed Set) Short term (visit 1) 5.2 0.987 4.3 0.990

Short term (visit 2) 7.4 0.967 6.8 0.970

Long term 15.1 0.922 13.2 0.934

Different illumination 11.4 0.950 7.9 0.971

SiW (Open Set) High vs high resolution 9.7 0.963 8.0 0.973

Low vs low resolution 7.0 0.980 5.6 0.986

Low vs high resolution 10.3 0.960 8.2 0.973

sults (SiW dataset) show a 5.6% EER and a 0.986 AUC. Considering the especially chal-

lenging nature of our simulated identical twins data augmentation, these numbers show

promise for eyebrows as a biometric.

One important finding from the aforementioned seven experiments is the consistency of the

results across different dataset. As expected, motion blur, long term comparisons, and open

set protocol did have detrimental effects on the accuracy but to a limited and reasonable

extent; showing the robustness of the studied modality and matching methods.

5 Conclusion and Future Work

In this paper, we demonstrate the viability of an eyebrow recognition system that employs

a light-weight deep learning model and operates on selfie-like captures. We do so using

a challenging data augmentation pipeline akin to comparing identical twins, and extend

our experiments to long term, open set protocols to show the resiliency of the proposed

modality and matching method. Such non-touch ocular methods are especially important

during challenging times such as the recent COVID-19 pandemic that has rendered ubiq-

uitous face recognition systems into a hassle for large swaths of users wearing protective

face masks. Eyebrows do deserve our attention. As a part of the future work, we would

like to evaluate our pipeline with different datasets using different deep learning models

in fully open-set environment. Further, eyebrow recognition will be compared with other

periocular regions such as iris. Lastly, an adaptive system will be proposed to fuse eyebrow

with other intra-ocular regions to further enhance the performance.
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End-to-end Off-angle Iris Recognition Using CNN Based

Iris Segmentation

Ehsaneddin Jalilian1, Mahmut Karakaya2, Andreas Uhl3

Abstract: While deep learning techniques are increasingly becoming a tool of choice for iris seg-
mentation, yet there is no comprehensive recognition framework dedicated for off-angle iris recogni-
tion using such modules. In this work, we investigate the effect of different gaze-angles on the CNN
based off-angle iris segmentations, and their recognition performance, introducing an improvement
scheme to compensate for some segmentation degradations caused by the off-angle distortions. Also,
we propose an off-angle parameterization algorithm to re-project the off-angle images back to frontal
view. Taking benefit of these, we further investigate if: (i) improving the segmentation outputs and/or
correcting the iris images before or after the segmentation, can compensate for off-angle distortions,
or (ii) the generalization capability of the network can be improved, by training it on iris images of
different gaze-angles. In each experimental step, segmentation accuracy and the recognition perfor-
mance are evaluated, and the results are analyzed and compared.

Keywords: Off-angle iris segmentation, Off-angle iris recognition, Iris parameterization, Convolu-

tional neural network, CNN.

1 Introduction

Iris recognition is known to be one of the most accurate biometric recognition techniques,

widely adopted for many security needs in recent years. Accuracy of these systems, how-

ever, relies highly on the accurate segmentation of the iris texture in the captured eye

images. Ever since the first iris recognition system proposed by John Daugman [Da09],

a wide variety of techniques has been proposed to perform segmentation in eye images

captured typically in a frontal view, under a controlled or constrained environment. In

practice however, many of the users or operators of these systems are inexperienced and

often capture images where the subjects are looking in the wrong direction due to inad-

vertent eye movement. Also, the emerging standoff iris biometric systems and the recent

trend towards ”on-the-move-acquisition” are transforming iris biometric systems from be-

ing operated in well-controlled setup, to being smart standoff modalities. The iris images

captured under such conditions are more likely to be off-angle, and incorporate additional

off-angle related distortions.
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Segmentation tasks in such images become quite challenging as the iris boundaries are

dilated, of elliptical shape, or even missing in the extreme off-angle images. Most classi-

cal segmentation approaches which are mainly based on the integro-differential, circular

Hough Transform, and edge detection techniques, which rely on visibility of clear iris

contours, fail to perform segmentation in such images. Consequently, also most feature

comparison algorithms operating under the assumption that the iris texture lies on a flat

frontal plane and possesses a circular geometric property, fail to perform the comparison

task properly as well [ZA10]. Addressing such challenges, off-angle iris recognition has

became a hot research topic within the biometrics community recently.

With recent advancement in deep learning techniques, some convolutional neural net-

works (CNN) were proposed for the challenging task of iris segmentation (e.g. [Ar18]

[JU17]). While the proposed models proved to preform superior to the classical segmen-

tation methods, yet the scarce researches dedicated to parameterization and normalization

of obtained iris segmentations are just limited to frontal iris images, and no comprehen-

sive recognition framework has been introduced for off-angle iris recognition using such

modules. Jalilian et al. [JUK19] studied the effect of off-angle distortions on the segmen-

tation performance of CNNs. We extend this study by specifically investigating the effect

of different gaze-angles on the subsequent recognition performance. First, as a distinction

to the segmentation studies in [JUK19], here we introduce a segmentation improvement

scheme to compensate for some degradations in the segmentation masks, caused by the

off-angle distortions. In this framework, we propose an off-angle parameterization method

to determine the extent of off-angle-ness and to geometrically re-project the segmentations

and their corresponding off-angle iris images back to frontal view. We further define sev-

eral variants of end-to-end recognition pipelines to enable the usage of the CNN based

segmentations for the final task of recognition. In the first approach, termed ”improved-

homogeneous”, we train a dedicated CNN with homogeneous iris images of each dis-

tinct gaze-angle, and then carry out segmentation in iris images with certain gaze-angles.

The segmentation outputs then are improved, and both the segmentation and recognition

performance are evaluated afterwards. In the second approach, denoted as ”improved-

heterogeneous”, we propose a heterogeneous-angle training, in which a network trained

with iris images exhibiting different gaze-angles, is applied to iris images with any gaze-

angle. Here we target to improve the generalization capability of the networks used in the

improved-homogeneous approach, in a way that we can obtain hopefully better results

than we obtained using the angle-specific training configuration. In the third approach we

utilize our off-angle parameterization method (as explained in Section 3) to geometrically

re-project the corresponding off-angle iris images back to frontal view before applying un-

wrapping and normalization. We denote this approach as ”corrected-homogeneous.” Do-

ing so, we hope to correct the off-angle iris texture, compensating for the degradations

imposed by the off-angle distortions, and thus enhance the biometric data encoded into

it. And finally, by analogy to the corrected-homogeneous approach, we considered the

”corrected-heterogeneous” approach, in which we investigate the effect of the correction

mechanism on the recognition performance using a heterogeneous training configuration.
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Figure 1: Recognition pipeline and the correction module

2 Related Work

Several different techniques have been proposed to address the off-angle iris segmenta-

tion and recognition problem. For example Daugman proposed to detect inner and outer

off-angle iris boundaries using an active contour method, based on the discrete Fourier se-

ries expansion of the contour data [Da06]. Shah and Ross combined snakes segmentation

with geometric active contours [SR09]. Zuo et al. [ZS09] used intensity, shape, and lo-

calization features from the iris and pupil to automatically segment non-ideal iris images.

Their method demonstrated performance improvement on challenging iris images up to

30◦. Price et al. [R-07] developed a generalized eye model to correct for perspective and

refractive distortion of the iris pattern using ray tracing techniques. They reported a median

reduction of Hamming Distance for synthetic eyes with gaze up to 60◦. Recent advances in

deep learning techniques enabled the application of deep neural networks for iris segmen-

tation. For example Liu et al. [Li16b] proposed two iris segmentation techniques based on

different topologies of CNNs (hierarchical convolutional neural networks and multi-scale

fully convolutional networks). The method presented by Arsalan et al. [Ar17] roughly es-

timates the iris region using an edge detection algorithm and then classifies the pixels in

two classes (iris and non-iris) by using a CNN. The study presented in [JU17] utilized a

fully convolutional encoder-decoder network trained for classifying iris and non-iris pixels

in images acquired in a wide set of heterogeneous conditions, including off-angle images.

The work presented in [Ar18] proposed a deep network called IrisDenseNet, which is

based on VGG-16, to deal with low quality iris images, such as side views, glasses, off-

angle eye images and rotated eyes. There are far more approaches dedicated for eff-angle

iris segmentation/recognition. Yet due to the space limitation, we narrowed our review to

the methods presented above. To review further approaches please refer to e.g. [S-16].

3 Off-angle Iris Parameterization and Segmentation Improvement

Off-angle iris parameterization: The available algorithms used for parameterization of

the iris region in the CNN based segmentation are limited to the frontal segmentation

outputs, where circular Hough transform is used to parameterize the iris region. The main

obstacle to apply an elliptic parameterization (as the iris shape looks in the off-angle view)
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is the tendency of such models to overly oblong or obround, due to occlusion of the iris

by eyelids or eyelashes. To resolve this issue, we propose to search only for the vertical

edges in the segmentation outputs. The resulting edge points secure the proper fitting of an

ellipse to the actual iris region (see Figure 1 for an example). In the next step, we extract

the horizontal and vertical axes information of the ellipse, and use them for re-projecting

(correcting) the segmentation outputs and their corresponding off-angle iris images back

to frontal view as follows. Assuming that our ellipse is in the following parametric form:

x = x0 +Q×

[
a× cos(θ)

b× sin(θ)

]
, (1)

where x and x0 are 2-dimensional vectors, and a > b > 0 correspond to the horizontal

and vertical axes of the ellipse, respectively. Q is the rotation matrix, and θ represent the

rotation angle. We assume a vertical ellipse, Thus:

Q =

[
cos(90) −sin(90)

sin(90) cos(90)

]
. (2)

We want our transformation to produce y in the shifted, rotated coordinates:

y =

[
1 0

0 a/b

][
a× cos(θ)

b× sin(θ)

]
, (3)

and x in the original coordinates. Submitting to the equation (1), we can infer the affine

transformation matrix we need to re-project the parameterized ellipse back to frontal view,

so that it possess circular shape:

x =

[
Q

[
1 0

0 a/b

]
Q′

]
x+

[[
1 0

0 1

]
−Q

[
1 0

0 a/b

]
Q′

]
x0. (4)

Segmentation Improvement: We improved the segmentation outputs by applying some

morphological operations. It was already understood that the network tends to produce

some false-positive detection, in specific, along the segmentation output masks borders

[JUK19]. So, we first defined a marginal area (A) along each border of the segmentation

output masks (with a width (in pixel) equal to 1/5 of the length of the same border), and

then performed an opening operation with a big (disk-shape) structuring element (B):

A◦B = (A�B)⊕B, (5)
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Figure 2: Sample iris image with P0 gaze-angle and its corresponding segmentation (green-

color) and error mask (red-color) before (middle), and after correction (right), using the

network trained on P0 images

where � and ⊕ denote erosion and dilation, respectively. We further performed another

opening operation on the whole segmentation outputs using a small (disk-shape) struc-

turing element to remove small false-positive detections outside the iris region. Figure 2

shows a sample segmentation output and its corresponding improved segmentation mask.

4 Experimental Framework

Dataset: For our experiments we used a subset (containing 4400 left eye iris images

captured from 40 subjects) of an off-angle iris database [Ka13]. The iris images in this

database are captured by two near-infrared sensitive IDS-UI-3240ML-NIR cameras. Im-

ages at 0◦gaze-angle were captured by a frontal fixed camera, and off-angle images were

captured by a frontal moving camera rotating horizontally from -50◦(N50) to +50◦(P50) in

angle with a 10◦step-size. Each camera captured 10 iris images per stop, giving 10 frontal

and 100 off-angle iris images captured from each subject, to comprise 400 images per

angle (examples of images in the database are presented in Figure 3). The database is ac-

cessible on request (from the authors), and further details about it can be found in [Ka13].

We developed the ground-truth labels (required for training the network) for all images

available in the dataset using the iris, pupil, upper and lower eyelid parameters specified

manually. For our experiments we divided the whole dataset into two equal parts (each

containing iris images of 20 separate subjects), and used one part as our testing data and

the other one as our training data.

Fully convolution neural network (FCN): We selected the RefineNet [Li16a] to perform

the iris segmentations in our experiments. The network is already proven to enable high-

resolution prediction, and at the same time, preserve the boundary information (which is

needed for our parameterization mechanism). The network is a multi-resolution refine-

ment network, which employs a 4-cascaded architecture with 4 Refining units, each of

which directly connects to the output of one Residual net [He15] block, as well as to the

preceding Refining block in the cascade. Each Refining unit consists of two residual con-

volution units (RCU), which include two alternative ReLU and 3×3 convolutional layers.

The output of the RCU units are processed by 3× 3 convolution and up-sampling layers

incorporated in multi-resolution fusion blocks. A chain of multiple pooling blocks, each

consisting a 5× 5 max-pooling layer and a 3× 3 convolution layer, next operate on the

feature maps, so that one pooling block takes the output of the previous pooling block as

input. Therefore, the current pooling block is able to re-use the result from the previous
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Figure 3: Sample iris images with P0 (left), N50 (middle), and P50 (right) gaze-angles

pooling operation and thus access the features from a large region without using a large

pooling window. Finally, the outputs of all pooling blocks are fused together with the input

feature maps through summation of residual connections. We used ADAM optimizer with

learning rate of 0.0001, executing 40,000 iteration to train the network. The implementa-

tion of the network was realized in Keras using TensorFlow back-end.

Recognition Pipeline: The output segmentations (after applying correction or improve-

ment), are parameterized using the technique introduced in [HJU19]. The extracted iris

patterns are normalized by unwrapping the circular region into a rectangular block of con-

stant dimensions. The algorithm repeats the last pixel for a given angle if no values are

available. Each isolated iris pattern is then demodulated to extract its phase information

(feature) using quadrature 1-D Gabor wavelets. To compare the unique extracted features

to each other, the Hamming distance with rotation correction were calculated in the com-

parison phase. We used the University of Salzburg implementation of these algorithms, as

provided in the Iris Toolkit (USIT)3. Figure 1 illustrates the overall recognition pipeline,

along with the proposed parameterization and correction module.

Segmentation Evaluation and Measures: In order to facilitate proper quantification of

the accuracy of the segmentations in each experiment, we considered the nice1 iris seg-

mentation error rate, which is based on the NICE1 protocol4, as used in several iris seg-

mentation challenges. Accordingly, the segmentation error rate (nice1) for each segmenta-

tion output mask Ii is given by the proportion of corresponding disagreeing pixels (through

the logical exclusive-or operator) with the ground-truth mask, over all the output mask as:

nice1 =
1

c× r
∑
c
′

∑
r
′

O(c
′

,r
′

)⊗C(c
′

,r
′

), (6)

where c and r are the dimensions of the segmentation, and O(c′,r′) and C(c′,r′) are, re-

spectively, pixels of the segmentation and the ground-truth mask. The value of (nice1) is

in the [0, 1] interval, and 1 and 0 are the worst and the best scores, respectively.

3 http://www.wavelab.at/sources/USIT
4 http://nice1.di.ubi.pt/
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Figure 4: Segmentation performance using the improved-homogeneous approach

5 Experiments and Analysis

We initiated our experiments by investigating the effect of different gaze-angles on the

CNN based off-angle iris segmentations, after the improvement, as well as evaluating their

subsequent recognition performance (under the improved-homogeneous approach). To fo-

cus our experiments on this objective, we considered an ideal (but unrealistic) condition,

in which the true images’ gaze-angles are already known. ”Theoretically,” one may use

the horizontal and vertical axes information to estimate the images gaze-angles (D) using:

D = acosinus(HorizontalAxis/VertcialAxis). So, we trained a dedicated network with iris

images belonging to each distinct gaze-angle separately, and then performed segmentation

in all our testing data, and improved the segmenation outputs as already described in Sec-

tion 3. Figure 4 shows the results, as average nice1 error for this experiment. Affirming

to what we found using the identical training scheme (Homogeneous) and network (Re-

fineNet) already in [JUK19], we can see the direct relation of the network performance to

the similarity of gaze-angles of the training and testing images, here after the morphologi-

cal improvement too. Yet the key new finding is that, the performance gradually improves

as the gaze-angles of the training and testing data converge in terms of angle but may also

diverge in terms of the direction. To be more precise, the network is able to detect the

symmetric iris elliptical features in the images captured from the same angle (with respect

to frontal view), but in opposite direction. The applied improvement, which in fact com-

pensated for some false-positive detections (caused by the off-angle distortions), allowed

us to figure out this capability of the network. Overall, the applied improvement resulted

in considerable enhancements in almost all segmentation results (especially for the right

off-angle (P) images), compared to the segmentation results obtained in [JUK19], as the

average error decreased (about 47%) from 0.030 to 0.016.
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Figure 5: Recognition performance using the improved-homogeneous approach

In the next step, we fed the improved segmentations along with their corresponding im-

ages to the recognition pipeline to investigate the recognition performance in terms of

EER. Figure 5 shows the results for this experiment. Expectedly, we can observe that the

segmentation results are translated into the recognition scores, following the same trends

already discussed in the segmentation experiments. The only visible difference here is

the lower recognition performance of the extreme gaze-angle images (i.e. N50 and spe-

cially P50). This seems mainly to be due to the extreme 3D and perspective erosion of

the extracted iris texture, which leads to the lower recognition performance on these im-

ages. In the improved-heterogeneous approach, we considered to investigate if we can

improve the generalizability of the network by switching to a heterogeneous training set-

ting, where we include iris images with different gaze-angles into the training data. We

tested the trained network in all iris images in our testing data, applied the improvement,

and evaluated performance afterward, differentiating and grouping results into the differ-

ent gaze-angles available. While the heterogeneous configuration was expected to deliver

good results (compared to the angle-specific training configuration), based on the find-

ings in [JUK19], here we (i) evaluated the extent to which the improvement applied can

enhance the segmentation performance, and (ii) verified if the improved segmentations

can eventually improve the recognition performance, beyond the improved angle-specific

training configuration. Figure 6 demonstrates the segmentation results for this experiment

in the form of Boxplot for each gaze-angle group (after the improvement). As the re-

sults show, applying the improvement, we obtained a considerable enhancement in almost

all segmentation results (especially for the right off-angle (P) images), compared to the

angle-specific improved-homogeneous results already obtained, as well as those obtained

in the identical heterogeneous configuration without improvement in [JUK19], as the av-

erage segmentation error decreased (about 4.5 times) from 0.023 to 0.005. Figure 7 shows
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Figure 6: Segmentation performance using the improved-heterogeneous approach

the subsequent recognition results obtained using the corresponding images. Excluding

a slight declination in the recognition results of N40 gaze-angle images, all other results

show considerable improvements, compared to the angle-specific configuration results (the

improved-homogeneous) shown in Figure 5. Of course, this is a positive result, as it en-

ables us to refrain from the angle-specific training strategy, and even better, there is no

need to determine the iris images gaze-angles or carry out the correction.

In the corrected-homogeneous approach, we target to address if re-projecting the off-angle

iris images back to frontal view and correcting the off-angle iris texture can compensate for

the degradations imposed by the off-angle distortions, and eventually improve the system

recognition performance. To address this, we first applied our parameterization algorithm

(already explained in Section 3) to the improved segmentation outputs obtained in the

previous step, and subsequently re-projected them along with their corresponding iris im-

ages back to frontal view. The corrected data then was fed into the recognition pipeline to

evaluate the recognition performance. Figure 8 shows the recognition results for this ex-

periment. When comparing the results to those obtained using the improved-homogeneous

approach, we can only observe slight improvements in the results of configurations where

the training and testing data are close to frontal (i.e. P0, P10, P20, ...) view, as well as

the extreme gaze-angles (i.e. , P50 and N50), where the gaze-angles of the training and

teasing data are the same. For the rest of configurations, the results gradually degrade as

we move towards the right and, in specific, the left sides of the table (compared to the

Figure 7: Recognition performance using the improved-heterogeneous approach
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Figure 8: Recognition performance using the corrected-homogeneous approach

corresponding results, obtained using the improved-homogeneous approach, presented in

the table in Figure 5. We can infer two degradation factors analyzing these results. First,

the interpolation applied during the correction procedure starts to agonize the biometric

features encoded in the iris texture, as the images’ gaze-angle get far from frontal view,

and the amount of the interpolation applied increases. Second, possible imperfections of

the correction algorithm, may result in some differences in iris images belonging to each

distinct subject, which eventually lead to degradation of genuine scores and subsequent

recognition performance of the system. The pattern and scale of the changes in the results

are a function of influence of these two factors.

We further considered the corrected-heterogeneous approach, in which we investigated

if correcting the off-angle iris texture can compensate for the degradations imposed by

the off-angle distortions, and thus improve the recognition performance, within a hetero-

geneous training configuration. So here, after training the network on iris images with

different gaze-angles, and testing it on the images of each gaze-angle separately, the seg-

mentation outputs were morphologically improved, parameterized and re-projected back

to frontal view, and the recognition performance was evaluated subsequently. Figure 9

demonstrates the results for this experiment per gaze-angle. As it can be seen in the figure,

the performance pattern is similar to what we found already in the corrected-homogeneous

Figure 9: Recognition performance using the corrected-heterogeneous approach
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approach. To be more precise, while we can see considerable improvements in the over-

all recognition results (compared to the corresponding results obtained using the angle-

specific corrected-homogeneous approach) due to the supremacy of the heterogeneous

configuration used, yet the same performance degradations (i.e. in the results of N40, N30,

P30 gaze-angles) and enhancements (i.e. in the results of N50, P0, P10, P50 gaze-angles),

as observed in the corrected-homogeneous approach, are visible here too.

6 Conclusion

The morphological improvement technique proved to compensate for some off-angle re-

lated segmentation degradations, enhancing the segmentation and the recognition results

beyond those obtained in [JUK19], in identical configurations. The experiments carried out

under the improved-homogeneous approach showed that the network performance gradu-

ally improves as the gaze-angle of the training and testing data converges in terms of angle

but diverges in terms of direction. This showed the capability of the network to detect the

symmetric iris contents in the images captured from the same angle, but in the opposite

direction, which was figured out as the result of the segmentation improvement done. The

experimental results of the viewing angle correction based approaches showed that the

interpolation applied during the correction procedure and the possible imperfections of

the correction algorithm, can dominantly influence the distinction of the iris images and

thus undermine their subsequent recognition performance. This leads us to the conclusion

that: Unless applying it to iris images with closed-to-frontal gaze-angles (i.e. up to 20◦),

and performing perfect (error free) correction, this angle correction based approaches are

not expected to deliver promising recognition results (specially on the +20◦off-angle im-

ages), when applied on the CNN based off-angle segmentations. While the heterogeneous

training approaches were already expected to deliver good results (compared to the angle-

specific homogeneous training configurations), based on the findings in [JUK19], yet our

experiments actually showed that the applied segmentation improvement enhances the seg-

mentation results, beyond those obtained using the same configuration (heterogeneous) in

[JUK19], as well as improving the recognition results beyond the angle-specific training

configuration results. In practice, this was very positive result, as it enabled us to refrain

from the angle-specific training strategy, and even from the need for correcting the images’

gaze-angles before being able to deploy the recognition systems.
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Iris Recognition in Postmortem Enucleated Eyes

Sashi K. Saripalle 1, Adam McLaughlin2, Reza Derakhshani3

Abstract: This paper presents a comprehensive multispectral study of iris recognition on post-
mortem enucleated eyes over a period of three days. An off the shelf iris recognition methodology is
employed to analyze the biometric capability of iris in the post mortem setting. We observed that iris
patterns of enucleated eyes can provide biometric matches with no false accepts for up to 164 hours
after death, albeit with high false rejection rates. We also present our observations on the effects
of the environment and other confounding factors that may affect the performance of postmortem
iris recognition, with recommendations for rehydration of specimen to regain postmortem biometric
utility.

Keywords: Postmortem biometrics, iris recognition, biometrics, forensics.

1 Introduction

Human iris patterns are arguably among the best biometric modalities for personal iden-

tification due to their unique and stable textures. It has been observed that the match-

ing probability of two different irides is about one in seven billion [JD01]. However,

when it comes to postmortem settings, the functionality of iris as a biometric requires

further investigations. Previous work from Warsaw University details several aspects of

postmortem iris recognition, confirming that modern iris recognition systems can indeed

match postmortem iris samples [MAP18, MAP16a, MAP16b]. However, many aspects

of postmortem iris biometrics, especially with off the shelf iris recognition systems under

different environmental and other external factors is not widely studied. In this work we re-

visit this challenging area of biometrics by collecting a new postmortem dataset to provide

further information on the functionality of traditional iris biometric systems when applied

to enucleated human eyes, and the effect of external environment factors on postmortem

iris recognition.

To achieve these goals, we started our study by collecting a new dataset by capturing post-

mortem enucleated human eyes using a multispectral visible-IR camera and illuminator

over a period of 96 hours. The choice of multispectral imaging was due to the reported

postmortem iris color changes noted in pigs [EMD08]. Although not well-studied in hu-

mans, we noted the possibility of iris color changes in postmortem human iris. The second

reason for multispectral imaging was to test the hypothesis that there could be faint black-

body afterglow signature pursuant to an infrared flash. This hypothesis was based on blood

1 Computational Intelligence and Bio-Identification Technologies Lab, University of Missouri at Kansas City,

ssqnf@mail.umkc.edu
2 School of Medicine , University of Missouri – Kansas City, adammclaughlin81@gmail.com
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spotting technique using lock-in amplifier for detection of black-body radiation of blood

proteins similar to the method developed by Morgan [SM11]. However, we were not able

to observe any changes immediately after infrared flash on iris tissue within the limitations

of our experimental setup, and thus we won’t be expanding upon it during this paper.

2 Data Collection

2.1 Hardware

The main study camera was a MS4100 multispectral unit (Optech Intl.) with multiple

band-passed CCDs. The distance between the specimen and lens of the camera was 0.22

meters. We also built a custom multi-spectral ring light along its control unit to match our

camera’s centre multi-spectral frequencies. The light control unit also triggered camera’s

shutter based on a predefined sequence.

2.2 Capture Process

We obtained the study’s enucleated human eyes from a local eye bank in temperature-

controlled boxes stabilized at 2 degree Celsius. The eyes were then transported to a medical

facility where they were stored under the supervision of an ophthalmologist. From twenty-

seven acquired specimen, a total of eleven specimen were used for this study. Sixteen of

the specimens were rejected due to either perforated iris tissue or punctured eyes balls

at the start of study (figure 1). An ophthalmologist inspected the specimen to make sure

the structure of eyeball and iris tissue were intact before the study was initiated on the

specimen. The average time from death to procurement of eyes was around 7.5 hours,

with the minimum of and maximum time lapses being 3.5 and 24 hours, respectively. The

average time of procurement to study was six days. The average age of donor was 72 years.

Analysis of our specimen was done in two parts: short-term and long-term. A total of 214

samples were used for short term analysis, and a total of 718 samples were used for long

term analysis. The eye colors of the specimen were either light brown, blue, green, gray,

or dark brown. Further experimental setup details can be found in section V.

We also captured data from fifty live control subjects over two sessions at UMKC under

the auspices of an Institutional Review Board approved protocol. These sessions were at

least one week apart, and multiple captures were acquired for each session with a time

delay of at least 15 minutes between captures. The iris scores from control subjects were

used to set the threshold for postmortem analysis.

3 Related Work

Postmortem iris recognition has been receiving less attention in literature in part due to a

belief that iris possesses little biometric value after death. Other barriers to the study of
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Fig. 1: (left to right): Deflation due to IOP, torn iris due to trauma, Tache Noire (in visible spectrum).

post-mortem human iris tissue include difficulties with obtaining and managing donated

eyes for time-lapse postmortem studies.

With recent discoveries in postmortem iris biometrics, the role of iris as a forensic tool

has gained the attention of researchers. Trokielewicz, Czajka and Maciejewicz pioneered

postmortem iris recognition in humans in 2016 [MAP16a, MAP16b]. They have since

published numerous articles providing an excellent account on postmortem iris biometrics.

Maciejewicz et. al. [MAP20] describe a method which employs a learning-based segmen-

tation algorithm followed by a matching algorithm based on Gabor filters. They report

equal error rates (EER) of less than 1% compared to 16.89% from off the shelf methods

such as OSIRIS. These results are based on postmortem samples that are captured up to

ten hours after death.

Maciejewicz et. al. [MAP19] analyzed the biometric capability of iris under different oc-

ular pathologies. They showed the effects of different eye pathologies such as cataract on

iris segmentation. They also show the biometric EER of irises with cataract are slightly

greater than those of the normal irises.

In [MAP18], Maciejewicz et. al. discuss the effects of aging, disease and postmortem

changes on the human iris. They show that differences in pupil dilation, combined with

certain quality factors of the sample image and the progression of age as well as post-

mortem duration can significantly degrade the recognition accuracy.

Bolme et. al. in [Da16] discuss the effects of environment, including temperature, on natu-

ral decay of deceased bodies. The research collected a multi-modal postmortem biometric

dataset and analyzed the feasibility of using fingerprint, face and iris under long term post-

mortem scenario. It was observed that postmortem fingerprints were easier to acquire and

had lower false reject ratse compared to other postmortem biometric modalities.

Sansola et. al. [Al15] used IriShield M2120U iris recognition camera together with off the

shelf IriCore matching software in their postmortem experiments involving 43 deceased

subjects who had their irises photographed at different post-mortem time intervals. The

study reported 19-30% false rejects and no false accepts. The study also reported on the
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relationship between eye color and iris match scores, with blue-gray eyes yielding lower

correct match rates than brown eyes.

4 Qualitative Analysis of Postmortem Iris

Researchers have studied qualitative changes related to ante to post mortem human oc-

ular tissues including iris, retina, aqueous humor, and sclera [Da55]. Postmortem ocular

changes, although not visible to the unaided eye, start early and on the onset of death.

These processes are initially at molecular and cellular levels, and slowly progress into

macroscopic level. Some of the affected tissues and the instigating factors related to post-

mortem iris recognition performance are described below.

Iris: The eye, when regarded as an extension of the body proper, can also be noted to

exhibit the effects of trauma and systemic medical disease at the time of death. Several

examples of trauma include injuries that could have led to the death of the subject, as well

as post-surgical changes common in the elderly population (glaucoma surgery utilizing

iridotomy or cataract surgery). These factors could impact the use of iris for biometrics.

Complicating matters is the possibility of interval change in iris positioning and density

caused by varying degrees of physiologic pupillary dilation.

Cornea: One of the most noticeable postmortem finding is corneal opacity. The cornea, al-

though an extremely thin tissue, is particularly susceptible to changes in the environment.

Corneal clarity is achieved by tightly organized collagen fibers with a specific percentage

of hydration. If corneal hydration is altered by processes like surface epithelial drying or

dysfunctional endothelial pump cells which could occur following death, corneal opacity

can develop (Figure 2). In [JN94], the researchers observed that corneal opacity occurs

approximately after two hours of death. Interestingly, the study also indicates that corneal

opacity depends on season of death, i.e. postmortem opacity is increasingly seen in sum-

mer compared to winter season which is further corroborated by [Da16].

Fig. 2: (left to right): Pupil fadeout, limbic boundary diffusion, and corneal opacity.

Other Aspects Tache Noire: Tache Noire de la sclerotique is a phenomenon where con-

junctivae darkens due to drying when the eyes remain open postmortem, creating darker
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patches on the white of the eye [Pr03]. This process may make the eyeball rigid and and

initiate deformation of the eyeball.

Limbic boundary fadeout: Limbic boundaries are circular and sharp. In the later stages of

post-mortem analysis, these boundaries fade out due to opacification and natural degra-

dation, making it difficult even for a human observer to determine the accurate limbic

boundaries (Figure 2).

Intraocular Pressure (IOP): Loss of ocular tension in postmortem eyes causes the eye to

flatten and lose its roundness, much like a deflated ball. This alters the shape and contour of

the anterior segment of the eye, including the iris, and can negatively affect biometric util-

ity [GDA15]. Change of intraocular pressure in postmortem studies is poorly understood

due to a paucity of investigation.

5 Quantitative Study

Methods To analyze the postmortem utility of off the shelf iris recognition, we used a

method similar to Open Source for IRIS (OSIRIS), which is an academic software de-

veloped within the BioSecure EU project [Su12]. It follows the original work of John

Daugman, for iris image segmentation and subsequent normalization to a dimensionless

polar coordinate system. A binary iris code is calculated using phase quantization of the

Gabor filters. Hamming distance is used to compute dissimilarity score between two iris

templates. Hamming distance between two irises ‘a’ and ‘b’, whose iris codes are codeA

(Ca) and codeB (Cb), respectively, and whose valid segmentation masks are A and B,

respectively, is given by:

d =
‖(Ca ⊗Cb)∩A∩B‖

‖A∩B‖
(1)

A match threshold of 0.42 was used in our study based earlier-mentioned control dataset.

Since the goal of our experiment was to validate the effectiveness of iris recognition algo-

rithms on postmortem enucleated iris, we manually corrected all limbic and pupil bound-

aries that were erroneous. We also removed iridial glare.

Experiment Setup We captured images in both visible and infrared spectra, and divided

our quantitative experiments into three analyses:

1. Short Term Analysis (Unaided): For this analysis, data was captured during a six

to seven hour observation period in one hour intervals. The enucleated eyes were

left to naturally degrade at around 17 degrees Celsius. The aforesaid duration for

short time analysis was experimentally determined based pilot observations on the

first specimen, noting when it degraded to a point where iris tissue was completely

deformed. This time is referred to as minimum decay time.

2. Long Term Analysis: After the minimum decay time, we continued imaging each

specimen on a two-hour interval basis for two days, with two days being the longest

possible duration after which the last specimen was entirely deformed.
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3. Long Term Analysis with Hydration: While working on long term analysis, we ob-

served that adding saline drops on specimen and storing the eyeballs in saline liquid

helped the iris to retain its biometric value compared to when it was left out at

room temperature. To further validate this observation, we stored a few specimens

in saline under controlled temperature. These specimens were taken out only for iris

captures. The iris was captured on an hourly basis for six hours per day for three

days. In this setting, when the eyeball started to deform, we injected saline into the

eyeball to retain its shape. This method was successful only until a certain iteration

and stage, after which the eyeball could not retain its shape. This was especially

evident on the onset of Tache Noire.

Fig. 3: (left to right) genuine (x-axis) and impostor (y-axis) score distributions for unaided long-term,

unaided short term, aided long-term, and aided short-term analyses.

Quantitative Performance Analysis Figure 3 shows the distribution of genuine and

impostor scores for different experiment settings. We report False Reject Rate (FRR) at

0% False Accept Rate (FAR) operating point, which was derived from the control subject

data, as a measure of iris performance for the forthcoming analysis. The algorithm did

reach the 0% FAR point for all the three postmortem experiment settings at such threshold,

albeit with at varying FRRs.

1. Short term analysis: Short term analyses for both aided and unaided long-term study

were similar. The enrollment template was computed from the first capture, and the

remaining captures were used as verification samples. For the unaided study, the

average FRR at 0% FAR was 3.25%. Similarly, for the aided study, the average FRR

at 0% FAR was 0%. Figure 3 shows the distribution of match scores for this analysis.

It was observed that the minimum and maximum FRRs for short term analysis were

0% and 12.5%, respectively. The specimen that caused higher FRRs had developed

opacity at a faster rate than the other specimen. Also, it was noted that the iris colors

of the specimen with larger FRR tended to be lighter.

2. Long term analysis (Unaided): Figure 5 shows the performance in terms of iris

match scores with respect to postmortem duration for unaided long term analysis.

The enrollment template was from corresponding short-term analysis experiment.

Captures after the end of short term study were used as verification samples. The

average FRR at 0% FAR was 78.47% for this experiment. Figure 3 shows the distri-

bution of match scores for unaided short and long-term analysis. The minimum and
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maximum FRRs for for this dataset was observed to be 62.5% and 91.6%, respec-

tively. Six of the eleven specimen were used for this study.

3. Long term analysis with Hydration (Aided): Figure 4 shows the performance of long

term analysis of eyes kept in saline solution (aided). The enrollment template was

from corresponding short-term analysis experiment. Captures after the end of short

term study were used as verification samples. The average FRR at 0% FAR was

55.8% for this long-term analysis. Figure 3 shows the distribution of match scores

for this analysis. The minimum and maximum FRR for this dataset were 25.2% and

78%, respectively. Five of the eleven specimen were used for this study.

Fig. 4: iris match score progression with respect to aided short and long term postmortem period. .

Fig. 5: iris match score progression with respect to unaided short and long term postmortem period.

6 Conclusion

This study answered many of our questions vexed at the start of our experiments, albeit

with certain limitations.
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First, we showed that off the shelf commercial iris recognition software can be used to

identify enucleated cadaver eyes using normal (live population) thresholds. It was observed

that the FRR of postmortem specimen can vary anywhere between 0% to 71% based on

the postmortem period of the enucleated eyes, while FAR remains at 0. However, as shown

by [SM11], the accuracy of traditional iris recognition methods can be further improved

by using newer learning-based methods. Per the scope of this study, we did not evaluate

postmortem iris recognition with such learning-based template extraction and matching

algorithms.

We analyzed the effect of postmortem time lapse on enucleated eyes in terms of match

score degradation under varying conditions. We observed the effect of environment and

eye pressure (IOP) under different experimental setting on iris recognition performance.

It was observed that retaining the shape of the eyeball by way of saline injections helped

improving the genuine accept rates of the iris specimen, prolonging the biometric utility

of postmortem iris tissue.

In [MAP18], the authors mention that a variant of OSIRIS with manual segmentation can

reliably identify a postmortem iris in NIR spectrum up to 263 hours. In their study, iris

was captured in-vivo; i.e. the eyeball was not enucleated. In our case, we could match

enucleated iris up to 164.5 hours. However, in our study the time lapse is an average of (a)

time of death to enucleation (b) enucleation of eye to date of first capture (c) time of first

capture to loss of biometric value. It is interesting to note that only a few eyeballs started to

deform under controlled storage mechanism. In our case, only two of sixteen rejected irises

were due to deformed eyeball. However, while at room temperature, enucleated eyeballs

deteriorated at varying rates, and in some cases they lost their iris textures in as little as

eight hours.
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Explaining ECG Biometrics: Is It All In The QRS?

João Ribeiro Pinto1, Jaime S. Cardoso1

Abstract: The literature seems to indicate that the QRS complex is the most important component
of the electrocardiogram (ECG) for biometrics. To verify this claim, we use interpretability tools
to explain how a convolutional neural network uses ECG signals to identify people, using on-the-
person (PTB) and off-the-person (UofTDB) signals. While the QRS complex appears indeed to be
a key feature on ECG biometrics, especially with cleaner signals, results indicate that, for larger
populations in off-the-person settings, the QRS shares relevance with other heartbeat components,
which it is essential to locate. These insights indicate that avoiding excessive focus on the QRS
complex, using decision explanations during training, could be useful for model regularisation.

Keywords: Biometrics, Electrocardiogram, Explainability, Identification, Interpretability.

1 Introduction

Throughout the past twenty years, research on biometrics based in the electrocardiogram

(ECG) has largely been a success story [PCL18]. After successful proofs-of-concept in

cleaner medical signals (on-the-person), the focus is quickly shifting to acquisitions in

more realistic scenarios (off-the-person). Deep learning approaches [La18, Lu18, PCL19,

PC19, Ha20] have been essential in dealing with the increased noise and variability in

off-the-person settings, despite the performance and robustness issues that still hinder ap-

plication in real scenarios.

However, deep learning decisions are obscure: unlike traditional methods based on fiducial

features, we don’t know what information the model uses to distinguish people. One can

assume that the models look mainly to the QRS, since it is the most stable part of the ECG

in the face of noise and variability [Sc00, HUvO01]. Several methods have thus focused

on QRS complexes for ECG biometrics [Wa16, La18], but this practice has become un-

common in recent works. This indicates the true role of this waveform complex in identity

discrimination is still to be adequately recognised.

Currently, pattern recognition researchers understand the importance of knowing what

specific information is relevant for their models to reach decisions. Retreating to easily

explainable traditional models (such as decision trees) is often unacceptable due to their

performance limitations. Hence, various interpretability tools are being developed to peek

into the inner workings of deep networks applied to diverse tasks [CPC19, SFC19, Se20].

This work uses, for the first time in the literature, such interpretability tools on a deep ECG

biometric model, to understand what parts of the ECG are most useful for automatic human

1 INESC TEC and Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, joao.t.pinto@inesctec.pt



140 João Ribeiro Pinto, Jaime S. Cardoso

identification. The model is a competitive state-of-the-art method [PCL19, PC19] applied

for ECG-based identification in data subsets with diverse signal quality and number of

identities. With this, we aim to assert the importance of the QRS and other waveforms

for ECG biometrics and discuss future possibilities as this topic evolves towards more

challenging and realistic scenarios. Additionally, we propose an intuitive way to visualise

interpretations for unidimensional signals. The code and additional results are available

online2.

Besides this introduction, this paper presents some fundamental concepts on the ECG as a

biometric trait, in section 2. The biometric identification model, the interpretability tools,

and the visualisation method are described in section 3, and the experimental settings are

detailed in section 4. Section 5 presents the obtained results and their discussion, and

section 6 states the conclusions drawn from this work.

2 The Electrocardiogram as a Biometric Trait

The heart is composed of a muscle, the myocardium, that is responsible for its contraction

and allows it to fulfil its purpose of pumping blood throughout the body [Ta09]. The my-

ocardium contracts in response to depolarisation phenomena started by the atrioventricular

node located on the interatrial septum. The waves of depolarisation that spread precisely

across the heart are small electrical currents that can be measured using electrodes, result-

ing in the electrocardiogram (ECG) [MH13, Ta09].

Since the operation of the heart is a repetition of a sequence of phenomena, the ECG is

approximately a cyclical repetition of a set of waveforms (P, Q, R, S, and T) that corre-

sponds to a heartbeat (see Fig. 1) [MH13, PCL18]. The P wave is the first waveform and

corresponds to the depolarisation of the myocardium cells in the atria. The Q, R, and S

waveforms are commonly jointly considered as the QRS complex, which corresponds to

the repolarisation of the atria and the depolarisation of the ventricles. The T wave corre-

sponds to the repolarisation of the ventricles. This last wave is in some cases followed by

a shorter waveform, the U wave, whose causes are still unclear [Ri08].

As a measurement of the electrical currents spread across the heart, the ECG signals will

reflect the geometry of this organ. For example, larger hearts, with more cells to depolarise

and repolarise, will result in ECG waveforms with larger amplitudes. Higher or lower basal

heart rates will also result in different signal morphologies. Since heart geometry and basal

heart rates vary across individuals, this intersubject variability is what makes the ECG

sufficiently unique to be used in biometric recognition [HUvO01, vOHU00].

However, the ECG signals are also susceptible to intrasubject variability factors. Noise

sources during acquisition, the short-term and long-term effects of exercise, emotional

states, stress, drowsiness, and fatigue are some of the factors that reflect mainly in the heart

rate variability, changing the morphology of the P-R and S-T segments [Sc00, ABH12].

These are the sources of uncertainty that hinder the use of the ECG as a biometric trait.

2 xECG Repository. Available on: https://github.com/jtrpinto/xECG.
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Fig. 1: Illustration of the ECG waveforms on a sample PTB signal segment.

While these are largely controlled on medical or on-the-person settings (where the subject

is at rest, laying down, and signals are acquired using several high-quality gel electrodes),

their effects are dominant for realistic off-the-person signals (acquired using few dry elec-

trodes on the hands, during common daily activities) [Pi17, PCL18, PC19].

When compared with the P and T waves, the QRS corresponds to a larger polarisation

event over a shorter period. In practice, this makes the QRS more dominant over noise and

intrasubject variability than the other ECG waveforms [Pi17, PCL18]. Hence, the QRS is

considered more stable over time and across variable conditions, which makes it better

suited for biometric recognition.

Despite this, it is still unclear how much identity information is carried by the QRS com-

plex compared to the other waveforms, and whether it is enough for an accurate and ro-

bust biometric recognition system. Studies on ECG-based biometric identification have

shown it is possible to distinguish small sets of individuals in on-the-person settings using

only the QRS complex or QRS fiducial amplitude and time measurements [Wa16, La18].

Nevertheless, this practice is becoming uncommon as research evolves towards realistic

off-the-person signals and larger databases.

This denotes that the sole use of the QRS may not be adequate for off-the-person settings,

or the individual information carried by the QRS may not be enough to distinguish in-

dividuals in large populations. This work aimed to address these doubts through a study

on the role and relevance of the QRS and the other waveforms on ECG-based biometric

identification. Interpretability tools are used to assess which parts of the ECG are more rel-

evant to the decisions of an end-to-end identification model [PCL19], with on-the-person

and off-the-person signals and data subsets with a varying number of identities.

3 Methodology

3.1 Biometric Identification Model

The biometric model for identification followed the architecture proposed by Pinto et

al. [PCL19], which has attained state-of-the-art results in off-the-person settings for both

identification and, later, authentication [PC19]. The model (see Fig. 2) receives five-second

blindly segmented ECG signals and outputs probabilities for each of the N identities con-

sidered. Finding the highest probability score allows us to assign the respective identity to

the input signal.
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Fig. 2: Architecture of the biometric identification model

The model consists of an end-to-end 1D convolutional neural network (CNN) with four

convolutional layers (with 1 × 5 filters, two layers with 24 followed by two with 36),

followed by ReLU activation. Neighbouring convolutional layers are separated by 1× 5

max-pooling layers. The last convolutional layer is followed by two fully-connected layers

(100 neurons with ReLU and N neurons with softmax activation).

3.2 Interpretability Tools

To capture the dynamics behind the decisions of the biometric model, four interpretabil-

ity methods are applied to the trained model: Occlusion, Saliency, Gradient SHAP, and

DeepLIFT. Occlusion and Saliency are two of the simplest interpretability methods, while

Gradient SHAP and DeepLIFT are more sophisticated and powerful. These are imple-

mented in the Captum toolbox [Ko19] for PyTorch and are described below.

Occlusion The Occlusion method [ZF14] consists in measuring the influence of hiding

a portion of the input on the output of the model. When hidden, the more relevant input

parts will cause larger changes in the output, and will thus be assigned greater relevance in

the explanations offered by this method. This is the simplest method to interpret a model,

although the size of occluded regions should be carefully defined to obtain meaningful

explanations.

Saliency The Saliency method [SVZ14] is based on the gradients of a model given a

certain input. Through backpropagation, the gradient of target class scores w.r.t. the input

is obtained. A saliency map is then generated by rearranging the class score derivatives,

generating saliency maps that assign higher relevance to input regions that correspond to

higher gradients. Requiring a single backpropagation pass, this method is a simple and fast

way to obtain explanations on model predictions.

Gradient SHAP Gradient SHAP [LL17] is an approach based on game theory which

considers the explanations of a model’s predictions as models themselves. For sophisti-

cated deep learning models, the explanation models are simplified and interpretable ap-

proximations of the respective models. SHapley Addictive exPlanation (SHAP) values,

inspired by game theory’s Shapley values, are computed through the gradient of a random
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point between a baseline and the input with added random noise. The SHAP values denote

how much a given part of the input raises the probability for the considered class, and

are reportedly better aligned with human intuition and effective in discriminating among

output classes.

DeepLIFT DeepLIFT (Deep Learning Important FeaTures) [SGK17] performs back-

propagation to track the contributions to the output to the responsible parts of the input.

Throughout this process, it compares the difference in inputs and outputs considering a

reference (or baseline) input, assigning contribution scores to each neuron of the model. It

also allows for the study of negative contributions: how much a specific part of the input

contributes to lower the probability for the considered class.

3.3 Visualisation

Decision explanations obtained using interpretability tools are visualised using the multi-

coloured line plot feature of Matplotlib [Hu07]. ECG signals are plotted so that the colour

of each signal component represents its relative relevance for the decision. In this case,

lighter yellow colours represent less relevant time samples, whereas more relevant sam-

ples assume darker purple colours. This way, both the ECG morphology and the relevance

of each of its components are easily and intuitively presented.

4 Experimental Settings

The data used for model training and evaluation have been drawn from the Physikalisch-

Technische Bundesanstalt ECG Database (PTB) [BKS95, Go00] and the University of

Toronto ECG Database (UofTDB) [Wa14]. The PTB database includes on-the-person

(high-quality) 12-lead ECG signals acquired at 1 kHz from 290 subjects at rest. The

UofTDB includes single-lead off-the-person (more noisy and realistic) data acquired from

1019 subjects. To match the UofTDB, PTB signals were downsampled to 200 Hz and only

Lead I was used.

Five-second segments were blindly extracted (without fiducial detection) from the record-

ings. Fifty per cent of those segments (per identity) were used during training and the

remaining were reserved for testing. This provided more challenging test settings than

those commonly found in the literature, but also deliberately avoided the most realistic

settings (see [PC19]), for the sake of obtaining meaningful interpretations.

To simulate gradually increasing identification difficulty within each database, subsets of

N identities are considered, with N ∈ {2,5,10,20,50,100,200,500,1019}. The identities

in each subset are the first N in lexicographical order. Each subset includes all identities

that compose smaller subsets, so subjects #1 and #2 are the main focus of analysis since

these are present in all subsets. Throughout this paper, TN denotes the subset of UofTDB

data from N subjects and PN denotes the subset of PTB data from N identities. As stated in
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Tab. 1: True positive identification rate results (%) on the test data.

Database
Number of Identities

2 5 10 20 50 100 2001 500 1019

PTB 100.0 100.0 99.63 99.50 98.92 98.76 97.73 - -

UofTDB 100.0 97.26 98.30 95.46 93.86 91.16 89.70 91.20 91.45
1For PTB, this column corresponds to the entire set of 290 subjects.

Table 1, P290 was used instead of P200 to take advantage of the entire PTB dataset. Model

training details can be found online at this project’s repository.

Performance evaluation is based on the True Positive Identification Rate (or accuracy):

the fraction of test samples that are correctly assigned to their true identity by the trained

model. Interpretations are examined through the proposed visualisation method.

5 Results and Discussion

The results of the performance evaluation are presented in Table 1. These results roughly

follow the expected patterns considering the use of on-the-person versus off-the-person

ECG data. The model is able to attain high true positive identification rates in both

databases when the population is small, but as the set of subjects grows, performance

decreases and a wide gap distinguishes the more challenging off-the-person settings from

the more controlled on-the-person settings.

Additionally, one can find some unusual patterns in the performance results. Considering

M > N, one would expect identification performance with subset TN to be higher than with

subset TM . With UofTDB off-the-person data this is not always verified: e.g., from T5 to

T10, performance increases from 97.26% to 98.10%. In these cases, we need to consider

that datasets with fewer identities have fewer data and, thus, more unstable results. Alter-

natively, the identities added to TN to create TM may be easier to discriminate (“sheep”,

according to the concept of biometric menagerie [Do98, YD10]) and thus contribute to im-

prove accuracy. However, one should also regard the substantial regularisation needed to

avoid overfitting and the instability during training as possible causes for these discrepan-

cies. This is a very important insight into the increased difficulties of using off-the-person

data and the need for improved and more robust biometric models.

Analysing the explanations obtained using the four interpretability tools (examples in

Fig. 3 and Fig. 4), a trend is verified from smaller to larger identity subsets, consisting

on the deviation from focusing mainly on the QRS complex to the increasing relevance of

other parts of the heartbeats. This is also confirmed when combining the explanations of

all heartbeats of each person into a single average heartbeat (see Fig. 5 and Fig. 6).

With the cleaner medical signals from PTB, the focus is mostly on the QRS complex,

but information from other waveforms starts to become more and more relevant as more

identities are added. It is noteworthy how, when discriminating PTB subjects #1 and #2

in a two-subject scenario (see Fig. 5), the model still focuses mainly on the QRS, even
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Fig. 3: Explanations over an example five-second ECG segment from PTB. In each subplot, the

yellow to dark purple colours correspond to increasing time sample relevance and vertical grey lines

denote R-peak locations. Signals were filtered for easy visualisation.

Fig. 4: Explanations over an example five-second ECG segment from UofTDB. In each subplot, the

yellow to dark purple colours correspond to increasing time sample relevance and vertical grey lines

denote R-peak locations. Signals were filtered for easy visualisation.
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Fig. 5: Average explanations over heartbeat waveforms of subjects #1 (top) and #2 (bottom) on the

subsets of the PTB database. In each subplot, the yellow to dark purple colours correspond to in-

creasing time sample relevance. Signals were filtered for easy visualisation.
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Fig. 6: Average explanations over heartbeat waveforms of subjects #1 (top) and #2 (bottom) on the

subsets of the UofTDB database. In each subplot, the yellow to dark purple colours correspond to

increasing time sample relevance. Signals were filtered for easy visualisation.
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though subject #2 has a very specific characteristic, the inverted T-wave, that is arguably

their most distinctive feature. This denotes how, in these cleaner signals, the QRS complex

is so stable that the remaining waveforms, more susceptible to heart rate variability, are

largely ignored by the model regardless of any visually obvious intersubject differences

they may present.

With the more realistic off-the-person signals from UofTDB, the QRS retains high impor-

tance but the relevance is more evenly spread among the signal waveforms. In the specific

case of subject #2 (see Fig. 6), it is evident that the QRS retains the highest importance for

the decision, even in T1019 (the largest subset). This may denote that, even in these more

challenging settings, the identification models will still give preference to the QRS over

other waveforms if it is sufficiently unique among the considered identities. Nevertheless,

in such large sets of identities, the expected behaviour is that of subject #1 (see Fig. 6),

since the limited identity information carried by the QRS will lead the model to also look

to other parts of the signal.

One interesting aspect is the difference between the results with Occlusion versus the other

methods. Occlusion generally grants the QRS complex much more relevance, regardless

of the settings. In the state-of-the-art approaches, the QRS complex is not only a source for

identity features but also frequently used as an easily detectable reference landmark for the

location of other ECG waveforms. This may also be the case in this end-to-end deep model.

Although there are challenging contexts where the QRS may not be the main contributor

to the decision, it may be essential to the deep model as a reference landmark to locate

other waveforms in the signal. Hence, when occluded, it will be the signal component that

most impacts the decision, causing the occlusion method to generally consider it the most

relevant.

6 Conclusion

This work aimed to explain how deep models use ECG signals to distinguish people, using

interpretability tools. Overall, the obtained results partially confirm the claim that the QRS

is the key to ECG-based biometrics. With small populations in on-the-person settings, it

can alone be used for reliable recognition. However, as we evolve towards larger popu-

lations and off-the-person settings, other components become relevant in discriminating

people, as the models require more identity information to overcome the hurdles placed

by enhanced intrasubject variability.

However, even though relevance is more evenly shared in off-the-person identification in

large sets of identities, the QRS is shown as essential by the occlusion method. It appears

that, just like several literature methods, the implemented end-to-end model learnt to use

the QRS as a landmark for the location of other ECG components in the signal, resulting

in large output changes when the QRS is occluded. Hence, despite the literature claims,

one should avoid relying too heavily on any single part of the ECG, including the QRS

complex, since all waveforms carry identity information that proves increasingly useful in

more realistic settings and larger populations.
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Beyond these insights, further efforts should be devoted to extend this study and offer

a deeper, more thorough, and more objective analysis of the contribution of each ECG

waveform to the model’s decisions. Obtaining more systematic and complete explanations

could create new opportunities on the use of interpretability tools during model training.

Using explanations to regularise models and promote focus in the most relevant signal

components or the distributed use of the whole signal (instead of just the QRS) could lead

to improved recognition accuracy and robustness.
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Action-Independent Generalized Behavioral Identity

Descriptors for Look-alike Recognition in Videos

Ali Khodabakhsh1, Hugo Loiselle2

Abstract: There is a long history of exploitation of the visual similarity of look-alikes for fraud and
deception. The visual similarity along with the application of physical and digital cosmetics greatly
challenges the recognition ability of average humans. Face recognition systems are not an exception
in this regard and are vulnerable to such similarities. In contrast to physiological face recognition,
behavioral face recognition is often overlooked due to the outstanding success of the former. How-
ever, the behavior of a person can provide an additional source of discriminative information with
regards to the identity of individuals when physiological attributes are not reliable. In this study, we
propose a novel biometric recognition system based only on facial behavior for the differentiation
of look-alikes in unconstrained recording conditions. To this end, we organized a dataset of 85,656
utterances from 1000 look-alike pairs based on videos collected from the wild, large enough for the
development of deep learning solutions. Our selection criteria assert that for these collected videos,
both state-of-the-art biometric systems and human judgment fail in recognition. Furthermore, to uti-
lize the advantage of large-scale data, we introduce a novel action-independent biometric recognition
system that was trained using triplet-loss to create generalized behavioral identity embeddings. We
achieve look-alike recognition equal-error-rate of 7.93% with sole reliance on the behavior descrip-
tors extracted from facial landmark movements. The proposed method can have applications in face
recognition as well as presentation attack detection and Deepfake detection.

Keywords: Behavioral Biometrics, Face Recognition, Look-alike face, Facial Motion, Triplet Loss.

Fig. 1: Examples of look-alike identity pairs in the proposed 1000 look-alike pairs

(1000LP) dataset. Each column shows one pair of look-alikes. The identities in the pro-

posed dataset are a subset of the identities in the VGGFace2 [Ca18] dataset.

1 Introduction

Distinguishing visually similar individuals, be it identical twins or look-alikes with physi-

cal make-up or plastic surgery, has been challenging for both humans and face recognition

1 NTNU, IIK, Norwegian Biometrics Lab, Gjovik, NO, ali.khodabakhsh@ntnu.no
2 Orange, Région de Caen, Fr, loiselle.hugo@hotmail.fr
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algorithms [La11]. In the context of video communication, this vulnerability is further ex-

acerbated as other means of identity verification are often not available. Moreover, the use

of look-alikes and make-up for fraud has an advantage over digital manipulation methods

as they don’t produce any digital footprint in the received signal to be used for detec-

tion. Furthermore, despite the rise of advanced digital video manipulation methods such

as Deepfakes, subjective tests show higher susceptibility of viewers to fake videos con-

taining look-alikes rather than digitally manipulated videos [KRB19]. Fortunately, a video

signal contains additional clues on the identity of the person in the form of facial behav-

ior [Be10, KJ97].

Among existing methods for behavioral face recognition (BFR), the vast majority of stud-

ies focus on fixed-phrase authentication or specific emotional responses. Chen et al. [LLJ01]

propose use of dense optical flow vector distance for identification in a fixed-phrase sce-

nario. In [Ce06] Cetingul et al. experiment with dense motion features, lip contour motion

features, and lip shape features with a hidden-Markov-model (HMM) classifier. Zafeiriou

and Pantic [ZP11] use principal component analysis (PCA) followed by linear discrimi-

nant analysis (LDA) on dense facial deformation features in spontaneous smile for bio-

metric recognition. Wang and Liew [WL12] show that behavioral lip biometrics based on

temporal shape descriptors and motion vector representation outperforms physiological

lip biometrics based on texture descriptors. Gavrilescu [Ga16] proposes a multi-state neu-

ral network on individual facial expressions extracted in the form of facial action coding

system (FACS). More recently, Iengo et al. [Ie19] use neural networks on dynamic facial

features to achieve a fixed-phrase recognition rate of 98.2% and Taskirar et al. [Ta19] use

statistical properties of facial distances during different phases of smile facial expression

for face recognition.

A number of publications have attempted to address unconstrained BFR. Matta and Duge-

lay [MD06] propose using rigid head displacements along with GMM and Bayesian clas-

sifiers for person recognition. Ye and Sim [YS10] use locally similar facial deformation

patterns for identification through the calculation of local deformation profile similarity.

In [Sh16], Shreve et al. quantify the type and intensity as well as the temporal dynamics of

action units (AU) via calculating histogram distances and dynamic time warping (DTW)

distance. Yuan et al. [Yu17] propose the usage of active shape models on lip contour along

with gaussian mixture models (GMM) for authentication in smartphone applications.

BFR has also been used in multi-modal biometric recognition as well as presentation at-

tack detection (PAD). Notably, Zhao and Pietikanien [ZP07] introduce local binary pat-

terns (LBP) on three orthogonal planes and volume LBPs and thus incorporates immedi-

ate neighborhood frames of the video for face recognition. Kim et al. [KKR16] use long

short-term memory (LSTM) cells on top of convolutional neural networks (CNN) to cap-

ture smile facial dynamics. More recently, Pan and Deravi [PD17] use support vector ma-

chine (SVM) on AU histogram features for presentation attack detection. Finally, Agrawal

et al. [Ag19] model facial expressions of four individuals using facial landmarks and SVM

to detect Deepfakes.

To distinguish look-alikes from each other many image-based methods have been pro-

posed. Klare et al. [KPJ11] provide a taxonomy of facial features and analyze the dis-
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criminative power of these features for identical twin identification. The only video-based

solution is proposed by Zhang et al. [Zh14], where they extracted six types of face motion

from the talking profile of identical twins and use the similarity of aligned motion se-

quences for classification by an SVM model. To the best of the authors’ knowledge, there

exists no publicly available video dataset of look-alikes in the literature. The only related

video dataset in the literature is the private dataset by Zhang et al. [Zh14] collected from

39 pairs of twins at the Mojiang International Twins Festival. There also exists a couple of

related datasets containing solely images. Lamba et al. [La11] collected the only dataset

on look-alikes consisting of 500 images from 50 celebrities and their look-alikes. Phillips

et al. [Ph11] collected a dataset of 435 twins consisting of 24050 images.

All aforementioned publications rely on small data collected in controlled environments,

and few of them address emotion- and utterance-independent detection with limited suc-

cess, and as such, among all publications regarding this topic, none have addressed the

unconstrained BFR in real-world scenarios. In this study, we introduce a general-purpose

action-independent identity descriptor extractor based on facial behavior for distinguish-

ing look-alikes. To this end, we also provide the first large-scale look-alike video dataset

named “1000 look-alike pairs (1000LP)” which consists of approximately 23,000 real-

world videos collected from a public video-sharing platform3, for which both humans and

state-of-the-art recognition systems fail at differentiation4. Among the aforementioned lit-

erature, the approach in this article is in the same line of research as is taken by Zhang et

al. [Zh14] and Agrawal et al. [Ag19]. The rest of this article is organized as follows: in

Section 2 the proposed method is described, while Section 3 includes the details of the col-

lected dataset as well as the experiment setup. The results of the experiments are discussed

in Section 4 and the article is concluded in Section 5.

2 Proposed Method

The physiological likeliness of two individuals due to natural similarity or application

of physical or digital makeup may lead to false-positives in face recognition. In these

cases, the facial behavior can be a source of complementary information for face recogni-

tion. Facial behavior contains identifiable information and has a significant role in person

identification by humans [Be10, KJ97]. In our proposed method, after face detection and

facial landmark extraction in each frame, we train a convolutional deep neural network

(CDNN) which maps the sequence of normalized landmark positions in the video to a

vector in a generalized behavior space in an end-to-end manner. This approach enables

the recognition of persons that are previously unseen by the detector by simply calculat-

ing the distance between behavior-vectors extracted from a pair of videos. Furthermore,

as the network only sees the landmarks, it is guaranteed to be void of influence by the

physiological likeliness of the individuals. Furthermore, landmarks are not as sensitive to

disturbances and quality-related issues as other features such as optical and motion fields

are and can be extracted with higher confidence.

3 http://www.youtube.com
4 The dataset is publicly available for download at http://ali.khodabakhsh.org/research/1000lp/
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Fig. 2: Feature extraction pipeline.

2.1 Preprocessing

We use the open-source facial behavior analysis toolkit OpenFace [BRM16] to extract the

landmark positions from videos. The toolkit provides face detection as well as pose esti-

mation and 3D landmark positions for each frame in the video. For landmark positions to

be independent of the camera position and head rotation angle, we use the pose estimation

information to rotate the 3D landmarks in 3D space to achieve a frontal pose of zero de-

grees roll, yaw, and pitch. Further on, the landmark positions in each video are scaled to

match a fixed scale used over the whole dataset. The scaling is done such that the inner eye

corner landmarks would be on average 0.5 units apart. Finally, the landmarks are individu-

ally normalized using their mean and standard deviation across the whole training dataset.

The aim of the aforementioned normalization steps is to convert the landmark positions

to rotation-independent displacements from the average position. Even though the pose

information can also contain additional behavioral identity information, they were left out

due to their dependence of the estimated pose to the camera angle and position. Figure 2

visualizes the preprocessing pipeline.

2.2 The proposed recognition system

To extract identity-sensitive yet action-independent information from the time series of

landmark movements, it is fruitful to rely on the distribution statistics of the landmark

deviations. However, due to the noisy nature of the estimated 3D landmark positions ex-

tracted from 2D videos in the pre-processing step, a refinement step proves necessary.

However, the refinement criteria are ambiguous as the correct landmark position is not

available. Furthermore, the movements are correlated to a large extent and contain redun-

dancies. Motivated by the recent success of x-vectors [Sn18] in the field of speaker recog-

nition, we propose the network architecture shown in Figure 3 for end-to-end learning of

the appropriate refinement for the best identification performance before statistical pool-

ing. In this architecture, four 1D-convolutional layers are applied to the input time series.

By using max-pooling layers across time, the receptive field of the final layer of the stack

can be increased. Following the convolutional layers, a linear mapping is learned to map

the output of the last convolutional layer to the feature-embedding space. After calculation

of the mean and standard deviation of the feature-embeddings across time, the resulting

fixed-length vector is then used for generating identity embeddings by two fully-connected

layers. Instead of using class labels for training the network, we use triplet loss [SKP15]

to enable better generalization capacity for unseen identities. Furthermore, batch normal-

ization is used after the input layer, the statistical pooling layer, and between the output of
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Fig. 3: Proposed network architecture.

neurons and activation functions to reduce the learning time of the network. No activation

is used on the output of the feature-embedding mapping layer and the final layer to enable

the network to utilize the full embedding space.

The Euclidean distance between identity embeddings can directly be used as a biometric

dissimilarity metric. In the case of multiple enrollment samples from multiple identities,

it is also possible to use the proposed system as a preprocessing step, and train a softmax

layer for classification directly on extracted identity embeddings.

2.3 Look-alike mining

The VoxCeleb2 dataset [CNZ18] contains over 1 million utterances from more than 6,000

celebrities collected from YouTube. The identities in this dataset are a subset of identities

in the VGGFace2 [Ca18] dataset. To mine for Look-alike identities, we used the ArcFace

[De19] face recognition system to compare the average embeddings for each identity in

the VGGFace2 dataset that appears in VoxCeleb2 dataset as well. After sorting the scores

of the resulting 36M comparison pairs, the top 2,000 pairs with the highest similarity score

are selected for a subjective face recognition test. Among the top pairs, there exist pairs of

identical twins as well.

In the subjective face recognition test, for each look-alike pair of identities, four images

are selected from each identity from the VGGFace2 dataset and shown to participants.

The task for the participants was to check whether the two sets of images correspond to

the same identity or two different people. The user interface is shown in Figure 4. Due

to the large number of comparisons, the test was done by 20 participants, each labeling

200 pairs such that each pair is labeled by two people. From the resulting comparisons, the

pairs that were labeled as the same people by at least one participant were selected as look-

alikes and formed the 1000 look-alike pairs (1000LP) dataset. Figure 1 shows examples of

the resultant look-alike pairs. To assure the reliability of the selected look-alike pairs, the

equal-error-rate (EER) is calculated for the resulting look-alike pairs using the ArcFace

network, resulting in an unacceptably high EER of 30.32%.
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Fig. 4: Subjective face recognition test user interface.

3 Experiment Setup

The selected 1000 pairs of look-alikes consist of 1634 unique identities. The remaining

4500 identities in VoxCeleb2 are available for training the network. The rest of this section

describes the details of the organized test dataset and the parameters used for training.

3.1 1000LP Dataset

The utterances available in the VoxCeleb2 dataset are in the format of cropped faces sized

224× 224 pixels at 25 frames per second in AVC1 format. There is a total of 1,128,246

utterances which originate from 150,480 YouTube videos. After filtering out all utterances

with a length of less than 8 seconds and discarding all utterances for which face landmark

detection failed, a total of 253,361 utterances remained for training and 85,656 utterances

for testing. The median length of the remaining utterances is 10.7 seconds. From the 4500

train identities, 15% of them were held for validation purposes, and the remaining were

used for training. For the test identities, one-third of videos (28,368 utterances) were sep-

arated for enrollment, and the remaining videos were used for testing. Resulting from this,

127,332 test trials were created, out of which 57,288 are client trials and 70,044 are im-

postor trials5. Special care is taken in the selection of the enrollment and test utterances

such that if an utterance from a YouTube video is used in the enrollment, no utterances

from the same video remains in the test trials. Thus, the performance is assured to corre-

spond to the cross-video performance in real-life use.

5 The dataset is publicly available for download at http://ali.khodabakhsh.org/research/1000lp/
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Verification Identification

EER (%) Top-1 (%)Top-5 (%)

Euclidean

Distance

Segment (∼10 sec) 15.42 60.57 77.83

Video (∼4 seg) 13.04 79.84 92.61

Softmax

Classifier

Segment (∼10 sec) 10.08 65.47 81.00

Video (∼4 seg) 7.93 73.87 86.33

Tab. 1: The performance of the proposed methods.

3.2 Detector

The network parameters are shown in Figure 3. The breadth of the network along with

the dimension of the final embedding is set to 512, with only the exception of expanded

feature embedding dimensions of three times the breadth. The total number of trainable

parameters in the network was 5.3M. A kernel size of 3 is used in the convolutional stack

while max-pooling is done with a stride of two, resulting in a receptive field of 23 frames

(roughly one second) before statistical pooling. The normalized input had a dimension

of 204 corresponding to 3D coordinates for the 68 landmarks. The model was trained

using TensorFlow6 with a batch size of 256 and the learning rate was manually adjusted

towards minimizing validation loss. Semi-hard triplet loss on L2 distance of L2 normalized

network outputs was used and the model was trained for 10 epochs. The hyper-parameters

are selected according to the highest network performance on validation data.

4 Results and Discussion

The verification and identification performance of the proposed method for Euclidean sim-

ilarity as well as softmax probabilities are reported in Table 1. The Euclidean similarity

scoring performs better in identification mode than softmax probabilities and achieves

an identification accuracy of 79.84% on video level. This is remarkable considering the

large number of identities enrolled in the system (1634). Despite the high identification

accuracy, the EER of the Euclidean similarity measure is 13.04%. Softmax probabilities,

however, achieve a much better EER of 7.93% in verification mode. This discrepancy

shows that softmax probabilities perform better in separating score distributions of client

and impostor trials, but fails to preserve the ranking order of similarities. The detection

error tradeoff (DET) curve is shown in Figure 5 visualizing the fact.

In order to be able to interpret the performance of the proposed method, it is compared to

the reported results for existing BFR methods in the literature in Table 2. It is important

to emphasize that all previous methods have only been tested on videos with controlled

and semi-controlled recording environments. Among the methods that operate on non-

predetermined motion, the proposed method has the lowest EER and a comparable recog-

nition rate despite the number of enrolled identities being orders of magnitude larger.

6 https://www.tensorflow.org/
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Fig. 5: Detection error tradeoff (DET) curve for the proposed methods.

Ref. Subj. # Environment Motion Feature Classifier Perf. Metric

[LLJ01] 28Controlled Fixed-Phrase Speech Motion Flow Fields PCA + LDA ∼87%Recog. Rate

[Ce06] 50Controlled Fixed-Phrase Speech

Grid-based Motion

Contour-based Motion

Lip Shape

LDA + Bayes

5.2%

12.0%

10.4%

EER

[ZP11] 22Controlled Spontaneous Smile Motion Fields PCA + LDA 2.5%EER

[WL12] 40Controlled Fixed-Phrase Speech
Lip Shape Deformation

Lip Texture Deformation
HMM-UBM

1.92%

8.53%
EER

[Ga16] 64Controlled Induced Emotion Facial Action Units MLP 91.7%Percision

[Ie19] 20Controlled Fixed-Phrase Speech Facial Landmarks DNN 0.64%EER

[Ta19] 400Controlled Spontaneous Smile
Facial Landmark

Distances
Euclid. Dist. 31.20%EER

[MD06] 9Controlled Unconstrained Speech
Facial Feature

Displacement
GMM 19.1%EER

[YS10] 97Controlled Unconstrained Emotion
Local Deformation

Patterns
Similarity 18.86%EER

[Sh16] 96Ambiguous Unconstrained Speech Facial Action Units
Hist. Sim.

DTW
∼62%Recog. Rate

[Yu17] 20Ambiguous Unconstrained Speech Lip Contour GMM 96.2%Recog. Rate

[Ag19]

Clinton

Sanders

Trump

Warren

Ambiguous Unconstrained Speech Facial Action Units SVM

75%

95%

77%

95%

TPR @

10% FPR

Proposed 1634UnconstrainedUnconstrained Speech Facial Landmarks CDNN

7.93%

79.84%

93.12%

EER

Recog. Rate

TPR@

10% FPR

Tab. 2: The performance of the proposed method in contrast to the reported results for

existing methods.
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Fig. 6: t-distributed stochastic neighbor embedding for enrollment utterances. For aesthetic

reasons, only the identities with more than 50 enrollment utterances are visualized. Differ-

ent colors and shapes signify different identities.

Fig. 7: Facial landmark significance visualization for selected filters in conv1. The signifi-

cance is measured as the norm of the 3×3 matrix corresponding to x, y, and z coordinates

of the landmark in frames t −1, t, and t +1.
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The t-distributed stochastic neighbor embeddings (t-SNE) [MH08] for enrollment utter-

ances for a subset of identities is visualized in Figure 6. It is visible that the enrollment

utterances of test set identities form concentrated clusters with few outliers. This signifies

that the learned embedding space is able to generalize well across unseen identities, and

the failure cases probably correspond to the outliers. Figure 7 shows landmark significance

for a selected set of filters in the first convolutional layer of the network. The significance is

measured in terms of the norm of the 3×3 matrix corresponding to multiplicative weights

in x, y, and z coordinates of each landmark in frames t − 1, t, and t + 1. These heatmaps

show the reliance of the network on meaningful facial actions such as eyebrow movements,

upper lip movements, and movements in the corners of the mouth.

The results of this study show the power of large data in improving the performance and

generalizability of BFR systems. Even though this system is trained on 4500 identities, the

number of training identities is still much smaller compared to physiological face recog-

nition systems, and there is room for further improvement.

5 Conclusion

In this article, we proposed a novel general-purpose action-independent behavioral identity

embedding extraction network with acceptable performance for real-life applications. The

network benefits from a large number of training samples and identities and proves capable

of extracting descriptive embeddings for unseen identities in unconstrained conditions. We

also respond to the lack of publicly available large-scale datasets for look-alike detection,

as well as publicly available behavioral face recognition systems by releasing the 1000

look-alike pairs (1000LP) dataset and the code for the proposed method.

The proposed method provides a complementary source of identity information that can

be used alongside physiological face recognition systems to make them robust against

look-alikes, as well as presentation attacks that try to mimic the physiological likeliness.

The proposed method is robust to physical and digital spatial signal manipulations as it

relies solely on the temporal behavior of the individual in question. Due to the perma-

nence of behavioral face biometrics [Be10] and its robustness to manipulations and quality

degradation, these methods have already found their way into the detection of Deepfakes

[Ag19] and can provide a robust alternative to existing narrowly applicable detection meth-

ods [Kh18].
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3D Face Recognition For Cows

Deepak Yeleshetty1, Luuk Spreeuwers2, Yan Li3

Abstract: This paper presents a method to recognize cows using their 3D face point clouds. Face
is chosen because of the rigid structure of the skull compared to other parts. The 3D face point
clouds are acquired using a newly designed dual 3D camera setup. After registering the 3D faces to
a specific pose, the cow’s ID is determined by running Iterative Closest Point (ICP) method on the
probe against all the point clouds in the gallery. The root mean square error (RMSE) between the
ICP correspondences is used to identify the cows. The smaller the RMSE, the more likely that the
cow is from the same class. In a closed set of 32 cows with 5 point clouds per cow in the gallery, the
ICP recognition demonstrates an almost perfect identification rate of 99.53%.

Keywords: Cows, Biometrics, Visual identification, 3D face recognition, Pointcloud registration,

Iterative Closest Point, Realsense cameras.

1 Introduction

Biometric identification is an efficient and a reliable method because it uses the unique nat-

ural discriminating features of each subject without the need of an external identification

document or an attached device. This paper aims to design, implement, test and qualify a

system that identifies cows using their 3D face point clouds. The project was carried out

in the Product Development Group of the Dutch agri-tech company - Lely Industries N.V.

Despite existing electrical cow identification methods, computer vision is opted due to its

reliability, cost effectiveness and non-invasive property. Twisted Infrared (IR) tag around

the neck sometimes results in failure of identification as the tag faces the cow’s body. The

IR sensor’s batteries are non-replaceable, making the current system expensive. The tag

around the neck also causes discomfort to the cow. Cameras are cost-effective and visual

biometric identification methods like face recognition are non-invasive. The anatomy of

the cow shows us that the skull is rigid and symmetric [JC07], which gives enough reason

to pursue the cows’ 3D faces for identification. This paper attempts to answer if we can

uniquely identify cows based on their 3D face shapes. A new dual 3D camera setup is de-

signed to capture the face of the cow. The 3D face is registered to a specific pose by finding

the region of interest and correcting the rotation angles using the vertical symmetry of the

cow’s face [Sp11]. For recognition, the probe point cloud is compared with all the point

clouds in the gallery using ICP [BM92] and inlier RMSE, a metric from the python library

Open3D [ZPK18] is used to identify the cow. The identification rate for a herd of 32 cows

is 99.53%, which proves that the 3D face shape can be used to identify cows.

1 University of Twente, Data Management and Biometrics Group, Enschede, NL, yeleshetty.deepak@gmail.com
2 University of Twente, Data Management and Biometrics Group, Enschede, NL, l.j.spreeuwers@utwente.nl
3 Lely Technologies, Maassluis, NL, yli@lely.com
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The paper is organized as follows: Related work on visual cow identification, human face

recognition and point cloud registration methods is explained in section 2. The method-

ology of the proposed system is explained in section 3. The results are presented and

analyzed in section 4. The paper is concluded with an insight on future scope in section 5.

2 Related Work

The authors of [Be19] demonstrated a Deep Learning method to identify cows based on

multiple perspectives of their 2D face images. The accuracy for a closed set of 561 images

from 52 cows was observed to be 89%. Their paper explains the shortcomings in terms

of 2D landmark annotation, owing to the shape of the cow’s face and states that multiple

views yield better identification results.

ICP based recognition systems have been explored for 3D human faces [Ma05], however,

as mentioned in [Sp11], ICP takes several seconds to register and recognize. The author

in [Sp11] describes a fast and accurate 3D face registration and recognition method with

a rank-1 identification rate of 99%. For 3D face registration, the region of interest (ROI)

is estimated by fitting a cylinder. The vertical symmetry plane is obtained by finding the

rotation around y and z axes. The angle between the nose bridge and the vertical axis is

maintained at π

6
rad. Recognition is done by estimating the likelihood ratio of the probe’s

PCA-LDA features after comparing with those in the gallery. This method overcomes the

time complexity of ICP and speeds up 3D face recognition for humans. As opposed to

humans, cows lack the luxury of publicly available face database. Additionally, 2D face

registration for cows is challenging as the face creates self occlusion for even a minute

change of pose.

Two cameras are used in this project to overcome self occlusion. Point cloud registration is

the process of estimating the rigid body transformation matrix that aligns the perspectives

from both cameras, giving us a complete view of the subject. ICP [BM92] estimates the

transformation between two point clouds (source to target) by minimizing the distances

between correspondences, given an initial transformation. The transformation matrix is

iteratively updated to minimize the point to point distances over the correspondence set.

Let C = {(p,q)} be the correspondence set with correspondence pairs p ∈ P and q ∈ Q,

where P and Q are the target and the source point clouds respectively. The two main ICP

result metrics described in the library Open3D [ZPK18] are called Fitness (F) and Inlier

Root Mean Square Error (IRMSE ).

F =
Nc

Np

IRMSE =
1

Nc
∑

(p,q)∈C

dp−q

Nc is the number of correspondences, Np is the number of points in the target point cloud

and dp−q is the mean squared distance between the correspondences. Fitness describes the

overlapping area between the two point clouds. Inlier RMSE is the average of the mean

square point to point distances of the correspondences(Inliers). A good registration results

in a high fitness value (in the range [0,1]) and a low inlier RMSE value.
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This paper aims to demonstrate the 3D face registration method explained in [Sp11], on

cows. The recognition method will be based on point-to-point ICP [BM92].

3 Methodology

The proposed system’s methodology can be divided into three steps: Data Acquisition, 3D

Face Registration and ICP Based Recognition These steps can be seen in figure 1. The

camera setup is designed to capture the 3D recordings of the cow’s face. From the record-

ings, the required frames are captured and the point clouds are extracted. L-R registration

method is performed on the extracted point cloud pairs to obtain 3D faces. The 3D faces

are de-noised and transformed to a common pose as described in section 3.2 [Sp11]. Point

to point ICP [BM92] is performed on every probe point cloud against all the point clouds

in the gallery. The resulting inlier RMSE score is used to identify cows.

Fig. 1: Project Pipeline

3.1 Data Acquisition

A new dual 3D camera 4 setup is designed to acquire the 3D face of the cow. Both cameras

are designed to face forward with no tilt because tilting the cameras would increase the

field of view, which brings other cows in the frame and affects the further steps. Since the

approximate ear to ear width of the cow was about 35 cm, the cameras were placed 70

cm apart. An illustration of the setup can be seen in figure 2, where CL and CR represent

the left and right cameras respectively. FW , FD and SB denote the approximate face width,

approximate distance of the face from the setup and the fixed setup baseline respectively.

Figure 3 shows the setup used in the farm.

Table 1 shows the specification of the camera setup and the camera itself. Due to the

auto exposure setting in the Realsense camera, it was observed that the 3D points were

very poorly estimated for cows with white fur or a surface that reflects light. So, only

black or dark skinned cows are used in this project for identification. From a one-day data

acquisition session, 1442 point clouds from 32 cows were collected and are used in this

project. Each cow has 10 to 75 point clouds. Five point clouds per cow are stored in the

gallery and the remaining are used as probe. The cows were treated gently without any

discomfort throughout the data acquisition process.

To combine the point clouds from both cameras, L-R Registration method is followed (L-R

indicates Left - Right cameras). L-R registration is divided into two steps: a feature-based

4 Intel Realsense D435
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Fig. 2: Data Acquisition - Illustration Fig. 3: Hardware set up

Description Value

Approx. dist. cow to camera 60 cm

Setup baseline 70 cm

Cow face width 35 cm

Diagonal Field of view
95◦± 3◦

(per camera)

Resolution 848 × 480 px

Frames per second 15 fps

Tab. 1: Camera Setup Specification

Description Value

Voxel size for downsampling 0.02 m

Downsampling search radius 0.04 m

FPFH features search radius 0.1 m

RANSAC distance threshold 0.03 m

Tab. 2: Point Cloud Registration Param-

eters

Global Registration method that estimates a coarse transformation matrix and a Local

Registration method that refines the transformation.

Fast Point Feature Histograms (FPFH) features are estimated on the down-sampled point

cloud [RBB09]. A coarse transformation is obtained from the FPFH correspondences be-

tween the left (source) and the right (target) point clouds using RANdom SAmple Con-

sensus (RANSAC) [FB81]. The RANSAC model is set to converge when the distance

between majority of the correspondences reaches a global minimum. This coarse transfor-

mation matrix is fed to the ICP algorithm as an initial transformation estimate and yields

a fine transformation matrix between the left and right cameras. This resulted in a visually

convincing L-R Registration. Table 2 shows the different parameters used in L-R registra-

tion method. On an Intel i7 6-core 2.20 GHz CPU, it takes roughly 2 seconds to complete

L-R Registration for one pair of point clouds.

3.2 3D Face Registration [Sp11]

3D face registration involves de-noising and transforming the L-R registered 3D face point

cloud to a specific pose. The chosen pose is the front view of the cow, with the nose bridge
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area parallel to the image plane, which results in an ideal perspective that shows the vertical

symmetry of the cow’s face. A slightly modified version of the face registration method

explained in [Sp11] is implemented in this section.

To estimate the ROI of the point cloud, the surface normals of the point cloud are calculated

and a cylinder is fit using RANSAC. The open source C++ library PCL[RC11] is used to

fit a cylinder and extract the ROI using the defined parameters (Table 3) on the point

cloud. The input and output of the ROI estimation is illustrated in figure 4. As opposed to

Fig. 4: Estimating ROI using PCL Cylinder

Fitting

Description Value

Radius Interval [0.15,0.20] m

Inlier Distance Threshold
radius±0.05 m

(from Axis)

Max. RANSAC Iterations 1000

Tab. 3: Cylinder fitting parameters

humans, cows have a longer and relatively flatter nose bridge. So, a plane Pα with normal

Nα is fitted on the ROI point cloud using RANSAC in PCL. This plane always fits on the

nose bridge with a very minor tilt. The x-y plane is called Pxy with normal Nz. The angle

γ between Pα and Pxy is calculated using their normals and the ROI is rotated around the

x-axis by this angle. A plane Pnα is fit on the rotated ROI point cloud and it is translated

along the positive z- axis to a distance dz = D− 0.1 where D is the distance between the

planes Pnα and Pxy. This will translate the point cloud approximately 10 cm from the x-y

plane. To estimate the rotation angles along the y and z axes (θ and φ ), we use the vertical

Fig. 5: Completely registered point cloud

Description Value

θ interval [− π

9 ,
π

9 ] rad.

θ step size π

90 rad.

φ interval [− π

4 ,
π

4 ] rad.

φ step size π

50 rad.

Sliding interval [− 3
4 width, 3

4 width]

Sliding step 0.05 m

di f fz threshold 0.01

Tab. 4: Symmetric Orientation Param-

eters

symmetry of the cow’s face and implement parts of the Symmetry Plane section in [Sp11].

A low resolution range image is constructed for multiple steps of rotation around the y axis

(θ ), by projecting the point cloud on the x-y plane with 5x5 mm grids. The value of each
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pixel in this range image is equal to the average depth (z coordinate) of points projected

to the corresponding grid. The image is rotated in-plane in multiple steps which is the

same as rotating along z-axis (φ ). For every step in φ , The range image is mirrored and is

slid horizontally in [− 3
4
w, 3

4
w] with a step size of d = 5 mm, where w is the width of the

range image. For every step d, the pixel-wise difference (di f fz) between the image and its

mirror is computed. The pixel is said to contribute to the symmetry if the di f fz value lies

below the threshold (0.01). The θ and φ step corresponding to the maximum number of

contributing pixels are the required angles to straighten the cow’s face. The result is called

a completely registered point cloud (figure 5). The parameters used to obtain the symmetric

orientations is summarized in the table 4. It was observed that some gallery point clouds

are incorrectly registered but the source of these irregularities is not investigated in this

project.

3.3 ICP Based Recognition

ICP based recognition method is identical to the two-step L-R registration method. It is a

computationally expensive and time consuming process as each of the probe point cloud

is compared with all 160 gallery point clouds (32 cows with 5 point clouds each). Figure

6 shows an overview of the ICP based recognition method. ICP on each probe generates

160 Fitness and Inlier RMSE scores. The inlier RMSE scores are grouped for each cow

in gallery and the average scores per cow is computed, which results in a reduced set Rs

of 32 scores. The gallery ID corresponding to the minimum inlier RMSE score of Rs is

the predicted ID. Out of 1282 probes from 32 cows, 1276 probes are correctly predicted,

yielding an identification rate of 99.532%. Recognizing each cow takes about 300 seconds

on an Intel i7 6-core 2.20 GHz CPU. With further improvements in the data acquisition

process and implementation of a version of [Sp11], the recognition process could be much

faster.

Fig. 6: ICP based recognition method
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4 Results & Discussion

The metric inlier RMSE was chosen after analyzing both metrics for 1442 probes in a

verification experiment. ICP was performed for all 1442 point clouds with all 160 gallery

point clouds, except itself. For instance, if probes are in the gallery, ICP was performed

only on 159 gallery point clouds, excluding itself. Figure 7 shows distribution plots of the

(a) Inlier RMSE (b) Fitness

Fig. 7: Distribution plots of the cows based on the chosen metrics

same vs different cows for the fitness and inlier RMSE scores. We see that fitness is not a

reliable metric as the distribution shows a considerable overlap between scores 0.75 and

1.00. However, the inlier RMSE separates the same and different cows at a score threshold

of approximately 0.003. Receiver Operating Characteristic (ROC) curves are plotted for

both the metrics and the result is shown in figure 8. Inlier RMSE is observed to have an

Equal Error Rate (EER) of about 6.5% at a threshold of 0.0032, while Fitness has an EER

of 22% at a threshold of 0.836. The results show that inlier RMSE is a better metric to

classify cows in this dataset.

Fig. 8: ROC Curves - Fitness and Inlier

RMSE

# Gallery point Identification Rate (%)

clouds per cow Min. Max.

1 88.611 99.220

2 94.462 99.532

3 97.738 99.220

4 98.830 99.142

5 99.142

Tab. 5: Identification Rates
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In a closed set identification experiment, we see the identification rates for different num-

ber of gallery point clouds per cow. This will give us an idea of how the system could

perform with respect to the amount of data in the gallery. We perform the identification

experiment on 1282 probe point clouds, excluding the 160 gallery point clouds.

Table 5 shows the identification rates for different number of point clouds in gallery. Min-

imum and maximum identification rates refer to the extremes, where the decision is made

based on the worst and the best case inlier RMSE scores respectively. In the case of 1

gallery point cloud per cow, we select the lowest (best case) and the highest (worst case)

inlier RMSE scores per cow. The former yields an identification rate of 99.220% and the

latter yields 88.611%. Similarly, in the cases of 2, 3 and 4 gallery point clouds per cow, we

choose the average of the lowest(best cases) or highest (worst cases) 2,3 and 4 inlier RMSE

scores. The average of all 5 inlier RMSE values showed an identification rate of 99.142%.

The trend shows us that as we keep adding more gallery point clouds per cow we get lower

RMSE scores, whose contribution is clearly reflected in the Minimum Identification Rate

field.

5 Conclusion & Future Scope

The objective of this project was to investigate and prove the concept of identifying cows

using their face shapes in order to improve cost efficiency and the cow’s comfort. The

methodology involves slightly modified existing 3D face registration and recognition meth-

ods. After acquiring face point clouds from the proposed dual 3D camera setup and regis-

tering them, ICP based recognition yields near perfect identification rate of 99.532%. The

results prove that we can distinguish cows based on their face shapes and opens up further

possibilities in implementing a more robust registration method, speeding up the recogni-

tion process and investigating the performance on a larger scale. While the identification

rate is expected to be in a similar range, computation time will increase linearly with herd

size because ICP should be performed for more cows. Most medium-sized Dutch farms

have over 40 cows and a real time implementation of this system requires it to be at least

15 times faster (20 s per cow).

To improve the speed, implementing a faster and more accurate 3D face recognition method

as explained in [Sp15] for cows on a bigger dataset would be an interesting experiment.

Collecting data over a longer period of time from different types of cows will show if

facial variations (natural or due to sickness) will affect the system’s performance. A big-

ger dataset will enable further research on 3D cow face recognition using conventional

and Deep Learning methods. If vision based systems out-perform the traditional electrical

ones, cows will be free from IR tags around the neck.
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Efficiency Analysis of Post-quantum-secure Face Template

Protection Schemes based on Homomorphic Encryption

Jascha Kolberg1, Pawel Drozdowski1, Marta Gomez-Barrero2, Christian Rathgeb1,

Christoph Busch1

Abstract: Since biometric characteristics are not revocable and biometric data is sensitive, privacy-
preserving methods are essential to operate a biometric recognition system. More precisely, the
biometric information protection standard ISO/IEC IS 24745 requires that biometric templates are
stored and compared in a secure domain. Using homomorphic encryption (HE), we can ensure per-
manent protection since mathematical operations on the ciphertexts directly correspond to those on
the plaintexts. Thus, HE allows to compute the distance between two protected templates in the en-
crypted domain without a degradation of biometric performance with respect to the corresponding
system. In this paper, we benchmark three post-quantum-secure HE schemes, and thereby show that
a face verification in the encrypted domain requires only 50 ms transaction time and a template size
of 5.5 KB.

Keywords: Face Recognition, Biometric Template Protection, Post-quantum Cryptography, Homo-

morphic Encryption.

1 Introduction

Nowadays, biometric authentication is widely used in applications ranging from conve-

nient smartphone unlocking to high-security border control. On the other hand, we can

also observe an increase in cybercrime and databases leakages. Due to the fact that bio-

metric characteristics are unique and cannot be changed unlike e.g. passwords, unprotected

databases can be exploited to reveal enrolment data and track individuals. Hence, biometric

data, amongst others, are classified as sensitive data by the European Union in the General

Data Protection Regulation 2016/679 [Eu16]. Furthermore, research has proven that bio-

metric samples can be reconstructed from unprotected templates, for instance face [Ma18],

iris [Ga13], or fingerprint [Ca07]. The ISO/IEC IS 24745 standard [IS11] defines three

requirements for biometric template protection (BTP): i) unlinkability, two protected tem-

plates cannot be linked to the same subject, ii) renewability, new templates can be created

without the need to re-enrol and old templates can be revoked, and iii) irreversibility, it

is impossible to retrieve original samples given only protected templates. Furthermore,

the biometric performance should be preserved in the protected scheme. Therefore, BTP

mechanisms are able to handle these privacy issues since templates are stored and com-

pared in a secure domain.

1 da/sec - Biometrics and Internet Security, University of Applied Sciences Darmstadt, Germany,

{jascha.kolberg,pawel.drozdowski,christian.rathgeb,christoph.busch}@h-da.de
2 Hochschule Ansbach, Germany, marta.gomez-barrero@hs-ansbach.de
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Fig. 1: Pre-processing pipeline in order to extract templates from facial input images.

By fulfilling the aforementioned requirements, the data subject’s privacy is protected dur-

ing the comparison as well as for leaked templates. In this context, different BTP schemes

have been developed [BDL15, RU11]. One trend utilises homomorphic encryption (HE)

in order to compute the biometric comparison score directly on the ciphertexts. For in-

stance, Sadeghi et al. [SSW09] combine HE with garbled circuits to achieve protection in

a face identification scenario. Using two HE schemes for face identification, Drozdowski

et al. [Dr19] additionally discuss technical considerations and challenges. In order to speed

up the execution for face verifications, Boddeti [Bo18] explores fully HE in combination

with batching, which allows to reduce the number of homomorphic multiplications for

the distance calculation. Likewise, Yasuda et al. [Ya15] present a specific packing method

for their HE scheme to gain efficiency. Therewith, they apply template protection for dif-

ferent biometric modalities with feature vectors of 2,048 bit. Following the multi-modal

idea, Gomez-Barrero et al. [Go17] propose a general framework for verification of fused

modalities in the homomorphically encrypted domain.

However, a lot of publications applying HE for BTP assign the secret key to the client,

thus discarding the advantages of using biometrics in general and generating a two-factor

authentication system with biometrics and a secret-based knowledge. In contrast, our con-

tribution keeps the secret key on the server side. We build upon the iris BTP scheme in

[Ko19] to protect binarised face templates and benchmark recognition performance, trans-

action time, template size, and cryptographic security with two state-of-the-art HE BTP

systems [Dr19]. The focus is on post-quantum-secure cryptography [BL17] to achieve

long-term security for biometric data.

The rest of this paper is structured as follows: Section 2 describes the proposed system

including the necessary pre-processing. The experimental setup and results, including the

benchmark, are presented in Section 3. Finally, Section 4 concludes the paper.

2 Proposed System

2.1 Baseline system

Before we can encrypt face templates, we need to extract the features from the input im-

ages. The pre-processing pipeline for this purpose is shown in Fig. 1. Given the facial input

images, two deep feature extraction algorithms, ArcFace [De19] and FaceNet [SKP15],

were used to create templates of 512 floating-point values. Additionally, we applied quan-

tisation and encoding to transform the float templates into integer and binary templates in

order to be able to use additional HE schemes. Following the analysis in [Dr18], the feature
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space is divided into four segments of equal size. For the integer encoding, the float values

are simply mapped to the corresponding number of their sequence area. In order to have

the lowest distance for adjacent areas in the binary representation, the linearly separable

subcode (LSSC) [LT12] transforms each integer value into three binary digits. Float and

integer templates can be compared by computing the squared Euclidean distance, while

the Hamming distance is used on binary templates.

2.2 Homomorphic encryption

Homomorphic encryption schemes [Ac18] implement asymmetric cryptography with the

property that specific mathematical operations on the ciphertext directly affect to the plain-

text. Those additive or multiplicative homomorphic properties can generally be defined as:

Enc(A+B) = Enc(A)�Enc(B) (1)

Enc(A · B) = Enc(A)◦Enc(B) (2)

Hence, we have an operation � that results in the sum of two plaintexts when it is applied

to both corresponding ciphertexts. Another operation ◦ is used to achieve a multiplica-

tion. The specific operations depend on the selected HE scheme. Moreover, not all HE

schemes support all operations. Therefore, depending on the used biometric templates and

the required distance computations, different HE schemes [Ac18] should be utilised.

With the focus on post-quantum-security [BL17], the following three crypto schemes

are selected. In order to compute the squared Euclidean distance in the encrypted do-

main, two HE schemes are utilised. The encryption scheme by Cheon-Kim-Kim-Song

(CKKS) [Ch17] supports homomorphic operations on floating point templates and the

Brakerski/Fan-Vercauteren (BFV) [FV12] scheme is applied on the integer templates.

On the other hand, the computation of the Hamming distance in the encrypted domain

can efficiently be done with the N-th degree truncated polynomial ring (NTRU) [HPS98]

scheme, if the parameters are selected in a way that the decryption automatically performs

a modulo-2 operation. Then one addition directly results in the XOR of probe and refer-

ence. The security of all three schemes is based on the ring-learning-with-errors problem,

which, using a quantum algorithm, can be reduced to the shortest vector problem over

ideal lattices [LPR10]. Thus, granting long-term security for biometric templates.

2.3 Protected system

Based on the aforementioned considerations, we can build our HE protected system. Since

we are not interested in a two-factor authentication, where the secret key is assigned to the

client, the secret key needs to be stored at server-side. However, placing the decryption key

next to the encrypted templates in the database server (DB) threatens the whole purpose.

Hence, we need an additional authentication server (AS) in our infrastructure, which works

as a trusted third party. The structure of this system and a verification transaction are

illustrated in Fig. 2.
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Fig. 2: Verification transaction of the BTP system using homomorphic encryption.

1. The client captures the biometric characteristics and pre-processes the data, resulting

in a probe feature vector v.

2. The client encrypts v with the public key to get the protected probe p.

3. The encrypted probe p is sent to the database server (DB). In a verification scenario,

the client additionally transfers an ID claim.

4. DB computes the distance d between probe p and reference(s) ci in the encrypted

domain.

5. This encrypted distance d is forwarded to the authentication server (AS).

6. AS decrypts d using the secret key and compares the result with a decision threshold.

Alternatively, AS could also sort all computed distances in identification mode.

7. The final accept/reject decision is revealed to the client.

This architecture assumes the honest-but-curious model, where the parties stick to the pro-

tocol, but may try to learn as much information as possible. This implies that DB and AS

do not collude in order to decrypt the database or incoming probes. The client encrypts its

probe before sending it to the DB, which only operates on encrypted templates to com-

pute the encrypted distance. The AS, which possesses the secret decryption key, receives

only protected distance values and thus does not learn sensitive information from neither

the probe nor the reference. The transmission channel between parties can additionally be

protected by TLS. For higher privacy, the decision (in 7.) could be returned to the DB,

which forwards it to the client in order to conceal the identity of the client device from AS.

3 Experimental Evaluation

3.1 Experimental Setup

The experiments were run on a frontal image subset of the FERET database [Ph00] com-

prising 6,963 samples of 563 subjects. Both feature extraction methods use their freely

available pre-trained model, which allows for reproducibility of our research. Furthermore,

our BTP systems are implemented based on the open-source crypto implementations in

the Microsoft SEAL HE library3 (CKKS and BFV) and the NTRU iris template protection

system [Ko19].

3 https://github.com/Microsoft/SEAL
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Fig. 3: DET plot showing the false match rates and false non-match rates for different template types

in the verification scenario. The performance is identical for unprotected and protected systems.

Tab. 1: Rank-1 identification rates in % for different feature types.

Rank-1 float integer binary

ArcFace (%) 99.03 98.98 99.03

FaceNet (%) 98.50 98.42 98.36

In order to compare the biometric performance of different template representations, veri-

fication scores as well as rank-1 mated identification scores are computed. For the genuine

verification, all mated samples are compared and for the impostor scores, only the first

sample of each subject is compared with the first sample of all other subjects. Further-

more, the rank-1 identification scores include all mated comparisons.

The timing of relevant functions was conducted within a virtualised (single-core) Linux on

a commodity notebook running an Intel Core i7 2.7 GHz CPU and 16 GB DDR4 RAM.

While the SEAL library is written in C++, the Python3 code of the NTRU implementation

is executed with PyPy34 for an additional speed-up.

3.2 Results

Biometric performance evaluation. Fig. 3 shows that biometric verification performance

is preserved across the different template types. Especially for a false match rate below

2%, the DET curves for all types are almost identical. However, looking at the rank-1

identification rates of all mated comparisons in Tab. 1 reveals minor variations for the

different template types due to the quantisations. In general we can conclude, that the

biometric performance remains stable across different face template representations.

Execution time and file size. Generally, we could observe that execution times and file

sizes slightly increase for higher security levels. However, the relative speed-up between

different template representations stayed the same and hence only results for a security

level of 128 bits are presented.

4 https://pypy.org
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Tab. 2: Median execution time and standard deviation of relevant functions. The comparison includes

distance computation, decryption, and deriving the final decision.

128 bits Security CKKS (float) BFV (int) NTRU (bin)

Key generation (ms) 779 (±4) 255 (±5) 362 (±84)

Encryption (ms) 6 (±2) 76 (±1) 27 (±5)

Comparison (ms) 3391 (±10) 618 (±26) 23 (±3)

Tab. 3: File size of keys and a single template for the evaluated encryption schemes.

128 bits Security CKKS (float) BFV (int) NTRU (bin)

Keys 99 MB 12 MB 6 KB

Template 516 KB 132 KB 5.5 KB

The execution times for relevant functions are depicted in Tab. 2. The key generation of

all encryption schemes is done in less than one second and is negligible since it is a one

time effort at enrolment. The encryption times refer to a single template and need to be

multiplied with the number of references in the database during the system setup. An

encryption takes about 6 ms for float features, 76 ms for integer features, and 27 ms for

binary features. Analogously to the encryption, we need to multiply the comparison times

with the number of references for each performed identification. A comparison in BFV

(618 ms) is five times faster than CKKS (3,391 ms) and 25 times slower than NTRU (23

ms). Additionally, for both identification and verification, the probe needs to be encrypted

before the comparison. Thus, this single encryption affects the verification much more

than the identification scenario. It occurs that the CKKS encryption is faster than the other

encryptions, while it needs much longer on other operations. The NTRU encryption relies

on new random polynomials for each block and their generation takes apparently more

time than its corresponding function within CKKS. Comparing the file sizes, as shown in

Tab. 3, reveals intuitive results. The keys of CKKS are with 99 MB the biggest, while BFV

requires 12 MB and NTRU 6 KB. The same order holds for the template sizes; 516 KB

for CKKS, 132 KB for BFV, and 5.5 KB for NTRU.

Simulating a company database with 1,000 employees would require a database storage

of around 500 MB for CKKS, 130 MB for BFV, and 6 MB for NTRU. Using the same

system in identification mode would take around one hour in the CKKS scheme, nearly 12

minutes in the BFV scheme, and 50 seconds with NTRU.

Security analysis. Finally, all three HE schemes are based on ideal lattices and hence

found to be post-quantum-secure [BL17], which grants us irreversibility. The encryption

functions utilise a random factor with the effect that encrypting the identical plaintext

twice, results in two unlinkable ciphertexts. Renewability can be achieved by exchanging

the key pair and re-encrypting the database. Since clients only operate with the public key,

no re-enrolment is required.

Summary. These results show that real time verifications in the encrypted domain are pos-

sible for integer and binary face templates. However, when it comes to identification, only
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the comparison of binary templates is fast enough to support a reasonable transaction time.

As demonstrated, the biometric performance remains largely unaffected for all presented

template representations.

4 Conclusions

This work showed that the most important requirement for efficient template protection,

transforming float templates into integer or binary templates, has negligible impact on the

biometric recognition accuracy. Furthermore, the three ISO/IEC IS 24745 requirements

irreversibility, unlinkability, and renewability are fulfilled by the evaluated HE schemes,

CKKS, BFV, and NTRU. Additional long-term template security is granted by their post-

quantum-secure design. Since we worked with a public database and only used open-

source software, all results from this paper are reproducible. Most importantly, using bi-

nary face templates, a verification in the encrypted domain is done within 50 ms on an

ordinary notebook, which also allows to apply NTRU HE in limited identification scenar-

ios. Those results demonstrate the practicability of biometric template protection for face

verification even on off-the-shelf hardware. Future work will evaluate efficient biometric

identification in the homomorphic domain including computational workload reduction

methods [DRB19].
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A robust fingerprint presentation attack detection method

against unseen attacks through adversarial learning

Joao Afonso Pereira1, Ana F. Sequeira1, Diogo Pernes1,2, Jaime S. Cardoso1,3

Abstract: Fingerprint presentation attack detection (PAD) methods present a stunning performance
in current literature. However, the fingerprint PAD generalisation problem is still an open challenge
requiring the development of methods able to cope with sophisticated and unseen attacks as our
eventual intruders become more capable. This work addresses this problem by applying a regulari-
sation technique based on an adversarial training and representation learning specifically designed
to to improve the PAD generalisation capacity of the model to an unseen attack. In the adopted ap-
proach, the model jointly learns the representation and the classifier from the data, while explicitly
imposing invariance in the high-level representations regarding the type of attacks for a robust PAD.
The application of the adversarial training methodology is evaluated in two different scenarios: i)
a handcrafted feature extraction method combined with a Multilayer Perceptron (MLP); and ii) an
end-to-end solution using a Convolutional Neural Network (CNN). The experimental results demon-
strated that the adopted regularisation strategies equipped the neural networks with increased PAD
robustness. The adversarial approach particularly improved the CNN models’ capacity for attacks
detection in the unseen-attack scenario, showing remarkable improved APCER error rates when
compared to state-of-the-art methods in similar conditions.

Keywords: Fingerprint presentation attack detection, adversarial learning, transfer learning.

1 Introduction

Biometric recognition is nowadays a mature technology used in many government and

civilian applications such as e-passports, ID cards, border control and in most of unlock/au-

thentication systems present in handheld devices. Fingerprint recognition systems (FRS)

in particular are widely used probably having been this the first biometric trait used to

identify people. Fingerprint presentation attack detection (FPAD) methods have been de-

veloped as an attempt to overcome the vulnerability of FRS to spoofing. However, most

of the traditional approaches have been quite optimistic about the behavior of the intruder,

assuming the use of a previously known type of attack sample. This assumption has led to

the overestimation of the performance of the methods, using both live and spoof samples

to train the predictive models and evaluate each type of fake samples individually [SC15].

The presentation attack detection (PAD) generalisation capacity of a model to unseen at-

tacks, has been addressed before regarding iris, fingerprint and face. However, it still re-

mains a challenging topic. Whether in research or deployment of PAD systems in commer-

cial applications, if the classification models are designed and evaluated using bona fide

presentations and presentation attack instruments (PAI) belonging only to specific species

1 INESC TEC, Porto, Portugal, Email: {joao.a.pereira,ana.f.sequeira, diogo.pernes, jaime.cardoso}@inesctec.pt
2 Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
3 Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
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(PAISp), then the case when the model is confronted with a PAISp which is significantly

different from the ones used for training is overlooked. In the worst case scenario, such

sample may have higher probability to circumvent the system than the ones drawn from

the original training dataset and the model may fail to generalise robustly and detect the

threat. To solve this research question is necessary to develop robust methods to cope

with sophisticated and unseen attacks as our eventual intruders become more capable and

successfully develop new spoofing techniques.

The pioneer work in the evaluation of PAD methods across different types and unseen

PAISp appeared in the fingerprint domain with the work of Marasco and Sansone [MS11].

The works of Rattani & Ross [RSR15] and Sequeira & Cardoso [SC15], despite using dif-

ferent approaches, both relied on the idea of enforcing the knowledge of the bona fide (BF)

presentations over the presentation attack (PA) to better deal with unseen PAISp. With the

rise of deep learning (DL) techniques, PAD methods based on deep representations were

proposed using the binary approach [Me15, Pi18]. Followed by works tackling DL finger-

print PAD methods robustness to unseen PAISp. In [To18], was proposed a highly accurate

method based on CNNs and own multi-spectral short wave infrared imaging. The LivDet

competition series in 2015 [Mu15] included evaluation with unseen attacks, however un-

fortunately this scenario was not tested in following editions. The PAD generalisation

problem has been addressed regarding other biometric traits. Regarding iris, Sequeira et

al [Se16] stated that whenever a new PAISp is presented in the test step, the performance

of the classifier drops and improvement can be obtained using BF one-class classification;

and in [Fe19a] a successful adversarial strategy is proposed. Nevertheless, most of the

recent approaches, either make overly optimistic assumptions about the attacker - binary

classification approaches - or only use part of the data (and therefore, of the knowledge)

available at training time to design the models - one-class approaches. Alternatively, the

approach evaluated in this work uses the information of both BF and known PA and is

robust to unseen PAI species.

In this work, the FPAD generalisation problem is addressed by means of a regularisation

technique applied to artificial neural networks combining adversarial training with rep-

resentation learning. In this approach, designed to improve the generalisation capacity to

unseen attacks, the proposed model jointly learns the representation and the classifier from

the data, while explicitly imposing ‘PAI-species’-invariance in the high-level representa-

tions for a robust PAD method. The algorithm applied here was presented by Ferreira et

al [Fe19b] in the context of sign language recognition, with a later application to iris

PAD [Fe19a]. This approach builds on those initially introduced by Ganin et al [GL15],

for domain adaptation, and Feutry et al [Fe18], to learn anonymized representations.

The contributions of this work are then two-fold: 1) the application of the adversarial

training concept to the generalisation to unseen attacks problem in fingerprint PAD; and

2) the evaluation of the adversarial training methodology in two different scenarios: i) a

handcrafted feature extraction method combined with a Multilayer Perceptron (MLP); ii)

an end-to-end solution using a Convolutional Neural Network (CNN).
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The main definitions related to PAD concepts used throughout this paper are the ones

stated in the International Standard ISO/IEC 30107-3 Information Technology — Biomet-

ric presentation attack detection — Part 3: Testing and reporting [IS17].

This paper is organised as follows. This section summarises the related and proposed work

and how it addresses the research question posed. In section 2 the methodology used is

detailed. Section 3 describes the experimental setup including the results and discussion.

Section 4 concludes the work with the final remarks.

2 Methodology

This section summarises the methodology from Ferreira et al [Fe19a], which is adopted

here with the appropriate adjustments. The underlying idea behind this approach is that, in

order to generalise well to unseen attacks, the model should not specialize in discriminat-

ing any of the PAI species (PAISp) presented at training time and, therefore, the learned

internal representations should be invariant to the PAISp. For this purpose, the model

combines an adversarial approach with a species-transfer training objective, which are

described in the remaining of the section. The high-level architecture of the model is sum-

marized in Figure 1. Throughout this section, it should be assumed that one has access to a

labeled dataset X= {XXXi,yi,si}
N
i=1 of N samples, where XXXi represents the i-th input sample,

and yi and si denote the corresponding class label (bona fide or attack) and the PAI species

(only defined for attack samples), respectively. Let Xb f and X
a be these partitions of X for

bona-fide and attack samples, respectively, and Nb f and Na their respective cardinality.

XXXb

.

.

.

Task-classifier: f (hhh;θ f )

Species-classifier:g(hhh;θg)

L species

p(yi|hhhi;θ f )hhhb

L transfer

L task

yi

s j

L adv

US(s)

Fully-connected layer

sk �= s j)

p(s j|hhh j;θg)

Encoder network: h(X;θh)

XXX j
hhh j

Encoder network: h(X;θh)
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Encoder network: h(X;θh)

(
XXXb ∈ X

b f
)

(i : XXXi ∈ X)

(XXXk,XXX j ∈ X
a
, Shared weights

Fig. 1: The architecture of the proposed species-invariant neural network (from [Fe19a]).

2.1 Adversarial learning

The model comprises three main sub-networks: (i) an encoder network h(···;θh) that re-

ceives input samples and maps them to a latent space; (ii) a task-classifier network f (···;θ f )
which aims to distinguish attack and bona fide samples, mapping latent representations to

the corresponding class probabilities; and (iii) a species-classifier network g(···;θg) that re-

ceives latent representations from attack samples and aims to predict the corresponding
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PAI species. In order to learn ‘PAI-species’-invariant latent representations, an adversarial

learning scheme is adopted. The species-classifier is trained to minimize the classification

loss of the PAI-species:

min
θg

Lspecies(θh,θg) = min
θg

{
−

1

Na

Na

∑
i=1

log p(si|h(XXXi;θh);θg)

}
, XXXi ∈ X

a
. (1)

Simultaneously, the task-classifier and the encoder are jointly trained to minimize the clas-

sification loss between attacks and bona fide samples, while trying to keep the PAI-species

classification close to random guessing (i.e., close to a uniform distribution):

min
θh,θ f

L (θh,θ f ,θg) = min
θh,θ f

{
Ltask(θh,θ f )+λLadv(θh,θg)

}
, (2)

where

Ltask(θh,θ f ) =−
1

N

N

∑
i=1

log p(yi|h(XXXi;θh);θ f ), (3)

Ladv(θh,θg) =
1

Na

Na

∑
i=1

DKL(US(s)||p(s|h(XXXi;θh);θg), XXXi ∈ X
a
. (4)

Here, US denotes a uniform distribution over the set of PAI-species present in the training

set.

2.2 Species-transfer objective

In addition to the adversarial training, a species-transfer objective is employed to further

encourage the latent representations to be species-invariant. This objective enforces the

means of the latent representations of different species to coincide. Therefore, this is a

weaker constraint than the one imposed by the adversarial objective, but it has a beneficial

effect by speeding up the convergence to invariant representations.

Specifically, a layer-wise loss D (m) between the hidden representations h(m)(···;θh) of two

species s and t at the output of the m-th layer of the encoder is defined as:

D
(m)(s, t;θh) =

∣∣∣
∣∣∣ 1

Ns
∑

i: si=s

h(m)(XXXi;θh)−
1

Nt
∑

j: s j=t

h(m)(XXX j;θh)
∣∣∣
∣∣∣
2

2
, (5)

where || ··· ||2 is the �

2-norm, and Ns and Nt denote the number of training examples of

species s and t, respectively. The overall species-transfer loss Ltransfer is then a weighted

sum of the losses computed at each layer of the encoder network:

Ltransfer(θh) =
M

∑
m=1

β (m)
L

(m)
transfer(θh) =

M

∑
m=1

β (m) ∑
s∈S

∑
t∈S,
t �=s

D
(m)(s, t;θh), (6)
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where β (m) ≥ 0 is a hyperparameter that controls the relative importance of the loss ob-

tained at the m-th layer and the species-transfer loss at the m-th layer is the sum of the

pairwise distances between all PAISp.

The overall objective function of the encoder and task classifier is then the combination of

equations (2) and (6):

min
θh,θ f

L (θh,θ f ,θg) = min
θh,θ f

{
Ltask(θh,θ f )+λLadv(θh,θg)+ γLtransfer(θh)

}
, (7)

where γ ≥ 0 is the weight that controls the relative importance of the species-transfer term.

The objective for the species-classifier remains unchanged, i.e. as in equation (1).

3 Experimental setup
PAD Performance Evaluation Metrics: The Attack Presentation Classification Error

Rate (APCER) and the Bona-fide Presentation Classification Error Rate (BPCER) for

an APCER of 5% (BPCER@APCER=5%) as defined in the ISO/IEC 30107-3 [IS17]. The

Equal Error Rate (EER) analyses the distributions of the APCER and BPCER and corre-

sponds to the minimum value where both are equal.

Dataset: The Fingerprint Liveness Detection Competition 2015 (LivDet2015) [Mu15]

training dataset comprises a set of five subsets, each one corresponding to a specific fin-

gerprint sensor. For each sensor there are bona fide samples and different types of PAI.

Evaluation protocols: The adopted framework is denominated “unseen-attack”, as the

presentation attack instrument seen in the testing phase is unknown to the model. Thus,

the methods are evaluated by saving one type of attack - PAI species - for testing while the

training is done with the remaining presentation attack instruments and bona fide samples.

Handcrafted feature extraction method: The extracted features that served as input for

the MLP were the histogram of intensity, the histogram of the Local Binary Patterns (LBP)

[OPM02] and the histogram of the Local Phase Quantization [OH08].

Implementation details: The models were implemented in Python with the PyTorch li-

brary. The training phase was conducted with the Adam optimizer and a batch size of 16.

The learning rate and the �2 regularization weight were both set to 1e−04. The hyperparam-

eters λ and γ , specific to the adopted regularization, were optimized through a grid search

and cross-validation on the training dataset, varying on logaritmic scale in the interval

[1e−03,1]. The Ltransfer penalty is applied to the last layer of the encoder network. Regard-

ing the architecture of the MLP, the encoder corresponds to [ (FC(128) →ReLU) x 3 ] and

the classifiers also to [ (FC(128) →ReLU) x 3 ], where FC(n) notes a fully connected layer

with n neurons. For the CNN model, the encoder corresponds to [ (C(64) →ReLU) x 2

→MaxPool →(C(128) →ReLU) x 2 →MaxPool →(C(256) →ReLU) x 4 ], where C( f )

notes a convolutional layer with f filters, kernel 3x3, stride 1 and padding 1. The CNN’s

classifiers both correspond to [ (FC(4096) →ReLU) x 2 →(FC(1000) →ReLU) ].

Results and discussion: In Table 2, the results of the baseline methods (MLP and CNN)

and their respective regularised versions (MLPreg and CNNreg) are displayed. Comparing
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the performance of the baseline and regularised versions, it can be observed that: i) re-

garding the MLP, except for the Hi Scan sensor, in all the cases there is a significant

improvement in at least 2 out of the 3 presented metrics; and ii) regarding the CNN, there

is a significant improvement without exception in all error rates, with a particular sig-

nificant improvement of the APCER value from 4.12% to 0.81% (for the average of the

five sensors). From these observations, it can be stated with confidence that, overall, the

regularisation technique improves the PAD robustness of both the models.

Still, it is arguable that the performance of the MLP, even the baseline version, outper-

forms the CNN results. Nevertheless, it should be noted that: i) the first scenario is taking

advantage of rich handcrafted features; and ii) the data available for training is not enough

to take the best out of the CNN learning capabilities. Thus, on the one hand the end-to-end

solution provided by the CNN saves a considerable effort in the computation of the feature

extraction step and, on the other hand, increasing the amount of training data will certainly

increase the performance of these models, as there is a high potential for growth.

Tab. 1: Baseline and proposed regularised approaches - Cross Match, Digital Persona and Green Bit

sensors. (BPCER@APCER = 5% noted by BPCER@5.)

Method

PAD metrics (%)

Cross Match Digital Persona GreenBit

APCER BPCER@5 EER APCER BPCER@5 EER APCER BPCER@5 EER

MLP 0.07 7.57 4.33 0.00 0.53 0.45 0.70 0.20 1.10

MLPreg 0.13 4.30 3.70 0.00 0.00 0.30 0.70 0.63 0.93

CNN 5.00 6.25 8.70 5.60 10.80 7.28 3.03 14.13 7.05

CNNreg 1.07 4.65 2.82 0.60 3.85 2.45 0.60 2.93 1.63

Tab. 2: Baseline and proposed regularised approaches - Hi Scan and Time Series sensors, as well as

the average of the results for the 5 sensors. (BPCER@APCER = 5% noted by BPCER@5.)

Method

PAD metrics (%)

Hi Scan Time Series Average of the 5 sensors

APCER BPCER@5 EER APCER BPCER@5 EER APCER BPCER@5 EER

MLP 0.30 2.83 3.03 0.00 0.03 0.60 0.21 2.23 1.90

MLPreg 1.30 3.60 3.38 0.00 0.03 0.10 0.43 1.71 1.68

CNN 5.60 20.15 11.25 1.37 9.10 4.07 4.12 12.09 7.67

CNNreg 1.20 1.21 1.04 0.60 6.30 2.70 0.81 3.79 2.13

Despite the evidences showed in favour of the effectiveness of the regularisation technique,

it is crucial to compare the results obtained with the proposed approach against the current

state-of-the-art DL based PAD that tackle the unseen-attack scenario. This is not an easy

task as most works still opt for a more traditional approach, based on binary classification

limited to one type of attack at a time. From the available literature using similar databases

and addressing the generalisation problem, stands out the meritory initiative of Fingerprint

LivDet2015 of evaluating the methods with some unseen types of PAISp.

Table 3 presents the results of the proposed regularised CNN version, CNNreg, along-

side with the comparable literature methods currently available. The comparison is made

with the best results from the LivDet2015 [Gh17, Mu15] for common subsets of the used

database, as well as with an additional recent publication [Pa19]. From the observed re-



Robust fingerprint PAD method against unseen attacks through adversarial learning 189

sults, it is remarked the significant improvement of the CNNreg in two out of three sensors

and undoubtedly when considering the average values. In particular, the CNNreg provided

an APCER value of 0.76% against 2.09% and 6.33% of the other methods (for the average

of the three sensors).

Tab. 3: Literature and proposed approach.(BPCER@APCER = 5% noted by BPCER@5.)

Method

PAD metrics (%)

Cross Match Digital Persona GreenBit Average

APCER BPCER@5 APCER BPCER@5 APCER BPCER@5 APCER BPCER@5

Proposed CNNreg 1.07 4.65 0.60 3.85 0.60 2.93 0.76 3.81

LivDet2015 [Gh17, Mu15] 1.68 ≈ 0.80 0.60 ≈ 10.00 4.00 ≈ 5.00 2.09 ≈ 5.27

Park et al [Pa19] 0.00 - 11.00 - 8.00 - 6.33 -

4 Conclusions

This work addresses the fingerprint PAD generalisation problem through an adversarial

training objective which combines representation learning and artificial neural networks.

The method is specifically designed to address the generalisation capacity to an unseen

attack by enforcing the learning of the task of distinguishing the bona fide from the attack

presentations while ensuring the invariance between the different type of the PAI species.

Comparing the baseline and regularised versions, it can be stated that, overall, the regular-

isation technique improves the PAD robustness of both the models. Despite the fact that

the MLPreg fed with rich handcrafted features proved to be competitive, the fact is that

CNNreg has more potential for growth and for increasing its performance in the future.

The comparison of the proposed approach against the current DL based PAD methods

that tackle the unseen-attack scenario, is not an easy task as most works still opt for a

more traditional approach based on binary classification limited to one type of attack at a

time. Still, from the comparison with the available literature using similar databases and

addressing the generalisation problem, it is verified a significant superiority of the CNNreg

in two out of three sensors and undoubtedly when considering the average values.
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A Generalizable Deepfake Detector based on Neural

Conditional Distribution Modelling

Ali Khodabakhsh1, Christoph Busch2

Abstract: Photo- and video-realistic generation techniques have become a reality following the ad-
vent of deep neural networks. Consequently, there are immense concerns regarding the difficulty in
differentiating what content is real from what is synthetic. An example of video-realistic generation
techniques is the infamous Deepfakes, which exploit the main modality by which humans identify
each other. Deepfakes are a category of synthetic face generation methods and are commonly based
on generative adversarial networks. In this article, we propose a novel two-step synthetic face im-
age detection method in which general-purpose features are extracted in a first step, trivializing the
task of detecting synthetic images. The anomaly detector predicts the conditional probabilities for
observing every individual pixel in the image and is trained on pristine data only. The extracted
anomaly features demonstrate true generalization capacity across widely different unknown synthe-
sis methods while showing a minimal loss in performance with regard to the detection of known
synthetic samples.

Keywords: Deepfake, Video Forensics, Generative Adversarial Networks, PixelCNN, Universal

Background Model.

1 Introduction

Advancements in the computational capacity of modern graphical processing units (GPUs)

in the past decades allowed the realization of deep neural network models. Deep learn-

ing, among other contributions, provided solutions for the synthesis of photo- and video-

realistic content, challenging the existing manipulation detection methods in video foren-

sics. An especial case of such synthetic signals is “Deepfakes”, which are typically gener-

ated by generative adversarial networks (GANs). Deepfakes in combination with obfusca-

tion in various forms have shown to be effective at fooling human subjects [Ro19].

The research community has responded to this threat by developing various detection

methods. Yu et al. in [YDF18] made use of unique GAN fingerprints for the detection

of fake images generated by these models. RNNs have been used for temporal-aware de-

tection of Deepfakes by Guera et al. in [GD18]. The spectrum domain is used by Zhang et

al. [ZKC19] for the detection of GAN generated images.

Most of the existing detection methods are, however, complex and have narrow appli-

cability as they are trained to detect specific types of synthetic signals and fail to gen-

eralize [Kh18]. Few publications try to address the detection of synthetic samples from

unknown generation models. In [St19], Stehouwer et al. used attention mechanisms and

achieved remarkable performance over various generation techniques. Nataraj et al. [Na19]

used pixel co-occurrence matrices for generalized detection across different GAN archi-

tectures. In [Ma19], Marra et al. utilized multi-task learning incrementally for detecting

1 NTNU, IIK, Norwegian Biometrics Lab, Gjovik, NO, ali.khodabakhsh@ntnu.no
2 NTNU, IIK, Norwegian Biometrics Lab, Gjovik, NO, christoph.busch@ntnu.no
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synthetic images coming from unknown GAN models. Zhou et al. [Zh17] proposed a

two-stream classification network architecture based on steganalysis features. Afchar et

al. [Af18] utilized mesoscopic features along with shallow networks gaining robustness

against unknown synthetic images. Rossler et al. [Ro19] evaluated different detection sys-

tems on a large dataset of diverse synthetic samples and achieved the best performance

with a pretrained XceptionNet neural network. For an extensive review on the related lit-

erature, please refer to [Ve20].

Despite major progress in the detection of synthetic face images, the generalization prob-

lem across widely different generation techniques remains a major issue. In this article, we

propose a novel general-purpose feature. The subsequent trivialization enables a simple de-

tector to reliably detect unknown attacks form widely different generation techniques. The

proposed method achieves this by suppressing the content of the input signal while faith-

fully conserving the detection-relevant information. The rest of this article is organized as

follows: Section 2 explains the proposed two-step method along with the rationale behind

it. Section 3 explains the experimental setup used for showcasing the performance of the

method, and Section 4 discusses the findings of the article. Finally, Section 5 concludes

the article.

2 Methodology

Synthetic images contain artefacts that can be used for detection and can act like fin-

gerprints for identification of their generation process. These traces, however, are often

minuscule and can be severely obscured by the actual content of the images to the extent

of becoming imperceptible to the eyes of the viewer as well as the automated detection

systems. We hypothesize that in the synthetic face detection task, the actual content of

images acts as a strong noise, and removing them would unveil these traces and greatly

simplify the task of synthetic face detection. However, this approach requires knowledge

of the actual content of the image for reference.

In the absence of a reference to be subtracted from the image, the likelihood of the image

to an accurate probability distribution of pristine face images would serve as a suitable

proxy. To make the accurate modeling of the probability distribution over the face image

space practical, the image can be broken down into smaller segments, and the probability

distribution over individual segments of the image conditioned on the previous segments

can be modeled.

2.1 Pixel RNN

The probability distribution of intensity values in each pixel conditioned on pixels before

(in raster order) in pristine images can be modeled with a PixelRNN model [VDOKK16].

In this model, for each pixel i, the probability distribution (in the form of a Logistic

mixture model) of observing the current value given all previous pixel values is learned

by a recurrent or a masked convolutional neural network. This network would then be

able to predict the probability distribution of pixel values for each pixel location con-

ditioned on the pixel values before it. This probability distribution can then be used to

measure the likelihood of observing a specific pixel value in location xi given all pixel
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values before it (log(p(xi|x<i))). By repeating this operation over all the pixels in an

input image, one can calculate a likelihood matrix with the same size as the input im-

age. Consequently, the probability of observing the input image can be calculated as

log(p(x)) = ∑
n
i=0 log(p(xi|x<i)). For the purpose of this study, an improved variant of

PixelRNN named PixelCNN++ [Sa17] is used.

2.2 Classification

The probability of the input image is a feature that can spot anomalies and can directly

be used for classification. However, the conditional probability matrix corresponding to

the log-likelihood of observing every single pixel intensity can serve as a better feature for

classification as it contains additional information with respect to the location of anomalies

and the anomaly strength at each location. For achieving a higher detection rate, one can

use the model trained in the previous step as an anomaly feature extractor, or in more

precise terms a universal background model (UBM). The term UBM signifies that the

model is universally used regardless of the synthetic method in question in the detection

task. Furthermore, it signifies that the model is a background preprocessing step which

postpones the classification task to a second step. Consequently, a classifier can be trained

on the output of the UBM model which is in the form of a conditional probability matrix

in a supervised manner. Ideally, as the complexity of the detection problem is substantially

reduced following the feature extraction step, a simple classifier should be sufficient for

detection of synthetic faces. In this study, we use a very simple and small neural network

for classification.

2.3 Generalization Performance

To measure the generalization capacity of a model, a common practice is to split the gener-

ation techniques to known and unknown methods. Next, the model is trained on synthetic

data from the known methods and tested on the data from the unknown methods. To show

the generalization capacity of our proposed method, we follow the same convention and

do generalization tests in a leave-one-out (LOO) manner. For each generation method,

we consider all other methods to be known and measure the detection performance on

the single unknown method. The overall generalization performance is then measured by

aggregating them over all the leave-one-out runs.

3 Experiment Setup

For the purpose of this study, the FaceForensics dataset [Ro19] is selected as a large

dataset containing four manipulation techniques, namely Deepfakes3, Face2Face [Th16],

Faceswap4, and Neural Textures [TZN19]. This dataset contains 1000 pristine videos along

with 1000 from each manipulation technique, each split into three sets of training (with

700 videos), development (with 150 videos), and test (with 150 videos). The videos are

collected from YouTube and have a minimum quality of 480p (VGA). The videos are pro-

vided in three different quality levels to simulate the conditions of video processing in

3 https://github.com/deepfakes/faceswap
4 https://github.com/MarekKowalski/FaceSwap/
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social networks. For extraction of face images from the videos, the Dlib toolkit [Ki09] is

used, and the detected face images are resized to 64× 64. As the focus of this study is

generalizability across the four completely different generation techniques, we limit the

experiments to uncompressed data. Subsequently, the models are trained on individual

cropped face images from frames as shown in Figure 1, and the detection performance is

evaluated in terms of the frame-level detection accuracy.

Face Detection

Frame 64 × 64 PixelCNN++ UBM

(a) The pipeline for the training of the anomaly detection system. The model is trained on pristine

face images only.

Face Detection

Frame 64 × 64 Classifier Pristine | FakePixelCNN++ UBM 64 × 64

Front-end Back-end

(b) The training and evaluation pipeline of the classifier. The pre-trained anomaly detection model

is used as an anomaly feature extractor.

Fig. 1: The training and evaluation pipelines of the proposed method. UBM stands for

universal background model and represents the probability distribution based anomaly

extraction system.

The UBM model used for experiments is the Tensorflow implementation of PixelCNN++

[Sa17]. The default architecture, consisting of three blocks with five ResNet layers and

160 filters in each layer is used. A single model with 94 million parameters is trained for

five epochs on natural images only from the training set, with a learning rate of 0.0001 on

a single GPU in an end-to-end manner.

As the complexity of the detection problem is reduced in the anomaly feature extraction

step to an extent that the synthesis artifacts are visible in its output (see Figure 4), a very

simple classifier based on LeNet-5 [Le98] is used for detection of synthetic faces from

known and unknown generation methods. The modified architecture summarized in Figure

2 is small enough to be trained on a CPU and has less than one million parameters. For

each experiment, one classifier is trained on the available training data for 25 epochs with

a learning rate of 0.001. The activation function used is the ReLU function, and to improve

the convergence speed, batch normalization is used between the output of the layers and

the activation function. The overall detection pipeline is shown in Figure 1b.

4 Results and Discussion

In this section, we first discuss the characteristics of the anomaly extraction method and

then summarize the performance of the method on both known and unknown attack detec-

tion scenarios.
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Fig. 2: The diagram of the classifier architecture. Each convolution is followed by a 2x2

maxpooling layer and ReLU activation. The network has a total of 933,442 parameters.

4.1 Features

Figure 3 shows the histogram of log-likelihoods for images in the validation data for pris-

tine images as well as the synthetic images. The log-likelihood values for the pristine im-

ages are higher than the synthetic images, however, there is a significant overlap between

the distributions. Deepfakes show higher log-likelihood values compared to the other syn-

thesis methods. These results show the discrimination power of the observation probability

of the images for synthetic face image detection. However, the image probability distribu-

tions have significant overlap, and cannot be relied on as a high-performance detection

score.

Fig. 3: The image log-likelihood probability for pristine images and synthetic images in

the development data.

To achieve a better performance, we can rely on the pixel log-likelihood images extracted

by the UBM model as anomaly features. Figure 4 visualizes examples of these images

from the pristine data as well as the four generation techniques. In this figure, a dras-

tic difference is observable between the pristine images and the synthetic images. The

traces of the synthesis process are visible as low likelihood points in yellow and red on

the image. Furthermore, each generation method shows a unique footprint in all exam-

ples. The Deepfakes have artifacts in the shape of the spliced synthetic face area over the

background image. The Face2Face technique results in low likelihood pixel values on the

edges of the 3D facial features such as nose and jawline. FaceSwap technique results in low

likelihood areas around the eyes and the mouth. Lastly, NeuralTextures inhibits individual

low-likelihood pixels on the nose and eye regions.
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(a) Pristine (b) Deepfake (c) Face2Face (d) FaceSwap (e) NeuralTextures

Fig. 4: Examples of the log-likelihood output matrix of the universal background model

on pristine and synthetic face images. The name of the generation method is mentioned

below each column. As shown in the color bar, red signifies low log-likelihood probability,

while blue signifies high.

4.2 Known Synthetic Face Detection

To measure the discriminative power of the likelihood images, we used the simple classifier

explained in the previous section for synthetic face detection on each individual method.

The results are reported in Table 1 along with the performance of the baseline methods

from [Ro19]. The proposed method performs on par with the baseline methods despite

having a smaller input image size and a much smaller number of parameters. These results

confirm that the log-likelihood images conserve the information valuable for detection

faithfully while reducing the detection complexity by removing the unhelpful information.

4.3 Unknown Synthetic Face Detection

The performance of the proposed method in the unknown synthetic face detection scenario

is summarized in Table 2. The proposed method shows an acceptable detection rates for

all four synthesis methods while showing above 96% on three out of four in LOO general-

ization experiments. The performance of Face2Face method gets slight improvement over

the known case due to the larger training data available in the LOO scenario.

5 Conclusion

In this article, we introduced a truly generalizable synthetic face image detection method

which achieves an outstanding average detection accuracy of 95.73% on unknown syn-

thetic methods. The synthetic methods are from widely different synthesis mechanisms
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Tab. 1: The performance of the proposed method in terms of detection accuracy in known

synthetic face image detection scenario in comparison with existing methods adapted from

[Ro19]. (DF: DeepFakes, F2F: Face2Face, FS:FaceSwap, NT:NeuralTextures)

Input Size DF [%] F2F [%] FS [%] NT [%]

Steg. Features+SVM [FK12] 128×128 99.03 99.13 98.27 99.88

Cozzolinoet al. [CPV17] 128×128 98.83 98.56 98.89 99.88

Bayar and Stamm [BS16] 128×128 99.28 98.79 98.98 98.78

Rahmouniet al. [Ra17] 100×100 98.03 98.96 98.94 96.06

MesoNet [Af18] 256×256 98.41 97.96 96.07 97.05

XceptionNet [Ch17] 299×299 99.59 99.61 99.14 99.36

Proposed Method 64×64 99.30 98.25 99.11 98.46

Tab. 2: The performance of the proposed method on unknown synthetic samples in terms

of detection accuracy. For each method, the system is trained on the other three synthesis

data and did not observe a single sample of the method in question during training. The av-

erage detection accuracy is also reported. (DF: DeepFakes, F2F: Face2Face, FS:FaceSwap,

NT:NeuralTextures)

DF [%] F2F [%] FS [%] NT [%] Avg [%]

LOO Detection Accuracy 89.26 98.41 96.80 98.44 95.73

ranging from Deepfakes from generative adversarial networks to FaceSwap. The proposed

method consists of a preprocessing step where the content of the image is suppressed,

and the anomaly locations and anomaly strengths are extracted. The classification is then

done by a simple classifier. The anomaly extraction step is trained on natural images only

and preserves the detection-relevant information faithfully in the form of observation log-

likelihood probability. The detectors’ success provides new hopes for addressing the gen-

eralization problem over widely different generation processes.
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[Le98] LeCun, Yann; Bottou, Léon; Bengio, Yoshua; Haffner, Patrick: Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[Ma19] Marra, Francesco; Saltori, Cristiano; Boato, Giulia; Verdoliva, Luisa: Incremental
learning for the detection and classification of GAN-generated images. arXiv preprint
arXiv:1910.01568, 2019.

[Na19] Nataraj, Lakshmanan; Mohammed, Tajuddin Manhar; Manjunath, BS; Chan-
drasekaran, Shivkumar; Flenner, Arjuna; Bappy, Jawadul H; Roy-Chowdhury,
Amit K: Detecting GAN generated fake images using co-occurrence matrices. Elec-
tronic Imaging, 2019(5):532–1, 2019.

[Ra17] Rahmouni, Nicolas; Nozick, Vincent; Yamagishi, Junichi; Echizen, Isao: Distinguish-
ing computer graphics from natural images using convolution neural networks. In:
WIFS. IEEE, pp. 1–6, 2017.

[Ro19] Rossler, Andreas; Cozzolino, Davide; Verdoliva, Luisa; Riess, Christian; Thies, Jus-
tus; Nießner, Matthias: Faceforensics++: Learning to detect manipulated facial im-
ages. In: IEEE ICCV. pp. 1–11, 2019.

[Sa17] Salimans, Tim; Karpathy, Andrej; Chen, Xi; Kingma, Diederik P: Pixelcnn++: Im-
proving the pixelcnn with discretized logistic mixture likelihood and other modifica-
tions. arXiv preprint arXiv:1701.05517, 2017.

[St19] Stehouwer, Joel; Dang, Hao; Liu, Feng; Liu, Xiaoming; Jain, Anil: On the detection
of digital face manipulation. arXiv preprint arXiv:1910.01717, 2019.

[Th16] Thies, Justus; Zollhofer, Michael; Stamminger, Marc; Theobalt, Christian; Nießner,
Matthias: Face2face: Real-time face capture and reenactment of rgb videos. In: IEEE
CVPR. pp. 2387–2395, 2016.
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[VDOKK16] Van Den Oord, Aäron; Kalchbrenner, Nal; Kavukcuoglu, Koray: Pixel Recurrent Neu-
ral Networks. In: ICML - Volume 48. JMLR.org, p. 1747–1756, 2016.

[Ve20] Verdoliva, Luisa: Media Forensics and DeepFakes: an overview. arXiv preprint
arXiv:2001.06564, 2020.

[YDF18] Yu, Ning; Davis, Larry P; Fritz, Mario: Attributing fake images to gans: Analyzing
fingerprints in generated images. 2018.

[Zh17] Zhou, Peng; Han, Xintong; Morariu, Vlad I; Davis, Larry S: Two-stream neural net-
works for tampered face detection. In: CVPRW. IEEE, pp. 1831–1839, 2017.

[ZKC19] Zhang, Xu; Karaman, Svebor; Chang, Shih-Fu: Detecting and simulating artifacts in
gan fake images. arXiv preprint arXiv:1907.06515, 2019.



A. Brömme, C. Busch, A. Dantcheva, K. Raja, C. Rathgeb and A. Uhl (Eds.): BIOSIG 2020,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 199

Eyebrow Recognition for Identifying Deepfake Videos

Hoang (Mark) Nguyen1, Reza Derakhshani2

Abstract: Deepfake imagery that contains altered faces has become a threat to online content. Cur-
rent anti-deepfake approaches usually do so by detecting image anomalies, such as visible artifacts
or inconsistencies. However, with deepfake advances, these visual artifacts are becoming harder to
detect. In this paper, we show that one can use biometric eyebrow matching as a tool to detect manip-
ulated faces. Our method could provide an 0.88 AUC and 20.7% EER for deepfake detection when
applied to the highest quality deepfake dataset, Celeb-DF.

Keywords: Deepfake detection, eyebrow biometrics, biometric recognition.

1 Introduction

In recent years, digital media is playing an exceedingly influential role in different aspects

of our lives, including shaping public opinion. More and more people are getting their

information from social networks and video-sharing platforms. Unfortunately, technology

has also allowed images and videos to be manipulated by nefarious actors to show mis-

information and discord. This issue has become a public concern threatening information

trustworthiness and even undermining democracies [Ci19]. The tools for manipulating

imagery, such as those used for political misinformation, have become widely available

[VC20, Ag19].

The now-famous term ”deepfake” refers to recent (deep-learning-based) techniques used

to synthesize or otherwise alter imagery, mostly faces in videos, which is also the focus

of this paper. Due to rapid advances in computer vision and with increasingly affordable

and capable hardware, convincing fake visual contents are being created and distributed

at an alarming rate. Recently we have seen deepfake videos seeding misinformation by

depicting public figures uttering words they had never said, among many other egregious

and vulgar applications. As a result, deepfake detection is quickly becoming a high priority

topic for the research community, the industry, and the governments alike.

Current anti-deepfake algorithms heavily rely on detecting image or video abnormalities

such as visible artifacts or lack of coordination between lip movements and spoken words.

Some examples of the aforesaid facial artifact are shown in Fig 1. During facial synthesis,

many deepfake generators extract facial landmarks from the videos to manipulate the facial

areas of interest. After manipulating the targeted facial features, a series of post-processing

1 Department of Computer Science and Electrical Engineering, University of Missouri at Kansas City,
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2 Department of Computer Science and Electrical Engineering, University of Missouri at Kansas City, der-
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methods such as resolution-enhancement and color correction are applied to render the

manipulated visualizations more realistic. Facial manipulation methods may be applied

to the entire face or just the parts needed for the facial expressions [To20]. However, as

the deepfake technologies improve over time, the deepfake visualization has become more

realistic, and fewer artifacts are visible in the altered images and videos. REFACE app3

is a face swap mobile application and has successfully integrated user face into high-

quality music videos. Celeb-DF [Li20] is the highest quality deepfake forensic dataset that

is publicly available. Fig 2 shows examples from the dataset. The current state-of-the-art

deepfake detection approaches have not performed very well on this dataset, given its high

quality (table 1). Thus, instead of relying on the hard to find visible artifacts for such

datasets, we utilize a biometric recognition model to distinguish between real and fake

images from the same identity.

In this paper, our focus is on detecting face swap by matching the components of the

swapped face. More specifically, we show the efficacy of matching the eyebrow area to

counter deepfake attacks. One may add other components like lower periocular to such a

system. As the deepfake algorithms improve over time, one can expect the altered image

artifacts to vanish, and thus biometric comparison of the swapped components may be

preferable to flag counterfeit imagery.

The main contribution of this work is establishing the utility of eyebrows for deepfake

detection by way of biometric comparison. To the best of our knowledge, this is the first

time that biometric comparison of the eyebrow region is proposed for deepfake detection.

The eyebrow region is one of the most affected components in the synthesized images.

Especially in high-resolution and high-quality deepfakes, we show that eyebrow alterations

become more distinguishable if examined by a biometric comparison pipeline. In order to

make this approach to work, the model needs to know the participant’s identity beforehand

(biometric enrollment is needed). Moreover, this will be applicable when the targets are

well-known individuals are celebrities or politicians.

Fig. 1: Examples facial artifacts in deepfake database

2 Prior Work

[MRD19] is one of the most recent works in eyebrow recognition. Mohammad et al.

investigated short term eyebrow recognition using VISOB and FERET datasets. The au-

3 https://reface.app/
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Fig. 2: Examples from celeb-DF dataset: (a) real images, (b) deepfake images. Images in each col-

umn belong to the same identity

thors proposed a fusion of GIST, HOG, and VGG16 features along with Support Vector

Machine (SVM) classifiers for biometric comparison. 0.63% Equal Error Rate (or EER,

lower is better) and 0.9942 Area Under the Curve (or AUC, higher is better) was their

best-reported results when fusing three feature descriptors for both eyebrows. However,

their evaluates followed a closed set protocol where there are overlaps between training

and testing set identities.

[MRS19] exploit visual artifacts in images to detect deepfakes. The authors proposed

various facial areas where their model could spot potential artifacts caused by manipulating

facial imagery. Some examples of such artifacts are global inconsistencies, illumination

mismatches, geometrical distortions (such as those observed over the teeth), and eye color

issues. Their best-reported results is 0.866 AUC using their in-house dataset.

[St19] proposed using an attention mechanism to detect manipulated face images. The

attention map guides a CNN to scrutinize the face region in the image. The attention map

mask helps the elimination of irrelevant features and thus reduces the feature vector di-

mensionality. Therefore, only certain sub-region in the vicinity of the face make significant

contributions to the CNN’s decision. The proposed approach reportedly achieves a 0.984

AUC in the UADFV dataset and 0.712 AUC over the Celeb-DF dataset.

Table 1 summarizes reported deepfake detection results over the Celeb-DF dataset. As

mentioned earlier, to the best of our knowledge, this paper’s proposed method is the first

work using an eyebrow biometric pipeline to counter deepfake attacks. It is also notewor-

thy that we did not train our biometric model on any deepfake datasets, saving them for

eventual testing to demonstrate cross-dataset generalization.
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Tab. 1: performance of recent deepfake detection on Celeb-DF dataset.

Ref Detection Method Used Classifiers Best AUC

Zhi et al. (2018)

[Zh17]
Image-related Steganalysis CNN+SVM 538

Afchar et al. (2018)

[Af18]
Mesoscopic Level CNN 0.548

Yang et al. (2018)

[YLL19]
Head Pose Estimation CNN 0.546

Li et al. (2019)

[LL18]
Face Wrapping Artifact CNN 0.569

Matern et al. (2019)

[St19]
Visual Artifact Losgistic Regression MLP 0.551

Stehouwer et al. (2019)

[MRS19]
Facial Forgery Attention Mapping 0.712

3 Methods

We employed four deep learning models to evaluate our hypothesis: LightCNN, Resnet,

DenseNet, and SquezeNet. They are widely used in biometric research publication. There-

fore, we believe that they would achieve high performance in eyebrow matching task.

LightCNN LightCNN [WHS15] model heavily relies on Max-Feature-Map (MFM) op-

eration which was proposed in place of ReLu activation function. The operation preserves

element-wise maximum from two feature maps forcing only half of the features to reach

the next layer. In other words, this acts as a filter allowing the only compact feature to pass

through.

ResNet Resnet [He16] employs a shortcut connections to deal with the gradient degra-

dation problem[GB10]. Such an issue happens when training very deep neural networks.

The residual or shortcut connections introduced in ResNet allows for identity mappings

to propagate to multiple nonlinear layers, preconditioning the optimization during train-

ing. In this paper, we used ResNet-50 consists of 49 convolution layers and a single fully

connected layer.

DenseNet The unit’s dense block was first introduced in Dense Convolutional Network

or DenseNet [Hu17]. In each block, there are multiple convolution layers where each layer

is a concatenation of feature maps from previous layers. 1x1 convolutions are also utilized

to reduce a large number of feature maps and the computation complexity. In this work,

the DenseNet-121 model is utilized.
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SqueezeNet Iandola1 et al. proposed SqueezeNet[Ia16], an efficient model, which is 50

times smaller than AlexNet but achieved the same level of accuracy. The model employs

many strategies to decrease the number of parameters, such as small filter size, reduced

input channels, and squeezed layers. Fire module was also introduced in the paper consist-

ing of two layers: a squeeze layer consisting of 1×1 convolution filters, and expand layer,

which is a mix of 1×1 and 3×3 convolution filters. The module does not decrease only

the number of 3×3 filters but also the input channel.

Matching After obtaining our models’ feature vectors, we used cosine distance metric

to measure the similarity between reference and probe eyebrows. This is a famous match

score employed by many deep-learning-based biometric systems.

4 Experimental Evaluation

Training Data VISible light mobile Ocular Biometric (VISOB) [Ra16] is a publicly

available dataset consisting of eye images of about 550 healthy adults captured by three

different mobile phones in three different lighting conditions. The three smartphones used

in data collection are OPPO N1, iPhone 5s, and Galaxy Note 4. During the data collection,

the volunteers were asked to take selfie-like images during two visits (Visit 1 and Visit

2), 2-4 weeks apart. During each visit, images were taken in two sessions 10-15 minutes

apart, and under three different illumination conditions: regular office light, dim indoors,

and natural daylight. In this experiment, we used a subset of VISOB captured under office

lighting using the OPPO device, which offers a better resolution than iPhone and Note

4 captures, for our model training. Our model was trained on a high-resolution subset of

VISOB to tell apart identities by way of eyebrow matching.

Testing Data Celeb-DF is the large, high quality deepfake forensic dataset. This dataset

consists of 590 real videos from 59 celebrities along with 5639 deepfake videos. Since

we are not after visual artifact caused by image synthesis, we evaluated our model on

the best quality deepfake dataset that provides the most realistic fake video. This is a

challenging task that nonetheless can better demonstrate the advantages of our proposed

method. Unlike the other datasets, Celeb-DF contains almost no splicing boundaries, color

mismatch, and inconsistencies of face orientation, among other visible deepfake artifacts.

As a result, several deepfake detection papers have reported low accuracy numbers on this

dataset. As shown in table 1, the current detection methods peak around 75% AUC on this

dataset.

Data processing and training setup : We divided the VISOB dataset into 80% for train-

ing and 20% for validation. The eyebrow images were resized to different sizes depending

on the corresponding deep learning models’ input requirements. Multiple augmentations

such as random rotations and random cropping, were applied to the training set. We trained

our models with an initial learning rate of 1e-3 and reduced it by ten if the validation loss
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did not drop by ten consecutive epochs. We trained our model for a maximum of 200

epochs and ended with the weights from the epoch that yielded the best validation loss.

The momentum and weight decay parameters were set to 0.9 and 10e-4, respectively.

Experimental Setup We chose two experiments, short term and long term evaluation,

to evaluate our hypothesis. All genuine matches in the former came from different frames

in the same real video, while genuine matching was performed across the real videos in

the latter. For each celebrity, one video out of ten videos was chosen to perform gen-

uine matching in short-term evaluation. On the other hand, for the long term experiment,

we used all the real videos for evaluation. For both experimental setups, all the deepfake

videos were included to perform imposter matching with the real videos. For both the ex-

periments, we extracted one frame from each deepfake video, and 20 frames from each

real video (10 for enrollment and 10 for verification). The genuine match score is calcu-

lated between two images from the real video, and the imposter match score is calculated

between a frame from the real video and another frame from deepfake video. We only

perform matching between the original video and synthesized video from the same iden-

tities. These experiments are completely open-set that the participants in the training set

are not from the identities used in the testing set. Further, the fake vs. real evaluations are

conducted within the same quality and samples enjoy comparable resolutions regardless

of their class label. We used ROC’s Equal Error Rate (EER%) and Area Under the Curve

(AUC) metrics to convey accuracies.

Tab. 2: EER and AUC for short term eyebrows identification in real and deep fake imagery

Model lightCNN ResNet DenseNet SqueezeNet

Left AUC 0.729 0.762 0.700 0.832

EER 31.8% 29.5% 35.7% 25.3%

Right AUC 0.696 0.879 0.690 0.802

EER 35.4% 20.7% 37.6% 28.0%

5 Results and Discussions

Table 2 shows the EER and AUC for our short term evaluation. The best-achieved accuracy

is 20.7% EER and 0.879 AUC using ResNet on the right eyebrow. For the left eyebrow,

SqueezeNet performed the best with 25.0% EER and 0.832 AUC (its corresponding re-

sults for the right eyebrow were 28.0% EER and 0.802 AUC). The worst performer was

DenseNet with 0.690 AUC and 37.6% EER (right eyebrow).

The accuracies for our long term evaluation are summarized in table 3. As expected, these

results are worse than the short term’s results with AUCs from 0.548 to 0.589 and EERs

around 45.0%. This indicates that eyebrow matching is not the best choice for long term

comparisons.
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Tab. 3: EER and AUC for long term eyebrows identification in real and deep fake imagery

Model lightCNN ResNet DenseNet SqueezeNet

Left AUC 0.597 0.567 0.563 0.573

EER 44% 45.3% 45.1% 45.3%

Right AUC 0.589 0.580 0.548 0.561

EER 43.3% 43.4% 46.6% 45.3%

6 Conclusion and Future Work

With the rapid developments in image synthesis, the creation of convincing deepfake

videos has become easier and readily available to almost many. Since most of the deep-

fake detection methods rely on visible structural artifacts or color inconsistencies, they

do not perform well on high-quality deepfake datasets such as Celeb-DF. In this work,

we showed the efficacy of a new approach to expose deepfake images or videos using

eyebrow matching. Instead of detecting the visible signs of facial manipulation, we used

eyebrow match scores between real versus fake images from the same identity. Our best-

achieved accuracy was 20.7% EER and 0.879 AUC on Celeb-DF, which is significantly

better than other recently reported results on this high-quality deepfake dataset. However,

we also noted that our approach did not fare as well over long term evaluations. Another

limitation of our method is the requirement for the subject’s identity so that the biometric

eyebrow matching can proceed. As a part of future work, we would like to utilize the more

feature-rich continuous eyebrow band region (simultaneously presenting both eyebrows)

with our approach. Lastly, although our evaluations were made on a dataset different from

the development set, we wish to perform additional cross-dataset deepfake evaluations to

further test the generalization capability of the proposed framework.
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Face Presentation Attack Detection in Ultraviolet Spectrum

via Local and Global Features

Dirk Siegmund, Florian Kerckhoff, Javier Yeste Magdaleno, Nils Jansen,

Florian Kirchbuchner1, Arjan Kuijper2

Abstract: The security of the commonly used face recognition algorithms is often doubted, as they
appear vulnerable to so-called presentation attacks. While there are a number of detection methods
that are using different light spectra to detect these attacks this is the first work to explore skin pro-
perties using the ultraviolet spectrum. Our multi-sensor approach consists of learning features that
appear in the comparison of two images, one in the visible and one in the ultraviolet spectrum. We
use brightness and keypoints as features for training, experimenting with different learning strate-
gies. We present the results of our evaluation on our novel Face UV PAD database. The results of
our method are evaluated in an leave-one-out comparison, where we achieved an APCER/BPCER
of 0%/0.2%. The results obtained indicate that UV images in presentation attack detection include
useful information that are not easy to overcome.

Keywords: Face Presentation Attack Detection PAD, Ultraviolet, MFP, Biometrics.

1 Introduction

Face recognition (FR) is the most commonly used biometric method for recognizing peo-

ple. Applications range from unlocking smartphones and border-control to dynamic reco-

gnition in surveillance scenarios. The accuracy of face verification systems has improved

significantly since the advent of deep learning, especially in scenarios where sample and

probe image are taken in similar conditions. While the accuracy of FR improved, their

vulnerability to presentation attacks remains a major challenge. Presentation attacks are

defined as “presentation to the biometric data capture subsystem with the goal of inter-

fering with the operation of the biometric system.”[In16]. They range from very simple

low effort attacks like printed face images or replayed videos to more sophisticated attacks

involving high quality disguises and masks. Presentation attack detection (PAD) are ap-

proaches to prevent presentation attacks from single or series of images, using different

properties like: motion, texture or life signs. There is currently no detection method that is

absolutely safe. Especially three-dimensional masks and high quality 3D-prints can very

often overcome PAD. Commonly known methods include additional analysis of images

captured in different wavelengths, especially in the infrared (IR) and near-infrared (NIR).

Their general vulnerability in practive is that 2D and 3D face images of people are com-

monly available, or can be generated even from a single image [ASJT17]. In this paper
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we present a solution that tackles PAD, by using multi-modal biometrics in the ultra-violet

(UV) spectrum by analyzing Melanin Face Pigmentation (MFP). As discovered in a recent

paper [Sa18], MFP can be seen as additional modality, of which most can only been seen

by a sensor, sensible in UV wavelength. In this paper we analyze if these captures of the

human skin are useful for PAD by presenting novel methodology. Our first method detects

MFP in the images using ORB keypoints and identifies attacks using their number and

distribution. In the second method, we examine whether the corresponding brightness can

be used as a feature between the images. Both methods use two captures at the same time,

one in the UV spectrum and another made in the visual spectrum (VIS). To confirm our

assumption that PAD works by using images in the UV spectrum, we present a database

of presentation attacks that includes images in UV and VIS spectrum (see Section 3). This

database contains images of 2D prints on paper, 3D prints and masks of different mate-

rial. These images are evaluated together with a recently published database of 91 real

subjects captured over a period of 6 months showing different expressions and poses. The

methodology of our verification methods is presented in Section 4. There, we describe the

image descriptors and fusion methodology that we used in our methodology. Our results

in Section 5 show if UV face imaging and/or MFP, provide valuable distinct information

for face PAD. We conclude with a future perspective about the use of these properties for

future research and highlight observed issues and limitations in Section 6.

2 Related Work

Active imposter presentation attack detection algorithms can be categorized into hardware

and software based. Software based algorithms are cheaper, space saving and include static

and dynamic algorithms. They can analyze micro-textural patterns [RB17] and/or motion

[De12] but mostly fail when a trained model is used in a different environment or on other

datasets. Damer et al. [DD16] reported good results in a motion magnification based ap-

proach using histograms of oriented optical flow. A limitations of this approach is the hu-

man physiological rhythm itself and computational costs. Hardware-based multi-spectral

algorithms analyze several images in distinct regions of the electro-magnetic spectrum in-

dividually [Ra17]. There are also multi-sensor approaches, where multiple spectral bands

are being used at the same time by different sensors. The spectral band can be divided

into the VIS [400nm - 700nm], IR [780nm - 15 µm], NIR and the short-wave (SWIR)

band. Multi-sensor/cross model approaches can take advantage of the different reflection

properties of material in different spectra. In other words, knowing that human skin re-

flects IR light quite different than e.g. silicon, enabled the detection presentation attacks

by a comparison of images which capture both spectra. The effectiveness of this method

is demonstrated by the known FaceID, used in the Apple iPhone’s. But while active IR or

NIR images show advantages especially in robustness to illumination and exhibit special

characteristics of the human skin, they can be spoofed as well by using a 3D mask[SKJ16].

Due to the MFP ascribed properties, we think that these features should also be useful for

PAD.
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3 Database

The evaluation of the proposed method is carried out on an extended version of a newly

created UV-Face database [Sa18]. The database consists of images collected in the UV, as

well as in the VIS spectrum under conditions, as one would expect them in a controlled

scenario, such as border control. Compared to the IR bandwidth, one of the first observati-

ons when exposing human skin to UV emission is, that skin of different people looks quite

differently in that spectra. The Fitzpartick scale[Fi88] groups the skin type into six diffe-

rent categories, according to the reaction of the skin to the sun. Most notable with skin type

I, where people show additional MFP in the UV image, that aren’t visible for human eyes.

We captured 476 images of 28 identities of Skintype I and II. 1042 images of 45 identities

of skintype III and IV and 330 images of 18 identities of skintype V and VI. The database

includes subjects of different age, gender and skin types. We’ve expanded the database

by 127 images of spoofing attacks by using a variety of materials based on a selection of

attacks according to reported attacks in media and research. We used eight different types

of masks (painted and unpainted latex and latex foam), bursts (silicone, photopolymer and

PLA) and paper printouts on different paper. Each attack is captured by using both cameras

Fig. 1: Created spoofing attacks VIS (A) UV (B). (1) Color-bust made of photopolymers, by Stratasys

- Connex 3 3D printer (Polyjet) (2) 3D face bust (17x11cm), by Prusa i3 MK3 3D (Polylactide) (3/4)

Unpainted, professional latex masks, two painted masks of the same material and variations with

wigs (5) 3D face bust (silicone rubber) on a 3D mold, using alginat for the imprint (6) Twenty laser

color-printouts, Ten using normal paper, ten on thicker shiny

in following poses: frontal, 45◦view to the left, 45◦view to the right, looking up, looking

down. Two cameras, attached side by side, are used in order to keep the divergence in per-

spective small. Test participants, wearing the masks, or the 3D models are positioned at a

distance of 1.5m away from the cameras. In order to avoid interferences, UV/IR and VIS

filters were used respectively, allowing only the transmission of the intended wavelength.

For the UV capturing, a DLP LLC camera with a CMOS sensor, resulting in images of

2592x1944 pixel resolution is used. For illumination we used two 36W UV-A LPS lamps

with a bandwidth between 315nm and 400nm positioned in front left and front right to

the subject. The position of the used lights was chosen in a way that shades are similar in

both captures. The images in the visible spectrum are captured by using a Nikon D9000

with a APS-C CMOS sensor and a 35mm lens. The UV images are resized by 58% and

cropped to 600x600pixel, VIS images respectively. All images are converted to gray-scale.



210 D. Siegmund, F. Kerckhoff, J. Yeste Magdaleno, N. Jansen, F. Kirchbuchner, A. Kuijper

We augmented the attack database by slightly changing the saturation for every image pair

by using linear transformation.

4 Introduced Methods for UV-PAD

As one of the first observations, after capturing the attack images, we found that the bright-

ness of the images differs greatly in UV compared to the VIS. Since both VIS and UV

image are taken simultaneously by us, we can rule brightness manipulation by the attacker

out. While the brightness of the silicone bust (see Figure 1-5B) is relatively low, the 3D

color print made of photopolymers 1-1B) reflects a lot and is therefore very bright. Of

course, it can also be assumed that UV images of non-skin have no MFP, which would

be additionally evaluable on the UV images. Another observation is that relatively smooth

material, such as latex masks with no notches, have almost no details in the UV spectrum

(see Figure 1-4B). Furthermore, all latex masks show no reflections that lead to overexpos-

ure at all. Comparing that to bona fide images we observed that there is almost no image

that does not show at least a small area like this (very often at the forehead). However,

smooth material such as the silicon print, the 2D prints or the PCL 3D print have very

strong reflections of this kind. In the case of the 2D printouts, it was even only possible

at certain angles to capture images at all, where not the complete face is superimposed by

this effect. The main difference between two images is the overexposure in some places,

apparently due to the material. However, this effect also occurs in the images of the bona

fide group, and is therefore not suitable for a targeted evaluation. These observations lead

Fig. 2: Flow-Diagram of the proposed Methodology.

us to evaluate these properties in two different ways. If there are no differences between

the two images, as would be the case with real skin (MFP), this is an important feature,

which can be characteristic of attacks and bona fide. Secondly, there are differences in the

ratio of the brightness from VIS to UV, which may differ from those of the skin, they can

be seen as spectral signatures. As our database is relatively small, we could not effectively

use any deep- or transfer learning approaches. Therefore, we chose conventional features

to analyze those characteristics and prove their significance. Since both properties only

affect the skin, we use the same preprocessing steps for both methods , which is descri-

bed in the next section. Our method for extracting the different details of both images are

explained in Section 4.2. The brightness differences are presented in Section 4.3.
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4.1 Pre-processing

Initially, face detection is performed on the full resolution images. After that, VIS and UV

images are aligned to the face region by using face alignment by Zhang et al.[Zh16]. We

aligned several images manually in order to guarantee their meaningful inclusion into the

dataset. Since it is not expected that the eye region will provide valuable information, we

remove this region with a mask. Since hair and the mouth region also contain no valuable

information, we perform skin detection by using the procedure of Buza et al. [BAO17]

and mask-out all non-skin pixel. In a next step, we convert all images to grayscale, in

order to reduce the complexity of our small data-set. In our approach, which evaluates the

similarity of local features (See Section 4.2), we also do histogram equalization, which we

do not do in the case of brightness analysis (See Section 4.3).

4.2 Analysis of Similarity using local Features

As already shown in previous work[Sa18], MFP features can be extracted effectively via

keypoints (KP). We expected to find these properties which are visible in the UV spectrum

in high frequency features with a pixel size between 3 and 20 pixels (px). We have therefore

selected the ORB (Oriented FAST and Rotated BRIEF) feature detector [Ru11] to extract

this property. The ORB detector is computationally very efficient with similar matching

performance to SIFT but less affected by image noise and can be used in real-time. A

maximum of 1000 ORB KP are calculated using the harris score ranking and four points to

produce the oriented BRIEF descriptor. Matching is done by using the euclidean distance

between two points, one in the UV image, one in the VIS image, assuming that they denote

the same feature if the euclidean distance is smaller than 10 px. In Figure 3 the results

of the KP extraction and matching is shown on two images. In the upper images of an

attack, with unpainted latex mask, it can be seen that hardly any of them are detected on

the surface. It can only be found along the mouth, while in the bona fide image (below)

they are recognized throughout all many of them can be matched. The overexposed area

on the forehead in the UV image is also clearly visible. With the described method we

Fig. 3: Matched and Unmatched Keypoints in a typical bona fide image of Skintype II (bottom) and

an Attack using a Silicone Mask (top).

have extracted the keypoints on all image pairs. We can detect the following three main

differences between attacks and bona fide: (1) The number of detected keypoints is smaller

for attacks compared to non-attacks (see Figure 3A)(2) Bona fide show more KP on the UV

image that can’t be matched with ones on the VIS image (see Figure 3B). (3) In attacks,

more unmatched KP can be found on the VIS image than are found on the UV image. The
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3D silicone imprint exhibits an extremely high number of unmatched keypoints on both

images. These attributes allow us to distinguish both classes in particular, we visualized

the number of unmatched KPs in the UV and the VIS image over all classes in Figure

4. We assume that the number of unmatched keypoints between UV and VIS, as well

as between VIS and UV contain discriminative information. Therefore, we compose our

feature vector as follows: (1) Total KP detected in UV (2) Total KP detected in VIS (3)

Matched keypoints (4) Unmatched KP in the UV image and (5) the number of KP in VIS

that couldn’t be matched to the UV image.

4.3 Analysis of Brightness Property

As can be seen in Figure 3, attacks reflect differently from bona fide faces when captured

with an UV camera. Figure 4 (Left) depicts the average difference between VIS and UV

images of both bona fide faces and attacks presented in a gray-scale histogram. Thus, this

method utilizes the distribution of their brightness values in the form of histograms. It aims

to discern legitimate images from attacks by comparing the histograms of both the UV and

the VIS image of faces. Since the histograms represent the image’s brightness distribution,

each has a length of 255. By combining both histograms for one face, we create feature

vectors containing the amount of pixels that are of each particular brightness for both

the UV and VIS image. We experiment with different methods of combining, including

adding, subtracting and concatenating the histograms for feature vectors of a length of

either 255 or 510.

Fig. 4: (Left) Unmatched ORB Keypoints in the UV and VIS Image. (Right) Histogram comparison

of Attacks(red) and Bona Fide (blue) in Grayscale.

5 Experiments and Results

In our approach using keypoints, we experimented with adding and omitting the features

written in Section 4.2. Here, the variant using all five values has proved to be the best.

Using the positions of the keypoints, we experimented with different feature vector lengt-

hs between 150 and 500. A length of 300 has proven to be optimal. The feature vectors

of the histogram approach are created by either concatenating, adding or subtracting the

histograms of UV and VIS photo for a total of 9 experiment setups. The different setups
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are then evaluated based on APCER3 and BPCER4. While the SVM and AdaBoost ap-

proaches both yielded usable results (with the AdaBoost approach performing the best).

The logistic regression approach was not able to capture the difference of legitimate faces

and attacks to an acceptable degree. This is likely due to the high amount of data required

to train neural networks in comparison to SVM and AdaBoost. Among the different vec-

tor combination approaches, adding and concatenating performed comparatively (adding

performing slightly better), while subtracting did not perform as well, likely due to a loss

of information when brightness value resulted in zero.

Tab. 1: Our Results on the presented Dataset.

Scenario Histogram Keypoints Fused

APCER BPCER APCER BPCER APCER BPCER

Only Skintype 1-2 0% 0.4% 2.2% 2.45% 0% 0%

Only Skintype 3-4 0% 0.4% 3.3% 3.0% 0% 0%

Only Skintype 5-6 0% 0.4% 3.9% 6.9% 0% 0.2%

All 0.4% 1.2% 4.2% 7.2% 0% 0.2%

Due to the small amount of data available, the evaluation is performed using a leave-one-

out approach. Since AdaBoost has showed the best results in all scenarios, we only indicate

the error rates using that classifier. We were able to achieve a APCER of 0.4% at 1.2%

BPCER for the histogram features. Using this feature, we observed false positives (FP)

especially in cases using the 2D print attacks. In case of the KP feature vector we achieved

4.2% APCER at 7.2% BPCER while having FP mostly at the attacks using the silicone 3D

print and the painted latex masks. By combining both feature vectors into a common one

and training them with AdaBoost we were able to reduce the APCER to 0% at 0.2%. This

is consistent with our assumption that both properties contain complementary information

that together allow a meaningful distinction of the classes.

6 Conclusion

We presented an experimental study on evaluating the vulnerability of face recognition

system towards presentation attacks. We proposed a novel multispectral face image da-

tabase comprised of 91 subjects and several face presentation attacks. We explored the

intrinsic characteristics of UV and VIS images and used global and local features to quan-

tify the captured images as bona fide or attack. Our results indicate that UV images include

useful information for PAD.
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Privacy Evaluation Protocols for the Evaluation of

Soft-Biometric Privacy-Enhancing Technologies

Philipp Terhörst12, Marco Huber1, Naser Damer12, Peter Rot3, Florian Kirchbuchner1,

Vitomir Struc3, Arjan Kuijper12

Abstract: Biometric data includes privacy-sensitive information, such as soft-biometrics. Soft-biome-
tric privacy enhancing technologies aim at limiting the possibility of deducing such information.
Previous works proposed several solutions to this problem using several different evaluation pro-
cesses, metrics, and attack scenarios. The absence of a standardized evaluation protocol makes a
meaningful comparison of these solutions difficult. In this work, we propose privacy evaluation pro-
tocols (PEPs) for privacy-enhancing technologies (PETs) dealing with soft-biometric privacy. Our
framework evaluates PETs in the most critical scenario of an attacker that knows and adapts to the
systems privacy-mechanism. Moreover, our PEPs differentiate between PET of learning-based or
training-free nature. To ensure that our protocol meets the highest standards in both cases, it is based
on Kerckhoffs‘s principle of cryptography.

Keywords: Face, soft-biometric privacy, privacy-enhancing technologies, evaluation protocols.

1 Introduction

Recent works on soft-biometrics showed that privacy-sensitive information, such as gen-

der, age, ethnicity, or even health can be deducted from biometric data of an individual

[DER16, Te19c]. However, for many applications, biometric data is expected to be used for

recognition purposes only, and extracting such information without the user’s agreement

raises major privacy issues [Ki13]. Consequently, this kind of data is given special protec-

tion, e.g. by the European Union with its General Data Protection Regulation [CotEU16].

Soft-biometric privacy aims at suppressing this privacy-sensitive information in biometric

data, to prevent a potential misuse (function creep) of this information. Previous works

proposed several solutions to this problem. However, since these works consider different

evaluation metrics and attack scenarios, a meaningful comparison is difficult. In this work,

we propose a standardized framework for evaluating the performance of PETs on soft-

biometric privacy. We introduce propose privacy evaluation protocols (PEPs) for learning-

based and training-free scenarios. Following the Kerkhoff principle, our PEPs build on the

critical scenario of a function creep attacker that knows and adapts to the system’s privacy-

mechanism. Our PEPs include a detailed description of the data handling, the choice and

the training of the attack estimators, as well as, robust and meaningful evaluation met-

rics for both aspects of soft-biometric privacy, suppressing privacy-risk information and

maintaining recognition ability.

1 Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
2 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
3 Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
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2 Related Work

Previous works on soft-biometric privacy either proposed solutions at the image-level

[Su11, OR14, MR17, Mi18, MRR18, MRR19] or at template-level [MFV19, Te19a, Te19b,

Te20b, Te20a]. At the image-level, Suo et al. [Su11] proposed a gender conversion ap-

proach that exchanges facial components of a given face with similar components of the

opposite gender. Othman and Ross [OR14] proposed an image-based approach by apply-

ing face morphing. To disturb the original gender of an individual they morph the indi-

viduals‘ image with an image of the opposite gender. In [Ch18], imperceptible noise was

used to suppress k attributes at the same time. However, this noise is trained to suppress

attributes from only one specific neural network classifier and consequently, may not gen-

eralize to other classifiers. Mirjalili and Ross [MR17] iteratively perturb face images until

the soft-biometric attribute assigned by arbitrary estimator flips. More recently, Mirjalili

et al. [Mi18] used semi-adversarial networks (SAN) to suppress the gender information in

images. SANs are auto-encoders with adversarial training that aim to maximize the per-

formance of a face matcher and to minimize the performance of an estimator. In [MRR18]

and [MRR19], the authors extended the idea of SANs to (a) an ensemble of SANs and (b)

combining a diverse set of SAN models to compensate for each other’s weaknesses.

Recently, template-based solutions received a lot of attention. In 2019, Terhörst et al.

[Te19b] proposed similarity-sensitive noise transformations to suppress privacy-sensitive

attributes in face representations in an unsupervised manner. Concurrently, Morales et al.

[MFV19] introduced SensitiveNets, a network that suppresses target information in face

templates based on triplet loss learning. In [Te19a], Terhörst et al. proposed Incremen-

tal Variable Elimination (IVE). IVE iteratively determines the most privacy-risk variables

and deletes them from the face template. Bortolato et al. [Bo20] proposed PFRNet, a face

template learning framework that disentangles identity from soft-biometrics to enhance

privacy. In [Te20b], Terhörst et al. proposed Negative Face Recognition (NFR). This unsu-

pervised approach stores only complementary identity information to enhance the user’s

privacy. Exploting the structural differences between face recognition (use-case) and fa-

cial attribute estimation (attack scenario), same authors proposed a privacy-preserving face

recognition approach based on minimal information units (PE-MIU) [Te20a].

The following list summarizes the limitations of previous works and demonstrates the need

for a standardized evaluation protocol:

• Violation of Kerkhoffs‘ principle: Most previous works [Su11, OR14, MR17,

Mi18, MRR18, MRR19, Ch18] assume an attacker with only restricted resources

and knowledge about the systems privacy mechanism.

• Gender focus: Most previous works focus mostly on the evaluation of the binary

characteristic gender. The effectiveness of categorical or continuous attributes, such

as race and age, is not well investigated [Su11, OR14, MR17, Mi18, MRR18, MRR19].

• Non-robust evaluation metrics:: Evaluation metrics (accuracy) used in most pre-

vious works [MFV19, OR14, Ch18] are sensitive to the underlying data distribution

and thus, vulnerable to unbalanced data.

• Non-standardized evaluation process: Due to no established evaluation protocols,

a meaningful comparison of PETs is difficult.
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3 Attack Scenario

For the privacy evaluation protocol, we assume the following attack scenario: the attacker

gained unauthorized access to the face templates or images (stored or transmitted) used to

recognize individuals. The attacker may have extensive knowledge of how these were cre-

ated and what method was used to enhance the privacy of the users. Moreover, the attacker

may have access to computational power and an annotated face dataset. Accordingly, we

follow Kerckhoffs‘s principle known from cryptography, which Shannon formulated as

”
the enemy knows the system being used” [Sh49]. The attacker’s objective is the function

creep of the privacy-sensitive information of the individuals for an unknown purpose.

4 Framework / Protocol

In this section, we propose three soft-biometric privacy evaluation protocols (PEPs). We

distinguish between the evaluation of training-free (PEP-TF) and learning-based (PEP-

LB) PETs. The learning-based PETs need additional data about the suppressed attributes

for the training. PEP-TF requires no additional training and can be directly applied to

the data. For the learning-based scenario, we suggest an additional (third) loose protocol

(PEP-LBL) if the amount of data is not sufficient to perform the strict evaluation protocol

(PEP-LBS).

4.1 Preliminary

The first step of the protocol is to split the data set in approximately equally sized folds k

with k ≥ 3. This split should preserve the statistical distribution of the data set and enforce

subject-exclusiveness. This means that images of an individual are not distributed over

multiple folds but only included in one fold exclusively. This is done to ensure that virtual

attackers learn abstract soft-biometric information and do not rely on learned identity in-

formation when predicting soft-biometric attributes. The folds are used to perform k-fold

cross-validation. The number of folds used for training, development (parameter tuning),

and testing are specified in an extended notation: PEP-LBS-Ntrain-Ndev-Ntest . The N values

indicate the number of folds for the specific step. For instance, PEP-LBS-2-1-2 would in-

dicate that the learning-based and loose protocol was performed with two folds as training

set, one fold for hyperparameter-tuning, and two folds for testing. After splitting the data

in the different folds, the feature vectors are scaled to unit-length and further normalized.

Feature normalization, such as z-score or min-max scaling, is applied in the same way

as the protocol presented below. These two steps ensure a meaningful start for the attack

estimators.

4.2 PEP-LBS: Learning-based and Strict Evaluation Protocol

The learning-based and strict privacy-enhancing protocol (PEP-LBS) assures that the

same data is not used multiple times during the evaluation process. The protocol assumes

that the PET includes a training process. Therefore, the original data set is divided into

three parts Dtrain, Ddev, and Dtest (which all may consist of multiple folds). The Dtrain set

is used to train the PET and the Ddev to fine-tune possible hyper-parameters of the method.

The Dtest is transformed using the trained and fine-tuned privacy-enhancing method and

further divided into the three subsets: Ttrain, Tdev, and Ttest . It is important to note that Ttrain,
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Tdev, and Ttest are subsets of the transformed Dtest and not the transformed Dtrain and Ddev.

Ttrain is then used to train the different FCEs. Tdev is used to fine-tune the hyper-parameters

of these FCEs. The Ttest set is used to evaluate the performance of the PETs in regard of

its recognition performance and the suppression performance on the FCEs. A schematic

view of the PEP-LBS protocol can be seen in Figure 1a. When using the PEP-LBS we

recommend to choose the number of folds in the test subset, Ntest ≥ 3.

(a) PEP-LBS (b) PEP-LBL

Fig. 1: Schematic of the data handling of both learning-based protocols PEP-LB.

4.3 PEP-LBL: Learning-based and Loose Evaluation Protocol

In PEP-LBS, dividing the Dtest into Ttrain, Tdev, and Ttest , requires an appropriate large test

set Dtest and thus, a large amount of data. Since this is often not available, we introduce

the learning-based and loose protocol (PEP-LBL). In this protocol, the data separation is

loosened. This comes at the cost of a partial overfit of the PET on T . The Dtrain subset is

used to train the privacy-enhancing method. The Ddev subset is used to adjust the hyper-

parameters of the PET. Afterwards, all three subsets Dtrain, Ddev, and Dtest are transformed

using the PET into Ttrain, Tdev, and Ttest . Ttrain is used to train the estimators of the attacker

and Tdev to fine-tune the parameters of the estimators. Ttest is only used to evaluate the PET.

The loose protocol provides a trade-off if splitting the test set Dtest to evaluate the FCEs

would lead to too small subsets that meaningful results cannot be obtained. To prevent this,

the train set Dtrain and the development set Ddev are used twice, once in their unaltered

templates/images to train and fine-tune the PET and once in their transformed ones Ttrain

and Tdev to train and fine-tune the attack estimators. A schematic view of the PEP-LBL

protocol is shown in Figure 1b.

4.4 PEP-TF: Training-free Evaluation Protocol

The proposed training-free evaluation protocol (PEP-TF) assumes that the PET does not

require a training phase. Therefore, the three parts of the original data set, Dtrain, Ddev, and

Dtest are directly transformed by the PET to the modified templates/images Ttrain, Tdev, and

Ttest . Ttrain is used to train the different FCEs, Tdev is used to adjust the hyper-parameter of

those estimator models and Ttest is then used to evaluate the performance of the privacy-

enhancing method. An illustration of the PEP-TF protocol is shown in Figure 2.

Fig. 2: Illustration of the data han-

dling for the training-free protocol

PEP-TF.
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4.5 Function Creep Estimators

In the proposed attack scenario, the function creep attacker deploy function creep esti-

mators (FCEs) to determine privacy-sensitive attributes that were previously obscured by

the transformation through the PET used. These FCEs are trained and fine-tuned as de-

scribed in the used protocol. The hyperparameter tuning can be done, for example, via

Grid Search, Random Search or Bayesian Optimization. In Section 4.1, the pre-processing

of the data was already described.

The template-based approaches are evaluated using the extracted feature representations

of the face images. For the possible FCEs, we recommend well-known estimators that

should be used as a baseline to assess the quality of the PETs. These include random for-

est, support-vector machines, k-nearest neighbors and logistic regression. This choice is

based on (a) their membership to different kinds of machine learning models and (b) the

fact that these perform evidently well on face templates [Te20b, Te19a]. Each FCE is in-

dependently trained twice: first, on the unmodified data and second, on the transformed

data that was modified by the PET. This allows us to compare the performance of the esti-

mators without having noise due to different test samples. The training of several different

estimators is intended to ensure the robustness of the PET for different kind of attacks.

Please note that another attack scenario might come from regenerating a face image from

a template and manually investigating this. However, patterns of privacy-sensitive infor-

mation in templates are generally easily detectable due to the feature entanglement during

the learning process.

In contrast to PET based on template-level, image-based approaches have to deal with

large-scale and more restricted feature spaces. Image-based approaches have the advantage

that, for many attributes, the modified representations can be evaluated by humans as well.

However, the choice of function creep estimators should additionally include machine-

based solutions since these solutions might catch suspicious artifacts that humans are not

aware of. Due to the large-scale nature of images, (a) CNN approaches [KSH12] should

be used as potential FCEs or (b) a combination of lower-dimensional handcrafted features,

such as LBPH [AHP06], with the proposed template-based estimators.

5 Evaluation

So far, the protocol descriptions focus on the data handling and the training of PETs and

FCEs. Based on this, this section describes how the PETs can be robustly evaluated in

regard to the FCEs. The challenge of soft-biometric privacy describes a trade-off between

maintaining the recognition performance of face representations and suppressing the pre-

dictability of privacy-sensitive attributes within these. To evaluate both aspects of the trade-

off, the attribute estimation and the recognition results of the modified and unmodified face

representations are compared. For the evaluation of the attribute suppression performance,

the predictions of the FCEs on the un/modified representations of Ttest are used. The eval-

uation of the recognition performance is based on the un/modified representations of Ttext .

The recognition performance is the most important factor of recognition systems, since it

measures its major purpose. We recommend to evaluate these in terms of receiver oper-

ating characteristic (ROC) curves with false non-match rates (FNMR) at a different false
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match rates (FMR) as defined in the ISO standard [ISO]. ROC curves provide a broad per-

formance overview independent of the application and allow to compare the recognition

performance of the unmodified baseline with the PETs. For more specific comparisons,

FNMR at a fixed FMR of 10−3 or smaller can be used as recommended by the European

Border Guard Agency Frontex [Fr17].

To evaluate the suppression performance of PETs, we recommend the use of the balanced

accuracy. This balanced accuracy is equivalent to the standard accuracy definition with

class-balanced sample weights. This allows an unbiased performance measure on testing

data with unbalanced attribute information. The suppression performance of PETs can be

compared by providing the attribute estimation performance of the unmodified baseline

and compare these with the estimation performances of the FCEs on the PET-modified

representations. For a single value comparison on the suppression performance the sup-

pression rate [Te20b] can be used. The suppression rate γ =
accorg−accmod

accorg
is defined by the

difference in prediction accuracy between unmodified (accorg) and PET-modified (accmod)

representations.

To measure the benefit of applying a PET, the privacy gain identity loss coefficient (PIC)

[Te19b] is a suitable tool. The PIC is defined as PIC = AE ′−AE
AE

−
RE ′−RE

RE
where AE and

AE ′ denote the attribute prediction errors of an FCE. RE and RE ′ define the recognition

errors with and without the privacy-enhancement of the face representations. In Figure 3,

equipotential lines for different PIC-values are shown and visualize the trade-off. The PIC

values the relative error of the FCE prediction with the relative error of the recognition

performance. Consequently, it directly measures the benefit of using the PET such that a

higher coefficient states a higher benefit.

Fig. 3: Example of a recognition-

attribute plot [Bo20]. The attribute

prediction error is shown over the

recognition error for the unmodified

baseline and the different PETs. The

attribute error refers to the most suc-

cessful FCE. The size of the shaded

areas refer to the PIC coefficient for

a PET. Additionally, equipotential

lines for different PIC-values are

shown in grey.

To visualize the worst-case privacy-enhancing performance, we recommend the use of

recognition-attribute plots [Bo20], as shown in Figure 3. This plot shows the recognition

error (e.g. the FNMR at 10−3FMR) over the balanced prediction error of an attribute (e.g.

gender). The attribute prediction error refers to the most successful FCE, to simulate the

most critical attack scenario. In the plot, the unmodified baseline is shown, as well as the

PETs under the specification of the most successful FCE. This allows a complete eval-

uation of the trade-off between suppressing an attribute and maintaining the recognition

performance. To further visualize the benefit of applying a PET, the size of the shaded

areas around a PET represents its PIC coefficient.
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6 Conclusion

Extracting privacy-sensitive information, such as demographics or health information,

about an individual from biometric data without consent is considered a major privacy

issue. Recent works proposed PETs under different evaluation processes, metrics, and

considered attack scenarios. This makes a meaningful comparison of these methods chal-

lenging. To enhance the comparability of PETs, and thus enhance the development of this

field, we propose PEPs in the most critical attack scenario of a function creep attacker that

knows and adapts to the systems privacy-mechanism. We propose three PEPs to ensure

sufficient use of the data concerning the nature of the evaluated PET. This includes effi-

cient and independent data handling, training of PETs and FCEs, and robust evaluation

metrics for both aspects of soft-biometric privacy.
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Minutiae-based Finger Vein Recognition Evaluated with

Fingerprint Comparison Software

Katy Castillo-Rosado1,0, Michael Linortner2,0, Andreas Uhl2, Heydi Mendez-Vasquez1,

José Hernandez-Palancar1

Abstract: Finger vein recognition is a biometric authentication technique based on the vein patterns
of human fingers. Despite the fact that classical approaches are based on correlation, the topology
of vein patterns allows the use of minutiae points for their representation. Minutiae points are the
most used features for representing ridge patterns in fingerprints. In literature, it has been shown that
minutiae can be used for finger vein comparison, but low image quality provokes that many spurious
minutiae are extracted from them. In this work, a preprocessing method is presented, that combines
classical digital image processing methods and level set theory in order to extract a set with the most
reliable minutiae. The experiments were performed on two publicly available databases and different
comparison methods were used for testing the representative character of the minutiae set extracted.
The results showed that even though the amount of extracted minutiae is around 15-30, effective
identification is possible.

Keywords: Finger veins, minutiae, recognition.

1 Introduction

Vascular pattern recognition, also called vein recognition, utilizing blood vessels located

underneath the skin of a finger, hand, or wrist as a biometric trait has become an emerging

technology in the field of biometrics. Under near-infrared (NIR) light the veins appear as

dark structure which is captured on gray scale images with a NIR sensitive camera. The

depicted vein structure is assumed to be unique for an individual, even for each hand or

finger of a person [Uh20].

The veins are segmented using different methods, like principal curvature (PC) [Ch09], re-

sulting in a binary vein pattern which is used as biometric template. The classical approach

to compare two such templates is to obtain a similarity score by applying correlation. An-

other approach is to utilize intersection, branching or endpoints of the extracted vein pat-

tern analogous to minutia points used in fingerprint recognition. Using minutiae points in

vein recognition has already been investigated in literature. In [Yu09] and [WLC08] minu-

tiae points are extracted from finger and hand vein images, respectively. For comparison

of the biometric templates modified Hausdorff distance (MHD) is utilized in both cases.

A similarity score between two minutiae sets from hands is calculated in [Ur11] by count-

ing corresponding minutiae pairs that have similar relative positions and angles. In [Li14]
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2 Department of Computer Sciences, University of Salzburg, Salzburg, Austria, {mlinortner,uhl}@cs.sbg.ac.at
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minutiae pairing is done using SVD and the comparison is based on an average similarity

degree after false pairs have been removed by applying a LBP variant locally. Minutiae

cylinder codes (MCC) applied on hand vein minutiae points is described in [HTB13].

MCC has been originally introduced in fingerprint recognition [CFM10a].

The main contribution of this work is to show if it is possible to apply classical fingerprint

minutiae comparison software on minutiae points extracted from vein images to achieve

a high performance in accuracy and speed. To the authors best knowledge this has not

been investigated in literature so far. For vein segmentation a novel method inspired by

the general fingerprint minutiae extraction process is introduced, where some well known

techniques for image processing with methods from level set theory are combined. From

the experiments it can be seen, that despite the fact that the extracted minutiae set is small

(25-30) it can correctly identify the vein pattern.

An advantage applying fingerprint minutiae comparison technology on vein images is, that

there can be already existing solutions adopted to finger vein recognition, like for embed-

ded systems or so called Match-on-Card (MoC) systems [BSV06], which would then be

the first MoC system in finger vein recognition.

Four classical minutiae-based comparison software are evaluated, see section 3.

2 Proposed feature extraction

Inspired by the general idea for preprocessing fingerprint images with low quality, the fol-

lowing method is presented for extracting minutiae from finger vein images. The main idea

is to extract the most reliable minutiae points. The method combines a group of well known

techniques from digital image processing with methods from level set theory. For this, the

vein image can be modeled as a fluid interface. Applications of fluid interfaces include

breaking surface waves, in which factors such as topological connectivity and boundary

conditions play significant roles [SS03].

The input image I is treated as a surface where each pixel is replaced by the curvature of

the surface at that point. To calculate the curvature, a method based on level set theory

[OS88] is used. This method has a positive impact on computational methods for surface

movements and has been used to solve a wide kind of problems. In this method, the mean

curvature δ of an image I is computed as δ = ∇ ·n, where ∇ is the gradient operator and n

is the outward drawn normal [Sm03] defined as n = ∇I

|∇I |
.

By resting in this theory for detecting the ridges and valleys location, and by using well

known methods from literature [GW06] for enhancing the image, the method for extract-

ing minutiae points is introduced and it is explained below. A visual example of the method

output is presented in figure 1.

Due to the low quality presented in vein image, first the image has to be smoothed. In order

to reduce the pixelation effect during capturing, the mask size which must to be used in

this case is small. The images usually present very low contrast in all the dimensions. Even

in some cases, there is not a visual difference between finger veins and the background.

Therefore, a process of image normalization is needed. After normalizing the image, it

will be distorted. This process may cause the appearance of some spurious artifacts. An

oriented contextual filtering can enhance the image and it can highlight the truly vein pat-

tern structure. The orientation field is calculated by using the classic gradient method from
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literature [Ma09], in this case, the window (wθ ) for processing the image needs to be se-

lected from a small set of possible values. The filtering stage is done with a bank of 120

low-pass oriented filters.

The binarization process is not trivial. In fingerprints, ridges and valleys have similar di-

mensions, and the threshold can be determined by local average. For vein images, this

process is not appropriate, because ridges and valleys have different width. So, it is nec-

essary to calculate the highest values for ridges and the lowest values for valleys. For this

purpose, by relying on level set theory, the normalized gradient divergence is calculated, in

order to highlight the maximum and minimum peaks in the image. Maximum peaks have a

positive value, minimum peaks have a negative value and the ones that are not peaks have

values close to 0. For identifying these peaks, Otsu thresholding is applied to the absolute

value of the normalized gradient divergence. Then, these peaks are used to estimate a reli-

able local threshold for binarizing the image. For this purpose, the size of the windows for

smoothing the image before calculating the divergence (wδ ) and for binarizing the image

(wβ ) need to be estimated. After binarization, the skeleton image is calculated and minu-

tiae are extracted with well known methods from literature [ZS84]. Only bifurcations are

selected, because endings are very probably spurious minutiae. For calculating a reliable

minutiae direction, bifurcations where the length of at least one of their branches is less

than a certain threshold (γmin) are eliminated. Also, the length of each branch line (λ )

where the trace is going to stop for calculating direction needs to be declared. Direction

field for each minutiae is calculated in the same way as for fingerprint minutiae.

(a) (b) (c) (d)

Fig. 1: Example image from the UTFVP database showing the main steps of the method process. (a)

The enhanced image with the oriented contextual filter. (b) The normalized gradient divergence. (c)

The binarized image. (d) Vein skeleton with the extracted minutiae.

3 Experiments

The experiment’s main purpose is to show that finger vein patterns can be correctly de-

scribed by a small minutiae set, corroborating in this way, the idea of using minutiae points

for finger vein recognition.

The following four fingerprint minutiae comparison software packages are used: The pub-

licly available Bozorth3 as a part of the NIST Biometric Image Software (NBIS) Release

5.0.0 and the Minutiae Cylinder Code (MCC) SDK [Ca10, CFM10b], as well the IDKit

SKD Version 9.0 from Innovatrics and the VeriFinger 11.2 Extended SDK from Neu-

rotechnology, two commercial products. Latter both offer a MoC system which is NIST

Minutiae Interoperability Echange (MINEX) compliant. MHD is used as an additional

point based comparison method.

To compare the minutiae-based approaches to classical vein recognition techniques, PC

has been chosen, which shows a good baseline performance in vein recognition. PC is a

vein segmentation method and cross-correlation is used to obtain a similarity score be-

tween two templates [Ch09].
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IDKit and VeriFinger require the minutiae input in the ANSI/INCITS 378-2004 [AN04]

binary format, MCC can read the minutiae from ASCII files. All three use the informa-

tion of image size and resolution. Some tests showed, that different comparison scores are

produced when the resolution value changes, which is true for all three software packages.

Therefore, a resolution value is chosen such that the vein image ROI has approximately

the same size as the bounding box of a fingerprint with a resolution of 500 dpi. For the

UTFVP ROIs (336×128 pixels) a resolution of 134 pixel per centimeter (pcc) and for the

PLUS ROIs (368×96 pixels) a resolution of 147 pcc is derived.

The proposed preprocessing method was implemented in Matlab 2019. MHD and PC as

well the comparison score evaluation have been implemented in C++ using the OpenCV

library version 3.4.2.

3.1 Data sets

Two publicly available finger vein data bases are used for the experiments:

• The University of Twente Finger Vascular Pattern Database (UTFVP)[TV13] con-

tains images of six fingers (index, middle and ring finger) of both hands of 60 sub-

jects. Four samples of each finger have been acquired.

• The PLUSVein-FV3 Finger Vein Database [KPU18] (PLUS) contains 4 data sets of

the same subjects and fingers with images captured from the dorsal (D) and pal-

mar (P) view, both acquired with LED and Laser illumination, respectively. It also

provides already extracted ROI images which were used in the experiments.

3.2 Parameter search

The quality of the extracted features highly depends on the image quality. Therefore, the

parameter selection for the method is crucial. Databases have different acquisition charac-

teristics and quality of the obtained data varies from one database to another. Therefore, a

parameter search is needed for obtaining the best possible results.

To avoid over fitting a 2-fold validation is employed, splitting the data in such a way, that

each fold contains the images from half of the subjects which are assigned to each fold

randomly. For each parameter set the equal error rate (EER) is calculated for each fold.

Based on the lowest EER value found in fold 1, the comparison scores of a parameter set

in fold 2 are selected and vice versa, then they are combined and on them again the EER is

evaluated and reported. This is done 100 times, each time splitting the subjects randomly.

For the preprocessing and feature extraction method the parameter value search is per-

formed on a total of 5 parameters. The possible values for each of these parameters are

selected by studying each step involved in the entire process. The combinations of all

parameters make a total of 144 different settings: wθ ∈ {8,16,32}, wδ ∈ {4,8,12,16},

wβ ∈ {32,40,64}, γmin ∈ {10,20} and λ ∈ {10,20}.

In case of the MCC SDK also a parameter search is necessary. After investigating the be-

havior of different MCC settings for fingerprint tenprint impressions and fingerprint latent
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impressions [Ca10, CFM10b], some parameters were set based on previous researches for

latent fingerprints [VMM19] and for some of them a set of possible values was selected.

Due to the high amount of possible parameter settings, first a parameter search was done

only for one minutiae set of the UTFVP database (total of 1527 parameter combinations).

Then the parameters of the first 50 best results have been investigated and a subset has

been chosen for enrollment: radius = 300,σs = 9,σd =
π

6
,µψ = 0.002,ω = 100,MinVC =

0.03,MinM = 1 and for comparison: MinME = 0.03,δt =
π

6
,µP = 32,µρ1 ∈ {

1
30
,

1
24
},τρ1 ∈

{−50,−100},µρ2 ∈ {
π

8
,

π

4
},τρ2 =−25,µρ3 =

π

16
,τρ3 ∈ {−28,−40},nrel = 4.

3.3 Evaluation

Evaluation is done applying the fingerprint verification competition 2006 3 (FVC) proto-

col and each finger of an individual is considered as a single class. Next to the recognition

accuracy, execution times for the template comparison have been evaluated, to show dif-

ferences in time performance between minutiae-based and the classical correlation-based

finger vein recognition methods. All templates are loaded into RAM so that only template

comparison time is considered. The time needed to execute 66780 comparisons has been

measured (UTFVP dataset following FVC protocol).

3.4 Results

Table 1 - 5 report the recognition performance for the used data sets and different methods

applied on them. For all reported values the average (avg) as well the standard deviation

(std) have been calculated using the results of the N = 100 different evaluations as de-

scribed in section 3.2. For the EER additionally the minimum and maximum value of the

100 fold splits is presented to show how much the performance can vary depending on the

selection of subjects for the parameter estimation. Beside EER, the ZeroFMR, FMR100,

ZeroFNMR, FNMR100 and area under curve (AUC) are reported.

In general, the four minutiae-based comparison software SDKs Bozorth3, IDKit, VeriFin-

ger and MCC perform quite similar, being VeriFinger the one which obtains the best re-

sults. On the PLUS data sets MCC lies very close to VeriFinger and IDKit, while on the

UTFVP database its performance is a little bit lower and is similar to Bozorth3. MHD,

which is a more naive approach, clearly shows the lowest performance on all data sets.

The classical correlation-based PC shows a better performance on all databases.

The results indicate, that on the dorsal view of a finger a better performance can be

achieved. It seems there are more structures visible which are feasible for minutiae extrac-

tion. Table 6 shows the evaluation of the execution times for 66780 comparisons, averaged

over 10 runs. It clearly shows that all minutiae-based approaches run almost two order of

magnitude faster than the classical correlation-based PC approach.

3 http://bias.csr.unibo.it/fvc2006/perfeval.asp
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Tab. 1: Recognition performance for the UTFVP data set.

UTFVP
EER

in%

ZeroFMR

in%

FMR100

in%

ZeroFNMR

in%

FNMR100

in%

AUC

in%
avg std min max avg std avg std avg std avg std avg std

Bozorth3 12.1 0.4 11.5 13.4 57.3 5.8 25.2 0.8 91.1 1.4 89.6 1.3 93.85 0.33

IDKit 10.1 0.3 9.6 10.9 47.8 8.6 19.0 0.6 98.8 0.1 77.9 2.7 95.49 0.19

VeriFinger 6.8 0.2 6.4 7.2 39.0 4.2 15.5 0.5 11.0 0.1 11.0 0.1 96.41 0.29

MHD 14.7 0.4 13.8 15.8 72.5 5.0 34.4 1.2 99.7 0.3 87.3 2.3 92.50 0.30

MCC 12.2 0.4 11.6 13.4 51.8 5.3 22.9 0.8 99.3 0.5 88.0 2.5 93.88 0.28

PC 0.4 0.1 0.2 0.8 1.2 0.5 0.3 0.1 85.0 10.2 0.0 0.1 99.86 0.05

Tab. 2: Recognition performance for the PLUS-Las-P data set.

PLUS-Las-P
EER

in%

ZeroFMR

in%

FMR100

in%

ZeroFNMR

in%

FNMR100

in%

AUC

in%
avg std min max avg std avg std avg std avg std avg std

Bozorth3 12.4 0.3 11.8 13.2 63.9 10.8 22.2 0.5 17.3 0.8 17.3 0.8 88.72 0.54

IDKit 8.2 0.3 7.7 9.1 58.1 7.5 14.2 0.5 99.4 0.0 83.6 2.3 96.25 0.20

VeriFinger 6.5 0.2 6.0 7.0 58.0 10.1 13.0 0.8 9.1 0.2 9.1 0.2 95.01 0.37

MHD 25.8 32.4 10.9 100.0 71.3 13.9 39.3 26.6 99.9 0.1 90.8 4.5 79.32 34.68

MCC 9.2 0.2 8.7 9.7 50.3 9.0 16.1 0.5 99.9 0.1 87.1 2.7 95.74 0.15

PC 1.3 0.3 1.0 2.5 3.9 1.1 1.3 0.4 92.1 7.4 4.5 6.1 99.67 0.13

Tab. 3: Recognition performance for the PLUS-Las-D data set.

PLUS-Las-D
EER

in%

ZeroFMR

in%

FMR100

in%

ZeroFNMR

in%

FNMR100

in%

AUC

in%
avg std min max avg std avg std avg std avg std avg std

Bozorth3 7.5 0.3 6.9 8.6 36.1 7.5 12.2 0.7 25.9 2.9 25.9 2.9 94.93 0.35

IDKit 3.7 0.2 3.2 4.3 36.2 7.7 5.3 0.4 99.7 0.9 44.5 4.3 98.80 0.09

VeriFinger 3.1 0.1 2.9 3.5 23.8 4.7 4.4 0.3 9.0 0.1 9.0 0.1 98.13 0.14

MHD 9.8 3.8 0.1 16.7 56.2 13.1 20.4 7.0 100.0 0.1 77.9 14.8 95.39 2.73

MCC 3.9 0.2 3.4 4.6 23.1 4.4 5.6 0.4 100.0 0.0 54.0 6.6 98.58 0.13

PC 0.4 0.1 0.2 0.8 1.7 0.7 0.3 0.1 43.6 34.5 0.0 0.0 99.97 0.02

4 Conclusion

In this work a novel method for extracting minutiae points from finger vein patterns is

introduced. This method uses techniques from level set theory for detecting the reliable

ridges and valleys from the vein pattern. For evaluating the extraction process the perfor-

mance of some classical minutiae-based fingerprint comparison techniques are reported.

Two state of the art commercial and two publicly available comparison software pack-

ages were used. The results achieved by the minutiae-based comparison techniques show

promising performances. Although the classical correlation-based PC approach obtains

the best results in terms of recognition accuracy, when it comes to the processing time of

the comparisons it clearly shows its weakness compared to the minutiae-based comparison

methods. The experiments show that there is a trade-off between accuracy and comparison

speed using minutiae-based approaches or classical techniques. In future work the bina-

rization process should be enhanced. In this way, more reliable ridges can be detected.

Therefore, less minutiae will be missed and less spurious minutiae will be extracted.
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Tab. 4: Recognition performance for the PLUS-Led-P data set.

PLUS-Led-P
EER

in%

ZeroFMR

in%

FMR100

in%

ZeroFNMR

in%

FNMR100

in%

AUC

in%
avg std min max avg std avg std avg std avg std avg std

Bozorth3 10.6 0.4 10.0 12.4 49.2 5.3 19.8 0.5 23.8 0.8 23.8 0.8 91.60 0.41

IDKit 6.8 0.3 6.4 7.6 40.5 6.4 11.7 0.5 100.0 0.0 71.5 4.2 97.17 0.20

VeriFinger 5.4 0.2 5.0 5.9 35.4 6.9 10.2 0.4 10.1 0.1 10.1 0.1 96.55 0.21

6 MHD 18.4 2.9 10.7 23.7 73.6 7.2 39.7 5.2 100.0 0.1 96.7 3.2 88.43 2.58

MCC 8.4 0.2 7.9 8.9 46.1 6.7 14.8 0.5 100.0 0.0 87.2 2.3 96.16 0.16

PC 0.8 0.1 0.5 1.6 2.8 1.0 0.7 0.2 72.7 24.0 0.4 0.5 99.89 0.05

Tab. 5: Recognition performance for the PLUS-Led-D data set.

PLUS-Led-D
EER

in%

ZeroFMR

in%

FMR100

in%

ZeroFNMR

in%

FNMR100

in%

AUC

in%
avg std min max avg std avg std avg std avg std avg std

Bozorth3 7.0 0.4 6.4 8.2 33.0 3.9 11.3 0.6 29.2 1.3 29.2 1.3 95.33 0.41

IDKit 3.7 0.3 3.2 4.9 34.2 12.6 5.6 0.5 96.6 2.5 39.0 4.6 98.91 0.12

VeriFinger 3.2 0.2 2.8 3.8 22.5 5.5 4.9 0.3 9.5 0.2 9.5 0.2 98.22 0.24

MHD 14.4 4.7 7.1 21.6 58.9 8.3 28.1 8.7 99.7 0.6 89.1 11.8 91.66 3.80

MCC 4.3 0.2 3.9 4.9 27.0 6.3 6.4 0.3 99.7 0.4 55.8 4.2 98.46 0.13

PC 0.3 0.1 0.2 0.4 1.0 0.4 0.2 0.1 38.9 29.0 0.0 0.0 99.98 0.01

Tab. 6: Execution times of 66780 template comparisons.

VeriFinger MCC MHD PC

Time in sec 30.6 ± 0.6 45.7 ± 0.1 17.3 ± 0.2 1678.8 ± 61.7
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Application of affine-based reconstruction to retinal point

patterns

Mahshid Sadeghpour, Arathi Arakala, Stephen A. Davis, Kathy J. Horadam1

Abstract: Inverse biometrics that exploit the information of biometric references from comparison
scores can compromise sensitive personal information of the users in biometric recognition systems.
One inverse biometric method that has been very successful in regenerating face images applies
an affine transformation to model the face recognition algorithm. This method is general and could
apply to templates extracted from other biometric characteristics. This research proposes two formats
to apply this method to spatial point patterns extracted from retina images and tests its performance
on reconstructing such sparse templates. The results show that the quality of the reconstructed retina
point pattern templates is lower than would be accepted by the system as mated.

Keywords: Retina, Biometric Template Protection, MDS-based Reconstruction, Inverse Biometrics,

Affine-based Approximation.

1 Introduction

Irreversibility is one of the two critical requirements emphasised by ISO/IEC [IS11] to

protect the sensitive personal data in biometric references [EC16]. Among reversibil-

ity attacks, those that exploit further information of data subjects, inverse biometrics,

are classified into four groups based on the level of knowledge required by the attacker

[GBG20]. The first group requires knowledge about the template format. The next group,

hill-climbing attacks [Ad04, Ga13, Go14], requires access to the scores issued by the

system. The third group requires access to the scores generated by the system as well

as a set of imposter samples to be presented to the system. The last group are those

attacks which require knowledge of the feature extraction method. The method in the

third category, which will be reviewed and applied here, was proposed by Mohanty et

al. [MSK06, MSK12]. Hereinafter we call it the MSK method.

The MSK algorithm models a biometric comparison algorithm using the scores issued by

the system. An attacker needs to have access to a pool of imposter biometric samples

(the break-in set) to present to the system. This attack is non-iterative. Having access to

such a pool, the attacker can perform most of the attack offline without requiring iterative

improvements of a presented sample.

The results in [MSK12] are very convincing in regenerating face images, and outperform

hill-climbing attacks [Ad04]. So far, this attack has been tested on face recognition sys-

tems. The general consensus is that any biometric recognition system that issues the com-

parison scores is vulnerable toward the MSK attack. We would like to check the threat

1 Mathematical Sciences, School of Science, RMIT University, Melbourne, mahshid.sadeghpour@rmit.edu.au,

arathi.arakala@rmit.edu.au, stephen.davis@rmit.edu.au, kathy.horadam@rmit.edu.au
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of this attack on different biometric characteristics, those with sparser representations in

specific. To the best of our knowledge, it has not yet been tested on vascular biometric

characteristics or on point pattern templates. However, the essence of the attack is general

enough to be applied to fixed-length templates of other biometric characteristics.

This paper applies this attack to spatial point pattern templates (of varying lengths) ex-

tracted from retinal vascular graphs. It has been shown that retina can be accurately repre-

sented and compared using sparse templates comprising locations of feature points instead

of the whole image [Ar16]. Our intuition was that this type of sparse biometric template

might be more resistant to the MSK inverse attack.

We propose two formats for inputting the biometric information of the break-in sets as

vectors of the same length. By its construction, the MSK algorithm should be able to re-

construct the break-in set very well. If the modelling does not do a good job in regenerating

the break-in set, it probably would not successfully reconstruct target references. Our ex-

periments show that neither format can reconstruct the break-in set well, nor can they suc-

cessfully reconstruct the biometric references. The MSK algorithm will be reviewed briefly

in section 2. The replication of results of Mohanty et al. [MSK06] will be presented in

section 2.1. Section 3 gives two methods to apply this attack to retinal spatial point pattern

templates and tests their performance reconstructing break-in sets and reference databases.

Conclusions and future work appear in section 4.

2 Review of the MSK algorithm

The MSK algorithm approximates any comparison algorithm by an affine transform, given

sufficiently many pairwise Euclidean distances between a pool of biometric samples (break-

in set) X = {X1, . . . ,XK}. The pairwise distances between the break-in set samples are

used to define an affine space where the representations of break-in set samples in the

affine space, Y = {Y1, . . . ,YK}, will have the same pairwise distances as in the Euclidean

space. To find the approximating affine transformation A that maps the break-in set sam-

ples Xi, 1 ≤ i ≤ K, to the modeled vectors Yi, 1 ≤ i ≤ K, the MSK algorithm inputs the

data of break-in templates Xi, 1≤ i≤K, as columns of a matrix X. Thus, the break-in tem-

plates are required to have the same length. For an unknown target sample Xt , if an attacker

has access to the distance vector d′ = (d′
1, . . . ,d

′
K) between Xt and the break-in samples,

he can locate the transformed target Yz in the affine space. Using a pseudo-inverse A† of

affine approximation A, the attacker can then reconstruct the target template Xz from its

point Yz in the affine space. Full details can be found in [MSK12].

2.1 Reproducing the results of face image reconstruction

We converted the MSK Matlab code in [MSK06] to R code, then used it to model the

PCA-based face recognition system [TP91] using FERET face database [Ph98, Ph00]. The

underlying face recognition system applies Mahalanobis Cosine distance to compare the

eigen-faces [Be03]. This experiment is performed to confirm that the R code is capable of
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reproducing Mohanty et al.’s results in [MSK06]. The break-in set consists of 596 samples

of 149 individuals from FERET. The images are 150×130 pixels, resulting in face image

vectors of length 19,500.

First, we tried to reconstruct the break-in set members. From an attacker’s point of view,

a successful modelling of the biometric algorithm would result in reconstructed break-in

samples with high quality. The reason is that when a break-in sample is considered as the

target, its distance vector to the break-in samples has 0 in one coordinate, as the target

already exists in the break-in set. Figure 1a shows two of the original break-in samples

from FERET on the top row and their corresponding reconstructed faces on the bottom

row.

We then used the break-in set to reconstruct samples from 100 different target biometric

references (BRs) in the FERET dataset and presented the reconstructed face images to the

PCA-based system as probe samples.

(a) (b)

Fig. 1. a) Instances of some original faces from break-in set (top row) and their correspond-

ing reconstructed faces (bottom row). b) Mahalanobis Cosine score distributions for mated

(green), non-mated (red), and MSK-reconstructed samples (purple, reconstructed break-in

set; and blue, reconstructed target BRs)

Figure 1b illustrates the distributions of Mahalanobis scores for mated, non-mated, and re-

constructed samples in the PCA-based face recognition system. The distribution of scores

achieved by comparing reconstructed reference samples to the original samples (the blue

curve in Figure 1b) shows that all the reconstructed faces could be accepted by the system,

which confirms the results in [MSK06]. The scores obtained by comparing the recon-

structed break-in faces with the original break-in samples show that break-in faces are

reconstructed with very high quality (purple curve in Figure 1b). Reconstructed break-in

faces have better quality compared to reconstructed BRs.



234 Mahshid Sadeghpour, Arathi Arakala, Stephen A. Davis, Kathy J. Horadam

3 Application of MSK algorithm to retina point patterns

This study endeavours to tune the MSK algorithm on spatial point pattern templates. The

attacker has access to the comparison scores issued by the system, and is unable to gain

access to the BRs. However, he has access to the break-in set. From the attacker’s perspec-

tive, a smart method is to try and reconstruct the break-in set templates, first. Then, tune

the attack using the knowledge obtained by reconstructing the break-in set. It is expected

from the algorithm to successfully reconstruct each break-in template Xi, 1 ≤ i ≤ K since

its corresponding data point Yi, 1 ≤ i ≤ K exists in the modelled affine space (having zero

distance to itself).

We conducted our experiments over a retinal vascular database, called ESRID (ECG Syn-

chronised Retinal Image Database) [Ha12]. This database is collected by RMIT University

and is accessible on request from the authors in [Ha12]. ESRID consists of 414 retinal im-

ages of 46 data subjects. Each individual in this dataset has 9 samples of their left eyes.

The size of images in ESRID database is 2376×1584 pixels. The retinal point patterns are

extracted from spatial graphs that are rescaled and centered on the optic disc. Rescaling

sets the fovea on the point (1,0) and the point patterns do not require further registration.

The feature points from each image are extracted as real-valued spatial coordinates (x,y),
and values can be negative. In experiments that reconstruct the break-in set, templates

from the first data subject are considered as references, and the remaining 405 templates

constitute the break-in set. In experiments that reconstruct BRs, we performed 46 experi-

ments to reconstruct the BRs that are independent from the break-in set. Each of these 46

experiments reconstructs templates of one data subject using templates from every other

data subject as break-in set.

We were interested in investigating the impact of the underlying comparison function on

the performance of MSK reconstructing point pattern templates. We applied two different

point pattern comparison functions: ICP (Iterative Closest Point) and MHD (Modified

Hausdorff Distance) [DJ94] in our experiments.

3.1 Adaption of the spatial coordinates format

Here each Xi is a list of (x,y) coordinates of the points in the break-in sample Xi and

would be read as a column vector with x-coordinates followed by y-coordinates. However,

the sizes of Xis vary since different break-in samples have different numbers of points.

The attacker needs to modify X1, . . . ,XK to have the same dimensions by padding each

Xi with enough (0,0) points to increase its length to the maximum length template. After

padding, each template will be of length 1,092. Using MSK, any reconstructed templates

will have length 1,092 and a cluster of points close to (0,0) caused by reconstructing the

added (0,0) coordinates.

To thoroughly study the impact of this introduced noise, we first focused on break-in sam-

ples, which an attacker should be able to reconstruct well (as they can for face images).

The idea is that the attacker is well aware of the sizes of the break-in templates. Thus,
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when Xz is generated for a break-in template, the attacker can truncate exactly the auxil-

iary points it contains. Figure 2 shows the scores obtained by comparing the reconstructed

break-in spatial coordinates with the original break-in spatial coordinates both with noise

(solid purple curve) and without noise (dashed purple curve) for MHD and ICP.

To estimate the effect of the added noise on reconstruction of BRs we checked the per-

formance of the attack after discarding the points (x,y) from the reconstructed templates,

where −θ ≤ x,y ≤ θ for θ ∈ {0,0.25,0.5,0.75,1}. Since the performance of the attack

using these values was not markedly different, we only present here the results for θ = 0.5.

The blue curves in Figure 2 represent the results of these experiments. Note that the plot-

ting function in Figure 2a over-smooths the curve for reconstructed BRs. The smallest

MHD score obtained by comparing the reconstructed BR templates and their correspond-

ing targeted templates equals 2.782. This score is greater than the smallest score for non-

mated comparisons which is 2.408.

In Figures 2, the distribution curves for scores obtained by comparing the reconstructed

templates with the original templates illustrate that when treating retinal point patterns as

spatial coordinates, the reconstructed templates would not be accepted by the system as

mated templates. In fact, even discarding all noise introduced to the break-in templates

(the dashed purple curves) does not improve the performance of the attack enough to

reconstruct templates that could be considered by the comparator as mated templates.

(a) (b)

Fig. 2. Score distributions for mated (green), non-mated (red), and MSK-reconstructed

templates (blue, with ESRID BRs; solid purple, with ESRID break-in set with noise;

dashed purple, with ESRID break-in set noise-reduced) using MHD (a) and ICP (b).

3.2 Adaption of the binary image format

Here, we treat the templates as binary images with discretised intensity values equal to

either 255, if a pixel contains a feature point, or 0, otherwise. Feature points in these tem-
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plates are real-valued spatial coordinates (x,y). To identify the pixels that contain feature

points, the original spatial coordinates were shifted, scaled and rounded to ensure that

all the coordinates were positive integers. To minimise rounding error, we applied the

inverse transformation to the rounded coordinates and calculated the MHD and ICP dis-

tance between the inverted values and the original (x,y) coordinates, with scaling values

1,5,10 and 15. For accuracy and speed, we selected s= 10, resulting in templates of length

1,254,400.

After performing the attack on a target sample Xt , the returned intensity values in the vector

Xz are greyscale, and must be binarised by thresholding. An attacker can find threshold(s)

θ for the reconstructed break-in set then use this information to binarise reconstructed

BRs. Following this approach we found that each greyscale break-in reconstruction had

its own threshold. If θ = 128, no binarised break-in template is reconstructed. Optimising

over the thresholds we found for each break-in reconstruction gave θ = 25 and θ = 38,

respectively, for MHD-based and ICP-based systems. However, not all binarised break-

in reconstructions with these uniform thresholds will contain feature points. The purple

curves in Figure 3 illustrate the performance of the reconstructed break-in set using the

optimum thresholds.

Then, we applied those values as thresholds to reconstruct BRs. With θ = 25 (resp. θ = 38)

for the MHD-based (resp. ICP-based) system, 32.6% (resp. 28.51%) of the binarised re-

constructed BR templates had no feature points in them. We discarded their scores when

plotting performance. The blue curves in Figure 3 illustrate the performance of recon-

structing BRs using the optimum thresholds.

We see that when treating retinal point patterns as binarised images, the reconstructed

BR templates would not be accepted by the system as mated templates. In fact, many

of the break-in templates cannot be reconstructed well enough to be considered by the

comparator as mated.

4 Conclusion

We applied the MSK algorithm to two formats of retina point pattern templates in this

paper. The experimental results showed that the performance of this attack on retinal vas-

cular point patterns is not comparable with that on face images. From our point of view,

the approximation procedures in calculating Yi s and A† skew the the values more than a

point pattern comparison algorithm can tolerate. Image-based face comparison algorithms

can tolerate this amount of deviation since there is a high amount of continuity among

their values, whereas for point patterns this is not the case. The performance of this attack

on retinal vascular point patterns is so poor that it might not be considered as a threat to

privacy and security of the users and their templates. The results using our proposed for-

mats showed that the attack is not even successful in reconstructing break-in templates.

For our future work, we would like to check the performance of the MSK attack on the

point patterns extracted from other vascular biometric characteristics that have reasonable

recognition accuracy. We are also interested in exploring the reconstruction of point pat-
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(a) (b)

Fig. 3. Score distributions for mated (green), non-mated (red), and MSK-reconstructed

templates (blue, with ESRID BRs; purple, with ESRID break-in set) using MHD (a) and

ICP (b).

tern and graph-based vascular templates using a hybrid reconstruction method that applies

the affine-based reconstruction algorithm followed by a hill-climbing attack.
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Biometrics
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Abstract: This study extends previous advances in soft biometrics and describes to what extent soft
biometrics can be used for facial profile recognition. The purpose of this research is to explore human
recognition based on facial profiles in a comparative setting based on soft biometrics. Moreover, in
this work, we describe and use a ranking system to determine the recognition rate. The Elo rating
system is employed to rank subjects by using their face profiles in a comparative setting. The crucial
features responsible for providing useful information describing facial profiles have been identified
by using relative methods. Experiments based on a subset of the XM2VTSDB database demonstrate
a 96% for recognition rate using 33 features over 50 subjects.

Keywords: Comparative Soft Biometrics, Profile Face Recognition, Profile Facial Attributes, Rank-

ing.

1 Introduction

Due to increasing security threats around the world, there is an urgent need for more ad-

vanced technologies in the field of biometrics, particularly in facial recognition. Popular

authentication methods in diverse security systems involve identity verification based on

the identity card of an individual and identification based on biometric measurements.

In their 2018 survey, Abdelwhab et al. explain that unlike other methods, biometrics are

unique for each individual; cannot be easily transferred; are readily available; and cannot

be easily borrowed, forgotten, shared, stolen, or observed [AV18].

The soft biometric provides extra knowledge for higher recognition by using comparative

description based on eyewitness testimonies from a scene of a crime. Soft biometrics are

dynamic features of an individual such as age, skin colour, height, ethnicity, and face di-

mensions, which provide additional information provided by eyewitnesses to improve the

accuracy and reliability of traditional biometrics or to perform recognition for cases where

there is no recoding system in the scene of the crime and there are only eyewitness tes-

timonies to describe the criminal. Although traditional biometrics play a primary role in

recognition and detection, recent research shows that the use of soft biometrics has signif-

icant potential in different applications such as identification, and identity verification. For

instance, Klare et al. utilized hand-drawn sketches and compared them with facial compo-

nents using two experimental methods for identifying suspects in criminal investigations
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[Kl14]. The approach was relatively successful for enhancing the recognition/identification

of individuals through verbal description, particularly by victims of criminal activities.

Various studies have assessed the efficacy of profile face images. For instance, in [YEE19],

authors show how the profile face images can affect the accuracies and they found that age

and gender classification can achieve high accuracies by combining ear and profile face

images which contain a valuable information. Moreover, [BU17] and [ZW11] demon-

strate that estimating ages from ear and side-view of face images leads to a promising

performance in recognition rate.

Although there are many research studies on facial profile attribute analysis, only a few

are concerned with the analysis of facial profile attributes for biometric purposes. Facial

recognition remains significantly affected by the wide variations of pose. The pose prob-

lem makes the training of face retrieval algorithms challenging. In fact, effective recogni-

tion requires the capture of numerous face images at different angles for the same person.

The existing systems in the literature do not provide a large volume of annotated side view

faces. Our main contribution in this work is to propose facial profiles as a viable biometric

system in a soft biometric framework. In summary, the contributions of our work are listed

in more details as:

• It establishes a soft biometric system with face profiles to highlight the significance

of profile (or side view) in biometric recognition.

• It proposes a new set of semantic profile facial attributes along with their compara-

tive labels.

• It identifies the important attributes that enable efficient recognition of an individual

using the profile face.

The remainder of the paper is organized as follows: Section 2 explains the research ap-

proaches and the use of a ranking system with semantic attributes and labels. Section 3

is a description of the experimental platform and discusses the results. Finally, Section 4

draws some conclusions which outlines our research and discusses the future work.

2 Methodology

2.1 Attributes Definition

In this paper, we analyse profile face attributes based on approaches used in previous stud-

ies. In our method a new set of facial profile attributes are proposed for comparative soft

biometrics for recognition and identification. We also use some existing soft biometric

features previously proposed in, [ANH16a], [ANH16b], [ANH17], which describe the

important traits of a human face, e.g. shape of an eyebrow, eye and nose and allow the

definition of 26 attributes relevant for extracting the identity of each face. Our proposed

new attributes are nostril size, nose tip, face profile height, face profile width, ear-to-head
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ratio, ear-to-nose distance and ear-to-chin distance, because they can, intuitively, describe

or be associated with a facial profile.

2.2 Profile Facial Dataset

We used the XM2VTSDB dataset for this research. This dataset is established and main-

tained by the University of Surrey. The multimodal database hosts numerous speech record-

ings, video sequences, and facial images from 295 subjects [Me99]. The recordings of

images in XM2VTSDB spanned an extended period, involving four sessions, to allow sig-

nificant variation in the appearance of the subjects. For instance, the recordings preserved

in the resources are likely to have individuals with variances in shape, facial hair, and

hairstyles. Fig.1 shows example images in XM2VTSDB face profile dataset.

Fig. 1: Example images in facial profiles in the sample XM2VTSDB dataset

2.3 Relative Rating of Attributes from Comparative Labels

In this paper, we have used a comparative scheme to rank subjects based on their at-

tributes. These comparative labels allow systems and individuals to compare relative fea-

tures among various subjects to avoid data biases and human (labelers) errors in compari-

son with a categorical framework. Consequently, the soft biometrics features are generated

based on this comparative scheme for our soft biometric system [ANH17].

This study utilized a 4-point bipolar scale for the comparative labels associated with at-

tributes (see Tab. 1). The label values are 1 for ”More A,” 0 for “Same,” -1 for More B/Less

A,” and -2 for “Cannot see”.

2.4 Data Acquisition Through Crowdsourcing

Effective labelling of a dataset is of critical importance to the research process in a soft

biometric framework. As a result, a significant portion of the existing literature on soft

biometrics utilizes a crowdsourcing platform for labelling the datasets. Such an approach

provides a reliable method for the analysis of traits and labels [ANH16a], [ANH17]. Thus,

the construction and monitoring of crowdsourcing annotations involves the use of the Ap-

pen platform in the collection of labels. This platform guarantees high-quality annotations

by spreading analyses and encouraging customers to use a range of answers. It also iden-

tifies and rejects dishonest responses. A total of 50 subjects with four profile samples

obtained from the XM2VTSDB dataset are used for this experiment. Tab. 2 presents an

overview on the crowdsourcing of comparative labels.
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No. Soft Traits Comparative Labels
1 0 -1 -2

1 Eyebrow length More Long Same More Short Cannot see
2 Eyebrow shape More Raised Same More Low Cannot see
3 Eyebrow thickness More Thick Same More Thin Cannot see
4 Spectacles More Covered Same Less Covered Cannot see
5 Eye-to-eyebrow dis-

tance

More Large Same More Small Cannot see

6 Eye lashes More Long Same More Short Cannot see
7 Eye size More Large Same More Small Cannot see
8 Nose-to-mouth

distance

More Long Same More Short Cannot see

9 Nostril size More Wide Same More Narrow Cannot see
10 Nose tip More Pointed

Down

Same Less Pointed

Down

Cannot see

11 Nose size More Large Same More Small Cannot see
12 Lips thickness More Thick Same More Thin Cannot see
13 Face profile height More Long Same More Short Cannot see
14 Face profile width More Wide Same More Narrow Cannot see
15 Skin smoothness More Smooth Same Less Smooth Cannot see
16 Skin condition More Clear Same More Pimples Cannot see
17 Forehead hair More Forehead

Hair

Same Less Forehead

Hair

Cannot see

18 Ear size More Large Same More Small Cannot see
19 Ear orientation with

respect to head

More Further from

head

Same More Close to

head

Cannot see

20 Ear-to-head ratio More Large Same More Small Cannot see
21 Ear-to-chin distance More Further Same More Close Cannot see
22 Ear-to-nose distance More Large Same More Small Cannot see
23 Cheek shape More Flat Same More Prominent Cannot see
24 Cheek size More Large Same More Small Cannot see
25 Chin and jaw shape More Receding Same More Protruding Cannot see
26 Double chin More Large Same More Small Cannot see
27 Chin height More Large Same More Small Cannot see
28 Neck length More Long Same More Short Cannot see
29 Neck thickness More Thick Same More Thin Cannot see
30 Age More Old Same More Young Cannot see
31 Gender More Masculine Same More Feminine Cannot see
32 Skin colour More Dark Same More Light Cannot see
33 Figure (shape) More Fat Same More Thin Cannot see

Tab. 1: Soft profile face biometric attributes and comparative labels

2.5 Ranking by Relative Profile Face Attributes

The Elo rating system is a popular algorithm for ranking players in chess. The system

ranks players by using variances between the actual results in a game and expectations.

The effectiveness of the scale is making it popular in other fields, such as soft biometrics

recognition [RNS13]. The biometric signatures which are feature vectors composed of the

relative strength of attributes based on comparative labels, will be generated by Elo rating

system. Almudhahka et al. uses the Elo system in their study to evaluate the comparative

rates between features from biometric signatures and comparative labels [ANH17].
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Total number of labelers per question 15
Total traits comparison per subject 3.960
Total number of images 200
Average number of comparison per subject 2
Total trusted judgment 198.000

Tab. 2: The statistics of crowd-sourcing task for XM2VTSDB dataset

The use of comparative soft biometrics involves distinct processes and activities. The sys-

tematic process begins with the construction of a dataset based on the Appen platform. The

next step is the conversion of comparisons made by labelers into ranks using Elo rating

system. Such ranks then provide a set of feature vectors for profile faces for each image.

Finally, the k-NN classifier is used to calculate the recognition rate.

3 Experiments

3.1 Correlation Analysis

Pearson’s correlation r, helps spot linear dependencies between the attributes. Equation (1)

shows how Pearson’s correlation r between variables x and y is measured [To15]:

r =
∑

n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2

(1)

where x and y are independent variables, used to describe traits on the facial profiles, in

this regard, xi and yi are two distinct labels, representing ith annotation of a given subject.

The collected profile face comparisons in the study have significant correlations, as illus-

trated in Fig. 2 Dark brown color on the cells represents traits with high positive corre-

lation; and dark green color corresponds to a strong negative correlation; and white/light

cells show the absence of a linear correlation. A positive or negative correlation between

features and labels expresses dependencies between two traits. Features with negative re-

lationships are highly reliable for distinguishing individuals from others. Fig. 2 shows a

positive correlation between age and profile face width. Gender and eyebrow thicknesses

also have a positive correlation. Moreover, there is a significant relationship between ear

size and age. However, age and eyebrow length have a negative correlation.

3.2 Discriminative Power of Facial Profiles

The improvement of efficiency and accuracy requires a reduction in the number of non-

useful features. In this study, feature analysis and orderings facilitated feature set selection

through mutual information (MI) and sequential floating forward selection (SFFS)[SSZ13].

Mutual Information (MI)
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Mutual information (MI) measurement is used to assess the significance of the contribution

of a profile attribute and MI is defined as:

MI = I(X ,Y ) = ∑
y∈Y

∑
x∈X

p(x,y) ln

(
p(x,y)

p(x)p(y)

)
(2)

Where X is a variable representing an attribute, and Y is an attribute representing a label.

The computation of MI using the two traits with p(x, y) is the probability density function

for X and Y. In this regard, p(x) and p(y) are marginal probability density functions.

Fig. 2: The correlation matrix between the

profile face attributes

Fig. 3: Normalized MI for each of the 33 attributes

with the target variable (label)

MI is used to evaluate the discriminative power of the 33 profile attributes by computing

its value for each attribute jointly with the label. Fig. 3 illustrates that skin colour, nose-to-

mouth distance, lips thickness, and age have high scores compared to eyebrow shape and

eye-to-eyebrow distance, which have low MI scores.

Sequential Floating Forward Selection (SFFS) Algorithm

The SFFS algorithm helps rapidly identify the best set of features which contribute in the

recognition. The SFFS algorithm begins with an empty set (d=0). For each iteration, it

tries to find the best attribute that can be added to improve the recognition rate. Then, in

the same iteration, it tries to remove a feature that was selected in past iterations in order

to further improve the recognition. The algorithm repeats the steps in each iteration until

no improvement can be realized. In our experiments, SFFS identified 17 attributes among

the 33 features (3,4,7,9,11,12,13,15,16,17,18,24,29,30,31,32,33) (see Tab. 1). The features

selected by this algorithm has led to a final value of 98% accuracy for recognition rate.

3.3 Recognition Performance of Facial Profiles

To measure the recognition rate, a Leave-One-Out Cross Validation (LOOCV) strategy is

employed in this paper. We have employed k-NN as a basic classifier. In this study, by
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using all the attributes proposed in Tab. 1, an accuracy of 96% for the recognition rate is

achieved, as illustrated in Fig. 4. The dataset in this study contained 50 subjects with four

images per subject. There are therefore 200 face profile images in our dataset. As a result,

there are almost 1000 questions per image. One image in the dataset was used as a testing

image and the remaining ones as the training set. The k-NN classifier used a training split

described by 1-vs-rest.

Fig. 4: The results of the accuracy with (≈ 1000)
comparisons per subject

Fig. 5: Recognition via CMC performance of

this study for the 33 attributes and 25% test

samples

In our study, we have achieved 96% recognition rate with 50 subjects. This is comparable

to Nawaf et al. study where 100 subjects with front view faces were considered and 100%

recognition rate was achieved [ANH16a]. Obviously a lower recognition rate is expected

with face profiles (side view faces), since less information is available to labelers with

face profiles. However our recognition rate of 96% indicates face profiles carry enough

information to be considered as an important biometric modality. In fact, since we use Elo

rating system, it seems that the subjects preserve their ranks independently of the view

point. Future works will address the learning of a latent feature space, that is adapted for

view independent face recognition, based on soft biometrics.

The CMC curve is a crucial tool for assessing retrieval performance [DR13]. The met-

ric encapsulates recognition accuracy by employing the k-NN method. Fig. 5 depicts the

recognition performance by facial profile traits using soft facial traits. In this curve, the

first candidate has 96% accuracy, which increases with the improvement of the number of

candidates to 100% at rank-6.

4 Conclusions and Future Work

This paper proposes a novel biometric system based on facial profiles in a soft biomet-

ric framework. The study proposes and evaluates a list of semantic human facial profile

attributes, and it also introduces comparative labels to facilitate the assessment of compar-

ative soft biometrics. Our numerical analysis in this paper demonstrates that face profiles

can be considered as an important biometric modality.

Future work will focus on increasing the number of subjects in XM2VTSDB dataset. We

also plan to find corresponding features by using computer vision techniques in a tradi-



246 Malak Alamri, Sasan Mahmoodi

tional biometric framework to allow profile face identification to show that the traits pro-

posed in this paper are important in both the soft biometric and the traditional biometric.
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Development and empirical optimization of an

electrochemical analysis cell for the visualization of latent

fingerprints and their chemical adhesives

Tommy Bergmann1,Sebastian Gottschall2,Enrico Fuchs2,Oliver Berlipp1, Dirk Labudde1,3

Abstract:

Fingerprint analysis played a major role in the investigation of criminal offences for the past 100
years and is often the sole means of criminal identification [YA04]. Electrochemical analysis can
yield important additional evidence like fingerprint age, biological age and gender of its creator
as well as chemical adhesives [GRW12]. Additional gained characteristics through electrochemical
analysis can supplement latent or incomplete fingerprints. In previous work a ruthenium-complex
based solution was used as illuminant. Since luminol is readily available and is used in many forensic
applications, the presented paper will focus on luminol as an alternative chemical for the ECL-aided
visualization of fingerprints. Experiments were conducted by creating an electrochemical reaction
inside a purpose build analysis cell. Eccrine, sebaceous glandlike and vaseline contaminated finger-
prints were created on a stainless-steel plate placed inside the cell and investigated while applying
direct current. Aim of this research was to investigate which kind of fingerprints can be visualized
and which quality of the resulting images can be reached using luminol as illuminant. The used
laboratory power supply created a strong light reaction at the start of each experiment revealing
potential for further enhancement of the image quality. Eccrine dactyloscopic evidence showed no
visible results. For sebaceous glandlike fingerprints age was discovered to significantly influence
image quality.

Keywords: latent fingerprints (LFP), electrochemoluminescence (ECL), luminol, chemical adhe-
sives (substances), gender determination, age determination, information of fingerprints, forensic
science.

1 Introduction

1.1 Background

The use of forensic dactyloscopy for suspect indentification is as old as criminalistic itself.

References to this can be seen in ”System und Praxis der Daktyloskopie” from Heindl.

Also, Heindl clearly describes the historical development of dactyloscopy, which has al-

ready undergone several innovations in the course of its development [He22]. Today, fin-

gerprints are even considered more valuable evidence than deoxyribonucleic acid (DNA)
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[HS07]. A new approach for the visualization of latent fingerprints is the use of elec-

trochemical luminescence (ECL) reactions. In ECL reactions the luminescence is gener-

ated electrochemically by applying an electrical potential e.g. to a luminol, ruthenium, or

rubrene solution. The resulting intermediates are subjected to an immense exergonic reac-

tion in order to reach an energetically higher state. In the further course of the process, the

relaxation leads to a transition to the energetically lower state, whereby the energy differ-

ence can be observed in the form of light. ECL reactions are already proven in analytical

applications because they are highly sensitive and can be used selectively by applying

a potential [GA13, FBK09, Va16, PS74]. For example, Beresford et al. describe visual-

ization by spatially selective deposition of an electrochromic polymer (polyaniline). The

electrochemical process is inhibited by the fingerprint and a negative image is created. The

advantages of their method is an increase in contrast by varying the applied electric po-

tential. Also, the electrochromic coating results in a longevity of the evidence [BH10]. In

the work of Jasuja et al. an aqueous electrolyte solution was used, which made it possible

to visualize latent fingerprints on deformed surfaces (aluminum foil) [Ja15]. Additional

examples are provided in the review‘s of Su et al. [Su16] and Yamashita et al. [YF11].

The work of Xu et al. shows that the combination of electrochemistry and forensic dacty-

loscopy has a considerable advantage. For example, explosive residues can be detected

[Ad11, LZJ06]. Due to the difference in brightness on the electrode caused by this reac-

tion and the fingerprint residue lying thereon and blocking the electron exchange a contrast

is generated which results in high-resolution images of the fingerprint.

Fig. 1: [a] Experimental setup with recommended chemicals published by Xu et al.; Reproduced by

our research group [b] high-contrast and high-resolution images of fingerprints based on the method

described by Xu et al.

Furthermore, electrochemical scanning methods are used to detect spatial differences in

the electrochemical reactivity and surface exit work of fingerprints. It is of special interest

to reach a resolution which makes pores visible as demonstrated by Xu et al. [Xu12]. We

could reproduce this high quality images using their recommended chemicals (tris(2,2’-

bipyridyl) ruthenium(II) ([Ru(bpy)3]2+) and tri-n-propylamine (TPrA) as illustrated in

Fig. 1. All minutiae (islands, inclusions, branches, bridges, etc.), even sweat pores within

the papillary ridges, are clearly visible. However the high price and poor availability of the

used ruthenium-solution leads to the demand for alternatives. The use of luminol to make

blood evidence visible with the help of a catalyst has been a common practice since 1937

[Sp37]. It is also used in immunoassays as a part of an antibody reaction [Ji13]. Due to
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its wide usage in forensics using luminol for ECL-reactions is a cost efficient and obvious

approach. Therefore the presented research will focus on the development of luminol as

an alternative chemical for the ECL-aided visualization of fingerprints.

2 Materials and Methods

Development of an electrochemical analysis cell An analysis cell with a two electrode

system was constructed out of available stainless steel components, a petri dish and com-

pleted by a purpose built part 3 D printed from polyethylene terephthalate (PETG). A plate

electrically connected through a screw forming the base electrode was placed at the bot-

tom of the petri dish. The insulation distance of 1 mm between both electrodes was realized

with the 3 D printed part enclosing the second electrode as well as restricting the cells ac-

tive area to a circular diameter of 28 mm while reducing the necessary liquid volume to

2.4 ml. Fig. 2 illustrates the construction of the cell.

Fig. 2: [a] Overview of the components, [b] construction sketch cross-section and [c] structured anal-

ysis cell. The construction as seen in the picture consists of a petri-Dish, they contain two electrodes

(stainless steel -plate, -nut), separated by a plastic insulator.

Both electrodes were connected using crocodile clip equipped wires. While the wire to

the stainless steel nut was constantly connected to a laboratory power supply the second

electrode was switched by plugging and unplugging it. The influence of ambient light

fluctuation was eliminated by conducting all experiments in a darkroom and using a cam-

era for observation. Additionally, two ultra violet (UV) lamps [see Tab.1] illuminating the

fingerprints at 45 degree angle were positioned left and right of the camera.

Materials Manufacturer

Laboratory power supply unit: ”PPS-11360” VOLTCRAFT

Fine balance: ”New Classic MF” METTLER TOLEDO

Camera: ”VCXU-51C” BAUMER

Lens: TV ZOOM Lens S6x11 11.5-69 mm SPACECOM

Drying cabinet ”VC 0020” Vötsch Industrietechnik

UV lamp: Synergy 21 LED Prometheus UV V2 ALLNET GmbH

Tab. 1: laboratory equipment
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Luminol Solution In the experiments undiluted (0.025 mol/ l) and diluted luminol solu-

tion was tested. For the preparation of the solution, 0.44 g luminol was dissolved in 3 ml

hydrogen peroxide (NaOH) with a purity of 50 % [Ea11]. Subsequently, 97 ml deionized

water was added. For the further experiments, this luminol solution was used as the basis

for the undiluted version or, with the addition of 100 ml deionized water, for the diluted

version.

Preparation of the fingerprints For the following experiments the fingerprints (thumb

and index finger) of a single person were used. Before the application of the fingerprints,

the person was instructed to wash their hands with soap and then rinse them with lukewarm

water. Drying was done by air. For the transfer of eccrine fingerprints, powder-free rubber

gloves were worn for 10 minutes to stimulate sweat production. To get sebum with finger-

prints, the person touched the forehead, the lateral nostrils, and the areas behind the ears

with their fingers. Finally, to produce vaseline-containing fingerprints, contact was made

with commercially available vaseline, which was wiped off on external surfaces before the

fingerprint was transferred. All images of fingerprints listed in chapter 3 were transferred

to a stainless steel plate, which then was included in the electrochemical analysis cell. For

the transfer, the contact time was about one minute.

Fingerprint visualization The analysis cell was aligned so that the fingerprint was in

the centre of the stainless steel nut and a reference picture was taken under UV exposure.

Then 5 ml of the luminol solution was added to the fingerprint. Furthermore 0.25 ml of

the hydrogen peroxide solution was added and a current of 2 amperes (A) was applied

and a picture was taken. The voltage was between 8 V and 10 V in all experiments. This

resulted in emission of light that occured everywhere in the solution, except at the adhesion

(fingerprint) itself.

3 Results

In the experiments light emission could be observed everywhere in the solution except for

the adhesion or the sebaceous fingerprint. The intensity of the emitted light shortly peaked

at the start of each experiment when the power supply was connected. The ECL reaction

resulted in a useful contrast only when the fingerprint was placed onto the anode.

Fig. 3 shows a comparison of the visibility of the characteristics of differently aged se-

baceous fingerprints. In Fig. 3 [a] a partial impression of the fresh fingerprint with char-

acteristic values and optical anomaly (scar) is shown. In Fig 3 [b] a 16 h aged fingerprint

is visible, including more detailed anatomic features. The Comparison of the visibility of

the anatomic features of the fresh and the aged sebaceous fingerprint revealed that the

aged fingerprint created better optical results. The picture in Fig. 3 [a] was taken several

seconds delayed to the application of the electrical current resulting in a vivid reaction

growing form the outside inwards.
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Fig. 3: Images created with ECL of two sebaceous fingerprints [a] fresh and [b] aged

As with Xu et al., it could be experimentally confirmed in Fig. 4 [a], [b] that vaseline ad-

hesion can also block signals. Details of the anatomic features were not visible, only the

outline of the fingerprint. All areas of the fingerprint coated with vaseline showed a specific

reaction (a bubble-like pattern). Fig. 4 demonstrates the results of fingerprints covered with

vaseline. The experiment was carried out as described in chapter 2. The undiluted luminol

solution [see 2 Luminol Solution] was used for this purpose.

Fig. 4: Images created with ECL of fingerprints with vaseline adhesion.

The visualization of the eccrine fingerprints was not possible with our method. In subse-

quent processes, it is necessary to either pre-treat the eccrine impression fingerprint or to

implement a different methodology in the prototype specifically for this evidence.

4 Discussion and future work

The observed peak in intensity right at the start of each experiment was caused by the

output capacity of the used power supply creating a short burst in current. Utilizing this

effect in the millisecond range requires an optimal timing between applying the current

and image acquisition.

In summary, the visualization of sebaceous fingerprints and fingerprints with adhesions

was possible with the presented method. The vaseline adhesion complicated the visibility
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of anatomic features and also caused a bubble-like pattern which could be specific for this

kind of adhesion and should be further investigated. The solubility of eccrine fingerprints

prevented a successful visualization. It can be assumed that fresh fingerprints are better

soluble in water than old ones. The ridges of the old trace are optically smaller than by the

fresh one. As a result, it’s easier to see the anatomic features. Our presented method there-

fore works better with traces that already dried up. Furthermore, fingerprints with other

adhesions are to be investigated, preferably with criminally relevant background. Subse-

quent image processing may be one way to improve the results.

It should also be noted that there is a need to add hydrogen peroxide to the luminol solu-

tion, as it acts as a catalyst, even though it increases the formation of bubbles and should

therefore be kept to a minimum.

The current approach is limited to smooth conductive surfaces. In future work transfering

fingerprints from various surfaces to the ECL analysis cell should be tested. Future work

should focus on the visualization of fingerprint adhesions. Forensic relevant information

like gender and age can be determined from the ratio of different amino acids and fatty

acids. Those adhesions can also serve as a hint for the usage of drugs or fire accelerators

[AIA12, Du17, Gi16]. In summary, it is desirable to gain more information of a fingerprint

than the anatomic features. ECL approves to be a good approach to reach this goal. Those

information can be used to increase the succes rate of identification. The linkage between

dactyloscopy and ECL can change forensic casework in terms of duration and quality, but

needs further scientific analysis to develop its full potential.
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ChildFace: Gender Aware Child Face Aging

Praveen Kumar Chandaliya1, Aditya Sinha2, Neeta Nain3

Abstract: Child face aging and rejuvenation has amassed considerable active research interest due
to its immense impact on monitoring applications especially for finding lost/abducted children with
childhood photos and hence protect children. Prior studies are primarily motivated to enhance the
generation quality and aging of face images, rather than quantifying face recognition performance.
To address this challenge we propose ChildFace model. Our model does child face aging and reju-
venation while using gender as condition. Our model uses Conditional Generative Adversarial Nets
(cGANs), VGG19 based perceptual loss and LightCNN29 age classifier and produces impressive
results. Intense quantitative study based on verification, identification and age estimation proves that
our model is competent to existing state-of-art models and can make a significant contribution in
identifying missing children.

Keywords: Child Face Aging, Generative Model, Face Recognition, Age estimation.

1 Introduction

Child trafficking is a grave problem world over. The National Centre for Missing and Ex-

ploited Children (NCMEC) [Naa], reports approximately 8,00,000 children go missing in

USA every year. The National Crime Records Bureau, India, reported the total human traf-

ficking is 88,008,6.9% more than the previous year [Nab]. On average, the victim ratio is

1 : 6 for boys to girls. Locating missing children over [5−10] years time lapse is very com-

plicated by the fact that child face changes dramatically as they age, making longitudinal

face recognition [CE09] infinitely difficult. Our work can help law enforcement agencies

and governments attempting to use cross-age face recognition system to find missing chil-

dren and track other types of child exploitation. Our model namely, ChildFace consists of

a generator G and 2 multi-scale discriminators denoted as D1, D2, LightCNN-29 [Wu18]

based age classifier Lage and VGG19 [SZ15] based perceptual loss network Lvgg. Our key

efforts are summarized as following:

1. We propose a new coarse-to-fine generator and multi-scale discriminator architec-

ture for child age progression or regression considering age and identity as condi-

tions.

2. Existing state-of-art face aging models does not address the challenge of child face

aging and deep CNN based face recognition for quantitative evaluation of models.

We present arguably the most intensive experimental evaluation with the help of

state-of-art face matchers - FaceNet [SKP15], PFE [SJ19] and ArcFace [De19] on

CLF Test dataset [CN19].

1 Malaviya National Institute of Technology, Jaipur, India, 2016rcp9511@mnit.ac.in
2 Malaviya National Institute of Technology, Jaipur, India, 2016ucp1447@mnit.ac.in
3 Malaviya National Institute of Technology, Jaipur, India, nnain.cse@mnit.ac.in
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3. Our proposed model ChildFace stands out to be second-best in rank-1 identifica-

tion accuracy, verification and age estimation in comparison to CAAE, AIM and

CPAVAE models.

2 Related Work

2.1 Age Progression and Regression

Face aging is the expectation of future looks and revival is the estimation of more youthful

appearances, likewise alluded to as facial age relapse. It significantly affects a wide scope

of utilization in different spaces. Generative adversarial network (GAN) [Go14] are con-

tinuously used to perform face aging and de-aging because of their undeniably creating

conceivable and compelling faces with an antagonistic training approach. In this method-

ology, face aging and de-aging is ordered in two classes.

1. Adversarial Auto Encoder: In this architecture, we could feed age, gender (any

other condition) along with random latent distribution as a one-hot conditional vec-

tor into the decoder to generate progressed and regressed age faces. Antipov et

al. [ABD17] proposed an aging framework which also applies conditional GAN

and used a local manifold adaptation (LMA) technique for identity approximation.

Zhang et al. proposed CAAE [ZSQ17] for face aging and de-aging framework that

learns a face manifold with adversarial training imposed on the encoder and gen-

erator, respectively, forcing to generate realistic faces. This model was not efficient

in-term of face generation quality and recognition.

2. Conditional Generative Adversarial Networks: Imposing a one-hot condition

vector along with image thereby feeding into encoder or generator of the model.

PAG-GAN [Ya18a] designed pyramidal adversarial discriminator at multiple scales,

which extracts high-level aging features. IPCGAN [WXTG18], is an identity pre-

served conditional GAN which functions as the face generator, and an age clas-

sifier forcing the face generation at the target age. Also, along similar lines, Sun

et al. [Su20] proposed Label Distribution-guided GAN(IdGAN) to investigate age

simulation over long-term and short-term aging sequence only on adult faces.

Majority of the aforementioned studies did not study face recognition performance whether

it is identification, verification, age estimation and also experimented adult face aging and

do not address child face aging.

3 Architecture of Proposed Model

The complete network architecture of the proposed model is illustrated in Figure 1. The

model contains 2 trainable network components, namely Generator (G) and Multi-Scale

Discriminator (D). Motivated from results of IPCGAN [WXTG18] we adopt their ar-

chitecture of G. To learn gender aware age distribution we add gender condition - TG ∈

R
128×128×1 along with the age condition TA ∈ R

128×128×5. G receives child face image as

input x ∈R
128×128×3 forming the final input as (x,TA ∩TG) ∈R

128×128×9. For Multi-Scale

Patch Discriminator we use the architecture of IPCGAN[WXTG18] but instead of using

single discriminator we use multi-scale patch discriminator i.e., two patch discriminators
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Fig. 1: Detailed architecture of the proposed model.

(D1 and D2) discriminating at different image scales. For perceptual loss network we use

pretrained VGG19 network. We extract the features from relu3 1 layer of the network. We

then compare the high level features of input face and generated face in feature space. For

age classification, we train LightCNN-29 model on CLF dataset. We predict the age of

generated face, if the age is correct small penalty is given otherwise large penalty is given.

4 Loss Functions

Age transformation aims to generate a face (x̄) that lies in target age group (T ) while

retaining the identity of (x). To achieve these goals, we train our model using adversarial

loss, perceptual loss and age classification loss.

1. Adversarial Loss: As a standard process of GAN model, the generator G and dis-

criminators (D1 and D2) are trained alternatively via an adversarial loss. D1 and

D2 collectively try to distinguish real images at different scales (resolutions) from

synthesized ones.

LD
adv =

1

4

2

∑
i=1

{Ex∼px(x)[(Di(x|TA ∩TG)−1)2]+Ey∼py(y)[(Di(G(y|TA ∩TG)))
2]}

LG
adv =

1

4

2

∑
i=1

{Ey∼py(y)[(Di(G(y|TA ∩TG))−1)2]} (1)

As the optimization of Conditional Generative Adversarial Networks (cGAN)[MO14]

suffers from instability and therefore the generated images have lot of artifacts. To

improve the optimization of cGANs we adopt LSGANs [Ma16].

2. Perceptual Loss: The adversarial loss all alone can not guarantee that the synthesized

faces retain the identity information. To address this we incorporate perceptual loss

network using pre-trained VGG19 [SZ15] feature extractor, which increases the se-

mantic similarity between input faces (x) and synthesized faces (x̄) using Euclidean
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distance in the deep feature space. Here, both x and x̄ faces are sent to VGG19 which

outputs their feature maps - Φrelu3 1(x) and Φrelu3 1(x̄) respectively from relu3 1

layer. Perceptual Loss is defined as:

Lvgg =
1

2×C×W ×H

C

∑
c=1

W

∑
w=1

H

∑
h=1

‖Φ(x)c,w,h
relu3 1 −Φ(x̄)c,w,h

relu3 1‖
2 (2)

Here C,W,H denotes number of filters, width and height of the feature map respec-

tively.

3. Age Classification loss: To achieve better age classification performance specifically

on small dataset and to assure faster convergence, we train child dataset on light

convolutional neural network (LightCNN29). We then use this network to determine

age classification loss.

Lage =−

5

∑
i=0

yi log(pi) (3)

Here yi denotes the desired age group of generated face and pi denotes the predicted

age group of generated face by age classifier.

The final objective function is:

Gloss = λ1LG
madv +λ2Lvgg +λ3Lage (4)

Dloss = LD
madv (5)

Here λ1,λ2 and λ3 are hyperparameters.

5 Experimental Setup
For training and evaluation of ChildFace model, we choose the Children Longitudinal

Face (CLF) [CN19]. CLF contains 35,484 child face images from 9,475 longitudinally

paired and 7,494 single subjects, in the age group [2 : 19] years annotated with age and

gender. For the training of our model, we use 31,936 images. For face verification and

identification purpose we have created a separate test dataset namely, CLF Test dataset

(identity-disjoint from training data) which includes 278 pair of youngest and oldest image

of same subject with a time lapse of [5−8] years. To train our model we divide the training

data-set into 5 non-overlapping age groups, i.e., [2−5], [6−8], [9−11], [12−14], [15−19].

5.1 Implementation Details

For data pre-processing, we used MTCNN [Zh16] to detect the five landmark points (two

eyes, nose, and two mouth corners) that are used for proper alignment and to crop the

images to a resolution of 128× 128 pixels. Before passing images into model, they are

normalized pixel-wise. For training ChildFace, all components are trained with a batch size

of 32 using Adam optimizer with hyper-parameter α = 0.0001 and β = (0.5,0.999). λ1,λ2

and λ3 are set to 75.0, 1.0 and 1.0 respectively. The output of Generator G is restricted to

[−1,1] using tanh activation function. The model is trained for 75K iterations. The model

was trained from scratch with a learning rate of G,D1,D2 as 0.0001. We perform one

optimization step for G and two optimization steps for D1 and D2.
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6 Qualitative Evaluation

We do qualitative study of our model by comparing with 4 different face-aging models.

Figure 2 shows that CAAE generates blurry and occluded face. IPCGAN produces good

quality images compared to CAAE, aging performance is also good but there is change

in contrast, and color composition of images. CPAVAE produces highly illuminated and

smooth pictures for all faces which leads to identity loss as the texture of resultant face skin

is enhanced drastically, as the model is based on deep feature consistency principle. In the

case of AIM all faces look similar because age and identity component are disentangled.

The reason is that AIM includes disentangled representation learning network. Compared

to IPCGAN, CPAVAE and AIM, in our model only components responsible for aging are

altered, whereas, noise factors such as skin color, quality, pose and background remain

consistent which is compromised in former models for e.g., see subject 3 (bottom left) in

Figure 2.

Fig. 2: Comparison with prior work on aging: CAAE, IPCGAN, CPAVAE, AIM and our ChildFace model, re-

spectively. In the left-most and right-most column we show test faces and their ground truth ages.

7 Quantitative Evaluation

Previous face aging state-of-the-art frameworks [ABD17, ZSQ17, Ya18a, WXTG18, Zh19]

work well for adult faces and long-span aging. These models use Face++ API for identity

preservation and aging accuracy comparison. Our work is focused primarily for children,

and Face++ tool does not work well on child datasets. To support this claim, we con-

duct an experiment on CLF Test dataset. We evaluated the age predicted by Face++ API.

As we can see in Figure 3, the difference between the Youngest Ground Truth age and
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Face++ API predicted age is in the range of [10-25] years and Oldest Ground Truth age

and Face++ API predicted age is in the range of [5-25] years. This proves our claim that

Face++ API does not give proper age approximation on child faces. To evaluate our model

(a) (b)

Fig. 3: Age estimation (years). A comparison between a) Youngest Ground Truth age Vs Face++ API and b)

Oldest Ground Truth age Vs Face++ API predicted age on CLF Test dataset.

performance, we employ 3 open-source face matchers: FaceNet [SKP15] is trained on

VGGFace2 dataset using the softmax loss. Probabilistic Face Embeddings (PFE) [SJ19] is

trained using 64-CNN layers on MS-Celeb-1M dataset and an Additive Angular Margin

Loss (ArcFace) [De19] is trained on MS-ArcFace dataset. All aforementioned matchers

extract a 512 dimensional embedding feature.

7.1 Face Verification

For face verification we have used two genuine image pair protocols. 1) The youngest

ground truth picture is compared to the oldest ground truth GT picture of the same subject-

Real Young vs Real Old Pair(RY-RO). This test is to compare the variance of the actual

with the synthesized images. 2) The oldest GT picture is compared with the synthesized

aged picture of the same age group generated by the proposed model - Real Old vs Artifi-

cial Old Pair(RO-AO). The cross-subject imposter (negative) pairs are created by randomly

pairing the progressed or regressed images and real images of individual subjects. In total,

there are 278 genuine matches and 7,146 imposter matches.

1. IPCGAN and ChildFace models only progress/regress the age retaining the identity.

Due to this reason the verification accuracy is high (see Table 2).

2. CPAVAE, AIM, CAAE face aging models generate age progress and regress face

by latent vector approximation, due to which identity is also altered along with age.

Thus, the face verification accuracy is low compared to IPCGAN and ChildFace.

3. RY-RO verification accuracy is low compared to RO-AO. In the first case youngest

and oldest faces are compared. On the other hand, in RO-AO both the real and

generated faces of old age group are compared. Therefore, the Face verification in

latter protocol is high.

7.2 Face Identification

In this paper, the performance is reported in terms of rank-1 closed-set identification ac-

curacy (recovered child is in the gallery) under the youngest (gallery) to oldest (probe)

protocol. For all our experiments, the gallery set has 278 faces from different subjects with

generated (5 images) of each subject, while 278 (oldest) images in probe set. In Table 1,

we report the rank-1 accuracy of our model and state-of-the-art models on synthesized age

progressed images. We find that our model achieves second-best search accuracy com-

pared to IPCGAN [WXTG18].
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Tab. 1: Face verification and identification performance (%) of different face aging models using CNN-based

face recognition models on CLF Test dataset. Face Match rates at FMR=0.1%. Bold show best score, and bold

italics show second-best score.

FaceNet [SKP15] PFE [SJ19] ArcFace [De19]

Model GMR@FMR GMR@FMR Rank-1% GMR@FMR GMR@FMR Rank-1% GMR@FAR GMR@FMR Rank-1%

(RY-RO) (RO-AO) (RY-RO) (RO-AO) (RY-RO) (RO-AO)

CAAE [ZSQ17] 16.55 3.25 6.45 63.67 3.50 6.88 86.33 6.11 8.33

IPCGAN [WXTG18] 28.78 99.28 74.82 78.78 99.98 92.45 90.65 99.28 97.12

CPAVAE [CN19] 15.47 5.76 21.22 62.95 4.67 20.86 88.49 2.07 21.22

AIM [Zh19] 25.51 5.04 28.42 79.50 14.03 56.12 90.65 5.04 54.68

ChildFace 24.10 97.12 71.58 79.85 99.64 90.29 94.97 94.25 93.16

7.3 Age Estimation

Identically, objective age estimation is conducted to measure the aging and de-aging ac-

curacy. We employ state-of-the-art publicly available CNN based age estimation model,

namely, Soft Stagewise Regression Network (SSR-Net) [Ya18b]. Table 2 shows the age es-

timation results on progressed or regressed images by state-of-the-art and proposed model.

ChildFace age estimation in age range [2−8] is far better compared to other models.

Tab. 2: Age Progression and Regression: Objective age estimation (years) evaluated by SSR-Net [Ya18b]. Due to

the limited space, we only address the mean and standard deviation of age estimation computed over CLF Test

dataset.

Age Estimation (year) of CLF Test dataset

Age group 2-5 6-8 9-11 12-14 15-19

CAAE [ZSQ17] 8.76±5.01 11.72±5.89 14.62±6.23 16.83±6.07 19.33±5.42

IPCGAN [WXTG18] 6.40±5.30 10.92±6.85 17.16±8.11 20.07±8.47 19.75±8.08

CPAVAE [CN19] 8.84±5.54 11.61±6.42 14.21±6.47 17.83±6.19 19.55±5.62

ChildFace(WithAgeLoss) 5.49±5.62 11.28±6.44 18.29±8.24 22.00±7.26 25.81±5.82

Without AgeLoss 18.26±7.41 16.21±7.94 14.71±7.95 11.15±7.65 13.52±8.47

8 Ablation

For analyzing the effect of age classification loss. Figure 2 present the visual comparisons

between ChildFace and Without Age loss function which penalizes aging. We observed

that generated faces by ChildFace are more realistic. Furthermore, Table 2 shows that

ChildFace outperforms without Age loss in age estimation. While with Age loss function,

more aging effect and clear texture information is produced in all age groups.

9 Conclusions

We propose a conditional GAN-based model to solve age progression and regression on

child faces. Compared to previous approaches this model specifically does short-span ag-

ing by employing multi-scale patch discriminators (better critic), LightCNN-29 Networks

and pretrained VGG19 Network. We report intensive performance evaluation through

comparison with 3 state-of-art matchers. Experiment results show that the proposed model

can improve the ability to locate and identify young children who are possible victims of

abduction or child trafficking. In future, we intend to extend our research on unconstrained

child face aging and recognition with improvement in accuracy.
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Effects of sample stretching in face recognition

Mathias Fredrik Hedberg1

Abstract: Face stretching is something that can occur intentionally and unintentionally when prepar-
ing a face sample for enrollment in a face recognition system. In this paper we assess what affects
both horizontal and vertical stretching have on a face recognition algorithms. Basic closed-set iden-
tification tests revealed that holistic face recognition algorithms performed poorly compared to fea-
ture based recognition algorithms when classifying non-stretched samples against templates based
on stretched samples.

Keywords: Face recognition, presentation effects.

1 Introduction

Face recognition technology has proven itself to be an accurate and relatively non-intrusive

method for biometric recognition. As face recognition is implemented in more important

aspects of our society, it is critical that theses systems perform as expected. In this paper

we assess the effects of presenting stretched face images during the enrollment stage, and

how this affects future classifications.

Stretching of samples may occur both unintentionally (such as from printer or scanner

issues) and in some cases intentionally (possibly to avoid recognition or even for beautifi-

cation). The U.S Department of state estimates that around 12% of online via applications

are stretched and recognizes that stretched images can severely impact the accuracy of

face recognition [MM18]. The consequences of this could result in a subject applying for

multiple visas under different names with the same face, breaking the integrity of such an

application process.

For this paper we will narrow the scope to electronic identity documents where the enroll-

ment sample has been stretched either vertically or horizontally. To achieve an adequate

understanding of the key elements of this topic, a current state-of-the art literature study is

presented, with focus directed on the impacts of stretched face images in face-recognition

systems. Finally, a practical experiment is conducted to measure said impacts on modern

face recognition systems.

1 Norwegian University of Science and Technology, Gjøvik, mathifhe@stud.ntnu.no
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2 State-of-the-art

2.1 Image stretching

In the realm of face recognition, there are many scenarios where some form of image

stretching can occur, resulting in a distorted image being presented to the system. One

major issue is the result of using wide angle lenses to increase the field of view. This

creates what is known as barrel distortion, which causes curvature around the periphery of

an image. Captured faces located in this area are more challenging to recognize, however

successful methods have been developed to mitigate such distortions where the capture

environment is known [JNK08].

Next we have the concept of vertical contraction and extension. This type of stretching is

the result of one axis being fixed, while the other is either extended or contracted, creating

a distortion of the aspect ratio of the image. Take note that vertical contraction yields the

same result as horizontal extension, and vertical extension the same as horizontal contrac-

tion (when not taking image size into account).

A 2014 study [Su14] was conducted to measure the recognition impact of face alterations

on face recognition systems, in addition to detection of such alterations. The study made

use of three different face recognition solutions which at the time were state-of-the-art.

These were Neurotchnology VeriLookSDK (VL), Luxland FaceSDK (LU) and a SIFT-

based matching algorithm (SI). The study found that some systems such as LU and SI

were highly sensitive to alterations of the aspect ratio, while VL saw no recognizable

performance impacts. The author of the study believed that this was due to VL being

based on feature-based recognition, and that feature-based recognition is quite insensitive

to global geometric changes.

2.1.1 Detecting stretched images

Detecting if a face sample has been stretched can be done in two ways, analyzing the

sample directly, or comparing the presented sample to a controlled non-stretched sample.

Analyzing the sample directly with no other references is increasingly difficult as stretch

magnitude decreases [MM18]. The US Department of State has done some research in this

field [MM18] making use of Convolutional Neural Network (CNN) to detect stretching

based on training the network on artificially stretched visas application images. Based on

a Layer-wise Relevancy Propagation (LPR) analysis of the network, they found that LPR

maximums appeared within the eyes. This can boil down to the fact that most pupils are

usually circle shaped, and an oval shaped pupil could indicate that stretching has taken

place.

Comparing a stretched sample to a non-stretched sample of a subject face is not always

possible, however it does make stretched face image detection easier. The 2014 study

[Su14] was also successful in detecting stretching in 90% of face images where the stretch
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intensity was only 10%. In this case the detection required that the subject was present for

comparison against the enrollment sample.

2.2 Image normalization

Image normalization is a process that takes place in most face recognition pipelines after

face detection to eliminate unwanted environmental variables. There are many approaches

to this, many algorithms focus on the eyes exclusively when doing geometric alignment,

scaling and rotation of the image so that the placement of eyes is the same in all images

[CK10] [Li06]. Normalizing a stretched face however, may result in features such as the

nose, mouth and ears having different locations compared to the same non-stretched face.

Face recognition systems that deal with stretched samples must be able to tackle such

variations if they are to perform well with stretched samples.

2.3 Feature extraction

Feature extraction is a critical element in the face recognition pipeline. This involves rep-

resenting the face by extracting the most relevant details so that a face template can be

created for future classification tasks. There are a range of approaches to this, however in

general this stage can be divided into three categories; feature-based-, holistic- and hybrid-

models [Zh03].

Holistic models process and represent the face image as a whole, often focusing on varia-

tions in texture to assist in analyzing the face [ZF14]. One of the more popular approaches

to representing the face is with eigenfaces based on Principal Component Analysis (PCA),

which calculates the eigenvectors and eigenvalues from the co-variance matrix of the face

images, extracting only the principal components resulting in a huge dimension reduction

of the images [TP91]. A different well known algorithm is Local Binary Patterns His-

tograms (LBPH) which is a simple texture operator for holistic face representation.

Feature-based models (often referred to part based) often decompose the face image into

blocks as opposed to holistic methods where the image is processed as a whole [Ma11].

Local features such as the mouth, eyes and nose are extracted and local statistics (geo-

metric and/or appearance) are fed into a structural classifier [Zh03]. Feature-based models

are less sensitive to variations in illumination, viewpoint and also any inaccuracies from

the face-localization stage. One of the most recognized feature-based models is the CNN

approach. CNN provides partial invariance to translation, rotation, scale, and deformation

[La97]. The point of deformation is important for us as this indicates that CNN may cope

well with sample stretching. Histogram of Oriented Gradients (HOG) is also a very well

known feature-based model that functions similarly to CNN [DT05].

Based on this information, it can be assumed that processing stretched and non-stretched

face samples through holistic and feature-based recognition systems will result in better

classifications on feature-based systems, mainly due to the heavy geometric reliance found

in holistic algorithms.



268 Mathias Fredrik Hedberg

3 Practical experiment

A practical experiment was proposed in the form of a scenario evaluation to help get a bet-

ter understanding of the presentation effects of face stretching. To achieve this, a database

of face samples was retrieved and a selection of enrollment samples were stretched in a

controlled manner before being enrolled into various face recognition systems. The result-

ing templates were then used by these systems to classify multiple non-stretched samples

of the same subjects.

This experiment design was chosen to best reflect the scenario of identity document cre-

ation. The stretched samples represent the images enrolled for use in the identity doc-

uments, while the non-stretched samples represent the real face representations that an

operator would be presented with when verifying document ownership such as at an air-

port.

Testing was done on a consumer desktop workstation running Fedora 31 comprised of an

Intel i5-7600K @3.80GHz x4 and an NVIDIA GTX 1060 3GB. dlib was compiled with

CUDA support to make use of the GPU when available. Running the entire experiment

consumed over 2 hours of processing time, however this could be further reduced by also

compiling OpenCV with CUDA support, along with other code optimizations.

3.1 Stretching of face samples

This experiment made use of the University of Essex face database (faces94)3 contain-

ing 395 subjects photographed 20 times. These samples were taken in a controlled envi-

ronment over a very short period of time, including only front-facing face images with

minimal pose variations and good lighting. Most of the samples may in fact adhere to the

ISO/IEC 19794-5 standard for identity documents. This uniformity makes the database

relatively easy for face recognition systems to work on, and the changes from any exter-

nal presentation effects that are applied should be easier to detect. One enrollment sample

was extracted for each individual while the rest of the samples were reserved for later

identification testing.

(a) -20% stretch (b) 0% stretch (c) +20% stretch

Fig. 1: Result of ffmpeg stretching, while retaining the original 180x200 format

Stretching of face samples was achieved using the popular ffmpeg program using the

’scale’ and ’pad’ command line arguments. The aim of this stretching was to modify the

3 http://cswww.essex.ac.uk/mv/allfaces/index.html
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aspect ratio of the images without up-scaling pixels or modifying the image resolution.

Letter-boxing ( known as ’pad’ in ffmpeg) is required to preserve the the pixel resolu-

tion of the container image. Figure 1 shows some example results from this stretching.

A negative stretch intensity results in vertical contraction while a positive value results in

horizontal contraction.

For this experiment, a total of 9 stretching values were used, from -40% to +40% at in-

crements of 10%. This stretching was applied to each of the enrollment samples resulting

in a total of 3555 enrollment samples (395 subjects at 9 stretch values). Stretching in ex-

cess of +-40% seems unrealistic in the presented scenario and would likely be detected

by the operator without much effort, therefore no further stretching intensities were used.

The stretch interval of 10% was chosen to retain a manageable processing time, but should

ideally be lower.

3.2 Recognition software

Recognition was done using the standalone OpenCV library, and also using a newer face

recognition library4 based on the dlib toolkit. Software was written based on these libraries

to perform closed-set identification using the following forms of recognition:

1. Eigenface based face recognition using OpenCV (holistic)

2. LBPH based face recognition using OpenCV (holistic)

3. CNN based face recognition using dlib (feature-based)

4. HOG based face recognition using dlib (feature-based)

As the software was to perform closed-set identification, there was no threshold set to

identify impostors, the software was also therefore designed to make a decision even when

confidence was low, as long as a face was detected. The OpenCV-based systems made use

of Haar-cascade for face detection while the dlib-based systems used either HOG or CNN

for face detection. Haar-cascading for face detection was currently unavailable in the dlib

based recognition library used. The code used in this experiment can be found online5.

3.3 Results

Figure 2a shows the true-positive identification rate (TPIR). The feature-based recognition

systems (CNN and HOG) performed well in all stretching intensities between -20% and

+30%. The holistic based methods (LBPH and eigenface) performed well between -10%

and +10% stretch intensity, with LBPH extending this to +-20%. HOG had a sharp decline

in TPIR when vertical contraction was more than 20% (-20% stretch intensity) compared

to CNN which maintained results over 0.9 throughout all stretch intensities.

4 https://github.com/ageitgey/face_recognition
5 https://github.com/metrafonic/FaceStretchCode
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(a) The true-positive identification rate (b) The failure-to-entrol rate

Fig. 2: TPIR and failure to enroll (FTE) from 40% vertical contraction to 40% horizontal contraction

The FTE rate in this testing was all due to failures in face-detection in the enrollment

stage. Observing the FTE rate in shown in figure 2b reveals that Haar-cascade based face

detection used in the OpenCV based systems resulted in an FTE rate of less than 0.1 for all

stretch intensities, with the CNN based recognition performing similarly. FTE was highest

in the HOG based face detection, especially when enrolling samples that were vertically

contracted.

Fig. 3: The TPIR adjusted for FTE

The TPIR adjusted for when enrollment was successful is shown in figure 3. This graph

shows that the feature-based recognition methods had a TPIR of more than 0.9 for all

stretching intensities when subject enrollment was successful. The holistic based recogni-

tion models still showed poor performance for stretch values in excess of +- 30%. Eigen-

face recognition had the worst performance, seeing a sharp decline when working with

samples stretched in excess of +- 20%.
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4 Discussion

The results seen in the experiment show that holistic based recognition methods perform

poorly when presented with samples that have been vertically or horizontally stretched.

The feature based methods performed well throughout testing as long as face detection

was achieved. This correlates with the findings mentioned earlier in [Su14]. It is likely that

the feature based methods could perform even better in this experiment if Haar-cascading

was implemented to assist in the face detection, as this gave good results in the OpenCV

implementations used.

The poor performance in the eigenface recognition likely stems from the weaknesses of

using face representations for classifications instead of performing classifications based

on extracted features. LBPH takes a slightly different approach to face representation than

eigenfaces giving it some headway, however it still suffers when stretching is over +- 30%.

A fisherface based recognition was originally also a part of the systems tested, however it

performed identically to the eigenface recognition as there was only a single training sam-

ple per subject, so the advantages of increasing between-class versus within-class scatter

could not be harnessed. Due to this, the fisherface based algorithm was not used, however

if more samples were to be used for enrollment, then fisherface based recognition may

have an advantage compared to eigenface recognition.

Recognition performance was quite substantial when using feature-based models, though

as this experiment was based on closed-set identification, there are some other untested

factors that could severely impact the performance of the feature based algorithms. For

this experiment, all the enrolled subject templates were of the same stretch value. Open-set

identification that includes templates of other non-stretched samples may have impacted

the classification in a negative manner.

The sharp increase in the FTE rate for HOG when handling samples stretched in excess of

-40% had some unintended side-effects, and could be used to aid in sample rejection when

presented with stretched samples.

Not mitigating presentation effect such as sample stretching, is essentially adding new

variables to face recognition that could be avoided. Some variables like age are uncontrol-

lable, but others such as tilt, lighting and pose variations are kept as uniform as possible.

Sample stretching should not be treated any differently.

In the context of identity documents, these results highlight the importance of test identi-

fication and verification as a function of the enrollment process. If document issuers are

avoiding the verification function, they are then essentially exposing themselves to a range

of presentation attacks. As shown in [Su14], detection of 90% of stretched samples at over

+-10% stretching is possible if a controlled reference sample is available. Implementing

such checks at the enrollment location could help ensure the integrity of the enrollment

samples.
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5 Conclusion

Stretched face samples can severely impact the performance of some face recognition

algorithms. Holistic recognition such as those making use of eigenfaces or LBPH are es-

pecially vulnerable when a face sample is vertically or horizontally stretched in excess

of 20%. The feature based algorithms were relatively unaffected by sample stretching as

long as face detection was achieved. Although feature based recognition performed well,

different scenarios than those done here could yield other results. Further testing should be

done with open-set identification scenarios to explore some of these potential weaknesses.

Countries issuing electronic Machine Readable Travel Document (eMRTD)s should verify

that the enrollment sample has not been modified. This could be achieved by using some

form of stretch detection on the presented sample by comparing it to a controlled sample,

or by doing the whole image acquisition themselves instead of allowing citizens to capture

them.

References

[CK10] Chaudhari, S. T.; Kale, A.: Face Normalization: Enhancing Face Recognition. In: 2010 3rd
International Conference on Emerging Trends in Engineering and Technology. pp. 520–525,
2010.

[DT05] Dalal, Navneet; Triggs, Bill: Histograms of oriented gradients for human detection. In: 2005
IEEE computer society conference on computer vision and pattern recognition (CVPR’05).
volume 1. IEEE, pp. 886–893, 2005.

[JNK08] Jae Suhr, Kyu; Noh, Dong Hyun; Kim, Jaihie: Toward Face Recognition by Using a Fish-
eye Camera. Korean Institute of Electrical Engineers, pp. 963–964, 2008.

[La97] Lawrence, S.; Giles, C. L.; Ah Chung Tsoi; Back, A. D.: Face recognition: a convolutional
neural-network approach. IEEE Transactions on Neural Networks, 8(1):98–113, 1997.

[Li06] Li, G.; Cai, X.; Li, X.; Liu, Y.: An Efficient Face Normalization Algorithm Based on Eyes
Detection. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 3843–3848, 2006.

[Ma11] Marcel, Dr Sebastien: , An Introduction to Automatic Face Recognitionusing Statistical
Models, 12 2011.

[MM18] McGarry, Delia; Melsom, Stephen: , Image Manipulation Detection & Effects of Perspec-
tive Distortion on Face Identification, November 2018.

[Su14] Sun, Yunlian: Advanced Techniques for Face Recognition under Challenging Environments.
PhD thesis, University of Bologna, 2014.

[TP91] Turk, Matthew; Pentland, Alex: Eigenfaces for Recognition. J. Cognitive Neuroscience,
3(1):71?86, January 1991.

[ZF14] Zafaruddin, G. M.; Fadewar, H. S.: Face recognition: A holistic approach review. In: 2014
International Conference on Contemporary Computing and Informatics (IC3I). pp. 175–
178, 2014.

[Zh03] Zhao, W.; Chellappa, R.; Phillips, P. J.; Rosenfeld, A.: Face Recognition: A Literature Sur-
vey. ACM Comput. Surv., 35(4):399–458, December 2003.



A. Brömme, C. Busch, A. Dantcheva, K. Raja, C. Rathgeb and A. Uhl (Eds.): BIOSIG 2020,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 273

On the assessment of face image quality based on

handcrafted features

Olaf Henniger1, Biying Fu1, Cong Chen2

Abstract: This paper studies the assessment of the quality of face images, predicting the utility of
face images for automated recognition. The utility of frontal face images from a publicly available
dataset was assessed by comparing them with each other using commercial off-the-shelf face recog-
nition systems. Multiple face image features delineating face symmetry and characteristics of the
capture process were analysed to find features predictive of utility. The selected features were used
to build system-specific and generic random forest classifiers.

Keywords: Biometrics, face recognition, face image quality.

1 Introduction

Not all biometric samples are equally well suited for the automated recognition of individ-

uals. The utility of a biometric sample, i.e. its usefulness for telling mated and non-mated

samples apart, can be expressed by a quality score [ISO16]. The quality score can be used,

e.g., for deciding whether the re-acquisition of data is deemed necessary, for weighting

partial results in multi-biometric systems, or for selecting the best (in some sense) from

a series of captured biometric samples. The utility of a biometric sample depends on its

faithfulness to its source (i.e. fidelity) and the distinctiveness of the biometric features

(i.e. character) [ISO16]. The utility of a biometric sample can be quantified after compar-

ing it with mated and non-mated samples from a dataset. Hence, utility depends on the

underlying dataset and on the feature extraction and comparison algorithms used.

Fields holding biometric sample quality scores were introduced into several standardized

biometric data interchange formats [ISO19]. In these data formats, if a quality score is

reported, valid values are integers between 0 and 100. According to [ISO18], quality scores

from 0 to 25 should indicate unacceptable quality, from 26 to 50 marginal quality, from

51 to 75 adequate quality, and from 76 to 100 excellent quality. The calibration of the

boundaries between the levels of quality is a considerable challenge.

Related work on predicting the utility of biometric samples concentrated on finger images

[TWW04, T+16, ISO17] and iris images [TGS11, ISO15]. There is no standard yet for

how to assess face image quality. To better understand face image quality assessment, al-

gorithms can currently be submitted to NIST for evaluation [G+20]. A Technical Report

1 Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany,

{ olaf.henniger | biying.fu }@igd.fraunhofer.de
2 Technical University of Darmstadt, Department of Computer Science, Darmstadt, Germany
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[ISO10] outlines a set of face image features that could be useful in calculating qual-

ity scores, but does not specify how to aggregate the individual feature values. It is cur-

rently under revision and amenable to contributions. A Technical Report on portrait quality

[ICA18] includes requirements and recommendations on how to capture suitable reference

face images, but does not specify how to assess the quality of face images captured in an

arbitrary environment. Tools for automatically checking compliance to the ICAO require-

ments compute a number of individual scores, which however are not aggregated into an

overall quality score [F+12].

For assessing face image quality, proprietary algorithms trained for particular face recog-

nition algorithms are in use. This paper investigates how to predict the utility of face im-

ages across multiple state-of-the-art face recognition algorithms. We followed a supervised

machine-learning approach similar to the one applied in finger image quality assessment

[T+16, ISO17]. The goal was to learn a mapping from a face image feature vector to a

scalar quality score. In contrast to [HO+19], which is about face image quality assessment

using automatically learned features, we took “handcrafted” features into consideration,

which were drawn from [ISO10]. The strength of handcrafted features is their explainabil-

ity, which helps avoid using features with a potential demographic bias.

The rest of this paper is organized as follows: Section 2 describes the data available for this

study. Section 3 deals with the a-posteriori assessment of the quality of a biometric sample

by comparing it with other samples. Section 4 considers the a-priori quality assessment,

i.e. predicting the utility of a sample without comparing it first with other samples. Sec-

tion 5 assesses the accuracy of the utility-prediction model using a testing dataset. Finally,

Section 6 summarizes the results and gives an outlook on future research work.

2 Underlying data

2.1 Face image dataset

The publicly available NIST Special Database 32 [C+09] was used in the analysis. It

consists of 712 face images of 380 different test subjects. 686 images are frontal or nearly

frontal face images. 26 images are full-profile or nearly full-profile images. For 145 test

subjects, the dataset contains more than one different images, and for 69 test subjects even

more than two different images. For one test subject, the dataset contains three identical

images, only one of which was used in this study to avoid bias. For the other test subjects,

there is only one image. The sizes of the uncropped frontal images range from 240×240

pixels to 1824×1170 pixels. The majority of images is of size 480×600 pixels.

2.2 Similarity scores

Two commercial off-the-shelf face identification systems were used to calculate similarity

scores. In the following, they are referred to as System 1 and System 2. The systems are
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treated as “black boxes” as we do not target at a comparative technology evaluation. The

systems underwent the deep-learning revolution and successfully participated in NIST’s

recent Face Recognition Vendor Tests [GNH18a, GNH18b]. Both systems were configured

so that each search returned 100 candidates, for whom the similarity scores were logged.

For both systems, all and only frontal face images were attempted to enrol into the ref-

erence database. Only frontal face images were enrolled because many face recognition

systems do store frontal face images as reference images (e.g. in ePassports, forensic

databases, entry/exit systems). System 1 encountered three failures to enrol. System 2

encountered no failures to enrol.

After enrolment, for each system, the reference database was searched against all (frontal

and profile) face images. For utility assessment, comparisons of images with themselves

were not taken into consideration. System 1 encountered three failures to extract, for the

same images for which it encountered failures to enrol. System 2 encountered no failures

to extract. For all frontal probe images without failure to extract, both systems returned all

mated reference identifiers in the candidate lists. For profile probe images, neither system

returned all mated reference images in the candidate lists. For this lack of mated similarity

scores for profile images, we limited the study exclusively to the (nearly) frontal face

images. Taking into account only frontal images, both systems returned all mated reference

identifiers at the head of their candidate lists, i.e. all mated similarity scores were greater

than any non-mated similarity score. Hence, despite their diversity, all frontal images in

the dataset, except for the ones with a failure to extract, could be regarded as excellent

quality with respect to state-of-the-art face recognition systems.

2.3 Training subset and testing subset

We partitioned the face image dataset randomly into nearly equally large disjoint training

and testing subsets, leaving the subsets of face images for the same test subject undivided.

The training dataset consisted of 345 face images of 190 test subjects. The testing dataset

consisted of 339 face images of 190 test subjects.

3 A-posteriori assessment of utility

The utility of a biometric sample can be predicted in several ways, e.g.:

• For NIST’s fingerprint image quality (NFIQ) assessment algorithm, version 1, the

utility of a biometric sample was defined as the normalized difference between the

mean of the sample’s mated non-self similarity scores and the mean of the sample’s

non-mated similarity scores. Predicting a real-valued scalar is a regression prob-

lem. However, as regression methods failed to give adequate predictions, for NFIQ

1.0, the machine-learning problem was restated in terms of classification into utility

classes (excellent, very good, good, fair, or poor utility) [TWW04].
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• For the new and improved version NFIQ 2.0, a random decision forest was trained

for binary classification into two utility classes (high or low utility). The trained ran-

dom decision forest outputs class membership along with its probability. The quality

score is the probability that an image belongs to the high-utility class multiplied by

100 and rounded to the nearest integer [T+16, ISO17].

The normalized difference between the mean of a sample’s mated non-self similarity

scores and the mean of its non-mated similarity scores can be calculated only if a sufficient

number of randomly distributed mated and non-mated similarity scores were available.

However, because similarity scores were available only for the most similar candidates,

we chose another measure of separation of mated and non-mated similarity score distri-

butions. For each frontal face image with more than one mated non-self similarity score,

we computed a utility score as the normalized difference between the arithmetic mean

of mated non-self similarity scores and the maximum non-mated similarity score. Images

with only one mated non-self similarity score were not considered because the arithmetic

mean of mated non-self similarity scores would be the same for both compared images,

independent of their quality.

Using the training dataset, we built regression models between the utility score and multi-

ple features specified in Section 4.1. However, these models failed to give adequate predic-

tions of utility in the testing dataset. Therefore, like NFIQ 2.0, we tried binary classification

into two utility classes. We selected face images of high and low quality as follows:

1. Class 1: All images whose minimum mated score was greater than the threshold

value that corresponds to FNMR = 60% were labelled as high quality.

2. Class 0: All images whose maximum mated score was less than the threshold value

that corresponds to FNMR = 30% were labelled as low quality.

The boundaries are arbitrary. They were chosen so that in the given training dataset about

40 images were of Class 1 and about 40 images were of Class 0 for either system. The

remaining images neither belong to Class 1 nor to Class 0.

For each face recognition system, a specialized quality prediction model can be con-

structed. However, it would be useful to build a generic face image quality assessment

model independent of particular face recognition systems. For this purpose, we formed

unions and intersections of the Classes 1 and 0 of System 1 and System 2, respectively:

• The union of the Class 1 training sets consisted of 47 images that were of high

quality for either System 1 or System 2. The union of the Class 0 training sets

consisted of 49 images that were of low quality for either System 1 or System 2.

• The intersection of the Class 1 training sets consisted of 25 images that were of high

quality for both System 1 and System 2. The intersection of the Class 0 training sets

consisted of 36 images that were of low quality for both System 1 and System 2.
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4 A-priori assessment of sample quality

4.1 Selection of face image features

Several face image features that could be suitable for predicting utility were proposed in

[ISO10]. We coded the feature extraction in Python and extracted a feature vector consist-

ing of the following elements from each face image:

• left-right (lighting and pose) symmetry [GLZ07, ISO10] calculated as sum of differ-

ences of normalized pixel luminance values of the left and right halves of the face

and as cross-entropy (CE), Kullback-Leibler (KL) divergence, and intersection of

histograms of

– normalized pixel luminance values of the left and right halves of the face and

– LBP (local binary pattern) filtered pixel luminance values of the left and right

halves of the face, respectively,

• characteristics of the capture process: contrast, global contrast factor, measures of

image brightness (mean, variance, skewness, and kurtosis of pixel luminance val-

ues), exposure, sharpness, inter-eye distance, and blur [ISO10].

Tab. 1 shows the coefficients of the Spearman’s rank correlations between the face image

features and utility scores for System 1 and System 2.

Tab. 1: Spearman’s rank correlation coefficients for the face image features under consideration
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System 1

utility score
4 -21 24 14 -8 -5 7 24 -24 27 19 -25 -26 32 27 -2 25

System 2

utility score
5 -14 27 7 -2 -10 12 21 -8 20 17 -12 -14 28 24 11 6

Within the training dataset, higher correlations with the utility scores were observed for

exposure, mean, variance, skewness, and kurtosis of pixel luminance, left-right symme-

try calculated as cross-entropy of histograms of normalized pixel values, sharpness, blur,

global contrast factor, and contrast. Variance of pixel luminance was strongly correlated

with contrast. Skewness of pixel luminance was strongly correlated with kurtosis. There-

fore, the variance and skewness of pixel luminance need not be used in the training process.

Fig. 1 shows error vs. reject curves (ERCs) for the symmetry features, Fig. 2 for the other

features. An ERC shows the dependence of the FNMR at a fixed decision threshold on



278 Olaf Henniger, Biying Fu, Cong Chen

(a) System 1 (b) System 2

Fig. 1: Error vs. reject curves for symmetry features

(a) System 1 (b) System 2

Fig. 2: Error vs. reject curves for other face image features

the percentage of reference and probe images excluded based on unfavourable feature val-

ues [GT07]. The ERCs vary for different decision threshold values. The thresholds were

set to give an initial FNMR value of about 3%. The ERCs show that exclusion based

on the values of the features with higher correlation with utility led to reduced FNMR

values within the training dataset. In addition, exclusion of images based on inter-eye

distance, left-right symmetry calculated as Kullback-Leibler divergence of histograms of

normalized pixel values, histogram intersection of normalized pixel values, and histogram

intersection of LBP filtered pixel values led to reduced FNMR values within the train-

ing dataset. Left-right symmetry calculated as histogram intersection of normalized pixel

values was strongly correlated with that calculated as Kullback-Leibler divergence of his-

tograms of normalized pixel values and, therefore, need not be used in the training process.

From the above evaluations, we selected the following features for use in the training:

• left-right symmetry calculated as cross-entropy of histograms of normalized pixel

values, as Kullback-Leibler divergence of histograms of normalized pixel values,

and as histogram intersection of LBP filtered pixel values,

• from the characteristics of the capture process: contrast, global contrast factor, mean

and kurtosis of pixel luminance, exposure, sharpness, inter-eye distance, and blur

(i.e. all except of variance and skewness of pixel luminance).
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4.2 Building utility-prediction models

For predicting the utility of face images within System 1 and System 2 and in general,

random decision forests were built in Python using the training dataset. To find optimal

parameter settings for the random forests, a grid search was applied, and all possible pa-

rameter combinations within the search space were verified with 3-fold cross-validation.

5 Evaluation of the accuracy of the utility-prediction model

To evaluate the accuracy of the utility-prediction models, the models trained for System 1

and System 2 and the models built using the union and the intersection of the images

selected for System 1 and System 2 were used to generate quality scores for the testing

data. Fig. 3 shows the ERCs with respect to these quality scores, starting at an FNMR

value of about 3%. The ERCs show that exclusion of images with low quality scores lead

to a reduced FNMR within the testing dataset. The model built using the intersections of

images provided better results than the model built using their union did.

(a) System 1 (b) System 2

Fig. 3: Error vs. reject curves for quality scores

6 Summary and outlook

This study provided preliminary insights into features usable to predict the utility of face

images within face recognition systems. Future work will expand the range of features

and face recognition systems and the size and diversity of datasets explored. A next step

is the evaluation of features expressing the degree of ICAO compliance. Another step is

the consideration of a face image dataset containing images of all quality levels, including

marginal and unacceptable quality.
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Toward to Reduction of Bias for Gender and Ethnicity from

Face Images using Automated Skin Tone Classification

David Molina1, Leonardo Causa2, Juan Tapia3

Abstract: This paper proposes and analyzes a new approach for reducing the bias in gender caused
by skin tone from faces based on transfer learning with fine-tuning. The categorization of the eth-
nicity was developed based on an objective method instead of a subjective Fitzpatrick scale. A K-
means method was used to categorize the color faces using clusters of RGB pixel values. Also, a new
database was collected from the internet and will be available upon request. Our method outperforms
the state of the art and reduces the gender classification bias using the skin-type categorization. The
best results were achieved with VGGNET architecture with 96.71% accuracy and 3.29% error rate.

Keywords: Gender classification, Bias, Skin-Detection.

1 Introduction

Facial recognition is the process of identifying or verifying the identity of a person using

their face. It uses biometric to capture, analyze, and compare patterns based on the per-

son’s facial details. Traditionally, facial recognition has been associated with the security

sector[BJ18]. However, it is now expanding across many other applications. Although pos-

itive results have been achieved in this field. There are still variables that limit the practical

and cross-wise application of this technology, such as the accuracy and the throughput

speed.

About the accuracy, some biases have been identified, mainly in the soft biometric fea-

tures: gender, race and age [BJ18, JTF19, SWD19]. Several researchers have identified

these types of biases, but there is not yet evidence about the real causes of such problems

[BJ18]. Considering the rapid growth in the use of these technologies, the results of facial

recognition systems must not be determined by some kind of algorithmic discrimination,

i.e., producing better or worse results with certain groups of people, given their gender,

race or age. Different studies show that facial recognition systems have higher error rates

in people with dark skin, female and young [KVK12]. These shortcomings are due, in part,

to biased training processes; which is facilitated by the use of databases that do not take

into account the human particularities and differences, especially in aspects such as race

and gender [JH14].

Several research groups have worked on facial recognition and the associated biases. Buo-

lamwini and Gebru [BJ18] focus on evaluating the performance of three commercial

1 Universidad Andres Bello, DCI, Avenida Antonio Varas 880, Santiago Chile,

d.molinagarrido@uandresbello.edu
2 TOC Biometrics, R+D Center SR-226, leonardo.causa@toc.cl
3 Corresponding author: Universidad de Santiago de Chile, Departamento de Informatica, juan.tapia.f@usach.cl
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classifiers, IBM [IBM20], Microsoft [MIC20], and Face++ [Fmm20]. Previous research

showed discrimination according to race and gender in machine learning algorithms. The

analysis of facial databases such as IJB-A [ijb-a], revealed an over-representation of lighter-

skinned, compared to darker-skinned individuals, especially female. To test the classifiers,

an annotated database with 1,270 images was generated, The Pilot Parliaments Benchmark

(PPB) [BJ18]. The images were selected from three African countries and three European

countries. They were manually grouped by gender and skin type labeled using the Fitz-

patrick scale [FTZ8], and the intersection of gender and skin type. Test results showed

a relatively high accuracy overall. However, the error rates increase between the different

groups. All classifiers provided the best results on the males than females with an error rate

between 8.1%-20.6%. Similarly, classifiers showed better performance on lighter-skinned

than darker-skinned individuals, with an error rate of 11.8%-19.2%. The best results are

for lighter males with 100% accuracy; while the highest error rate was for darker females

ranging from 20.8% to 34.7%.

Muthukumar et al. [MPR18] conducted several analyses to try to uncover the reason for

the unequal performance of commercial facial recognition services in the gender classifi-

cation task across intersectional groups defined by skin type and gender. In this study, a

modified PPB database [BJ18] was used: labels related to skin tone were classified only

as light or dark and 1,204 images were used (PPB*). To perform tests on this data set, the

IBM Watson classifier and a custom classifier were applied. Both systems showed better

results on males than females and the highest error rate was for darker females ranging

from 17.0% to 27.0%. The main finding is that the skin type is not the cause of misclas-

sification. Besides, they have shown evidence suggesting differences in the lip, eyes and

cheek structure by the ethnicity.

Wu and Wang [SWD19] used deep learning method to classify facial features and to study

the factors affecting face recognition, mainly the influence of the age and gender. Their

results showed an average recognition rate of 83.7% using the CAS-PEAL face database

[CP04] (12,000 images). About the gender, the system performs better on males than fe-

males. Considering the age, middle-aged men presented lower performance than that of

youth and the elderly; and the female had not a significant difference in the recognition

rate. Dhomne et al. used Deep Convolutional Neural Network (D-CNN) algorithm based

on a VGGNET architecture [SZ15] to develop a gender classification system. A gender-

balanced database consisting of 200 celebrity images was used. Their results achieved

95.0% accuracy in the test dataset. Borza et al. [BD18] compared two methods to develop

an automated skin tone classification system to use in visage applications. The first method

used histograms in various color spaces and Principal Component Analysis to generate a

feature vector. Afterward, a Support Vector Machine (SVM) and voting schema are used to

determine the skin tone. The second method uses Convolutional Neural Networks (CNN)

to automatically extract chromatic features. Both methods were trained and tested on pub-

licly available datasets with 9,951 images: Caltech, the Chicago face dataset, Minear-Park,

and Brazilian face dataset. The SVM method showed an accuracy of 86.7%, and the CNN

approach obtained an accuracy of 91.3%.

The relates work shows that the main problems in gender classification is a non-representative

database and manual skin type classification by human experts are critical problems in this
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field of research. A balanced database in terms of race and gender and automated detection

of skin tone could be a powerful tool to reduce biased, subjectivity, standardize criteria,

and to improve the gender classification in facial recognition systems.

The goal of this paper is to develop a method for gender classification with racial analysis

using automated detection of skin tone based on machine learning and deep learning al-

gorithms. Additionally, we build an annotated gender and skin-type balanced-database to

train and test this work. The database will be available to other researchers upon request.

2 Methods

2.1 Images Database

In order to study the bias of gender and ethnicity because of the subjective method used

to label the skin-color, a new database was created collected images from the internet.

This database is distributed equally in gender, which provides phenotype and geographical

differentiation (see Fig. 1).

The database consists of 12,000 facial images of different phenotype groups. Divided into

a Set 1 of dark-skinned people (black race) and a Set 2 of Asian and Caucasian people

(white race).

Fig. 1: Example of our annotated gender and skin-type balanced-database. Source: Self-

production.

Set 1 is formed by 2,000 images of Africans, 2,000 images of African-Americans (1,000

North-Americans, 500 Central-Americans and 500 South-Americans), and 2,000 images

of Europeans. The images were obtained from different existing facial databases and sup-

plemented by Google images.

Set 2 is formed by 3,000 images of Asians and 3,000 images of Caucasians. The images

were obtained from UTKFace and SCUT-FBP5500 databases. The gender in both sets is

represented by 50% men and 50% female. Images dimensions are at least 250×250 pixels,

a maximum of five images per subject in different positions, and the wild pose (without

restrictions) were used.



284 David Molina, Leonardo Causa, Juan Tapia

2.2 Gender Classification System with Racial Analysis

The proposed classification method consists of two modules. Module 1 applies advanced

image processing tools and machine learning to automatically classify the skin tone. It can

be described as an analysis cascade of three stages: in Stage 1, the images are processed

using CNN algorithms for face detection. Stage 2 uses skin segmentation based in HSV

color space thresholds on face images to obtain the face skin [BD18][ZSQ9]. Stage 3

applies K-means [MQC7] to determine the predominant color in face skin. Module 2 uses

features extraction and two classifiers D-CNN, based on VGGNET [SZ15] and MobileNet

[HZ17] architectures, to generate the gender classification system.

2.3 Automated Skin Tone Classification

2.3.1 Face Detection

Stage 1 uses the CNN pre-trained algorithm based on TinyFaces detector with a ResNet-

101 architecture to identify faces in the images of the database. This algorithm improves

the detection of small objects [HR17] and performs well on facial images with different

poses and faces of different sizes.

2.3.2 Skin Segmentation

Stage 2 allows to segment the face images generated in the previous step, to obtain only

the face skin (Fig. 2). HSV color space thresholds are used for this segmentation, which

has been proven to give better results in skin color extraction tasks [BD18][ZSQ9].

Fig. 2: Segmented image with color thresholds in the HSV color space. Source: Self-

production.

2.3.3 Skin Tone Classification

The purpose of Stage 3 is to determine which is the predominant color in the skin-segmented

image using the K-means algorithm. A grid search from k=2 up to 10 was used to looking

at the best parameters. The best result was achieved with k=4. Each pixel on the segmented

image is selected, in the RGB color space, and it is associated in one of the four clusters,

depending on the chromatic differences. For each image, the most voting cluster is the pre-

dominant color cluster, i.e., it contains the type of color that is most repeated on the face,

and therefore, the color with which image is classified. After all, images were associated

with some clusters, the mean RGB value in Set 1, Set 2 and both are calculated to deter-

mine the thresholds of four color categories. These color categories define the predominant

skin tone in the face and represent the racial analysis.
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2.4 Gender Classification System

Module 2 uses deep learning to develop gender classifier. Two classification method based

on D-CNN were implemented and trained: VGGNET and MobileNet. To train and test,

the image database was divided into three different sets: training set, validation set and

testing dataset. The output of Module 2 and the skin tone are used to analyze and evaluate

the system in terms of gender, skin-type and intersectional groups.

3 Results

3.1 Automated Skin Tone Classification

Tables 1 and 2 shows the distribution of the RGB component (mean and standard devia-

tion) for Set 1 and Set 2 by geographical zones and gender.

Zone Set 1 - Male Set 1- Female

Mean RGB SD RGB Mean RGB SD RGB

African 84.25 27.36 90.90 31.68

South-American 96.43 35.03 111.32 40.73

Central-American 98.29 34.47 110.45 41.23

North-American 95.28 27.51 107.81 30.66

European 90.95 29.30 113.14 40.55

Tab. 1: RGB Component for Set 1.

Zone Set 2 - Male Set 2- Female

Mean RGB SD RGB Mean RGB SD RGB

Asian 160.28 34.13 172.53 33.44

Caucasian 150.17 37.03 161.61 39.40

Tab. 2: RGB Component for Set 2.

To define the category thresholds, the mean RGB value of each set and the total database

was used. Categories 1 and 2 represent dark skin tones. Categories 3 and 4 represent light

skin tones. The categories 1, 2, 3 and 4 reached the following skin tone values respectively:

<= 97.48, [97.48 - 129.32], [129.32 - 161.15] and >= 161.15.

3.2 Gender Classification System

The system was trained using a person-disjoint database and the parameters were adjusted

using three partition sets: Train, Validation and Test. A training set of 60% (7,200) and

validation set of 20% (2,400) was used. The performance of the all system was measured

using the testing set of 20% (2,400) dataset. For both models, different D-CNN configu-

rations and parameters tuning were applied. The best results were obtained for the models

with data augmentation, 150 epochs, inputs image size 224×224 pixels and learning rate

of 1e−4. Some results are shown below.
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3.2.1 VGG16 Net Architecture

The overall results for gender classification show a 96.71% accuracy and 3.29% error rate

(4.17% Set 1 and 2.42% Set2 -lighter-skinned group ). Table 3 shows the error by skin tone

category and gender. In Tables 4 and 5 the error classification rate is showed by gender and

geographical zone for each data set. In all tests, the error increased for the darker group

(Set 1 and category 1) compared with the lighter group (Set 2 and category 4). The highest

error rate was for the darker female group.

Category Female Male

Amount Error [%] Amount Error [%]

1 22 5.76 15 3.92

2 9 4.52 8 4.02

3 7 3.48 3 1.50

4 10 2.40 5 1.20

Total 48 4.00 31 2.58

Tab. 3: Classification Error rate by Skin Tone Categories and Gender.

Zone Set 1 - Female Set 1 - Male

Amount Error [%] Amount Error [%]

African 13 6.50 12 6.00

South-American 2 4.00 1 2.00

Central-American 2 4.00 2 4.00

North-American 6 6.00 2 2.00

European 7 3.50 3 1.50

Total 30 5.00 20 3.33

Tab. 4: Classification Error Rate by Gender and Geographical Zone on Data Set 1.

”Amount” represents the number of images miss-classified.

Zone Set 2 - Female Set 2 - Male

Amount Error [%] Amount Error [%]

Asian 10 3.33 6 2.00

Caucasian 8 2.67 5 1.67

Total 18 3.00 11 1.83

Tab. 5: Classification Error rate by Gender and Geographical Zone on Data Set 2.

3.2.2 MobileNet Architecture

The overall results for gender classification show a 96.33% accuracy and a 3.67% error

rate (4.17% Set 1 and 3.17% Set 2-lighter-skinned group) but with a small increase in

error rate in this set.

In Tables 6 and 7 the error classification rate is showed by gender and geographical zone

for each data set. Table 8 shows the error by skin tone category and gender. The error

increased for the darker group compared with the lighter group. Unlike the previous case,

there is an improvement in female classification, being the highest error rate for males,

especially for the darker male group.



Toward to Reduction of Bias for Gender and Ethnicity 287

Zone Set 1 - Female Set 1 - Male

Amount Error [%] Amount Error [%]

African 11 5.50 13 6.50

South-American 1 2.00 2 4.00

Central-American 1 2.00 3 6.00

North-American 3 3.00 1 1.00

European 7 3.50 8 4.00

Total 23 3.83 27 4.50

Tab. 6: Classification Error rate by Gender and Geographical Zone on Data Set 1.

Zone Set 2 - Female Set 2 - Male

Amount Error [%] Amount Error [%]

Asian 4 1.33 15 5.00

Caucasian 8 2.67 11 3.67

Total 12 2.0 26 4.33

Tab. 7: Classification Error rate by Gender and Geographical Zone on Data Set 2.

Category Female Male

Amount Error [%] Amount Error [%]

1 15 3.93 21 5.48

2 12 6.00 7 3.50

3 5 2.49 8 4.00

4 3 0.72 14 3.36

Total 35 2.92 50 4.17

Tab. 8: Classification Error Rate by Skin Tone Categories and Gender.

3.3 Comparison with Gender Shades: Intersectional Accuracy Disparities in Com-

mercial Gender Classification

Gender shades [BJ18] is one of most relevant work about gender and ethnicity bias. A man-

ually Fitzpatrick skin-type scale [FTZ8] was used to labeling face images (PPB database)

in six categories (Types I to VI). Faces labeled were grouped in two skin tone groups,

lighter skin (Types I, II and III) and darker skin (Types IV, V, and VI). This classification

reached 46.4% for darker skin and 53,6% for lighter skin. Our proposal clustering auto-

matically the same four categories using K-means as reported in [HR17], a lighter skin that

includes skin-tone categories 3 and 4, and a darker skin that includes skin-tone categories

1 and 2.

Table 9a presents the distribution of both databases, showing a similar proportion of skin

types. The overall accuracy is presented in Table 9b. Our model shows the best results with

an improvement ranged from 3.0% up to 8.8%.

In terms of gender (Table 10a) and skin type distribution (Table 10b), our results are better

than test reported for the commercial classifiers [GS18]. Gender classification shows an

error rate difference of 1.42% compared with the 8.1% for Microsoft, which was obtained
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Skin Type Our Work [%] Gender Shades [%]
Darker Skin 48.5 46.4
Lighter Skin 51.1 53.6

(a)

Classifier Accuracy [%]
Our Work 96.7
Microsoft 93.7
Face++ 90.0
IBM 87.9

(b)

Tab. 9: a) Database Distribution by Skin Type. b) Overall Accuracy.

the lowest error rate difference between commercial classifiers. Considering skin-type, the
error rate was of 2.5%, while the best results for commercial classifiers were obtained by
Face++ with an 11.8% error rate. Table 11 shows the results by intersectional groups per-
form worst on darker females, but our method presents a great improvement by reducing
the gap to 3.6%.

Classifier Female[%] Male[%] Error[%]
Our work 96.0 97.4 1.4
Microsoft 89.3 97.4 8.1
Face ++ 78.7 99.3 20.6
IBM 79.7 94.4 14.7

(a)

Classifier Darker [%] Lighter[%] Error[%]
Our Work 95.4 97.9 2.5
Microsoft 87.1 99.3 12.2
Face++ 83.5 95.3 11.8
IBM 77.6 96.8 19.2

(b)

Tab. 10: a) Accuracy by gender. b) Accuracy by skin type.

Classifier DM [%] DF [%] LM [%] LF [%] Gap [%]
Our Work 95.6 95.2 96.7 98.8 3.6
Microsoft 94.0 79.2 100.0 98.3 20.8
Face++ 99.3 65.5 99.2 94.0 33.8
IBM 88.0 65.3 99.7 92.9 34.4

Tab. 11: Overall Accuracy by Gender and Skin Type: Darker Male (DM), Darker Female
(DF), Lighter Male (LM) and Lighter Female (LF).

4 Conclusion
In this ongoing research, we show that is feasible to develop an objective method to as-
sign the skin-tone in order to improve the gender classification. This approach improves
the results and reduces gender bias by ethnicity produced by the manual assignation of
each categorization. This assignation is influenced by the experience of each people. An-
other achievement of this work is the construction of an annotated gender and skin-type
balanced-database, which can be used to train and test this and other methods upon request.
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Compact Models for Periocular Verification Through

Knowledge Distillation
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Abstract: Despite the wide use of deep neural network for periocular verification, achieving smaller
deep learning models with high performance that can be deployed on low computational powered
devices remains a challenge. In term of computation cost, we present in this paper a lightweight deep
learning model with only 1.1m of trainable parameters, DenseNet-20, based on DenseNet architec-
ture. Further, we present an approach to enhance the verification performance of DenseNet-20 via
knowledge distillation. With the experiments on VISPI dataset captured with two different smart-
phones, iPhone and Nokia, we show that introducing knowledge distillation to DenseNet-20 training
phase outperforms the same model trained without knowledge distillation where the Equal Error
Rate (EER) reduces from 8.36% to 4.56% EER on iPhone data, from 5.33% to 4.64% EER on
Nokia data, and from 20.98% to 15.54% EER on cross-smartphone data.

Keywords: Periocular recognition, Smartphone biometric verification, Knowledge distillation.

1 Introduction

The rapid growth of smartphone users (3.2 billion in 2019 [St20]) has also increased the

interest in secure authentication application using smartphones. Biometric modalities like

fingerprint, voice, periocular and face are widely employed on smartphones to achieve

secure, convenient, and reliable authentication.

Of the many other modalities, periocular region provides a distinct trade-off between us-

ing iris or entire face for identity verification by considering a small area around the eye

including eyelids, lashes, and eyebrows as biometric trait [PRJ09]. Given the performance

under relaxed settings, periocular biometrics is recently well preferred for various use

cases such as mobile platform [Al19] and embedded device [Bo19, Bo20a, Bo20b]. Mo-

tivated by such new applications, we focus on periocular modality for smartphone based

biometric identity verification in this work.

Although the integration of biometrics in smartphone devices has enabled several advan-

tages, deploying such a solution to a smartphone device faces several challenges. One of

these challenges is the high variability between probe and gallery images produced when

the images are acquired using different devices, different cameras, or under different en-

vironmental conditions, requiring a highly generalized solution. This challenge is well

addressed in the literature as reported in the previous works [Al19, Ah17]. Yet another

major challenge is related to the limited computational resources available in smartphone

1 Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
2 Mathematical and Applied Visual Computing, TU Darmstadt, Darmstadt, Germany
3 The Norwegian Colour and Visual Computing Laboratory, NTNU, Gjovik, Norway
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devices, especially when considering a solution based on a deep neural network with ex-

tremely high number of parameters. Recent works [Ga18, Ah17] have addressed this issue

with the smartphone based periocular recognition using deep learning, albeit with less fo-

cus on the limited computation resource available on the smartphone devices where both

models [Ga18, Ah17] contain more than 12 million of trainable parameters. Despite the

use of deep learning, the challenge of customizing the solutions to smartphone devices

with limited computational resources is not well addressed.

We therefore focus this work on reducing the number of parameters in the deep mod-

els to make them easily adaptable to mobile devices with limited computation resources

by utilizing knowledge distillation noted as KD [HVD15] for periocular verification. To

truly establish the applicability of the proposed approach for periocular verification, we

provide the baseline performance of three DenseNet architectures [Hu17]: DenseNet-201,

DenseNet-169, and DenseNet-121. Further, we propose a compact model which we refer

to as DenseNet-20 based on the dense block containing 1.1 million of trainable parameters.

The experimental results on VISPI dataset [KRB20] of 152 unique pericoular instances

with 6682 images captured with 2 different smartphones (iPhone 5S and Nokia Lumia

1020) shows that the DenseNet-20 model achieves a comparable verification performance

using a shallow architecture. With the obtained performance, we argue that deploying such

a model to a low computational resource device is more realistic than other deeper mod-

els. Motivated by this, we also focus on enhancing the accuracy and generalizability of the

shallow model for periocular recognition by successfully introducing the KD method to

the training process. Although introducing knowledge distillation to the training process

does not change the model capacity, the gradient descent induced by distillation loss func-

tion allows this model to find a very favorable minimum of the training objective [PL19].

Thus, our proposed approach improves the verification performance of the distilled model,

in comparison to the same model trained without knowledge distillation, the Equal Error

Rate (EER) is reduced from 8.36% to 4.56% on iPhone data, from 5.33% to 4.64% EER

on Nokia smartphone data, and from 20.98% to 15.54% EER on cross-smartphone data.

2 Methodology

The goal of this work is to present a solution to improve the accuracy and generalizability

of shallow CNN models for smartphone periocular verification. Particularly, we first eval-

uate deep representations extracted from periocular region using three different DenseNet

[Hu17] architectures: DensNet-121, DensNet-169, and DenseNet-201. We further present

our proposed compact CNN model, DenseNet-20, containing only 1.1 million trainable

parameters. To further improve the generalizability and accuracy of the small CNN model,

we introduce knowledge distillation (KD) to the DenseNet-20 model training process. This

section presents the details of the employed DenseNet model along with the KD method.

2.1 Densely Connected Convolutional Networks

DenseNet [Hu17] is a convolutional neural network designed for image classification to

achieve low classification error rates while having fewer parameters than ILSVRC 2015

winner, ResNet model [He16]. The architecture is based on connecting each convolutional

layer to every other layer in a feed-forward fashion as shown in Figure 1. Thus, each layer



Compact periocular models by knowledge distillation 293

�

th receives collective knowledge from all preceding layers x0,x1, ...,x�−1 and passes on

its knowledge to all subsequent layers. Given that each layer produces k feature maps, the

input feature map for �th layer is k0 + k× (�− 1) where k0 is the number of channels in

the input layer and k refers to the growth rate of the network. In this work, we evaluate

three different DenseNet architectures as baselines: DenseNet-121, DenseNet-169, and

DenseNet-201 where 121, 169, and 201 refer to the number of the convolutional layers

in each model (network depth). The growth rate for all the networks is set to k = 32. The

DenseNet-121, DenseNet-169, and DenseNet-201 models contain 7.1, 12.6 and 18.2m of

trainable parameters, respectively.

We apply transfer learning on these models pretrained on ImageNet dataset [De09] by fine-

tuning all the layers on images from our training dataset with Softmax classifier. In the test

phase, the Softmax classifier is removed from all models and the feature f is extracted

from the last layer which is of the dimension 7×7×1920.

2.2 Proposed Compact DenseNet

We further propose a new model based on DenseNet architecture - DenseNet-20. Similar

to the original DenseNet model, DenseNet-20 has 4 dense blocks with 1, 2, 8, and 6 lay-

ers in dense block 1, 2, 3, and 4, respectively. We train the compact DenseNet-20 model

from scratch with Softmax classifier. The proposed DenseNet-20 contains 1.1m trainable

parameters as compared to 18.2 million parameters with DenseNet-201. Similar to the

original DenseNet models, the Softmax classifier is removed in the testing phase from the

model to extract the feature f from the last layer with the dimension of 7×7×1920.

Input
image

FCDense block 1 Dense block 2 Dense block 3 Dense block 4

Dense block 1 Dense block 2 Dense block 3 Dense block 4 FC

Softmax(T=t)

Softmax(T=t)

Softmax(T=1)

KD loss

Ground
truth

CE loss

Soft label

Soft label

Hard label

Teacher model

Student model

Fig. 1: An overview of the proposed KD approach for periocular verification based on DenseNet

architecture.

2.3 Proposed Compact DenseNet-20 with Knowledge Distillation

We explore KD to improve the performance of DenseNet-20 model by employing a student-

teacher relation where each of DenseNet-121, DenseNet-169, and DenseNet-201 models

are used as a teacher to distill the knowledge to student model, DenseNet-20. We present

the details of KD for the convenience of the readers.

KD is a technique to improve the performance and generalization ability of smaller mod-

els by transferring the knowledge learned by a cumbersome model (teacher) to a single
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small model (student). The key idea is to guide the student model to learn the relationship

between different classes discovered by the teacher model that contains more informa-

tion beyond the ground truth labels [HVD15]. Suppose we have teacher model T , student

model S, and training dataset X ,Y ∈ D, where X is the training images and Y is their class

labels. The output of the teacher model for any input xi ∈ X is a vector of class proba-

bilities PT computed for each class using softmax function by converting the logits, zT

into probabilities that sum to one PT (x) = so f tmax(zT ). Specifically, the probability pi

of class i is computed by comparing zi with other logits as given: pi =
exp(zi)

∑
N
j=1 exp(z j)

. This

probability distribution will have a high probability value of pi for the correct class yi ∈ Y

with all other class probabilities close to zeros. Thus, it does not provide more valuable

information than ground truth labels. Therefore, Hinton et al. [HVD15] proposed to scale

the logits using a temperature parameter t > 1 before applying the softmax function. Thus,

the teacher model can produce a softer distribution of the class probabilities, which pro-

vides more valuable information about classes similar to the predicted class. In this case,

the output of the teacher model is PT
s (x) = So f tmax(zT

/t) and the probability pi of class

i is given as: pi =
exp(zi/t)

∑
N
j=1 exp(z j/t)

. Similarly, student S can produce a soft class probability

distribution using the temperature parameter t, PS
s (x) = So f tmax(zS

/t). The final loss for

the student model is a weighted sum of two loss functions, cross-entropy loss Lce and

Kullback Leibler Divergence loss Lkld , as follows:

LKD = λ ∗Lce(Y,P
S(x))+(1−λ )∗ t2 ∗Lkld(P

S
s (x),P

T
s (x)),

where Y is the ground truth label, PS(x) standard softmax output produced by student,

PS
s (x) parameterized softmax output produced by student, PT

s (x) parameterized Softmax

output produced by teacher and λ ∈ [0,1] is the weight parameter. Since the gradients of

the Lce loss is smaller than gradients of the Lkld where the logits used for Lkld is divided

by t, the Lkld is multiplied by t2 as suggested by Hinton et al. [HVD15].

We thus use the student-teacher based KD for all three DenseNet models - DenseNet-201,

DenseNet-169 and DenseNet-121 by setting each of them as teacher and our proposed

DenseNet-20 as the student model as shown in the Figure 1.

3 Experimental setup

Details
Smartphone

iPhone 5S Nokia Lumia 1020

Capture Scenario Mixed Mixed

Illumination Illumination

Resolution 12 Mp 41 Mp

Number of subjects 76 76

Unique periocular 152 152

instances

Total images 3341 3341

Tab. 1: Distribution of periocular

database employed in this work.

To demonstrate the applicability of our proposed

approach, we evaluate it on a public dataset of peri-

ocular images - VISPI database [KRB20]. We em-

ploy the subset of database containing 152 unique

periocular instances captured from 76 unique sub-

jects using two different smartphones - iPhone 5S

and Nokia Lumia 1020. The 152 periocular in-

stances are captured from both left and right eyes-

76 instances are captured from the left eye and 76

instances are captured from the right eye. Each unique periocular image has multiple sam-

ples captured in different instances. The total distribution of the images in the database

used for the evaluation in this work is presented in the Table 1.
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The ocular images are captured in a mixed illumination environment using the rear camera

of the smartphones in a semi-cooperative manner. The images in the database also present

everyday appearance variations that include the make-up and non-uniform illumination.

Beside, the images in the VISPI database present various forms of degradation due to

motion blur and eye blinking. Further, the influence of both the external sunlight illumi-

nation and the artificial room light illumination along with other degrading factors make

the cross-sensor/cross-smartphone comparison challenging. The sample images from the

periocular database as depicted in Figure 2 illustrate a set of variation and degradation in

terms of appearance under different smartphones both across the phones and the subjects.
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Fig. 2: Sample images from VISPI database

Of the 152 unique periocular instances, the

first 100 instances (from 50 subjects, i.e.,

50 instances captured from the left eye and

50 instances captured from the right eye)

are used for the training and the other 52

instances (from 26 independent subjects,

i.e., 26 instances captured from the left eye

and 26 instances captured from the right

eye) are used for testing. Further, a random

subset of 200 images (two images per instance) is selected from the training split to vali-

date the model during the training phase.

All the images are uniformly resized to a size of 224 × 224 pixels to match the input

layer size of DenseNet model. The training data is augmented by applying horizontal and

vertical random shifting by up to 20% of the image width and/or height, and random

horizontal flipping. All models are trained with a batch size of 16 and SGD optimizer

with Nesterov momentum 0.9. The initial learning rate is set to γ = 0.001 and γ = 0.1 for

teacher models and student model, respectively and it is dropped by a factor of 0.1 when

the accuracy on the validation dataset does not improve by a value of 0.1 for 5 consequent

epochs. The initial number of epochs is set to 100 and early-stopping patience parameter is

set to 10 causing DenseNet-20, DenseNet-121, DenseNet-169 and DenseNet-201 to stop

after 29, 11, 11, 11 epochs, respectively. The training of the student model, DenseNet-

20, trained KD loss stopped after 29, 34, and 28 epoch using teacher model DenseNet-

121, DenseNet-169 and DenseNet-201, respectively. In practice, the training is performed

offline once and the trained model is deployed on mobile devices, which makes the size

of the model the most critical deployment factor. We followed the common choice for the

KD hyperparameters [HVD15, CH19, Fu18] with Temperature t >= 4 and λ = 0.9.

The verification performance is reported using the cosine similarity measure for com-

paring the features extracted from the learnt models. The result is reported first for the

DenseNet-20, DenseNet-121, DenseNet-169, and DenseNet-201 models without applying

the KD. In addition, we report the result of the KD on the student model DenseNet-20

with DenseNet-121, DenseNet-169 or DenseNet-201 as a teacher which we note as as

DenseNet-20-KD121, DenseNet-20-KD169 and DenseNet-20-KD201 respectively.

For each of the settings, we investigate the verification performance under three different

evaluation scenarios defined as following:
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• iPhone verification scenario: The reference and the probe images are acquired using

the camera of iPhone smartphone.

• Nokia verification scenario: Similar to the previous scenario, the reference and the

probe images are acquired using Nokia smartphone.

• Cross-smartphone verification scenario: the reference images are captured using iPhone

camera and the probe images are captured using Nokia camera.

The verification performance is reported using Receiver Operating Characteristic (ROC)

curves, Area under the curve (AUC), False Match Rate (FMR) at fixed False Non-Match

Rate (FNMR) (FMR10, the lowest FNMR for FMR≤10%), and Equal Error Rate (EER).

The verification performances of the different experimental settings are presented in Figure

3 along with the EER and FMR10 values in Table 2. Each of the Figures 3.a-c shows the

achieved ROC of iPhone, Nokia, and cross-smartphone verification scenario.
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Fig. 3: The achieved ROC for different experimental settings. One can be clearly noticed the im-

provement in the DenseNet-20 verification performance using KD method.

4 Results and Discussion

One can clearly notice from Table 2 that the verification performances are consistently

better based on the model size when same training procedure is followed. The first four

rows in Table 2 present the verification performances of the DenseNet-201, DenseNet-169,

DenseNet-121, and DenseNet-20 trained without the KD method. The highest verification

performance among all evaluated models is achieved by the DenseNet-201 model, where

the achieved EER was 9.71% for cross-smartphone verification scenario, 1.60% for iPhone

verification scenario, and 2.57% for Nokia verification scenario. Also, it can be observed

from the Table 2 that the DenseNet-20 model aims at maintaining (to a large degree) the

verification performance of deeper model where the achieved EERs were 8.36%, 5.33%

and 20.98% for iPhone, Nokia and cross-smartphone verification scenarios, respectively.

It can be further noticed that the verification performances degrade for all models when the

references and probes images are captured from different smartphones in comparison to

the case where the probe and the reference images are captured from the same smartphone

as shown in the Table 2. However, this degradation in the performance is a common prob-

lem for cross-smartphone verification scenario as reported in the previous works [Al19].

4.1 Impact of Knowledge Distillation

The results of the proposed approach based on KD are presented in the Table 2 and Figure

3. We make the following observations from the obtained results:
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Model Inference Num. of. Teacher
iPhone Nokia Cross-smartphone

time parameters EER FMR10 EER FMR10 EER FMR10

DenseNet-201 5.4ms 18.2 - 0.0160 0.0026 0.0257 0.0105 0.0971 0.0949

DenseNet-169 4.7ms 12.6 - 0.0220 0.0093 0.0256 0.0052 0.1224 0.1459

DenseNet-121 3.8ms 7.1 - 0.0396 0.0212 0.0417 0.0213 0.1666 0.2257

DenseNet-20 2.1ms 1.1m - 0.0836 0.0782 0.0533 0.0227 0.2098 0.3556

DenseNet-20-KD201 2.1ms 1.1m DenseNet-201 0.0515 0.0340 0.0538 0.0404 0.1709 0.2640

DenseNet-20-KD2169 2.1ms 1.1m DenseNet-169 0.0617 0.0440 0.0496 0.0376 0.1711 0.2582

DenseNet-20-KD121 2.1ms 1.1m DenseNet-121 0.0456 0.0298 0.0464 0.0240 0.1554 0.2251

Tab. 2: Performance obtained for different experimental settings along with inference time (in mil-

lisecond) and the number of trainable parameters (in million) for each of the evaluated models. The

first four rows of the table present the achieved result for the three teacher models and for the stu-

dent models (without using KD). The last three rows of the table present the achieved verification

performance by including KD in the training process.

• It is noticed that introducing the KD to the DenseNet-20 model training significantly

improved the verification performance and outperforms teacher model in some cases.

For example, in the cross-smartphone verification scenario, the student outperformed its

teacher DenseNet-121 where the achieved EER by the student was 15.54% and by its

teacher was 16.66%. Similar observations is also reported in in previous work [Fu18].

• The best verification performance is achieved using DenseNet-121 model as teacher,

where the achieved EERs in this case were 5.56% 4.64% and 15.54% for iPhone, Nokia

and cross-smartphone verification scenarios.

• Using a larger and more accurate teacher model did not serve as better supervision to

the student model as seen in Table 2. This can be explained by the fact that as the teacher

model becomes more accurate using a deeper architecture, the soft probabilities produced

by the teacher will contain more complex information about the class distributions and the

small student model will not be able to learn all this complex information considering the

small student capacity. Similar conclusion is also reported in the previous work [CH19].

5 Conclusion

We presented in this work a new approach for periocular verification exploiting the idea

of Knowledge distillation (KD). The proposed models have resulted in significantly lower

model size but with comparable performance to larger deep models. Through the experi-

ments on public periocular dataset consisting of 152 unique periocular instances captured

with two different smartphones, we showed that applying KD on DenseNet-20 training

process achieves an EER of 4.5% on iPhone data, 4.6% on Nokia data, and 15.54% on

cross-smartphone data, in comparison to EER of 8.36% on iPhone data, 5.33% on Nokia

data, and 20.98% on cross-smartphone data when the same model trained without KD. In

the future works in this direction, we intend to investigate the proposed method on larger

datasets captured in multiple sessions to gain insights on generalizability aspects.
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Can Generative Colourisation Help Face Recognition?

Pawel Drozdowski1, Daniel Fischer1, Christian Rathgeb1, Julian Geissler1, Jan Knedlik1,

Christoph Busch1

Abstract: Generative colourisation methods can be applied to automatically convert greyscale im-
ages to realistically looking colour images. In a face recognition system, such techniques might be
employed as a pre-processing step in scenarios where either one or both face images to be compared
are only available in greyscale format. In an experimental setup which reflects said scenarios, we
investigate if generative colourisation can improve face sample utility and overall biometric perfor-
mance of face recognition. To this end, subsets of the FERET and FRGCv2 face image databases
are converted to greyscale and colourised applying two versions of the DeOldify colourisation al-
gorithm. Face sample quality assessment is done using the FaceQnet quality estimator. Biometric
performance measurements are conducted for the widely used ArcFace system with its built-in face
detector and reported according to standardised metrics. Obtained results indicate that, for the tested
systems, the application of generative colourisation does neither improve face image quality nor
recognition performance. However, generative colourisation was found to aid face detection and
subsequent feature extraction of the used face recognition system which results in a decrease of the
overall false reject rate.

Keywords: biometrics, face recognition, face image quality, generative colourisation.

1 Introduction
Developments in deep neural networks have shown impressive improvements in diverse

generative image processing tasks, e.g. single-image super resolution [Ha19] or inpaint-

ing [Li18]. Focusing on face images, domain-specific techniques have been established,

e.g. face hallucination [LSF07, Ch18, GSŠ19] or face completion [Li17, Ca19]. Some of

these methods have been found advantageous in various face-related vision tasks, such

as face detection and recognition [Li19, MIA19]. In addition to the aforementioned gen-

erative methods, image colourisation schemes based on deep neural networks have been

proposed [CYS15, ZIE16, NNE18], often for the purpose of restoring old images and film

footage. Said methods are able to generate realistic colour images from greyscale images,

including facial imagery. An example for applying a state-of-the-art colourisation algo-

rithm to a face image is depicted in figure 1.

In this work, we investigate if generative colourisation can be advantageous in the context

of face recognition. To this end, face image subsets of two publicly available databases [Ph98,

Ph05] are converted to greyscale and colourised using two versions of a public colourisa-

tion algorithm [An19,Ke19]. Subsequently, face sample quality is assessed employing the

public algorithm of FaceQnet [He19]; furthermore, standardised ISO/IEC methodology

and metrics [IS06] are used to evaluate the biometric performance of the ArcFace recogni-

tion system [De19] in a scenario-based manner. The considered scenarios reflect different

1 da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany,

{pawel.drozdowski,daniel.fischer,christian.rathgeb,christoph.busch}@h-da.de
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(a) original (b) greyscale (c) colourised

Fig. 1: Example of generative face colourisation: (a) the original image, (b) the original image con-

verted to greyscale, and (c) the colourised greyscale image using the method of Antic [An19].

relevant use cases in which colourisation methods might be applied to reference and/or

probe images prior to the feature extraction. To the best of the authors’ knowledge, this

reproducible study represents the first investigation of the usefulness of generative colouri-

sation in face recognition.

The remainder of this paper is organised follows: the employed image colourisation meth-

ods are described in section 2. Relevant scenarios which are considered in experiments

are summarised in section 3. Experimental setup and results are presented in section 4.

Conclusions are drawn in section 5.

2 Face Image Colourisation

The goal of image colouration is the addition of colour information to greyscale images

(as illustrated in figure 1). Early solutions (see e.g. [WAM02,YS06]) required a substantial

amount of input, interaction, and/or expertise from a human operator who guides the algo-

rithm (e.g. by providing scribbles of colour, choosing suitable reference images, segment-

ing images, or providing annotations). Later developments in this area sought to automate

parts of the aforementioned user interactions with some success (see e.g. [Li08, Ch11]).

Recently, fully automated methods based on massive datasets coupled with deep learning

(e.g. [CYS15, ZIE16, He18]) and adversarial learning (e.g. [Ca17, NNE18]) emerged to

address the limitations of previous methods specifically for the image colourisation task,

and more generally for image-to-image translation problems (e.g. [Is17, Zh17]).

There exist different repositories with deep learning-based greyscale image colourisa-

tion software; however, many of them have certain limitations. For example, [E.17] only

handles relatively low resolution images, while [Zh19] requires some user input in a

semi-automatic process. In this work, we utilise one of the most recently published im-

age colourisation methods called “DeOldify” [An19]. The software is based on concepts

from [Zh18] and [He17], as well as a novel (as of yet unpublished) GAN pre-training

strategy. In addition to the current version of the software, we also test an older version

thereof [Ke19], which uses a different GAN training strategy inspired by [Ka17]. The au-

thors of the software provide three pre-trained models: “artistic”, “stable”, and “video”.

We use the “stable” model, since according to the authors it is expected to achieve the best

results i.a. for portraits, which are the use case considered in our paper. The used software

which is applied to original images previously converted to greyscale2 convinces with ex-

2 Using ImageMagick command magick in.png -grayscale Rec709Luma out.png, see https://

imagemagick.org/script/command-line-options.php#grayscale
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cellent visual results and is easy and flexible to use. It should also be noted that this paper

constitutes a preliminary study on this subject; future works (see section 5) may include

considering a more comprehensive selection of image colourisation methods.

Figure 2 shows examples of colourised greyscale images (from the used facial image

databases, see section 4.1) generated by the aforementioned methods. The results look

mostly clean and realistic; furthermore, the newer model appears to produce more visually

pleasing results. Note, that the colourised images are not identical to the corresponding

original colour images. Those differences are inevitable: the colourisation algorithm needs

to assign new pixel values in three dimensions (RGB) to pixel values with variation only

along one dimension (intensity or luminance). It is possible for different colours to have

the same luminance value, but different hue or saturation. Therefore, there exists no inher-

ent “correct” solution to the task of colourising a greyscale image.

(a) original (b) greyscale (c) colourised [An19] (d) colourised [Ke19]

Fig. 2: Examples of reference (top row) and probe (bottom row) images: (a) the original images, (b)

the original images converted to greyscale, (c)-(d) the colourised greyscale images.

3 Scenarios

As illustrated in figure 3, we consider five different scenarios which result in different

pairings of compared reference and probe images:

• Scenario 1: baseline scenario; original reference and probe face images are used.

• Scenario 2: original reference image is used; probe image is converted to greyscale.

• Scenario 3: reference and probe images are converted to greyscale.

• Scenario 4: reference and probe images are converted to greyscale and colourised.

• Scenario 5: original reference image is used; probe image is converted to greyscale

and colourised.

The second scenario might represent a surveillance or automated border control scenario in

which a greyscale probe image is compared against a colour reference image. Accordingly,

the third scenario reflects a use case where only greyscale images are processed by the face

recognition system. Note that this applies for many older face recognition systems which

utilise handcrafted feature extractors. The last two scenarios involve the application of

colourisation to greyscale images. Specifically, colourisation is applied to reference and

probe images or only to the probe image, respectively.

4 Experiments

The following subsections describe the experimental setup (section 4.1), conducted quality

assessment (section 4.2), and biometric performance measurements (section 4.3).
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Fig. 3: Overview of applied the image processing chain (dash-dotted lines) and pairings (coloured

lines) of reference and probe face images for the considered scenarios.

4.1 Experimental Setup

Subsets of two publicly available face image databases, i.e. FERET [Ph98] and FRGCv2 [Ph05],

were used in the experiments. For reference images frontal faces with neutral expression

have been manually chosen and ICAO compliance has been verified [In15]. Wherever pos-

sible, probe images from different acquisition session were preferentially chosen in order

to obtain a realistic scenario. Examples of probe and reference images of both face image

subsets are depicted in figure 2 and figure 3. The experiments are conducted in biometric

verification mode. The number of subjects, corresponding reference and probe images, as

well as the resulting number of genuine and impostor comparisons are listed in table 1.

Tab. 1: Overview of face image subsets from the FERET and FRGCv2 face databases.

Database Subjects

Images Comparisons

Reference Probe Genuine Impostor

FERET 529 529 791 791 147,712

FRGCv2 533 984 1,726 3,298 144,032

For quality assessment, the FaceQnet algorithm [He19] is used.3 This public face sample

quality estimator is based on deep learning and returns a quality score (i.e. high values

indicate good quality). In order to measure biometric performance, the widely used state-

of-the-art ArcFace system [De19] is employed which has shown competitive recognition

performance among open-source face recognition systems.4 For a pair of reference and

probe face images, this system returns a distance score (i.e. low values indicate high sim-

ilarity). Note that when presented with a biometric sample, the face recognition system

might internally perform some kind of colour space transformation(s). The utility of the

individual colour channels for the purposes of face recognition has been investigated for

3 FaceQnet has been shown to achieve convincing results, is open-source, and a pre-trained model is available,

see https://github.com/uam-biometrics/FaceQnet
4 ArcFace is open-source with a pre-trained model available at https://github.com/deepinsight/

insightface



Can Generative Colourisation Help Face Recognition? 303

older systems by [BH08]. However, it is out of scope for this paper, as it investigates the

effects of generative colourisation on facial recognition.

Tab. 2: Overview of face sample quality results.

Database Colour Mean Median St. Dev. Minimum Maximum

FERET Original 0.616 0.616 0.050 0.460 0.777

Greyscale 0.614 0.615 0.051 0.433 0.767

Colourised [An19] 0.608 0.606 0.049 0.448 0.756

Colourised [Ke19] 0.608 0.607 0.047 0.454 0.755

FRGCv2 Original 0.617 0.615 0.051 0.449 0.802

Greyscale 0.622 0.620 0.053 0.426 0.794

Colourised [An19] 0.616 0.614 0.053 0.435 0.777

Colourised [Ke19] 0.615 0.613 0.052 0.453 0.811

Biometric performance is evaluated in terms of False Non-Match Rate (FNMR) and False

Match Rate (FMR). In addition, the Failure-to-Acquire rate (FTA) is measured as the pro-

portion of verification attempts for which the system fails to capture or locate an image

or signal of sufficient quality [IS06]. The False Reject Rate (FRR) is then estimated as

the proportion of genuine verification transactions that will be incorrectly denied. This

includes transactions denied due to failures-to-acquire as well as those denied due to

false non-match decisions, FRR = FTA + FNMR × (1 − FTA) [IS06]. More precisely,

the FNMR and FRR are estimated at a false match probability of 0.1%, referred to as

FNMR0.1 and FRR0.1, respectively. This operation point is recommended in the guide-

lines of European Agency for the Management of Operational Cooperation at the External

Borders (FRONTEX) [FR15]. Genuine comparisons are performed for all of the previ-

ously described scenarios, while impostor comparisons are only performed for the first

baseline scenario. That is, the decision thresholds estimated from the baseline scenario

are used in all scenarios. Additionally, a decidability measure (d′) [Da00] calculated as

d′ = |µg −µi|/

√
1
2
(σ2

g +σ2
i ) is reported, where µg and µi represent the means of the gen-

uine and impostor score distributions and σg and σi their standard deviations, respectively.

4.2 Quality Assessment

Figure 4(a) depicts the cumulative distribution function of sample quality scores. Cor-

responding statistical properties are summarised in table 2. The sample quality of the

colourised images is generally lower compared to the greyscale images; however, the dif-

ferences are very small. Hence, for the used method [He19], applied colourisation tech-

niques do not yield improvements. This does not necessarily mean that colourisation might

not be helpful in general – other algorithms in the pipeline might benefit from it, or it could

be the case that other colourisation methods might improve the sample quality.

4.3 Performance Evaluation

Obtained biometric performance rates are summarised in table 3. On both databases prac-

tical biometric performance is achieved. Generally, better performance rates are obtained

on the FERET database which contains more constrained face images. Further, it can be

observed that increased FTAs are obtained for scenarios in which greyscale images are

processed. However, by using image colourisation, the FTAs are reduced to that of the

baseline system. That is, colourisation is found helpful to reduce the FTA on the greyscale
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(a) Cumulative distribution of face sample quality.

(b) FRRs in relation to decision threshold.

Fig. 4: Experimental results.

images. This is also reflected in the FRRs which are plotted in figure 4(b) (the FRRs values

begin at 100% for the low decision thresholds, as the used face recognition system works

with dissimilarity-based comparison scores). Example face images for which the feature

extraction failed on greyscale images but succeeded on the corresponding colourised im-

ages are shown in figure 5. Focusing on the algorithmic performance rates, i.e. FNMR, the

application of colourisation yields generally worse comparison scores (higher dissimilar-

ity) compared to scenarios in which greyscale images are processed directly.

5 Conclusion

Deep learning-based generative image colourisation techniques show impressive visual

results for converting greyscale images to colour images. In this work, we investigated

the usefulness of such techniques for facial recognition. For this purpose, open-source

face image quality assessment and recognition tools are evaluated on two public databases
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Tab. 3: Overview of biometric performance rates.

Database Scenario d’ FTA (%) FNMR0.1 (%) FRR0.1 (%)

FERET 1 9.290 0.000 0.000 0.000

2 9.208 0.530 0.000 0.530

3 8.793 1.288 0.000 1.288

4 [An19] 8.739 0.000 0.000 0.000

4 [Ke19] 8.553 0.000 0.000 0.000

5 [An19] 9.344 0.000 0.000 0.000

5 [Ke19] 9.306 0.000 0.000 0.000

FRGCv2 1 8.436 0.037 0.310 0.347

2 7.872 0.258 0.446 0.703

3 7.816 0.258 0.450 0.707

4 [An19] 7.821 0.000 0.474 0.474

4 [Ke19] 7.498 0.037 0.520 0.557

5 [An19] 7.914 0.000 0.454 0.454

5 [Ke19] 7.664 0.037 0.526 0.562

(a) greyscale (b) colourised [An19] (c) colourised [Ke19]

Fig. 5: Example face images for which the feature extraction failed on the greyscale images but

succeeded on the colourised images.

considering scenarios where face images are converted to greyscale and colourised using

state-of-the-art colourisation software.

In the conducted experiments, the effects of colourisation on sample quality were insignif-

icant and did not result in improvements. To fully evaluate the impact of colourisation on

biometric performance, more experiments with larger and more unconstrained datasets,

as well as more facial recognition systems are needed to produce statistically significant

results. The scenario-based evaluation of the comparison scores indicated generally infe-

rior comparison scores for the colourised images compared to the direct use of greyscale

images. These results are logically comprehensible since colourisation only aims at pro-

ducing plausible colour images based on learned statistics which may vary for each image,

i.e. colourised face images of various images a single subject may look different.

Finally, it was observed that colourisation can reduce the FTA, i.e. face detection and

feature extraction exhibit more robustness if colourisation is applied. However, this may

also highly depend on the used face recognition system. This preliminary study opens

several avenues of potential research. Future works in this area may include testing other

facial recognition and quality estimation methods, as well as different image colourisation

schemes. Furthermore, the study could be extended to other applications of facial biomet-

rics, such as biometric identification and classification of demographic attributes.
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