
The Glass Maze: Hiding Keys in Spin Glasses

Carlo A. Trugenberger

SwissScientific, chemin Diodati 10, CH-1223 Cologny, Switzerland

ca.trugenberger@bluewin.ch

Abstract: Key-binding mechanisms allow to use one’s biometric features as a univer-
sal digital key without having them ever stored anywhere. Security, ease of use and
privacy concerns are addressed in one stroke. The best known proposal for such a
mechanism, the Fingerprint Vault, treats biometric data as projections of a polynomial
encoding the key. Its security is based on the difficulty of polynomial reconstruction.
Here I propose a new key-binding mechanism based on associative pattern recall and
making use of a totally different security principle, that of the difficulty of energy opti-
mization of spin glasses. The idea is to exploit the mixed ferromagnetic and spin glass
phase of the Hopfield neural network to encode the key as a local minimum config-
uration of the energy functional, ”lost” amidst the exponentially growing number of
valleys and minima representing the spin glass. The correct fingerprint will be able to
retrieve the key by dynamical evolution to the nearest attractor. Other fingerprints will
be driven far away from the key. Known vulnerabilities of the Fingerprint Vault are
eliminated by this new security principle.

1 Introduction: Biometric Cryptosystems

Traditional cryptography uses keys to encipher messages. Achieving a high degree of

security with this approach requires that keys are long and random, which makes them

also difficult to memorize, maintain and share. In addition, every service typically wants

to issue its own key, thereby compounding the problem for end customers. Finally, the

authentication process is based on keys and not on users and cannot thus provide a basis

for non-repudiation.

All these problems can be solved by biometric cryptosystems [Ul04], in which cryptog-

raphy and biometrics are combined. Cryptography provides the necessary security, while

biometrics ties this security to a specific user: anatomical traits cannot be lost or forgotten,

are difficult to copy and share, can be used as a unique hub for multiple keys related to

different services and provide non-repudiation. The resulting systems benefit thus from

the strengths of both fields.

In biometric cryptosystems, a cryptographic key is combined with the biometric template

of a user in such a way that the key cannot be revealed without a concomitant successful

biometric authentication. Biometric cryptosystems can operate in one of the following

three modes: key release, key binding or key generation.

In the key release mode, biometric authentication is completely decoupled from the key
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release mechanism. The biometric template and the key are both stored in a central repos-

itory, but they constitute completely separate entities: the key is released only if and after

the biometric matching is successful. Because of its simplicity this is the most common

approach. Simplicity, however comes at the price of two weaknesses. First, the biometric

template is not secure: template security is a critical issue in biometric systems because

stolen templates cannot be revoked. Secondly, since authentication and key release are

decoupled, it is possible to override the biometric matcher using a Trojan horse program.

In the key binding mode, the key and the template are monolithically bound within a cryp-

tographic framework. It is impossible to decode the key without any knowledge of the

user’s biometric data. An appropriately designed matching algorithm is used to perform

authentication and key release in a single step, thus removing any possibility of Trojan

horse attacks. Since no ”naked” template is ever stored, the privacy issue is also solved.

In the key generation mode, neither the key nor the template are stored in any form. The

key is derived directly from the live biometric data provided by a user.

Though it is easy to implement a biometric cryptosystem in the key release mode, such a

system is not appropriate for high security applications because of its major vulnerabilities.

Biometric cryptosystems that work in the key binding/generation modes are much more

secure but difficult to implement due to large intra-class variations in biometric data.

One of the best studied and well accepted key binding approaches is the Fingerprint

Vault [CKL03], which specializes to fingerprint minutiae the generic Fuzzy Vault scheme

[JS02]. The idea is to encode a key in the coefficients of a given polynomial P , use the

abscissa xi of fingerprint minutiae to generate the set T of points (xi, P (xi)) and add ran-

dom chaff points forming the set F . The union V of T and F constitutes the fingerprint

vault. The principle of the vault is that only the genuine fingerprint will be able to separate

the true set T from the chaff points F and thereby reconstruct the polynomial P , and thus

the key, by suitable error correcting codes.

The Fingerprint Vault makes use only of the position of fingerprint minutiae for the vault

locking set. Intra-class variance is dealt with by computing average minutiae locations

over multiple scans at enrollment and quantizing positions by using pixel coordinates.

Chaff points have to be placed outside regions determined by the statistical variance of

minutiae locations.

The security of the Fuzzy Vault idea is based on the difficulty of polynomial reconstruc-

tion. While the idea is brilliant, it has been claimed [Mi07] that it is vulnerable to brute

force attacks (at least in its original formulation based on the data of one single finger-

print), and to cross-matching, surreptitious key inversion and blended substitution attacks

[SB07]. It is therefore crucial to find also alternative key binding schemes which lack these

vulnerabilities. In this paper I propose such a completely new scheme, which is based on a

totally different security principle, that of the difficulty of optimizing the energy functional

of a spin glass [MPV87].
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2 Spin Glasses

Spin glasses [MPV87] are networks of spins, i.e. binary variables, with symmetric random

(positive and negative) interactions. They are characterized by an energy function

E = −
1

2

∑
i&=j

wij sisj , si = ±1 , i, j = 1 . . . N . (1)

The presence of both positive and negative random interactions wij leads to strong frus-

tration. This means that, in any configuration, there are many triplets of spins for which it

is not possible to minimize the energy of all pairwise bonds at the same time. As a conse-

quence, the energy landscape of spin glasses becomes extremely complex, with a number

of local minima growing exponentially with the number N of spins [Ta80, TE80]. Finding

energy minima of a spin glass is a ”hard” computational problem: from the point of view

of complexity theory this problem is NP complete.

Given the exponential number of local minima, the new idea is to hide the key as the

spin configuration corresponding to one specific minimum of the energy landscape of a

spin glass. Finding the exact position of this minimum with no a priori information on

its approximate location is a NP complete problem. All known algorithms to solve this

problem are highly inefficient and require at least super-polynomial, if not exponential,

running time in system size. Typical combinatorial optimization heuristics, such as sim-

ulated annealing, branch and bound or evolutionary techniques cannot help, they require

only polynomial computing resources but they provide only approximate solutions for the

ground state [MPV87, PIM06, Ba91]. While approximate solutions may be sufficient for

engineering problems, they are of no use in the present cryptographic framework. More-

over, the key will typically not correspond to the global minimum of the energy landscape

but only to a local minimum: this excludes also the recently developed quantum adiabatic

optimization techniques [Ka11]. Exhaustive search is essentially the only attack option

and choosing a sufficiently large N should guarantee the cryptographic security of the

model.

Not any spin glass will do, however. If the generic complexity of such systems guarantees

the cryptographic security of hidden keys, it will also prevent the legitimate retrieval of

the key by its owner. The natural retrieval mechanism is a hill-descent dynamics starting

from an initial configuration close enough to the key, a configuration provided by the key

owner, e.g. the position of his fingerprint minutiae. The system should allow the efficient

associative retrieval of the key from a similar (albeit different) configuration while still be

complex enough to render any guessing attempt hopeless. In statistical mechanics terms,

an efficient associative retrieval of information corresponds to a ferromagnetic phase of the

system. Therefore, what is needed is a system with mixed ferromagnetic and spin glass

phases. Fortunately, exactly such a system exists: it is the Hopfield neural network model

of associative memory [MR90]. The new proposal for a key-binding scheme presented

here is based on this model or variants thereof.
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3 Neural Networks for Associative Memory: the Hopfield Model

Historically, the interest in neural networks [MR90] has been driven by the desire to build

machines capable of performing tasks for which the sequential circuit model of Babbage

and von Neumann are not well suited, like pattern recognition, categorization and gen-

eralization. The Hopfield model is one of the best studied and most successful neural

networks. It was designed to model one particular higher cognitive function of the human

brain, that of associative pattern retrieval or associative memory.

Contrary to traditional computers, which require a lookup table (RAM), biological infor-

mation retrieval is possible on the basis of a partial knowledge of the memory content,

without knowing an exact storage location: noisy or incomplete inputs are permitted.

The Hopfield model consists in an assembly of N binary neurons si, i = 1 . . . N , which

can take the values ±1 representing their firing (+1) and resting (-1) states. The neurons

are fully connected by symmetric synapses with coupling strengths wij = wji (wii = 0).

Depending on the signs of these synaptic strengths, the couplings will be excitatory (> 0)

or inhibitory (< 0). The dynamical evolution of the network state is defined by the random

sequential updating (in time t) of the neurons according to the rule

si(t + 1) = sign (hi(t)) , (2)

hi(t) =
∑
i &=j

wijsj(t) , (3)

where hi is called the local magnetization.

The synaptic coupling strengths are chosen according to the Hebb rule

wij =
1

N

∑
µ=1...p

σµi σµj , (4)

where σµi , µ = 1 . . . p are p binary patterns to be memorized. An associative memory

is now defined as a dynamical mechanism that, upon preparing the network in an initial

state s0
i retrieves the stored pattern σλi that most closely resembles the presented pattern

s0
i , where resemblance is determined by minimizing the Hamming distance, i.e. the total

number of different bits in the two patterns. As emerges clearly from this definition, all

the memory information in a Hopfield neural network is encoded in the synaptic strengths,

which correspond to the spin interactions of the spin glass model above.

It can be easily shown that the dynamical evolution (2) of the Hopfield model satisfies

exactly this requirement for an associative memory. This is because:

• The dynamical evolution (2) minimizes the energy functional (1), i.e. this energy

functional never increases when the network state is updated according to the evo-

lution rule (2). Since the energy functional is bounded by below, this implies that

the network dynamics must eventually reach a stationary point corresponding to a,

possibly local, minimum of the energy functional.

92



• The stored patterns σµi correspond to, possibly local, minima of the energy func-

tional. This implies that the stored patterns are attractors for the network dynamics

(2). An initial pattern will evolve till it overlaps with the closest (in Hamming dis-

tance) stored pattern, after which it will not change anymore.

Actually the second of these statements must be qualified. Indeed, the detailed behavior of

the Hopfield model depends crucially upon the loading factor α = p/N , the ratio between

the number of stored memories and the number of available bits. This is best analyzed in

the thermodynamic limit p → ∞, N → ∞, in which the different regimes can be studied

by statistical mechanics techniques and characterized formally by the values of critical

parameters.

For α < α1crit ≃ 0.051, the system is in a ferromagnetic (F ) phase in which there are

global energy minima corresponding to all stored memories. The former differ from the

original input memories only in a few percent of the total number of bits. Mixing be-

tween patterns leads to spurious local energy minima. These, however are destabilized

at sufficiently high temperatures (see below) and thus an exhaustive search for all stored

memories can be efficiently organized by optimization heuristics such as simulated an-

nealing.

For α > α2crit ≃ 0.138, the system is in a spin glass (SG) phase in which all retrieval

capabilities are lost due to an uncontrolled proliferation of spurious memories.

For α1crit ≃ 0.051 < α < α2crit ≃ 0.138 the system is in a mixed spin glass and ferro-

magnetic phase. There are still minima of sizable overlap with the original memories but

they are now only metastable states. The true ground state is the spin glass, with an expo-

nentially increasing number of minima due to the mixing of original memories. The spin

glass phase is orthogonal to all stored memories. If an input pattern is sufficiently near (in

Hamming distance) to one of the original memories it will be trapped by the corresponding

metastable state and the retrieval procedure is successful. On the other hand, if the input

pattern is not sufficiently close to one of the stored memories, the network is confused and

it will end up in a state very far from all original memories. In this phase, pattern retrieval

is still efficient while it is computationally hard to perform exhaustive searches for all en-

ergy minima. This is exactly the property needed to construct a cryptographically secure

fuzzy key retrieval mechanism.

4 The Glass Maze

The spin glass phase limiting the loading factor of the Hopfield model is its main drawback

as an associative memory model of the human brain, its design application. It is, however

an ideal feature for hiding information : exploiting the disorder limiting the intended scope

of the model to one’s advantage one can turn the Hopfield model into a powerful crypto-

graphic tool. Here is how I propose to do so.

I will henceforth specialize to fingerprints, although the model is applicable, mutatis mu-

tandis also to other biometric traits. Fingerprints [Bo04] can be uniquely characterized
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by features of their print pattern. One of the most popular such set of features are fin-

gerprint minutiae, of which there are three types : ridge endings, bifurcations and short

ridges. Minutiae are typically characterized by their pixel coordinates (xi, yi) on the two-

dimensional plane and by a direction unit vector ri (or equivalently by an angle φi with

respect to a fixed axe). As in the original Fingerprint Vault [CKL03], I will consider only

minutiae positions as the relevant variables, although the whole model can be easily ex-

tended to include minutiae directions.

Each fingerprint is thus characterized by a variable set of M minutiae points with pixel

coordinates (xi, yi), i = 1 . . . M , on the fingerprint image. The first step in setting up

the model consists in choosing an appropriate quantization of the fingerprint image in

N squares. Each such square will be considered as a neuron in a Hopfield model, and

this neuron takes the value +1 if a minutiae point is contained within the square and −1
otherwise. This way, a fingerprint becomes one particular state configuration σfp

i in a

Hopfield model.

Intra-class variance, however, invariably adds noise to minutiae coordinates. When com-

paring multiple scans of the same finger, two types of variability of feature coordinates

can be established : global, rigid transformations due to translations and/or rotations of

the finger (I neglect scale transformations assuming that the same scanner is used for the

enrolling and key release processes) and additional local deformations due to elastic non-

linear deformations. The magnitude of both has been analyzed by [UJ04, UJ06, UPJ05] in

data from the IBM GTDB database, images of 300 X 400 pixels with 500 DPI resolution.

The average coordinate difference of the same features in mated fingerprint pairs due to

global transformations is of about 20 pixels, with values as large as 45 pixels occuring

with non negligible probability 0.09. After fingerprints have been aligned by eliminating

translational and rotational transformations, a residual average coordinate difference of 4

pixels has been detected : this corresponds to the local noise component.

Neither global nor local transformations should pose a problem for the new model if the

quantization is chosen appropriately. Indeed, the key-binding scheme is, by construction,

an associative memory, capable to reconstruct and retrieve also noisy and corrupted inputs.

A certain degree of intra-class variability is automatically tolerated by the associative na-

ture of the Hopfield model. For example, choosing N=256, the horizontal and vertical

pixels are aggregated in 16 groups that, for the IBM GTDB database would contain 19

or 25 pixels each. This is exactly the average variability due to global transformations

[UJ04, UJ06, UPJ05]. The residual average local deformations are well below the dimen-

sion of the quantization window. With such a choice of parameters, it is to be expected

that local deformations are eliminated by the quantization, whereas global deformations

are corrected by the associative pattern recognition. Only experiments, however, can re-

ally decide if an alignment (elimination of global transformations) is needed before the

Hopfield dynamical retrieval for a given quantization window. This can be a standard

alignment procedure or a dynamical alignment. Indeed, contrary to the fingerprint vault,

alignment can be obtained as a self-organizing, dynamical process within the model (see

below).

At enrollment, a fingerprint is assigned to a particular neuron configuration as described

above. The key (for example a 256-bit key) to be bound to this fingerprint is now chosen
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by modifying randomly a certain number k of components of this fingerprint neuron con-

figuration. Let us call the resulting neuron configuration σkey
i : this is the reference to be

stored for comparison. The Hopfield model realizing the desired key-binding mechanism

is then defined by the interaction parameters:

wij =
1

N

∑
µ=1...p

σµi σµj , (5)

σ1
i = σkey

i , (6)

σµi = random patterns, µ = 2 . . . p . (7)

The total number p of patterns must be chosen in such a way that the loading factor α =
p/N satisfies the relation α1crit ≃ 0.051 < α < α2crit ≃ 0.138, so that the addition of

random noise to the key pattern creates a spin glass phase mixed in with the ferromagnetic

recall phase. A loading factor near 0.1 is e.g. a good choice. Notice that the addition

of random noise at this loading factor typically modifies the desired key pattern in a few

percent of its bits [MR90]. The actual key corresponds to this modified pattern and it must

be checked that the original fingerprint pattern still lies in the basin of attraction of the true

key. Otherwhise the number of modified bits k has to be lowered. The synaptic coupling

strengths wij are the data needed by the retrieval algorithm.

When a live fingerprint is presented to the system, its minutiae coordinates are extracted

and matched to a corresponding initial neuron configuration s0
i . Starting from this initial

configuration, the network is evolved according to the Hopfield dynamics (2). Under this

evolution, the neuron configuration corresponding to the fingerprint evolves towards one of

the many minima of the Hopfield energy landscape. If the live fingerprint is the correct one,

the fixed point will correspond to the key. If another fingerprint is presented, which differs

enough from the correct one, the evolution will drive the network towards a completely

different energy minimum and the key will not be retrieved.

5 Performance and Security

The False Accept Rate (FAR) and False Reject Rate (FRR) of the proposed system depend

on the two model parameters N and α. Choosing a coarse quantization grid (low N )

will lower the FRR, since the quantization window will tend to encompass all coordinate

variations due to local noise. Lowering N will also increase the FAR, since the probability

that two different fingerprints are matched to very near neuron configurations is enhanced.

Increasing N , on the contrary, will increase the FRR and lower the FAR. Detailed tests

are necessary to establish a Receiver Operating Characteristic (ROC) curve that plots the

genuine accept rate (GAR) against the FAR. This curve can be established by varying N
at fixed loading α.

FAR and FRR are also influenced by the size of the basin of attraction of the key pattern

and this depends on the loading factor α. The larger this size, the more local variations in

the presented fingerprint minutiae features are tolerated, which decreases the FRR. On the
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other side a larger basin of attraction increases the probability that a genuinely different

fingerprint configuration is evolved to the same key, i.e. it increases the FAR. The average

radius of the basins of attraction can be estimated by statistical mechanics methods [ZC89].

In the thermodynamic limit it depends only on the loading factor α = p/N and permits

approximately 10% of wrong bits in the limit α → 0, while approching zero when α →
α2crit ≃ 0.138. Numerical studies in finite size samples of some thousand bits [ZC89,

YD09], however, have revealed considerably larger basins of attraction. The best value of

α for the model has to be established by testing on realistic finite-size samples.

The number N of neurons and the loading factor α determine also the model security

complexity. Two different measures for the model security can be established. The first

is the difficulty of FAR attacks, in which random fingerprints are sequentially submitted

for key release. These are brute force attacks, in which the whole configuration space is

sequentially explored in search of an input that evolves to the key. Relevant for this security

measure is the size of the basins of attraction. A realistic basin of attraction permitting to

retrieve the key with less than 5% different bits in the input, would contain, in our example

N=256, about 2.5 × 1021 configurations. The total number of possible configurations is

2256 ≃ 1.16× 1077. Of these not all are realistic fingerprints, though. Taking into account

that typical fingerprints have 20-40 minutiae, one can estimate that the quantization implies

that realistic configurations have a maximum of, say, 35 positive neurons. Of these there

are about 2 × 1043. This gives a probability of about 1.25 × 10−22 ≃ 2−73 of retrieving

the key from a random input.

Instead of a blind search through all configuration space, one can try to crack the model

by optimization heuristics that are able to find minima in polynomial time in system size

N . To this end one must explore, on average, all the minima, local and global in the

energy landscape. A second measure of the model security complexity is thus given by

the average number of such minima at a given N . This can be estimated as follows. The

spin glass phase of the Hopfield model is in the same universality class as the Sherrington-

Kirckpatrick model [KS78]. The average number of minima for this spin glass model has

been computed [Ta80, TE80] as exp(0.2×N). While this result is, strictly speaking, valid

only in the thermodynamic limit N → ∞, it can be used as an analytical estimate of the

ground state complexity. In our example N = 256 it would imply 1.7×1022 ≃ 274 minima

in the spin glass phase, a figure remarkably close to the previously computed security

against brute force FAR attacks. Note also that, since the key memory is metastable, all

attack algorithms based on thermal noise would never find the key : after a certain time

spent around the key configuration they would inevitably get confused and driven far away

from it. The security complexities 273 and 274 for a 256-bit key have to be compared with

the security complexity 269 for a 128-bit key of the Fingerprint Vault [CKL03].

A definite advantage of the present model over the Fingerprint Vault is its security against

cross-matching attacks. This arises because, contrary to the Fingerprint Vault [SB07],

different implementations of the glass maze for the same fingerprint do not share any

model data. Disorder is not simply added to fixed data but templates are actually embedded

non-linearly in an energy landscape which is both inaccessible to exhaustive analysis and

chaotic [Par02].

Furthermore, the Glass Maze, contrary to the Fingerprint Vault [SB07], is resistant against
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surreptitious key inversion attacks. Even if the key is stolen, there are still about 2.5 ×
1021 (in the example above) configurations in the key basin of attraction that could all

correspond to the original fingerprint template. The probability of guessing the biometric

data from a stolen key is thus negligibly small.

Finally, the Glass Maze is also secure against blended substitution attacks, another weak-

ness of the Fingerprint Vault [SB07]. There is simply no systematic way to insert an at-

tacker’s fingerprint template into the same basin of attraction of a legitimate user without

altering severely the chaotic energy landscape and thus also the key.

I would like to conclude this section by pointing out that the model storage requirement

is also determined by the neuron number N and the loading factor α. Let me compute it

explicitly for the example of a 256-bit key and a loading factor α = 0.1. Each interaction

term wij is a number in the interval [−p, +p] (the factor 1/N is not important here). For

N=256 and α = 0.1 one needs 6 bits to represent such a number. Since there are a total

of 2562 = 65′536 of them in the definition of the corresponding model one obtains a total

storage requirement of around 50 kbyte, without taking into account possible space saving

by compression. This is about 100 times more than the storage requirement for a standard

fingerprint template. Note however, that multiple fingerprints can easily be encoded in

the same network by using their neuron configurations as memories : each fingerprint

configuration will act as noise for all others. In our example N= 256, up to about 25

fingerprints can be encoded, which would give a storage requirement of about 2 kbyte per

fingerprint without sensibly altering the security complexities.

6 Dynamical Alignment

Alignment is the process of elimination of rigid rotations and translations between enrolled

and live fingerprint templates prior to comparison (again I neglect scale transformations

assuming that the same device is used for enrollment and key release). As explained

above, the choice of an appropriate quantization is probably sufficient to eliminate the

need for pre-alignment in the Glass Maze model, since local deformations fall well within

the quantization window and typical rigid, global transformations are compatible with the

natural error-correcting nature of the associative retrieval process.

For small quantization grids, instead, a pre-alignment step is needed and two possibilities

are available. Either one resorts to standard alignment techniques or one exploits the nature

of the model itself. Indeed, contrary to other biometric authentication systems, in which

special alignment techniques are unavoidable, the present model contains in itself a natural

mechanism for dynamically aligning minutiae prior to key search.

In order to explain this mechanism I have to introduce first two generalizations of the

Hopfield model. The first concerns stochastic neurons and is realized by turning the deter-

ministic evolution law (2) into a stochastic law by adding thermal noise :

Prob [si(t + 1) = +1] = f [hi(t)] , (8)
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where the activation function f is the Fermi function

f(h) =
1

1 + exp(−2βh)
, (9)

and the parameter β plays thus the role of an inverse temperature, β = 1/T . This has

to be understood as a fictitious temperature for the evolution law and not as the physical

temperature at which the network operates. In the limit of zero temperature, β → ∞, the

Fermi function approaches the unit step function and the stochastic neural network goes

over into the original deterministic one.

In a deterministic network, neurons are either permanently active or permanently dormant,

depending on the sign of the local magnetization field h. In a stochastic network, the

neuron activities fluctuate due to thermal noise. Even for positive local magnetization h,

there is a non-vanishing probability that the neuron will flip in the next evolution step :

Prob [si(t + 1) = si(t)] =
exp [βhi(t)si(t)]

2 cosh[βhi(t)si(t)]
, (10)

Prob [si(t + 1) = −si(t)] =
exp [−βhi(t)si(t)]

2 cosh[βhi(t)si(t)]
. (11)

As a consequence, the network acquires a non-vanishing probability of jumping out of a

local energy minimum.

The second generalization we need consists of non-vanishing thresholds θi in the local

magnetization,

hi(t) =
∑
i &=j

wijsj(t) + θi , (12)

These play the role of an external magnetic field acting on the spins.

To dynamically align a live fingerprint one must construct an algorithm that matches the

neuron configuration s0
i of its minutiae to a configuration as close as possible to the orig-

inal minutiae configuration σfp
i of the enrolled fingerprint. I shall assume here that the

same device is used for enrollment and key release, so that scale transformations can be

neglected and the two neuron configurations s0
i and σfp

i differ only by global rotations and

translations.

Following an idea of Dotsenko [Do88] I shall consider a stochastic Hopfield model with

thresholds determined by the neuron configuration s0
i corresponding to the live fingerprint.

For ease of presentation I shall henceforth change notation and label neurons not by a

sequential integer index i, but rather by the discrete coordinate vectors r of the square

lattice defined by the quantization of the two-dimensional plane of the print, si(t) →
s(r, t). The thresholds are thus given by

θ(r, t) = h0 s0(r, t) , (13)

and describe an external magnetic field proportional to the live fingerprint configuration :

the parameter h0 describes the strength of this magnetic field.
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The idea is to introduce rotations φ(t) and discrete translations a(t) of the square lattice

as dynamical, slow variables and to minimize the energy

E = −
1

2

∑
r&=r

′

wrr
′ s(r)s(r′) −

∑
r

h0 s0 ([φ(t)r] + a(t)) s(r) , (14)

of a generalized Hopfield model with external magnetic field with respect to these slow

variables. Here, [. . .] denotes the whole part, so that the arguments of s0 are always discrete

lattice vectors.

To this end one imposes, e.g. periodic boundary conditions on the lattice and one chooses

initial values φ(t = 0) and a(t = 0) for the rigid transformations. Then the stochastic

neurons are thermalized according to the fast dynamics (8). Finally, the slow variables are

evolved according to the standard steepest descent relaxation equations

φ(t + 1) − φ(t) = −λφ ∂E/∂φ + ζ(t) , (15)

a(t + 1) − a(t) = −λa δE/δa + η(t) , (16)

where λφ, λa denote the descent steps, ζ and η are possible ordinary temperature noise

terms and δ denotes finite differences. Then, the whole process is repeated : neurons are

thermalized and the global transformation parameters are changed so that the total energy

is decreased again.

The important point is that, as long as all overlaps

Mµ =
1

N

∑
r

σµ(r)s0 ([φr] + a) , (17)

with the stored memories are small, Mµ ≪ h0, the external magnetic field in (14) dom-

inates the thermalization dynamics and, as a consequence, the neurons follow rigidly the

external field

< s(r, t) >= tanh(βh0) s0([φ(t)r] + a(t)) , (18)

Therefore, at this stage, the search for the correct pattern is a wandering over neuron

configurations corresponding to rigid transformations of the initial live fingerprint config-

uration: this is what I call dynamical alignment.

Dotsenko [Do88] has shown that, if the following conditions are satisfied:

• For some φ∗ and a
∗ the pattern s0 ([φ∗r] + a

∗) has a finite overlap Mkey = O(1)
with one of the stored memories, in our case the key configuration, and has no finite

overlaps with any other memory, Mµ = O(1/N2) for µ )= key;

• All stored memories (and the initial fingerprint configuration) have a finite spatial

correlation length Rc, (1/N)
∑

r
σµ(r)σµ(r + R) ∝ exp(−|R|/Rc) ,

• 1/N < h0 < 1
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• The temperature T lies in the range 1 > T > Tc with Tc given by the solution of

the transcendental equation Tc/tanh2(h0/Tc) = 1,

then the network will localize efficiently around the configuration σkey, i.e. the steepest

descent will drive the network toward σkey until the overlap Mkey ≃ h0.

Operating the network at a finite temperature T in the range above guarantees that the

evolution does not get trapped around an undesired minimum while still guaranteeing the

convergence toward the key pattern. Since, in this stage, the search is limited to rotations

and translations of the live fingerprint configuration, the result must be very close to the

enrolled fingerprint configuration σfp, the only remaining difference is due to possible

local variability. In any case, this process should guarantee that an initial configuration

corresponding to a correct fingerprint is brought into the basin of attraction of the key. Af-

ter this dynamical alignement, the key can be retrieved by the standard Hopfield dynamics

described previously. In this final step the search takes place over independent variations

of all neurons till Mkey ≃ h0 → Mkey = 1.

7 Conclusion

In conclusion, I have shown how the Hopfield model of associative memory can be used

as an efficient key-binding biometric cryptosystem. Its pattern-retrieving capabilities are

exploited to bind a fingerprint minutiae configuration to a corresponding key configuration

which represents a specific minimum in an energy landscape. The spin glass phase limiting

the original application as a biological information storage model, instead, provides the

disorder and complexity necessary to hide the key configuration in a ”maze” of valleys

and minima so that the resulting cryptosystem is robust against attacks.

Detailed tests are necessary to evaluate the performance and security of this new model

and, in particular, to find optimal parameters for concrete applications.
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