
A Security Evaluation Model for Multi-Agents
Distributed Systems

Chunyan Ma
Department of Computer Science

California State University
San Bernardino, CA, 92407 USA
chuma@csci.csusb.edu

Arturo Concepcion
Department of Computer Science

California State University
San Bernardino, CA, 92407 USA
concep@csci.csusb.edu

Abstract

In this paper, we propose a mathematical model for evaluating the
security of multi-agent distributed systems. Using the developed
security risk graph to model the system’s vulnerabilities, the
transition time on the shortest path between two vertices can be
calculated to evaluate the estimated breach time. The diameter of
the system is used to represent the security measure of the entire
system. Thus, the security level of different systems can be
compared.

1. Introduction

Over the years computer systems have evolved from centralized computing
devices supporting static application, into client-server environments that allow
distributed computing due to the advances in communication technology and the
occurrence of powerful workstations. A new phase of evolution is now under
way in which complete mobile software agent can be sent among supporting
platforms to form a large scale distributed system. A mobile agent [6] is a
program that represents a user in a computer network, and is capable of
migrating autonomously from node to node, to perform computation on behalf of
the user. Its tasks can range from online shopping to real-time device control to
distributed scientific computing. Having accomplished their goals, the agents
may return to their “home site” in order to report their results to the user.

By using agent technology, we can move the code to the remote data to avoid
the difficulty of moving the large volumes of data. We can also send out the
agent to access the remote resources without keeping the network connection

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 469

alive all the time. Despite its many practical benefits, mobile agent technology
results in significant new security threats from malicious agents and hosts. A
malicious agent can corrupt information on its host and in other agents as well. It
is even more difficult to prevent a host from changing an agent’s states or even
killing it. Therefore, solving the security problems of multi-agent distributed
systems is crucial. It would be especially ideal if we can have a method to
evaluate how secure an agent or a host is. So that we can compare the security of
different mobile-agent distributed systems by using quantitative measurements.
Currently there is not much work done in this field. [1] and [2] are the few
attempts to quantitatively measure the security of the mobile agent distributed
systems. In this paper, we develop the security risk graph to model the system’s
vulnerabilities. Based on the analysis of the different security threat situations in
a mobile agent system, we derive a mathematical security model for
quantitatively evaluating the security of an agent-based distributed system.

This paper is organized as follows: Section 2 gives the taxonomy of security
threats for an agent-based system and describes other related work. In section 3,
we will present a mathematical model for security assessment of an agent-based
distributed system, followed by an example to explain how this model works.
The section 4 provides the conclusions and future directions.

2. Related works and the taxonomy of security
threats for mobile-agent systems

Dispatching the application to other computers in the network can reduce the
network communication overhead, get more resources and introduce
concurrency. However, more security threats emerge along with this new
technology. In this section, we are going to discuss the related works in the
security evaluation of the mobile-agents systems and develop a security threats
taxonomy on which we base our security model.

2.1. Related works

Presently only two papers proposed probabilistic security evaluation models for
agent-based distributed system. Chan and Lyu [1] proposed the idea about
coefficient of malice ki of each host and coefficient of vulnerability of an agent
and used them to calculate the probability of breaches on an agent when it travels
around on each host as

P(breach at host i) = 1 – exp(- i ti), where - i = ki,
ti is the amount of time during which the agent stays on host i.
The agent security E is the probability of no breach at all hosts in its itinerary,

E = exp(- iti).
Concepcion and Ma [2] proposed to use the probabilistic Mean Effort To

Failure (METF), as the measure of the system security. The mean effort in node

470 BUSINESS INFORMATION SYSTEMS – BIS 2006

j, denoted as Ej, is given by the inverse of the sum of state j’s output transition
rates:
Ej = 1/ jl, l out (j), where jl is the transition rate from node j to node l.

The transition rate is the success rate of the corresponding attacks, defined as
1/t, where t is the time needed for completing the attack. Then the mean effort to
failure METFk when node k is the initial node and Pkl is the conditional transition
probability from node k to node l, is:

METFk = Ek + Pkl * METFkl; where Pkl = kl * E k

2.2. Taxonomy of security threats

Considering the consequence of the security breaches, the traditional taxonomy
of the security threats identifies three main categories [3] as: confidentiality,
integrity and availability.

Confidentiality is violated when unauthorized principals can learn protected
information.
Integrity is infringed when unauthorized principals modify information.
Availability is breached when the system is prevented from performing its
intended function.
However, when scrutinizing the scenarios in the mobile-agent distributed

systems, we identified a new type of security threat - repudiation, i.e., when one
party in a communication exchange or transaction later denies that the
transaction or exchange took place. Since the repudiation relates with the trust
and credit history, we name this category of security threats as creditability.
Therefore, now we have the forth category of the security threats in the agent-
based systems considering the consequence of the security breaches. We define
the creditability as following:

Creditability is violated when principals deny having performed a particular
action.
The basic elements in a mobile-agent distributed system are the agents and the

hosts. The hosts along with the underlying networks are the basic environment
for the agents to execute. When considering the relationships between the actors
in the mobile-agent systems, there are four main categories identified [4]: threats
occurred when an agent attacks an agent platform; when an agent attacks against
other agents; when an agent platform attacks an agent, and when an agent attacks
the underlying network. Based on this structural characteristic of the agent-based
systems, we can partition the security threats into two broader categories. As
shown in Figure 1, security threats can be towards the host or towards the agent.
They both have two subcategories as shown:

the security breaches towards the hosts:
 • the malicious agent against agent platform
 • against the underlying network
the security breaches towards the agents:
 • the malicious host against agent
 • agent against other agents

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 471

For each subcategory of the security threats, we have identified the possible
security requirements when considering the consequence of the security breaches.
As shown in Figure 1, the agent-against-network category will not violate the
creditability security threat. Because if an agent has used the network to transfer
information through the network connections, there is no possibility to deny that
it has used the service.

Figure 1. Taxonomy of the security threats the agent-based systems.

3. A mathematic model for agent-based distributed
system security threat evaluation

In the model proposed by Chan and Lyu [1,] they did not consider the security
threats of agent-against-host, agent-against-agent and agent-against-network
scenarios. Also the concepts of the coefficient of malice and vulnerability in
Chan and Lyu [1] are not well defined. It is not clear on how to obtain the
coefficient of malice and vulnerability. While Concepcion and Ma [2] have
considered all the security threat types, but the Mean Effort To security Failure
calculation is too complicated. In this section, we will introduce the security risk
graph. Based on the security risk graph and the threats taxonomy, we will set up
a mathematical model to evaluate the security of the mobile-agent systems.

3.1. Introduction of the security risk graph

A security risk graph consists of a set of vertices and edges.
Definition 1. A vertex of a security risk graph is an agent or a host in the

agent-based distributed system.
Definition 2. An edge in a security risk graph is an arc from vertex X to

vertex Y, represented as (X, Y).
An edge starts from vertex X and ends at vertex Y in the security risk graph

means that a method exists for X to launch attack to Y.

472 BUSINESS INFORMATION SYSTEMS – BIS 2006

Definition 3. A security threat of type r exists from vertex X to vertex
Y means that there exists a method for vertex X to perform a type r attack
to vertex Y.

For each type of security threat, there is an average access time associated.
We call it the transition time of a specific type of security threat.

Definition 4. Transition time is the time needed for a specific type of security
threat r to succeed from one vertex to the next vertex.

Here the transition time can be obtained from the statistical estimation of
agent’s and host’s profiles based on the analysis of the agents’ and hosts’
behavior and of their interaction with each other. By observing the system, we
can get the transition time indicating how hard for one vertex to perform one
particular attack to another vertex and assign that value to the same kind of
attack identified from the system we want to analyze.

Definition 5. The weight of each edge is the transition time of each edge.
Definition 6. A directed path in a security risk graph is a sequence of vertices

along with the edges in between of them such that, for any adjacent pair of edges
ei and ej, the ending vertex of ei is the starting vertex of ej. In this paper we call a
directed path as a path.

Definition 7. A security risk graph of an agent-based distributed system is a
directed and weighted graph G(V,E, W) where V is a set of vertices, W is the set
of weights and E is a set of edges between the vertices, E = {w(u,v) | u, v V, w

W, u v}.
Figure 2 shows an example of a security risk graph. A, B, C, D and E are the

vertices and the edges are labeled by the security threat types. Note that only
when a path between an attacker and a target exists, is there a possibility that a
security breach can occur. For instance, as illustrated in Figure 2, B cannot gain
access to E through any path. So B cannot be a potential attacker to E. By
formalizing this intuitive idea, we can get the following corollary.

1) X can read files from Y (intercept);
2) X can guess Y’s password;
3) X can get hold of Y’s CPU cycle;
4) Y has no password;
5) Y uses a program owned by X.

Figure 2. An example of a security risk graph with edges labeled
by security threats.

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 473

Corollary 1. A security threat exists from one vertex X to another vertex Y
whenever there is a path that starts from X and ends at Y.

Proof: Let us consider about the reciprocal statement of this Corollary. That
is, “If there is no path starts from vertex X and ends at Y, there exists no security
threat from vertex X to Y”. Since we know this reciprocal statement holds and
the proof is trivial, we can deduce that Corollary 1 is true.

3.2. Security risks analysis
Based on the taxonomy of the agent-based system vulnerabilities, we can deal

with the security situation for a host and an agent separately.
Combine the security risks related with agent against host and agent against

the underlying network, we can analyze the security risks a host needs to
consider. As shown in the example in Figure 3, the security risks labeled in the
numerical values and a prime are the security breaches to the host.

1) X can guess Y’s password;
2) X can eavesdrop Y’s communication with others;
3) X has write access to Y (alteration);
4) X can masquerade as another platform to Y;
5) Y uses a program owned by X;
6) X can repudiate the result from Y;
7) X can copy and replay Y’s information;
8) Y has no password;
9) X can deny the service to Y;
1’) X can read files from Y;
2’) X can write files to Y;
3’) X can get hold of Y’s CPU cycle;
4’) X can get hold of network resources;
5’) X can masquerade as another agent Y to the platform.

Figure 3. Security risk graph example for agent-based system.

474 BUSINESS INFORMATION SYSTEMS – BIS 2006

Thus when we analyze the security risks of a host, we can discard all the
edges from the host to agents and some of the edges between agents that do not
count for attacking the host and the underlying network.

We find that the masquerade is a tricky type of security threat because both
the agent and the host can masquerade as another one. When vertex X
masquerades as another vertex Y to a third vertex Z, is it an attack to Y, or Z or
both? An example can be seen in Figure 3. In this example, agent B1 can
masquerade as agent A1 to the host. We need to decide if this attack is toward
agent A1 only, the host only or both.

Definition 8. We call vertex X equals vertex Y if vertex X’s behavior looks
the same as vertex Y’s behavior, denoted as X = Y.

Definition 9. Masquerade is the act of imitating the behavior of vertex X to
vertex Y under false pretense, denoted as X(Y).
From Definition 8 and Definition 9, we know when vertex X masquerades as Y, its
behavior looks the same as Y’s behavior, that is X(Y) = Y.

Definition 10. The behavior of B as seen by C is denoted as B C.
Unlike other kinds of security threats, masquerade is a very special type of

security threat because it has the following characteristics.
Masquerade Transition Law: If Entity A can masquerade as Entity B to Entity

C, then that is an attack from Entity A to Entity C.
Proof: To C, Entity B is as itself, so B C = B.
When under masquerading, Entity A acts as B, so A C = A(B) C = B C,
because A(B) = B.
So we have B C = A C = B.
Because A behaves itself to Entity C under the name of B, to obtain the

privileges of C, so that is an attack from A to C.
Saying that masquerade is special is because other types of security threats do

not necessarily have this feature. For example, If vertex A can intercept the
information of vertex C, vertex B can also intercept the information of C, then A
is not necessarily definitely able to intercept the information of C.

Corollary 2. If a vertex A can masquerade as another vertex B to the third
vertex C, then this is a security risk from A to B, also a security risk from A to C.

Proof: First to prove this is a security risk from A to B is trivial. Because A
masquerade as B, whatever A does has affected B’s reputation. So it is an
indirect security risk from A to B.

Also by using the masquerade transition law, we know it is a security risk
from A to C.

Take Figure 3 as an example, agent B1 can masquerade as agent A1 to the host.
So that is a security risk to agent A1 and to the host as well. By using Corollary 2,
we can leave agent B1 in the graph for the analysis of the security risks for the
host. Because we discover an agent could masquerade as another agent to the
platform. We regard it belongs to the security risks a host needs to face, also as a
security attack form between agents. Then we can isolate the security risks the
host will face, see Figure 4.

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 475

1) X can read files from Y (intercept);
2) X can write files to Y (alteration);
3) X can get hold of Y’s CPU cycle;
4) X can get hold of network resources;
5) X can masquerade as another agent Y to the platform.

Figure 4. Security risk graph analyzed the security risks of the host h.

By far, we have used an example to illustrate how to analyze the security risks
a host will face in the system. Our basic idea is to eliminate all the unnecessary
edges and vertices to make all the connections to this host stand out.

But for analyzing the security of the agents, using Figure 3 as an example, we
cannot just discard all the edges in Figure 4. Because one agent can take all host
h’s CPU cycles, so as to deny the service to other agents. For instance, as shown
in Figure 5, A1 can get hold of host’s CPU cycle, thus launch denial of service
attack to every agent running on host h. Note that in Figure 3, we don’t have the
edges of type 9 from host h to each agent. By the process of analyzing the
security “Towards the agent” scenarios, we found that we should add those
edges. In fact, we can generalize this observation into the following theorem for
analyzing the security risk graph of the agent-based system.

1) X can guess Y’s password;
2) X can eavesdrop Y’s communication with others;
3) X has write access to Y(alteration);
4) X can masquerade as another platform to Y;

476 BUSINESS INFORMATION SYSTEMS – BIS 2006

5) Y uses a program owned by X;
6) X can repudiate the result from Y;
7) X can copy and replay Y’s information;
8) Y has no password;
9) X can deny the service to Y;
3’) X can get hold of Y’s CPU cycle;
4’) X can get hold of network resources;
5’) X can masquerade as another agent Y to the platform.

Figure 5. Security risk graph for agents on the platform

Theorem 1. If an agent A on host i can take all of host i’s CPU cycles, it can in
turn launch denial of service attack to all of the agents running on this host
except for A itself. If there are more than two agents on the same host i can take
all of i’s CPU cycles, the first one launches the attack can succeed the attack.

Proof: Since all of the agents running on a host need to utilize CPU cycles for
its performance, if the CPU is hold completely by one agent, then the other
agents cannot function correctly. If the first agent can get hold of all CPU cycles
successfully, all the other agents running on host i can not even function
correctly. They would have no chance to succeed in taking hold of all CPU
cycles any more.

Due to the fact that an agent or a host in the agent-based distributed systems
can launch many different types of attacks, we face a problem of how to analyze
them. For example, as shown in Figure 6, when agent B2 is the attacker and agent
B1 is the target, we have an edge loop back to its ancestor, like hosthA1. In Figure
4 and Figure 5, agent A1 can perform 3 different attacks to host h (in Figure 4)
and host h can launch four different attacks to agent A2 (in Figure 5). Which one
should we choose for calculation? In responding to these problems, we have
developed the following theorems to handle them.

Figure 6. Security risk graph for B2 as the starting point and B1 the target

Theorem 2. If there are several edges with the same direction from one vertex
to the next in the security risk graph, the edge with the smallest transition time
will be chosen in the calculation.

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 477

Proof: Without losing generality, as seen in the security risk graph (Figure 7),
suppose A is an intruder and B is a target. There are several edges from A to B,
AB1, AB2, ..., Abn. Each edge has a transition time t1, ..., tn associated with it.
Suppose ti = min{ t1, ... tn }. Since the intruders do not know the whole topology
of the security risk graph. They only know the attacks that can be directly
applied in a single step. So A has the options t1, t2, …, tn to attack B. From the
empirical results obtained from Jonsson and Olovsson [5], the intruder A would
always try to perform the attack takes the least time that is ti.

Figure 7. Security risk graph for A as the intruder and B as the target.

Theorem 3. If there is an edge from one vertex that goes back to its ancestor,
then this edge would not be counted in calculation.

Proof: From the attacker’s point of view, he would choose a route that takes
the least time. Reflected in the security risk graph, the attacker’s goal is to
choose the branch that takes the least time.

Case . Edge from one vertex goes back to its parent.
Without losing generality, suppose there is one branch in the security risk

graph that has an edge from one vertex Bl goes back to its parent Ai, as circled
part in Figure 8.

Figure 8. Security risk graph for edge from one vertex goes
back to its parent case.

478 BUSINESS INFORMATION SYSTEMS – BIS 2006

Then the time taken by each of all the other branches is just the sum of all the
edges in that branch. From the security risk graph, we can see that if the time
taken from R go all the way down to T is t (t is chosen by selecting the smallest
value among different routes). But if we loop back at Bl,

for route Ai - Bl, total time = t + tBli + tBil, where tBli + tBil > 0.
So total time > t.
for route Ai - Bj - Bl, total time = t + tBij + tBjl + tBli, where tBij + tBjl + tBli > 0.

So total time > t.
That means whatever the routes in between vertex Ai and Bl, total time > t +

tBli > t. So we discard the edges that loop back to the parent.
Case II. Edge from one node goes back to its ancestor.
Similar to case , the time taken by the branch edge from one vertex ni goes

back to its ancestor is greater than the time taken from R go all the way through
Ai, ni down to T, as in Figure 9. If t is the time taken to loop back from nj to Ai , t
> 0.

So we discard the edges that loop back to the ancestor of this vertex ni in
calculation.

Figure 9. Security risk graph for edge from one
vertex goes back to its ancestor case.

3.3. A mathematical security model for security evaluation

After we have modeled the system’s security risks using the security risk graph,
based on the analysis of the security threat types, we developed Corollary 2 and
Theorem 1 to identify some special kinds of attacks and add all the necessary
edges. Then the developed Theorem 2 and Theorem 3 are used to simplify the
generated security risk graph so that we can have a cleaner graph for calculation.
In this section, we will introduce a security model for evaluating the security of
agent-based distributed systems using shortest path.

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 479

Definition 11. A shortest path from vertex u to vertex v is defined as any path
with weight (u, v) = min{w(P) | P(u ~ v) }, where P(u ~ v) is the set of paths
from vertex u to vertex v, and w(P) is the set of weights of each path in P(u ~ v).

Definition 12. Let P be a path containing vertices v1, v2, … vn, and w(vi, vj) be
the weight on the edge connecting vi to vj, then the length of path P is defined as

n-1
|P| = w(vi, vi+1).
Because the time on the shortest path describes the least time the attacker will

need to break into the target. If the attacker does not know the topology of the
whole system, the time needed to break into the target will be definitely more
than or equals to the time calculated from the shortest path. So the shortest path
is a suitable measure for the system administrators to evaluate the system’s
security level.

The following algorithm based on the Dijkstra’s algorithm can be used to find
the security measures. In the next section, we are going to give an illustrative
example to show how this method works.

Security risks estimation algorithm:
Input: Weighted graph G, source, destination (G is the simplified graph using

Theorems 2 and 3)
Output: Transition time from source to destination
Temp: temporary tree structure to hold the nodes and edges as we go through

graph G
1. add source, Transition time (source) = 0 to Temp
2. while (destination Temp)

find edge (u, v), where:
 a. u Temp;

 b. v Temp;
c. minimize the transition time over all (u, v) satisfies a and b.

The resulted transition time = transition time(u) + w(u, v), where w(u, v) is
the weight of (u, v).

Actually, Dijkstra algorithm can find the shortest path to every vertex to
which the source vertex has a connection besides the target vertex. It has the
same time complexity as the one needed for just finding the shortest path to the
target.

The shortest minimum length path between any two vertices represents the
weakest security point and the longest shortest path describes the ultimate time
the attacker needs to break the whole system at most.

Definition 13. The diameter of a security risk graph is the length of the longest
shortest path between any two vertices.

The diameter can be used to represent the security level of the whole system
because it is the least time the attacker needs to break into the whole system.
Thus we can use the diameters to compare the security of different system. If
after reconfiguration, the diameter of the whole system increases, we can say that
the whole system’s security increases because the time needed to break into the
hardest point of the system increases.

480 BUSINESS INFORMATION SYSTEMS – BIS 2006

3.4. Illustrative example

Now let us use an example to illustrate how this approach works. We still use
the example in Figure 3. Figure 10 shows that the edges are assigned different
thicknesses to represent their weight and also to characterize the difficulty of the
breaches: the thicker the edge, the easier the breach. For the convenience of
calculation, we use one week as the unit of attack times. For instance, one day is
approximately 0.2 week. Table 1 lists the transition time, its corresponding time
in weeks and the graph representation in the security risk graph for the identified
transition time of the attacks.

Table 1. Transition time, its corresponding time in weeks, transition rate and
graph representation.

1) X can guess Y’s password in one week;
2) X can guess Y’s password in one month;
3) X can eavesdrop Y’s communication with others (quasi-instantaneous);
4) X has write access to Y (alteration) (quasi-instantaneous);
5) X can masquerade as another platform to Y (one hour);
6) Y uses a program owned by X once in a year (one year);
7) X can repudiate the result from Y in one day (one day);

Transition time Transition Time in weeks Line type in the security

risk graph

 Quasi-
instantaneous

 0.0002

 one hour 0.02

 one day 0.2
 one week 1
 one month 5
 one year 50

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 481

8) X can copy and replay Y’s information (quasi-instantaneous);
9) Y has no password (quasi-instantaneous);
10) X can deny the service to Y in one hour;
11) X can deny the service to Y in one day;
1’) X can read files from Y in one hour;
2’) X can write files to Y in one day;
3’) X can get hold of Y’s CPU cycle in one hour;
4’) X can get hold of network resources in one day;
5’) X can masquerade as another agent Y to the platform in one month.

Figure 10. Security risk graph example with weight demonstrated
in different line type.

To illustrate how the security evaluation algorithm works, we take B2 as the
attacker, A2 as the target from Figure 10 and generate the Markov graph as in
Figure 11.

By using Theorem 3, we can eliminate the edges B1B2, to get Figure 12. Also
for transition time of edge A1Hosth we can choose the one that gives the smallest
transition time based on Theorem 2.

Figure 11. Markov graph for B2 as the attacker and A2 as the target.

482 BUSINESS INFORMATION SYSTEMS – BIS 2006

Figure 12. Simplified Markov graph for figure 11 by using Theorem 2
and Theorem 3.

Following the algorithm, the example in Figure 12 works as below:
Take the source vertex B2 and put it in Temp. Temp = {B2}
Since B2 connects to A1 and D1, we mark A1 and D1 as candidates.
Compare | B2A1 | = 50 and | B2D1 | = 0.0002. Because | B2D1 | is smaller, we

take D1 into Temp. Now Temp = {B2, D1} and we also get the shortest path
between B2 and D1 is B2D1 with

| B2D1 | = 0.0002.
Since D1 is in Temp, now we need to consider the vertices connected to D1: B1

and B3. After we mark them, our candidates are A1, B1 and B3.
Compare:
 | B2D1B3 | = 0.0002 + 0.2 = 0.2002
 | B2D1B1 | = 0.0002 + 0.02 = 0.0202
 | B2A1 | = 50
Because | B2D1B1 | is smaller, we take B1 into Temp. Now Temp = {B2, D1, B1}

and the shortest path between B2 and B1 is B2D1B1 with | B2D1B1 | = 0.0202.
Now that B1 is in Temp, we need to consider the vertices connected to B1: A1.

After we mark it, our candidates are A1, and B3.
Compare:
 | B2D1B1A1 | = 0.0002 + 0.02 + 5 = 5.0202
 | B2D1B3 | = 0.0002 + 0.2 = 0.2002
 | B2A1 | = 50
Because | B2D1B3 | is smaller, we take B3 into Temp. Now Temp = {B2, D1, B1,

B3} and the shortest path between B2 and B3 is B2D1B3 with | B2D1B3 | = 0.2002.
Now that B3 is in Temp, we need to consider the vertices connected to B3: A2.

After we mark it, our candidates are A2, and A1.
Compare:

 | B2D1B1A1 | = 0.0002 + 0.02 + 5 = 5.0202

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 483

 | B2D1B3A2 | = 0.0002 + 0.2 + 5 = 5.2002
 | B2A1 | = 50
Because | B2D1B1A1 | is smaller, we take A3 into Temp. Now Temp = {B2, D1,

B1, B3, A1} and the shortest path between B2
and A1 is B2D1B1A1 with | B2D1B1A1 | = 5.0202.
Since A1 is in Temp, now we need to consider thevertices connected to A1:

hosth. After we mark it, our candidates are A2, and hosth.
10.Compare:
 | B2D1B3A2 | = 0.0002 + 0.2 + 5 = 5.2002
 | B2A1hosth | = 50 + 0.02 = 50.02
 | B2D1B1A1hosth| = 0.0002 + 0.02 + 5 + 0.02 = 5.0402
Because | B2D1B1A1hosth| is smaller, we take hosth into Temp. Now Temp =

{B2, D1, B1, B3, A1, hosth} and the shortest path between B2 and hosth is
B2D1B1A1hosth with

| B2D1B1A1hosth | = 5.0402.
11.Since hosth is in Temp, now we need to consider the vertices connected to

hosth: A2. After we mark it, our candidates are A2.
12.Compare:
| B2D1B3A2 | = 0.0002 + 0.2 + 5 = 5.2002
 |B2A1hosthA2 | = 50 + 0.02 + 0.0002 = 50.0202
 | B2D1B1A1hosthA2 | = 0.0002 + 0.02 + 5 +0.02 + 0.0002

 = 5.0404
Because | B2D1B1A1hosthA2 | is smaller, we take A2 into Temp. Now Temp =

{B2, D1, B1, B3, A1, hosth, A2} and the shortest path between B2 and A2 is
B2D1B1A1hosthA2 with

| B2D1B1A1hosthA2 | = 5.0404.
By using the above algorithm in all these steps, we have found all the shortest

paths starting from agent B2, and ending to every other vertex. We illustrate
those shortest paths in Figure 13.

Figure 13. Graph showing shortest paths for B2 as the initial vertex.

484 BUSINESS INFORMATION SYSTEMS – BIS 2006

Following the method in this example, starting from each vertex, we can
calculate the breach time to every other vertex respectively. The result of
calculation is shown in Table 2. The breach time is represented in time duration
as number of weeks.

Table 2. Breach time results (in number of weeks) calculated by using the
proposed method.

In the above example, since | B3A2hosthB2 | = 5.4 is the longest shortest path
for all the vertices. The diameter for this example is 5.4 weeks. If after
reconfiguration, the diameter of the whole system increases to 6 weeks, we can
say that the whole system’s security increases because it needs more time to
break into the hardest point of the system.

4. Conclusions and future directions

In this research, we have developed a security evaluation model using the
shortest path to evaluate the security levels of the agent-based distributed
systems by giving a mathematical measure to tell how secure a system is. By
using this model, the system’s administrator can not only evaluate the
approximate breach success time between any two vertices, but also can evaluate
the whole system’s security risk. Thus we can have a way to compare the
security between different systems. This model can be used to monitor the
security evolution of the agents and hosts running in the system dynamically. It
can also help the system administrators to manage the system’s security and
performance. The system administrators can evaluate the effectiveness of
different configurations by comparing the values obtained from these different
configurations.

By monitoring the system’s risks, we can get the profile of the transition time
of each type of security risks. We plan to use some probabilistic model to
process the empirical data obtained from the observation.

End

Start
A1 A2 B1 B2 B3 D1 Hosth

A1 --- 0.0202 0.0202 0.22 0.04 0.0002 0.02
A2 0.0202 --- 0.0002 1.0002 0.04 0.0002 0.02
B1 5 5.04 --- 1 1.2002 1.0002 5.02
B2 5.0202 5.0404 0.0202 --- 0.2002 0.0002 5.0402
B3 5.2002 5 5.0002 5.4 --- 5.0002 5.2
D1 5.02 5.0406 0.02 1.02 0.2 --- 5.04
Hosth 0.0002 0.0002 0.0004 0.2 0.02 0.0004 ---

A SECURITY EVALUATION MODEL FOR MULTI-AGENTS DISTRIBUTED SYSTEMS 485

Also, it would be desirable to apply some probabilistic method to the time
value from the calculation so that it describes the security measure more
accurately.

We plan to apply these models in Spider III, the multi-agent distributed
system developed in CSUSB to study its feasibility.

5. Acknowledgements

The support of the National Science Foundation under the award 9810708, the
Information Resources and Technology Division of California State University,
San Bernardino are gratefully acknowledged.

6. References

[Chan 1997] A. Chan, M. Lyu, “Security Modeling and Evaluation for Mobile Code
Paradigm”, In proceedings of the Asian Computing Science Conference, 1997, pp.
371 - 371.

[Concepcion 2003] A. Concepcion, C. Ma, “A Probabilistic Security Model for
Multi-Agent Distributed Systems”, In proceedings of the 6th International
Conference on Business Information Systems, June 2003.

[Humphries 2000] J. Humphries, “Secure mobile agent for network vulnerability
scanning”, In proceedings of the 2000 IEEE Workshop on Information Assurance
and Security proceedings, United States Military Academy, West Point, NY,
June 2000, pp. 6-7.

[Jansen 1999] W. Jansen, T. Karygiannis, “Mobile agent security”, NIST Special
Publication, October 1999, pp. 800-19.

[Jonsson 1999] E. Jonsson, T. Olovsson, “A Quantitative Model of the Security
Intrusion Process Based on Attacker Behavior”, IEEE Transactions on Software
Engineering, April 1999.

[Karnik 1998] N. Karnik, A. Tripathi, “Design issues in mobile agent programming
systems”, Department of Computer Science, University of Minnesota, June 1998.

