
33

Event Processing on your own Database

Nikolaus Glombiewski, Bastian Hoßbach,

Andreas Morgen, Franz Ritter, Bernhard Seeger

Department of Mathematics and Computer Science

University of Marburg, Germany

{glombien,bhossbach,morgen,ritterf,seeger}@mathematik.uni-marburg.de

Abstract: Event processing (EP) is widely used for reacting on events in the very
moment when they occur. Events that require immediate reactions can be found in
various applications, e.g. algorithmic trading, business process monitoring and sensor-
based human-computer interaction. For the support of EP in an application, a special-
purpose EP system with its own API and query language has to be used. Typically,
EP systems as well as their integration in applications are expensive. In this paper, we
show how every standard database system can be used as an EP system via JDBC. An
experimental evaluation proofs that databases behind JDBC are able to support small
and medium-sized EP workloads.

1 Introduction

Today, many existing applications benefit from event processing (EP) or are enabled by

using EP [Luc01]. Algorithmic trading, business process monitoring and sensor-based

human-computer interaction are just a few examples of applications that require or take

advantage of EP. In order to support EP in an application, a special-purpose EP system

has to be used. After the integration, the application code and the EP system are inter-

meshed (vendor lock-in). Therefore, replacing the EP system for a different one becomes

expensive.

In this paper, we motivate and present the implementation of an EP system purely on

top of JDBC that enables every standard database system to provide EP functionality. In

contrast to existing approaches (e.g. Oracle CEP [ora13] or StreamInsight [G+09]), an

EP system via JDBC is completely independent of specific database products. Therefore,

different databases can be used and easily exchanged behind JDBC without affecting the

EP implementation on top. Because databases are already integrated in most applications,

our approach leads to low costs.

After an brief overview of EP in Section 2, we motivate our approach in Section 3 and

present implementation details in Section 4. The proposed approach leads to two advan-

tages. First, every standard database system can provide EP functionality. Second, the user

can easily exchange different database products as EP back-end in Java applications. We

show in Section 5 that database systems can support small and medium-sized EP work-

loads via JDBC. Section 6 concludes the main results of this paper.



34

2 Event Processing

The continuous analysis of streaming events is called event processing (EP). EP allows

to react immediately when specific events occur. An event is a pair (p, t) consisting of

a payload p that is some information about a real or virtual event and a timestamp t that

specifies the instant of time when the event occurred. Typically, EP is used to combine

events that occurred in a specific order or within a timeframe. For example, an application

running on a touch screen device can wait for the user to put exactly three fingers into

the upper right quarter of the screen within two seconds (correlation of events). Or a

computer game can detect that a player has picked up some item at place A and brought it

to place B before a predefined mission timer elapsed (pattern matching of events). Besides

correlation and pattern matching, filtering and aggregating events are other important basic

EP operators. These four basic EP operators can be combined arbitrarily to express more

complex queries. Because every new input event can produce new results, all queries are

performed continuously in an event-driven manner.

The implementation of EP in an application comprises three steps that are the core func-

tionality of every EP provider. First, all event stream producing sources (e.g. sensors) are

registered at the EP provider. In general, they have a fixed and structured schema that is

send to the EP provider during registration. Second, the EP logic is created in the form of

a set of continuous queries. Third, sinks (e.g. alarms) are registered at the output side to

consume the results of the continuous queries.

3 Motivation

In this section, we give insights into our motivation that led to the development of an

EP system on top of JDBC. Inspired by the database abstraction layers ODBC/JDBC,

we developed a generic EP abstraction layer that allows the connectivity to different EP

providers as well as the building of distributed and federated EP infrastructures. In contrast

to databases, the design of such an interface is more complex for the following reasons.

First, there is no standard language for EP, perhaps comparable to SQL for databases. The

challenge is to design an interface that is powerful enough, but still allows a bridge to any

kind of EP provider. Second, operators like pattern matching are not easy to adapt to the

underlying EP providers. Our approach for an EP abstraction layer, entitled Java Event

Processing Connectivity1 (JEPC), is currently implemented on top of the EP systems Esper

[esp13] (open source), Odysseus [A+12] (academia) and webMethods Business Events

[web13] (commercial) as shown in Figure 1. Here in this paper, we put our focus on the

implementation of an JEPC-to-JDBC bridge. Such a bridge seems to be very appealing

for reasonably small EP applications that do not require installing a special-purpose EP

system. However, the JDBC bridge can also be used stand-alone to enable every standard

database to provide EP functionality. In the following, the most important aspects of JEPC

are introduced, because it is used as user interface for our EP system on top of JDBC.

1http://dbs.mathematik.uni-marburg.de/research/projects/jepc/



35

JEPC

Bridge Bridge Bridge Bridge

Esper Odysseus
webMethods
Business
Events

JDBC...

Driver

...

Event Processing

DB2 H2 Oracle PostgreSQL SQL Server

Driver Driver Driver Driver

Figure 1: Java Event Processing Connectivity

To abstract EP functionality from specific EP providers, we have designed the JEPC in-

terface shown in Table 1. However, only a unified API is not sufficient. We also have to

abstract from the query language, the representation of streams and how query results are

made available.

The method to register a new event stream requires a unique identifier e for later accesses

and a schema definition s of the stream. Because we want the interface to be generally

applicable but also simple, we decided to support the relational model. Thus, a schema is

an array of attributes; each attribute consists of a name and a primitive data type.

In the following, we show how to express continuous queries in JEPC. A new query is

created by giving it a unique identifier q and a definition d. The query definition makes use

of a simple object representation of streams, four basic EP operators and their parameters.

This representation has several advantages. First, queries can be composed arbitrarily to

build more complex ones. Second, queries can be processed easily. This is very important

when an implementation of the JEPC interface (like the bridges in Figure 1) has to translate

the input query definition into the specific query language of the underlying EP provider

with preservation of semantics. Third, a query definition of JEPC can also be generated

easily. This allows the use of query languages, domain specific languages, integrated

languages (e.g. LINQ [Mei11] in .NET) and graphical query composers on top of the

JEPC interface.

In JEPC, query definitions follow the paradigm everything-is-an-object. A stream is rep-

resented by an object that contains all necessary information about the stream (e.g. its

name). Each stream object must be related to a parameter object of the type time window

[ABW06]. This object holds all information about the time window (e.g. its size). The

next group of objects consists of the basic EP operators, namely the filter, the aggregator,



36

Removes the output processor

Removes the query

Removes the stream

Registers a new event stream with schema

Method Description

Creates a new continuous query with definition

Adds an output processor to query

Pushes the event into the event stream

REGISTERSTREAM(e, s) e s

CREATEQUERY(q, d) q d

ADDOUTPUTPROCESSOR(q, o) o q

PUSHEVENT(e, p, t) (p,t) e

REMOVESTREAM(e) e

REMOVEQUERY(q) q

REMOVEOUTPUTPROCESSOR(o) o

Table 1: JEPC Interface

the correlator and the pattern matcher. Each of them is related to either one input object

(filter, aggregator and pattern matcher) or multiple input objects (correlator). An input

object can be a stream object as well as an operator object. On the output side, there is

exactly one related output object. This can be another operator object or the final query

output object that exists exactly once in every query definition. Each type of operator ob-

ject needs its own specific parameter object. The filter and the correlator need a boolean

expression that specifies all events (filter) respectively combinations of events (correlator),

which should be forwarded to the output object. The aggregator needs an aggregate in

order to compute its output events and the pattern matcher needs a pattern. Each element

of a parameter object (e.g. literals and logical connectors in boolean expressions) is an

object again. For the sake of simplicity, we do not mention them in detail here. Because

everything is an object, entire parameters and query definitions are formed by composing

objects. The final composition determines precisely all relations between the objects and

makes it easy to traverse and translate the query definition as well as to create and modify

it. In other words, queries are expressed in the form of a composition of primitive opera-

tors (directed EP operator graphs). Then, every bridge only needs a compiler that is able

to translate the basic EP operators into the specific query language of the underlying EP

provider with preservation of semantics. Following the well-known concept of subqueries,

complex EP queries can be translated and executed as event processing networks [Luc01].

The semantics of JEPC queries is the same as the one presented in [KS09]. We have

decided to adapt this one, because it is sufficiently expressive, deterministic, consistent

and has a solid theoretical foundation (at each single point in time the queries produce the

same results as standard SQL would do). Pattern matching is performed strictly sequential

with time instant semantics [WDR06]. Each bridge guarantees to preserve the defined

semantics.

To consume the results of a continuous query q, the user can add multiple output pro-

cessors. Inside an output processor o, user-defined code is executed on each produced

result. A new event (p, t) is pushed into a registered stream e by calling the correspond-

ing method of the JEPC interface. Additionally, there are also methods needed to remove

streams, queries and output processors.



37

4 JEPC-to-JDBC Bridge

In this section, we present our data structures and algorithms being used on top of JDBC

to implement the JEPC interface. Time windows are the most important data structure of

EP. They are used as building blocks to correlate and aggregate events. Pattern matching

is the most challenging operator. For the sake of limited space, we assume that every input

stream is ordered by time. But available techniques to handle out-of-order streams (e.g.

on the basis of punctuations [TM03]) are fully compatible with our approach.

4.1 Query Translation

The JEPC-to-JDBC bridge translates each incoming JEPC query definition into standard

SQL with additional clauses for time windows and pattern matching. See Listing 1 for

examples of the syntax we use for the additional clauses. The main idea is to treat the SQL

extensions accordingly so that the resulting statement will be pure standard SQL. Finally,

the bridge can execute the resulting statements in the database via JDBC. Of course, it is

also possible to express EP queries direct in the form of our extended SQL syntax without

using JEPC (stand-alone mode).

4.2 Time Windows

Because event streams are potentially unbounded, they can not be queried as a whole.

Instead, sliding time windows [ABW06] are used to keep a finite set of the freshest events

and to perform the query execution. The sizes of time windows are specified on the source

streams by the user. For all other streams obtained from an operator, the sizes of time

windows are derived from the specification of the operator and its corresponding input

streams. The JEPC-to-JDBC bridge creates for each time window a new database table.

In the associated query statements, it replaces each source stream together with its time

window specification by the corresponding database table. The resulting expression is

already a valid SQL statement being ready for execution in a database system. Figure 2

visualizes this procedure. When a new event is added to an event stream, all dependent

tables that represent a time window on it are updated [DR04]. Because the freshest event

is the one that was recently added to the window, we can use its timestamp and the size

of the corresponding time window to deduce an instant of time as a bound for purging.

Events dating back before this bound are expired; therefore, they are deleted. In Figure 2

the update is shown for table a. Afterwards, all tables only contain relevant events and it

is possible to execute queries on them.



38

table_a

p t

Event t

Event t

Event t

Event t

...
table_z

p t

Event t

Event t

Event t

Event t

Expired

Event

New Event

.

SELECT . . . FROM stream a WINDOW(RANGE wa MS), . . ., stream z WINDOW(RANGE wz MS) . . .

SELECT . . .

FROM table a, . . ., table z

. . .

Now := tl

Now - wa
i i

j j

k k

l l

o o

p p

q q

r r

Execution

Figure 2: Time Windows

4.3 Filter, Correlation and Aggregation

Although we have stated in the last section that the rewritten queries can be executed on the

simultaneously created tables such that all results are produced, we have to perform further

modifications in order to achieve the behavior of an EP provider. The reason why we need

to tweak the execution lies in the stream-based nature of EP. This especially means that the

output of every operator must be an event stream again. So we are forced to report every

result exactly once and to report all results ordered globally by time. An operator result is

called new if the recently added event took part in its creation. Every EP operator has to

report only new results.

To produce only new results, we created an environment capable of recognizing the re-

cently added event. In our implementation, each single stream has an extra table that

always contains the freshest event of the stream only. This allows to select it efficiently by

querying this extra table instead of a time window. For the rest of the paper, we use the

terms table and time window synonymously and call the extra table the inbox of a stream.

Each stream has exactly one inbox and can have multiple time windows (the total count of

time windows depends on the running EP operators).

After the common setup, the filter, correlation and aggregation operators are handled as

follows. A filter basically checks whether an incoming event fulfills certain requirements

or not. Thus, the filter is executed on each new event in the inbox and returns the result

directly. An aggregation can not exploit the inbox, because it has to take every valid event

inside a time window into consideration. So the time window on its input stream is up-

dated and the aggregation is executed as described in the previous section. A correlation

between event streams requires the inbox of the updated input stream in order to report

only new results. The recently added event is inserted into its corresponding time win-

dow and expired events are removed in every time window on the input streams of the

correlation with the timestamp of the recently added event as upper bound. The recently

added event not only let the time progress in its corresponding time window but also in all

others. Finally, the inbox that contains only the recently added event is correlated with all

other time windows. This produces all results in that the recently added event takes part

[BLT86].



39

Event Stream

17 6
45 5

p t
42 1
42 2
43 3
44 4

Symbol Stream

5

y
4

u

x

6

1

3

x

4

5

t

x

5

u

x

2
3

4

y

x

p

x

y

Query Results

4
(43,44,45)
(42,43,44)
p

5

t
JDBC NFA

Figure 3: Pattern Matching Example

4.4 Sequential Pattern Matching

Creating a new pattern matching query via JEPC requires the following information in the

query definition: a strictly sequential pattern that is described through a regular expression,

boolean expressions that specify the mapping between events of the queried stream and the

symbols used in the pattern, a time window within the pattern must occur completely, arbi-

trary global variables to hold values globally for the pattern and an output event consisting

of a subset of the global variables. The test query ρ in Listing 1 shows the resulting SQL

statement after the bridge has translated the incoming query definition. For each param-

eter there is an additional clause: the pattern-clause contains the regular expression, the

within-clause contains the duration of the time window and the measures-clause declares

all global variables. Inside the define-clause, each symbol is defined through a boolean

expression (as-clause). This regular expressions can use constants, attributes of the event

stream as well as previously set global variables as literals. The do-clause is used to set

global variables when the corresponding symbol is emitted (that is the boolean expression

was evaluated to true). Figure 3 shows the test query ρ in execution with i set to 1. In

this case, the query detects all integer event sequences of size three. Furthermore, each

integer event in a matching sequence must have a value that is decreased exactly by one in

comparison to the value of its successor.

For each new event in the inbox of the stream, all symbols it emits are derived. Because

symbols are defined through boolean expressions, this step is done completely inside the

database. The result is a symbol stream that is maintained in the same way as every other

event stream. Especially the specified time window is used to hold only relevant symbols.

Also the values of global variables are derived and stored inside the database. Because in

strictly sequential pattern matching all symbols with identical timestamps are interpreted

as alternatives, we manage all alternative sequences contained in the symbol stream inside

the database and give each of them a unique identifier. The same identifiers are used to

tag the corresponding values of the global variables. All symbols and the identifiers are

put into a nondeterministic finite automaton (NFA) that is built on the basis of the pattern.

This NFA reports all identifiers of sequences that have a positive match with the pattern.

Finally, the identifiers are used to load the corresponding values of the global variables in

order to build and report the output event.



40

1 10 20 30 40 50 60 70 80 90 100

10
10

0
1K

10
K

10
0K

Filter
Pattern Matching
Aggregation
Correlation

Count

E
ve

nt
s/

se
c

Figure 4: Workload Scalability

5 Evaluation

In order to obtain an impression of the performance of our EP system on top of JDBC,

we conducted an experimental evaluation. Two things are remarkable about our imple-

mentation and test environment. First, our implementation is strictly single-threaded and

consumes only few resources (in the worst case, one CPU core is fully utilized). We

avoided to implement a multi-threaded EP server, because our target use-cases are appli-

cations that need embedded EP functionality on the same machine. Second, we used the

database system H2 [h2d13] in our experiments, because it is a simple Java library and

in the presence of JEPC, users only have to add this library to their projects to enable EP.

There is no complicated setup required.

5.1 Experiments

We have examined for each basic EP operator the number of input events being processed

per second. We also have evaluated the scalability of all basic EP operators by running

multiple of them at the same time. Our test machine had an Intel i7 CPU with 8 GB main

memory. The database system H2 used its standard configuration keeping its data on an

ordinary hard disk. Figure 4 shows the results on a logarithmic y-axis.



41

# "
σ(i, Count) = SELECT ∗

FROM stream[a:Integer, b:Integer]

WHERE a - b = i

⊲⊳ (i, Count) = SELECT ∗

FROM stream1[a:Integer] WINDOW(RANGE (500 + (Count/2)− i) MS),

stream2[b:Integer] WINDOW(RANGE (500 + (Count/2)− i) MS)

WHERE a - b = i+ 1

α(i, Count) = SELECT COUNT(∗)

FROM stream[a:Integer] WINDOW(RANGE (500 + (Count/2)− i) MS)

ρ(i, Count) = SELECT z1, z2, z3 FROM stream[a:Integer]

MATCHING(PATTERN xyu WITHIN (500 + (Count/2)− i) MS

MEASURES z1:Integer, z2:Integer, z3:Integer

DEFINE x AS true DO z1 = a

y AS a - z1 = i DO z2 = a

u AS a - z2 = i DO z3 = a)

$ !
Listing 1: Test Queries - Filter σ, Correlation ⊲⊳, Aggregation α and Pattern Matching ρ

In the experiments, exactly one event was pushed into all input event streams for every

millisecond. So all adjacent events in an event stream had timestamps that differed exactly

by one millisecond from each other. Therefore, all time windows of the parametrized test

queries (see Listing 1) were filled with 500 events on average. Before each measurement,

we performed a warm-up. During this phase, all time windows were filled up completely.

We executed the following sets qCount of test queries three times and have reported the

average input event throughput:

∀q ∈ {σ, ⊲⊳, α, ρ} : ∀Count ∈ {1, . . . , 100} : qCount = {q(i, Count) | 1 ≤ i ≤ Count}

Independent of specific operator types, the throughput decreases rapidly at the beginning

and becomes relative stable afterwards. An extract of the precise results is discussed in the

following: 80 parallel running filter operators processed 219 events per second, 80 parallel

running pattern matching operators processed 114 events per second, 80 parallel running

aggregation operators processed 49 events per second and 80 parallel running correlation

operators processed 18 events per second. Aggregations are expensive, because they are

computed entirely from the scratch and not incremental like in real EP systems. Perfor-

mance optimizations like incremental computation of aggregates are generally possible

and will be addressed in our future work. We also tested a mixed workload consisting of

20 filter, 20 aggregation, 20 correlation and 20 pattern matching operators and measured

an average event throughput of 100 events per second. This performance is sufficient for

many EP tasks as well as for the development and testing of EP applications. We executed

also all tests with the database on a solid state drive and in-memory, but the performance

improvements were only in the range of 1 to 10 percent, so we do not report them in detail.

Our implementation behaves like most special-purpose EP systems; for each single input

event all related queries are triggered (tuple-driven behavior). We would achieve better

performance if queries are only triggered after some time has elapsed or a predefined

number of input events have been pushed (batch-driven behavior).



42

6 Conclusion

We have motivated and presented the implementation of an event processing (EP) system

purely on top of JDBC. This kind of implementation enables every standard database sys-

tem to provide EP functionality in Java applications. To support small and medium-sized

EP workloads, a database system that in most applications already exists can be (re-)used

with only low costs. The use of a database system instead of a special-purpose EP system

makes also sense for the development and testing of EP applications. Because JDBC ab-

stracts from specific database products, they can be easily exchanged without affecting the

implementation of the EP system on top of JDBC.

Acknowledgments This work has been supported by the German Federal Ministry of

Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under

grant no. 01BY1206A.

References

[A+12] H. Appelrath et al. Odysseus: a highly customizable framework for creating efficient
event stream management systems. In DEBS, pages 367–368, 2012.

[ABW06] A. Arasu, S. Babu and J. Widom. The CQL containuous query language: semantic
foundations and query execution. In VLDB Journal, 15(2), pages 121–142, 2006.

[BLT86] J. Blakeley, P. Larson and F. Tompa. Efficiently updating materialized views. In SIG-
MOD, pages 61–71, 1986.

[DR04] L. Ding and E. Rundensteiner. Evaluating window joins over punctuated streams. In
CIKM, pages 98–107, 2004.

[esp13] Esper. http://esper.codehaus.org/ (2013-01-17).

[G+09] T. Grabs et al. Introducing Microsoft StreamInsight. Technical report, 2009.

[h2d13] H2 Database. http://www.h2database.com/ (2013-01-17).

[KS09] J. Krämer and B. Seeger. Semantics and implementation of continuous sliding window
queries over data streams. In TODS, 34(1), pages 4:1–4:49, 2009.

[Luc01] D. Luckham. The power of events: an introduction to complex event processing in
distributed enterprise systems. Addison-Wesley Longman Publishing, 2001.

[Mei11] E. Meijer. The world according to LINQ. In Commun. of ACM, 54(10), pages 45-51,
2011.

[ora13] Oracle CEP. http://www.oracle.com/technetwork/middleware/

complex-event-processing/overview/index.html (2013-01-17).

[TM03] P. Tucker and D. Maier. Dealing with disorder. In MPDS, 2003.

[WDR06] E. Wu, Y. Diao and S. Rizvi. High-performance complex event processing over streams.
In SIGMOD, pages 407–418, 2006.

[web13] webMethods Business Events. http://www.softwareag.com/corporate/

products/wm/events/ (2013-01-17).


