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Abstract: Some surfaces, like metallic and varnished ones, can only be properly con-
trolled, if they are inspected under different illumination directions. This requires a
three-dimensional input signal: a series of images, where each image shows the same
surface but is illuminated from a different angle. This paper presents a method to ex-
tract translation and rotation invariant features from such a series to detect and classify
topographic irregularities on the inspected surfaces. Invariant features are represented
by 3D fuzzy histograms and classified by a support vector machine (SVM). The pro-
posed method performs successfully on varnished wooden surfaces to detect and clas-
sify defects on the varnish film. This sort of defects is extremely difficult to recognize,
which makes it appropriate to demonstrate the robustness of the method.

1 Introduction

Topographic irregularities on certain surfaces, e.g. metallic and varnished ones, can only be
reliably recognized, if the corresponding surface is inspected under different illumination
directions. Therefore, their automated inspection requires to record an image series in
which each picture is taken under a different illumination angle. It is advantageous to
analyze the series as a whole and not as a set of individual pictures, because the relevant
information is contained not only in each picture but also in the relations among them.
Consequently, the image series constitutes a 3D signal, and the extraction of features for
the analysis should not be performed considering its dimensions as unconnected.

The presented approach is based on the local binary pattern (LBP) of Ojala et al. [OPMO02]
and on the method of Schael [Sch05] to detect and classify defects on textiles. These works
classify textures and defects using invariant features, but considering only single images as
input. In this paper, we propose a combination and extension of these methods to support
series of images. A kernel function collects information within a local 3D neighborhood
and fuses it to obtain a 2D result. The properties of invariant features are combined with
those of histograms to achieve a higher discrimination power [SB98]. Finally, we test our
method on varnished wooden surfaces to detect and classify defects on the varnish film.

The paper is organized as follows: Section 2 introduces the concept of invariance, in
Section 3 we present our approach to construct invariant features from series of images,
whereas Section 4 shows the results obtained with varnished wooden surfaces.
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2 Invariant features

For a recognition task, different patterns of a group are considered equivalent if they con-
vey to each other through an induced transformation. A feature is called invariant if, for a
given transformation, it remains constant for all equivalent patterns [Sch95].

Let g(x) with x = (z,y)T € R? denote a gray-scale image and m = (my,...,mg)T a
d-dimensional vector of invariant features, being m; its [-th element. A common approach
to construct a feature m; out of g(x) that is invariant against a certain transformation group
7T is integrating over this group [Hur97]:
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Equation (1) is known as the Haar integral, where f; is an arbitrary, local kernel function,
t € T is a transformation parametrized by the vector p € P, and P denotes the parameter
space.

In this work, we aim at extracting invariant features with respect to the 2D Euclidean
motion, which constitutes a finite and compact transformation group composed of rotation
and translation in R?. Then, the parameter vector is given as follows: p = (7, Tys o),
where 7, and 7, denote the translation parameters in « and y direction, and ¢ is the rotation
parameter. The compactness and finiteness of this group guarantee the convergence of the
integral [Sch95]. For this group, Eq. (1) can be rewritten as:
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3 Invariant features for series of images

In this paper, the input function is not a single image but a series obtained by systematically
varying the illumination angle [LPO6]. The series of images can be referred to as g(x; w),
where w € [0, 27) is a cyclic parameter that indicates the illumination azimuth used for
image acquisition, and consequently the picture location within the series. Since series of
images are discontinuous along w, it is sensible to define w as a discrete parameter:

wp=bAw with 0<b<B-1, B:Zi’
w

where B denotes the number of pictures in the series. Let us reshape Eq. (2) to consider
series of images:

wz/ﬁw%m@wm%mwwmw.
P
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Figure 1: Left: Parameters of the kernel function. In this example, o = 2 holds. Right: Schematic
representation of f; for 1y = r2, 0 = 1, @ = B = 45° and an image series with B = 4. The
connected pairs of points §(up) and g(vy) represent the subtrahends of f; for different values of b.

In this case, the transformed series ¢(7;, 7y, ©){g(x; ws) } can be expressed as follows:

(T, Ty, 0){9(x5wp) } =: g(x";wp) with x' = ( cos@ - sinp )x— <Tx> )

—sing cosy Ty

3.1 Kernel function

The proposed kernel function f; operates on a 3D neighborhood and presents a circular
symmetry along b. This local function is defined as follows:

filp) = Zgub V), 3)
b=0

E

1,1 cos(ag + wp) L
—rysin(og +wp) |’ b
o, cos(3 + wyp)

; A d2r | .
([—Tglsmﬂl—l—wb)}’(wb_ko w) Mo 7r>

The meaning of the parameters r1, 72, o, 3, and o is illustrated on left side of Fig. 1. The
right side of the figure shows the local configuration of the pixels compared by the kernel
function f; schematically.
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3.2 Histogram features

With Eq. (3), invariant features can be constructed by integrating over the group of trans-
formations parametrized by the vector p, as stated in Section 2:

- =/fl(p>d
P

An alternative way to achieve invariance is not to perform an integration, but to compute a
histogram. This leads to features with more discriminative power and the same invariance
properties [SB98]. The construction of histograms requires the use of discrete parameters:

Imnb = g(x;wp) with x=mAx, y=nAy,
0<m<M-1, 0<n<N-1,

. . 27
Piji = (1 Az, j Ay, k Ayp), 0<k<K-1, K:A—w.

To this end, we define a 3D matrix H of size M x N x K with the following elements:
hiji == fi(p) = fi(i Az, j Ay, k Ay).

To achieve invariance against rotation, each of the K-tuples of the matrix H resulting
for arbitrary locations (¢, j) must be sorted in ascending order along the corresponding &
dimension. This results in a sorted matrix H*, whose elements are referred to as follows:

hije := hija -

Following, for each k € {0 ..., K — 1} a 2D matrix Hj, with elements (h},);; := hj;; is
extracted from the matrix H*, and a fuzzy histogram is constructed from each Hj,. Fuzzy
histograms overcome the problem of an unsteady assignment at bin boundaries presented
by classical histograms [SB98]. The resulting k histograms are associated forming a 3D
histogram, which constitutes a translation and rotation invariant descriptor.

Large changes in the pixel intensities along the third dimension b of the series can indi-
cate topographic defects on the surface. However, defects are in general small compared
with the inspected surface. Consequently, the number of pixels with intensities varying
strongly along b is very low compared with those that present almost no change. For this
reason, most information is concentrated in the first histogram’s bins, whereas the remain-
ing bins feature almost no weight within the classification process. Two modifications are
introduced to improve this situation. Firstly, a logarithmic function is incorporated to f;.
Secondly, the bins are weighted by an exponential function ¢, where ( is a constant, and
c denotes the corresponding bin number. The logarithm decompresses the information of
the first bins, and the weighting function raises the influence of the last ones:

B—
fi(p) Z log, [g(uy) — §(ve) + 1] -
b=0
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Surface without defect
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Figure 2: Histogram modifications for simulated surfaces with and without defect.

Figure 2 shows the effect introduced by these modifications in the histograms for simu-
lated surfaces with as well as without defects. It is clearly visible that each modification
increases the difference between the features of both classes (defective and non-defective),
improving thus their separability.

4 Results

The presented method has been tested on varnished wooden surfaces to detect defects
on the varnish film. All samples have a transparent varnish film and the wood texture is
also visible. Defects on the varnish film are only partially visible under certain illumi-
nation conditions. Additionally, the texture of the underlying surface constitutes a noisy
background which may mask out some defects. All these characteristics increase the com-
plexity of the surfaces under analysis for an automated inspection [PAP06].

For each surface, B = 8 pictures have been taken by varying the illumination azimuth in
steps of 45°. The invariant features have been computed in windows of 16 by 16 pixels.
Four different classes of defects have been considered: fissures, craters, bubbles, and blis-
ters. A SVM has been used for the classification, for which the learning process has been
performed based on a training list consisting of 20 series of images showing different de-
fects on different wood substrates. Five different histograms were extracted using different
combinations of the parameters r1, r2, o, 3, and o.

The proposed set of features reliably describes the relevant information contained in the
image series and enables a correct detection and classification of the defects. The method
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Bubble Fissure

Blister and fissure Craters

Figure 3: Results: (left) image of the series; (right) classification results.

behaves robustly and is able to detect and classify defects on different wood textures.
Figure 3 shows some results, where the five different classes of regions (all four types of
defects as well as non-defective areas) could all be correctly classified.
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