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Abstract—To increase the performance of a program, devel-
opers have to parallelize their code due to trends in modern
hardware development. Since the parallelization of source code
is paired with additional programming effort, it is desirable
to provide developers with tools to help them by parallelizing
source code. PBA2CUDA is a framework for semi-automatically
parallelization of source code specialized in the algorithm class
of Population Based Algorithms.

I. INTRODUCTION

Modern computer architectures consist of a variety of
hardware like multi-core CPUs, General-Purpose Graphics
Processing Units (GPGPUs) and also specialized hardware
like Field Programmable Gate Arrays (FPGAs). With this
powerful parallel hardware, new challenges for software de-
velopers emerge. Serial programs do not benefit from parallel
architectures as the program code is executed sequentially
on a single computation node. The program code has to
be parallelized to use the computation capabilities of these
hardware. This process is not trivial, many constraints have
to be fulfilled, like data dependencies and synchronization
barriers. Furthermore, the developers have to get used to new
frameworks and APIs like OpenMP [1] for multi-core CPUs or
CUDA (s. Sec. II-C) for GPGPUs. The memory architecture of
modern parallel hardware is complex as well. Particularly, the
memories of GPGPUs consist of many different layers with
different characteristics and sizes. Using the correct memory
with the correct access method is crucial for fast execution of
a parallel program.

This paper presents a novel approach for semi-
automatically parallelizing serial source code on GPGPUs.
Thereby, our tool is specialized on Population Based Al-
gorithms (PBAs), an algorithm class from the area of
Biologically-Inspired Algorithms. The main characteristics of
this algorithms are the iterative execution of special functions
to solve the given problem by a large number of individuals
(Sec. II-B), that makes PBAs suitable for parallelization.
Furthermore, by setting the focus on a specific algorithm class,
our framework can perform optimization procedures regarding
this particular class of algorithms.

The paper is organized as follows: Section II contains a
short survey of related work. In Section III we describe the
concept and implementation of our parallelization framework.

Section IV presents the evaluation results. Finally, Section V
concludes with further research opportunities.

II. STATE OF THE ART

A. Parallelization Frameworks

There are many parallelization frameworks in the literature
transferring serial C/C++ code into CUDA code. The general
approach of all frameworks is to mark parts of source code that
have be transformed by the specific framework with directives.
However, the features of the available frameworks differ. We
have created a list of important criteria for PBA2CUDA com-
paring different frameworks. The criteria for the comparison
are:

1) Data transfer between CPU and GPGPU is influence-
able.

2) Memory on GPGPU can be allocated and freed
manually.

3) Every memory hierarchy of the GPGPU is usable.
4) Loop optimization possible.
5) C++ support
6) Free to use

The results of the comparison are shown in Table I. HMPP
and OpenMPC are both supporting the most features. While
HMMP supports C++, it is not free to use. We have decided to
use OpenMPC, as we wanted to implement an open framework
and important C++ features can be supported by implementing
C++ to C parser transforming, for example, C++-Vectors to C-
Arrays or C++-Classes to C-Structs.

B. Population Based Algorithms

PBAs are nature inspired heuristics, all PBAs have similar
structures. The main part is the population that consists of
a set of solutions for a given problem. These solutions are
called individuals, particles or, more general, agents. These
agents execute in each iteration of the algorithm different
kinds of operations to improve their solution. The quality of
a solution is called fitness. The function or problem that the
agents have to optimize (or solve) is called fitness function.
Two representatives of PBAs the so called Genetic Algorithms
(GAs) and Particle Swarm Optimization (PSO) that are used
for this paper are now described in more detail.
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Criterion PGI [2] OpenACC
[3]

HMPP
[4]

OpenMPC
[5]

hiCUDA
[6]

R-
Stream
[7]

1 + + + + + +
2 + + + + + -
3 - - + + + -
4 - - + + - -
5 + + + - - -
6 - - - + - -

TABLE I: Comparison PBA2CUDA criteria

1) Genetic Algorithms:: GAs [8][9] are heuristics based on
the idea of natural selection. The population of GAs consists of
a set of individuals that represent a solution of a given problem
where every solution consists of single chromosomes. As an
example the solution of an individual for an n-dimensional
function would consist of n values of this function. The vector
representing these values is the chromosome of this individual
and every value of this vector is called gene. The outer iteration
loop of GAs consists of three main operations - Crossover,
Mutation and Selection - that are performed after a random
initialization process until a break condition (e.g. finding the
minimum) is achieved.

The crossover operation uses two individuals (parents) to
generate new individuals (children) by crossing the solutions of
the two parents. There are many different crossover operations,
some popular examples can be found in [8]. In the next step,
some chromosomes of the individuals are randomly changed,
this operation is called mutation. Again, there are different
methods for implementing mutation [8]. The individuals are
now ranked based on their fitness value that indicates the
quality of their solution. In the last step, the individuals
are selected to become part of the population for the next
iteration. Once again, there are many different ways to select
the individuals [8]. There are many parallel implementations
for GAs, see [10][11][12].

2) Particle Swarm Optimization:: PSO algorithms [13][14]
have similarities to GAs but the approach is different. PSO is
based on the natural behavior of birds. The population of a
PSO algorithm is called swarm and the individuals are called
particles. Every particle is represented by a position and a
velocity where the position represents a solution of the problem
and velocity the speed and direction this particle changes its
position.

In each iteration step, the particles try to approximate better
solutions by detecting the best neighbor and updating their
velocity and position value taking into account the velocity
and position values of the best neighbor. The iteration loop is
repeated until a break condition is met. Like for GAs, different
parallel PSO algorithms can be found in the literature [15][16].

C. CUDA

As GPUs became more and more complex, their use was
no longer limited to tasks belonging to graphical programming.
Different programming languages were developed to facilitate
the GPUs towards more general purpose processing. The
company NVIDIA published CUDA (Compute Unified Device

Architecture) as a programming environment for their GPUs.
CUDA became a common programming language extending
the C language by a small set of instructions, allowing the
programmer to develop code running in parallel. The parallel
code is executed on so-called CUDA kernels. More details
about CUDA can be found in [17][18].

D. ROSE

For our code analysis approach, we have used the ROSE
Compiler [19], a source- to-source transformation and analysis
tool. ROSE transforms the source code into an Abstract syntax
tree (AST) that can be modified and transformed back into
compilable source code.

III. PBA2CUDA FRAMEWORK

This section describes the architec-
ture of the parallelization framework
PBA2CUDA. It is divided in three parts, in the first
part the general concept of PBA2CUDA is shown while in
the second part the actual implementation of the framework
is described. Finally, in the third part, the pre-conditions that
are necessary for the use of PBA2CUDA are shown.

A. PBA2CUDA Concept

PBA2CUDA is a framework for parallelizing serial PBAs.
The generic approach is shown in Fig. 1, showing three main
modules, the Parallelization-module, the PBA Optimization-
module and the CUDA Optimization-module.

The Parallelization-module is the main module converting
a serial PBA into a parallel form that can be executed on
a GPGPU. The procedure of the module is semi-automatic
and needs information about the parts of the code that have
to be converted into CUDA-code. These areas have to be
marked by pre-defined directives by the developer. Also, the
Parallelization-module provides pre- and post-processing tools
for the source-code that are needed by the framework. The
PBA-Optimization module gets the parallelized source code as
input and executes optimization operations dedicated to PBA.
Finally, the CUDA Optimization module executes optimization
operations focused on the CUDA specific part to accelerate
execution of the code and increase the precision of the results.

B. PBA2CUDA Implementation

Here, the implementation of the generic modules shown in
Section III-A is described. The concrete modules representing
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Fig. 2: PBA2CUDA Framework

parts of the generic modules are described and discussed.
As shown in Fig. 2, the generic modules consist of several
concrete modules specialized on single tasks of PBA2CUDA.

1) Source-Code Merger: A limitation of PBA2CUDA is
the necessity to use only a single file when parallelizing source-
code, which is unfavorable for larger programs. This limitation
raises from the use of ROSE (s. II-D) as our main code parsing
tool. To face this limitation we have implemented the Source-
Code Merger (SCM) module to merge the single files. The
SCM module searches for all available header and source files
available. Next, the main method is identified and all functions
of the remaining source code files are copied in the associated
header files. All source-code/header files combinations that
belong together are stored in a single header file, respectively.
In the last step, the merged header files have to be copied into
the main file in the correct order to avoid dependencies. To
resolve the dependencies, the main file is parsed recursively
and every header include declaration is exchanged by the
dedicated merged header file. The included header files are
stored to avoid multiple declarations.

2) Function Saver: The used parallelization framework
OpenMPC executes optimization operations that raise errors in
the source code. As an example, OpenMPC deletes functions
that are referenced only as function pointers. However, the
references themselves remain in the source code which leads to
incorrect code. The Function Saver (FS) marks the referenced
functions with directives to face this problem. In the following,
the marked functions are stored into a separate file and deleted
from the source file. Furthermore, the references are removed
to avoid errors when parallelizing the code.

3) OpenMPC: We have used OpenMPC (s. II-A) to trans-
form the serial C-code into CUDA code. This step is done fully
automatically by OpenMPC and has no further improvements
by our framework.

4) Function Restorer: The Function Restorer module re-
stores the functions that were removed by the FS module and
the parallelization procedure. Subsequently, the FS restores
the missing functions and the function pointer references are
restored in the source file.

5) OpenMPC Corrector: The OpenMPC compiler gener-
ates different errors that can not be corrected by the previous
modules and have to be corrected by the OpenMPC Corrector
(OC) module. In the following, the possible errors are enumer-
ated and the used correction method is described.

1) Sometimes OpenMPC deletes the host declara-
tion in front of a function. This declaration indicates
the compiler that the corresponding function can be
executed on the host (CPU) system. All device
device expressions, that determine a device function,
therefore a function that is executed on the GPGPU,
are replaced by host device expressions.
Functions with this markings can be executed on the
GPGPU as well as on the CPU.

2) The NULL pointer is replaced by the expression
(void*)0. This expression is readable for most com-
pilers but raises an error when parsed by ROSE.
Therefore, the OC module transforms the (void*)0
expression back to a standard NULL expression.

6) Reduction Kernel Creator: One of the main tasks in
PBAs (s. II-B) is to find the best individual after each iteration.
Comparisons between single threads on the GPGPU are not
trivial due to synchronization issues and wasted clock cycles
while waiting for the last thread to end its task. Generally,
a simple search algorithm to find the best value is within
the complexity O(n), where n is the number of different
values. Every single value has to be compared iteratively
with its neighbours until all values have been compared. As
this operation is essential for PBAs, we have implemented
the Reduction Kernel Creator (RKC) module to speed up
comparison operations on GPGPUs. The reduction method is
a common approach for finding the best value within a set of
values. The main approach is shown in Fig. 3. n/2 threads
have to be executed in the first iteration step to compare n
values. Every thread compares two values and saves the best
value for the next iteration step. The next (n/2)/2 threads are
started and execute the same operation. The algorithm stops
when the best value is found.

This approach speeds up the PBA and is in the complexity
class O(log(n)). A drawback of this approach is the use
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of a small number of threads, that leads to an underutilized
GPGPU.

7) Random Function Converter: Random calls are an es-
sential part in PBAs for different operations like mutation
or crossover (s. II-B). Unfortunately, the OpenMPC compiler
does not consider external function calls like the C rand().
We have implemented the Random Function Converter (RFC)
module to transfer standard C random calls into CUDA random
calls using the CUDA library thrust. Two options have to be
considered: The random call can be found directly in the kernel
function or the random call is nested in a device function called
by the kernel function. RFC parses the functions recursively
to detect every random call and exchanges the call with a
thrust random call. A seed is transferred from the host to the
device function and concatenated with the thread id of the
threads executed on the GPGPU to obtain independent random
numbers

C. Preconditions for automatic parallelization

The serial source code that is to be transferred by
PBA2CUDA has to meet some preconditions. These precon-
ditions arise out of the used frameworks like ROSE or Open-
MPC. The parts of the source code that are to be parallelized
have to be written in C without C++ constructs. Furthermore,
the parts that are to be parallelized have be marked using
OpenMPC directives. We are working on methods to extend
PBA2CUDA. Some of our work in progress can be found in
Sec. V.

IV. EVALUATION

To evaluate to quality of the parallel souce-code generated
by PBA2CUDA we have implemented different PBAs (GA
and PSO) solving common benchmark functions that can be
found in [20]. We then compared the achieved speedup of the
automatically parallelized algorithms, manually parallelized
implementations and parallelization on the CPU (OpenMP [1])
in relation to serial versions of the algorithms. Due to page
limitations, we present in this paper two functions, the Euclid
function and the more complex Griewank function:

1) Euclid: f(~x) =

√
n∑

i=1

(xi − 500)2

2) Griewank: f(~x) = 1
4000 (

n−1∑
i=0

x2
i )+(

n−1∏
i=0

cos( xi√
i+1

))+

1

We have chosen the suggested parameters from [20] for the
dimension size (30 and 100) and have also evaluated a larger
dimension size (500). The parameters for the population size
are 100 and 500, respectively, covering medium and large
population sizes. The test bench consists of an Intel Core-
i7-2960XM with 4 cores and a NVIDIA GeForce GTX 580M
GPGPU with 384 CUDA-cores.

A. Results: Genetic Algorithm

Fig. 4: Genetic Algorithm - Euclid function

1) Euclid Function:: In Fig. 4, the results for the GA
algorithm solving the Euclid function are shown. On the
left figure, the results using an individual size of 100 are
shown while on the right figure, the results for 500 individuals
are shown. The parallel versions of the algorithm do not
perform well compared to the serial version (Speedup=1 -
green curve) due to the simplicity of the Euclid function.
The parallelization overhead is much larger than the speedup
gained by parallelizing the algorithm. Comparing the parallel
versions, the OpenMP version (CPU, OpenMP,8 Threads -
blue curve) shows the best results following by the manually
implemented CUDA version (CUDA manually - yellow curve)
and the PBA2CUDA version (CUDA - red curve).

2) Griewank Function:: The Griewank function is more
complex to compute than the Euclid function. In Fig. 5
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the results of the GA computing the Griewank function are
shown. Even for smaller population sizes (upper figure) a
speedup using the parallel versions of the program is achieved.
Whereby, the OpenMP version outperforms both the manually
implemented CUDA version and the automatically parallelized
version by PBA2CUDA. However, for larger population sizes
(bottom figure) the CUDA versions outperform the OpenMP
version of the program confirming the general assumption that
a parallelization of GPGPUs is worthwhile only for large prob-
lems. Here again, the manual CUDA implementation shows
better results than the PBA2CUDA version. This is achieved
by implementing all optimization techniques of PBA2CUDA
in our manually optimized implementation of the algorithm.

Fig. 5: Genetic Algorithm - Griewank function

B. Results: Particle Swarm Optimization

1) Euclid Function:: The results of the PSO solving the
Euclid function show slightly different characteristic than the
GA. While the OpenMP version again performs better than the
CUDA versions, all parallelized versions perform better than
the serial version of the PSO in larger problem sizes (right
figure). The reason for this performance is the implemented
Reduction Kernel (RK), that is only used for the PSO and can
not be used by the GA implementation. The RK is also the
reason for the sharp bend in the curves for population sizes

greater than 100. While the RK speeds up the calculation of the
best particle, it does not utilize the GPGPU very well leaving
idle cores (s. Sec. III-B). For larger problem sizes, this leads
to a reduction of the RK performance.

Fig. 6: Particle Swarm Optimization - Euclid function

2) Griewank Function:: Similar to the Euclid function,
all parallel versions perform better than the serial version
of the PSO for larger problems (right figure). Furthermore,
the CUDA versions, both the manually implemented and the
PBA2CUDA version, perform better than the OpenMP version.
The computation time of the RK has a smaller impact in the
general execution time due to the relatively large compute time
of the other PSO functions and by this the CUDA versions have
no quality fall-off in their performances for population sizes
greater 100.

The evaluation results show similar performance of the
versions parallelized by PBA2CUDA and the manually par-
allelized versions of the PBAs. Considering the minimal ef-
fort parallelizing a PBA with PBA2CUDA the results look
promising and we want to expand the build-in optimization
procedures to achieve even better results and support more
parallelization patterns.
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Fig. 7: Particle Swarm Optimization - Griewank Function

V. CONCLUSION AND FUTURE WORK

We have shown in our paper a novel approach for
half-automatically parallelization of PBAs using CUDA. The
PBA2CUDA framework performed in our evaluation scenarios
almost as well as a manually optimized CUDA version. We
are working on expanding the framework and on making it
more user friendly. At the moment, OpenMPC directives have
to be inserted in the source code defining the parallel parts
and determining on which GPGPU memory the data has to be
transferred. We are working on a procedure to simplify these
directives and to automatically determine the correct memory
for the data. Furthermore, we are working on a decision
process based upon speedup analysis mapping the source
code on the correct hardware (multi-core/GPGPU) based upon
the best predicted speedup automatically. Additionally, we
are working on further automatically performed optimization
techniques for PBAs similar to the Reduction Kernel shown in
this paper.
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