
In Microservices We Trust — Do Microservices Solve Resilience
Challenges?
Marcus Hilbrich

marcus.hilbrich@informatik.tu-chemnitz.de
Technische Universität Chemnitz

Germany

ABSTRACT
Resilience is an open challenge. In this paper we look into mi-
croservices–a concept that argues to be resilient. We look into
the definition of microservices and argue whether the definition
provides the promised advantages regarding to resilience.

KEYWORDS
Microservice, Resilience, Concept, Discussion

1 INTRODUCTION
Building high quality software is not easy. The software needs to
provide a functionality, to offer a use. In addition, the software has
to offer non-functional properties to be useful. It needs to deliver
correct results and it needs to be available. In an defined work-
ing environment, this is still a challenge and we have to consider
various system properties (safety, security, fault tolerance, perfor-
mance, down times, etc.) and we have seen various methods to
foster this properties (redundancy, threat modeling, test driven de-
velopment, verification, certification processes, system/software
modeling processes, exception management etc.). When we con-
sider a unforeseeable environment, it gets even more complicated.
We have to offer the same system properties without knowing what
we can rely on. Each hard- and software we are using to operate
our system, can get unavailable (or be even corrupted) at any time.
Thus, to build a system that can uphold its system objective as good
as possible (in short it is resilient), is even more complicated.

The open challenge is: how to constructs resilient systems? The
architecture of software and the process of software creation should
foster resilience. It should offer concepts to increase resilience di-
rectly or at least offer properties to simplify to develop a resilient
system.

In this paper, we look into microservices. Microservices is a
concept that claim to support the development of huge and complex
systems that have to be operated in an unforeseeable environment.
Thus, microservices should foster resilience. We discuss whether
microservices really help to develop resilient systems. Therefore,
we have to find out the definition of microservices and other terms
(Sec. 2). Afterwards, we discuss the relation of microservices and
resilience (Sec. 3) and close with summery and conclusion (Sec. 4).

Copyright 2019 by Author, DOI: https://doi.org/10.18420/fbsys2019-02 Except
as otherwise noted, this paper is licenced under the Creative Commons At-
tribution 4.0 International Licence. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.18420/fbsys2019-02

2 DEFINITIONS
Before we can argue whether microservices solve resilience chal-
lenges, we need to define the terms we speak about. We start with
resilience, go on with the system we have to consider. Afterwards
we define the term “functional concern” that is defined in the mi-
croservice context and allows to define microservices. Based on the
definitions, we can argue about resilience for microservices in the
next section.

2.1 Resilience
Resilience is the ability of a system to deal with an unforeseeable
changing environment in a useful meaner (according to [2]). Avizie-
nis et al. [1] describe resilience as synonym for fault tolerance which
includes also the system itself as source of faults. This means, what-
ever goes wrong (broken network connections, failing hardware,
incorrect software, attacks, etc.) the system protect its objectives as
good as possible–whatever the system’s objectives are.

This offers two aspects of resilience:
(1) we have to deal with an unpredictable environment (includ-

ing the system itself), and
(2) we have to consider the system’s objectives.

2.2 Considered System
The system is the object we are looking for. Thus, we need to con-
sider resilience based on the system we are observing. In case we
look to a single component, we observe the interfaces to measure
the quality of reached objectives. Faults can be caused by the soft-
ware itself, from used hardware, or other components etc.. In case
we observe the overall system, we observe the system’s interfaces
(e.g. interface to the user). The individual interfaces of the compo-
nents the system is built of are not directly relevant.

2.3 Functional Concerns
To define microservices, we need to define functional concerns (or
business concerns) as it is used inmicroservice context. A functional
concern is an (isolated) interest of an user to the system (this can
be a human or another system). The functional concern contains
functionality and covers everything that is needed to fulfill this
concern. An example is, the user wants to delete the user’s account.
This would include the tasks persistence of accounts, authorization,
authentication, etc.. A task to fulfill a concern can be helpful for
other concerns, too. Demands like the system has to be secure are
no functional concerns, we call them cross cutting concerns.

2.4 Microservices
The termmicroservice has no clear definition.We observed different
not useful definitions, like “microservices are small” according to

https://doi.org/10.18420/fbsys2019-02
https://doi.org/10.18420/fbsys2019-02


Marcus Hilbrich

[5, 6]. Smartphone applications, projects of end user programming,
and scripting are typical examples for small projects or systems.
In most persons understanding, these examples are no microser-
vices. So, the definition is not discriminating and not really defining
microservices.

We need a clear and discriminating definition. Therefore, we
considered common definitions (e.g., [3, 4]) and consolidated them.
We decided to consider the definition of the system’s structure as
architectural style and the process of development and operation
by the trailering of the software process model. To display the
difference to the crowded microservice definitions, we also use an
new term.

The slice service style (microservices) is an architectural style,
where the functional concerns of the system are encapsulated to
services (slices or vertical services) that deliver the functionality to
end-users and have no (or minimal) dependencies to other slices of
the system. This includes code sharing, usage of interfaces, sharing
of manpower, and management of e.g., creation, deployment, and
operation.

3 MICROSERVICES AND RESILIENCE
Based on the microservice definition, it is clear that a microser-
vice system consists of independent microservices (slices) that are
(mostly) independent to each other. So, we can use the overall
system as reference or a single microservice.

3.1 Overall System
In case we consider the overall system, microservices can be helpful
to foster resilience. In case a microservice is failing (e.g. based on
a non-working execution environment), it cannot hinder another
microservice in operation, based on the independence of separate
microservices. So, all other microservices offer the functional con-
cerns they are representing. As result, a failure that influences only
individual microservices influences not the functional concerns of
additional microservices.

In systems with other structures the impact of a failure can be
more dramatic. E.g., in an monolithic system, a failure can escalate
and hinder the complete system from operation (no functional
concern is fulfilled), or a failing layer in an layered system can
result in a failing of all layers (transitively) depending on it.

Thus, a microservice system can keep alive objectives defined
by functional concerns in case of a single microservice is failing
based on the separation of functional concerns.

Beside, a microservice represents one functional concern of the
system. Thus, the complexity and size of a microservice is less than
the overall system. A reduction of complexity and size simplifies
the development of a (resilient) system. This advantage is similar to
other concepts that divide a system in subsystems e.g., component
based development or layered systems.

3.2 One Slice or Microservice
In case we consider a single microservice or slice, the definition
does not give an direct benefit in relation to resilience. It is not
defined to develop a single microservice with resilient in mind at
all.

However, the definition fosters the development of resilient mi-
croservice (at least indirectly):

• The overall objectives of the system are separated in func-
tional concerns with their individual non-functional con-
cerns. So, each microservice has its own individual objec-
tives that can be achieved independent of objectives of other
microservices. Thus, the objectives that have to be covered
by resilience are more clear and less complex then to con-
sider the overall system. Therefore, it is more clear which
objectives have to be considered by resilience in contradic-
tion to e.g., a layered system, where a layer has to support
all (probably contradicting) objectives of the system.

• The development team of a microservice is responsible for
development and operating the microservice, also the mi-
croservice is not reused (based on its independence). So, the
developers and operators of the microservice are aware of
the limitations of the microservice and of the current manner
of operation and it is not needed to consider a general usage
of the microservice. This concept is also known as DevOps.

• One microservice covers all aspects, there are no layers, ser-
vices, component usage etc. that are not part of the microser-
vice. Thus, it is possible to have the microservices resilience
aims in mind for each part of the microservice development.

4 SUMMERY AND CONCLUSIONS
Microservices are no silver bullet to answer all challenges of re-
silience. The organization of the system based on functional con-
cerns results at least in an avoidance of microservices to harm
other parts of the system. This is at least an clear positive impact
in relation to resilience.

In addition, the separation of functional concerns has advantages
that at least foster resilience by reduction of complexity. A guaranty
for resilience cannot be given, the microservice still needs to be
developed to be resilient.

Furthermore, we need to consider additional challenges. Cross
cutting concerns like security, performance, authentication, etc.
are known open challenges for microservice systems. Sharing of
code and knowledge across microservices is another open chal-
lenge. Beside microservices, this is a challenge that was answered
by different concepts of reuse like component based design, object
orientation, reusable libraries, etc.. Moreover, the definition of func-
tional concerns by dividing the overall system in independent parts
is a major challenge that is not easy to answer.

REFERENCES
[1] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr. 2004. Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing 1, 1 (Jan 2004), 11–33. https://doi.org/10.1109/TDSC.2004.2

[2] AXELOS Limited. 2011. ITIL® glossary and abbreviations. https://www.axelos.
com/Corporate/media/Files/Glossaries/ITIL_2011_Glossary_GB-v1-0.pdf

[3] James Lewis and Martin Fowler. 2014. Microservices: a Definition of this new
Architectural Term.

[4] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. 2016.
Microservice Architecture : Aligning principles, practices, and culture. O’Reilly
Media.

[5] S. Newman. 2015. Building Microservices. O’Reilly Media.
[6] Stefan Tilkov. 2019. Microservices: A Taxonomy. In International Conference on

Microservices. University of Applied Sciences and Arts Dortmund, Germany. https:
//www.conf-micro.services/2019/papers/Microservices_2019_paper_29.pdf

https://doi.org/10.1109/TDSC.2004.2
https://www.axelos.com/Corporate/media/Files/Glossaries/ITIL_2011_Glossary_GB-v1-0.pdf
https://www.axelos.com/Corporate/media/Files/Glossaries/ITIL_2011_Glossary_GB-v1-0.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_29.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_29.pdf

	Abstract
	1 Introduction
	2 Definitions
	2.1 Resilience
	2.2 Considered System
	2.3 Functional Concerns
	2.4 Microservices

	3 Microservices and Resilience
	3.1 Overall System
	3.2 One Slice or Microservice

	4 Summery and Conclusions
	References

