
Bringing Developers and Users closer together:
The OpenProposal story

Asarnusch Rashid, Jan Wiesenberger, David Meder, Jan Baumann

FZI Forschungszentrum Informatik
Research Center for Information Technologies at the University of Karlsruhe

Haid-und-Neu Str. 10-14
D-76131 Karlsruhe

rashid@fzi.de, wiesenberger@fzi.de, meder@fzi.de, baumann@fzi.de

Abstract: Even though end-user participation in requirements engineering (RE) is
highly important, it is at present not frequently used. Reasons can be found in the
large expenditure of time for organizing and carrying out surveys as well as in the
time it takes to understand the users’ requirements. This research is supposed to
address this problem by presenting the OpenProposal approach for distributed user
participation using visual requirement specifications. First experiences made in
several case studies show the potential and limits of this approach and outline the
possibilities of application.

1 Introduction

It is well known that Requirements Engineering (RE) is one of the biggest challenges,
and that all stages of RE dealing with elicitation, specification, prioritization and
management of requirements are vitally important for the success of a software project.
As RE is a complex process involving many people, a lot of different methods and tools
were developed to support this highly collaborative process. In the research project
CollaBaWü1 the researchers were confronted with the task to evaluate existing methods
and tools for practical usefulness in cooperation with software companies and financial
industry and if necessary to develop new methods and tools. In this context, the issue of
user involvement in RE has become apparent in many conversations and analyses with
the industrial partners.

The aim of user involvement in RE is to improve the design process, facilitate the
implementation and to address ethical principles [NJ97]. User involvement can be
performed when developing requirement specifications, validating requirement
specifications, supporting detailed design and development, reviewing specifications,
inspecting prototypes and accepting released products. A literature review [KKL05]
shows that user involvement is found to have a generally positive effect on system

1 www.collabawue.de: ‘CollaBaWü’ is a project (2004 – 2007) commissioned by Landesstiftung Baden-
Wuerttemberg foundation, which aims at increasing the overall productivity in the development lifecycle of
enterprise applications. In this respect, the main objective of the project is to promote industrialisation in
enterprise application development focussing on the particularities of the financial service provider domain.

9

9



success and on user satisfaction, and some evidence can be found suggesting that taking
users as a primary information source is an effective method of requirements elicitation
[CM96, EQM96, KC95, Ku03]. In addition, involving users in RE could have an
important role, since users are nowadays recognized as being one of the essential groups
of stakeholders, while a lack of user involvement was shown to lead to serious problems
in RE [Po95]. These results coincide with the experiences of industrial partners (each
with more than 10.000 users) in the project CollaBaWü. Their software department aim
at a closer relationship with their users in order to improve their RE processes.

Methods already in practical use include User Experience, Usability Workshops, User
Support Units and Employee Suggestion Systems. But recognizing that these procedures
are too formal and heavy-weight, and the insight that systematic approaches to
understand users’ needs and continuous user involvement are still lacking, lead to the
suggestion that users have to be able to participate with small effort – the optimum being
during their daily work - and developers have to be able to obtain enough valuable
information without additional effort. By collaborating, users should exchange and
discuss their ideas in a shared environment. Further, transparency is desired, meaning
that users can track the development of the suggestions they submitted.

This research aims to contribute to the existing approaches by presenting the
OpenProposal system for distributed user participation. The fundamental idea behind
OpenProposal is based on the fact that in most modern software products the users’
requirements refer directly to the graphical user interface. Therefore the idea of
capturing these requirements in a graphical form, supplementing a textual description,
was taken into consideration. Since nowadays graphical annotations are unusual in
requirements management, and since most of the time sketches and screen shots are
merely used on paper, this research wants to discuss the use of graphical annotations in
Requirements Management (RM).

For this it is aimed

to understand the users’ and the developers’ needs in requirements
management,

to develop a new methodology and a new concept of IT support to enhance
existing practices,

to develop a certain formal notation language providing a language to enable
users and software developers to formulate and discuss users’ requirements, and
finally

to evaluate the methodology and IT support concept in order to identify
chances, risks and limits.

The paper is structured as follows. At first, the theoretical background and related
Information System Development (ISD) approaches are discussed. Secondly, the
process, concept and architecture of OpenProposal are presented. Then experiences
gained from case studies are outlined. Fourth, possible fields of application of

10

10



OpenProposal are described and finally, the lessons that could be learned from this
research are discussed.

2 Related Work

The OpenProposal concept was able to take its inspiration from several different fields
of research, including Participatory Design (PD), Requirements Engineering (RE) and
Digital Annotation (DA). The idea for user participation came from the field of PD, as
the methods for this particular type of end user integration primarily originate from it
[Su93]. PD is solely concerned with user participation in all phases of system
development. In general, existing methods for user participation during requirements
elicitation utilize direct face to face communication or prefer user interviews. Even
though we do not question that these methods allow a complete requirements
specification, the successful execution requires considerable effort, both from the side of
the developers as well as from the side of the users [DESG00]. Furthermore the
increasing degree of interconnectedness through the Internet provides new possibilities
of cooperation, but they also imply the need of addressing the challenges of globalization
in software development. During the recent years, the employment of CSCW software
(Computer Supported Cooperative Work) has therefore been discussed more intensely in
PD [KB03]. New approaches in user participation like the concept of Participation
Design in Use [SD06] or the new area of Distributed Participatory Design (DPD)
[DND06] are supposed to allow the usage of methods of PD in distributed (over time
and space) working environments.

In RE research there are a lot of methods and tools available, which support the process
of requirements acquisition [HL01]. Besides the traditional concepts of user integration
mentioned above, there are many approaches to alternative specification techniques in
order to achieve end-user participation. Reeves and Shipman [RS92] describe a
combination of visual and textual elements. Li et al. [LDP05] have developed a solution,
which uses Natural Language Processing. Video techniques are used in the scenario
“Software-Cinema” of Bruegge et al. [Br04], which addresses requirements acquisition
in mobile environments. There are also numerous commercial tools supporting visual
specification of requirements. The best known notation method is UML, which promotes
the use of Use-Case diagrams during the RE phase of software development. These
formal techniques support primarily software engineers and presume skills in modelling
languages.

Other visual aids in RE include mock-ups [Ma96] and Rapid prototyping techniques
[BH98], which are commonly used in early phases of software projects. They do allow
software engineers to sketch screens with low functionality as well as to run first
usability tests. Tools supporting these techniques are applied by engineers and analysts
but not by the user himself. They are merely enabled to return feedback in the usual way
of face-to-face meetings. An approach centring more on the user is offered by Moore
[Mo03]. It is based on requirements acquisition using GUI elements without
functionality. End-users ‘will create mock user interface constructions augmented with
textual argumentation that will act as communication to software requirements

11

11



engineers’ [Mo03, p. 2]. This approach allows users to construct their own user
interfaces but still it has to deal with the problem that real software is very complex and
end-users will not have enough time to construct a whole software system.

The advent of graphical user interfaces has led to requirements concerning the
modification and improvement of such an interface. Tools supporting this process often
use DA. The tool Annotate Pro [An06], for example, provides several functions to draw
annotations directly on the users’ screen by using snapshots in combination with
ordinary picture editing functionality. This enables end-users to draw comments on their
active applications, without time-consuming trainings and preparations. The commented
snapshots serve as requirement specification and can easily be sent to the software
engineers by email. As this tool neither contains a method which follows a well-
structured plan nor provides a formal notation language there does not exist any common
language either which means that users are free to paint sketches and to send them to
anyone without assistance. It is assumed that developers may have difficulties in
understanding these paintings. Furthermore, there is no possibility for end-users to track
the submitted requirements. There are other tools of a similar nature, but addressing
different aspects. JING [Ji07], for example, focuses on fast sharing of annotated images
and videos. It uses a very basic set of tools, which are nonetheless sufficient for marking
and explaining what the central aspects of this picture are. While offering no annotation
possibilities for videos, providing a video capture possibility makes the tool flexible.
JING also features built in support for upload to Flickr, ScreenCast or any user definable
FTP server. However it shares the same shortcomings that Annotate Pro has. Similarly
the usability testing suite Morae [Mo07] does not support the structure of the test
conducted, nor does it directly support tracking of submitted requirements. It focuses on
recording and analyzing usability studies and features a large set of recording options,
logging and observation functions as well as tools for analyzing results and creating
reports.

The literature about DA states that annotations are not only useful because they allow
capturing the application concerned, but they do also support such crucial mental
functions such as remembering, clarifying and sharing, as Bottoni et al [BLR03] point
out. Their paper provides a formal analysis of digital annotation and identifies operations
and procedures that an annotation system should allow. Annotations are also important
for a two-way information exchange, as discussed by Fogli et al [FFM04], who also
define the tools required to support creation and the use of annotations.

In summary, the problem is that none of the present tools and approaches provides all
essential functionality to support end-users in an adequate way. All of them are lacking
either usability or efficiency or collaboration. This research is supposed to address this
problem by presenting the OpenProposal approach for distributed user participation
using visual requirement specifications.

12

12



3 OpenProposal: Process, Concept & Implementation

OpenProposal aims at aiding users to express their ideas about how an application might
be enhanced. At the same time it is also supposed to help developers by imposing a
structure on the annotation process which will make it easier for them to grasp the users’
intention. In order to achieve these requirements, the OpenProposal tool differs from
other annotation tools, e.g. Annotate Pro [An06] in so far as the users do not interact
with a set of free-form drawing tools, but with a toolset representing possible changes he
wants his target application to undergo.

OpenProposal is supposed to allow users to annotate their feature requests, error reports
or enhancement requests directly on their applications workspace and send these
requests to the requirements management. Lots of communication problems can thus be
avoided – e.g. misconceptions due to wrong choice of wording, incomplete data,
descriptions which are too elaborate – which often arise from text-only communication
like E-mail or the internal employee suggestion systems. The aim of OpenProposal is to
integrate users efficiently into the development process during their daily routine when
using the application, to reduce the usual effort associated with participative
requirements elicitation and to allow a high degree of implementation of the captured
requirements with the help of structured recording. Furthermore, OpenProposal is
supposed to increase the transparency of the requirements management process, thus
ensuring motivated participation of as many employees as possible during requirements
elicitation.

Specify
Discuss

Prioritize

Decide

Implement

EEnndd--UUsseerr

RReeqquuiirreemm eennttss
aannaallyysstt

SSooffttww aarree
eennggiinneeeerr

FFaasstt
GGeenneerraattiioonn
and
BBaacckkttrraacckkiinngg
of own
requirements

guarantee rreessppeeccttttoo
ssttrraatteeggyy and eeccoonnoomm yy Understand users

requirements and
guarantee correct
implementation

Figure 1: The OpenProposal Process

3.1 Process of OpenProposal

The OpenProposal process (see Figure 1) centres around five actions, specify, discuss,
prioritize, decide and implement, and three roles, end user, requirements analyst and
software engineer. Each role has its own special set of requirements and participates in a

13

13



certain subset of the five actions. The end user requires a possibility to generate his own
requirements in a fast way. He also wishes to track progress on his requirements. End
users take part in the specification and discussion of requirements. The requirements
analyst needs to guarantee that whatever is done respects the company’s overall strategy
and is economically feasible. He takes part in the discussion of the proposals, prioritizes
them and decides on which proposal will be implemented and which will not. He may
also propose his own ideas and have them discussed with the other stakeholders. The
software engineer has as a requirement the need to understand the users’ proposals and
to guarantee their correct implementation. He can submit his own proposal
specifications, participate in discussions to contribute with his professional knowledge of
what is technically possible and feasible, and is responsible for implementing the
proposals that have been decided on.

3.2 Concept of OpenProposal

To ensure the involvement of users in distributed RE being successful, a system is
needed permitting users to formulate their proposals with simple tools, to submit the
created proposal to the developers and to track the proposal’s progress. Furthermore the
decision maker and the software developer should be able to manage and edit the
proposals in an efficient way in order to benefit from the possibilities of the RE system,
too.

OpenProposal is a software system which is supposed to fulfil these criteria. It should be
possible to use it in conjunction with any established requirements analysis procedure
currently employed in the company, which will thus be extended with efficient user
involvement. Users should be enabled to create and discuss proposals for existing
software as well as software currently being under development and it should be possible
to propose improvements as well as new features. The level of detail is up to the user.

The OpenProposal process provides two tools. The annotation tool enables the user to
visually formulate his ideas and send them to the collaboration platform tool, which
gives an overview of the submitted proposals and allows discussions between users,
developers, deciders etc. The process can be initiated in two ways. One way is to
explicitly call for user participation, mostly for software which is currently under
development. The other way is that the user wants to submit a proposal for an
application without external motivation merely wishing to improve the software.

One essential benefit for the user is that he can actively participate in the process of
software improvement and is thus able to shape the application the way he wants to. The
user employs the annotation tool for the fast generation of graphical requirements and
submitting them to the collaboration platform. The user can then track the progress using
the collaboration platform.

The system is used by the decision maker to collect and consolidate the users’
requirements and to compare them with the strategic and economic targets of the
company. If the requirements are collected globally, covering all company divisions, he
can detect and use synergies between the divisions. Using the collaboration platform, he

14

14



can receive an overview of the requirements, can discuss them with users and developers
and thus determine the priorities.

The developer benefits from being able to participate in the discussion at an early stage,
to inform users, decision makers and analysts about the technical possibilities and
restrictions. The graphical specification is supposed to improve the process of
understanding what users want, and implement the proposals in the correct way.

3.3 Architecture of OpenProposal

The OpenProposal implementation consists of an annotation tool, an XML specification,
an Issue-Tracker and a mediator. As can be seen in Figure 2, the annotation tool gathers
annotated screenshots which are stored together with the individual annotation objects in
an XML specification. This specification also contains metadata about the proposal as
well as the user's system. This specification is sent to a mediator specific to the Issue-
Tracker. The mediator takes the information from the specification which will be
directly entered into the Issue-Tracker software and creates a new issue with it, attaching
the screenshot image and the XML file in the process. Stakeholders can log into the
Issue-Tracker to rate and discuss proposals. This information can then be requested by
the annotation tool through the mediator from the Issue-Tracker, in order to present users
of the annotation tool a list of previous annotations of that application with their ratings
and discussions.

Figure 2: The OpenProposal Architecture

15

15



3.3.1 User Interaction: Annotating and Handing-In of Issues

Figure 3 exemplifies the functionality of OpenProposal and illustrates the way of
annotating with OpenProposal. Imagine a user writing a document with Microsoft Word.
The user has some ideas for improvement and starts OpenProposal. First, the
OpenProposal notepad is opened and the user is asked to choose a category for his
suggestion (C) in section A (I). Then, section B (II) is selected. The screen of the
application is captured automatically and the user can sketch his suggestions for
improvement directly on the screenshot. The toolbar offers four annotation related tools.
The “Add” tool (1) allows users to specify a position where they would like to have a
new object on the screen. The “Remove” tool (3) is the inverse; an existing element is
marked as superfluous. With the “Move” tool (2) users first select an area which should
be moved to a different place in the applications workspace, then to the new target area.
The “Comment” tool (4) can be used for suggestions the other tools are not able to
express directly, as well as refining and adding further detail to the other tools’
annotations. Users may pause the annotation, e.g. if they want to change the layout of the
application they are annotating (A).

Figure 3: OpenProposal tool bar

All annotations are represented as objects which may be edited, moved or deleted
whenever the users want to (D). Once they finish their annotations, users can send their
requests to the issue-tracker (H). Prior to sending, the users are prompted to give their

I

II

III

16

16



request a title (E), a text description (F) and their usernames (G) in section C (III). Users
may exit the application at any time. By pressing the Button Specification List (B) users
can access to the window illustrated in Figure 5. The functionality of this window is
described in the next chapter.

3.3.2 Collaboration: Viewing, Discussing and Rating Issues

The data provided by users is stored in the collaboration platforms’ database, which may
be accessed via a web front-end. When logging into the collaboration platform, the users
are first presented with a list of all issues entered. When selecting one of the issues in the
list, the issue window is shown (Figure 4). Here the users will be able to read a
description of the issue (I), view details such as the status or the priority (L), participate
in the discussion about this issue (K) and take a look at the annotated screenshot
associated with this issue (M).

Figure 4: Web-based Issue Tracker

To support the user, the annotation tool of OpenProposal offers a window with a list of
all issues (Figure 5) which have been created for the application. This makes it possible
to view submitted issues directly in the annotation tool, without the need to open the
web-based issue tracker. Because of the large number of specifications, the user is not
able to view each specification in the list. In order to reduce the lists’ size, OpenProposal
provides a filtering function (N). This specification filter works as follows:

17

17



1. First all running applications are stored. If a running browser is detected
(currently Internet Explorer, Firefox and Opera are supported), the application
retrieves the address of the active website.

2. Then the topmost window on the screen is determined. If the user has already
created some annotations, the filter also determines the applications which the
user has annotated.

3. Lastly, the specifications belonging to one or more applications or website
addresses which were determined in the two steps above are shown.

Figure 5: Specification list

The filtered list will be noticeable smaller than the unfiltered list and the user can see
through the specifications more easily. Additionally the users can vote for each
specification by giving a rating from one to five to express his conformance with the
specification.

4 Experiences with OpenProposal

In the course of this research OpenProposal has been evaluated in several steps. First,
usability tests were performed to ensure the usability of the annotation tool. Next, case
studies with the software development department of the company TRUMPF and a
department of the University of Karlsruhe were set up. At present, several case studies in
cooperation with small companies specialising in usability design and software
development as well as software development departments of larger companies have
been started.

18

18



4.1 Usability Test of OpenProposal

In February 2007 a first usability and user test was performed with the goal of evaluating
the current version regarding usability and user satisfaction. The results of the test would
also be used as a basis to create the next version of our OpenProposal application. The
16 test subjects consisted of students from the University of Karlsruhe and employees of
the FZI Forschungszentrum Informatik in Karlsruhe, Germany. The test was centred
around five annotation tasks the subjects had to perform on an old version of the Firefox2

browser. A short pre-test interview and a long post-test questionnaire where used to
gather information about users thoughts and expectations of the system, as well as the
degree to which these expectations where fulfilled. Test subjects where monitored by the
investigator the whole time in addition to a video and screen capture being recorded.

The results of the interviews, the observations of the investigator, an analysis of the
video recordings and the questionnaires yielded numerous proposals for enhancements,
ranging from start-up behaviour (e.g. OpenProposal used to switch to annotation mode
directly after program start, freezing the users screen in the process – this was later
changed because of empirical evidence) to interface refinements (e.g. the previous
version used a separate object list, user demand was an integrated list). But
OpenProposal also received encouraging ratings concerning ease of use and usefulness
of its annotation concept, for example when being asked if a tool for graphical creation
of proposals for software should be provided (averaging to “agree” on a five point scale
ranging from “strongly agree” to “strongly disagree”). All in all, the users rated the
software as a whole with “good” on a five point scale ranging from “very good” to “very
bad”. The enhancement proposals as well as the questionnaire results formed the basic
set of changes to be implemented in OpenProposal 2.0.

New possibilities for further studies were found as well. For example, a question during
the interview was “What advantages do you think OpenProposal would have?” to which
test subjects replied, that the creation of proposals would be faster with this application.
This assumption was tested against traditional methods, by taking the time both need for
a given task. Some of these questions were addressed in the subsequent case studies,
others required special setups or a long evaluation time and could not be answered yet.

4.2 Case Study ‘TRUMPF’

In September 2007 a second test was done at the TRUMPF Company. TRUMPF is a
high-tech company focusing on production and medical technology. The TRUMPF
Group is one of the world's leading companies in manufacturing technology, with sales
of 1.65 billion/US$ 2 billion and approximately 6500 employees. Since efficient
fabrication of high quality components is not a question of hardware alone, TRUMPF
also develops the software systems for their hardware. Usability workshops are a part of
the software development cycle at TRUMPF, and such a workshop was used to evaluate
our new OpenProposal 2.0 which was used to create proposals for the software being
tested during the workshop.

2 http://www.mozilla-europe.org/de/products/firefox/

19

19



This short case study encompassed 11 test subjects in total and was carried out over two
days. There were two groups on each day, one using OpenProposal, the other using
another interface for proposals provided by the issue tracking software used by the
TRUMPF software development department. The groups were set up so that every test
subject would be able to use both interfaces for his proposal, and at the end of each day
the subjects were given a questionnaire specific to the interface they used that day.
Besides the analysis of the questionnaires’ results, the proposals themselves were
evaluated and the developers were interviewed. Additionally, an investigator monitored
the study and wrote down comments, problems and observations he made during the
workshop.

Question OpenProposal Tracker Interface

I was able to quickly find my way in
…

Agree Agree

I often got stuck using … and had to
find a work around.

Strongly disagree Disagree

… shows too much information at
once. I found this confusing.

Strongly disagree Disagree

Proposals are easy to create and
don’t require much mental effort

Agree Agree

I made mistakes using … Disagree Disagree somewhat

Symbols and naming are easy to
understand in …

Agree somewhat Undecided /
Disagree somewhat

The structure of the interface is easy
to understand

Agree Agree

Creating proposals was unnecessarily
complex and took a long time.

Strongly Disagree Disagree

Table 1: Results of the case study ‘TRUMPF’

The results showed that OpenProposal was in general well received by the participants.
Eight questions on the questionnaire were asked twice, once for OpenProposal and once
for the tracker interface (see Table 1). The items were measured on a seven point Likert
scale with the options “strongly disagree”, “disagree”, “disagree somewhat”,
“undecided”, “agree somewhat”, “agree”, “strongly agree“. The first item, “I was able to
quickly find my way in …”, had an average rating for both systems of “agree”. The
second item “I often got stuck in … and had to find a work around” received average
ratings of “strongly disagree” for OpenProposal, which was thus a bit better than the
average of “disagree” for the tracker interface. Similarly the third item “… shows too
much information at once. I found this confusing.” also received an average of “strongly
disagree” for OpenProposal and “disagree” for the tracker. The fourth item, called
“Proposals are easy to create and don’t require much mental effort”, was again rated

20

20



“agree” for both systems. Item five, “I made mistakes using … “, was rated with
“disagree” for OpenProposal and with “disagree somewhat” for the tracker, again
OpenProposal received a slightly higher rating. The biggest difference was found at item
six “Symbols and naming are easy to understand in … “, where OpenProposal received
an average rating of “agree somewhat” and the tracker was rated between “undecided”
and “disagree somewhat”, another rating where OpenProposal comes out on top. Item
seven, “The structure of the interface is easy to understand”, received an “agree” rating
for both systems and at the last item, “Creating proposals was unnecessarily complex
and took a long time.”, OpenProposal received another slightly better rating: “strongly
disagree” as compared to “disagree”. The list of “must fix” enhancement requests was
noticeably shorter as well. The participants noted that they did not see OpenProposal as a
replacement of the existing tracker interface, but rather as an easy-to-use alternative
frontend. The software was so well received, that by now it has become an inherent part
of the usability process at TRUMPF.

4.3 Case Study ‘University of Karlsruhe’

In November 2007 a third usability and user test was launched at the IISM (Institute of
Information Systems and Management) at the University of Karlsruhe. The software
being tested was a new content management system which would be responsible for the
institutes web pages and intranet services. The test phase of the system would be at least
two weeks, and users were encouraged to transfer data from the old system to the new
during that phase and report any problems or errors they found in the process. To ease
the reporting process, OpenProposal would be provided to all users and would be
configured so proposals are directly sent to the issue tracker included in the content
management system.

In a first step, the first usability and user test was replicated with several test subjects
from IISM. This was done to evaluate, whether the new version was indeed an
improvement over the old version. The second step began with the introduction of the
new content management system as well as OpenProposal in mid of November. A time
frame of two weeks was given to the participants to get used to the new system, file bug
reports, enhancement and feature requests and transfer data. This phase of the test is still
in progress because the deadline of the introduction of the content management system
had to be rescheduled to May 2008.

Test Item Median
Feb07

Median
Nov07

p

Handling the user interface was [easy, medium, hard] medium easy 4,67 %

There are [none, some, many] functions I miss in
OpenProposal

some none 0,50 %

OpenProposal sufficiently informs me about what it
is doing at the moment [strongly agree, agree,

neutral, disagree, strongly disagree]

neutral strongly
agree

2,38 %

21

21



OpenProposal has a persistent style of handling
throughout the whole program [strongly agree, agree,

neutral, disagree, strongly disagree]

agree strongly
agree

3,71 %

Technical performance of OpenProposal was [very
good, good, neutral, bad, very bad]

neutral very
good

1,52 %

Table 2: Results of the Case Study ‘University of Karlsruhe’

Only results of the replication test are available as of now. Due to time constraints only
five test subjects could be interviewed and observed. A Mann-Whitney-U test was
performed for each question on the two sets of answers (one from February, one from
November). This statistical non-parametric test can be used to check if two samples have
equal distributions, in this case meaning that if the test yields a significant result, the sets
of answers can be considered statistically different. According to Albers et al [AKK07]
the level of significance is usually set to 5% for significant results and 1% for highly
significant results. For five of the 30 items the Mann-Whitney-U test calculated a
significant difference (p<5%), all other differences in sets of answers were not
significant (see Table 2). The first statistically different item was “Handling the user
interface was … “ with the three choices “easy”, “medium” and “hard” being possible.
While in February participants on average answered with “medium”, in November the
average answer was “easy”, the difference being statistically different with a significance
of p=4,67%. The second item was “There are … functions I miss in OpenProposal” with
the three options “none”, “some”, “many” where the first test in February had an average
result of “some” while the second test in November had an average result of “none”, the
difference being highly significant with a significance of p=0,50%. The third item was
“OpenProposal sufficiently informs me about what it is doing at the moment” with the
five options “strongly agree”, “agree”, “neutral”, “disagree” and “strongly disagree”.
The average answer in February was “neutral”, while in November the participants on
average choose “strongly agree”, the significance being p=2,38%. When being asked
about persistency of handling, “OpenProposal has a persistent style of handling
throughout the whole program” with the options “strongly agree”, “agree”, “neutral”,
“disagree”, “strongly disagree”, the participants of the first test in February answered on
average with “agree” while in November the average answer was “strongly agree”. The
difference had a significance of p=3,71%. Lastly, the item “Technical performance of
OpenProposal was …”, with the choices ranging from “very good”, “good”, “neutral”,
“bad”, “very bad”, was rated with an average of “neutral” in the first test, while the
November test had an average rating of “very good”, the significance of this difference
being p=1,52%. This shows that in all significantly different results, the new version
received better ratings than the old version and can thus be considered an improvement.

5 Possible Fields of Application of OpenProposal

OpenProposal is supposed to support the RE phase of the software development process.
During the course of the research project, it became apparent that the most promising

22

22



fields seemed to be ‘Usability Tests in Usability Workshops’, ‘Support and Maintenance
of Software’ and ‘Global Software Development’.

5.1 Usability Test of Software in Usability Workshops

OpenProposal was built with a non-intrusive integration into the users’ workflow in
mind. A field of application where this is especially helpful is that of usability
workshops. The purpose of these workshops is an evaluation of an existing piece of
software using people which correspond to the actual user as well as possible. The most
important sources of information in these workshops are the test subjects themselves,
especially their suggestions and ideas for improving the software at hand. Traditionally,
when making such a suggestion the test subject would either make a handwritten note on
a piece of paper, switch application context to write an electronic note or report their
suggestion to the investigator. The best traditional way would be the third option, since it
allows questions for clarification and refinement of the new proposal. This however
would require having close to as many investigators as there are test subjects, making
this option expensive. Having the test subject switch application context makes writing
proposals cumbersome for the subject, since he may need to switch back and forth a
number of times to write a good proposal. This can be solved when using handwritten
notes. Here however the problem arises, that these notes need to be deciphered and
converted into an electronic format. While OpenProposal cannot replace an investigator,
when time and money are an issue it is likely to perform better than both alternative
methods. The user does not have to switch context to some other application, but creates
his annotation directly inside his current context. And there are no handwritten notes
which need to be processed after the workshop improving clearness and correctness of
the resulting proposals.

5.2 Support and Maintenance of Software

When considering software support, OpenProposal allows the end user to graphically
formulate his problem – if it is referring to the user interface - and send it to support, for
example via e-mail. The support team can then quickly detect the user’s problem without
reading a long textual description of the problem. On the other hand OpenProposal can
also be used by the support team, helping to translate the user’s support request into a
graphical specification and sending it onto an Issue-Tracking platform. Similarly,
OpenProposal can be used for software maintenance, where both end users as well as
developers can file bug/error reports and improvement proposals as well as discuss the
existing proposals.

5.3 Global Software Development

Modern software products often tend to be highly complex. Their development and
production requires a lot of expertise and competence that can rarely be found in one
place, at least not with the economy necessary for a fiercely competitive, global world.
Thus, modern software production tends to be highly fragmented, geographically

23

23



distributed on a more or less global scale, where each participant is specialized in its own
core competence. The resulting “global” software products should have the same quality
at a more attractive price compared to those one would achieve at a single place. The
design, the development and the production processes for a global software development
involve new competencies in communication, collaboration, integration, and technical
and managerial control.

There are some problems in global software development, particular to communication
or information sharing. Problems like time zone difference or geographical distance
hinder successful communication. Nowadays these problems are reduced by the wide
availability of modern communication techniques like the internet.

OpenProposal supports the requirements engineering in geographically distributed
environments. The tool supports the communication between the project team, users and
customers occur in a geographically distributed way using modern communication
techniques to reduce the impact of the geographical dispersion, e.g. different time zones.
By generating requirements descriptions it supports the user in a formal and
understandable way.

6 Summary & Outlook

In this research, the concept and first evaluation of OpenProposal are presented. All the
conclusions drawn so far are based on software companies’ practical knowledge as well
as on previous related research and the results of the first case studies. Major findings of
our research are the conception of the OpenProposal methodology for acquisition and
management of user feedback in software development projects, the implementation of a
tool support and the evaluation of the elaborated concept and implementation.

Our research has shown that the OpenProposal approach can help to improve the
communication processes in software development projects. The usability tests revealed
users’ acceptance of the OpenProposal concept and the sufficiency of the functionality of
the OpenProposal annotation tool for users’ needs. In the case study ‘TRUMPF’
OpenProposal was successfully realized in a real life scenario and is still in use. In the
view of Users, Designer and Developer of TRUMPF OpenProposal performed better
than usual methods. It seems possible that this work can reveal new findings about the
way users and software developers interact and can therefore offer new opportunities for
innovative ways of collaboration in RE e.g. corresponding methods in Global Software
Development.

The evaluation also point out open issues of the OpenProposal approach. In future
studies we need to focus our research on the view of developers and deciders and
improve the management and assessment of OpenProposal annotations.

The limits of our approach are clear: It was never our goal to argue that OpenProposal is
the best and only solution. It can be only an additional methodology in users’

24

24



involvement and cannot replace interviews and usability workshops, but it can be a
reasonable supplement.

References

[AKK07] Albers, S.; Klapper, D.; Konradt, U.; Walter, A.; Wolf, J.: Methodik der empirischen
Forschung, Gabler Verlag, Wiesbaden, Germany, 2007.

[An06] Annotate Pro, http://www.annotatepro.com/, viewed on 13.06.2006.

[BH98] Beynon-Davies, P.; Holmes, S.: Integrating rapid application development and
participatory design, In: IEEE Software, Volume 145, Issue 4, pp. 105-112, 1998.

[BLR03] Bottoni, P.; Levialdi, S.; Rizzo, P.: An Analysis and Case Study of Digital Annotation.
In: Bianchi-Berthouze, N. (Eds.): Proc. 3rd International Workshop on Databases in
Networked Information Systems, Aizu-Wakamatsu, Japan, 2003, pp. 216 - 230. Lecture
Notes in Computer Science 2822, Springer, Heidelberg, Germany, 2003.

[Br04] Bruegge B.; Creighton, O.; Purvis, M.: Software Cinema, CHI Workshop on Identifying
Gaps between HCI, Software Engineering and Design, and Boundary Objects to Bridge
Them, Vienna, Austria, 2004.

[CM96] Chatzoglou, P.C.; Macaulay, L.: Requirements Capture and Analysis: A Survey of
Current Practice, Requirements Engineering, Volume 1, Issue 2, pp. 75-87, 1996.

[DESG00] Damian, D.E. H.; Eberlein, A.; Shaw, M.L.G.; Gaines, B.R.: Using different
communication media in requirements negotiation, IEEE Software Volume 17, Issue 3,
May-June, pp. 28-36, 2000.

[DND06] Danielson, K., Naghsh, A.M., Dearden, A.: Distributed Participatory Design. Extended
Abstract of the workshop for Distributed Participatory Design at conference NordiCHI’
06, 2006.

[EQM96] El Emam, K.; Quintin, S.; Madhavji, N.H.: User Participation in the Requirements
Engineering Process: An Empirical Study, Requirements Engineering, Volume 1, Issue
1, pp. 4-26, 1996.

[FFM04] Fogli, D.; Fresta, G.; Mussio, P.: On Electronic Annotation and its Implementation. In:
Proceedings of the working conference on advanced visual interfaces, Gallipoli, Italy,
pp. 98 – 102, 2004.

[HL01] Hofmann, H.F.; Lehner, F.: Requirements: Engineering as a Success Factor in Sofware
Projects, IEEE Software Volume 19, Issue 4, Regensburg, Germany, pp. 58-66, 2001.

[Ji07] JING, http://www.jingproject.com/, viewed on 03.12.2007.

[KB03] Kensing, F.; Blomberg, J: Participatory Design: Issues and Concerns. In: Kensing, F.:
Methods and Practices in Participatory Design. Copenhagen. ITU Press Copenhagen,
Denmark, pp. 365-387, 2003.

25

25



[KC95] Keil, M.; Carmel, E.: Customer-Developer Links in Software Development,
Communications if the ACM, Volume 38, Issue 5, pp. 43-51, 1995.

[KKL05] Kujala, S.; Kauppinnen, M.; Lehtola, L.; Kojo, T.: The Role of User Involvement in
Requirements Quality and Project Success, IEEE International Conference on
Requirements Engineering (RE’05), 2005.

[Ku05] Kujala, S.: User Involvement: A Review of Benefits and Challenges, Behavior &
Information Technology, Volume 22, Issue 1, pp. 1-16, 2003.

[LDP05] Li, K.; Dewar, R.G.; Pooley, R.J.: Computer-Assisted and Customer Oriented
Requirements Elicitation, Proceedings of the 13th IEEE International Conference on
Requirements Engineering, Edinburgh, UK, 2005, pp. 479- 480, 2005.

[Ma96] Macaulay, L.: Requirements for Requirements Engineering Technique, Second
International Conference on Requirements Engineering, (ICRE'96), Colorado Springs,
USA, p. 157, 1996.

[Mo03] Moore, J.M.: Communicating Requirements Using End-User GUI Constructions with
Argumentation, Proceedings of the 18th IEEE International Conference on Automated
Software Engineering ASE’03, Montreal, Canada, pp. 360 – 363, 2003.

[Mo07] MORAE, http://www.techsmith.com/morae.asp, viewed on 03.12.2007

[NJ97] Nandhakumar, J.; Jones, M.: Designing in the Dark: the Changing User-Developer
Relationship in Information Systems Development, Proc. ICIS, 1997.

[Po95] Potts, C.: Software Engineering Research Revisited, IEEE Software, Volume 10, Issue 5,
pp. 19-28, 1995.

[RS92] Reeves, B.; Shipman, F.: Supporting Communication between Designers with Atrifact-
Centred Evolving Information Spaces, Proceedings of the CSCQ ’92, Toronto, Canada,
pp. 394-401, 1992.

[SD06] Stevens, G.; Draxler, S.: Partizipation im Nutzungskontext. In: Heinecke, A.M.; Paul, H.
(Eds.): Mensch & Computer 2006. Oldenbourg Verlag, Munic, Gemany, pp. 83- 92,
2006.

[Su93] Suchmann, L.: Forword. In: Schuler, D.; Namioka, A. (Hrsg.): Participatory Design:
Principles and Practices. Lawrence Erlbaum, New York, pp. vii – ix, 1993.

26

26




