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Abstract: Computational notebooks are a form of computational narrative fostering reproducibility.
They provide an interactive computing environment where users can run and modify code and repeat
the exploration, providing an iterative communication between data scientists and code. While the
ability to execute notebooks non-linearly benefits data scientists for exploration, the drawback is that it
is possible to lose control over the datasets, variables, and methods defined in the notebook and their
dependencies. Thus, in this process of user interaction and exploration, there can be a loss of execution
history information. To prevent this, a possibility is needed to maintain provenance information.
Provenance plays a significant role in data science, especially in facilitating the reproducibility of
results. To this end, we developed a provenance management tool to help data scientists track, capture,
compare, and visualize provenance information in notebook code environments. We conducted an
evaluation with data scientists, where participants were asked to find specific provenance information
from the execution history of a machine learning Jupyter notebook. The results from the performance
and user evaluation show promising aspects of provenance management features of the tool. The
resulting system, MLProvLab, is available as an open-source extension for JupyterLab.
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1 Introduction

Data science and machine learning (ML) techniques significantly impact the scientific
community in developing relevant and practical applications for society. With the rapid
publication of results in the data science and ML field, it is increasingly important for
scientists also to be able to reproduce and recreate results. Jupyter notebook [KR+16] is one of
the adopted approaches researchers use to publish results of their data science and ML projects
to enable reproducible computational research. The notebooks are computational narratives
that data scientists widely use in multiple ways for scientific computing, exploration,
tutorials, documentation, interactive manuals, publications, etc. This is possible because
the notebooks encapsulate code and explanatory text, computational results, visualizations,
etc., in a single document. In addition to being a stand-alone tool, it is also integrated with
different data science platforms like Kaggle, Colab notebooks, etc. As a result of exploration
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and constant changes done in a data science pipeline, it is essential to understand how the
results are derived under which choices and assumptions of researchers. Provenance plays
a significant role to record and reference the history of results. This, in turn, helps data
scientists to enable reproducibility [SK21]. However, scientists do not have direct access to
the history of their frequent experimentation in these notebooks. The rapid development
of data science and ML methods and algorithms results in new releases of libraries and
modules. As a result, running old notebooks without knowing the versions of libraries and
modules can cause execution errors and incompatibility issues. Another significant barrier
is the possibility of running notebooks non-linearly. It becomes difficult to reproduce and
get the same or close-by results without understanding how each cell and the variables
defined in them are dependent on each other.
To address these issues, in this paper, we present MLProvLab as an extension to JupyterLab4,
providing provenance management for reproducibility. This tool provides significant benefits
for data scientists to track, compare, manage, and visualize provenance information of their
computational experiments written in Jupyter notebooks. We can track, at runtime, the
datasets, variables, libraries, and functions used in the notebook and their dependencies
between cells. This is also visualized as a provenance dependency graph with temporal
information. We evaluated its efficiency and features through a performance test and a user
evaluation with 15 participants using practical tasks. The study shows that these 15 data
scientists using MLProvLab for the first time correctly answered an average of 82% of the
tasks they were provided in a machine learning notebook which was totally new to them
and consisted of 55 executions.

2 Background and Related Work

Though data scientists use multiple tools and software for their computational tasks, writing
code using programming languages like Python and R is common in data science and ML.
The open-source libraries like Scikit-Learn5, PyTorch6, Numpy7, etc., provide accessible
and reusable tools for data analysis and are heavily used for data science, ML, and deep
learning applications. Jupyter notebooks that support over 40 programming languages,
including Python and R, are widely used by millions of scientists. This is clearly seen in the
availability of millions of notebooks on GitHub. Hence, in this research, we focus on the
provenance management of Jupyter notebooks, with specific attention on providing support
for the reproducibility of data science workflows.
Tools for capturing provenance from scripts and programs at different levels of granularity
have been actively developed [Da12; Mc15; Pi15]. The noWorkflow tool [Pi15] is one
such tool that captures the definition, deployment, and execution provenance of Python
scripts. With the current wide adoption of Jupyter notebooks [KR+16], research works have

4 https://jupyterlab.readthedocs.io

5 https://scikit-learn.org

6 https://pytorch.org/

7 https://numpy.org/
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also focused on tracking provenance from computational notebooks [Ca17; He19; Ho14;
KM18; KP17; Ma21; PGS18; Pi15; Sh23; SK18; Wa20; We19]. Prov-o-matic provides a
provenance-tracking extension for older versions of IPython Notebooks, which saves the
provenance traces to Linked Data file [Ho14]. Another approach to track provenance in
computational notebooks is by integrating noWorkflow [Pi15]. As a result, the features
provided by noWorkflow are available in the IPython notebooks. However, this approach
allows a python script to be run from inside IPython notebooks capturing the provenance of
scripts instead of notebooks. Systems like Verdant [Ke19] are more closely aligned with
MLProvLab. Verdant helps data scientists examine the execution history and notebook
events. However, we analyze the code and provide artifacts used in the code and the
dependencies between the cells based on the artifacts.
Recent approaches have also developed custom Jupyter kernels to trace runtime user
interactions and automatically manage the lineage of cell execution [KP17; Ma21]. In their
approach, the tool is developed as a separate Jupyter kernel, allowing users to update all cells
affected by a change in a cell. This is possible by adding unique and persistent identifiers
to each cell and providing references to results in other cells. This is different from our
approach as these approaches [KP17; Ma21] introduce changes to the kernel and requires
its installation.
Recent works have also focused on the provenance and model management of data science
and ML pipelines beyond computational notebooks. An overview of conceptual, data
management, and engineering challenges in the ML model management is given in [Sc18].
One of the data management challenges concerning the provenance management of ML is
automatically tracking and querying model metadata. Several tools have been developed as
metadata capturing systems in recent years [Or20; Va16; Za18]. ModelDB [Va16] provides
a feature to manage ML models with metadata logging of metrics, artifacts, tags, and user
information. Some systems track detailed provenance data by depending on the users to
understand their complex schema and integrate their code with the corresponding API
provided by the system [Sc17]. These provenance-capturing systems generally require
users to actively configure their code, e.g., by annotating functions, hyperparameters, and
operations. Due to the extra time and effort required, users may omit to configure and
annotate their code. Therefore, tools that automatically extract and manage metadata are
preferable to systems that require human intervention.
It is essential to provide provenance management without changing the code environment
for the user. It is also essential that such platforms provide metadata management to all their
users, irrespective of their skills and experience in data science. JupyterLab is a great basis
for such projects, as shown in other works [Ke19]. Hence, in this paper, we target the users
of JupyterLab and allow automatic provenance extraction from data science notebooks.

3 MLProvLab

Kerzel et al. [KSK21] describe the use case, challenges, and design goals of our data
science and ML provenance management tool to automatically expose the metadata. Based
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on the design goals, we present MLProvLab, a provenance management tool to track,
manage, compare, and visualize the provenance of data science notebooks. The tool is
available as an open-source extension for JupyterLab8. MLProvLab is composed of two
components. A Python backend component provides event listeners for user interactions,
an Abstract Syntax Tree (AST) generator for analyzing the code, and a core messaging
plugin to request information from the kernel and notebook panel. On the visualization
side, MLProvLab provides a Javascript frontend component that captures user interactions,
renders visualization, and generates provenance graph. The tool contains provenance capture,
visualization, comparison, and export modules.
Provenance Capture. The provenance capture module of MLProvLab collects and stores
the provenance of a user session triggered by the start of the kernel. We call the lifetime of a
kernel an epoch. For every new kernel, the provenance of epochs is created and stored in
the notebook metadata. The tool defines event listeners for different user actions like the
execution, addition, and deletion of a cell. When a code cell is executed, the cell content
is returned to the backend. The executed code is then analyzed using Abstract Syntax
Tree (AST) and string pattern matching techniques to get data provenance. We capture
information on the definition and usage of variables, functions, and classes. The import
statements are also tracked to extract information on the libraries and modules used and
their version information. Additional operations are performed to find data sources for
ML provenance management using string matching. In summary, the MLProvLab tracks
and manages every variable declared in the cell, the dependencies of variables that are
not defined in the evaluated cell, used datasets and the corresponding variables, imported
libraries, and modules, etc.
Provenance Visualization. For the provenance visualization module, the MLProvLab uses
a provenance graph to visualize the provenance of the notebook, including the execution
order of cells and the data dependencies between cells. The tool can be invoked using the
‘MLProvLab’ button in the notebook toolbar. Figure 1 shows the provenance visualization
graph of a sample ML notebook. The data sources and execution provenance are shown in
the graph. A node is created in the graph for every cell in the notebook. Edges show the
dependencies between cells using variables or methods declared in a cell. The outgoing edge
from a node indicates that a data source was defined and is used in the other corresponding
node. The colors of the nodes and edges represent their status. Cells that are colored orange
represent cells with data sources, and green represents cells with output. Cell half colored
with orange and green show that the cell contains both datasets and output. Users can
move the sliders at the bottom of the panel to see the history of the changes and runs
performed by the user. The ‘Epoch’ slider provides the history of the execution of the Jupyter
Notebook every time a new user session of the kernel is started. The ‘Execution’ slider
depicts the execution history of the Jupyter Notebook every time an event on the notebook
cell is registered. Correspondingly, the information for the execution environment, datasets,
and libraries used are shown to the user for the selected execution. The tool also shows
the number of user sessions, executions, and execution time. MLProvLab also provides a

8 https://github.com/fusion-jena/MLProvLab/
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Fig. 1: Provenance Execution Graph in MLProvLab. The notebook cells are depicted as vertices of
the graph. Green nodes in the graph show cells with any output type, orange show cells with data
source, grey shows cells where no data source or output is detected. Edges in the graph show the
dependencies between cells. The footer allows to slide the execution history of the notebook.

Fig. 2: Libraries and modules used in the notebook in the 4th epoch.
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general menu with options to customize the graph to get additional provenance information.
Figure 2 shows the Import Info menu in MLProvLab. It shows the information about the
imported libraries, the module used in the notebook, and their version information. The
libraries which are imported but not used are marked as red. To visualize the definition
provenance, users can click on a node and open a radial context menu. This gives detailed
information on the used datasets, functions, variables, outputs, etc. Users can also compare
the definition provenance from previous runs. The graph is built using Cytoscape.js9.

Fig. 3: Execution environment information of the notebook

Fig. 4: Information on the datasets used in the notebook

Figure 3 and 4 shows the information of the execution environment of the notebook and the
datasets used in the code, respectively. The execution environment of the notebook provides
information on the programming language, kernel, operating system, and the versions of
the selected epoch. Similarly, the General info provides information on the datasets used in
each execution with their variable name.
Provenance Comparison. In the provenance comparison module of MLProvLab, the
changes made to a notebook cell can be examined by users (Fig. 5). Users can select the
execution of previous ML experiments and compare it with the current execution. We use
the react-diff-view10 component to visualize the differences.
Provenance Export. The provenance export module of MLProvLab allows users to export
the collected provenance information of the notebook. Users can also clear the provenance
history. However, users are given an alert to export the provenance before removing the
provenance history from the notebook. This information is currently available in JSON
format. For semantic interoperability, we plan to make this information available in other
formats, including JSON-LD, RDF, etc.

9 https://cytoscape.org/
10 https://github.com/otakustay/react-diff-view
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Fig. 5: Code difference between 2 different epochs

4 Evaluation of MLProvLab

The primary goal of our evaluation was to gather information about how the features of
MLProvLab assist data scientists in the provenance management of Jupyter notebooks. As a
result, we conducted a performance evaluation to test how MLProvLab handles notebooks
with different numbers of cells. We also conducted a user evaluation to gather information
on the impression of MLProvLab and test how the provenance management helps them
understand the notebooks.

4.1 Performance Evaluation

We did a performance test with two different notebooks, one with 25 notebook code cells
and the other with 100 code cells. Based on the study of analyzing 1 million computational
notebooks on GitHub [RTH18], the typical number of total cells in a notebook range from
25-30. Notebook with more than 100 cells is infrequent. Hence, we selected notebooks with
25 and 100 cells. For the performance test, we used notebooks that calculate the Fibonacci
number given an input. We defined ten variables, with each calculating a Fibonacci number
for ten. These ten variables were assigned to each other and were repeated in the other cells.
This was done to get multiple dependencies between every cell. As a result, each node in
the provenance graph had ten outgoing edges to the other node.
Table 1 shows the status of the notebook run scenarios used for the evaluation. We evaluated
six notebook run scenarios with different configurations. For example, in Notebook Run
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Scenario A, the notebook with 100 cells is executed without enabling and updating the
MLProvLab extension and provenance graph. While in Scenario B, the notebook has the
same number of cells, with both MLProvLab extension and provenance graph enabled, and
in Scenario C, MLProvLab enabled but without updating the provenance graph. These
scenarios are also repeated with a notebook with 25 cells. We measured the execution time
of the notebook in each scenario. Table 2 shows the results from the performance test for
each notebook scenario. Each notebook is tested with different numbers of epochs (1, 2, 3,
4, 5, 10, and 20). The execution time in seconds for each notebook run scenario for each
epoch count is shown.

Notebook Run Sce-
nario

Count of code cells MLProvLab enabled Provenance Graph
Updated

A 100 no no
B 100 yes yes
C 100 yes no
D 25 no no
E 25 yes yes
F 25 yes no

Tab. 1: Definition of the notebook run scenarios

Epoch Time in seconds
Notebook
Run Sce-
nario

A B C D E F

1 2.46 89.06 4.13 1.02 5.83 1.66
2 2.39 90.94 5.58 1.05 6.64 1.75
3 2.50 7.37 1.02 6.24 1.54
4 2.47 8.56 1.01 6.21 1.99
5 2.48 10.05 1.02 6.37 2.21
10 21.02 7.97 2.62
20 24.18 8.11 3.85

Tab. 2: Performance evaluation of MLProvLab

Notebook size Epochs Count of notebook code cells
12.0 KB 0 25
2.5 MB 10 25
5.0 MB 20 25
36.0 KB 0 100
9.9 MB 10 100

Tab. 3: Cell count and size of evaluation notebooks

As seen in Table 2, the execution time of the notebooks increases as the number of epochs
increases. For notebook scenario B, where there are 100 cells and both MLProvLab and
the provenance graph are enabled and updated, we can see the overhead in loading the
notebook. If one compares the runs with enabled and disabled extensions, one quickly sees
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that a constant overhead is added. It is also noticeable that the execution times increase the
more often the notebook is executed. This behavior is expected, as additional computations
must be performed in the backend. Users working with notebooks with the average number
of cells (around 25-30) are unaffected. However, working with notebooks with around 100
code cells with and without MLProvLab with multiple executions results in overhead in
time. The overhead is due to the recomputation of the graph. However, due to this limitation,
MLProvLab provides an option to disable the recalculation of the graph after every cell
execution. This can further minimize the general overhead.
Table 3 shows the statistics based on the size of the notebooks and the number of execution.
As expected, the size of the provenance information increases with the number of executions
and code cell count. Currently, the captured provenance information is stored in the
metadata of the notebook. This is located in a JSON object that has to be rewritten to
disk after each update. Notebook containing the provenance information benefits users to
share their intermediate and negative results, their choices and assumptions made during
experimentation, etc. Currently, MLProvLab allows users to export the collected provenance
data and then remove the provenance information if the notebook size gets too large. We
plan to provide users an option to efficiently store the data, e.g., in SQLite database outside
of JupyterLab.

4.2 User Evaluation

We present the materials and methods used and the results of the user evaluation conducted
to get the impression of MLProvLab.
Participants. We used convenience sampling for the recruitment of participants. Partici-
pation in the user evaluation was voluntary. Forty participants responded to the survey, of
which 36 agreed to the consent form and filled in their research background. However, only
15 participants finished the user evaluation and submitted their responses. We believe that
this was due to the relative long time (around 25 minutes) needed to complete the tasks.
Participants who read and agreed to the informed consent form and submitted their full
responses were included in the final study. Of 15 participants, 14 have a computer science
background, and 1 has physics. Seven undergraduate students, 2 Master students, 4 PhD
Students, 1 PostDoc, and 1 Professor participated in the user evaluation.
Materials. We explored many publicly available data science notebooks to create a realistic
provenance history for the experimentation. We also selected the evaluation notebook,
which is not difficult for the participants to understand in minimum time. We used the
Digit Recognizer problem from Kaggle, which uses the MNIST dataset11. We adapted the
code and the resulting notebook contained 19 code cells with the provenance information
collected from 4 epochs and 55 executions.
The questionnaire for the user evaluation was designed and developed using the following
resources: (1) interviews conducted with the data scientists [SLK21] in the Werkstatt project

11 https://www.kaggle.com/c/digit-recognizer
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[Sa20] and (2) existing published literature on computational research reproducibility [Pi20].
The interviews and the existing literature provided insights into the challenges and problems
faced by scientists and the provenance information required in reproducing published results
of others in the context of data science and ML. The questionnaire was developed in English.
A group of three researchers from computer science provided feedback on the length of the
questionnaire, the priority and clarity of the defined questions, and technical issues in filling
out the questionnaire. Based on the feedback, changes were made to the final version of the
questionnaire.
The evaluation consisted of 26 questions grouped in 6 sections. The six sections are (1)
Informed Consent Form (2) Research context of the participant (3) Testing MLProvLab
with evaluation notebook (4) MLProvLab Introduction (5) Questions for Evaluation (6)
General Impressions of MLProvLab. In the first section, we asked the consent from the
respondents to participate in the evaluation. The informed consent form contained informa-
tion about the study’s background, purpose, procedure, voluntary participation, and contact
information. Other than the informed consent form, none of the questions in the evaluation
were mandatory.
In the second section, we asked about the research background of the participants. In
addition to their current domain and position, we asked the participants whether they use
Juypter Notebooks and machine learning in their work. In the third section, we asked the
participants to open the evaluation notebook and in the following section, we introduced
MLProvLab. We provided a short tour showing its features and how they worked. This
help page included screenshots and annotations of each feature provided by the tool. In
the fifth section, we provided the questions to answer based on the evaluation notebook
using MLProvLab. This section included 13 questions. Some of the questions were either
single-choice or multiple-choice questions. Here is a list of the questions:

Q1 Which version of the kernel was used in epoch ‘1’?

Q2 Which external modules were used in epoch ‘1’?

Q3 Are there any imported modules that were not used in epoch ‘3’?

Q4 Which one was the most used module in epoch ‘3’?

Q5 Which data sources were used in the notebook?

Q6 In which execution and epoch the following figure got printed?

Q7 Which version of seaborn was used?

Q8 Which versions of python were used in the notebook?

Q9 When was the notebook last executed?

Q10 Are there any differences in the python and kernel versions used in the notebook in
different executions?
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Q11 Which cells of the notebook in epoch ‘4’ are dependent on the variable ‘X_train’?

Q12 What is the accuracy score of the experiment in epoch ‘2’ when RandomForestClas-
sifier was used?

Q13 Has the train-test split ratio for the dataset changed during different executions?

In the last section, we asked the participants about their general impression of MLProvLab.
In the first question, we asked how important is each MLProvLab module for the provenance
management of computational experiments. We used a 5-point Likert scale for the answer
options from Very Easy to Very Difficult. We also asked how easy it is to find provenance
information on data science scripts using MLProvLab. In the next question, we asked the
users to rate the perceived usefulness of MLProvLab. We asked whether they would like to
use MLProvLab in their daily work. In the end, we provided an open-response question to
participants to provide comments regarding the new features or changes they would like
to see in MLProvLab. The average time taken to answer the evaluation questions in the
notebook was 8 minutes. However, the average interview time, including the MLProvLab
tour, was 28 min. The extra loading time of the Binder instance and the tour of MLProvLab
could be some reasons for the long interview time.
The online evaluation was implemented using LimeSurvey12. The evaluation notebook
is available in GitHub and was hosted using Binder13. Binder allows users to open the
notebook with its execution environment, making the code and the extension (in this case,
MLProvLab) available to everyone. We used a Jupyter notebook with Python version 3
to analyze the evaluation results. The source code and the results are available in GitHub
repository14.
Methods. We sent invitations for participation to the PhD, Master, and Bachelor students in
the Fusion group of the Computer Science Department of the University of Jena, Germany,
and the Werkstatt project’s collaborating partners.
Results. Of 15 participants, 80% use Jupyter notebooks regularly or sometimes in their
work. 66.67% of participants use Machine Learning regularly or sometimes in their work.
Analyzing the results from the evaluation tasks of the notebooks, we see that 82% of answers
to each question were correct, while 18% of answers were wrong. Three participants
answered all the questions correctly. Eleven participants answered more than 60% of the
questions correctly. However, the one participant who scored 46% did not attempt four
questions and partially answered three correctly. For multiple-choice questions, we mark
the answer correct only if the participants select all the right options. We observe that the
multiple-choice questions were answered incorrectly, in particularly for Question Q11, where
seven participants gave the wrong answer. Questions Q1 and Q8 were answered correctly
by every participants, followed by Questions Q3, Q7, Q10 and Q12. For Question Q11,
none of the persons selected the wrong option, but all the correct options were not marked.

12 https://www.limesurvey.org/

13 https://mybinder.org/v2/gh/fusion-jena/MLProvLab/HEAD?urlpath=lab%2Ftree%2Fbinder%

2Fevaluation_notebook.ipynb

14 https://github.com/fusion-jena/MLProvLab

MLProvLab: Provenance Management for Data Science Notebooks 975

https://www.limesurvey.org/
https://mybinder.org/v2/gh/fusion-jena/MLProvLab/HEAD?urlpath=lab%2Ftree%2Fbinder%2Fevaluation_notebook.ipynb
https://mybinder.org/v2/gh/fusion-jena/MLProvLab/HEAD?urlpath=lab%2Ftree%2Fbinder%2Fevaluation_notebook.ipynb
https://github.com/fusion-jena/MLProvLab


12 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

The majority of the questions were answered correctly, which matches the impression given

Fig. 6: Ease of finding provenance information of data science scripts using MLProvLab

by the users as shown in Figure 6. Finding the inputs and outputs of previous executions,
the datasets and modules used, dependencies between cells, execution environment, and
temporal aspects of notebook execution are either very easy or easy to find using MLProvLab
(Figure 6). We did not provide any questions/tasks related to deleted cells; hence, we see
that some participants were not aware of this feature of MLProvLab and chose the difficult
option. Figure 7 shows the perceived usefulness and importance of MLProvLab modules.

Fig. 7: Perceived usefulness and importance of MLProvLab and its modules for provenance management

Most of them marked that it was easy to use and navigate. Everyone agreed that the system
is important for the provenance and metadata management of notebooks. Execution graph,
Input-Output Difference, and Code Information are considered very important for users.
The export information module was not considered important in the survey. We believe
that this is because there were no tasks involving the export module. We received general
comments from 11 participants for the open-response questions. The majority of them
provided positive feedback. Some of the improvements provided by the participants include
renaming the tabs to more meaningful names, rearranging tabs, creating a user option to
directly input the epoch and execution number near the slider, and adding more general
details in the Help tab as some features are not self-explanatory, and graph visualization not

976 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel



MLProvLab: Provenance Management for Data Science Notebooks 13

following temporal order. Some suggested improvements are taken care of and implemented
after the evaluation.
Limitations.
This study was exploratory, and the sample needs to be more diverse to generalize the
findings. Most of the participants have a computer science background. We expected more
participation from other areas of study. Five participants from fields other than computer
science did not complete the study. However, only 1 of these five respondents uses Jupyter
Notebooks and Machine Learning in their work. This could be one of the reasons for not
participating in the user evaluation. Our primary users are data scientists who use and have
used Jupyter Notebooks. Most of the participants are students, but also other academic
grades are represented. We also see many participants who do not use ML in their work.
As a result, we also got opinions from users with and without experience in the domain.
However, we have observed that each such participant has answered nine and more questions
using MLProvLab.

5 Conclusions and Future Work

We presented MLProvLab for the provenance management of data science notebooks. It
is an extension of JupyterLab, to track, manage, compare, and visualize the provenance
of notebooks. Through MLProvLab, users can efficiently and automatically track the
provenance metadata, including datasets and modules used. We provide users the facility
to compare different runs of computational experiments, thereby ensuring a way to help
them make their decisions. The tool helps data scientists to collect more information
on their experimentation and interact with them. It is designed so that the users do not
need to change their scripts or configure them with additional annotations. In our future
work, we aim to extend MLProvLab to identify the relationships between data and models
for ML automatically. We want to track further the datasets and columns that have been
used to derive the features of an ML model. This will help data scientists to get more
information on the configurations used, e.g., hyperparameters, ML methods, etc. We also
plan to provide interoperability by providing semantic annotations and descriptions of the
collected fine-grained provenance information. We plan to use this provenance information
to replay and rerun a notebook.
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