
Investigating Next Steps in Static API-Misuse Detection

Sven Amann1, Hoan Anh Nguyen2, Sarah Nadi3, Tien N. Nguyen4, Mira Mezini5

Keywords: API Misuse, Constraint Mining, Machine Learning, Bug Detection

Incorrect usages of an Application Programming Interface (API), or API misuses, are
violations of (implicit) usage constraints of the API. An example of a usage constraint is
having to check that hasNext() returns true before calling next() on an Iterator, in order to
avoid a NoSuchElementException at runtime. API misuse is a prevalent cause of software bugs,
crashes, and vulnerabilities [Na16, Am16].

To mitigate API misuse, researchers have proposed several API-misuse detectors [WZ11,
MM13, Ng15]. These detectors analyze API usages, i.e., code snippets that use a given
API. The detectors commonly mine usage patterns, i.e., equivalent API usages that occur
frequently, and then report deviations from these patterns as potential misuses. Unfortunately,
the reported precision of such detectors is typically low and a recent study [Am18] showed
that their recall is also very low. Thus, we need better detectors to address the still-prevalent
problem of API misuse [Le16, Ac16].

Previous work identiĄed individual as well as common strengths and weaknesses of existing
detectors [Am18] in an empirical study using the open-source benchmark MuBench [MU17].
In this paper, we investigate whether addressing the reported weaknesses indeed leads to
better performance in practice. Therefore, we design a new misuse detector, MuDetect.
MuDetect encodes API usages as API-Usage Graphs (AUGs), a comprehensive usage
representation that captures different types of API misuses. MuDetect employs a greedy,
frequent-subgraph-mining algorithm to mine patterns and a specialized graph-matching
strategy to identify pattern violations. Both components consider code semantics to improve
the overall detection capabilities. On top, MuDetect uses an empirically optimized ranking
strategy to effectively rank true positives. While previous detectors mostly target a per-project
setting [Am18], MuDetect also works in a cross-project setting, where it mines thousands
of usage examples from third-party projects.

We assess the precision and recall of MuDetect and show that it outperforms the four state-of-
the-art detectors evaluated in prior work [Am18]. In our evaluation, we extended MuBench

1 CQSE GmbH, Centa-Hafenbrädl-Straße 59, 81249 München, Germany, amann@cqse.eu
2 Amazon Research, hoan@iastate.edu
3 University of Alberta, 4-41 Athabasca Hall, Canada, nadi@ualberta.ca
4 The University of Texas at Dallas, 800 W. Campbell Road, ECSS 4.229 Richardson, TX 75080-3021, USA,

tien.n.nguyen@utdallas.edu
5 Technische Universität Darmstadt, Hochschulstraße 10, 64289 Darmstadt, mezini@cs.tu-darmstadt.de

cba doi:10.18420/SE2020_32

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 109

https://creativecommons.org/licenses/by-sa/4.0/
mailto:amann@cqse.eu
mailto:hoan@iastate.edu
mailto:nadi@ualberta.ca
mailto:tien.n.nguyen@utdallas.edu
mailto:mezini@cs.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_32


by 107 real-world misuses identiĄed in a recent study on run-time veriĄcation [Le16]Ůmore
than doubling its sizeŮto ensure that our design decisions generalize. We show that, in a
setting with perfect training data, MuDetect achieves a recall of 72.5%, which is 20.3%
higher than the next best detector and over 50% higher than the other detectors. In the
typical per-project setting, MuDetect achieves recall of 20.9%, which is 10.2% better than
the second-best detector, and precision of 21.9%, which is 13.1% better than the second-
best detector. In a cross-project setting, MuDetectŠs recall and precision again improve
signiĄcantly to 42.2% and 33.0%, respectively. Throughout the experiments, MuDetect

identiĄed 27 previously unknown misuses, which we reported in eight pull requests (PRs).
To date, three of the PRs got accepted, demonstrating that MuDetect identiĄes actual issues
in current software projects.

We publish our MuBench extension, MuDetectŠs implementation, and all experiment data,
tooling, and results [Ar19].

Bibliography

[Ac16] Acar, Yasemin; Backes, Michael; Fahl, Sascha; Kim, Doowon; Mazurek, Michelle L.;
Stransky, Christian: You Get Where YouŠre Looking For. The Impact of Information Sources
on Code Security. In: Proceedings of the 37th IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 2016.

[Am16] Amann, Sven; Nadi, Sarah; Nguyen, Hoan A.; Nguyen, Tien N.; Mezini, Mira: MUBench:
A Benchmark for API-Misuse Detectors. In: Proceedings of the 13th Working Conference
on Mining Software Repositories. MSR Š16. ACM Press, 2016.

[Am18] Amann, Sven; Nguyen, Hoan A.; Nadi, Sarah; Nguyen, Tien N.; Mezini, Mira: A Systematic
Evaluation of Static API-Misuse Detectors. IEEE Transactions on Software Engineering,
2018.

[Ar19] Artifacts: , http://www.st.informatik.tu-darmstadt.de/artifacts/mudetect/, 2019.

[Le16] Legunsen, Owolabi; Hassan, Wajih Ul; Xu, Xinyue; Roşu, Grigore; Marinov, Darko:
How Good Are the Specs? A Study of the Bug-Ąnding Effectiveness of Existing Java
API SpeciĄcations. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ASE Š16. ACM Press, pp. 602Ű613, 2016.

[MM13] Monperrus, Martin; Mezini, Mira: Detecting Missing Method Calls as Violations of the
Majority Rule. ACM Transactions on Software Engineering and Methodology, 22(1):1Ű25,
2013.

[MU17] MUBench: , https://github.com/stg-tud/MUBench/, 2017.

[Na16] Nadi, Sarah; Krüger, Stefan; Mezini, Mira; Bodden, Eric: "Jumping Through Hoops": Why
do Developers Struggle with Cryptography APIs? In: Proceedings of the 38th International
Conference on Software Engineering. ICSEŠ16. ACM Press, 2016.

[Ng15] Nguyen, T. T.; Pham, H. V.; Vu, P. M.; Nguyen, T. T.: Recommending API Usages for Mobile
Apps with Hidden Markov Model. In: Proceedings of the 30th ACM/IEEE International
Conference on Automated Software Engineering. ASE Š15. IEEE Computer Society Press,
pp. 795Ű800, 2015.

[WZ11] Wasylkowski, Andrzej; Zeller, Andreas: Mining Temporal SpeciĄcations from Object Usage.
Automated Software Engineering, 18(3-4):263Ű292, 2011.

110 Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, Mira Mezini


