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Abstract 

With the advent of various video game consoles and tablet devices gesture recognition got quite popu-
lar to control computer systems. E.g. touch screens allow for an intuitive control of small 2d user inter-
faces with finger gestures. For interactive manipulation of 3d objects in a large 3d projection environ-
ment a similar intuitive 3d interaction method is required. In this paper, we present a dynamic 3d hand 
and arm gesture recognition system using commodity hardware. The input data is captured with low 
cost depth sensors (e.g. Microsoft Kinect) and HD color sensors (e.g. Logitech C910). Our method 
combines dynamic hand and arm gesture recognition based on the depth sensor with static hand gesture 
recognition based on the HD color sensor. 

1 Introduction 

User interfaces have changed a lot in recent years. Especially touch based interaction has 
become a common method to operate mobile phones and tablet PCs. However, touch screens 
have several problems. The finger touch leaves fingerprints on the screen, some on-screen 
content is occluded by the fingers, and for large displays (e.g. display size 2 × 3 meters) 
some display regions might be inaccessible. For 3d applications the biggest disadvantage is 
the limitation to two dimensions. Here, 3d gesture tracking allows a much more direct inter-
action with 3d objects. For a large stereoscopic projector system for 3d visualizations current 
interaction metaphors like mouse, keyboard, or Wii Remote are either unfeasible or cumber-
some to use. A direct 3d gesture interaction for this system is much more convenient. 

With the Microsoft Kinect a low cost 3d camera is available to capture data at interactive 
frame rates. However, its resolution is rather low at large distances. Thus, a large 3d interac-
tion system should be based on several Microsoft Kinect devices and web-cams to increase 
the size of the operating space and the resolution. 
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2 Related work 

Camera based 2d hand gesture recognition is used in human computer interaction (Sánchez-
Nielsen et al., 2004) and robotics (Ghobadi et al., 2008). The silhouette of the hands is recon-
structed and matched to a gesture database. 

Interaction devices in virtual reality systems often use 3d hand gesture recognition. Wands 
are hand held devices using position tracking, rotation tracking, and buttons to interact with 
3d objects (Wormell and Foxlin, 2003). More complex gestures are possible with gloves that 
also measure the movement of the fingers (Sturman and Zeltzer, 1994). 

Time of flight cameras are used for motion capturing applications. Body parts are recon-
structed from the depth data (Malassiotis et al., 2002; Plagemann et al., 2010) and their mo-
tion is tracked over time (Ganapathi et al., 2010). Hybrid approaches use intensity and depth 
information from time of flight cameras to achieve the recognition of static 3d hand gestures 
(Ghobadi et al., 2007, 2008). The depth information is used to create a silhouette that is re-
fined using an intensity or color image. 

The depth quality of the Microsoft Kinect camera is not as good, as that of expensive time of 
flight cameras. Its main application is the recognition of full body gestures in games. Mi-
crosoft uses a per-pixel classification approach that needs huge amounts of training datasets 
(Shotton et al., 2011). Because of the popularity in research, several frameworks were creat-
ed to simplify the use of the Kinect for research applications (OpenNI, 2012; PrimeSense 
Inc., 2010). For our work we use these frameworks. 

3 Sensor fusion 

With a single Kinect it is not possible to recognize hand gestures over more than one meter 
distance. The resolution and the quality of the depth sensor are too low. Thus, for hand ges-
ture recognition an additional sensor is necessary. We use a web-cam with a resolution of 
1920 × 1080 pixels. At this resolution it is possible to recognize hand gestures over a dis-
tance of several meters. However, locating a hand in an image at this resolution is computa-
tionally expensive. Therefore, the Kinect is used to locate and track the hand. The Kinect and 
the web-cam are positioned at approximately the same angle. So, both sensors capture ap-
proximately the same spatial region resulting in similar images. Position and distance of the 
hand are extracted from the data of the Kinect and the size of the hand is estimated. Based on 
this information, an image region containing the hand is determined. This image region in 
the high resolution image is then used for the hand gesture recognition. These gestures are 
relatively slow, so no time synchronization of the cameras is necessary. 

For this approach the Kinect and the web-cam have to be calibrated to minimize the size of 
the image region containing the hand. Minimizing the size of this image region speeds up the 
subsequent stages of the hand gesture recognition. Thus, the performance of the system de-
pends on the calibration of the Kinect and the web-cam. 
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For this calibration we use the calibration of the depth sensor of the Kinect with its color 
sensor. Then, the color sensor of the Kinect is calibrated with the color sensor of the web-
cam using standard calibration methods (OpenCV, 2011): First, identify two calibration 
objects in both images by their color and, second, determine the translational and scaling 
differences from the center points if these two objects in both images. 

                         

 

Figure 1: The common global coordinate system in a system of two Kinects. The white rectangles are the image 

regions for the hand gesture recognition using the HD color sensors. 

4 Multiple sensor units 

A gesture control system usually uses one depth sensor to detect persons. This sensor is 
placed in front of the user and as close to the virtual interaction surface as possible. Howev-
er, for such a system some gestures might be occluded or undetectable due to the human 
operator's posture. Thus, we use multiple Kinects from different perspectives. Because mul-
tiple Kinects interfere with each other, we place the Kinects at least three meters apart at an 
angle of approximately 90°. In such a setup the interference is almost negligible. Further-
more, the setup is chosen such that a hand can be detected by at least one Kinect. This mini-
mizes the probability of occlusions and enlarges the operating space. 

If multiple Kinects are used, their depth sensors need to be calibrated. Each Kinect provides 
3d position information relative to its own position of the body of the user. From this posi-
tion information a common global coordinate system is computed. It is generated from three 
points which must be visible simultaneously for all Kinects. For example, we used the two 
hand positions ௟ܲ and ௥ܲ and the head position ௛ܲ of the user. The ݔ-axis of the global coor-
dinate system is defined as the vector connecting the two hands 

݁௫ 	ൌ 	
௉ೝି௉೗
‖௉ೝି௉೗‖

. 

The ݖ-axis is defined as the normal of the plane spanned by ݁௫ and ௛ܲ െ ௟ܲ 

݁௭ ൌ 	
௘ೣൈ	ሺ௉೓ି	௉೗ሻ

‖௉೓ି	௉೗‖
. 

The ݕ-axis is defined to yield a right-handed system of ݁௫, ݁௬, and ݁௭ 

(a) Global coordinate system seen from the right Kinect. (b) Global coordinate system seen from the left Kinect. 
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݁௬ ൌ 	 ݁௭ 	ൈ 	݁௫. 

For the origin of this coordinate system we chose for symmetry reasons ௛ܲ. Figure 1 shows 
the resulting common global coordinate system. Thus, the matrix transforming global coor-
dinates to local coordinates of an individual Kinect is given by 

ܯ ൌ	ቀ
݁௫ ݁௬ ݁௭
0 0 0

				 ௛ܲ
1
ቁ. 

Note, that for the calibration the head and both hands should not be collinear. Furthermore, 
the user should look at the virtual interaction interface to define the orientation of the global 
coordinate system such that ݁௭ roughly points towards the projection screen. 

 

Figure 2: Set of static hand gestures. 

5 Hand gestures 

Typical static hand gestures are shown in Figure 2. Because the resolution of the depth sen-
sor of the Kinect is too low to separate individual fingers at more than one meter distance, 
we use the image of a high resolution web-cam for the hand gesture recognition. The Open-
NI framework (OpenNI, 2012) generates a skeleton of the tracked person. From this skeleton 
the positions of both hands are extracted. Using the hand position and depth its size can be 
computed. This information can be used to estimate a rectangular image region centered at 
the hand position containing the hand, see Figures 1 (a) and (b). 

The image region in the high resolution color image is used to detect the hand using the skin 
color in HSV color space. Because hand detection based on skin color is not robust, we used 
colored gloves. Pink or neon green gloves are easier to detect than skin color. For the detec-
tion intervals for the hue ܫ௛ ൌ 	 ሾ݄௠௜௡, ݄௠௔௫ሿ and the saturation ܫ௦ ൌ 	 ሾݏ௠௜௡,  .௠௔௫ሿ are definedݏ
Using lookup tables the color ሺ݌௛, ,௦݌ ,ߝin the image region is set to ሺ ݌ ௩ሻ of each pixel݌ ,ߝ 0ሻ 
where 

ߝ ൌ ൜
		1, ௛݌	݂݅ ∈ 	 ௦݌	and	௛ܫ ∈ 	 ௦ܫ
0, ݁ݏ݅ݓݎ݄݁ݐ݋

. 

This yields a binary image region of the hand. The value channel is ignored, because it is too 
sensitive to environmental light. To get the components and contours of the hand in the bina-
ry image region a linear-time component-labeling algorithm using contour tracing is used 
(Chang and Chen, 2003). The resulting outer contour is extracted as polygon and simplified 
with the Douglas-Peucker algorithm (Douglas and Peucker, 1973). For the gesture recogni-
tion polygon matching is used. The polygon matching is based on a distance between two 
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polygons. We tested a distance using Hu-moments (Hu, 1962) and the turning angle of a 
polygon (Arkin et al., 1991). 

5.1 Hu-moment distance 

The seven Hu-moments ݄௜ሺܣሻ, ݅ ൌ 1,… ,7, for a polygon ܣ are computed from the normal-
ized central moments ߤ௞௟, ݇, ݈ ൑ 0, of the image using Green's formula. For example the first 
Hu-moment is defined as ݄ଵሺܣሻ ൌ ଶ଴ߤ 	൅	ߤ଴ଶ. All other Hu-moments are defined similarly, 
see (Hu, 1962). They are invariant with respect to rotations, translations, and scalings. The 
distance ݀ு computed from these Hu-moments ݄௜ is defined in (OpenCV, 2011) as 

݀ுሺܣ, ሻܤ ൌ 	෍ฬ
signሺ݄௜ሺܣሻሻ
log	ሺ|݄௜ሺܣሻ|ሻ

െ
signሺ݄௜ሺܤሻሻ
log	ሺ|݄௜ሺܤሻ|ሻ

ฬ

଻

௜ୀଵ

. 

                                 

(a) Polygon.                                (b) Turning function. 

Figure 3: A polygon (a) and its turning function (b) (Arkin et al., 1991). 

5.2 Turning-angle distance 

To compute the turning-angle distance the turning function of both polygons are computed. 
The turning function ߠ஺ሺݏሻ of a polygon ܣ is defined on the arc length ݏ and yields the coun-
terclockwise tangent angle for each point on the boundary, see Figure 3. The computation 
starts at an arbitrary reference point ܱ on the boundary of ܣ (Arkin et al., 1991). The area 
between two turning functions of two polygons is the turning-angle distance ்݀ of these 
polygons. Since this area depends on the choice of the reference points ܱ and the orientation 
of the polygons, the minimum distance between the two turning functions is used 

்݀ሺܣ, ሻܤ ൌ 	 min
ఏ	∈	Թ,			௧	∈	ሾ଴,ଵሿ

ቆන ሺߠ஺ሺݏ ൅ ሻݐ െ ሻݏ஻ሺߠ ൅ ݏሻଶ݀ߠ
ଵ

଴
ቇ
ଵ ଶ⁄

. 

Note for the implementation, which ߠ஺ሺݏሻ is constant along the sides of the polygon. 

6 3d gestures 

With a system of depth and color sensors as described in Sections 3 and 4 true 3d gestures 
can be recognized: The 3d position of the hands and the hand gestures are known at any 
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time. There are two types of 3d gestures: static and dynamic gestures. Static hand gestures 
are defined by the position and posture of the hand. An example is the thumbs-up-gesture, 
see sixth gesture in Figure 2. Such a gesture can be detected from a single image. For dynam-
ic gestures also the motion of the hand and fingers matters. Thus, a set of consecutive images 
determines the gesture. An example is the waving-hand-gesture, which can only be recog-
nized if the motion is detected. 

For a 3d interaction system both types of gestures are necessary: static hand gestures to grab 
and release objects and dynamic hand gestures to transform objects. Furthermore, dynamic 
gestures need a start and end point, which can be triggered by static hand gestures. To grab 
an object we use the closed-hand gesture (fourth gesture in Figure 2) and to release it the 
open-hand gesture (seventh gesture in Figure 2). As long as the hand is open no interaction is 
triggered. As long as the hand is closed the dynamic gesture recognition runs until the hand 
is opened again. Static hand gestures are detected in the high resolution image using the 
techniques described in Section 5. 

To detect dynamic gestures the difference between the current position ܲ and the previous 
position ܲ′ of a hand is computed in each frame of the depth image. This difference yields a 
translation, rotation, or scaling depending on the interaction mode. For translations the user 
grabs the object with one hand to translated it along ܶ	 ൌ 	ܲ	 െ 	ܲ′. For scalings and rotations 
the user grabs the object with both hands. This yields a difference for the left and the right 
hand or, equivalently, 

݀	 ൌ ௥ܲ 	െ	 ௟ܲ, ݀ᇱ ൌ ௥ܲ
ᇱ െ 	 ௟ܲ′. 

to scaled the object along ܵ	 ൌ 	݀ െ ݀′. For a rotation around the ݖ-axis the angle between ݀ 
and ݀′ in the ݕݔ-plane is used. Dropping the third coordinate yields ݀̅ and ݀̅′. Then the angle 
between the ݔ-axis and ݀̅, ݀̅′ are computed. The difference between these angles is the angle 
 axis-ݖ ௭ for the rotation around theߙ

௭ߙ ൌ atan2൫݀̅൯ െ atan2൫݀̅′൯,				݀̅, ݀̅′ ∈ Թଶ	. 

The rotations around the other two axes are computed similarly. 

7 Implementation and results 

For our prototype system we used two 
sensor units, each consisting of a Mi-
crosoft Kinect and a Logitech C910 
web-cam, see Figure 4. Each device 
needs its own USB host controller to 
operate at maximal bandwidth. Thus, in 
addition to two on-board USB host con-
trollers we used a PCI Express Card with 
two additional USB host controllers. This 
yields a resolution of 960 × 720 pixel for 

Figure 4: Sensor unit of a Kinect and a Logitech C910 
web-cam. 
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the web-cams. The demo applications are implemented and tested with 8GB memory and an 
Intel i7-2600K CPU.  

 

Figure 5: Demo application to compare distances of hand gestures showing the database of clean gesture proto-

types. The color visualizes the polygon distance to a test gesture (white background), where background shades 

represent small, medium and large distances. 

7.1 Hand gestures 

To test the matching algorithms for hand gesture recognition we generated a database of 120 
polygons representing eleven different gestures. The gesture polygons in this database are 
manually enhanced to ensure clean gesture prototypes. A second test database contains 144 
unedited gesture polygons from three different persons using all eleven gestures. Figure 5 
shows the GUI of the demo application to manage these databases and visualize distances 
between hand gestures. 

                                                           

(a) Pointing-forefinger gesture.  (b) Thumbs-up gesture.           (c) Overlay of both gestures. 

Figure 6: The gestures in (a) and (b) are difficult to distinguish. The white area in (c) is the intersection of both 

polygons and the gray area is the difference of both polygons. 

The polygon matching algorithm using the turning-angle distance identifies 85% of the test 
polygons. The polygon matching algorithm using the Hu-moments identifies only 58%. Our 
tests show that the turning-angle distance is better suited for static hand gesture recognition. 
However, it is computationally more expensive, because most of the computations for the 
Hu-moment distance can be done a priori when the gesture database is loaded. 
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Hand gestures with similar polygons like the pointing-forefinger gesture (fifth gesture in 
Figure 2) and the thumbs-up gesture are difficult to distinguish for both distances, Figure 6. 

Using the Logitech C910 web-cam we experienced a problem if the hand is in front of a dark 
background, because dark image regions contain large rectangular artifacts in the hue chan-
nel causing frayed hand boundaries. 

      

Figure 7: Rotation of a simple 3d scene using the demo application for 3d interaction. 

7.2 3d gestures 

For dynamic 3d gesture recognition we implemented a demo application, see Figure 7. At the 
bottom of the screen the depth-maps of both Kinect depth sensors are displayed. In the center 
of the screen a simple 3d scene consisting of one cube with the current color image mapped 
to its sides is displayed. This scene can be manipulated by dynamic 3d gestures. The demo 
application has four interaction modes for the two-handed manipulations: scaling and rota-
tions around the three spatial axes. The rotation is mapped to three modes for the three axes 
to simplify the interaction. A translation of the scene can be done at any time since it is con-
trolled by a one-handed gesture. The interaction modes are selected by pointing with one 
hand at specialized areas near the top of the window, not displayed in Figure 7. 

7.3 Performance 

Running our demo implementation on a computer with Intel i7 2600K processor (4 cores 
with hyper-threading) the static hand gesture recognition runs at 30 frames per second using 
one thread. The average load for the dynamic 3d gesture recognition is below 10%. So, most 
resources of the system are still available while using this input method. The complete inter-
action system has been tested by ten volunteers. Each volunteer had at first significant prob-
lems with the 3d control. However, after a short training of one to two minutes all volunteers 
got used to the 3d control and achieved their goals quickly and intuitively.  

We experienced no problems due to misclassifications of gestures. However, there were 
contradicting classifications in some frames, due to the even number of sensor units used. 
We detected these contradicting classifications in the log of the system. These contradicting 
classifications did not jam the interaction, because of the high frame rate, i.e. in subsequent 
frames these contradictions were resolved. 
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8 Conclusion and outlook 

We presented an effective real-time 3d gesture recognition system. Static hand gestures are 
used to start and stop dynamic 3d gestures. Our demo implementation allows for intuitive 
interaction with 3d objects. 

8.1 Hand gestures 

For the future we plan to avoid colored gloves using improved skin color detection or a gra-
dient based approach. For the skin color detection also patches extracted from faces, using 
face localization, to generate dynamic filters can be used (Liu et al., 2011; Tan et al., 2012). 
Using two sensor units different gestures might be recognized. For a robust decision for the 
gesture recognition additional information is necessary, e.g. a third sensor unit. 

8.2 3d gestures 

In the demo implementation the interaction mode is selected manually. Multiple static hand 
gestures could be used for a gesture based selection. Also more complex interaction modes 
will be implemented. For example a rotation around an arbitrary axis could be initialized 
using a static two hand gesture defining the axis direction through the hand positions. For 
fast gestures, a synchronization of the multiple sensor units is necessary. The OpenNI 
framework (OpenNI, 2012) plans to support that in future versions. 
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