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Abstract: Facial appearance variations due to occlusion has been one of the main challenges for
face recognition systems. To facilitate further research in this area, it is necessary and important
to have occluded face datasets collected from real-world, as synthetically generated occluded faces
cannot represent the nature of the problem. In this paper, we present the Real World Occluded Faces
(ROF) dataset, that contains faces with both upper face occlusion, due to sunglasses, and lower
face occlusion, due to masks. We propose two evaluation protocols for this dataset. Benchmark
experiments on the dataset have shown that no matter how powerful the deep face representation
models are, their performance degrades significantly when they are tested on real-world occluded
faces. It is observed that the performance drop is far less when the models are tested on synthetically
generated occluded faces. The ROF dataset and the associated evaluation protocols are publicly
available at the following link https://github.com/ekremerakin/RealWorldOccludedFaces.
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1 Introduction

With the recent advancements in deep learning and its application to computer vision prob-

lems, state-of-the-art face recognition systems have achieved excellent results on various

datasets, such as LFW [Hu08], AgeDB-30 [Mo17], and MegaFace [Ke16]. As the perfor-

mance on these well-known datasets converges, researchers started to divert their attention

towards more challenging problems. One of these challenges is recognizing occluded faces

in the wild [ZVS20]. To catalyze further research on this topic, in this paper, we present

the Real World Occluded Faces (ROF) dataset, that contains faces with both upper face

and lower face occlusions. To test the authenticity of the dataset, we participated in a

masked face recognition challenge [Bo21]. Our model, fine-tuned on real life masked im-

ages, outperformed models trained on larger, synthetically generated masked face training

sets, leading to the best performance among 16 other academic submissions [Bo21].

There have been several works that studied the effects of many different appearance vari-

ations on face recognition performance [GE16], [Ka16], [Gr18]. In this paper, we will be

addressing specifically the occlusion problem using a real-world occluded face dataset.

[GE16] used AR face dataset [MB98] that contains occluded face images collected in a

constrained environment, while [Ka16] and [Gr18] used synthetic occlusions built on top

of LFW [Hu08]. Our experiments show that real world occlusions are more challenging

than their synthetic counterparts.
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Mustafa Ekrem Erakın, Uğur Demir, Hazım Kemal Ekenel

Previous studies show that deep CNN based face recognition models trained on VGGFace

[PVZ15], faces major performance drops when confronted by sunglasses and scarves.

[GE16] reports the performance with sunglasses occlusion in the range of 30-35% on the

AR face dataset [MB98], which is a 110 identity face image dataset that is collected in a

controlled environment with cooperating subjects, a rather easy benchmark for a modern

face recognition model. Another study [Ka16] uses synthetic occlusions to test the face

recognition performance again using a VGGFace pre-trained model [PVZ15]. Occluded

face images are generated by applying black boxes on samples from the LFW dataset

[Hu08]. Different occlusion types are simulated by applying these black boxes in different

locations. The study reports 25.94% face recognition accuracy against sunglasses effect.

The main contributions of this paper can be summarized as follows: (i) We introduced an

in-the-wild occlusion dataset for face recognition, (ii) we proposed two evaluation proto-

cols and analyzed the impact of upper face and lower face occlusion on face recognition

performance, (iii) we show that real-world face occlusion poses a more challenging prob-

lem for face recognition systems. We also visualized the results and discuss the outcomes

in detail.

2 The Dataset

Real World Occluded Faces (ROF) dataset contains face images with real-life upper-face

and lower-face occlusions, due to sunglasses and face masks, respectively. The dataset

consists of 6421 neutral face images, 4627 face images with sunglasses, and 678 face

images with masks. There are 47 subjects with neutral, masked, and sunglasses images,

114 subjects with neutral and sunglasses images, while 20 subjects have only neutral and

masked images. The identities are collected from a list of celebrities and politicians. All

of the images are from real-life scenarios and contain large variations in terms of pose and

illumination. The images were downloaded from Google Image Search using the pipeline

described in VGGFace2 study [Ca18]. On average there are 50 neutral images, 30 sun-

glasses images and 15 masked images per identity.

Dataset Collection

Dataset collection is done using a modified version of the pipeline described in VGGFace2

[Ca18]. A name list consisting of public figures, i.e., politicians, celebrities, sports players,

etc., were collected. For every name in the list 100 images were downloaded for each type

of face image we are after. A reference image was extracted from the collected neutral

images for every name using the image size and face count within the image to try to get

the best possible reference. Duplicates were removed using perceptual hashing and faces

were detected and cropped from the remaining images using a combination of RetinaFace

[De19b] and MTCNN [XZ17].

Then using the reference images and a ResNet50 [He16] trained on VGGFace2 [Ca18],

face embeddings were extracted for every remaining image and compared with the sub-

ject’s respective reference image’s embedding, using cosine distance as the similarity met-

ric. For neutral images, candidate images with a similarity above 0.5 were selected while

for occluded images, the threshold was set to 0.2. Finally, filtered face images were manu-
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ally verified and stored. Overall, manual work was limited and the bottleneck was finding

the appropriate identities that would have both sunglasses and face mask images, which

proved to be a niche category. Figure 1 shows sample images from the ROF dataset.

Fig. 1: Samples of neutral, masked, and sunglasses images for the same subjects from the

ROF dataset

3 Deep Face Models

We utilized three different deep learning architectures to examine the performance degra-

dation when encountered with facial occlusions, namely ArcFace [De19a], VGGFace2

[Ca18], and MobilFaceNet [Ch18].

ArcFace [De19a] is a state-of-the-art face recognition model that achieved excellent per-

formance on various face recognition datasets, such as LFW [Hu08], AgeDB-30 [Mo17],

and MegaFace [Ke16]. ArcFace is trained on MS1MV2 [De19a], which is a revised version

of the MS-Celeb-1M dataset [Gu16]. MS1MV2 contains 85,000 identities and 5.8 million

images. In this work, we used three different ArcFace architectures to represent various

model complexities. Different Arcface architectures are denoted as Arcface-N which cor-

responds to a ResNet-N model pre-trained on MS1MV2 dataset.

VGGFace2 is a large-scale dataset containing 9131 identities and 3.3 million samples.

Researchers used the dataset to train deep learning models, and it was one of the state-of-

the-arts. We used their ResNet-50 pre-trained model throughout our experiments [Ca18].

Since ArcFace and VGGFace2 mainly use ResNet as the backbone architecture, their

model complexities are not suitable for mobile devices. Therefore, we tested the model

also on MobilFaceNet [Ch18] to analyze the performance degradation of a smaller model.

MobilFaceNet used in this work is trained on the MS1MV2 dataset [De19a].

Throughout our experiments, we employed 512-dimensional feature embeddings. For dis-

tance metrics, Euclidean distance is utilized for ArcFace and MobilFaceNet, and cosine

similarity is used for VGGFace2. ArcFace and MobilFaceNet pre-trained models are adopted
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from the Insightface repository2. VGGFace2 pre-trained model is adopted from the veri-

fied VGGFace2 repository.

4 Experimental Setup

In this section, we present the experimental setups to evaluate the occlusion robustness of

the deep face recognition methods. We also analyze and compare the differences between

the effects of synthetically crafted and real-world occluded face images. We present two

experiment protocols. The first protocol investigates the effects of upper face occlusions,

while the second one assesses the performance against lower face occlusions. Both proto-

cols also probe with synthetic occlusions and compare the results with the ones obtained

on the real world occluded samples. The image and identity counts across protocols are

given in Table 1.

Protocol Identities Gallery Synthetic Probe Sunglasses Masked

1 161 483 5322 4627 -

2 67 199 1800 - 464

Tab. 1: Total number of identities and images for each protocol

(a) Neutral Image (b) Wearing Sun-

glasses

(c) Wearing Mask

(d) Upper-face Oc-

clusion

(e) Lower-face Oc-

clusion

(f) Synthetic Mask

Fig. 2: a) Non-occluded face image, b) Upper face occlusion due to wearing sunglasses,

c) Lower face occlusion due to wearing a mask, c) Synthetic upper face occlusion, d)

Synthetic lower face occlusion, e) Synthetic mask generation for lower face occlusion

For data preprocessing, CosFace [Wa18] and SphereFace [Li17] papers are followed. First,

the bounding box and five facial landmarks, namely, eyes, nose, and mouth corners, are

obtained using MTCNN [Zh16]. Afterwards, similarity transform is applied to images for

face normalization. Then, images are cropped and resized to 112×112.

For testing against upper-face occlusions, we used the ROF sunglasses dataset in the first

protocol. We also generated synthetic fixed upper-face occlusions that cover the eye region.

Real sunglasses and synthetic occlusions can be seen in Figure 2b and 2d, respectively.

2 https://github.com/deepinsight/insightface
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In the second protocol, for lower-face occlusions we used the ROF mask dataset. Synthetic

lower face occlusions are generated by fixing the nose and mouth area and using the mask

generator [AR20] published in a recent study. Samples from real and synthetic lower face

occlusions can be seen in Figure 2c and 2f, respectively.

5 Experimental Results and Discussion

In this section we present the experimental results. We performed both face identification

and verification experiments and assessed the effect of occlusion in both scenarios.

5.1 Impact of Occlusions on Face Identification

Protocol 1: The experimental results are presented in Table 2 for all used deep face mod-

els. Each row corresponds to the obtained correct classification rates on a specific probe

set. Samples from probe sets are shown in Figure 2. All models are found to be very suc-

cessful when classifying face images that do not contain occlusion, as can be seen from the

first row. Arcface is found to be more robust compared to MobileFaceNet and VGGFace2,

when a part of the face is occluded synthetically, either by painting the corresponding re-

gion with black or generating an artificial mask. However, even Arcface’s performance

deteriorates when it is tested on real world occluded faces that contain sunglasses.

Arcface-100 Arcface-50 Arcface-34 MobilFaceNet VGGFace2

Occlusion Type Top 1 Top 1 Top 1 Top 1 Top 1

No occlusion 99.57% 99.34% 99.17% 98.89% 98.12%

Wearing sunglasses 86.60% 84.18% 83.51% 77.16% 76.83%

Upper occlusion 98.25% 95.92% 95.43% 83.13% 75.65%

Lower occlusion 98.21% 96.81% 96.64% 86.98% 88.56%

Synthetic masked 98.53% 97.16% 96.56% 89.57% 89.59%

Tab. 2: Face identification results using protocol 1 (Arcface-N denotes the ResNet archi-

tecture with N layers, for VGGFace2 ResNet50 was used)

Protocol 2: In Table 3, we present the experimental results using protocol 2. The outcomes

are similar to the ones obtained using protocol 1. The deep face models are found to be very

successful when there is no occlusion in the probe images. Arcface is found to be superior

to MobileFaceNet and VGGFace2, when a part of the face is occluded synthetically, either

by painting the corresponding region with black or generating an artificial mask. However,

again, even Arcface’s performance deteriorates when it is tested on real world occluded

faces that contain masks.

These results show that synthetically generated occlusions do not reflect the nature of the

real-world occlusions. One reason could be due to the fact that the synthetic occlusions

contain the same texture and covers the same regions across different faces. However, real

world occlusions contain different textures and cover different parts of the faces depending

on the style of the sunglasses or the type of the mask and the way the person wears it.

To analyze the results further, we also visualized the regions that the deep face model fo-

cuses using Grad-CAM method [Se19]. The obtained results are illustrated in Figure 3.
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As can be seen the model mainly focuses on the inner face region, where eye and nose

are contained. This is expected, since, especially, eye region is known to have a high dis-

crimination power. However, as the models learn from the data the highly discriminative

parts and focuses on these, when they are occluded they suffer from a performance loss.

Therefore, while developing an occlusion-robust deep face recognition system, this fact

has to be taken into account.

Arcface-100 Arcface-50 Arcface-34 MobilFaceNet VGGFace2

Occlusion Type Top 1 Top 1 Top 1 Top 1 Top 1

No occlusion 99.61% 99.33% 99.39% 99.06% 99.28%

Wearing mask 85.34% 76.08% 73.71% 70.04% 79.31%

Upper occlusion 98.39% 96.89% 96.67% 89.78% 89.28%

Lower occlusion 98.83% 97.67% 97.11% 92.06% 93.94%

Synthetic masked 99.00% 97.78% 97.78% 93.22% 94.83%

Tab. 3: Face identification results using protocol 2

(a) Neutral Image (b) Wearing Sun-

glasses

(c) Wearing Mask

(d) Upper-face Oc-

clusion

(e) Lower-face Oc-

clusion

(f) Synthetic Mask

Fig. 3: The regions that VGGFace2 targets the most during embedding extraction [Se19].

5.2 Impact of Occlusions on Face Verification

For the sake of completeness, we also run face verification experiments using the proposed

ROF dataset. The results of experiments using protocol 1 and 2 are presented in Tables 4

and 5, respectively. Similar observations can be derived from these experiments: ArcFace

is found to be more robust to synthetic occlusions. The EER increases significantly when

the models are tested on real world occluded faces.

6 Conclusion

In this study, we present a real-world occluded face dataset and explore the effects of oc-

clusion on the state-of-the-art face recognition methods’ performance. We have shown that
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Arcface-100 Arcface-50 Arcface-34 MobilFaceNet VGGFace2

Occlusion Type EER EER EER EER EER

No occlusion 0.011 0.014 0.014 0.021 0.017

Wearing sunglasses 0.088 0.091 0.095 0.106 0.096

Upper occlusion 0.024 0.036 0.041 0.073 0.076

Lower occlusion 0.021 0.028 0.033 0.054 0.053

Synthetic masked 0.025 0.033 0.036 0.068 0.059

Tab. 4: Face verification results using protocol 1

Arcface-100 Arcface-50 Arcface-34 MobilFaceNet VGGFace2

Occlusion Type EER EER EER EER EER

No occlusion 0.013 0.019 0.021 0.024 0.017

Wearing mask 0.083 0.119 0.119 0.119 0.082

Upper occlusion 0.031 0.035 0.043 0.067 0.058

Lower occlusion 0.019 0.036 0.038 0.054 0.045

Synthetic masked 0.028 0.036 0.043 0.074 0.049

Tab. 5: Face verification results using protocol 2

synthetically generated occlusions do not reflect the nature of the real-world occlusions.

We have observed significant performance drops when deep face models are tested on real

world occluded faces that contain masks or sunglasses. Visualization of the results indicate

that the deep face models mainly focus on the inner face region. Therefore, the models ex-

perience a performance loss, when this region is occluded. For our future work, we aim to

expand the collected dataset and develop an occlusion-robust deep face recognition system

by benefiting from the findings of this work.
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