
On Automated N-way Program Merging for Facilitating
Family-based Analyses of Variant-rich Software

Dennis Reuling1, Udo Kelter1, Johannes Bürdek2, Malte Lochau2

Abstract: In this work, we report about research results initially published in ACM Transactions
on Software Engineering and Methodology (TOSEM), volume 28 Issue 3, 2019 [Re19]. Nowadays
software comes in many different, yet similar variants, often derived from common code via clone-and-
own. Family-based-analysis strategies show promising potentials for improving efficiency of quality
assurance for variant-rich programs, as compared to variant-by-variant approaches. Unfortunately,
these strategies require one superimposed program representation containing all program variants
in a syntactically well-formed, semantically sound, and variant-preserving manner, which is hard
to obtain manually in practice. In this talk, we present our methodology SiMPOSE for generating
superimpositions of program variants to facilitate family-based analyses of variant-rich software. We
utilize a novel N-way model-merging methodology for control-Ćow automaton (CFA) representations
of C programs, an abstraction used by many recent software-analysis tools. To cope with the complexity
of N-way merging, we use similarity-propagation to reduce the number of N-way matches and enable
incremental merging of arbitrary subsets of variants. We apply our SiMPOSE tool to realistic C
programs and investigate applicability and efficiency/effectiveness trade-offs of family-based program
analyses. Our results reveal efficiency improvements by a factor of up to 2.6 for unit-test generation
and 2.4 for model-checking under stable effectiveness, as compared to variant-by-variant.

Keywords: Program Merging, Model Matching, Variability Encoding, Quality Assurance

1 Summary

Software-product-line engineering is a comprehensive methodology to cope with the
inherent complexity of variant-rich software, by making explicit common and variable parts
in a family of program variants. Product-line engineering facilitates systematic reuse of code
fragments among variants to increase productivity and quality of software development, as
compared to variant-by-variant or clone-and-own approaches. Novel techniques for also
lifting quality-assurance techniques (e.g., unit testing and model-checking) to variant-rich
software pursue so-called family-based analysis strategies [Th14]. The goal is to analyze all
program variants in a single run, instead of considering every variant separately one after
the other. However, these techniques often require a (virtual) integration of all program
variants into one superimposed representation satisfying several requirements: it has to be a)

1 University of Siegen, Software Engineering Group, Siegen, Germany, dreuling@informatik.uni-siegen.de,
kelter@informatik.uni-siegen.de

2 TU Darmstadt, Real-time Systems Lab, Darmstadt, Germany, malte.lochau@es.tu-darmstadt.de, johannes.
buerdek@es.tu-darmstadt.de

cba doi:10.18420/SE2020_14

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 55

https://creativecommons.org/licenses/by-sa/4.0/
mailto:dreuling@informatik.uni-siegen.de
mailto:kelter@informatik.uni-siegen.de
mailto:malte.lochau@es.tu-darmstadt.de
mailto:johannes.buerdek@es.tu-darmstadt.de
mailto:johannes.buerdek@es.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_14


syntactically well-formed, b) semantically sound (e.g., its functionality corresponds to the
union of functionality of all variants), c) variant-preserving (e.g., meta-data for tracing back
to program variants) and d) sufficiently succinct (e.g., all parts shared among variants are
identiĄed and integrated to maximize reuse). Most recent approaches either apply N-way
merging to superimpose N design models instead of programs, or perform purely syntactic
matching on locally restricted program fragments. The latter yields inherently imprecise (i.e.,
non-succinct or even unsound) merges as well as merge conĆicts that are not automatically
resolvable. Conversely, succinct N-way merges are, in general, not efficiently computable
due to the combinatorial explosion of the number of possible matches [RC13]. Finally,
existing approaches are either not variant-preserving, or utilize compile-time variability like
#ifdef directives which is often incompatible with family-based analyses tools.

Our novel methodology SiMPOSE allows for automatically superimpose N program
variants for enabling family-based analysis. SiMPOSE comprises a novel N-way model
merging algorithm for control-Ćow automata (CFA) representations of programs. To
cope with the complexity of N-way comparison, matching and merging of path-based
program models like CFA, our approach uses principles of similarity propagation for a
controllable trade-off between precision and computational effort. To meet requirements
a)Űd), we semantically embed variability-information as conditional CFA patterns into
the merged CFA. SiMPOSE further enables compositional merging such that N-way
program merging can be decomposed into incremental merging steps. Our SiMPOSE

tool integrates our novel technique with a tool for family-based program analysis using
the C model-checker CPAchecker. Our experiments show that SiMPOSE outperforms
state-of-the-art algorithms GNU Diffutils (diff) in terms of precision and N-way model
merging (NwM) [RC13] in terms of scalability thus constituting, on average, the best
efficiency/effectiveness trade-off between efficiency and effectiveness. The results further
reveal efficiency improvements by a factor of up to 2.6 for unit-test generation and 2.4 for
model-checking under stable effectiveness, as compared to variant-by-variant approaches.

Acknowledgments. This work was partially supported by the DFG (German Research
Foundation) within the CoMoVa project (grant nr 330452222). This work was funded by
the Hessian LOEWE initiative within the Software Factory 4.0 project.

Bibliography

[RC13] Rubin, J.; Chechik, M.: N-way Model Merging. In: Proceedings of the 2013 Joint Meeting
on Foundations of Software Engineering. 2013.

[Re19] Reuling, Dennis; Kelter, Udo; Bürdek, Johannes; Lochau, Malte: Automated N-way Program
Merging for Facilitating Family-based Analyses of Variant-rich Software. ACM Trans. Softw.
Eng. Methodol., 28(3):13:1Ű13:59, July 2019.

[Th14] Thüm, T.; Apel, S.; Kästner, C.; Schaefer, I.and Saake, G.: A ClassiĄcation and Survey of
Analysis Strategies for Software Product Lines. ACM Comput. Surv., 2014.

56 Dennis Reuling, Udo Kelter, Johannes Bürdek, Malte Lochau


