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Abstract: In this work, we report about research results initially published in ACM Transactions
on Software Engineering and Methodology (TOSEM), volume 28 Issue 3, 2019 [Re19]. Nowadays
software comes in many different, yet similar variants, often derived from common code via clone-and-
own. Family-based-analysis strategies show promising potentials for improving efficiency of quality
assurance for variant-rich programs, as compared to variant-by-variant approaches. Unfortunately,
these strategies require one superimposed program representation containing all program variants
in a syntactically well-formed, semantically sound, and variant-preserving manner, which is hard
to obtain manually in practice. In this talk, we present our methodology SiMPOSE for generating
superimpositions of program variants to facilitate family-based analyses of variant-rich software. We
utilize a novel N-way model-merging methodology for control-Ćow automaton (CFA) representations
of C programs, an abstraction used by many recent software-analysis tools. To cope with the complexity
of N-way merging, we use similarity-propagation to reduce the number of N-way matches and enable
incremental merging of arbitrary subsets of variants. We apply our SiMPOSE tool to realistic C
programs and investigate applicability and efficiency/effectiveness trade-offs of family-based program
analyses. Our results reveal efficiency improvements by a factor of up to 2.6 for unit-test generation
and 2.4 for model-checking under stable effectiveness, as compared to variant-by-variant.
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1 Summary

Software-product-line engineering is a comprehensive methodology to cope with the
inherent complexity of variant-rich software, by making explicit common and variable parts
in a family of program variants. Product-line engineering facilitates systematic reuse of code
fragments among variants to increase productivity and quality of software development, as
compared to variant-by-variant or clone-and-own approaches. Novel techniques for also
lifting quality-assurance techniques (e.g., unit testing and model-checking) to variant-rich
software pursue so-called family-based analysis strategies [Th14]. The goal is to analyze all
program variants in a single run, instead of considering every variant separately one after
the other. However, these techniques often require a (virtual) integration of all program
variants into one superimposed representation satisfying several requirements: it has to be a)
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syntactically well-formed, b) semantically sound (e.g., its functionality corresponds to the
union of functionality of all variants), c) variant-preserving (e.g., meta-data for tracing back
to program variants) and d) sufficiently succinct (e.g., all parts shared among variants are
identiĄed and integrated to maximize reuse). Most recent approaches either apply N-way
merging to superimpose N design models instead of programs, or perform purely syntactic
matching on locally restricted program fragments. The latter yields inherently imprecise (i.e.,
non-succinct or even unsound) merges as well as merge conĆicts that are not automatically
resolvable. Conversely, succinct N-way merges are, in general, not efficiently computable
due to the combinatorial explosion of the number of possible matches [RC13]. Finally,
existing approaches are either not variant-preserving, or utilize compile-time variability like
#ifdef directives which is often incompatible with family-based analyses tools.

Our novel methodology SiMPOSE allows for automatically superimpose N program
variants for enabling family-based analysis. SiMPOSE comprises a novel N-way model
merging algorithm for control-Ćow automata (CFA) representations of programs. To
cope with the complexity of N-way comparison, matching and merging of path-based
program models like CFA, our approach uses principles of similarity propagation for a
controllable trade-off between precision and computational effort. To meet requirements
a)Űd), we semantically embed variability-information as conditional CFA patterns into
the merged CFA. SiMPOSE further enables compositional merging such that N-way
program merging can be decomposed into incremental merging steps. Our SiMPOSE

tool integrates our novel technique with a tool for family-based program analysis using
the C model-checker CPAchecker. Our experiments show that SiMPOSE outperforms
state-of-the-art algorithms GNU Diffutils (diff) in terms of precision and N-way model
merging (NwM) [RC13] in terms of scalability thus constituting, on average, the best
efficiency/effectiveness trade-off between efficiency and effectiveness. The results further
reveal efficiency improvements by a factor of up to 2.6 for unit-test generation and 2.4 for
model-checking under stable effectiveness, as compared to variant-by-variant approaches.
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