
CARUSO – Project Goals and Principal Approach 

Uwe Brinkschulte*, Jürgen Becker# , Klaus Dorfmüller-Ulhaas+, Ralf König#, Sascha 
Uhrig+, and Theo Ungerer+ 

 
* Department of Computer Science, University of Karlsruhe, 76131 Karlsruhe  

# Department of Electrical Engineering, University of Karlsruhe, 76131 Karlsruhe,  
+ Department of Applied Computer Science, University of Augsburg, 86159 Augsburg, 

brinks@ira.uka.de, {becker, koenig}@itiv.uni-karlsruhe.de, 
{ungerer, dorfmueller, uhrig}@informatik.uni-augsburg.de 

 

Abstract: This paper proposes CARUSO – a new SoC approach that emphasizes 
Connectivity, Autonomic/Organic computing principles, Real-time, and Ultra-low 
power requirements. The requirements shall be fulfilled by a multithreaded 
processor core within a reconfigurable SoC. Helper threads running with low 
priority in own thread slots concurrent to the application implement  
autonomic/organic managers that monitor the application and decide if self-
configuration, self-healing, self-optimization, or self-protection must be triggered. 

1 Introduction 

State-of-the-art embedded computing systems with limitations in space and energy 
consumption are manufactured as so-called Systems on Chip (SoC), where all electronic 
components are placed on a single chip. CARUSO (Connective Autonomic Real-time 
Ultra-low-power System on Chip) is a new SoC project aiming to integrate hardware 
and software for high performance embedded computing with respect to further 
requirements: 
• Autonomic and Organic Computing (AC/OC) aim at improved controllability of 

complex systems and require future systems to fulfill the self-x properties, i.e. self-
configuration, self-healing, self-optimization, and self-protection. Future systems 
will therefore act more independently, flexible and autonomously, i.e. they will be 
more life-like.  

• Connectivity to enable several SoCs to dynamically form networks. Future 
embedded systems will consist of multiple small computing components which 
cooperate to solve a common task. The principles of autonomic/organic computing 
can require a change of the network topology. 

• Real-time capabilities (hard, firm or soft) to keep the timing requirements 
introduced by many embedded applications.  

• Ultra-low-power to increase the battery life time for mobile applications and to 
reduce the heat dissemination in temperature-critical environments.  
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Our solution is to fulfill the demands at the hardware level by combining a 
multithreaded processor core with reconfigurable hardware within a SoC. So called 
helper threads are running at their own hardware thread slot concurrent to the application 
to implement autonomic/organic managers at system software and middleware level. 
These managers monitor the application and decide if self-configuration, self-healing, 
self-optimization, or self-protection techniques must be triggered at their respective 
levels. The special real-time scheduling scheme (GP scheduling as proposed in [Kr00] is 
used as starting point) isolates the autonomic/organic manager threads from the 
application real-time thread(s). Application threads as well as the autonomic/organic 
managers can take advantage of the reconfigurable chip component.  The currently 
needed processing power defined by the real-time scheduling of the active threads is 
used to manage energy consumption of the SoC (as proposed in [UU04]. 

2 State of the Art 

Autonomic Computing [Ho01, KC03] has been introduced by IBM at the beginning 
of this millennium. The basic idea is to make computing systems behave more like 
organic entities, which adapt to new challenges, heal themselves after injuries and 
protect themselves against attacks. The Organic Computing Initiative [5, 6] launched by 
the two German national computer societies GI and ITG defines an Organic Computing 
system as “a technical system which adapts dynamically to the current conditions of its 
environment. It is self-organizing, self-configuring, self-healing, self-protecting, self-
explaining and context-aware”. While Autonomic Computing focuses mainly on servers 
and computing centers, Organic Computing aims at the development of robust, flexible 
and highly adaptive embedded systems.  
To manage highly connective distributed systems, middleware is a well known and 
researched approach. State-of-the-art middleware is available for general distributed 
systems, embedded systems and real-time systems [Br02]. AC/OC Systems on Chip 
introduce new challenges for middleware: Future SoCs will contain more and more 
dynamically reconfigurable hardware [CH02, Be02]. This allows to decide at runtime, if 
a certain functionality is realized by a software or a hardware module. The middleware 
will have to handle such distributed software and hardware modules, which have to be 
reconfigured or even migrated in real-time between the computation nodes. In general, 
middleware will become a key component to realize AC/OC principles in a highly 
distributed system. 
Multithreaded processor architectures support the execution of multithreaded programs 
by special hardware attributes like multiple register sets, multiple program counters and 
special pipeline design to allow the mixed pipelined execution of instructions from 
different threads [URS03]. The multithreaded Komodo microcontroller [Kr00] has been 
developed to explore the properties of hardware multithreading with hardware-integrated 
real-time scheduling for embedded real-time systems. Infineon incorporated 
multithreading into its Tricore-2 signal processor [No03]. The multithread application-
specific extension (MT-ASE) of MIPS proposes to use multithreading on the ASIC level 
[Wi03]. The integration of a dynamically reconfigurable SoC and a multithreaded 
processor core has not been explored yet even so several advantages can be expected: 
latencies caused by the dynamic reconfiguration could be masked by the execution of 
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another thread, real-time scheduling could be done within the processor core, the energy 
consumption might be reduced and helper threads could support the implementation of 
the AC/OC principles. 

Reconfigurable SoCs contain a processor core and a reconfigurable part, usually a 
FPGA. The reconfigurable part is used to adapt the SoC to a specific task. 
Reconfiguration can be done statically or dynamically. In static reconfiguration, the 
SoC is preconfigured for the given task and the configuration never changes during 
runtime. In dynamic reconfiguration, the SoC changes parts or the complete 
configuration during runtime. This is usually done to optimize performance by replacing 
software by hardware algorithms. Reconfiguration can be done on a fine-grained (gates) 
or coarse-grained (function blocks) level. The latter stretches from reconfigurable data 
paths between existing ALUs to reconfigurable functional units which reconfigure 
according to the current needs to become e.g. an integer unit, a floating point unit, etc. 
Combining coarse-grained dynamically reconfigurable SoCs with a multithreaded 
processor core and the AC/OC principles is a new promising approach which will be 
followed in the CARUSO project. A main research focus of the CARUSO project is not 
to have an isolated view on each requirement, but to explore and exploit the 
relationships between the requirements and attributes.  
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Figure 1: CARUSO architecture 

3 CARUSO System Architecture 

Figure 1 shows the proposed overall CARUSO system architecture. It is a distributed 
architecture consisting of hardware and software. The system basis is the CARUSO 
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chip, which combines a multithreaded processor core with reconfigurable hardware and 
power management. The processor core will implement the Tricore instruction set. The 
next level is the system software which is formed by helper threads. Autonomic/Organic 
management on the local (i.e. node) level is realized by a closed control loop consisting 
of local monitoring, local AC/OC management and local resource management. 
Changes detected by monitoring are reflected by the AC/OC manager and adapted by 
the resource manager. 
A similar control loop can be found on the global (i.e. middleware) level. This control 
loop consisting of global monitoring, global AC/OC manager and global resource 
manager is responsible to handle the distributed AC/OC management, e.g. migration of 
services, deactivation of failing chips, etc. The middleware is therefore responsible for 
the global system management and optimization. 

The application has been chosen as a typical example for the project aims: a mobile 
optical tracking system. Relative changes in camera pose can be determined by tracking 
marked features in the environment. Due to the fact that the CARUSO system should 
guarantee a certain accuracy requiring different time-consuming algorithms, the re-
projection error [HZ00] can be used as a measure for the reliability of the system. Thus, 
middleware is able to activate a more computational algorithm when critical situations 
occur. The application is dedicated to demonstrate and to evaluate the CARUSO system. 
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Fig. 2: The CARUSO SoC incl. adaptive multithreaded Data path 

 
Figure 2 shows the structure of a single CARUSO SoC in more detail. It consists of a 
multithreaded processor core, memory to store programs, data, and configuration, a 
power management module, and dynamically reconfigurable modules that can be 
divided into two classes: The functional units (FUs) are responsible to perform tasks and 
services in hardware rather than in software and thereby gain performance or save 
energy. The configurable peripheral hardware forms a flexible interface which can be 
adapted to the current needs. The interface allows the connection to sensors, actors and 
other SoCs to build a dynamic network of SoCs.  
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4 Conclusions 

We propose a new SoC approach called CARUSO that emphasizes connectivity, 
autonomic/organic computing principles, real-time, and ultra-low power requirements. 
The requirements shall be fulfilled by a multithreaded processor core within a 
reconfigurable SoC. The autonomic/organic managers are implemented as helper threads 
running with low priority in own thread slots concurrent to the application and decide if 
self-configuration, self-healing, self-optimization, or self-protection must be triggered. 

The CARUSO project is in its starting phase. Theoretical and practical work has to be 
done to achieve the project goals. A prototypic implementation and a real-world 
application example are necessary to validate the expected results and to make them 
applicable for subsequent projects and products. This way, CARUSO aims to contribute 
to future embedded, ubiquitous and autonomous/organic computing systems. 
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