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Abstract

Modern high-performance server systems with their wide variety of compute resources
(i.e. multi-core CPUs, GPUs, FPGAs, etc.) bring vast computing power to the fingertips
of researchers and developers. To investigate modern CPU+GPU co-processing architec-
tures and to discover their relative marginal return on resources (“bang for the buck”),
we compare the different architectures with main focus on database query processing,
provide performance optimization methods and analyze their performance using practical
benchmarking approaches. Discrete GPU devices (d-GPUs) are connected to host mem-
ory through PClIe which is relatively slower than the internal bus which connects integrated
GPU subsystems (i-GPUs) to the CPU and its caches. Our experimental analysis indicates
that while massive processing capabilities have grown in d-GPUs, data locality, memory
access patterns and I/O bottlenecks continue to govern and impede the speed of database
processing functions. While the use of GPU systems (whether discrete or integrated) lead
to significant speed-up in primitive data processing operations, the marginal performance
returns on deploying teraflops d-GPU compute resources do not appear to be large enough
to justify their cost or power consumption. At this point, integrated GPUs provide better
cost-performance and energy-performance results in parallel database query processing.

1 Introduction

Discrete Graphics Processing Units (d-GPUs) have long been used for accelerating the
execution of a wide-range of applications, most generally known in the space of scientific
high-performance computing (HPC) [WGHP11, GS11]. In recent years, CPU+GPU co-
processing have widely been adopted to improve processing performance of data analytic
applications handling very large data sets using main memory database management sys-
tems [WZHC10, HLH13, HLY 09, PMK11, KLMV12, HSP*13, Bggl3]. While these
GPUs posses an enormous amount of compute power, they typically connect to the CPU
and the host memory through a relatively slow interconnect, such as PCI-Express (PCle).
Compared to HPC, database query processing requires less computation but on signifi-
cantly more data where the performance of the interconnect between the CPU, host mem-
ory and the GPU has a more significant effect on the application’s performance. However,
recent CPUs with integrated GPUs (i-GPU) enabled for general-purpose computing pro-
vide an alternative architecture. While the computational power of the GPU cores is lower
than that of d-GPUs, they are connected to the CPU and its caches through an internal bus
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which is significantly faster than PCle.

Earlier studies in parallel query processing generally focused on two kinds of systems:
multi-core CPUs or many-core d-GPUs accessible through a PCI-e connection. Most stud-
ies on d-GPU co-processing have indicated PCI-e bandwidth issues as the main bottleneck
in off-loading parallel computation to these co-processors [HLYT09, KLMV12, PMK11].
Micro-benchmarks and our own independent investigations in various settings have also
confirmed this issue. To resolve this issue, Ocelot uses a memory management facility to
transparently “pin” data arrays on d-GPU memory and to dynamically control and opti-
mize the eviction of these data arrays. More recent work has paid greater attention to the
use of i-GPU-based, fine-grained co-processing [HLH13, TK13] and have concluded that
i-GPUs are promising alternatives to d-GPUs for data-intensive applications and function-
alities, such as the JOIN operation. The work we report here is primarily experimental and
focuses on the latter approach, i.e. on the use of modern i-GPUs for parallel data process-
ing. We have selected benchmark queries and a set of primitive operations (essentially,
micro-benchmarks) to compare the performance of the current, state-of-the-art systems.
Our findings indicate a balancing trade-off (in gigaflops, I/O bandwidth and power con-
sumption) that favors modern i-GPUs in query processing.

We focus on the discovery of system profiles and trade-offs that can help guide system
designers to select among various architectural options for parallel processing of data an-
alytic queries. We used modern multi-core, i-GPU and d-GPU systems and evaluated
each system through the execution of analytic micro-benchmarks and a more complex
TPC-H query. We target each system with implementations that are best suited to their
architectural requirements. We found that high-gigaflops d-GPU computing systems may
be an overkill when it comes to query processing and that performance gains for d-GPU
compared to modern i-GPU systems may not justify the energy and capital costs for the
purposes of data analytic processing. Next, we will discuss the relevant features of system
architectures we investigated in Section 2, present the performance results in Section 3 and
conclude in Section 4.

2 Architecture

In this section we analyze the key architectural differences of i-GPUs compared to d-GPUs
and highlight their “hidden” potential for database query acceleration to be exploited by
applications. Our analysis is based on two recent and widely-used GPUs, that is, Nvidia’s
GTX780 d-GPU and Intel’s HD4600 i-GPU integrated into the Haswell i7-4770K CPU.
Figure 1 illustrates the co-processing architecture using d-GPUs, while Figure 2 shows the
internals of the Intel CPU with integrated GPU. The most performance critical differences
between the two co-processing architectures are (1) the performance of interconnect(s)
between the GPU, host memory and the CPU’s caches, (2) the cache structure and (3) the
computational capacity of the GPUs.

The performance of the interconnect(s) between the GPU and the location of the data prior
to (i.e. data input) and right after (i.e. data output) being processed by the GPU becomes
highly critical for data-intensive workloads that are collectively processed by the CPU and
GPU, in which case the data typically resides in the CPU’s cache or in the host memory
and has to be moved from there to the GPU and finally back after the GPU processing
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Figure 1: Discrete GPU architecture (NVidia GTX780)

has been completed. CPU+GPU co-processing of database queries demonstrate a data
movement pattern very similar to that of above. After a query has been launched, a query
execution plan is created and optimized for performance by the database management
system (DBMS). The query execution plan determines the order the functionalities (i.e.
query primitives) should be executed and the steps used to access data. Depending on the
characteristics of functions in the execution plan, they provide better performance either
on the CPU or GPU. Based on these characteristics and performance statistics of previous
query executions, the optimizer decides which query primitives should be executed on the
CPU and which ones on the GPU. The optimizer also aims for minimal amount of data
transfer between the CPU and the GPU. However, even in the best case, data that is needed
for processing at the GPU traverses over the interconnect between the CPU and GPU twice
(once in each direction).
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Figure 2: Integrated GPU architecture (Intel i7-4770K)
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While d-GPUs connect to the CPU and host memory via a relatively slow (compared to
memory speed) PCle interconnect, i-GPUs connect to the CPU via a fast internal bus. In
addition, i-GPUs have direct access to the Last-Level Cache (LLC) within the CPU die,
providing even faster access to the data if it is present in the cache, a typical scenario with
CPU+GPU co-processing. In our Intel i7-4770K chip the CPU and GPU shares the SMB
of LLC.

In addition to the speed of the interconnect between the CPU and GPU and whether the
GPU has direct access to the CPU’s cache, the GPU cores’ computational capacity is a
major contributing factor to applications’ performance. In Table 1 we compare the specifi-
cation of the above mentioned Nvidia GTX780 (d-GPU) and Intel HD4600 GPUs (i-GPU).
The important parameters to note are, that the d-GPU outperforms the i-GPU by over a fac-
tor of 9x in terms of floating point operations. However, the i-GPU has nearly twice as
many data lanes ! it can run instructions on (i.e. maximum physical occupancy) and its
clock speed is 25% higher than that of the d-GPU. However, the d-GPU has access to 3GB
of local very fast GDRS5 memory while the i-GPU’s Last Layer Cache is only SMB.2

GTX780 | HD4600
Cores 12 20
Threads/Core 6 7
Data lane/Thread 32 8/16/32
Max. physical occupancy 2304 4480
Clock (GHz) 1.0 1.25
Power consumption (W)P 250 <30¢
GFLOPS 3977 432

Table 1: Hardware parameter comparison of Nvidia GTX780 d-GPU and Intel HD4600
i-GPU

“Using 32 data lanes per thread.

b As Thermal Design Power (TDP)

“Combined CPU and GPU equals to 84 Watts. [Des]

4Database processing typically requires little floating point operations, thus this metric does not directly
reflect the real compute power ratio of the two architectures.

2.1 Data Transfer Mechanisms

In order to understand how the speed of interconnect affects the applications’ performance,
it is critical to understand the data transfer mechanisms supported by the different hardware
architectures. In this section, we provide a brief overview of the key aspects of these
mechanisms and quantify their effect on the performance of applications in Section 3.

Discrete GPUs support two types of data transfer mechanisms between the CPU and the
GPU. On one hand, the more traditional model is using hardware supported Direct Mem-
ory Access (DMA) operations to transfer all the data to the GPU’s memory (i.e. GDRS in
Figure 1) prior to processing it and DMA the data back after completion. While DMA op-

! Assuming SIMD32, the maximum number of data lanes we can have per thread.
2Next-generation integrated CPUs are expected to have 128MB of EDRAM (Embedded DRAM) on-chip as
an additional layer of cache. [Tak]
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erations are executed by hardware and do not need either the CPU’s or GPU’s intervention,
it still happens over the relatively slow PCle connection. As such, it can add to the total
execution time of the application if the GPU cannot be utilized while the DMA operations
take place.

On the other hand, a block of the main memory belonging to the user application on the
CPU’s side can be mapped into the GPU’s virtual memory space via the GPU’s Memory
Management Unit (MMU). Programming the MMU takes only several cycles and thus is
a much faster operation than DM A-ing the data between the main memory and the GPU’s
memory. Data mapped into the GPU’s virtual memory space can be referenced directly
and when it happens a Programmed 1/0 (PIO) operation is executed from the GPU’s side,
which moves the data from the main memory to the GPU’s registers for processing. The
advantage of this method is that only the part of the data that is processed is moved to the
GPU, which might be significantly less than the total amount of application data. However,
during a PIO transfer the GPU is stalled until the data transfer completes and because
the transfer happens over the relatively slow PCle connection this can slow the overall
processing down except for suitable workloads where the GPU can overlap computation
with kernel originated PCI-Express transactions.

In comparison, integrated GPUs, like that of the Intel 17-4770K, share the cache and main
memory with the CPU and access memory through the GPU’s own virtual memory space
that is mapped by the GPU Address Translation Table (GTT) to the physical memory. This
mechanism is similar to that of the memory mapped case of d-GPUs with the main excep-
tions that the data is fetched through a fast internal bus and it can also be retrieved from the
shared LLC of the CPU, providing even faster access to the data. In this architecture, data
buffers can be allocated by either the GPU or CPU and direct access can then be given to
the other through memory address mapping.

3 Performance Analysis

In this section, we provide the results of our performance analysis study that quantifies
the architectural differences between i-GPU and d-GPU based co-processing by using
artificial and realistic workloads.

3.1 Raw data access

The objective of our first performance measurement was to analyze the speed of raw data
access using the different data transfer mechanisms outlined in Section 2.1 (i.e. d-GPU
DMA, d-GPU memory mapped, and i-GPU shared access). To this end, we created an
artificial workload in OpenCL (i-GPU) and CUDA (d-GPU) where a fixed size array of
integers was read through randomly. We selected random read over sequential to avoid
prefetching that can hide some of the physical data access delays. Figure 3 shows the
execution time of this workload based on the three different data transfer mechanisms.>
Regardless of the size of the data structure, the i-GPU significantly outperforms both types
of d-GPU based mechanisms by a factor of 2.2 to 44 thanks to the high bandwidth, low-
latency internal bus and the lower latency of the DDR3 memory. The performance dif-

3Please note the logarithmic scaling.
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ference compared to the DMA based mechanism varied between 2.2x and 2.6x, but the
difference is close to constant regardless of the size of the data set 4 while the difference
compared to the memory mapped mechanism is between 20x and 44x and is increasing
with the data set size. As for the two d-GPU mechanisms, the DMA based execution pro-
vides a 14-fold (on average) performance difference over the memory-mapped execution,
clearly demonstrating the drawbacks of memory mapping with d-GPUs in the case when
multiple independent accesses are made to the main memory and the GPU cores are stalled
while data is moved over the PCle interconnect.
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Figure 3: Performance (execution time) of different data transfer mechanisms

3.2 Micro-benchmarks

Previous studies have used database micro-benchmarks to evaluate the performance of
database query co-processing [HLY109]. We have implemented a selected set of these
functionalities in OpenCL and CUDA and ran them on both the i-GPU (OpenCL only) and
d-GPU platforms to understand their relative performance. Our selected micro-benchmarks
represent workloads with:

e Simple optimal memory access patterns: Map, Reduce, Scan (a.k.a. prefix sum) >;

e Randomized memory access pattern: Gather, Scatter;

e Combination of several sorting operations (i.e. randomized memory access, com-
parison, branching, limited integer arithmetic): Split, Bitonic and Radix Sort.

Figure 4 shows the execution time of the different micro-benchmarks with 32 Million en-
tries on the i-GPU and d-GPU platforms. On the d-GPU platform we ran the benchmarks
in OpenCL for a fairer comparison as well as in CUDA, which is highly optimized for
Nvidia GPUs and thus provides the highest achievable performance. We used the DMA

“In the case of the DMA based mechanism the reported times include both the DMA transfer to the GPU and
the random read of the array. The DMA transfer in all cases takes less than 0.1% of the reported time.
SThe latter involves a large amount of data movement with some level of randomness though.
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Figure 4: Micro-benchmark execution times

based data transfer mechanism with all the d-GPU measurements. Figure 5 shows the same
results, but in terms of data throughput normalized to the power consumption of the GPUs.
As far as raw performance is considered (i.e. Figure 4) the i-GPU platform provides better
or near equal performance to the d-GPU platform with OpenCL for workloads that demon-
strate randomized memory read and simple optimal memory access patterns to localized
and coalesced data, which allows maximum leverage of shared memory and caches (i.e.
map, reduce, gather and scan). The additional workloads require more computation and
multiple iterations through the same data and thus favor the d-GPU platform more for its
higher computational capability. For example, in the case of Radix Sort where the perfor-
mance difference is the most significant in the favor of the d-GPU, the caching advantage
of the i-GPU disappears due to the fact that many passes need to be made through a large
set of data that does not fit into the cache. That is, the one-time transfer into the large mem-
ory unit of d-GPU is amortized over the multiple passes, while the i-GPU loses some of its
advantage through frequent cache churns. However, if we take the power consumption of
the GPUs into account, as shown in Figure 5, the i-GPU platform outperforms the d-GPU
platform even with CUDA in all cases except with Radix Sort. Note again that CUDA
uses libraries highly optimized for the Nvidia GPUs, while the OpenCL implementation
does not have all of these highly optimized functions available, and hence the lower per-
formance. Given that recent initiatives of new server design [Sea, HP , Dia] demonstrate
the growing importance of power consumption in data center infrastructure, our results
indicate that i-GPU based co-processing architectures have a high potential to become the
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dominant database acceleration platform in the near future.

GB/s

Watt
100

10 -

MAP REDUCE GATHER SCATTER SCAN SPLIT SORT SORT
(Bitonic) (Radix)

W HD4600 OpenCL GTX780 Opencl MWGTX780Cuda

Figure 5: Micro-benchmark data processing throughput, normalized to power consump-
tion

3.3 Database query

Our last set of performance analysis results were gathered by implementing and running
Query-1 (Q1) and Query-9 (Q9) of the widely-used TPC-H decision support benchmark.
We have implemented both TPC-H Q1 and Q9 as User Defined Functions (UDF). As far as
TPC-H Q1 is concerned, we mofified a UDF for MonetDB suggested in [BZNO5] by dis-
tributing the data set among workitems/threads on the targeted GPU to ensure full resource
occupancy. As part of this query’s execution plan, each workitem/thread performs sub-
aggregation of the results followed by the CPU fully aggregating all the results. The data
set was generated by setting the Scaling Factor (SF) to 1, which corresponds to slightly
over 6 Million data records. We implemented the UDF in both OpenCL and CUDA. In
terms of execution time and data throughput normalized to power consumption, Figures 6
and 7 show the similar trends as we observed earlier with micro-benchmarks. As shown
by these results, the HD4600 i-GPU processes the data faster than the GTX780 d-GPU
regardless of whether OpenCL or CUDA has been used as the programming environment
for the d-GPU. Even more remarkably, if we consider the power consumption as the nor-
malizing factor, the i-GPU outperforms the d-GPU platform by over a magnitude.

In addition to the results discussed above, we also ran TPC-H Query-1 in a hybrid manner
in OpenCL, half of the data being processed by the CPU cores and the other half by the
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Figure 7: TPC-H Q1 (UDF) data processing throughput, normalized to power consump-
tion

GPU cores, merging the results after completion of the query. As shown by the 4th bar in
Figures 6 and 7, even more database processing power can be extracted from the i-GPU
based co-processing platform using OpenCL and without increasing the complexity of the
program at all. For comparison, we also included (as bar 5) the performance of the CPU-
only execution of the TPC-H Q1 UDF which uses the program suggested in [BZNO0S5] for
targeting the CPU only.

As far as TPC-H Q9 is concerned, we implemented it as a UDF, similarly to Q1, using
column based input. The key operations of this query include string matching, join, ag-
gregation, group by and order by. As for string matching, we implemented a naive linear
string search algorithm and the Horspool algorithm [Hor80]. Our micro-benchmarks of
this function indicated that the naive algorithm outperforms the Horspool algorithm and its
performance advantage increases with increasing record size. As such, we used the naive
approach in our final implementation. We performed aggregation and grouping using the
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sort-merge join algorithm, and used the radix-sort algorithm for ordering. The hash join
operation in our experiments took up almost half of the reported Q9 execution time. For
hash join, we used an un-partitioned, bucket-chained hash join. It is possible that using a
cache optimized partitioned hash join would improve the performance on our i-GPU plat-
form although it has been reported that for off-load mode processing on i-GPU platforms,
partitioned hash joins and un-partitioned hash joins show similar results [HLH13].
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Figure 8: Performance comparison of TPC-H Q9 (UDF)

Figure 8 shows the results of our performance evaluation of the TPC-H Q9 UDF imple-
mentation, with Scaling Factor set to 1, using all the resources of both the Nvidia GTX780
d-GPU and the Intel HD4600 i-GPU. On the d-GPU platform we used CUDA to execute
the query while on our i-GPU platform we used OpenCL. Looking at the performance
from the execution time’s perspective, the i-GPU based environment requires twice as
much time to execute the query with the same number of records. However, in terms
of data processing throughtput normalized to the power consumption, the i-GPU outper-
forms the d-GPU by four times, further strengthening our observation that i-GPUs provide
a more power efficient acceleration environment for database processing compared to that
of d-GPUs.

4 Conclusions

We have examined query and primitive operation processing on i-GPUs and d-GPUs of
comparable performance attached to the system on PCle 3.0. We used a series of varied
micro-benchmarks and a more realistic data-analytic query from the TPC-H standard. We
have found that while their compute resources are weaker, i-GPUs excel significantly in
the speed of data access from the CPU. Furthermore, i-GPUs behave as “free” resources in
some sense and consume far less power. Database management systems require CPUs to
perform query parsing, plan generation, plan optimization and plan execution. They can
also generate parallel execution plans targeted to multi-core CPU systems. The question
of interest is whether dedicated parallel-processing subsystems can be used for off-loading
such parallel query executions. Our work confirms earlier findings that such devices can
be useful, but draws a further distinction between i-GPUs and d-GPUs, demonstrating that
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i-GPUs have better marginal performance return on capital and operating costs. We have
arrived at this conclusion through architectural analysis, micro-benchmarks using typical
database query primitive operations and a typical complete query when each are optimally
implemented for d-GPUs or i-GPUs. It may be worth exploring more complex queries
(e.g., skyline queries) on larger data sets to examine whether this advantage of i-GPUs
extends to a broader set of query processing scenarios.
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