
83

A Methodology for Assessing Procedural Security:
A Case Study in E-Voting

Komminist Weldemariam1,2, Adolfo Villafiorita1

1Fondazione Bruno Kessler
Center for Scientific and Technological Research (fbk-irst)

Sommarive 18 I-38050 Povo (TN) – Italy
{sisai|adolfo}@fbk.eu

2DISI, University of Trento
Sommarive 14 I-38100 Povo (TN) – Italy

weldemar@disi.unitn.it

Abstract: This paper presents a methodology for procedural security analysis in
order to analyze and eventually try to make elections more secure. Our approach
is based on modelling the electoral procedures in the form of business process
models (which we write in a strict simplified subset of UML), systematically
translate the models into executable formal specifications, and analyze the
specifications against security properties. We believe such an analysis to be
essential to identifying the limits of the current procedures (i.e. undetected attacks)
and to identify more precisely under what hypotheses we can guarantee secure
elections. This paper presents the approach and demonstrates with an example
taken from the e-Voting procedures enacted within the ProVotE project, current
trial of the Italian legislation.

1 Introduction

The organization of elections in Italy involves various offices of the Public
Administration and private contractors, has a time-span of months, and has strict security
and traceability requirements. Sensibility by citizens and politicians is very high, and
litigation over, e.g., implementation of procedures and validity of results are not
uncommon. The Autonomous Province of Trento who has autonomy over local election
is evaluating the switch to e-voting and, to that extent, is sponsoring the ProVotE project
[VF06].

The switch to electronic elections in Italy, however, is a long and difficult process that
requires extreme attention, including a thorough understanding of the limits of the risks
associated to the procedures or to the combination of the procedures and systems chosen
for voting. (See, e.g., [ALRL04; Mya05; FM06; MFMP07; BLRS06; LKK+03; Ale04]
for a discussion of security risks associated to the usage of ICT systems and elections.)

84

We are approaching the problem by reasoning about the procedures and controls that
regulate the usage of e-voting systems. We do so by providing formal models of the
procedures, by "injecting" threats in such models and by analyzing, through the help of
model checker, the effects of such threats. We believe such an analysis to be essential to,
first, identifying the security boundaries— that is the conditions under which procedures
can be carried out securely and, secondly, devise a set of requirements, to be applied
both at the organizational level and on the (software) systems used to make systems and
system processes secure. In particular, the violation of security properties could provide
clues about a sequence of actions that an adversary uses to construct attacks before or
during the execution of procedures.

The main contribution of this paper is twofold. On one hand we are tackling the problem
at the procedural level —namely, we are trying to understand weaknesses and strengths
of the procedures regulating an election, in order to analyze possible attacks and their
effects on the electoral system, and, more specifically, possible attacks and threats that
can be realistically carried out on the e-voting machines. On the other hand, we are
interested in devising techniques and tools to analyze security threats at the
organizational/procedural level, and eventually make comparison between as-is and to-
be election system procedures.

This paper refines and extends the work presented in [WVM07], and it is structured as
follows. In the next chapter we explain the ProVotE project scopes under which this
work has been developed. In Chapter 3, we describe the context of procedural security in
detail. In Chapter 4, we describe our methodology for procedural security analysis and
illustrate the approach with an example in Chapter 5. Finally, in Chapter 6, conclusions
drawn from this work are discussed.

2 The ProVotE Project and Motivations

ProVotE [VF06], a project sponsored by Provincia Autonoma di Trento (PAT), has the
goal of ensuring a smooth transition to e-voting in Trentino, eliminating risks of digital
divide and providing technological solutions which support, with legal value, the phases
ranging from voting to the publication of the elected candidates.

The project includes partners from the public administration (PAT, Regione
Trentino/Alto-Adige, Consorzio dei Comuni Trentini, Comune di Trento, IPRASE),
research centers and academia (FBK, Faculty of Sociology of the University of Trento,
Fondazione Graphitech), and local industries (Informatica Trentina). The technological
solution (both software and some hardware components) has been developed in house,
providing integration with some commercial components.

85

The project is multi-phased and is organized in various lines of activities that strictly
interact (see also [VF06; CBF+06] for more details).

The first phase had the goal of testing prototypes, evaluating acceptance by citizens, ease
of use, and some organizational aspects. Verification of the results achieved in the first
phase was conducted through four different trials (between 2005 and 2006) held during
local elections. Participation to the first phase has been quite high: about 10,000 citizens
took part in the experimentation30.

During the second phase of the project we used the electronic systems in two elections,
with legal value. The first election was the election of student representatives in a local
high school and it involved 1,298 students. The second election — conducted in the
towns of Campolongo al Torre and Tapogliano in Friuli-Venezia Giulia (November
2007), a neighboring region with autonomy similar to that of PAT — was a poll to unify
the two municipalities; 561 people used the system.

For the third phase of the project, which could lead to a large-scale introduction of the
new voting system, aspects related to procedures, logistics, and organization become
more relevant, as they will serve both as the basis for the deployment of the solution and
for the definition of the laws that will govern the electronic election.

With respect to scope, population, and participation, ProVotE is among the largest, if not
the largest, e-voting project in Italy.

3 The Context of Procedural Security Analysis

Procedural security deals with the identification, modelling, establishment, and
enforcement of security policies about the procedures that regulate the usage of a system
and system processes.

The situation is depicted in Figure 1. Our target of evaluation is a complex organization
setting in which procedures transform and elaborate assets, which may not necessarily
be just digital assets (like, e.g., paper documents are also sensitive assets). The
procedures and the organization are meant to add value to the assets and high desire to
protect them from attacks, which can either come from external sources or from insiders.

30 Detailed results of all the experimentations and elections conducted within the ProVotE project are available
on the Internet at: http://www.provincia.tn.it/elezioni and http://referendum2007.regione.fvg.it/index.html.

86

In particular, we distinguish the following kind of attacks:

1. Attacks on digital assets (item 1 and item 3 in Figure 1). These attacks are
meant to alter one or more of the digital assets of an organization. Attacks can either be
carried out from external sources (the environment) or from internal sources.
Opportunities for attacks are determined by the organizational setting and by the security
provided by the digital systems.

2. Attacks on other kinds of assets (item 2 and item 4 in Figure 1). These attacks
are meant to alter one or more of the non-digital assets of an organization. Attacks can
either be carried out from external sources (the environment) or from internal sources.
Opportunities for attacks are determined by the organizational settings only.

Figure 1: Procedural security Analysis.

Security assessment usually focuses on understanding items 1 and 3, namely, types and
effects of attacks on (software) systems. In order to address the scenario depicted above
in a systematic and tool-supported way, we lift the security assessment at the
organizational level and we call procedural security analysis the usage of techniques and
tools to understand the impact and effects of procedural threats, namely courses of
actions that can take place during the execution of the procedures and which are meant
to alter the assets manipulated by procedures in an unlawful way.

87

4 A Methodology for Procedural Security Analysis

We developed a precise methodology to perform formal procedural security analysis,
based on the following steps (see also Figure 2):

Figure 2: The process of formal procedural security.

1. Provide (business) models of the procedures under evaluation. The starting
point is a model that describes the process or the processes to be analyzed (Step 1 of
Figure 2). In order to ease the task of translating the models into executable asset-flows,
we defined and stuck to a subset of the UML activity diagrams. This allows us to
describe the concepts like asset, processes, and accessory information (such as, location)
in a strict and defined way. So far we managed to provide UML models of the electoral
procedures in place in the Autonomous Province of Trento and in Regione Friuli
Venezia Giulia. We use Visual Paradigm31 as our reference-modelling tool. See some
previous works [Man03; Mat06; Cia07] for more details about the notation, tool support,
and the model themselves.

31 http://www.visual-paradigm.com/

88

2. Inject Threat actions into the model. We generate, from the models defined at
the previous step, what we call extended model (Step 2 of Figure 2). The extended model
is generated by “injecting” asset-threats in the nominal flow of the procedures. Thus, in
the extended model, not only assets are modified according to what the procedures
define, but they can also be transformed by the (random) execution of one or more threat
actions. The possible impact of threats depends upon the injection strategy that is
chosen. The most general strategy is that of injecting all possible threats at all possible
steps of the process (the model checker will take care of “pruning” useless threats,
namely threats which do not lead to any successful attack). The construction of the
extended model, whose generation can be automated, is currently performed by hand.

3. Encode the Asset Flows. From the extended models defined at the previous
step we derive the asset flows of each asset manipulated by the procedures (Step 3 of
Figure 2). Asset flows are represented in the NuSMV input language. The NuSMV
model of the asset flows is based on the definition of “program counters” that ensure that
procedures are executed according to the specifications, and by defining one module per
asset with one state variable per asset-feature. The state variables encode how features
change during the execution of the procedures. Accessory information, such as actors
responsible for the different activities, can be used, e.g., to enrich the language used to
express security properties. The necessity of modelling actors’ roles in NuSMV depends
upon the target of the security analysis. Note that from the list of activities executed to
carry out, e.g., an attack, we can derive the list of actors involved, simply by looking at
the UML activity diagrams.

4. Specify Security Properties to Check. The specifications of the desired
(procedural) security properties, namely, the security goals that have to be satisfied, are
then encoded using LTL/CTL formulas (Step 4 of Figure 2), which then (together with
the model) are given as input to NuSMV.

5. Perform Analysis. We finally run the model checker to perform the analyses
(Step 5 of Figure 2). Counterexamples of security properties encode the sequence of
actions that have to be executed in order to carry out an attack on an asset.

6. Analyze Results. The last step is analyzing the obtained results (Step 6 of
Figure 2). Counterexamples are used to achieve the following two goals. First, they
allow to understand what are the hypotheses and conditions under which a given security
goal is achieved or breached. Second, they provide information to try and modify the
existing procedures, so that security breaches are taken care of. Analogously to what
happens in safety analysis when analyzing, e.g., the loss of critical functions, enhancing
the procedures results in reducing the probability of an attack or making the attack more
complex, rather than eliminating it [Mar07].

89

5 A Case Study Example

Modelling Asset-flow, Step 1. Figure 3 shows a fragment of the procedure that is
followed during project trials for the transfer of election results from polling stations to
Electoral Office. The diagram abstracts away those details that are irrelevant for the sake
of presentation, e.g. details related to the alternative modelling choices for carrying out
the data transfer process are omitted. We also hide some actors' responsibilities by
collapsing, e.g. Secretary, Scrutinizers, them into a single actor. See in [Vol07] for detail
strategies of data transfer process and how the alternative choices are modelled.

The diagram illustrates (see Figure 3), after the election, the Section President (one of
the Poll Officers) deactivates the voting machines, extracts (from the voting machine)
printed votes, the USB key with the results, and other artifacts, and prepares a package
containing votes and various reports, to be delivered to the Electoral Office. Electronic
data are transmitted through a VPN and the USB key with the electronic results
delivered to the Electoral office via a “messenger” (e.g. a police officer).

Figure 3: An example of asset flow.

90

Threat Injection, Step 2. The next step is injecting, that is, extending the model with
threat actions and generate the extended model. Figure 4 shows some examples of threat-
actions injected into the nominal model of Figure 3. In the extended model, threat
actions are marked with the stereotype “threat-action”. Impact of the attacks depend
upon the asset they target and the position, in the procedure, where the attack take place.

For instance, replacing the results of a polling station in a USB key has no effect after
the result have been generated. (On the other hand it may change the results of the
election if performed before the results have been computed.)

Figure 4: An example of extended model.

91

Asset-Flow encoding, Step 3. Below we show a snippet of the code that defines the
asset type electionResult and some of its feature variables, named state (the states in
which the electionResult can be) and the content (the qualitative value of the
electionResult can be).

MODULE electionResult (...)
VAR
state : {plain,unsigned,signed,signed_&_encrypted};
content : {null,data,signed_&_encrypted_data,garbage};

The evolution of assets’ properties is encoded using state machines, which are encoded
in NuSMV with the next construct (which specifies the value of a variable at step n+1,
given the value at step n). Below, for instance, we show a piece of NuSMV code that
illustrated how the content variable of electionResult asset changes:

init(content) := null;
next(content) := case
pc.pc = closeVoting && next(pc.pc) = extract_&_encrypt : data;
content = data && pc.pc = extract_&_encrypt && state = signed: signed_&_encrypted_data;
[...]

Threat injection (model extension) corresponds to augmenting the state machine of the
asset flow with new transitions (e.g., adding a transition that leads to a garbage state of
content) corresponding to the execution of threat actions. The triggering of a threat
action is "monitored" through boolean variables that are set to true when the action takes
place, as illustrate by the following pieces of code:

next(can_malElectionRes) := case
(malElectionRes && pc.mpc = replaceElectionRes &&
next(electionResult.content) = malEnSignedData) || [...] :1;
1: can_malElectionRes;
esac;

Note that in the codes above we have left some detail specification (such as location) for
the matter of presentation purposes. Analogously, the remaining asset flows and model
extension encodings can be encoded.

Specify Security Properties and Perform Analysis, Step 4 & 5. We use temporal logic
formulas to represent the properties of interest and model check them using the NuSMV
tool. In particular, security properties are specified using LTL/CTL logic language. LTL
is used to reason on the computational path scenarios of an asset (e.g., what can happen
as asset travels along different locations), while CTL to reason about the existence of
specific states (e.g., is there any particular state in which an asset can be altered in an
undesired way).

92

Among the property classes we are interested in is that of verifying a property about
"Safe transfer of election result." A desirable property, for instance, that we want to
specify and analyze can be described in plain text as: “It is never the case that election
officials receive modified election data before computing the final result." This property
is expressed in CTL formula as:

AG ! (ElectionResult.can_garbage && ElectionResult.location = electoralOffice)

We give the above property to NuSMV tool to check that the property holds. However,
the tool generates a counter-example showing the violation of the given property. Upon
analyzing the generated counter-example, the election result is replaced (i.e., a replace
attack is in place) following the introduction of a wrong election data into the asset flow,
which, in turn, causes wrong delivery of election result to the electoral office. Among
the possible scenarios that we analyzed, at some time a malicious election data is
introduced while poll officer is preparing the data to transfer to electoral office. At the
same time, an attacker implements replace attack before loading the memory support.

6 Related Work

Various approaches (for specifying, modelling, analyzing, and assessing security) have
been proposed in the past and proven useful for zeroing the security lacks of the
analyzed systems (see, for instance, [FM06; BDL+03; VWW06; Wim05]).

To our knowledge, however, formal procedural security analysis is quite an un-explored
area. The work closest in spirit to ours can be found in [XM04, XM05], where the
authors argue the need for procedural security in electronic elections and provide various
examples of procedural risks occurred during trials in the UK; in [LKK+03, XM06]
where the authors highlight the importance of defining roles and responsibilities in e-
voting and in [Ale05] where the need for applying business process re-engineering to the
electoral process is emphasized. Our focus, however, is on the technical machinery to
automate analyses.

Volha et al. [Vol07] presents an approach to reason on security properties of the to-be
models (which are derived from as-is model) in order to evaluate procedural alternatives
in e-voting systems using Tropos.

Finally, Alexander et al. in [PKKU04] also highlighted a comprehensive way of
overviewing attacks against sensible assets in all stages of e-voting.

93

7 Conclusion

In this paper we presented a methodology to perform procedural security analysis based
on explicit reasoning on asset-flows — notably, by building a model to describe the
nominal procedures implementation, enriching this model with possible threat actions,
and encoding the extended model to suit for model checking techniques which, in turn,
allows to reason on different aspects of the procedures such as, the "actor-play-role"
principle and some reachability analysis for some undesired state of an asset. Among the
advantages of our approach, the possibility of getting a better comprehension of the
effect and impact of combined attacks to the assets of an election.

The model checker runs that were made on the current version of the specification have
not revealed much interesting results though seemed useful; therefore, much work needs
to be done in order to see if the model can be fully verified or if any interesting results
can be uncovered. Moreover, we need to consolidate our approach and provide
guidelines that can be incorporated in the Common Criteria [cc07], both
methodologically and in a tool supported way to automate the analysis.

References

[Ale04] Alexandros Xenakis and Ann Macintosh. Levels of Difficulty in Introducing e-
Voting. Electronic Government, 3183/2004, November 05 2004. LNCS, Springer.

[Ale05] Alexandros Xenakis and Ann Macintosh. Using Business Process Re-engineering
(BPR) for the Effective Administration of Electronic Voting. The Electronic Journal
of e-Government, 3(2), 2005.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 01(1):11–33, 2004.

[BCP+02] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. NuSMV 2: An Open
Source Tool for Symbolic Model Checking. In Proceeding of International
Conference on Computer-Aided Verification, 2002.

[BDL+03] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model Driven Security for
Process-Oriented Systems. In SACMAT ’03: Proceedings of the eighth ACM
symposium on Access control models and technologies, pages 100–109, New York,
NY, USA, 2003. ACM.

[BLRS06] J W. Bryans, B Littlewood, P Y. A. Ryan, and L Strigini. E-Voting: Dependability
Requirements and Design for Dependability. ARES ’06: Proceedings of the First
International Conference on Availability, Reliability and Security (ARES’06),
0:988–995, 2006.

[CBF+06] Letizia Caporusso, Carlo Buzzi, Giolo Fele, Pierangelo Peri, and Francesca Sartori.
Transition to Electronic Voting and Citizen Participation. In Robert Krimmer, editor,
Electronic Voting, volume 86 of LNI, pages 191–200. GI, 2006.

[cc07] Common Criteria. 2007. http://www.commoncriteriaportal.org/.
[Cia07] Aaron Ciaghi. From Laws to Models: Tools and Methodologies. Master’s thesis,

University of Trento, Italy, 2006-2007. In Italian.

94

[FM06] Igor Nai Fovino and Marcelo Masera. Through the Description of Attacks: A
Multidimensional View. In Computer Safety, Reliability, and Security, 25th
International Conference, SAFECOMP 2006, Gdansk, Poland, September 27-29,
2006, Proceedings, pages 15–28, 2006.

[LKK+03] Costas Lambrinoudakis, Spyros Kokolakis, Maria Karyda, Vasilis Tsoumas, Dimitris
Gritzalis, and Sokratis Katsikas. Electronic Voting Systems: Security Implications of
the Administrative Workflow. In DEXA ’03: Proceedings of the 14th International
Workshop on Database and Expert Systems Applications, page 467, Washington,
DC, USA, 2003. IEEE Computer Society.

[Man03] Andrea Mattioli. From Processes to Information Systems: Tools for Sharing Models.
Master’s thesis, University of Trento, Italy, 2002-2003. (In Italian)

[Mar07] Marco Bozzano and Adolfo Villafiorita. The FSAP/NuSMV-SASafetyAnalysisPlat-
form. Int. J. Software Tools Technology Transfer, 9(1):5–24, 2007.

[Mat06] Andrea Mattioli. Analysis of Processes in the Context of Electronic Election.
Master’s thesis, University of Trento, Italy, 2005-2006. (In Italian)

[MFMP07] Daniel Mellado, Eduardo Fernández-Medina, and Mario Piattini. A Common
Criteria Based Security Requirements Engineering Process for the Development of
Secure Information Systems. Comput. Stand. Interfaces, 29(2):244–253, 2007.

[Mya05] Myagmar, S. and Lee, A. and Yurcik, W. Threat Modelling as a Basis for Security
Requirements. In StorageSS ’05: Proceedings of the 2005 ACM workshop on
Storage security and survivability, pages 94–102,, New York, NY, USA, 2005. ACM
Press.

[PKKU04] Alexander Prosser, Robert Kofler, Robert Krimmer, and Martin Karl Unger. Security
Assets in E-Voting. In Electronic Voting in Europe, pages 171–180, 2004.

[VF06] Adolfo Villafiorita and Giorgia Fasanelli. Transitioning to e-Voting: the ProVotE
Project and the Trentino’s Experience. In EGOV-06, Krakow, Poland, 2006.

[Vol07] Volha Bryl, Fabiano Dalpiaz, Roberta Ferrario, Andrea Mattioli and Adolfo
Villafiorita. Evaluating Procedural Alternatives. A Case Study in e-Voting.
Proceedings of MET-TEG07, 2007. An extended version has been published as a
Technical Report DIT-07- 005, Informatica e Telecomunicazioni, University of
Trento.

[VWW06] Monika Vetterling, Guido Wimmel, and Alexander Wisspeintner. A Graphical
Approach to Risk Identification, Motivated by Empirical Investigations. Lecture
Notes in Computer Science, pages 574–588, Thursday, November 23 2006.

[Wim05] Guido Oliver Wimmel. Model-Based Development of Security-Critical Systems.
PhD thesis, German umlauts Institut f¨r Informatik der Technischen Universität
München, February 2005.

[WVM07] Komminist Weldemariam, Adolfo Villafiorita, and Andrea Mattioli. Assessing
Procedural Risks and Threats in e-Voting: Challenges and an Approach. In Ammar
Alkassar and Melanie Volkamer, editors, VOTE-ID, volume 4896 of Lecture Notes
in Computer Science, pages 38–49. Springer, 2007.

[XM04] Alexandros Xenakis and Ann Macintosh. Procedural Security Analysis of Electronic
Voting. In ICEC ’04: Proceedings of the 6th international conference on Electronic
commerce, pages 541–546, New York, NY, USA, 2004. ACM Press.

[XM05] Alexandros Xenakis and Ann Macintosh. Procedural Security and Social Acceptance
in E-Voting. In HICSS ’05: Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS’05) - Track 5, page
118.1, Wash- ington, DC, USA, 2005. IEEE Computer Society.

[XM06] Alexandros Xenakis and Ann Macintosh. A Generic Re-engineering Methodology
for the Organized Redesign of the Electoral Process to an E-electoral Process. In
Electronic Voting, pages 119–130, 2006.

