
Beastie In For Checkup:
Analyzing FreeBSD with LockDoc

Alexander Lochmann
TU Dortmund
Department of

Computer Science 6
Dortmund, Germany

Horst Schirmeier
TU Dortmund
Department of

Computer Science 12
Dortmund, Germany

ABSTRACT
LockDoc is an approach to extract locking rules for kernel
data structures, based on a dynamic execution trace. The
recorded trace can e.g. be used to verify existing locking doc-
umentation. LockDoc results for Linux indicated that only
53 % of all examined data types were accessed consistently
with their respective locking documentation [5]: Linux sys-
tematically elides locks for performance reasons, and the
existing documentation is partially outdated or inconsistent.
Without a solid “ground truth”, it is impossible to reliably
attribute LockDoc’s findings to bugs in Linux, or to issues
with the LockDoc approach itself.

Therefore, in this paper we present results from applying
LockDoc to a much more straightforwardly and “cleanly”
implemented operating system: FreeBSD offers sophisticated
locking documentation – e.g. for many data structures, each
individual field is annotated with a precise locking rule.
We report that, for four centrally documented data types,
FreeBSD adheres to the documented locking rules in 72.4 %
of all dynamic data-structure accesses. Investigating the re-
maining rule-violating accesses, we already triggered two
commits for the FreeBSD kernel fixing unprotected accesses,
and nudge this value to 73.6 %.

KEYWORDS
Synchronization bugs, Locking documentation, Trace-based,
Locking-rule extraction

1 INTRODUCTION
The increasing trend to SMP machines over the past two
decades pushed operating systems, such as Linux or FreeBSD,
towards a more and more fine-grained synchronization on
the granularity of kernel subsystems and even portions of

Except as otherwise noted, this
paper is licenced under the Cre-
ative Commons Attribution-Share
Alike 4.0 International Licence.

FGBS ’21, September 21–22, 2021, Trondheim, Norwegen
© 2021 Copyright held by the authors.
https://doi.org/10.18420/fgbs2021h-04

single data structures [1, 2, 6, 7]. Fine-grained locking, how-
ever, is error-prone and has led to numerous synchronization
bugs in the past. This risk can be reduced by a consistent and
sound locking documentation, which is not always given.
LockDoc [5] is a trace-based approach aiming at alleviat-

ing this situation. From a recording of lock operations and
data-structure accesses in a running OS kernel under stress,
it derives locking rules – a concrete, ordered sequence of locks
that must be taken before accessing a specific data-structure
element. The derived locking rules can consequently be used
to locate synchronization bugs, and to validate or generate
locking documentation.

In previous work [5], we validated the locking documenta-
tion of Linux. Our results showed that only 53 % of all exam-
ined data types are accessed with the documented locks held.
According to the Linux kernel developers, this has several
plausible causes: 1) Word-sized variables can be accessed
without locks. 2) If no concurrency takes place – known
statically, from a whole-system perspective – locks can be
elided. 3) Likewise, no lock is needed if consistency is not
required in a particular code location, e.g. a simple NULL-
pointer check. However, without a precise and up-to-date
locking documentation as a “ground truth”, it is hard to re-
liably attribute LockDoc’s findings to bugs in Linux, or to
issues with the LockDoc approach itself.
Consequently, in this work we investigate a much more

straightforwardly and “cleanly” implemented operating sys-
tem: FreeBSD offers a sophisticated locking documentation.
As exemplified in Listing 1, data type definitions in FreeBSD
are often prefixed with a comment introducing the relevant
locks, assigning each lock an individual letter that is refer-
enced in the actual type definition: The letterm, for example,
is used to refer to themount point interlock. It is used in line 7
in Listing 2 to assign a lock to the data-structure element
v_nmntvnodes. The comment in Listing 1 also contains more
information regarding locking order (line 17 ff.).
However, the documentation is still imperfect: It infor-

mally describes locks instead of explicitly naming them. A
reference counter is sometimes mentioned in the text, and
sometimes modeled as a dedicated lock in the documentation.
Nonetheless, the locking documentation looks promising.We

1

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/fgbs2021h-04


FGBS ’21, September 21–22, 2021, Trondheim, Norwegen Alexander Lochmann and Horst Schirmeier

1 /*
2 * Reading or writing any of these items requires
3 * holding the appropriate lock.
4 *
5 * Lock reference:
6 * c - namecache mutex
7 * i - interlock
8 * l - mp mnt_listmtx or freelist mutex
9 * I - updated with atomics, 0->1 and 1->0 transitions
10 * with interlock held
11 * m - mount point interlock
12 * p - pollinfo lock
13 * u - Only a reference to the vnode is needed to
14 * read.
15 * v - vnode lock
16 *
17 * Vnodes may be found on many lists. The general way
18 * to deal with operating on a vnode that is on a list
19 * is:
20 * 1) Lock the list and find the vnode.
21 * 2) Lock interlock so that the vnode does not go
22 * away.
23 * 3) Unlock the list to avoid lock order reversals.
24 * 4) vget with LK_INTERLOCK and check for ENOENT, or
25 * 5) Check for DOOMED if the vnode lock is not
26 * required.
27 * 6) Perform your operation, then vput().
28 */ �

Listing 1: Reformatted excerpt of FreeBSD’s locking
documentation for struct vnode (sys/sys/vnode.h).

1 struct vnode {
2 // [...]
3 /*
4 * Filesystem instance stuff
5 */
6 struct mount *v_mount; /* u ptr to vfs we are in */
7 TAILQ_ENTRY(vnode) v_nmntvnodes; /* m vnodes for

mount point */
8 // [...]
9 }; �

Listing 2: A slightly reformatted excerpt of struct

vnode from the FreeBSD kernel (sys/sys/vnode.h): Each
element is annotated with a letter corresponding to a
certain lock.

therefore applied LockDoc to FreeBSD, and performed the
same analysis as for Linux [5]. In this paper, we show parts
of those results leading to the following contributions:

• An analysis of the locking documentation for four data
types of FreeBSD’s virtual filesystem.

• An examination of those rules that seem not fully im-
plemented by the source code. This resulted in two

commits fixing unprotected accesses in the FreeBSD
kernel.

2 THE LOCKDOC APPROACH
The basic idea behind LockDoc is to automatically learn
about synchronization rules in a complex software system
solely by observing its dynamic behavior: Source-code anno-
tations may be deceptive or wrong, locking documentation
outdated or unavailable. In contrast, the actual running sys-
tem represents a kind of ground-truth, manifested inmachine
code – especially in the case of well-tested and widely used
operating-system kernels like Linux or FreeBSD.
We observe the system’s dynamic behavior using two

complementary mechanisms:
• We instrument the target system, 1) to record lock
acquisition and release operations, and 2) to notice
memory allocation and deallocation operations for the
data types we are interested in.

• We run the target system in a full-system emulator
that records all memory accesses to instances of these
data types.

In the full-fledged, original LockDoc approach [5], we har-
ness the resulting, combined trace for deriving probable lock-
ing rules. We use these derived rules
(1) for matching them against available documentation to

reveal documentation bugs,
(2) for scanning the trace for rule-violatingmemory accesses

to reveal synchronization bugs,
(3) and for generating documentation.

2.1 LockDoc for FreeBSD: Kernel
Instrumentation

As FreeBSD’s locking documentation – at least for some
well-documented data structures – is particularly elaborate
and precise, we modified the approach to not scan the trace
for memory accesses violating automatically derived locking
rules: Instead, we formalize the documented locking rules in
a way compatible to LockDoc’s rule-violation checker, and
scan the trace for accesses violating those rules (Fig. 1).
Since both LockDoc and FreeBSD’s Witness system – a

built-in dynamic lock-order monitor aiming at detecting cer-
tain types of synchronization bugs [1, 7], similar to Linux’s
lockdep [3, 8] – use the same lock model, instrumenting the
Witness system provides tracing data on all software-level
locking mechanisms supported by FreeBSD. Additionally,
we instrumented intr_disable() / intr_restore() to record
instances of disabling and enabling CPU-local interrupts – in
principle a hardware “lock”. To get notice of data-structure
allocations and deallocations, we instrument data-structure
specific allocator functions, such as getnewvnode() (which is
called to instantiate a vnode structure).

2



Beastie In For Checkup: Analyzing FreeBSD with LockDoc FGBS ’21, September 21–22, 2021, Trondheim, Norwegen

FreeBSD

FAIL* / Monitoring

Workload:
fs test suite

Bochs IA-32 Emulator

Inode locking rules:
1. i_lock: i_state, i_hash
2. LRU: i_sb, i_lru
3. ...

Documented
Locking
Rules

Rule-Violation
Checker

fs.c:338
fs.c:447
inode.c:149
inode.c:180

Potential 
Locking Bugs 

in Codemem READ 0x99981234
mem READ 0x99981235
LOCK 0x88432199
mem WRITE 0x8843219C
mem WRITE 0x8843219F
UNLOCK 0x88432199
mem WRITE 0x88432AA0

Trace

Figure 1: LockDoc workflow excerpt: Based on a
memory-access and lock-acquisition trace observed in
a full-system emulator, and a manually formalized list
of documented locking rules, LockDoc’s rule-violation
checker detects memory accesses that do not adhere to
the documentation. In a perfect world, those accesses
are all either indications of synchronization – or lock-
ing documentation – bugs.

2.2 Memory-Access Tracing
LockDoc uses the FAIL* fault-injection andmonitoring frame-
work [9] as an event-logging communication endpoint for all
in-kernel instrumentation (see Fig. 1). Within the experiment
flow controlling the FreeBSD monitoring, we additionally
record all dynamic memory accesses to data-structure in-
stances under observation. In a post-processing step, we filter
out accesses to elements marked as atomic in the source code,
and also those originating in a list of known initialization or
atomic-access functions.

2.3 Locking-Bug Localization
With the trace data and the formalized locking rules in place,
LockDoc’s rule-violation checker can scan through the trace
and look for accesses that do not adhere to the documented
locking rule. Once it finds such an access, it harnesses debug
information to pinpoint the exact source-code location of
the violating access, to provide a stack trace indicating the
call history that led to this access, and to give the developer
specifics on which locks were not held or taken in the wrong
order.

3 EVALUATION
In this section, we evaluate LockDoc on FreeBSD. We de-
scribe the evaluation setup (Sec. 3.1) and present results
validating the existing locking documentation (Sec. 3.2).

3.1 Setup
For our analysis, we used an i386 FreeBSD 13.0 kernel1. We
instrumented 4 virtual-filesystem data types that are accom-
panied by comprehensive locking documentation, namely
struct vnode, struct bufobj, struct mount, and struct buf.
We recorded lock operations for the following 8 different
lock types: hardirq, lockmgr, rm, rw, sleepable rm, sleep mutex,
spin mutex, and sx.
We chose the fs2 test suite from the Linux Test Project

[4] as the workload for triggering locking primitives. It took
26.43 hours (real runtime in a virtual machine: 20.22 minutes)
to run the benchmark, and traced its execution via FAIL* [9].
This run produced 1.52 billion events. The complete post
processing took 14.42 hours. All experiments took place on
a Intel® Xeon® E5-1620 processor.

3.2 Locking Rule Checking
Analogous to results from our previouswork on Linux [5], we
validated the locking documentation for the aforementioned
4 data types. This documentation is located in the FreeBSD
src tree in sys/sys/{vnode.h,buf.h,mount.h} line 79 ff., line
94 ff., and line 195 ff., respectively. Note that struct bufobj

(sys/sys/bufobj.h line 94 ff.) is embedded in struct vnode

and not explicitly listed in Tab. 1, which gives a summary of
our results: For each data type, the number of documented
locking rules (column #R) is given. A locking rule refers to a
tuple of data type, member, and access type3. The following
columns denote the number of rules that have at least one ob-
servation (column #Ob), and those not having been observed
at all (column #No).We categorize the observedmembers into
rules that have a relative support of 100 % (column ✓), a rel-
ative support below 100% but above 0 % (column ~), or have
no observation at all (column ✗). We were able to confirm
the locking documentation for 72.6 % (vnode), 71.43 % (buf),
and 74.19 % (mount) of the rules. Overall, the members are
accessed consistently with their documentation in 72.41 %
of the cases.

The locking rule for only one tuple of data type, element,
and access type was not found in our data set (column ✗):
The trace did not contain any read accesses to element b_
error of struct buf – this element seems only to be read in
conditions not triggered by the workload we chose.
A closer inspection of the rules with 0.9 ≤ 𝑠𝑟 ≤ 1 re-

vealed two real locking bugs: For both tuples, writing b_

vflags of struct buf and reading b_blkno of struct buf, the
documented locking rules had only relative supports of 97.3 %

1Based on Git commit 2134e85bc1b02389b462c2c9995af98ca0bf7213.
2We used Git tag 20190115 from the LTP repository.
3Since we differentiate between read and write accesses, dividing the num-
ber of rules by two gives the number of documented members.

3



FGBS ’21, September 21–22, 2021, Trondheim, Norwegen Alexander Lochmann and Horst Schirmeier

Data Type #R #No #Ob ✓(%) ~ (%) ✗(%)

vnode 82 9 73 72.60 27.40 0.00

mount 38 7 31 74.19 25.81 0.00

buf 80 10 70 71.43 27.14 1.43
Table 1: Summary of validated locking rules: Each row
shows how many locking rules are documented (#R),
and how many of the corresponding members have
not been observed (#No) and observed (#Ob). One lock-
ing rule refers to the locking order for a tuple of data
type, element, and access type (read/write). The last
three columns denote the portion of correct (𝑠𝑟 = 1),
ambivalent (0 < 𝑠𝑟 < 1) and incorrect (𝑠𝑟 = 0) rules.

and 96.2 %, respectively. Zooming in on the numerous mem-
ory accesses violating the documented locking rules, we
could identify one responsible code location for each of the
two cases. Confronted with our findings, the FreeBSD devel-
opers confirmed and fixed4 both bugs. Applying those fixes
and re-running our experiment would push the percentage
of approved rules to 73.6 %. However, these tuples are 2 out
of 11 that have a relative support between 90% and 100 %;
the remaining 9 tuples are false positives. The causes overlap
with those for Linux (see Sec. 1): Some accesses are domain-
specifically known from a whole-system perspective not to
be racy5, and some NULL-pointer checks are not guarded.
However, we identified one new cause for false positives
that very likely also applies to Linux and other large-scale
software systems: According to the documentation6, struct
inode attributes may be changed after either acquiring the
vnode lock exclusively, or after acquiring the vnode lock in
shared mode and taking the vnode interlock – both variants
can be used equally. LockDoc is currently not equipped for
this kind of locking-pattern alternative, which we intend to
remedy in future work.

Taking samples of rules with 𝑠𝑟 < 0.9 revealed another in-
teresting case, attributable to the same shortcoming in Lock-
Doc: For b_qindex and b_subqueue of struct buf, the relative
support is split across two locks. The documentation states:
“Protected by the buf queue lock”7. However, there are two buf
queue locks in the addressed data type struct bufdomain8:
bd_dirtyq.bq_lock and bd_subq.bq_lock. Depending on the
buf queue in use – bd_subq or bd_dirtyq, – the respective lock

4https://github.com/freebsd/freebsd-src/commit/e3d67595
https://github.com/freebsd/freebsd-src/commit/5cc82c56

5https://lists.freebsd.org/archives/freebsd-fs/2021-August/000371.html
6cf. sys/ufs/ufs/inode.h, line 74 ff.
7cf. sys/sys/buf.h, line 96.
8cf. sys/kern/vfs_bio.c, line 117.

is used. It is therefore not possible for either rule to reach
100 % relative support.

3.3 Discussion
Our results indicate that FreeBSD indeed presents itself more
“cleanly” with respect to locking documentation and imple-
mentation. Together with an overall much lower complexity
than Linux, and consequently results that were much easier
to manually inspect than in earlier work [5], this study on
FreeBSD allowed us to uncover a fundamental limitation of
LockDoc, which we intend to address in future work.
Sec. 3.2 perfectly demonstrated LockDoc’s ability to pin-

point locking-rule violations: For both tuples, LockDoc could
provide the exact source-code location where the access hap-
pened, together with a stack trace leading to that access, and
the locks that were actually held (and at what exact code lo-
cations they were acquired). This information was sufficient
to fix the unguarded write to b_vflags. For the unprotected
read of b_blkno, we were additionally able to tell the devel-
opers where exactly the lock was released that should have
guarded the access. With that information, the developers
were able to also fix the unguarded read of b_blkno.

Finding those two bugswas based on an approach different
from LockDoc’s original workflow: Normally, LockDoc uses
its own derived locking rules to find accesses violating them.
Here, we used the documented locking rules as the ground
truth to scan our data set for counterexamples. For systems
with a sound ground truth, this approach seems promising
for future work.

4 CONCLUSIONS
In this paper, we applied LockDoc to FreeBSD to investigate
whether its superior locking documentation and comparably
lower complexity than Linux provides new insights on our
approach. This resulted in a higher rate of approved docu-
mented locking rules: 72.4 % of all evaluated data-structure
elements are accessed according to the documentation. Our
analysis also showed that, at least for systems with a soundly
documented locking “ground truth”, looking for bugs using
the documented instead of the derived locking rules seems
beneficial: This approach revealed two locking bugs in the
latest FreeBSD release, which have since been fixed by the
developers. In the process, we also uncovered a limitation in
LockDoc’s internal lock model, which we intend to remedy
in future work.

REFERENCES
[1] John H. Baldwin. 2002. Locking in the Multithreaded FreeBSD Ker-

nel. In Proceedings of the BSDCon ’02 Conference on File and Storage
Technologies. Cathedral Hill Hotel, San Francisco, California, USA, 27–
36. https://www.usenix.org/legacy/events/bsdcon/full_papers/baldwin/
baldwin_html/

4

https://github.com/freebsd/freebsd-src/commit/e3d67595
https://github.com/freebsd/freebsd-src/commit/5cc82c56
https://lists.freebsd.org/archives/freebsd-fs/2021-August/000371.html
https://www.usenix.org/legacy/events/bsdcon/full_papers/baldwin/baldwin_html/
https://www.usenix.org/legacy/events/bsdcon/full_papers/baldwin/baldwin_html/


Beastie In For Checkup: Analyzing FreeBSD with LockDoc FGBS ’21, September 21–22, 2021, Trondheim, Norwegen

[2] Daniel Pierre Bovet and Marco Cesati. 2005. Understanding The Linux
Kernel (3rd ed.). O’Reilly Media Inc.

[3] Jonathan Corbet. 2006. The kernel lock validator. https://lwn.net/
Articles/185666/. Accessed: 2020-05-28.

[4] Cyril Hrubis et al. [n. d.]. Linux Test Project. https://github.com/linux-
test-project/ltp. Accessed: 2020-08-20.

[5] Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and Olaf
Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the
Linux Kernel. In Proceedings of the 14th ACM SIGOPS/EuroSys European
Conference on Computer Systems (EuroSys ’19). ACM Press, New York,
NY, USA. https://doi.org/10.1145/3302424.3303948

[6] Robert Love. 2010. Linux Kernel Development (3rd ed.). Addison-Wesley,
Boston, MA, USA.

[7] Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Wat-
son. 2014. The Design and Implementation of the FreeBSD Operating
System (2. ed. ed.). Addison-Wesley, Upper Saddle River, NJ.

[8] Byungchul Park. 2016. Enhancing lockdep with crossrelease. https:
//lwn.net/Articles/709849/. Accessed: 2020-05-28.

[9] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz,
Daniel Lohmann, and Olaf Spinczyk. 2015. FAIL*: An Open and
Versatile Fault-Injection Framework for the Assessment of Software-
Implemented Hardware Fault Tolerance. In Proceedings of the 11th Eu-
ropean Dependable Computing Conference (EDCC ’15). IEEE Press, Pis-
cataway, NJ, USA, 245–255. https://doi.org/10.1109/EDCC.2015.28

5

https://lwn.net/Articles/185666/
https://lwn.net/Articles/185666/
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
https://doi.org/10.1145/3302424.3303948
https://lwn.net/Articles/709849/
https://lwn.net/Articles/709849/
https://doi.org/10.1109/EDCC.2015.28

	Abstract
	1 Introduction
	2 The LockDoc Approach
	2.1 LockDoc for FreeBSD: Kernel Instrumentation
	2.2 Memory-Access Tracing
	2.3 Locking-Bug Localization

	3 Evaluation
	3.1 Setup 
	3.2 Locking Rule Checking
	3.3 Discussion

	4 Conclusions
	References

