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Abstract: The goal of this paper is to increase the computation speed of MapReduce
jobs by reducing the accuracy of the result. Often, the timely processing is more im-
portant than the precision of the result. Hadoop has no built-in functionality for such an
approximation technique, so the user has to implement sampling techniques manually.
We introduce an automatic system for computing arithmetic approximations. The sam-
pling is based on techniques from statistics and the extrapolation is done generically.
This system is also extended by an incremental component which enables the reuse
of already computed results to enlarge the sampling size. This can be used iteratively
to further increase the sampling size and also the precision of the approximation. We
present a transparent incremental sampling approach, so the developed components
can be integrated in the Hadoop framework in a non-invasive manner.

1 Introduction

Over the last ten years, MapReduce [DG08] has become an often-used programming

model for analyzing Big Data. Hadoop1 is an open-source implementation of the MapRe-

duce framework and supports executing jobs on large clusters. Different from traditional

relational database systems, MapReduce focusses on the three characteristics (”The 3 Vs”)

of Big Data, namely volume, velocity and variety [BL12]. Thus, efficient computations

on very large, fast changing and heterogeneous data are an important goal. One benefit

of MapReduce is that it scales. So, it is well-suited for using the KIWI approach (”Kill

It With Iron”): If a computation is too slow, one can simply upgrade to better hardware

(”Scale Up”) or add more machines to a cluster (”Scale Out”).

In this paper, we focus on a third dimension additional to resources and time, namely

computation accuracy. The dependencies of the dimensions can be depicted in a time-

resources-accuracy triangle. It says that one cannot make Big-Data analyses in short time

with few resources and perfect accuracy. The area of the triangle is constant. Thus, if one

wants to be accurate and fast, more resources are needed (KIWI approach). If a hundred-

percent accuracy is not mandatory, a job can run fast and without upgrading the hardware.

On the one hand, most work regarding Big-Data analysis, i.e. frameworks and algorithms

are 100% precise. On the other hand, these approaches often give up the ACID properties

1http://hadoop.apache.org
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and claim: Eventual consistency (”BASE”) is enough. So, let us add this: For many com-

putations, a ninety-percent accuracy is enough. One example: Who cares if the number

of your friends’ friends’ friends in a social network is displayed as 1,000,000 instead of

1,100,000?

Some people extend the definition of Big Data by a fourth ”V”: veracity [Nor13]. This

means, the data sources differ in their quality. Data may be inaccurate, outdated or just

wrong. So, in many cases, Big-Data analyses are already inaccurate. When using sam-

pling, the accuracy of the result decreases again, but the computation time improves. Sam-

pling means, only a part of the data is analyzed and the results are extrapolated in the

end.

Within this work, we extended the Marimba framework (see section 4.1) by a sampling

component to execute existing Hadoop jobs with just a few changes in the user’s jobs and

no changes in the Hadoop framework. We use the so-called Overwrite Installation for

making sampling jobs incremental. So, when increasing the size of samples, results from

a former computation on a small sample size can be reused. For our framework, we use

common sampling techniques which are presented in the following subsection.

In the following, some related work is presented. These are existing frameworks which

also add sampling to MapReduce and techniques our approach is based on. In section 3,

we explain commonly-used sampling techniques and present our approach for a Hadoop-

based sampling framework. Section 4 focuses on making sampling incremental to increase

the accuracy of a computation without starting from scratch. The sections 5 and 6 contain

a performance evaluation and a conclusion.

2 Related Work

Hadoop RandomSampler There are different approaches for doing sampling in MapRe-

duce. First of all, there is no built-in sampling in Hadoop. But for getting an idea of how

the input data looks like, a RandomSampler[Whi09, p. 226] can be used. With that,

Hadoop reads a given percentage of the input data (key-value pairs) which is stored on

different machines and collects the keys of these. This is done before the Map phase and

the result is a key set. This key set is a subset of all input keys and can be used to define

key intervals for Map-output partitions. A TotalOrderPartitioner produces partitions with

a better distribution than without sampling, so every Reducer has an equal amount of work.

An example: Input keys are URLs of websites. Some of them start with ”mail.”, some with

”mobile.”, but more than 99% of all keys start with ”www.”. If the number of Reducers is

three, a TotalOrderPartitioner would create three partitions, e.g. [a− i], [j− r] and [s− z].
But as there is no uniform distribution, 99% of the Map outputs will be sent to the third

Reducer. With Random Sampling, the partitions are of the same size, e.g. [a − www.k],
[www.k − www.q] and [www.r − z]. This kind of sampling can be used when Reducers

need their keys in the right order. As this is not needed for most MapReduce jobs, a simple

HashPartitioner ensures a good distribution by performing modulo hashing. Nevertheless,

different from our approach, this sampling technique fails to increase computation perfor-

mance.
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EARL The Early Accurate Result Library (EARL) [LZZ12] is a modification of the

Hadoop framework to run MapReduce jobs on a subset of the data. This subset is randomly

created in a Sampling Stage, the first of three phases. In the second phase, resamples are

created which are subsets of the given sample. Each of these resamples is used as input for

an individual MapReduce computation. The outputs of these are compared to each other

to determine the accuracy. This is done in the third phase, called Accuracy Estimation.

EARL changes Hadoop very deeply. It forces MapReduce jobs not to stop after they are

finished and to accept more input data by increasing the input-sample size. This is done

until a desired accuracy is reached.

EARL provides two strategies for reading a subset of the input, namely Pre-Map sampling

and Post-Map sampling. As their names imply, the first strategy is to skip most of the input

tuples and only perform the Map function on p% of the input. In the second strategy, the

Map function is computed on the full dataset, but if it wants to emit data, this is only done

with a probability of p%. So, most of the Map output is discarded. Pre-Map sampling is

faster than Post-Map sampling because the Map function is called less often, but it leads

to a lower accuracy because it either processes a segment completely or not at all. In

both Pre-Map and Post-Map sampling, the Reducers only get a subset of the complete

intermediate-key/value pairs. In the second approach, they are more random. EARL does

not extrapolate the Reduce outputs automatically. Instead, the user has to provide a Correct

function. So, if for example a p% sample of a large text is read to count the occurrences of

terms in the text, the Correct function has to multiply the count values in the end by 100/p
to estimate the real quantities. In our framework, one does not need to provide a Correct

function and our framework does not modify the Hadoop core.

Sampling for Hadoop Other works focuses only on sampling the input. Our approach

also extrapolates the results. In [GC12], Grover and Carey tested how to increase the

performance of Hadoop when doing predicate sampling, i.e. finding n items in a given

dataset which fulfill a predicate. The algorithm stops when enough items are found. The

randomness of the sampling set is not important for this algorithm. So, the results can not

be used to estimate properties of the full dataset well.

Apache’s Pig provides a sample operator2 for shrinking a dataset. The following Pig script

will produce a 10% sample: a = LOAD ’data.csv’; s = SAMPLE a 0.1

Sampling in Relational DBMS In [OR90], Olken and Rotem suggest sampling as a

DBMS operator. This leads to changes in the query language, optimizers and access

paths. It is described how B+ trees and hashing algorithms have to be modified for ac-

cessing only a specific percentage of the data. The objectives are estimating the results of

aggregate functions with the usage of sampling techniques. In [PBJC11], these techniques

are built into MapReduce. However, only simple aggregate functions after a grouping are

supported. In [PJ05], bootstrapping is used for relational databases and again, the ap-

proximation method which is used there only supports simple aggregates. In [Fis11], an

interactive data-visualization tool is presented that incrementally delivers more accurate

2https://pig.apache.org/docs/r0.11.1/basic.html#sample
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results to a given query. Instead of returning an inaccurate result value to the user, the

result is presented as a range of possible values. The tool can be used to produce many

kinds of histograms based on GROUP BY queries.

3 Sampling with Hadoop

Figure 1: Three Sampling Tech-
niques

Sampling is used to draw a subset of a population. Af-

terwards the characteristics of the population are esti-

mated based on the characteristics of the subset. The

goal is to get a representative subset in order to get more

accurate extrapolations. There are different techniques

for choosing a subset [Sud76]. In the following, three

of them are described (see Figure 1).

Simple Random Sampling When using Simple Ran-

dom Sampling, all elements are chosen with the same

probability of p%. According to the Law of Large Num-

bers, the subset of a population of size n will have the

size n · p/100.

Stratified Sampling In the Stratified-Sampling approach, the population is divided into

sub-populations. On each of these, sub-population sampling is done. To improve the

accuracy, the dividing characteristics should correlate with the focused characteristic. Ad-

ditionally, the sub-populations should be homogeneous.

Cluster Sampling This approach also divides the population in subpopulations (clus-

ters), but this division is done naturally, based on for example location, etc. Afterwards

one or more clusters are randomly chosen and are completely used as the subset for the

extrapolation. There is the risk, that the extrapolation might be biased because of homo-

geneous clusters. It is possible to reduce that risk by using a Simple Random Sampling on

the chosen clusters.

Our goal is to leave the MapReduce framework intact. So we first show how to change an

existing Hadoop job to improve the performance at an expense of accuracy. Later in this

section, we present a framework which can be used on top of Hadoop to execute existing

Hadoop jobs with the usage of sampling [Sch14]. With that, the user should not have to

change her Map and Reduce functions depending on whether the whole input or only a

subset is analyzed.

3.1 Restrictions

There are three kinds of MapReduce jobs which must be treated differently when enabling

sampling techniques on them.
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Sampling only Top-k queries, computations of MIN, MAX or AVG, and the determina-

tion of a set of items with certain properties are some examples for jobs with no need for

an extrapolation. The result of a computation on a subset of the input can be used as a final

result. Inaccuracies arise through missing hits: Maybe another skipped value is higher

than the computed maximum and maybe some skipped items fulfill the search criteria as

well. The average function does not need to be extrapolated because it is a division of a

sum and a count. The extrapolation would be canceled out.

Sampling and Extrapolation Counting and computing sums are popular tasks in MapRe-

duce jobs. If these operations are performed on a subset, the result has to be multiplied by

100/p where p is the sampling percentage. Other tasks which produce complex objects

or compute the final results by a multiplication need different extrapolation functions. For

the latter one the result r has to be corrected like this: r100/p.

Sampling not supported Iterative algorithms, graph transformations and more do not

support sampling because the output computed on a subset is useless. They always have

to be executed on the full input.
In our work, we focused on the Sampling and Extrapolation class of jobs. It stands to

reason that Sampling only jobs are supported too. Here, the extrapolation can be seen as

the identity function.

3.2 Subset selection

As it is done in EARL (see section 2), a user can implement a Pre-Map or a Post-Map

sampling by either changing the RecordReader of the used InputFormat to skip (100−p)%
of the items. Or one adds some lines to the user-defined Map function to skip input or

output key-value pairs with a probability of p%.

Our goal is an automated subset selection. Therefore, we propose a SamplingInputFormat

which delegates all function calls to the actual user-defined InputFormat and is able to

skip items in the input splits (item sampling / for texts: line sampling), or to skip splits

as a whole (split sampling). A split is a chunk of items which are stored on one machine

and processed by one Mapper node. When using text files which are stored in the Hadoop

Distributed File System (HDFS), a split usually is a 64 MB large text snippet. The lines in

this snippet are called items and are the input for one Map call.

A selection based on the set of items corresponds to the Simple Random Sampling tech-

nique. Thereby, a potential uniform coverage is given, since the selection is done on the

smallest usable unit. The disadvantage of this technique is that the RecordReader has to

read every item and discard most of them.

A less time-consuming approach is a selection on the set of splits. This approach corre-

sponds to Cluster Sampling where the splits are the naturally-grouped subsets based on

locality. This approach discards whole splits, which is significantly less computation than

in the previous approach. If the data is not uniformly distributed, the split approach could

lead to biased results.

A user can balance the pros and cons of both approaches by combining them. Our frame-
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work provides the configuration of two percentage values for both item and split selection,

so one can perform a 10% sampling by skipping every second split and in each split doing

a 20% item sampling.

Jobs of the class Sampling only don’t need any further modifications or considerations.

Item sampling, split sampling and the combination of both are all Pre-Map approaches.

The user-defined Map function is called for the subset of items the SamplingInputFormat

provides. The Map and Reduce functions can stay unchanged and no extrapolation is

needed.

3.3 Extrapolation

For jobs of the class Sampling and Extrapolation, the final output has to be corrected to

estimate the result of a computation on the whole data. Approaches presented in section 2

rely on a user-defined Correct function. This function is executed Post-Reduce. We want

to introduce a generic Pre-Reduce extrapolation method. The benefit of that is that Map

and Reduce can be left unchanged and that no Correct function is needed.

Example (Post-Reduce / Pre-Reduce Extrapolation) A MapReduce job is used to

compute the number of website visits per day by analyzing log files. 5% of the input

is sampled and passed through the Map function. Using Post-Reduce Extrapolation, the

Reduce function sums up all visit counts for one day. After that, a Correct function has to

multiply the numbers by 20. With Pre-Reduce Extrapolation, before calling the Reduce

function, each intermediate key-value pair is copied 19 times so it reaches the Reducer

twenty times. The output in both approaches is the same.
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Figure 2: The extrapolation based on the old result
and a new sample.

At a first glance, the Pre-Reduce approach

sounds expensive because the amount of

data shipped to the Reducers increases

drastically. We solved this by copying

the data just virtually by encapsulating the

user-defined Map-output type and the Re-

duce function (see Figure 2). A Weighted-

Writable object contains one Map-output value and a weight value (in the example above

it would be 20). The user-defined Reducer is replaced by an EstimateReducer that dele-

gates each function call to the actual Reducer but with replacing the Iterable object that

contains all values by a MultiIterable. This is programmed to return each value n times

when calling the next() function.

With this approach, a problem arises for a non-integer n since an element cannot be reused

for example 0.6 times. A simple solution would be to round the value, but then the accu-

racy of the result is too low. For example, when sampling a 62.5% subset, n = 1.6.

Rounding would lead to n = 2, which would lead to a simulated dataset of 125% of the

original dataset size. We solved this problem by iterating over each element ⌊n⌋ times and

with a probability n − ⌊n⌋ once more. So, if n = 2.6, each element is either processed

two or three times. The probabilities for that are 40% respectively 60%. As it is shown

later, this approach leads to good results.
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4 Incremental Sampling

The previous section showed how to extend Hadoop with a generic sampling approach.

But it is hard to determine which sampling percentage to choose to deliver a sufficient

accuracy. One is not able to tell the accuracy of a computation without comparing the

result to the result of the full computation. EARL (see section 2) estimates the accuracy

by sampling multiple times and comparing the results. We use an approach that is often

used in iterative graph algorithms like PageRank [PBMW99]. If the change of the results

towards a former iteration is below a threshold, no further iteration is needed. This means

for sampling, one starts with a small sample size and increases this size step by step until

the results converge. To increase the precision of an already computed estimation, it is not

necessary to discard the former result. Instead, it is sufficient to make a new computation

and combine its results with the former one. Our incremental approach is based on the

Marimba framework.

4.1 Marimba Framework

A Hadoop-based framework, called Marimba [SJHD14] can be used to create self-maintain-

able MapReduce jobs. Based on the two strategies Overwrite and Increment Installation

presented in [JPYD11], Marimba executes a MapReduce computation only on the changes

in the base data since the former computation and aggregates the results to the former

results. If this aggregate operation is a simple plus operation and if the output format

supports in-place additions, the Increment Installation can be used. HBase has a support

for this strategy, so if for example a Reduce output key/value pair is (’high’, 5), the

current value for the key high is read, it is increased by five and written back. As this

read operation is not a sequential but a random read, the Increment Installation is very

expensive if there are many changes in the input since the former computation. Therefore,

the Overwrite Installation can be used. Here, the full former result is read and aggregated

to the Map output records of the changed data. In the end, the final result overwrites the

former one. A benefit of Marimba is that the user can simply execute a normal Hadoop

job with only making a few changes. First, the Map-output values have to form an Abelian

group. This can be reached by replacing the Hadoop type LongWritable with the invert-

ible Marimba type LongAbelian. Second, the user has to define a Deserializer to reuse the

former result.

4.2 Reusing Former Sampling Results

A weighting of the inputs is necessary since every input can have a different size. One

example: After a one-percent sampling, another percent is sampled and the results are

combined. As both results are too different, another percent should be sampled. Now,

the former result has to be double-weighted and the new data single-weighted. The end

result is then based on three percent of the input data. Executing multiple incremental one-

percent jobs is much faster than classical non-incremental jobs. As a drawback, it leads
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Figure 3: The three sampling approaches in comparison.

to a shade lower accuracy because of overlaps in the input samples. Incremental sampling

corresponds to sampling with replacement, classical approaches to sampling without re-

placement. Note that the maximum number of replacements is limited by the number of

iterations.

An incremental sampling job needs to read two inputs: a former result and an additional

sample. To reuse the already computed result, another Map function is needed to re-

verse the extrapolation from the former iteration. This function converts Reduce output

key/value pairs to Reduce input key/value pairs. In many MapReduce jobs, the input and

output type are equal. Then an identity mapping is sufficient. As mentioned in the previ-

ous chapter, the WeightedWritable class is used as intermediate-value class. The weights

for the reused results depends on the former sample size.

Our incremental-sampling framework uses the Overwrite Installation approach [JPYD11].

The incremental computation is divided into two steps. The first step is a normal MapRe-

duce sampling job for a new subset of the input data. The result of this job together with

a former result are the inputs for the second job. This second job is the incremental part

which computes the updated result. For this job, the user needs to develop a Map function

which reads the data and the old results and converts these into key/value pairs. Also, a

Reduce function is needed to write the new result. Weighting is automatically done af-

ter the user-defined Map function through the intermediate-value class WeightedWritable

which contains the value together with the weighting factor. A special Reduce function

is needed to process this intermediate results. This function computes the final Reduce

outputs based on the input values and the weighting factor.

5 Evaluation

We tested our sampling framework on a five-node Hadoop cluster. Each node consists of

a Quadcore 2.53 GHz CPU and 4 GB of main memory. They are connected via Gigabit

Ethernet.
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Figure 4: (a) Non-incremental vs. incremental sampling (b) Accuracy of a computation

Figure 3 shows the runtimes of the three sampling approaches. All tests are based on a

word-count job on 3200 English texts of a size of 1.2 GB. As every split is read in the

line-based sampling, it is slower than split-based sampling. The combination of both ap-

proaches3 lies in between. When the sampling size is more than 50%, a full computation

is faster than using sampling because the amount of intermediate data includes a few over-

head and has to be shipped over the network.

In Figure 4a, a (p/2)% sample was doubled to p%. When using incremental sampling, the

old result can be reused which leads to a better performance than non-incremental sam-

pling for p greater than two percent. We compared the results of the word-count sampling

job with the actual count values and observed an accuracy of more than 90% for the words

that occurred more than 5000 times (see Figure 4b).

Our assumption and the time-resources-accuracy triangle in the beginning of this paper

were confirmed: For a sampling size of 10%, we saw that our incremental sampling ap-

proach is three times faster than a full computation at the expense of 3% inaccuracy.

6 Conclusion

The goal of the presented framework is to provide user-friendly sampling and extrapola-

tion components for Hadoop which also enable an incremental sampling approach. These

components can be used for sampling of arithmetic jobs. We made experiments on those

jobs and we found out that there is a large speed-up when using sampling. This speed-up

is even higher when using incremental sampling where former results can be reused to

increase the sample size. Different from other sampling approaches, our framework does

not need to modify the Hadoop framework. A user can simply enable input-data sampling

and an automatic extrapolation of the results for existing MapReduce jobs with only a few

modifications.

In future work, our sampling approaches can be used in an interactive data-visualization

tool. Like in [Fis11], a user can see the results of a query in a chart. When using a small

sample size, the chart can be displayed very fast. With the usage of incremental sampling,

3For a sampling size s ∈ (0, 1],
√
s of the splits are read, and within a split,

√
s of the lines. For example, a

25% sampling (s = 0.25) is divided into 50% of splits and 50% of lines.
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it can become more accurate over time. Currently, our framework does not give accuracy

guarantees. We are currently working on a new version which displays the accuracy to the

user.
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