
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 63

Hidden Truths in Dead Software Paths

Michael Eichberg1 Ben Hermann2 Mira Mezini3 and Leonid Glanz4

Abstract: Approaches and techniques for statically finding a multitude of issues in source code
have been developed in the past. A core property of these approaches is that they are usually targeted
towards finding only a very specific kind of issue and that the effort to develop such an analysis is
significant. This strictly limits the number of kinds of issues that can be detected.

In this paper, we discuss a generic approach – based on the detection of infeasible paths in code –
that can discover a wide range of code smells ranging from useless code that hinders comprehension
to real bugs. The issues are identified by computing the difference between the control-flow graph
that contains all technically possible edges and the corresponding graph recorded while performing
a more precise analysis using abstract interpretation.

The approach was evaluated using the Java Development Kit as well as the Qualitas Corpus (a
collection of over 100 Java Applications) and enabled us to find thousands of issues.

1 Overview

Since the 1970s many approaches have been developed that use static analyses to iden-

tify a multitude of different types of issues in source code [Co06, CA01, GYF06]. The

techniques used by these approaches range from pattern matching [Co06] to using for-

mal methods [Co09] and vary widely w.r.t. their precision and scalability. But, they have

in common that each one only targets a very specific kind of issues. Those tools (e.g.,

FindBugs [Co06]) that can identify issues across a wide(r) range of issues are typically

just suits of relatively independent analyses. In all cases, the issues that can be found are

limited to those that are identified by some tool developer.

We present a generic approach that detects control- and data-flow dependent issues in

Java Bytecode without targeting any specific kind of issues per se. The approach applies

abstract interpretation based techniques to analyze the code and while doing so records

the paths that are taken. Afterwards, the analysis compares the recorded paths with the set

of all paths that could be taken according to a naı̈ve control-flow analysis that does not

consider any data-flows. The paths computed by the latter analysis, but not found in the

former graph, are then reported along with a justification why they were not taken.

The rationale underlying this approach is that many issues such as null dereferences or

array index out of bounds accesses lead to executions that leave infeasible paths behind.

1 Technische Universität Darmstadt, Fachbereich Informatik Fachgebiet Softwaretechnik, Hochschulstraße 10,

64289 Darmstadt, eichberg@cs.tu-darmstadt.de
2 hermann@cs.tu-darmstadt.de
3 mezini@cs.tu-darmstadt.de
4 glanz@cs.tu-darmstadt.de



64 Michael Eichberg et al.

Hence, the hypothesis underlying the approach is threefold. First, in well-written code

every path between an instruction and all it’s direct successors is eventually taken, and,

second, a path that will never be taken indicates an issue. Third, a large class of relevant

issues manifests itself sooner or later in infeasible paths.

Though we opted for analyzing the code as precisely as possible, we deliberately limited

the scope of the analysis to make it scalable. We start with each method of a project and

then perform a context-sensitive analysis with a very small maximum call chain size. This

makes the analysis unsound – i.e. we may miss certain issues – but it enables us to use it

for large industrial sized libraries and applications.

To validate our approach we analyzed the Java Development Kit (JDK 1.8.0 25) and also

the applications of the Qualitas Corpus [Te10]. The issues that we found range from seem-

ingly benign issues to serious bugs that will lead to exceptions at runtime or to dead fea-

tures. However, even at first sight benign issues, such as unnecessary checks that test what

is already guaranteed, can have, e.g., an impact in code reviews such code generally hin-

ders comprehension.5

2 Conclusion

The proposed approach is based on the idea that infeasible paths in software are a good

indication of code issues and that a large class of relevant issues manifest themself sooner

or later in infeasible paths. The implementation relies on a new static analysis technique

that exploits abstract interpretation and is parametrized over abstract domains as well as the

depth of call chains to follow inter-procedurally. This enables us to make informed reason-

able trade-offs between scalability and soundness. The validity of the claims is evaluated

by doing a case study of industrial size software; the issues revealed during the case study

constitute themselves a valuable contribution of the paper and are publicly available.

References

[CA01] Cyrille, A.; Armin, B.: Applying Static Analysis to Large-Scale, Multi-Threaded Java
Programs. In: Proceedings of ASWEC ’01. IEEE Computer Society, 2001.

[Co06] Cole, B.; Hakim, D.; Hovemeyer, D.; Lazarus, R.; Pugh, W.; Stephens, K.: Improving
Your Software Using Static Analysis to Find Bugs. In: Companion to OOPSLA ’06.
ACM, 2006.

[Co09] Cousot, P.; Cousot, R.; Feret, J.; Mauborgne, L.; Miné, A.; Rival, X.: Why Does Astrée
Scale Up? Form. Methods Syst. Des., 35(3):229–264, December 2009.

[GYF06] Geay, E.; Yahav, E.; Fink, S.: Continuous Code-quality Assurance with SAFE. In: Pro-
ceedings of PEPM ’06. ACM, 2006.

[Te10] Tempero, E.; Anslow, E.; Dietrich, J.; Han, T.; Li, J.; Lumpe, M.; Melton, H.; No-
ble, J.: Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies. In:
APSEC2010. 2010.

5 The tool and the data set are available for download at www.opal-project.de/tools/bugpicker.


