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Modeling Digital Shadows in Manufacturing Using Process
Mining

Tobias Brockhoff1, Merih Seran Uysal2, Wil M.P. van der Aalst3

Abstract: Friction in shopfloor-level manufacturing processes often occurs at the intersection of
different subprocesses (e. g., joining sub-parts). Therefore, considering the Digital Shadows (DSs) of
individual materials/sub-parts is not sufficient when analyzing the processes. To this end, holistic
views on shopfloor-level processes that integrate multiple DSs are needed. In this work, we discuss how
material-centric DSs supported by discrete assembly events can be integrated using techniques from
process mining. In particular, we propose to utilize DSs that contain additional structural information
to overcome the main challenges of concurrency and the presence of many different objects.
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1 Introduction

With the advent of Industry 4.0, Digital Shadows (DSs) become increasingly important for
decision-making in production. At the same time, companies collect increasing amounts of
data on their operational processes. Despite the importance and feasibility in terms of data
availability, realizing compatible DSs, which can be integrated and linked to create new
insights, often remains difficult. To facilitate the use and create a common foundation, a DS
meta model has been proposed in [Be21] (see Fig. 1). Still, implementations can become
very and specific, and, therefore, realizing DSs remains difficult. For example, predicting
waste for a machine can require to consider and fuse many different sensors and models.

In our research, we focus on general-purpose DSs that exist on the shopfloor-level of manufac-
turing processes—namely,DSs of assembly executions andDSs of sub-components/materials
composition as well as production line plans. In particular, we consider assembly execution
DSs built on discrete event data (e. g., assembly activity events). To gain insights into
the production process, the DS on the assembly execution and the structural material
composition for multiple products need to be combined. To this end, we use techniques
from Process Mining (PM) which is an emerging discipline that leverages event data to
improve processes.

In PM, there are three major concepts: events, cases, and process models. Events are
recordings of discrete business operations and their time of occurrence. Multiple events
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(e. g., events related to a product) constitute a case. Finally, process models describe the
behavior of a process. As depicted in Fig. 1, these concepts perfectly align with the meta
model proposed in [Be21]. However, from the PM perspective, there are two main challenges
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Fig. 1: Alignment of process mining concepts (blue) with the entities of the Digital Shadow (DS)
concept model proposed in [Be21] (black).

for integrating the DSs: concurrency and object-centricity [Aa21]. Sub-materials can be
assembled concurrently, and, when analyzing the performance of shopfloor-level processes,
we can consider either the sub-materials or the product as case notions. When selecting the
product as the case, the events related to its sub-materials may arbitrarily interleave; while,
when selecting the materials as the case notion, friction at the intersection of materials
remains unnoticed. In our research, we investigate bridging the gap towards a comprehensive
production model by leveraging additional sources of information—namely, structural DSs
on material composition (e. g., bill of materials) or the assembly line (e. g., assembly line
plans). We thereby address the following research questions:

RQ1 How can dynamic DSs of process executions be combined with structural DSs of
material composition and production lines?

RQ2 How can we create a performance-aware DS of a production line that reveals friction
particularly at the intersection of subassembly boundaries?

While the first question focuses on modeling production lines, the second question targets
the enhancement of this model such that it realizes the purpose of performance monitoring.

2 Related Work

Digital Shadows and Twins in manufacturing are increasingly gaining attention. Key
applications are production planning (e. g., by simulation), control, and optimization [Kr18].
In this regard, one approach to describe shopfloor-level activities is by means of discrete
events (e. g., events for starting or completing assembly activities). Discrete event simulation
can then be applied to plan and optimize the process [KA16; YAL16]. While the required
accurate process models would be valuable for a data-driven performance analysis, such
models often do not exist. Moreover, tuning the parameters (e. g., service times) to obtain
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Fig. 2: Exploiting additional structural information to overcome the challenges of concurrency and
object-centricity. We propose (blue snake line) to structure and integrate Digital Shadows (blue) for
different assets (gray) by exploiting DSs on structural production information.

precise models is often tedious. In our research, we focus on the reverse direction, that is,
given event and additional structural data, a model of the manufacturing process is built.
Using this model, we generate unbiased performance assessments based on real data.

Within the last decade, there have been numerous works on the application of PM for
manufacturing processes. Overviews over the potential of PM to improve manufacturing
processes and how PM has already been applied can be found in [Aa20; DRG21]. Its focus on
the actual dynamics distinguishes PM from classical process mapping that shows statically
aggregated data [Lo21]. For example, it can show differences between the designed work flow
and the as-is production [Lo21]. However, purely event data-drivenmodel discovery becomes
infeasible for large processes. Consequently, these works resort to process-global statistics
such as the number of activities in progress or cumulative delay [Pa15]. Process models
are only used within limited process scopes. To analyze processes based on comprehensive
models, we exploit additional manufacturing-specific information.

3 Methods

In our research, we strive to create comprehensive views on shopfloor-level processes. To
this end, we leverage event data generated on the shopfloor as well as additional structural
information. Conceptually, we create a new DS that combines event data-based DSs of
the process executions with DSs that contain structural material models (e. g., Multi-level
Manufacturing Bills ofMaterials (M2BOMs)). Techniques from PM thereby help to integrate
highly dynamic event data and rather rigid structural models. In particular, using concepts
from process mining and information from the structural DSs, we first discover a behavioral
model—i. e., a process model—of the manufacturing process. Afterwards, we use PM to
enhance the discovered model by performance information creating a performance-aware
DS of the production. An illustration of our approach is depicted in Fig. 2. We start from
DSs of material and subpart assembly execution that are built on and instantiated by discrete
event data (i. e., events of assembly activities). Gaining insights into the process then
requires to integrate the obtained DSs. However, the integration faces two major challenges:
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concurrency and object-centricity [Aa21]. In our research, we exploit DSs that contain
additional structural information to disentangle shopfloor-level manufacturing processes.
Such models can either be manufacturing line models that disentangle the concurrency of
assembly lines or material composition models. Due to physical constraints, it can usually
be assumed that the data conforms to the model (e. g., products cannot skip stations at
the conveyor belt). For example, in [Uy20], we modeled a car manufacturing process that
consists of a general assembly line where some stations depend on concurrent sub-assembly
lines. We used the model to replay the event data to compute KPIs (e. g., waiting or idle
times) and visualized the evolution over time. While direct modeling is feasible for highly
structured processes, it quickly becomes infeasible if the product flexibility increases. In
this case, information on the material composition can help to disentangle and, eventually,
model the process.

The resulting DS can be visualized, thereby, enabling a backward-looking analysis of the
process that can reveal systematic production problems. Moreover, it can be used to query
specific production KPIs.

Exploiting Structural Domain Information A common type of material composition
information are M2BOMs. M2BOMs organize the materials built into a product in trees.
Vertices correspond to materials whose assembly depend on the assembly of their child
materials. The root vertex is the final product. Depending on the product, M2BOMs
contain hundreds of materials. For such large processes, in particular when subparts are
assembled concurrently, automatic model discovery usually fails to find understandable
models. Compared to the underlying highly-structured M2BOM, the models are either
unstructured and ‘spaghetti’ or overly general. This problem is worsened by products
having similar but not necessarily equal M2BOMs (e. g., certain materials are optional,
or there might be a choice between different configurations). In [Br21], we investigated
how M2BOMs can be exploited to comprehensively model manufacturing processes for
the purpose of performance analysis. We start with a collection of M2BOMs and, targeting
RQ1, output a M2BOM-like process model. The latter is a tree that contains all materials
from the input collection as well as optional materials, material choices, and additional
material groupings (e. g., a choice between two material groups). Moreover, each material
is endowed with an assembly task vertex that subsumes all activities related to its direct
assembly. An example output for the offset printer manufacturing process introduced in
[Br21] is depicted in Fig. 3 which shows all occurring (anonymized) materials as well as
optional materials and choices between materials. The performance-aware coloring shows
process-global bottlenecks as well as differences between similar materials.

Conceptually, we obtain the model by merging M2BOMs. Based on counting arguments, we
automatically identify shared materials and potential choices. The latter are then resolved
manually as the resolution can be ambiguous. For example, consider two infrequent features
that never occur together. It does not per se clear that these features are mutually exclusive.
Since the so-obtained model has a direct correspondence to a process model (i. e., a process
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Fig. 3: Overall offset printer manufacturing process model with collapsible vertices. Each vertex
corresponds to a material. Special vertices are dedicated to optional materials (blue dashed), choices
(×), and assembly tasks (red vertices). The color depicts the cumulative material assembly time.

tree), it can be endowed with performance metrics derived from replaying the event data.
Considering RQ2, this enables to use the model to detect performance problems. Since
the model comprehensively integrates all materials, it can also be used to compare similar
materials across the model as well as to analyze relations between parent and child materials.

4 Challenges and Conclusion

In this work, we presented our research on realizing performance-aware Digital Shadows
(DSs) of shopfloor-level manufacturing processes. To this end, we propose to complement
techniques from ProcessMining (PM) by additional structural data to alleviate the challenges
of concurrency and object-centricity. In doing so, we can visualize processes even if standard
automatic model discovery fails. In future work, we aim to generalize our work to other
sources of structural information. Considering the performance analysis, a major challenge
lies in integrating additional process context into the model. While, in process model
notations commonly used in PM, different orders are independent, this does not hold in real
life. We therefore require models that capture the process context. Moreover, our current
work only enables a backward-looking analysis. Even though this is sufficient to yield
insights into systematic problems, it does not allow to react to and recover from real-time
problems. The latter requires to continuously update the model turning it into a Digital Twin
of the assembly line. While techniques from PM facilitate integrating dynamic performance
updates with respect to the event data, structural updates can become more challenging.
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