
Enhancing Business Intelligence with unstructured data

Alexander Lang, Maria Mera Ortiz, Stefan Abraham

Advanced Analytics Development

IBM Research and Development Germany

Schoenaicher Str 220

71032 Boeblingen

alexlang@de.ibm.com

mmera@de.ibm.com

stefana@de.ibm.com

Abstract: Quality early warning and proactive customer churn detection are two

examples of applications that can benefit from insights gained from unstructured

text data. The term “Unstructured Business Intelligence” describes methods and

tools that enable data warehouse applications to use unstructured information. This

article introduces the key components of Unstructured Business Intelligence and

describes its realization within IBM InfoSphere Warehouse Enterprise Edition.

1 Unstructured Business Intelligence

1.1 Motivation

In a recent TDWI survey [Ru07], data management professionals were asked Which

types of data and source systems feed your data warehouse three years from now? The

respondents expected a huge increase in unstructured data as a source of warehouse

information in the next three years. This included email, call center transcripts,

documents from content management systems, and extranet content from forums or

blogs.

This article will show how text analysis technology can transform this unstructured,

textual data into meaningful pieces of information that can be used within Business

Intelligence applications. Unstructured data can improve the quality of existing BI

analytics, or, in some cases, is the key enabler for new types of insights. Typical

business scenarios include:

469



• Improve Quality Early Warning: Internal problem reports, customer email or

call center transcripts can yield valid information about emerging product

problems. Today, companies try to capture these insights using a fixed set of

categories within “problem taxonomies”. Such taxonomies typically suffer from

granularity problems: if they contain only high-level categories, they can’t

capture the actual reason for a problem. However, if they try to capture all

possible problems, they become too unwieldy to use for front-line workers, who

just stick to the categories they know (especially in a high-stress environment

such as a call center). Thus, the actual reason for a defect is often buried within

technician comments or call center logs. As a result, a company may detect that

there is a problem with a certain product, but doesn’t know which part causes

the problem, and therefore can’t take the right action: deciding on a product

recall, or checking other products that use the offending part. On the contrary,

Figure 1 shows a sample report showing correlated terms extracted from

customer complaints for a certain car model, which provides direct insight in

likely problem spots.

• Reduce customer churn: Companies in the telecommunication sector already

have elaborate predictive analytic models for customer churn, based on

structured data. However, once the customer’s unhappiness with a certain

service shows up in the structured data (for example, a decline in the number of

long-distance calls made), it may already be too late. By analyzing each

customer contact with the company, be it email or call center records, a

company can earlier detect angry, unhappy customers, or customers that

explicitly reference a competitor, and include that into their churn model. This

allows for taking action at the first sign of customer discontent.

• Reputation management: Blogs, news articles and consumer portals

increasingly affect customer’s buying decisions, especially for consumer goods.

Analyzing this extranet content helps to answer questions like How do people

talk about my company and my products – compared to my competition? or

What companies are associated with “cool” technology? – for example, hybrid

technology in the automotive domain. This can serve as an “External Quality

Early Warning” system, as not every unhappy customer bothers to write to the

company, but whose forum entries may turn away quite a few prospective

customers.

470



Figure 1: Analysis of automotive customer complaints

In all of the above scenarios, text is the main type of unstructured data. There may be

the need to analyze semi-structured text, i.e. text containing markup elements like XML,

or other data types of audio and video. However, we see that the bulk of content that is

relevant for today’s applications comes as free-form text from technician notes, customer

comments through CRM applications or email, or relevant snippets from news services.

Thus, the remainder of this article will focus on this type of text.

1.2 Definition: Unstructured Business Intelligence

Using text data for Business Intelligence comprises three steps:

1. Introduce dedicated text analysis components into the ETL flows that feed the

data warehouse. These text analysis components extract information from the

unstructured data, such as product names, product codes, indicators for

problems or expressions of customer sentiment.

2. Enrich existing warehouse schemas and cube definitions with additional

columns or dimensions for the extracted information. This requires that the text

analysis technology delivers results that can be readily integrated into a

relational schema.

3. Use the existing BI infrastructure on the enriched warehouse. Ideally, reporting,

data mining and predictive analytics should not need to care that the additional

information was originally extracted from an unstructured source.

We use the term Unstructured Business Intelligence (or Unstructured BI) to describe

methods and tools that enable data warehouse applications to use unstructured

information. This includes

471



• Text analysis components that extract information with sufficiently

high quality to be used by automatic downstream processing.

• Approaches to create efficient relational schemas for text analysis

results that enable both reporting and data mining.

• Analytics components that can combine structured and previously

unstructured data to yield better results and more insight.

Unstructured Business Intelligence includes approaches that are often described as Text

Mining. However, we think that text mining has too close a connotation with data

mining, and leaves out important aspects such as data preparation, relational schema

building and the use of text in “traditional” business intelligence reports.

1.3 Challenges

Using textual data in Business Intelligence presents some challenges to “typical” data

warehouse infrastructure. Typical requirements include:

• Dealing with misspellings and acronyms: In a project with a

Telecommunications customer, we started with an Excel sheet that contained

the names of products, call tariffs and contract options. However, this sheet

didn’t include the variants used by call center employees. Adding these

company-specific acronyms, for example NOK for Nokia, more than doubled

the number of concepts that got extracted from call center records. Moreover,

robust text analysis technology is required to deal with frequent misspellings

(e.g. Nioka).

• Advanced data cleansing: Especially dealing with extranet content requires data

cleansing and preprocessing capabilities that are typically beyond the

capabilities of “traditional” cleansing products. For example, analyzing hotel

reviews from sites such as tripadvisor [Tr08] requires to focus only on the

actual customer reviews, not on the advertisements or the description provided

by the hotel itself. Increasingly, this data cleansing becomes a “make or buy”

decision, with companies such as kapow technologies [Ka08] offering screen

scraping tools and content feed services that provide such targeted information.

• Confidence values: Text analysis sometimes lacks the context to decide on

ambiguous terms. For example, the acronym WPS may refer to either IBM

WebSphere Portal Server or IBM WebSphere Process Server. Some text

analysis components are able to attach confidence values to the extracted

information. However, there are currently few BI algorithms that make use of

this information.

472



• Agile text analysis configuration: Text analysis technology typically has to be

adapted to each domain, enterprise, and business scenario. Product names must

be imported from Excel sheets or product databases and enriched with

company-specific variants. Regular expression rules need to be created for

product codes, taxonomies need to be developed for relevant topics. The key

item for the success of an Unstructured BI project is the buy-in of domain

experts and business users. Only they are able to provide the insights necessary

for configuration. The IT department may take over some of the tasks (e.g.,

writing regular expressions), but only the business users know the relevant

“business lingo”. Hence, a potentially large user group must be able to

influence the configuration in an agile manner. Otherwise, the resources will

become outdated, yielding inferior results, and eventually, user rejection of the

whole solution.

2 Text analysis: from text to structure

2.1 Information Extraction

Information Extraction is an area of natural language processing that is concerned with

extracting concepts (so called entities) and relationships between these concepts from

unstructured text. These results lend themselves for storing within a relational database,

and are thus more relevant to Unstructured BI than technologies such as document

clustering or classification. Relevant information extraction tasks are:

• Named Entity Recognition (NER): extract person or place names, monetary

expressions, problem indicators

• Relationship Detection: detect relationships, based on named entities, such as

part X causes problem Y

• Co-reference resolution: identify expressions across a document that refer to

the same entity, such as the hotel Best Western in I liked my stay at the Best

Western. It has very bright rooms. The hotel also features…

2.2 List-based and rule-based named entity recognition

Named Entity Recognition tasks are of varying complexity: The Grosvenor Inn did not

meet my expectations contains both a hotel name and a negative customer sentiment.

Whereas the hotel name can be detected by a match against a fixed list of hotels, the

correct analysis of the negative sentiment requires some grammatical understanding to

correctly pick up the negation.

473



One approach to Named Entity Recognition is list-based extraction. This is advisable for

entities that can be exhaustively listed, such as employee names (taken, for example,

from the company LDAP), or product names and their attributes. Some domains, such as

Life Science already have “official” domain vocabulary, e.g. SnoMed CT [Sn07].

One advantage of list-based extraction is that it often comes from “trusted” sources. That

means its creation and maintenance can be automated to a certain degree, e.g. by doing a

“batch update” every time new products are introduced. Moreover, the extraction results

are immediately plausible to the end user: the machine detects exactly the terms that are

in the list. As mentioned earlier, the most labor-intensive part in using list-based

extraction is the enhancement of the list with company-specific variants and acronyms.

Some types of entities, such as telephone numbers or monetary expressions can’t be

listed exhaustively. For these entities, rule-based extraction is the proper approach.

These may either be regular expression rules over characters, or higher-level rules, such

as regular expressions over previously detected entities. One advantage of rules is

generalization: one rule may cover a large range of entities. Another advantage is that

rules can take the document context into account. This is crucial for tasks like sentiment

detection, where a negation word such as “not” flips the sentiment of a whole sentence.

The key challenge for rules is their complexity: users need help to create and maintain

rules. For many people, writing regular expressions is as obscure as programming in

Java – but these are often the people with the appropriate domain knowledge. Hence,

configuration tooling is necessary that hides the intricacies of linguistics and rule

languages from non-technical users. For complex tasks such as sentiment detection,

even that is not enough. Creating the syntactical rules necessary for negation and other

sentiment-affecting phenomena will overwhelm non-Linguists. In these cases, a

combined approach is in order: the solution contains pre-packaged grammar rules, which

are not meant to be changed by business users, but lets users modify the list of positive

and negative terms, or the products and product features that should be related to an

extracted sentiment.

474



2.3 Using BI analytics for Information extraction tasks

In “traditional” computational linguistics, relationship detection and co-reference

resolution is often approached through elaborate rule sets. However, such rule sets are

often very specific to a particular domain, or assume a formal writing style that often

does not exist in the type of text relevant for Unstructured BI. In our experience, it is

often beneficial to accept some loss in extraction precision for higher robustness against

“real-world” text. This can be achieved by relying on co-occurrence heuristics and

statistics, and lends itself easily to the machinery available within existing BI

components. Relationship detection between parts and problems can be done by

extracting parts and problems through NER, and applying data mining, namely,

Association rule mining [AIS93], on the result to find parts and problems that occur

within the same document in a statistically significant amount. Co-reference resolution

can be done by associating all product features or customer sentiments within a certain

document snippet to the concept (e.g., the hotel) found within that snippet. The right

snippet length may vary from one sentence up to a paragraph, depending on the type of

document, e.g. a consumer forum vs. a website with product reviews.

2.4 Decision factors for choosing information extraction technology

In general, choosing the right set of information extraction components depends on:

• Business scenario: How complex are the entities that need to be detected? For

example, a purely quantitative analysis of product mentions in a call center

doesn’t require as elaborate processing as detecting dissatisfied customers

within the same documents.

• Configuration effort: As stated in chapter 1, text analysis needs to be adapted to

an enterprise, with business users playing a key role in the process. Do the

expected business improvements merit the (ongoing) configuration effort for

the desired technology?

475



• Focused vs. explorative solution approach: In a focused solution approach, the

goal of the text analysis configuration is to extract the relevant concepts with

high precision. This requires more effort for creation and testing the

configuration, but allows the downstream BI analysis users to pose specific

questions like: Show the top 10 car parts that occur in repair reports for

automobile make X. In the explorative solution approach, text analysis detects

terms in a very broad fashion, and doesn’t attempt to match them against a

certain concept, for example, by detecting all combinations of an adjective,

followed by a noun. This requires more elaborate statistical analysis or data

mining post processing to detect statistically significant concepts and

relationships. Still, the results may show irrelevant terms, and the user can’t do

a concept-driven drill down like in focused solutions. However, an explorative

solution is more suited for “open-ended” questions like What are the causes for

failure X? where the root cause may be a car part, a certain tool used, or even a

certain repair shop. Moreover, such an approach keeps the text analysis

configuration effort to a minimum, and is able to pick up emerging concepts on

the fly, without the need for a human to add them to a list of concepts.

3 Unstructured Information Management Architecture (UIMA)

3.1 Motivation

Scenarios such as company reputation management typically require a set of text

analysis components to work together. For example, customer satisfaction analysis in the

hospitality sector requires both list-based extraction to detect hotel names and hotel

amenities, and rule-based extraction to detect customer sentiment. Chances are that the

expression Best Western Shanghai will be tagged correctly as a hotel name, but the term

best may trigger a positive sentiment rule as well, so that Best Western is tagged as a

customer sentiment. To spot these inconsistencies, and apply subsequent cleansing steps

such as remove all customer sentiments that are totally included within a concept, the

text analysis components must represent their results in a common way. Moreover, a

framework should manage the task to orchestrate different analysis components (which

may come from different sources), rather than forcing solution builders to re-implement

these capabilities.These requirements were the driving force behind the Unstructured

Information Management Architecture (UIMA). UIMA is a software architecture that

supports the rapid development, integration and deployment of unstructured information

management technologies, including, but not limited to, text analysis [UI04]. UIMA

started as an IBM initiative, but has now gone open source, and is enhanced through the

Apache community [UI08]. The UIMA Working Group is a network of scientific

organizations and companies that use UIMA in research projects and professional

development.

476



3.2 Core concepts

Analysis Engines are the central building blocks within UIMA. An analysis engine

contains one or more annotators, each implementing one specific text analysis

functionality, or other analysis engines. This recursive packaging allows to build

complex analysis engines out of simpler ones.

Analysis Engines work off a common data structure, the Common Analysis Structure

(CAS). Each analysis engine stores its results within the CAS as typed feature structures.

Annotations are a special subclass of feature structures. They contain a specific start and

end position within a document and lend themselves easily for specifying information

extraction results, e.g. as a Hotel annotation that covers positions 5 to 26 in the document

The Best Western Shanghai welcomes you. This open data representation allows

individual teams to develop an analysis step that is “best of breed” in what it’s doing,

and which builds on results delivered through prior annotators rather than recomputing

them. Figure 2 shows several annotators working together for named entity recognition,

grammatical parsing and relationship detection. Note that the Relationship Annotator can

detect relationships without looking at the actual document text, but by analyzing pre-

existing concepts and grammar.

Figure 2: UIMA analysis process

3.3 Text analysis configuration workflow

UIMA aims to ease the integration of text analysis components, but does not provide text

analysis configuration capabilities suitable for business users. Figure 3 describes this

configuration as an iterative, ongoing process, with the following distinct phases:

477



Explore Data: The goal of this step is to understand “what’s in the data”, and to

understand whether the textual data can actually help with the business problem. Tools

that support the domain expert in this step are components that suggest potentially

relevant terms from the documents, based on document statistics. Another way to

explore the data are text search queries. The results may contain “signal terms” that can

be used in regular expressions to improve their quality, or, by using fuzzy search, to find

frequent typos and variants to include into dictionaries.

Create configuration: In this step, the domain expert decides on the extraction

approach to use (e.g., rule-based vs. list-based) and creates the appropriate resources.

This step requires easy-to-use editors, which are able to re-use the insights gained in the

explore data step.

Evaluate: In this step, the domain expert examines the effectiveness of the rules and

lists on sample, real-life data. This requires tools to run the analysis and to compare

results, which is important to gauge the impact of configuration changes.

Deploy: In this step, the created rules and resources are deployed to the target system.

Note that this is the only step that does not require any business users, but should be

done through the IT department.

Monitor: In this step, feedback obtained in the production system over time must be

applied to the resources to ensure that the configuration remains up to date. This is

especially relevant in the focused solution approach. Monitoring the extraction recall

through BI reports (e.g., How many products have been detected on average per call

center transcript) can help detect concept drift: emerging concepts that are not reflected

in lists or rules, and thus decrease the overall recall.

The domain expert in the process must be familiar with the business goals of the

unstructured BI initiative, and with the documents that are to be used. He must work

with front-line employees creating these documents to capture company-specific jargon.

Figure 3: Text analysis configuration workflow

478



4 Unstructured Business Intelligence with InfoSphere Warehouse

4.1 InfoSphere Warehouse Enterprise Edition

InfoSphere Warehouse Enterprise Edition [In07] is a complete solution to design and

build an enterprise data warehouse. In addition to “traditional” ETL and OLAP cube

modeling, it provides integrated data mining and visualization. The data mining

capabilities cover both discovery analytics through association analysis, sequential

patterns and clustering and predictive analytics through various classification and

regression algorithms.

Building up a suitable warehouse through ETL steps or creating and visualizing a data

mining model for business insight is done graphically by defining flows within the

Design Studio, an Eclipse-based design environment. These flows contain operators that

either represent SQL commands or higher-level tasks such as text analysis. They are then

deployed to a flow execution environment within IBM WebSphere Application Server.

Depending on the operator, the actual tasks are pushed down to the underlying database,

or executed as Java components with the application server.

4.2 InfoSphere Warehouse enhancements for unstructured BI

InfoSphere Warehouse 9.5 introduced key capabilities for Unstructured BI. First of all,

text analytics became a first class citizen within ETL flows by introducing three new

flow operators:

• Dictionary lookup runs a UIMA analysis engine for list-based extraction. It

performs linguistic preprocessing of the text for more than 20 languages to

make sure that plural forms or inflections of concepts are also detected. This

way, a list entry for "wiring harness" also detects "wiring harnesses" and "wire

harness", and “Fertighaus” also detects “Fertighäuser” (German for pre-

fabricated home). Note that a simple “stemming” approach to plural detection,

which simply cuts off word endings, would have problems matching the

resulting stem Fertighäus- back to Fertighaus.

• Regular expression runs a UIMA analysis engine for rule-based extraction. It is

capable of detecting concepts based on regular expressions over characters.

Expressiveness and syntax conform to the java.uti.regex.Pattern class of Java 5

[Ja08]

• Text analyzer runs a custom UIMA analysis engine. This analysis engine may

have been custom-built for a certain solution, or can be an analysis engine

provided by other IBM products or the Apache community.

Above operators process the text contained in a CHAR, VARCHAR or CLOB column of

a database table, and produce one or more output columns.

479



To create dictionaries and regular expression rules, the Design Studio was enhanced with

dedicated editors that hide the underlying linguistic processing, or the actual rule

language from the domain expert. A taxonomy editor allows assigning the extracted

concepts to higher-level categories. This is especially relevant when using text analysis

results in an OLAP context, as it allows describing additional aggregation levels over the

extracted concepts. For example, a dictionary with IT terms like Java and Windows

enables a report like “What are the TOP 10 IT terms?”. However, creating a taxonomy

with the paths IT-Skills -> Programming Languages -> Java and IT-Skills -> Operating

systems -> Windows, allows for reports like What are the Top 10 IT-Skills? or What are

the Top 10 programming languages?. By separating the taxonomy from the dictionary,

different applications can impose their “view” on the extracted concepts, without

requiring any changes to the text analysis itself.

The configured analysis engines run as Java components within the application server.

Several analysis engines can run in parallel on the same database table to enhance

document throughput.

5 Example scenario: Quality Early Warning

The Office of Defects Investigation is an office within the National Highway Traffic

Safety Administration (NHTSA) in the United States. It maintains a web site where

consumers can file complaints about vehicles, equipment (e.g., motorcycle helmets),

child restraints or tires [Od08a]. The contents of the complaint database are publicly

available and contain 511,068 unique complaint records. Each record contains 46

structured fields, plus an unstructured complaint description, which can contain up to

2048 characters [Od08b]. As Figure 4 shows, the complaint description has some

“typical” characteristics for unstructured database content: it is in all-uppercase format,

and does not exceed one paragraph in length.

Figure 4: Sample complaint description

While the structured fields contain descriptive information about the complaint, such as

whether the vehicle was involved in a crash, or the number of people injured, they

contain little information that point to the cause of the problem. The complaint may be

categorized, but categories like TIRES, AIR BAGS and OTHER are not granular enough

to describe the problem adequately.

This example scenario shows how InfoSphere Warehouse can extract relevant

information from the complaint descriptions, which allows business analysts to

investigate potential causes of problems for certain vehicles. In this example, the Quality

Early Warning application is built as a set of reports within IBM Cognos 8 BI server. As

the results of both text analysis and subsequent data mining are stored in relational

tables, the application could be implemented in any BI tool, or custom application.

480



5.1 Text Analysis Configuration

In the Explore Data phase, we use InfoSphere Warehouse to find frequent terms within

the complaint descriptions. These terms are extracted based on grammatical patterns

such as Noun-Noun or Adjective-Noun. The domain expert selects the appropriate

patterns, and InfoSphere Warehouse shows the results in a list or a cloud view, as in [Fig

X]. In our example, we focus on grammatical patterns that match car parts, such as Noun

(e.g., engine) or Noun-Noun (e.g. windshield wiper). As the underlined terms in figure 5

show, the results of frequent term analysis with above patterns would provide a good

starting point for creating a dictionary with car parts. A domain expert could select

relevant terms, add them to a dictionary, and enrich the entries with additional variants.

Figure 5: Frequent noun-noun combinations

However, in the example scenario, we chose to take an explorative solution approach.

Rather than creating a dictionary specifically with car parts, we add all extracted noun-

noun combinations and single noun combinations to a dictionary. Hence, the Create

Configuration phase merely consists of a single mouse click on the Create Dictionary

button shown in figure 5. This approach yields a sizeable list of entries, but the

dictionary lookup operator compiles this list into an efficient binary representation,

which provides a lookup time linear to the length of the lookup term, not linear to the

length of the list, as in a naïve implementation. This allows to process several documents

per second, even if the list grows to hundreds of thousands of entries.

481



In an explorative solution approach, the evaluate phase is used to check whether the

dictionary contains entries from all relevant grammatical patterns. Depending on the

document content, it may be beneficial to create additional dictionaries containing verbs

that signify actions, or adjectives that describe some product features or circumstances.

Figure 6 shows the result of dictionary lookup on a sample complaint. The tab Analysis

Results contains an aggregated results view, which shows how many terms got extracted

for each document. This allows the domain expert to gauge the recall of the current

configuration, and to specifically check documents that contain zero or few results

whether they contain terms that are not captured by the current configuration. On the

other hand, documents with an exceptionally high number of terms may point to

“stopwords” that are contained in the dictionary.

Figure 6: Text analysis result overview

In the Deploy phase, the created dictionary is used within a Dictionary Lookup operator

of an ETL flow (figure 7). The text column CDESRC from the complaints database is

connected to the input port of the dictionary lookup operator. This operator is configured

to use the dictionary created in the evaluate step, as seen on the properties tab. The result

is a table that contains one record per extracted term. The column CMPLID from the

original table is routed through the operator as a join key with the original complaint.

482



The result table can now be used within a Business Intelligence application such as IBM

Cognos 8 BI server. For the example, we chose car manufacturers, car models and the

term list as dimensions for the data cube. This allows the domain expert to start with an

overview how many complaints exist for each manufacturer. She can then drill-down to

the car models of a certain manufacturer to see models that have a high number of

complaints. Up to this path, the information is derived solely from the existing structured

information. A further drilldown to a certain car model yields the insights gained from

analyzing the car complaints. Figure 8 contains a report that shows the most frequently

occurring terms for the car model Ford Taurus. However, showing only the most

frequent terms for a particular model is not enough: entries such as CAR occur across

all complaints, and don’t yield insight. This underlines our statement made in chapter 2:

the explorative solution approach needs analytical post processing of the results to detect

terms that are correlated with the subject under discussion, in this case, the Ford Taurus.

Figure 8: Most frequent terms in complaint descriptions for Ford Taurus

Figure 7: Text analysis ETL flow

483



5.2 Combining text analysis and data mining

To find correlated instead of frequent terms in our example, we use Associations

analysis that is part of InfoSphere Warehouse Data Mining. The goal of association

analysis is to find items that are consistently associated with each other in a statistically

significant way [AIS93]. Association analysis is typically used for Market-Basket-

Analysis, which analyzes purchase transactions to discover combinations of goods that

are often purchased together.

In our scenario, the goal of the association mining function is to find terms that are

highly correlated with a certain car model. The results are rules of the form

[rule body] ==> [rule head], e.g. [ventilator oil] ==> [TAURUS]. Figure 9 shows a flow that

uses the text analysis results to build an association rule model. This model is built

within all models of a certain car make (e.g. Ford), and attempts to find terms that are

highly correlated with a certain model (e.g., Taurus). The latter is done by applying a

rule filter that only accepts rules that contain Taurus in the rule head.

The extractor operator shown in figure 9 stores the detected rules back into a relational

table. This way, the results can be visualized with “traditional“ BI, and both

administrators and users of BI applications don’t need to be aware that the results were

detected using data mining.

Figure 1 contains a report that shows the most correlated terms for Ford Taurus, as

detected by association analysis. The terms are much more specific – “stopwords” such

as car and vehicle do not occur anymore. Many of the results focus around the coil

spring, with both front coil [spring] and rear coil [spring] being affected. The second

problem spot appears to be certain mounts, such as the motor mount or the subframe

mount. The domain expert can now drill down into the actual documents that contain a

certain term to understand whether there indeed is a problem.

The goal of this example scenario is not to take the business user completely out of the

loop, but to keep down the information that (s)he has to consume to a manageable size:

instead of reading through all 14000 complaints for the Ford Taurus, the business analyst

can focus on the 80 that contain the term body mount. If the resulting document set is

still too large (e.g. for coil spring, which still yields 1200 documents), the domain expert

can focus on a sample set, or do a further drill-down on the term. This drill-down action

triggers the creation of a new association model for the documents that contain, say, coil

spring. The base set used to derive the association rules is now the set of all Taurus

documents, not the set of all Ford documents. This way, the system can guide the user

along relevant, correlated terms to specific “problem spots”.

Figure 9: Using association analysis to detect correlated terms

484



6 Summary

The data warehouse will experience a paradigm shift in the coming years: structured data

remains important, but the ability to harness unstructured data will become key to

support and enhance new business intelligence applications. This article has introduced

the term Unstructured Business Intelligence to describe the methods and tools necessary

to integrate unstructured data into the warehouse. In the context of a Quality Early

Warning scenario, the article showed how IBM InfoSphere Warehouse enables building

Unstructured BI applications. Unstructured BI includes text analysis components that

perform information extraction, and tools and processes that allow the agile

configuration of these components. But the work doesn’t stop there: advanced data

cleansing approaches and downstream analytic steps that can combine structured and

previously unstructured data are equally relevant to deliver a complete Unstructured BI

solution.

7 References

[AIS93] Agrawal R., Imielinski T, Swami A: Mining Associations between Sets of Items in

Massive Databases. In Proceedings of the 1993 ACM-SIGMOD International

Conference on Management of Data, 1993; pp. 207-216

[In07] Official product page:http://www.ibm.com/software/data/db2/dwe/enterprise.html

[Ja08] J2SE 5 documentation:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

[Ka08] Kapow Technologies, http://www.kapowtech.com

[Od08a] ODI home page: http://www-odi.nhtsa.dot.gov/index.cfm

[Od08b] Database schema is available at

http://www-odi.nhtsa.dot.gov/downloads/folders/Complaints/CMPL.txt

[Ru07] Russom, P.: BI Search and Text Analytics, TDWI Best Practices Report, 2007; pp. 9-11

[Sn07] http://www.ihtsdo.org/our-standards

[Tr08] Tripadvisor Travel Web Site; http://www.tripadvisor.com

[UI04] Unstructured Information Management, Special Issue of IBM Systems Journal,

Vol.43,No. 3, 2004

[UI08] Website of the Apache incubator project: http://incubator.apache.org/uima/

485


