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Abstract: In Bayesian identification an ID source is in conflict with the other ID
sources, if both provide substantially different, reliable information on a tracked ob-
ject. After discussing some general aspects of source conflicts and introducing two es-
tablished conflict-definition approaches, it is denoted that these approaches each show
a counterintuitive effect. By applying a conflict definition from the theory of Bayesian
networks, the Coherence Approach and as refinement the Extended Coherence Ap-
proach are proposed. In an experimental evaluation, all approaches are compared with
each other and with the expert’s intuitive understanding of source conflicts.

1 Bayesian Identification

Identification of a tracked object is the characterization by assignment of an identity (ID).
This identity describes object features, e.g., allegiance or intent, necessary to know in
performing military missions. The standard identities Friend, Assumed Friend, Neutral,
Suspect, Hostile, and Unknown are often used in context of military air surveillance and
defense. Depending on the application context, different identities might be defined and
applied. Bayesian identification facilitates fusion of uncertain information from manifold
ID sources, e.g., track behavior, IFF equipment, Electronic Support Measures, and adher-
ence to air traffic regulations. Subsequently, we sketch an exemplary Bayesian identifica-
tion process. More details can be found in [BP99, pp. 496-497], [HMO4, pp. 214-220],
and [KKO09].

A declaration is the statement of an ID source on a specific attribute or behavior of the
considered tracked object, based on emissions measured by sensors. Consider as example
the declaration object follows a civil air route. We assume that each of N ID sources
provides a declaration d; € D; with i € {1,..., N}. An object belongs to exactly one
of M possible Operational Object States. The finite set of all possible states is given
by 00S := {04,...,0p}, e.g., OOS = {OF, NA, EF'} with own forces (OF'), neutral
allegiance (/NA), and enemy forces (EF).

For each ID source i the Source Likelihood Vector SLV; = (p(di|O;));_; 5 is as-
signed to the declaration d;. Fusion is performed by element-wise multiplication of the

source likelihood vectors of all ID sources, providing the Combined Likelihood Vector
CLV = (p(dy,...,dn|0;)),—, . 5 Whereat conditional independence as a model-given



precondition is assumed. Subsequently, by application of the Theorem of Bayes the Pos-
terior Likelihood Vector PLV = (p(Oj|dy, ... ,dn));_, _, is calculated. Finally, the
PLV needs to be transformed into a standard identity (Friend, Assumed Friend, etc.) to be
presented to an operational user. A minimax approach can be used to select an appropriate
identity based on the PLV, for details see [KK09]. By configuration, a Bayesian identi-
fication process can be customized for different operational and technical scenarios, see
e.g., [KZ08].

Subsequently, we will define and analyze conflicts based on the sketched exemplary iden-
tification process. The treatment can be transferred easily to other Bayesian-based identi-
fication processes.

2 Source Conflicts

From the technical perspective, conflicts originate between different ID sources at fusion
level but have consequences on the ID result level. A source conflict indicates the situation,
that (at least) one ID source provides information to the fusion step, that apparently con-
tradicts the fused information provided by the other ID sources, with both having a high
reliability. This source conflict understanding strongly depends on the underlying model-
ing and fusion approach. E.g., a positive IFF mode 4 reply of an object is only in conflict
with the declaration attack on own forces, if the problem of fratricide is not modeled.

Applying [JNO7, pp. 99, 174-179 ] and [Las91] to Bayesian identification, a source conflict
results from discrepancy between model and source declarations, which can be due to
flawed sensor measurements or sensor raw data evaluation, due to facing a rare case, or due
to having a situation not covered by the underlying model of identification. For any cause,
a source conflict indicates a problem case within the identification process, which needs to
be communicated to the operational user. He uses the information on this reliability aspect
in order to judge the overall reliability of the assessed ID of an object.

Slightly differing from other approaches, we define source conflicts between a source and
all other sources, and not based on source-to-source comparison. Nevertheless, the tech-
nical concepts for both approaches are easily exchangeable.

Subsequently, we discuss different approaches of a formal source conflict definition, which
measure the discrepancy between the Source Likelihood Vector SLV'; of ID source ¢ and
the Combined Likelihood Vector CLV _; = (p(dy,...,di—1,dit1, .- 7dN|Oj))j:1 ’’’’’ v
of all other sources. For sake of convenient notation in the rest of this section, we denote
X =(x1,...,zp)and Y = (y1,...,yn) instead of SLV; and CLV _;, and additionally
scale X and Y,suchthatxy +...+ 2y =y1+ ... +ypr = 1.

The Threshold Approach is an established, very intuitive approach for source-conflict def-
inition in Bayesian identification: Given an appropriate upper and lower threshold ¢,,;, and
Elow, the vectors X and Y™ are in conflict, iff there exist ¢, j with ¢ # j such that z; > €y
and y; > €yp, OF Ty > Eyp and y; < 10w, OF Y5 > Eyp and X; < Ejow-

Next to the Threshold Approach, another established approach to define conflicts is based



on metrics. The Distance Approach for source-conflict definition uses the taxicab distance:

M
X and Y are in conflict, iff > |x; — y;| > €4is¢ With a given threshold € ;.
i=1

In search of an effective and efficient definition of source conflicts, we have noticed, that
both approaches each show an counterintuitive effect. According to the definition of the
Threshold Approach, the vectors X = Y = (0.5,0.5,0,0,0,0) with £,, < 0.5 are in
conflict, although they are equal. This is an undesired effect of the Threshold Approach,
since two equal vectors carry the same information, and therefore can not be in conflict.
Note that 0.5 is a high value for an upper threshold. In an implementation of the Threshold
Approach, such cases should be handled separately.

In Bayesian Identification, the uniform distribution reflects parts of no information. There-
fore, for any approach no conflict should be present if X or Y is the uniform distribution.
For the Distance Approach, only unrealistic high values of ¢4;5; avoid such cases. Con-
cerning this point, the Distance Approach to define conflicts has room for improvement.

3 Coherence and Extended Coherence Approach

Looking for alternatives, the theory of Bayesian networks provides a definition of con-
flicts according to [JNO7, pp. 99, 175-176] and [Las91]. For definition of the Coherence
Approach, we applied several minor adaptations but kept the basic idea: Correct declara-
tions from a coherent situation covered by the model support each other, and are expected
to be positively correlated. Therefore, a conflict between ID source ¢ and all other ID

p(di)-p(di,...,di—1,dig1,--,dN) .
sources can be defined by D(ddn) > 1+ econ, 1.6,

M
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for a given threshold €.,;, > 0. Note that scaling of likelihood vectors in this approach
does not change the defining criterion. Slightly differing from [JNO7] we omitted the
application of log, in formula (1) and introduced the threshold €., to suppress small
fluctuations. Additionally, we used the uniform distribution (ﬁ)jzl,m, oy instead of the a
priori probabilities (p(Oj))j:L.__,M, because we do not want a conflict definition biased
by operational a priori expectations.

The Coherence Approach adequately copes with Likelihood vectors SLV; or CLV _; be-
ing the uniform distribution or equal to each other, by correctly assigning no conflict. But
bringing M to the other side in line (1) shows a problem of this approach, which to our
knowledge has not been addressed in literature on Bayesian networks: The conflict defini-
tion crucially depends on M. Therefore, stretching the vectors by adding additional vector
components with value O to the likelihood vectors lets the source conflict disappear, if
M becomes sufficiently large. This property makes the Coherence Approach insufficient



for long likelihood vectors, because conflicts need to be more distinctive in order to be
recognized.

Next, we are going to refine the Coherence Approach into the Extended Coherence Ap-
proach in order to correct its problem with large M:

Letusdenote d_; :=dy,...,di—1,d;t1,...,dn. W.lo.g. we assume
p(dilOk+1)  p(d—i|Op+1) p(dilOr)  p(d—i|Ok)
max { M M < maxq 7 M @)
le(di|0j) _le(d—z‘|0j) > p(di|O;) le(d—z‘|0j)
Jj= j= Jj= j=

forall k = 1,..., M — 1. Then a conflict is given iff there exists M with 2 < M <M
and

M M
<le<dl|0j)> . ( 1p(d1,---,di—l,di+1,---,dN|Oj)>
J= J

> (1 + Eezt) . M (3)
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for a given threshold e.,; > 0. The underlying idea of the Extended Coherence Approach
is as follows: Scaling SLV; and CLV _; to sum up to one, does not influence the defini-
tion of conflicts by the Coherence Approach. Since most information is coded in the high
values of likelihood vector components, at least one of the highest components is involved
in a potential conflict. Therefore, a component can be discarded from both likelihood
vectors without influencing a conflict if both component values are small. This discard-
ing can be repeated recursively until M = 2. If a conflict appears between the reduced
likelihood vectors, it has to be considered also as conflict between the full likelihood vec-
tors SLV; and CLV _;. It can be easily shown, that unlike the two former approaches,
this new Extended Coherence Approach appropriately handles the uniform distribution or
equal likelihood vectors. By its definition, the Extended Coherence Approach is designed
to handle the problem of the Coherence Approach concerning large M.

4 Experimental Comparison of Conflict Definitions

In order to compare the different approaches with the intuitive conflict understanding of
experts and with each other, we conducted an experimental comparison. We set up a
fictive technical and operational scenario and asked experts to judge combinations of two
declarations from different sources, whether they would consider a particular combination
as conflict or not. Obviously, without knowledge of the numerical configuration data, the
decisions were intuitive, but turned out to be very similar. Using predefined Bayesian
configuration data combined with different source/sensor measurement uncertainty levels
a=1.0,0.9,0.8,0.7,0.6, 0.5, each combination of two declarations corresponds to a pair
of likelihood vectors SLV; and CLV _;. We denote, that &« = 1.0 represents a low and
a = 0.5 a high measurement uncertainty. Altogether we had 804 pairs of likelihood



Approach: Threshold Distance Coherence Extended Coherence
eup = 0.369
Parameter: EZ)’; — 0.151 eqist = 0.433 | econ = 0.057 Eext = 0.254
a=1.0 (6/3/3) (34/34/0) (5/3/2) (717/0)
a=0.9 (6/3/3) (23/23/0) (5/3/2) (5/5/0)
a=0.8 (6/3/3) (7/710) (5/3/2) (3/3/0)
a=0.7 (6/3/3) (5/3/12) (4/1/3) (3/3/0)
a=0.6 (6/3/3) (18/1/17) (4/1/3) (2/2/0)
a=0.5 (10/3/7) (48/0/48) (6/1/5) (5/2/3)
[ Sumforalla | (40/18722) [ (135/68/67) [ (29/12/17) [ (25/227/3) |

Table 1: Number of deviations ( total / false positive / false negative ) for approach vs. intuition

vectors resulting from fictive but realistic scenarios. Based on the expert’s judgements as
reference, each pair of likelihood vectors was marked as intuitively conflicting or not. We
used the total number of deviations between these intuitive conflicts and the outcome of a
conflict-definition approach as quality measure. Note, that the total number of deviations
is the sum of false positive and false negative deviations.

By minimizing the total number of deviations for each approach as primary criterion and
the number of false negative deviations of the approaches outcome as secondary criterion,
the e-parameters were calibrated. This is due to the fact, that a conflict definition is in-
tended to point out possible problems in identification, and a false positive is far more
acceptable than a false negative.

Table 1 shows the four approaches with its e-parameters as well as the number of devi-
ations between the approach’s outcomes and the expert-provided intuitive conflicts. The
first entry in the parentheses is the total number of deviations, the second reflects the num-
ber of false conflicts provided by the approach (i.e., false positives), and the third entry
numbers the conflicts not detected by this approach (i.e., false negatives).

All three of Threshold, Coherence, and Extended Coherence Approaches show good per-
formance with total deviation rates of 4.9%, 3.6%, and 3.1%, whereas the Distance Ap-
proach rate of 16.7% is much worse. In addition, the Distance Approach seems to depend
more on the level of measurement uncertainty, whereas the other three approaches are
very stable. The Coherence Approach is only slightly worse than its extended version.
Obviously, the potential problem of the Coherence Approach becomes relevant only for
larger M. For M < 6 the Coherence Approach can be used instead, which is easier to
implement. A very low false negative rate is achieved by the Extended Coherence Ap-
proach, i.e., almost all conflicts are detected while having only little false positives. Note
that changing the parameter €., to 0.23 actually provides no false negative at all and only
28 false positive deviations in the 804 cases. This is a very welcome property, on the one
hand due to the fact that all problem cases can be detected with only little overhead by false
conflicts. Heading for a low false-negative rate calibration criterion on the other hand, it
provides an easy proceeding for determination of the €.,;-parameter: Given a Bayesian
configuration, an operational user can provide a set of intuitive conflict cases as described
above. Then the parameter can be calculated with little effort using formula (3).



5 Conclusions

The considered established approaches of source-conflict definition in Bayesian identifi-
cation show room for improvement concerning some details. The Coherence and the Ex-
tended Coherence Approach were newly proposed as alternative definition of source con-
flicts. An experimental comparison showed encouraging results for these newly-proposed
approaches. In particular, the Extended Coherence Approach appears as a promising can-
didate for definition of source conflicts, which deserves further research and extended

evaluation.
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