
Two-Way-Compiler: Additional Data Saving for

Generating the Original Source Code of a Binary Program

Dennis Obermann, Josef Börcsök

Department of Computer Architecture and System Programming

University Kassel

Wilhelmshöher Allee 71

34121 Kassel

obermann@uni-kassel.de

Abstract: The Two-Way-Compiler is an approach to show the equivalence

between implemented source code and the generated binary program for safety-

related software. A compiler which translates a source code into a binary program

and restores the original source code out of the generated binary program exactly,

like a decompiler, is described. Data that are required to build the original source

code back again are especially examined in this paper. Some data are contained in

the binary itself and other data lost during compilation. The lost data have to be

collected and stored in the binary. With these additional data the decompiler can

restore the binary program to the original source code.

1 Introduction

An implemented source code has to be translated by a compiler into a binary to get an

executable program for safety-related systems. Frequently, the compiler is classified as

not trustable. Therefore, intensive tests of the binary program against the requirements

and the source code have to be performed. These tests are helpful to verify that the

compiler does exactly what it should do. IEC 61508-3 mentions this in the development

life cycle for software verification [IEC10]. A special test, which proves that the binary

program corresponds exactly to the implemented source code, is not explicitly shown in

this standard. But for the verification of safety-related software such a test is very

important.

To verify safety-related software, it would be helpful to be able to translate the binary

program back to its original representation. A simple comparison between the original

source code and the decompiled source code will be possible.

275

275



A program that creates source code out of a binary program is called a decompiler. The

first decompiler that translates binary programs from second generation computers to

third generation computers was developed in the 1960s [Ha62]. In the following years,

the techniques of decompiling were further developed and used to porting programs

from one machine to another machine, to make documentation of assembler code, to

rescue lost source code and to modify binary programs [Ci94]. Today, many decompilers

are based on the phases of compilers and use identical techniques to analyze the input

[Em07]. They analyze the binary program by graph theory, translate it into an

intermediate representation and generate the source code. Control flow analysis and data

flow analysis are very important [Ci94]. Human readability also plays a fundamental

role [Ch10].

In some approaches the decompilers use assembler code [Sa66] or binary programs with

debug informations as input. These inputs contain additional data that simplify the

generation of the source code. There are symbolic informations about data segments,

types, subroutine names, entry points and exit statements [Ci94]. Other decompilers are

working on byte code like the java byte code [HD09]. Byte codes are executed by a

virtual machine and contain more informations than binary programs. There are

informations about data segments, types, method names, member names, entry points

and exit statements [Vi03].

But all known decompilers are only able to generate code into one direction: From the

binary program to the source code. They are working on the instructions of the binary

program. Only a functional equivalence between the binary program and the decompiled

source code can be achieved. In [PW93] such a decompiler is used to verify the

equivalence between a binary program and the implemented source code of safety-

related software. The decompiler translates the binary program and shows the functional

equivalence by formal methods. But to compare the original source code and the

decompiled source code they have to be translating both source codes into a formal

representation.

One of the main problems is that many data are lost during compiling. But these data are

required to restore the source code exactly. Therefore, this approach examines not only

the decompiler phases, but also the compiler phases to gather the data that are normally

lost.

Section 2 shows the symmetry between compilers and decompilers, while Section 3

gives an overview on this approach and describes the data that are required to restore the

original source code. Section 4 concludes this paper.

276

276



2 Symmetry between a compiler and a decompiler

Modern compiler translates the source code in a binary program by a sequence of phases

[Ah06]. The lexical analysis read the source code and split it into meaningful sequences

called lexemes. For each lexeme it creates a token that contains the lexeme itself and an

identifier of the token type. The sequence of tokens is handled by the syntax analysis. If

it is possible to generate a syntax tree, the source code will be syntactical correct. The

semantic analysis does verifications about types and language specific characteristics

which cannot specify by a context free grammar. At the end of these frontend phases the

source code is presented as an intermediate representation. All required symbolic

informations are collected in the symbol table, which can access in every phase of the

compiler. Optimizations will be performed on the intermediate representation and on the

target code instructions before the binary program is generated.

Parser

Analysis

Code generation

Binary program

Source code

IR

IR

Compiler Decompiler

Code generation

Analysis

Decoder

Binary program

Source code

IR

IR

Figure 1: Symmetry between a compiler and a decompiler [Em07]

A decompiler generates the source code in a sequence of phases, too [Em07]. The

decoder reads the binary program and splits the instructions from the data. It analyzes

the control flow and the data flow and creates an intermediate representation of the

binary program. Machine specific constructs will be replaced by corresponding

constructs of higher programming languages and type informations are reconstructed.

Programming language specific constructs will be recovered from the intermediate

representation and the source code is generated.

Emmerik describes the symmetry between a compiler and a decompiler and consisders

the similar techniques in the phases [Em07]. Figure 1 gives a short overview of the

symmetry between a compiler and a decompiler. It shows that the decompiler is an

inverse of a compiler.

277

277



3 Approach

In this approach the compiling and decompiling are considered together. Each phase of

compilation has to be covered by a phase of decompilation. The symmetry between a

compiler and a decompiler is the starting point of this approach. In contrast to a

conventional compiler, the details of structure and format of the source code are not

allowed to get lost during compile time. They have to be collected and stored in the

binary program itself. Using this additional data, the original source code is

reproducible.

Source code

Parser

Analysis

Code generation

Binary program

Decoder

Analysis

Code generation

Source code

Verification

Output

Figure 2: V-Model of the Two-Way-Compiler

3.1 Compiler phases

The compiler phases are used to transform a given source code to an executable binary

program, which can be restored to the original source code back again. Figure 3 shows a

simplified scheme of the compiler phases.

The lexical analysis reads the source code and generates a sequence of tokens. Normally,

whitespaces and comments are ignored at this point of compilation. This approach uses

an ignore list in addition to the symbol table. The ignore list collects all the ignored

lexemes and their beginning positions. The syntax analysis works on a context free

grammar and parses the token sequence into an abstract syntax tree. Special tokens that

are lost during this phase are collected in the ignore list, too. The semantic analysis does

type checking and fill the symbol table. It collects symbol informations like variable

names and function names. Each entry holds the token informations and a data type at

the end of this phase.

After the front end has collected the required data, the abstract syntax tree is transformed

into a SSA form. This intermediate representation is used by many compilers [Cy89] and

is qualified for decompilers, too [Em07]. The mapping between nodes in the abstract

syntax tree and the SSA statements has to be reversible. Currently, there are not

considered optimizations in this approach.

278

278



The back end generates the binary program out of the SSA form. In this approach the

selection of target code instructions is very important, because the sequence of

instructions has to identify the SSA form during the decompilation. Addresses for

variables in the data sections are calculated and added to the corresponding symbol in

the symbol table. The addresses of function entry points in the code sections are added to

the symbol table, too. At least the binary is build and gets two additional sections. The

first one contains the data from the ignore list and the second one holds the data from the

symbol table.

The result of the compiler phases is an executable binary program that contains

additional informations to restore the original source code back again. These

informations are explicit collected data and informations contained in the structure of the

binary program.

c = a + 3;

t1 := a + 3

c := t1

move.l 0x0 d1

addi.l #3, d1

move.l d1, 0x20

2239 0000 0000

0681 0000 0003

23c1 0000 0020

=

c +

3a

Source code

Abstract syntax tree

Intermediate representation

Target code instructions

Binary

42:
44: ; Ignore table

a: int: 0x0
c: int: 0x20 Symbol table

Figure 3: Simplified compiling scheme

3.2 Informations in binary programs

There are informations that can be gained from the binary program itself. These data can

be evaluated by control flow and data flow analysis and this is also done by many

decompilers [Vi03]. Control flow analysis [Al70] and data flow analysis [Ki73] are well

known techniques and used for optimizations in a compiler, normally. Control structures,

functions, function calls, operators and variables can be identified by using these

techniques. The special selection of the target code instructions, the knowing of the

programming language grammar and the knowledge of the mapping between the

different representations make it possible to identify these informations and restore the

corresponding lexemes in this approach.

279

279



To restore the exact source code, it is important that the compiler does not perform any

optimizations in any phase. Optimizations would change the control flow and the data

flow [SS08]. After optimizations the sequences of target instructions are modified. Thus,

the decompiled control structures of the source code would not be the same as in the

original source code. The reliability is more important than highly optimized programs

in safety-related software. So, this restriction can be accepted for the compiler in this

approach.

3.3 Lost data

Normally, many data are lost during the compiling process. In this approach these data

are collected in every single phase of the compiling. The compiler saves whitespaces,

formatting and comments of the source code in their ignore list during the lexical

analysis. The names of functions and variables are lost, too. These data are collected in

the symbol table of the compiler. In addition to the identifiers, the symbol table collects

the memory addresses and the data types of the variables and functions. Typically,

tokens like brackets are lost in the syntax analysis. These tokens are not in the abstract

syntax tree and have to be stored in the ignore list, too. For example, this is necessary to

restore arithmetical expressions that contain brackets exactly.

All collected data have to be included in two separate sections at the end of the binary

program. The data from the symbol table and the informations of the ignore list are

stored in these sections. Both sections are enclosed by special section markers to identify

these sections during decompilation. To reduce storage space, the additional data

sections are compressed and protected by a checksum.

3.4 Decompiler phases

The decompiler phases are used to restore the original source code out of the generated

binary program exactly. Only binary programs can be handled that are generated from

the compiler in this approach. Figure 4 shows a simplified scheme of the decompiler

phases.

The decoding phase of the decompiler reads the binary program and separate instructions

from the data. It identifies the symbol table section and the ignore table section. After

decompressing these sections, the ignore list and the symbol table are filled with the

existing data. The data from the restored symbol table and the restored ignore list are

required in the following phases.

280

280



Because the decompiler has the same informations of the programming language

grammar and the target code specification as the compiler, it knows the sequences of

instructions and their parameters. Each identified sequence is transformed into the SSA

form. The variable names and function names are obtained by the memory addresses and

the data from the symbol table which were restored from the binary program. The

symbol table contains the data types for variables, function parameters and function

return values. It contains the names for variables and functions, too. After the

transformation from the binary program to the intermediate representation, the control

structures of higher programming languages are restored. The knowing of the

programming language grammar and the knowledge of the mapping between the

different representations makes it possible. A check for the syntax of the control

structures are performed by transforming the SSA form into an abstract syntax tree. The

syntax is correct, if the abstract syntax tree can be generated.

c = a + 3;

t1 := a + 3

c := t1

=

c +

3a

Source code

Abstract syntax tree

Intermediate representation

Target code instructions

Binary

42:
44: ; Ignore table

a: int: 0x0
c: int: 0x20 Symbol table

2239 0000 0000

0681 0000 0003

23c1 0000 0020

move.l 0x0 d1

addi.l #3, d1

move.l d1, 0x20

Figure 4: Simplified decompiling scheme

In the last phase the informations from the ignore list are used to restore the formatting

and comments. The decompiler iterates the control structures and compares the positions

in the ignore list. If the position is valid, it appends the ignored data to the decompiled

source code. Inconsistent positions indicate an error during the decompilation. The

decompiler uses the informations in the knowing programming language grammar to

restore the identifiers for operators and control statements.

The result of the decompiler phases is the source code for the binary program that is the

same as the original source code. It can be used to compare the decompiled source code

with the original source code and shows the equivalence between the binary program

and the source code.

281

281



4 Conclusion

This approach makes it possible to translate a source code into a binary program and

back again. Through the simultaneous consideration of the compiler and the decompiler,

as well as appending additional data to the binary program, it is possible to produce the

original source code out of the binary program exactly.

One limitation of this approach is that no optimizations are done during compile time.

This can be accepted, because the focus lies on safety-related software. A further

disadvantage is the increased storage space of the generated binary program, which is

created by the additional data.

However, the main advantage is that the verification between source code and binary

program can be performed by a simple comparison between the original source code and

the decompiled source code.

References

[Ah06] Aho, A. V.; Lam, M. S.; Sethi, R. and Ullman, J. D.: Compilers: Principles, Techniques,

and Tools. Prentice Hall, 2nd edition, 2006.

[Al70] Allen, F. E.: Control flow analysis. In Proceedings of a symposium on Compiler

optimization, 1970; pp. 1-19.

[Ci94] Cifuentes, C.: Reverse Compilation Techniques. PhD thesis, University of Queensland,

1994.

[Ch10] Chen, G.; Wang, Z.; Zhang, R.; Zhou, K.; Huang, S.; Ni, K.; Qi, Z.; Chen, K. and Guan,

H.: A refined decompiler to generate c code with high readability. In 17th Working

Conference on Reverse Engineering (WCRE), 2010; pp. 150-154.

[Cy89] Cytron, R.; Ferrante, J.; Rosen, B. K.; Wegman, M. N. and Zadeck, F. K.: An effcient

method of computing static single assignment form. In Proceedings of the 16th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (POPL), 1989;

pp. 25-35.

[Em07] Emmerik, M. V.: Static single assignment for decompilation. PhD thesis, University of

Queensland, 2007.

[Ha62] Halstead, M. H.: Machine-independent computer programming. Spartan Books, 1962.

[HD09] Hamilton, J. and Danicic, S.: An Evaluation of Current Java Bytecode Decompilers. In

9th IEEE International Working Conference on Source Code Analysis and Manipulation

(SCAM), 2009; pp. 129-136.

[IEC10] IEC: Functional safety of electrical / electronic / programmable electronic safety-related

systems - Part 3: Software requirements (IEC 61508-3:2010). International

Electrotechnical Commission, 2010.

282

282



[Ki73] Kildall, G. A.: A unified approach to global program optimization. In Proceedings of the

1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming

languages (POPL), 1973; pp. 194-206.

[PW93] Pavey, D. J. and Winsborrow L. A.: Demonstrating equivalence of source code and

prom contents. The Computer Journal, 36(7), 1993; pp. 654-667.

[Sa66] Sassaman, W. A.: A computer program to translate machine language into FORTRAN.

Proceedings of the Spring joint computer conference (AFIPS), 1966; pp. 235-239.

[SS08] Srikant, Y.N. and Shankar, P.: The compiler design handbook: optimizations and

machine code generation. CRC Press, 2nd edition, 2008.

[Vi03] Vinciguerra, L.; Wills, L.; Kejriwal, N.; Martino, P.; and Vinciguerra, R.: An

experimentation framework for evaluating disassembly and decompilation tools for C++

and java. In Proceedings of the 10th Working Conference on Reverse Engineering

(WCRE), 2003; pp 14-23.

283

283



284


