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Abstract: In prior research we explored the use of time series analysis methods to detect one class of
information technology (IT) infrastructure anomalies - Distributed Denial of Service (DDoS) attacks.
The results of this prior work were a mathematical model and a prototype implementation that were
concretely trialed and operated in the data centers of Germany’s Federal Employment Agency (FEA).
With this paper, we go one step further and generalize as well as optimize the mathematical model
and create higher performance and scalability for an updated prototype through targeted use of cloud
technologies. The starting point of our generalization is the Exponential Smoothing (E-S) approach,
which underlies, for example, the well-known Holt-Winters method. This method is used to predict
univariate time series. To detect anomalies (such as DDoS attacks) in infrastructure data, we extend
the E-S approach to enable it to forecast multivariate time series. In this optimization of our method
and our prototype, we take an exploratory, agile approach. Furthermore, we present a cloud-native
architecture stack which we pilot in Azure.
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1 Introduction

The availability, integrity and security of an organization’s information technology (IT)

infrastructure are paramount for providing IT services internally and externally to various

organizational stakeholders such as employees or customers. IT infrastructure anomalies,

i.e. deviation from normal system behavior that result from outside malicious threats,

internal errors, or atypical usage [Fe19], are prime concerns for companies to identify
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and address. Distributed Denial of Service (DDoS) attacks are an especially important

and widespread type of malicious attack towards a company’s IT infrastructure. Internet

security reports indicate there were 9.7 million DDoS attacks in 2021 - which represents

a slight decrease from 2020 numbers (likely a result of the COVID-19 global pandemic)

but is signiőcantly higher than 2019 DDoS numbers [NE22]. DDoS attacks are cheap to

launch (sometimes even free), increasingly target speciőc industries such as voice over

IP, computer manufacturing, software publishers, insurance agencies and brokerages, and

colleges, universities and professional schools, and generate signiőcant economic losses -

sometimes to the tune of tens of millions of dollars - for the affected companies [NE22].

In prior work by Ludsteck et al. [Lu21], we proposed an architecture to detect anomalies in

the IT infrastructure and described the implementation of a prototype which was tested in

the context of detecting Distributed Denial of Service (DDoS) attacks for the data centers

of Germany’s Federal Employment Agency (FEA). Since then, the prototype has been

in use for about a year, yielding additional insights regarding both technologies and data

analysis. In this paper, we build on the lessons learned from the prototype and present an

optimized architecture for DDoS anomaly detection at FEA. The contributions of this paper

are twofold: the generalization of the time series analysis method used for IT infrastructure

anomaly detection and the cloud-enabled scalable architecture. With respect to the őrst

point, we show how the proprietary time series analysis implementation can be replaced

with a generalized multivariate exponential smoothing method. With respect to the second

point, we discuss a trial of a cognitive cloud service from Azure.

2 Related Work

Our prior work reviews the main characteristics of IT infrastructure anomalies and the

related anomaly-based detection systems [Lu21]. Other authors have offered comprehensive

surveys of these issues (see, for example, [Fe19]). In this section, we review additional

work relevant to the design of the anomaly detection system - namely to the prediction of

abnormal IT infrastructure events through time series, which will be used to optimize our

prototype.

He et al. [He20] address the limitation of many existing studies on time series prediction,

which consider temporal patterns without regard to correlation among variables, thus

causing loss of information and inevitably producing false positives. The authors design

an unsupervised method to detect anomalies in multivariate time series, which consists of

two steps ś a prediction step and a threshold selection step. In the őrst step, they utilize a

multi-scale convolution and graph attention network for capturing information in temporal

pattern with feature pattern. In the latter step, they identify the threshold value by an MSE

(mean square error) based extreme value analysis between the predicted and the observed

value.
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Li et al. [LPJ17] introduce a framework for anomaly detection in multivariate time series

that is based on Hidden Markov Models. Their main idea is to convert multivariate time

series into univariate ones. For this, the authors consider conversion algorithms that include

fuzzy C-Means (FCM) clustering and fuzzy integral. They apply a Hidden Markov Model

(HMM) to discover the presence of anomalies in multivariate time series.

In related work, Li et al. [Li20] present an approach using fuzzy clustering technique to

reveal anomalies with respect to the amplitude and shape of multivariate time series. In the

őrst step, the authors use a sliding window in order to construct an array of multivariate

sub-sequences. In the second step, they employ an enhanced fuzzy clustering for őnding

a pattern within these obtained sub-sequences. In the third and őnal step, they use a

reconstruction criterion to recreate the sub-sequences involving the optimal cluster centers

and partition matrix. Using a conődence index, they quantify the degree of any anomaly

found and tune the detection itself via particle swarm optimization. The authors successfully

validate their approach using experiments on various synthetic and genuine data sets.

Jones [Jo66] develops an exponential smoothing method for multivariate time series. His

method recursively łestimates the optimum weight matrix for the exponential smoothing

and prediction of multivariate time seriesž and łgeneralizes to non-linear processes when

the non-linear structure is knownž [Jo66].

Pfeffermann and Allon [PA89] introduce a łmultivariate extension of the familiar exponential

smoothing procedure for forecasting univariate time series composed of level, seasonality

and irregularityž. Using an univariate smoothing procedure together with corrective factors

relying upon information from the other series, the authors deduce the up-to-date level,

trend, and seasonal effect estimates of each series as weighted estimate averages. Moreover,

they use two actual bivariate time series to demonstrate and benchmark the procedure’s

performance against that of other univariate and multivariate prediction methods.

Zhao et al. [Zh20] address one of the current major limitations of anomaly detection on

multivariate time-series: łthey do not capture the relationships between different time-series

explicitly, resulting in inevitable false alarmsž. To close this gap, the authors develop a new

self-supervised method that recognizes anomalies in multivariate time series by treating each

univariate time series as a separate feature and by simultaneously incorporating two graph

attention layers designed to learn the (non-trivial) interdependencies between multivariate

time-series across both temporal and feature dimensions.

3 Using A Cognitive Time Series Service with Recurrent Neural

Network for Infrastructure Anomaly Detection

The work of Zhao et al. [Zh20] forms the basis of Microsoft’s Cognitive Time Series service.

We used this service to optimize the architecture described in Ludsteck et al. [Lu21]. We
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fed our FEA infrastructure data to the service using the Azure Data Explorer9, which is part

of Microsoft Azure Cloud.

For this purpose, őrst an Azure Data Explorer cluster had to be setup on the Azure Cloud.

This allowed the capacity of the system to be expanded dynamically, as new instances

could be created on the ŕy. This is particularly advantageous for later productive usage.

Furthermore, the system included a database for both historical data as well as for newly

arriving real-time data.

The Azure Data Explorer offers various options for feeding data into the system. One is to

stream real-time data via an Event Hub or IoT Hub. In addition, the upload of historical

data via őle upload is possible. Since we did not have a connection to a system from which

data can be streamed yet, we used the őle upload. For this, the data was brought into a őle

format supported by Azure Data Explorer. We chose .csv for this purpose. The converted

őle could then be uploaded via the Data Explorers web interface.

The Data Explorer offers the option to prepare or plot the data using KQL (Kusto Query

Language)10. Listing 1 shows the code for extracting anomalies from the data. Thereby,

the considered time period was deőned with 𝑚𝑖𝑛𝑡 and 𝑚𝑎𝑥𝑡 and the time interval was

speciőed with 10 minutes. The anomalies could then be determined by using the function

𝑠𝑒𝑟𝑖𝑒𝑠_𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒_𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 and then plotted using an anomaly chart. As parameters

we used the calculated Mahalanobis distance (a multivariate distance metric) and a anomaly

threshold of 7.0.

1 let min_t = datetime(2022-06-19 22:00);

2 let max_t = datetime(2022-06-20 23:00);

3 let dt = 10m;

4 monitoring_data

5 | make-series num=avg(['mahalanobis']) on Timestamp from min_t to max_t step dt

by Country↩→

6 | where Country == "*****"

7 | extend (anomalies, score) = series_decompose_anomalies(num, 7.0, -1, 'linefit')

8 | render anomalychart with(anomalycolumns=anomalies)

Listing 1: KQL (KUSTO Query Language) Query for Azure Data Explorer

An example of anomalies determined by the Azure Data Explorer is shown in Figure 1 with

anomalies indicated by red dots. The blue line shows the Mahalanobis distance and the

red line the calculated anomaly score. A total of four anomalies were detected when the

threshold was set to 7.0. These anomalies correspond in time to the alerts shown in Figure 5.

9 https://azure.microsoft.com/de-de/services/data-explorer/

10 https://docs.microsoft.com/de-de/azure/data-explorer/kusto/query/
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Fig. 1: Anomaly detection graph by Azure Data Explorer (Anomalies are marked with red dots)

Our approach is also capable of running in the Microsoft Azure Cloud. The next steps

would be to connect the real-time system to the Azure Data Explorer using the Event Hub

and to implement automatic notiőcations when anomalies are detected.

4 Architectural Findings from the Prototype

The prototype has now been running for almost one year and we gained valuable lessons

from its operation.

One of these lessons is that the Mahalanobis distance is very suitable to detect outliers

in the multidimensional time series data of DDoS infrastructure anomalies. Kotu and

Deshpande [KD18] indicate that ł[m]ore advanced statistical techniques take multiple

dimensions into account and calculate the Mahalanobis distance instead of the standard

deviations from the mean in a univariate distributionž. Indeed, the łMahalanobis distance is

the multivariate generalization of őnding how many standard deviations away a point is

from the mean of the multivariate distributionž [KD18]. To detect cyber-attacks on water

distribution system, Gjorgiev and Gievska [GG20] employ deep learning architectures based

on Variational Autoencoders using Mahalanobis distance as well.

But why is Mahalanobis distance so helpful in our case? The current problem with monitoring

is that metrics are surveilled using static thresholds. These thresholds (limit values) must

be deőned upfront, entered into a monitoring tool accordingly, and then assigned to the

metrics/components. The deőnition of these limit values can be complicated in several

ways. In the case of technical threshold values such as CPU temperature or the őll level of a

őle system, they are usually still easy to determine. For more complex metrics such as the

number of accesses to a service or permissible error rates, determining the threshold values

can be much more difficult. In addition, threshold values are often dynamic and depend on

other metrics.

For this purpose, the Mahalanobis distance method was used as a solution. The metrics used

by our prototype were based on aggregates from access logs over a deőned time interval of

10 minutes (6 measure points per hour) each.
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• awz: Response time (mean value)

• awz.std_dev: Variance of the response time

• req: Number of accesses (requests)

• ips: Number of clients (unique IPs)

• bytes: Bytes transferred

The method was initially applied to historical data in order to determine its suitability

based on existing logs. The analysis was based on data sets of one day in each case.

Thus, 5 metrics with 6 · 24 measurement points were analyzed. The metrics had further

attributes such as response codes (200, 404, 500 etc.) or observed services. With 30

services and approx. 30 response codes and further attributes, this resulted in up to:

5 metrics · 30 vhosts · 30 response codes · 200 countries (sources) = 900, 000 time series

per day.

For the 5 mentioned metrics the Mahalanobis distance was calculated. This resulted in

30 vhosts · 30 response codes · 200 countries (sources) = 180, 000 attribute combinations.

Note that this is the worst case and in practice we handled about 5000 attribute combinations.

For each of these 5000 attribute combinations, 5 time series are available.

Using three nested for-loops (over vhost, response_code, country) we went through each

attribute combination and considered one time series, for example: all cases where

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑐𝑜𝑑𝑒 = 200 and the request originated from Italy targeting service "X". And

from this time series we picked out the outliers by applying the Mahalanobis distance. For

an alert, the statistical signiőcance of each value was determined. The 𝑝-value for each

distance was calculated as the 𝑝-value corresponding to the chi-squared statistic of the

Mahalanobis distance with 𝑘 − 1 degrees of freedom, where 𝑘 is the number of variables.

In our case, we used 5 − 1 = 4 degrees of freedom.

Then warnings were triggered at a Mahalanobis distance of more than 25 and a 𝑝-value

lower than 0.001. These warnings were summed up on the time axis and if more than 10

alarms were exceeded at the same time, a problem was ŕagged.

The parameters described above were determined based on the evaluation of different

scenarios and are subject to further optimization in the future. The result is a strongly

condensed representation of anomalies, which facilitates a visual evaluation via a time

series plot. Parameterization is only required at a few points, which allows monitoring of

such systems with reasonable effort. Retrospectively, it was possible to detect an anomaly

that was not ŕagged by the currently installed safety mechanisms. A further optimization of

our prototype lies in the smoothing of the time series (by using a Kalman őlter for example).

In practice, how does the DDoS detection work? Figure 2 shows the result of aggregation

over 10 minutes intervals of the utilization data containing the vhost and country. That
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means all requests from all countries (sources) on all vhost (5000 attribute combinations)

are shown in this example given by Figure 2. This speciőc example is from 2022-06-20 to

2022-06-21.

Fig. 2: Aggregation (10 minutes intervals) of of the utilization data containing the vhost and country

(20th to 21st of June 2022)

Figure 3 shows the same raw data as shown in Figure 2. But Figure 3 additionally contains

the calculated values of the Mahalanobis distance between the 5 time series (𝑖𝑝𝑠 number

of unique IP addresses, 𝑟𝑒𝑞 number of requests, 𝑏𝑦𝑡𝑒𝑠 number of bytes transferred, 𝑎𝑤𝑧

response time, 𝑎𝑤𝑧.𝑠𝑡𝑑_𝑑𝑒𝑣 standard deviation of response time) depicted by Figure 2.

This Figure 3 shows the Mahalanobis distance plot as the pink curve, the 𝑝 curve as the

grey curve (the 𝑝 curve is the Chi-squared test curve - which we obtain by applying Chi

square Test on the Mahalanobis distance curve), the 𝑎𝑙𝑒𝑟𝑡 curve is the result of őltering

the 𝑝 curve together with the Mahalanobis distance curve (the 𝑝 value must be lower than

0.001 and the Mahalanobis distance value must be larger than 25).
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Fig. 3: Example from Figure 2 extended by Mahalanobis Distance curve, 𝑝 curve and identiőed alerts.

To get a clearer view, Figure 4 shows only the Mahalanobis distance curve, 𝑝 curve and

identiőed alerts, which we added to Figure 3.

Fig. 4: only the Mahalanobis distance curve, 𝑝 curve and identiőed alerts, which we added to Figure 3

(20th of June 2022)

Figure 5 shows a pair plot (scatterplot matrix) over the őve parameter values 𝑖𝑝𝑠 (number

of unique IP addresses), 𝑟𝑒𝑞 (number of requests/accesses), 𝑏𝑦𝑡𝑒𝑠 (number of bytes

transferred), 𝑎𝑤𝑧 (response time), 𝑎𝑤𝑧.𝑠𝑡𝑑_𝑑𝑒𝑣 (standard deviation of response time). The

outliers ś which are the alerts we identiőed (by 𝑝 value being lower than 0.001 and the
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Mahalanobis distance larger than 25) ś are highlighted in orange. And these orange outliers

refer to the (downward) peaks in Figure 3 and Figure 4.

Fig. 5: Pair plot / Scatterplot matrix over the 5 paramter values (𝑖𝑝𝑠, 𝑟𝑒𝑞, 𝑏𝑦𝑡𝑒𝑠, 𝑎𝑤𝑧, 𝑎𝑤𝑧.𝑠𝑡𝑑_𝑑𝑒𝑣)

Figure 6 accumulates all identiőed alerts in order to determine wether or not there is any

prominence in the density of the anomalies within the considered/observed time period

(in this case, from 20th to 21st of June 2022). In this plot given by Figure 6 we see two

prominent peaks worth taking a closer look at, which we do in Figure 7.

1189



Fig. 6: All identiőed alerts accumulated

Figure 7 shows, in a heat map, a prominent line in the middle of the plot. This line indicates

the countries involved in these important anomalies.

Fig. 7: Heat map of countries (sources) from which the requests originate

5 Prototype Multivariate E-S Method and its Architecture

In our previous prototype, we proposed our own method for time series analysis (see [Lu21]).

We developed this original method to model the differently chosen minute-lags as features

because established methods such as the Holt-Winters method were designed for univariate

time series. In our optimized prototype, we took a step towards standardization by going back
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to the well-established Holt-Winters method and making it able of handling multivariate time

series. Listing 2 shows the corresponding code. This method is computationally intensive

and therefore we anticipate running it in the cloud.

1

2 import datetime

3 begin_time = datetime.datetime.now()

4 mya = np.array([[0.15, 0.15], [0, 0.15]])

5 myb = np.array([[0.15, 0.15], [0, 0.15]])

6 myc = np.array([[0.15, 0.15], [0, 0.15]])

7

8 def multivariate_ES (data: np.array, h_period: int, A: np.array, B: np.array, C:

np.array, m: int, year_size: int):↩→

9 L = []

10 T = []

11 data = data[-h_period:, :]

12 inits = initialize (data,year_size)

13 L.append (inits[0])

14 T.append (inits[1])

15 S = []

16 for i in range (inits[2].shape[0]):

17 S = np.append ([S], inits[2][i,:])

18 shape = (int(S.shape[0]/2), 2)

19 S = S.reshape(shape)

20 s = []

21 for i in range (inits[2].shape[0]):

22 s = np.append ([s], inits[2][i,:])

23 shape = (int(s.shape[0]/2), 2)

24 s = s.reshape(shape)

25

26 for i in range (h_period-1):

27 L.append ((A @ (data[i+1,:] - S[i % year_size])) + ((np.identity(2) - A)

@ (L[i]+T[i])))↩→

28 T.append ((B @ (L[i+1] - L[i])) + ((np.identity(2) - B) @ T[i]))

29 S [(i+1)

30 Smean = S.mean(axis = 0)

31 for j in range(year_size):

32 S [j] = S[j] - Smean

33 s = np.append ([s], (S [(i+1) % year_size]))

34 shape = (int(s.shape[0]/2), 2)

35 s = s.reshape(shape)

36 mves = []

37 for i in range(6):

38 mves.append(L[-1] + (i+1)*T[-1] + S[(h_period-1) % year_size])

39 return pd.DataFrame(L), pd.DataFrame(T), pd.DataFrame(s), mves

Listing 2: Our Multivariate E-S Method
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6 Conclusions and Future Research

In this paper, we describe a time series method and a cloud-native architecture for detecting

DDoS attacks - which are one particularly important type of IT infrastructure anomalies

in companies today. Our prototype was trialed in the data centers of Germany’s Federal

Employment Agency (FEA), and we used insights from its operation over the past year to

optimize it and plan future reőnements.

One area of improvement is the alert capability of the system. We plan to implement a

live/real-time alert. This will alert users not only based on retrospective analysis, but also

by detecting anomalies during operation and ŕagging them immediately, as well as by

forecasting future anomalies. Automatic report generation will also be included along other

commodity functions. In addition, we plan to differentiate more precisely which alert we are

dealing with (compared to the current alert function which just identiőes a generic alert).

The system should be able to determine if an anomaly is really DDoS-related or rather

something due to internal service level losses. We can achieve this by further reőning the

feature engineering. For example, response time is more of a service level feature and worth

considering if that should be included for DDoS detection.

Another area of improvement is developing a true real-time architecture. We have demons-

trated the Azure prototype in Section 3. The next step is to conceptualize and implement

the full data pipeline into Azure such that computation and identiőcation of anomalies will

be completed in (almost) real-time. A follow-up step is to optimize the sample rate and,

if necessary, deőne the reference time series for evaluation of individual measurements.

Yet another future step is the conversion to real-time using containers according to FEA

standards. We also plan to check raw data for usability (classifying whether evaluation is

possible). Moreover we want to automatically perform analysis on any elevated anomaly

density and document it, in order to support rapid root cause analysis. Additional improve-

ments include classiőcation of anomalies (e.g. technical failure external, internal, crawler

access, etc.) and supporting the classiőcation by deriving further metrics from the log data

and analyzing them.

This work contributes to the growing body of literature regarding anomaly detection for IT

infrastructure, in general, and DDoS attacks, in particular. We anticipate a continuing need

for research in these areas to reőne the existing anomaly detection methods and systems

and support and protect increasingly complex IT infrastructures for digital transformation,

internet of things, and other emerging IT trends.

1192



Literatur

[Fe19] Fernandes, G.; Rodrigues, J. J.; Carvalho, L. F.; Al-Muhtadi, J. F.; Proença, M. L.:

A comprehensive survey on network anomaly detection. Telecommunication

Systems 70/3, S. 447ś489, 2019.

[GG20] Gjorgiev, L.; Gievska, S.: Time Series Anomaly Detection with Variational

Autoencoder Using Mahalanobis Distance. In (Dimitrova, V.; Dimitrovski, I.,

Hrsg.): ICT Innovations 2020: ICT Innovations 2020. Machine Learning and

Applications. Bd. 1316. Communications in Computer and Information Science,

Springer, S. 42ś55, 2020, isbn: 978-3-030-62097-4.

[He20] He, Q.; Zheng, Y. J.; Zhang, C.; Wang, H. Y.: MTAD-TF: Multivariate Time

Series Anomaly DetectionUsing the Combination of Temporal Pattern and Feature

Pattern. Complexity 2020/, 2020.

[Jo66] Jones, R. H.: Exponential Smoothing for Multivariate Time Series. Journal of the

Royal Statistical Society 28/1, S. 241ś251, 1966.

[KD18] Kotu, V.; Deshpande, B.: Data Science: Concepts and Practice. Morgan Kaufmann,

2018, isbn: 978-0-12-814761-0.

[Li20] Li, J.; Izakian, H.; Pedrycz, W.; Jamal, I.: Clustering-based anomaly detection in

multivariate time series data. Applied Soft Computing Journal 100/, 2020.

[LPJ17] Li, J.; Pedrycz, W.; Jamal, I.: Multivariate Time series Anomaly Detection: A

Framework of Hidden Markov Models. Applied Soft Computing 60/, S. 229ś240,

2017.

[Lu21] Ludsteck, J.; Sultanow, E.; Chircu, A.; Herget, G.; Seßler, M.: An architecture for

detecting infrastructure anomalies at Germany’s Federal Employment Agency.

In: INFORMATIK 2021 ś Computer Science & Sustainability. Gesellschaft für

Informatik, 2021.

[NE22] NETSCOUT: Threat Intelligence Report Issue 8: Findings from 2nd Half 2021./,

2022.

[PA89] Pfeffermann, D.; Allon, J.: Multivariate exponential smoothing: Method and

practice. International Journal of Forecasting 5/1, S. 83ś98, 1989.

[Zh20] Zhao, H.; Wang, Y.; Duan, J.; Huang, C.; Cao, D.; Tong, Y.; Xu, B.; Bai, J.;

Tong, J.; Zhang, Q.: Multivariate Time-Series Anomaly Detection via Graph

Attention Network. In: 2020 IEEE International Conference on Data Mining

(ICDM). IEEE, 2020.

1193


