
A Change Metamodel for the Evolution of MOF-Based
Metamodels

Erik Burger1 and Boris Gruschko2

Abstract: The evolution of software systems often produces incompatibilities with existing data and
applications. To prevent incompatibilities, changes have to be well-planned, and developers should
know the impact of changes on a software system. This consideration also applies to the field of
model-driven development, where changes occur with the modification of the underlying metamod-
els. Models that are instantiated from an earlier metamodel version may not be valid instances of the
new version of a metamodel. In contrast to other metamodeling standards like the Eclipse Modeling
Framework (EMF), no classification of metamodel changes has been performed yet for the Meta
Object Facility (MOF).

The contribution of this paper is the evaluation of the impact of metamodel changes on models.
For the formalisation of changes to MOF-based metamodels, a Change Metamodel is introduced to
describe the transformation of one version of a metamodel to another. The changes are then classifed
by their impact on the compatibility to existing model data. The classification is formalised using
OCL constraints. The Change Metamodel and the change classifications presented in this paper lay
the foundation for the implemention of a mechanism that allows metamodel editors to estimate the
impact of metamodel changes semi-automatically.

1 Introduction

The divide between the developer and user of model driven tools becomes wider with
broader adoption of model driven techniques in software engineering. While providing
higher quality tools and increasing the productivity of their application, this divide also
introduces the typical development cycles observed in the evolution of any software devel-
opment tool. The tool developer provides the user with a discrete version of his product,
and the user produces content in accordance with the version of the tool available to him.
The problem of evolution does not arise if the user applies the same version of the tool
throughout a project’s lifecycle, or if the user and the tool developer are the same person.
In the first case, the non-relevance of the evolution problem is obvious. In the second case
the problem does not arise, because the tool user has intimate understanding of tool’s in-
ner workings and evolution impact of his doing on the persisted content. In recent years, a
number of toolkits for the development of model driven tools have emerged, simplifying
the task of tool creation and modification. This development escalates the problem of tool
evolution.
1 Chair for Software Design and Quality, Karlsruhe Institute of Technology, Germany, erik.burger@kit.edu
2 SAP AG, Walldorf, Germany, boris.gruschko@sap.com



286 Erik Burger and Boris Gruschko

The most visible symptom of the evolution problem in model driven tools is the breaking
of model content due to metamodel evolution. This problem arises when the developer of
the tool changes the underlying metamodel, rendering the existing content (created by an
earlier version of the tool) incompatible to the new metamodel version.

While the problem of metamodel evolution can be handled via active migration, most of
the cases could be handled in an automatic manner. Most of the available toolkits for the
development of model driven tools have an underlying meta-metamodel to which the meta-
models have to adhere. The restrictions imposed by the meta-metamodel can be used to
derive a catalogue of all possible metamodel changes and their classification into changes
which could lead to the breakage of model content and those which can be introduced in an
additive manner. A classification of this kind has been performed for the Ecore metamodel
[BGGK07], but is still missing for MOF [MOF05].

In this paper we present an classification scheme of metamodel changes. Furthermore, we
present an approach to the attachment of metamodel changes to the actual metamodels
(Change Metamodel). Another contribution of this paper is the classification of all possi-
ble metamodel changes of a MOF 1.4 metamodel according to the proposed classification
scheme. This classification also accounts for sequences of metamodel changes and is for-
malised using OCL constraints.

The work has been performed in scope of the MOIN (MOdeling INfrastructure) project at
the SAP AG. MOIN is a MOF 1.4 based repository. [AHK07]

The structure of this paper is as follows: First, an overview of the foundations of meta-
model evolution is given. Then, the Change Metamodel is introduced and its structure
explained. The most interesting cases for the classification of metamodel changes are dis-
cussed by example. The complete classification of MOF metamodel change types is pre-
sented as an overview table in section 4. Afterwards, the whole process of metamodel evo-
lution description and classification is shown within a common example. The assumptions
and limitations of our approach are then mentioned, together with related work before the
paper concludes.

2 Foundations

2.1 Difference of Metamodels

The process of metamodel evolution requires to deal with two versions of a metamodel.
The difference between two metamodels can be described by a sequence of elementary
change operations [AP03]. These operations contain addition and deletion of elements and
links, and the modification of element properties. In general, there are two approaches of
determining the set of operations describing a change: Either by tracing of single changes
or by direct comparison. [Gir06]



A Change Metamodel for the Evolution of MOF-Based Metamodels 287

In the first approach, tool support is needed in order to record single changes during the
editing of the metamodel. The result is a sequence of change operations that reference the
original metamodel. Since changes can revert each other, this sequence is not necessarily
minimal unless these redundancies are eliminated. Furthermore, if users edit a metamodel
through a tool, the operations tool must be matched with the elementary operations men-
tioned above.

In the second approach, if two metamodels are compared directly, two prerequisites have
to be met: Firstly, the underlying infrastructure must support loading two versions of the
same metamodel. On the one hand, the matching of elements is simplified by the fact
that every element has a unique MOF-ID; on the other hand, this rises the problem that
the infrastructure has to deal with different elements that have the same unique identifier.
Secondly, an algorithm must be chosen hat calculates a sequence of elementary changes.

2.2 Metamodel Evolution

The process of metamodel evolution can make models inconsistent with the new version
of the metamodel. These inconsistencies must be resolved by migrating the models, which
is a process that cannot be fully automated. In [GKP07], Gruschko et al. introduce a clas-
sification scheme that categorises changes to Ecore-based metamodels into three classes,
considering the impact on metamodel instances. We adapt this categorisation for MOF-
based metamodels, resulting in the following three change severities:

non-breaking < breaking and resolvable < breaking and not resolvable

• A non-breaking change does not require any adaptation of existing models, which
is mostly true for additive changes to the metamodel.

• For breaking and resolvable changes, an algorithm can be defined to migrate exist-
ing instances to the new metamodel version.

• If a breaking and not resolvable change occurs, manual interaction is required to
make existing models conform to the new metamodel, if possible at all.

When talking about conformance of a model to a metamodel, we mean instantiation con-
formance as defined by Steel [SJ04].



288 Erik Burger and Boris Gruschko
M

od
el

E
le

m
en

tC
ha

ng
e

/s
ev

er
it

y:
Se

ve
ri

ty
Ki
nd

«e
nu

m
er

at
io

n»
C

ha
ng

eK
in

d

AD
D

DE
LE

TE

«e
nu

m
er

at
io

n»
S

ev
er

ity
K

in
d

NO
N_

BR
EA

KI
NG

BR
EA

KI
NG

_R
ES

OL
VA

BL
E

BR
EA

KI
NG

_N
OT

_R
ES

OL
VA
BL

E

C
ha

ng
eS

eq
ue

nc
e

/s
ev

er
it

y:
Se

ve
ri

ty
Ki
nd

E
xi

st
en

ce
C

ha
ng

e

ki
nd

:C
ha

ng
eK

in
d

af
fe

ct
ed

El
em

en
t:

Mo
de
lE
le

me
nt

P
ro

pe
rt

yC
ha

ng
e

af
fe

ct
ed

El
em

en
t:

Mo
de
lE
le

me
nt

Li
nk

C
ha

ng
e

ki
nd

:C
ha

ng
eK

in
d

po
si

ti
on

:I
nt

eg
er

C
on

st
ra

in
sC

ha
ng

e

co
ns

tr
ai

ne
dE

le
me

nt
:M

od
el
El

em
en
t

co
ns

tr
ai

nt
:C

on
st

ra
in

t

R
ef

er
sT

oC
ha

ng
e

re
fe

rr
er

:R
ef

er
en

ce
ex

po
se

dE
nd

:A
ss

oc
ia
ti

on
En
d

C
an

R
ai

se
C

ha
ng

e

ex
ce

pt
:E

xc
ep

ti
on

op
er

at
io

n:
Op

er
at

io
n

po
si

ti
on

:I
nt

eg
er

A
lia

se
sC

ha
ng

e

im
po

rt
er

:I
mp

or
t

im
po

rt
ed

:N
am

es
pa

ce

M
ul

tip
lic

ity
Ty

pe
C

ha
ng

e

lo
we

r:
In

te
ge

r
up

pe
r:

In
te

ge
r

is
Or

de
re

d:
Bo

ol
ea

n
is

Un
iq

ue
:B

oo
le

an

P
rim

iti
ve

Ty
pe

C
ha

ng
e

pr
op

er
ty

Na
me

:S
tr

in
g

Is
O

fT
yp

eC
ha

ng
e

ty
pe

dE
le

me
nt

:T
yp

ed
El

em
en
t

ty
pe

:C
la

ss
if

ie
r

C
on

ta
in

sC
ha

ng
e

co
nt

ai
ne

r:
Na

me
sp

ac
e

co
nt

ai
ne

dE
le

me
nt

:M
od
el

El
em
en

t
po

si
ti

on
:I

nt
eg

er

G
en

er
al

iz
es

C
ha

ng
e

su
pe

rE
le

me
nt

:G
en

er
al
iz
ab

le
El
em

en
t

su
bE

le
me

nt
:G

en
er

al
iz
ab
le

El
em
en

t
po

si
ti

on
:I

nt
eg

er

A
tta

ch
es

To
C

ha
ng

e

mo
de

lE
le

me
nt

:M
od

el
El

em
en
t

ta
g:

Ta
g

po
si

ti
on

:I
nt

eg
er

S
tr

in
gC

ha
ng

e

ne
wV

al
ue

:S
tr

in
g

M
ul

tiV
al

ue
dS

tr
in

gC
ha

ng
e

ki
nd

:C
ha

ng
eK

in
d

va
lu

e:
St

ri
ng

po
si

ti
on

:I
nt

eg
er

B
oo

le
an

C
ha

ng
e

ne
wV

al
ue

:B
oo

le
an

E
nu

m
er

at
io

nT
yp

eC
ha

ng
e

D
ire

ct
io

nK
in

dC
ha

ng
e

di
re

ct
io

n:
Di

re
ct

io
nK
in

d
S

co
pe

K
in

dC
ha

ng
e

sc
op

e:
Sc

op
eK

in
d

A
gg

re
ga

tio
nK

in
dC

ha
ng

e

ag
gr

eg
at

io
n:

Ag
gr

eg
at
io
nK

in
d

E
va

lu
at

io
nP

ol
ic

yC
ha

ng
e

ev
al

ua
ti

on
Po

li
cy

:E
va

lu
at
io

nK
in
d

V
is

ib
ili

ty
K

in
dC

ha
ng

e

vi
si

bi
li

ty
:V

is
ib

il
it

yK
in
d

1

{o
rd

er
ed

}

1.
.*

Fi
g.

.1
:C

ha
ng

e
M

et
am

od
el



A Change Metamodel for the Evolution of MOF-Based Metamodels 289

3 The Change Metamodel

3.1 Definition

For the description of metamodel changes, we introduce a Change Metamodel (see figure
1). Instances of this metamodel describe an actual change to a metamodel as a sequence
of single change operations, contained in a ChangeSequence element. As mentioned in
subsection 2.1, all changes in a metamodel can be expressed as a sequence of either ad-
ditions or deletions of elements and links, or modifications of a property. The Change
Metamodel is also based on this assumption; the three base classes of the change meta-
model cover the addition or deletion of elements (ExistenceChange), the modification of
properties (PropertyChange) and the deletion or addition of links (LinkChange). These
single change types will be described and classified in the following subsections.

3.1.1 ExistenceChange

This change type describes the addition or deletion of an element in the metamodel, i.e. an
instance of a MOF class. This covers e.g. classes, attributes, associations etc. In the case
of deletion, the ExistenceChange instance references an element in the old metamodel; in
the case of addition, it references a new element which must be contained in the current
Change Metamodel instance.

3.1.2 PropertyChange

A property of a metamodel element represents an attribute in the MOF class of which
the element is an instance. This could, for example, be the name of an element or the
cardinality of an association end.

Since in the MOF model itself, the attributes of the classes are only typed with DataTypes
(and not with classes), we can specify an actual class in the Change Metamodel for every
property type. Furthermore, the propertyName field is only needed for the PrimitiveType-
Change, and not for multiplicity or enumeration types, since there is only one attribute of
these types in each MOF class.

3.1.3 LinkChange

This class represents all changes in features that are associations in the MOF model. This
includes containment, inheritance (generalisation) and typing. Of these, some are not rep-
resented as (visible) associations in a model diagram. However, since they are associations
in the MOF model, links exist in the metamodels for these concepts, and thus they are
covered by this class. For every association that is part of the MOF model, there is a class
in the Change Metamodel. They contain each two attributes for the ends of the association,



290 Erik Burger and Boris Gruschko

which are named after the roles in the MOF model. Changing a link is always expressed
as either a deletion or addition. This approach is common practise in other fields, e.g.
database schema migration [Mon93, p. 42].

For associations that are ordered, the field position describes the position of a newly added
element. For deletions, this value is ignored.

3.2 Classification

The classification of a change is expressed by the derived attribute severity in the respective
classes of the Change Metamodel. The semantics of this attribute are formally described
by OCL constraints that cover all the cases shown in the table in section 4. A complete
listing of all constraints can be found in [Bur08].

3.2.1 Overall Severity

Since changes are contained in change sequences, not only the severity of a single change
has to be regarded, but also the overall severity of a sequence of changes. Intuitively, the
overall severity can be determined by finding the maximum (according to the order pre-
sented in subsection 2.2) of the severities of all singular changes in the change sequence.

However, if the change severity of a single change is only based on the effect of that single
change, the overall severity is only equal to the maximum of the sequence’s severities
in trivial cases. If a sequence of changes is applied to a metamodel, it is possible that a
combination of changes has a lower severity than any of the single changes. A simple
example is the consequent addition and deletion of the same element; the latter change
reverts the first one, and there is no effect on the metamodel at all.

As a consequence of this, the OCL constraints that describe the severity of a ModelEle-
mentChange also account for other changes in the same ChangeSequence. The constraints
express the severity of a single change in the context of the complete change. If a change
sequence only contains one element, the constraint expresses the severity for a singular
change. Thus, the maximum severity yields the correct result for the overall severity of a
sequence of changes.

3.2.2 Interesting Cases by Example

In this section, we will show two of the more difficult cases, where the determination of
change severities is non-trivial.

Deletion of a Class (cf. Figure 2) If classes are deleted in the metamodel, the corre-
sponding M1 instances must also be deleted. This change is normally resolvable, but can



A Change Metamodel for the Evolution of MOF-Based Metamodels 291

be breaking and not resolvable if a situation similar to the one shown in Figure 2 occurs:
The instance of Type2 has a link to an instance of Subtype1. If Subtype1 is deleted, the as-
sociation still exists in the metamodel, since it is connected to the superclass Type1 of the
deleted class. As a consequence of the deletion of Subtype1, all its instances and the links
to these instances are also deleted, leaving only the instance of Type2. Now the model data
is invalid, since there is no link to an instance of Type1, which is required by the minimum
cardinality of 1 in the metamodel.

Type1 Type2

Subtype1

:SubType1 :Type2

before change after change

M2

M1

Type1 Type2

:Type2

1..* 0..1 1..* 0..1

Fig.. 2: Example: Deletion of a class makes M1 data invalid

Association end moved to superclass (cf. Figure 3) If one end of an association is
moved to another type, the change consists of a type change of the affected Associatio-
nEnd. If the situation is similar to Figure 3, existing M1 data will become invalid. In the
example, EndB is changed to a supertype. In the M1 data, the instances of Type1 and
SubType2 will still be valid after the change, since the association still exists. Only the
instance of Type2 is invalid since there is no association to an instance of Type1 despite the
minimum cardinality 1 of EndA. This makes the change breaking and not resolvable.

Type1 Type2

SubType2

:Type1 :Type2:SubType2

before change after change

(M1 instances identical in both versions)

M2

M1

Type1 Type2

SubType2

1..*

0..1EndA

EndB

1..* 0..1

EndA EndB

Fig.. 3: Example: Type change on an association end



292 Erik Burger and Boris Gruschko

4 Classification of MOF Metamodel Changes

The table shows the change severities of the single cases, grouped by the classes of the
Change Metamodel, which can take the values non-breaking (nb), breaking and resolv-
able (br) and breaking and not resolvable (bn). For a comprehensive explanation, examples
and the OCL constraints of all special cases, please refer to [Bur08].

MOF change type nb br bn condition

ExistenceChange
Class add additive

delete supertype has mandatory asso-
ciation end
other cases

Attribute add minimum cardinality > 0, no
initializer
minimum cardinality > 0, ini-
tializer exists
minimum cardinality = 0

delete
Association add minimum cardinality > 0

minimum cardinality > 0, no
instances
minimum cardinality = 0

delete
AssociationEnd same as for Association

Reference add
delete

Package add
delete contents resolvable

contents not resolvable
Import add

delete elements resolvable otherwise
elements not resolvable

Tag add
delete

Constraint add
delete

Operation add/delete
Exception add/delete
Parameter add/delete
DataType add/delete

StructureField add/delete



A Change Metamodel for the Evolution of MOF-Based Metamodels 293

PropertyChange
ModelElement name refactoring, unique ids

annotation
Generalizable isRoot

Element isLeaf
isAbstract true → false

false → true

visibility increase
decrease

Association isDerived true → false

false → true

Class isSingleton true → false

false → true

Constraint expression
language

evaluationPolicy
Feature scope instance_level → classi-

fier_level

classifier_level → in-
stance_level

visibility increase
decrease

StructuralFeature multiplicity widening
narrowing

isChangeable
Attribute isDerived true → false

false → true

Operation isQuery
Constant value

Parameter direction
multiplicity

AssociationEnd isNavigable
aggregation composite → none

none → composite, composi-
tion closure rule violated
closure rule not violated

multiplicity widening
narrowing

isChangeable
EnumerationType labels addition

delete/modify



294 Erik Burger and Boris Gruschko

LinkChange
Contains not mandatory; to supertype

not mandatory; to other type
mandatory; to new or abstract
supertype
mandatory; to other type

Generalizes add supertype contains mandatory
features or associations
supertype contains non-
mandatory features or associa-
tions
supertype contains no features
or associations

delete no associations to supertype or
type compatible; new features
in supertype
no associations to supertype or
type compatible; no new fea-
tures in supertype
supertype has adjacent manda-
tory association ends; change
not type compatible
supertype has adjacent non-
mandatory association ends;
change not type compatible

IsOfType new type is supertype; general
case
new type is supertype; special
case for association end with
mandatory other end
new type is subtype and in-
stances are type compatible
new type is no sub- or supertype

RefersTo

CanRaise

5 Example

The example seen in Figure 4 shows a common case of metamodel evolution. For a given type
(Type1), a supertype is introduced (Type2). The attribute attr1 is a mandatory feature, since it has a
lower cardinality of 1. It is moved to the new supertype.



A Change Metamodel for the Evolution of MOF-Based Metamodels 295

Package1

Type1

attr1:int [1..1]

Package1

Type2

attr1:int [1..1]

Type1

before change after change

Fig.. 4: Example metamodel

5.1 Change Description

The transition from Version 1 to Version 2 is described by instances of the Change Metamodel, as
depicted in Figure 5. First, the new type is created in Change1. Then, the generalization between the
types is added (Change2). The move operation for the attribute attr1 is described as the deletion and
addition of the Contains link between the attribute and the types in Change3 and Change4.

Change1 : ExistenceChange

kind=ADD
affectedElement=Type2

Change3 : ContainsChange

kind=DELETE
container=Type1
containedElement=attr1

Change2 : GeneralizesChange

kind=ADD
superElement=Type2
subElement=Type1

Change4 : ContainsChange

kind=ADD
container=Type2
containedElement=attr1

Fig.. 5: Change steps as Change Metamodel instances

5.2 Classification

Since the first change is purely additive, it is non-breaking. In the second change, a generalisation
link is added. If we looked at the change steps until here, Type2 would not contain any features,
so one could assume that the change were trivially non-breaking. However, in the OCL constraints,
all other changes of a sequence are also taken into account, as stated in subsubsection 3.2.1. This
also includes the changes which are performed after the current change. In the resulting metamodel,
Type2 will contain a mandatory attribute, which would make the change breaking and not resolv-
able because there are no values for it in the instances of Type1. But since all of the subtypes of
Type2 (in this case, only Type1) contained an attribute of the same name and of the same type in the
former metamodel version, existing valid M1 instances contain values for this attribute. This is why
the addition of the generalisation is non-breaking in this case.

Finally, the mandatory association is moved to the new supertype. This way, all instances of Type1
are still valid. For Type2, the situation is more complex, since a mandatory feature was introduced,
which could cause instances to become invalid, as they do not have a value for this feature. But since
Type2 was newly created in the course of this change sequence, there cannot be any instances in
existing M1 data, and so the change is also non-breaking.



296 Erik Burger and Boris Gruschko

For the overall change, this means that the change is non-breaking. The interesting thing about this
example is the fact that the single changes would have different severities if they were analysed
as singular changes without the context of the change sequence. In total, this would yield a wrong
estimation of the overall severity. Only if all four change steps are regarded, the severities can be
determined correctly.

5.3 Example OCL constraint

In this section, we take a look at the OCL constraint for Change3. As mentioned in the paragraph
above, the deletion of the containment link between attr1 and Type1 is non-breaking because the
attribute is moved to a supertype. This is expressed in lines 6–13 of the following constraint.

1 context ContainsChange
2 inv: (self.container.oclIsTypeOf(Class) and
3 self.containedElement.oclIsKindOf(StructuralFeature))
4 implies
5 if (self.kind=DELETE) then
6 if self.changeSequence.changes -> exists(c|
7 c.oclIsTypeOf(ContainsChange) and c.kind = ADD and
8 (c.containedElement = self.containedElement or
9 c.containedElement.similar(self.containedElement)) and

10 self.newSupertypesExtended(self.container)
11 -> contains(c.container))
12 -- feature moved to supertype
13 then self.severity = NON_BREAKING
14 -- feature deleted or moved elsewhere
15 else self.severity = BREAKING_RESOLVABLE
16 endif
17 else -- (self.kind=ADD)
18 -- (omitted here)
19 endif

Listing 1: Severity Constraint for Change3 (excerpt)

Here, the interesting part is the function newSupertypesExtended (line 11), which is the transitive
closure of the newSupertype helper function shown below. The function calculates the supertype
structure in the new version of the metamodel. Functions of this type are necessary since we cannot
reference elements in the new version of the metamodel.

1 context ModelElementChange::newSupertypes(GeneralizableElement
2 element) : Set(GeneralizableElement)
3 post: result = element.supertypes
4 -> including(this.changeSequence.changes -> select(ch|
5 ch.oclIsTypeOf(GeneralizesChange) and
6 ch.subtype = element and ch.kind = ADD) -> collect(supertype)
7 )
8 -> excluding(this.changeSequence.changes->select(ch|



A Change Metamodel for the Evolution of MOF-Based Metamodels 297

9 ch.oclIsTypeOf(GeneralizesChange) and
10 ch.subtype = element and
11 ch.kind = DELETE) -> collect(supertype)
12 )

Listing 2: Helper function

6 Assumptions/Limitations

6.1 Unique Identifiers

As seen in the example above, changes in containment or generalisation are expressed as two op-
erations (delete and add) in the Change Metamodel. This makes it more difficult to recognize the
semantics of such a change. However, the description is unambiguous since in MOF 1.4, every ele-
ment has a unique identifier [MOF05].

In order to detect a change in containment, the change sequence has to be searched for elements
of the same type (e.g. ContainsChange) with different change kind (delete, add) and the identical
affected element, which can be determined by the element’s unique identifier. The decision to de-
scribe changes in this way is backed up by the fact that containment, typing and other relations are
expressed by instances of MOF associations like Contains and IsOfType, i.e. links in a MOF-based
metamodel. Since links do not have element identity, it is not possible to distinguish the “modi-
fication” of a single link from its deletion and the creation of a new link that connects to one of
the former link’s ends. Only the MOF constraints which state that an element must be contained
in a container or that a typed element must have a type ensure that for every deleted link of these
types, a new one is created. Otherwise, the metamodel would not be a valid MOF instance. Since
we did not want to hard-code these contraints in the structure of our metamodel, all modifications to
associations in MOF are mapped to subtypes of LinkChange.

6.2 References to Metamodels

A Change Metamodel instance only references elements in one version of the metamodel. The
Change Metamodel instance is applied like a patch and generates the new version. If new elements
are added during the progress of modification, they must be contained with the Change Metamodel
instance.

This method has the advantage of not having to deal with two versions of the same element, which
would be the case if the change description referenced elements from both evolutionary stages. A
Change Metamodel instance has an inverse that references only elements of the newer metamodel
version.

6.3 M1-agnostic analysis

The severity of a Change Metamodel instance depends on its own structure and the structure of
the metamodel it references, i.e. the M2 level. In general, the nature of M1 instances also has an



298 Erik Burger and Boris Gruschko

influence on the severity of changes to a M2 model. For example, if a class does not have instances,
all changes to this class would be non-breaking.

But since metamodels and M1 instances are not necessarily used by the same person, even in the
same environment, it may be impossible for the editor of a metamodel to know about all or any M1
instances. For this reason, the classification of this paper is a worst-case assumption: All severities
in section 4 have been calculated for the worst-case of possible M1 instances.

7 Related Work

The problem of finding a minimal edit script for hierarchically structured information is adressed in
[CRGMW96]. The algorithm presented there calculates a minimal edit script for different version of
a graph, under the assumption that no unique identifiers are present. The edit script is composed of
atomic editing operations on graphs. For the process of finding a delta of two metamodels without
the support of traces, this algorithm could be used to determine a sequence of atomic change steps.

This algorithm is also used by Girschick in [Gir06] to compare UML class diagrams. Girschick in-
troduces the UMLDiffcld algorithm that is based on elementary transformation options. The purpose
of this algorithm lies mainly in difference visualisation for graphical UML tools. The visualisation
could be generalised to be used with any kind of MOF models.

A metamodel for the description of model deltas has been presented by David Hearnden in the
Deltaware project [Hea07, pp. 72]. The Delta model is based on MOF 2.0 and allows the descrip-
tion of model deltas with the help of identity maps. While the addition and deletion of elements
and changes of properties are described thoroughly, the Delta model lacks descriptive methods for
changes in the model structure, like containment or generalisation. The focus of this work lies on
metamodel transformations, for which evolutionary aspects are formalised using the Tefkat lan-
guage.

Ciccheti et al. [CRP07] propose a metamodel-independent approach for the description of model
deltas that is also based on atomic change operations. They also describe model deltas through
instances of a difference metamodel, which is derived from a concrete model delta. In contrast, the
change metamodel in this paper is fixed, since the meta-model is always the MOF model, and so the
semantics of changes can be described more specifically, regarding the effects of metamodel changes
to existing instances.

The migration of model instances under metamodel evolution is denoted as adaptation and co-
adaptation by Wachsmuth in [Wac07]. The steps of adaptation are described with QVT Relations
with respect to instance preservation on the model side. For this purpose, a set of metamodel rela-
tions is defined, which allow the estimation of the impact of a metamodel adaption, based on the
layout of model data.

For EMF, there are several approaches for the description of metamodel evolution. Becker et al. sug-
gest a process model for semi-automatic evolution, including the change classification that this paper
is based on [BGGK07]. The idea behind this process model is that a metamodeling infrastructure
should assist the user with the transformation of existing model data by distinguishing automatically
adaptable changes from those that need manual interaction.

Herrmannsdörfer defines a language for metamodel evolution and model tranformation called COPE
[HBJ08], which is used for the evolution of Ecore models. The approach includes coupled trans-



A Change Metamodel for the Evolution of MOF-Based Metamodels 299

actions for the M2 and M1 level which are reusable, as well as tool support. Coupled evolution
scenarios are also described by Vermolen et al. in [VV08]. While these approaches focus on the
transformation of existing model data, the change classification of this paper is primarily directed at
the analysis of the impact of changes to the metamodel.

8 Conclusion

The change metamodel presented in this paper allows a description of the metamodel evolution
process of MOF-based metamodels using MOF itself as a description language. Based on this, the
severity of changes to a metamodel can be determined for single changes, and, more importantly, for
complex change sequences using the change severity classification of section 4. This classification
can be used to make statements about the compatibility between arbitrary existing model instances
and new versions of the metamodel. The severity classification of changes expressed in the Change
Metamodel has been noted formally using OCL, so that the results of an automatic or manual clas-
sification can be checked by the respective modeling infrastructure. This makes it possible to use
the results of the change classifications presented here in a platform-independent way. For manual
evaluation of change severities, an overview table has been created.

In a metamodeling infrastructure which allows the comparison of different versions of the same
metamodel, the classification presented in this paper could be used to automatically determine the
impact of a change to a certain metamodel on existing model data. This would require an automatic
calculation of a change metamodel instance from either two versions of a metamodel or from the
current editing process of a persisted metamodel. The model editing tool could then determine the
severity of the changes, which would enable the metamodel editor to decide about changes to the
metamodel regarding the projected impact on existing data as well as interface compatibility of the
generated software. The implementation such guidance tools for model editing tools remains subject
to future work. For users of the modeling tools, the formal description of metamodel evolution
changes would ease the migration of their existing model data to new versions of that software.

The incorporation of techniques alleviating metamodel evolution into modeling infrastrcutures would
allow for faster adoptation of modeling tools to user needs.

References
[AHK07] Michael Altenhofen, Thomas Hettel, and Stefan Kusterer. OCL Support in an In-

dustrial Environment. In Models in Software Engineering. Workshops and Sym-
posia at MoDELS 2006, Genoa, Italy, October 1-6, 2006, Reports and Revised Se-
lected Papers, volume 4364 of Lecture Notes in Computer Science, pages 169–178,
Berlin/Heidelberg, 2007. Springer Verlag.

[AP03] Marcus Alanen and Ivan Porres. Difference and Union of Models. In Perdita Stevens,
Jon Whittle, and Grady Booch, editors, “UML 2003” – The Unified Modeling Lan-
guage, Modeling Languages and Applications 6th International Conference, San
Francisco, CA, USA, October 20–24, 2003, Proceedings, volume 2863 of Lecture
Notes in Computer Science, pages 2–17, Berlin/Heidelberg, 2003. Springer Verlag.

[BGGK07] Steffen Becker, Thomas Goldschmidt, Boris Gruschko, and Heiko Koziolek. A Pro-
cess Model and Classification Scheme for Semi-Automatic Meta-Model Evolution.
In Proc. 1st Workshop “MDD, SOA und IT-Management” (MSI’07), pages 35–46.
GiTO-Verlag, April 2007.



300 Erik Burger and Boris Gruschko

[Bur08] Erik Burger. Metamodel Evolution in the Context of a MOF-Based Metamodeling In-
frastructure. Master’s thesis, Universität Karlsruhe (TH), September 2008. http://
sdqweb.ipd.kit.edu/publications/pdfs/burger2008a.pdf.

[CRGMW96] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change Detection in Hierarchically Structured Information. In H. V. Ja-
gadish and Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec, Canada, June
4-6, 1996, pages 493–504. ACM Press, 1996.

[CRP07] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A Metamodel In-
dependent Approach to Difference Representation. Journal of Object Technol-
ogy, 6(9):165–185, 2007. http://www.jot.fm/issues/issue_2007_10/paper9/
index.html.

[Gir06] Martin Girschick. Difference Detection and Visualization in UML Class Diagrams.
Technical Report TUD-CS-2006-5, Technische Universität Darmstadt, 2006.

[GKP07] Boris Gruschko, Dimitrios S. Kolovos, and Richard F. Paige. Towards Synchronizing
Models with Evolving Metamodels. In In Proc. Int. Workshop on Model-Driven
Software Evolution held with the ECSMR, 2007.

[HBJ08] Markus Herrmannsdörfer, Sebastian Benz, and Elmar Jürgens. COPE: A Lan-
guage for the Coupled Evolution of Metamodels and Models. In 1st In-
ternational Workshop on Model Co-Evolution and Consistency Management,
2008. http://www.info.fundp.ac.be/mccm/2008/wp-content/uploads/
2008/09/9-herrmannsdoerfer.pdf.

[Hea07] David Hearnden. Deltaware: Incremental Change Propagation for Automating Soft-
ware Evolution in the Model-Driven Architecture. PhD thesis, University of Queens-
land, School of ITEE, October 2007.

[MOF05] Object Management Group. Meta Object Facility (MOF) Specification, Version 1.4,
July 2005. http://www.omg.org/docs/formal/05-05-05.pdf.

[Mon93] Simon Monk. A Model for Schema Evolution in Object-Oriented Database Systems.
PhD thesis, Lancaster University, February 1993.

[SJ04] Jim Steel and Jean-Marc Jézéquel. Typing Relationships in MDA. Technical Re-
port 17, University of Kent at Canterbury Computing Laboratory, 2004.

[VV08] Sander Vermolen and Eelco Visser. Heterogeneous Coupled Evolution of Software
Languages. In Model Driven Engineering Languages and Systems, 11th Interna-
tional Conference, MoDELS 2008, Toulose, France, September 28 - October 3, vol-
ume 5301 of Lecture Notes in Computer Science, pages 630–644, Berlin/Heidelberg,
2008. Springer Verlag.

[Wac07] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In ECOOP’07
– Object-oriented programming, volume 4609 of Lecture Notes in Computer Science,
pages 600–624, Berlin/Heidelberg, 2007. Springer Verlag.


