
A Note on Software Partitioning for
Embedded Homogenous Multicore Systems

Bhaskar Das, Torsten Polle, Michael Uelschen

Advanced Driver Information Technology GmbH
Robert-Bosch-Straße 200

31139 Hildesheim

{bhaskar.das, tpolle, muelschen}@de.adit-jv.com

Abstract: The introduction of homogenous multicore systems for embedded de-
vices in the automotive domain has been started recently. Driver information sys-
tems like car navigation are the first application. This paper shows how the soft-
ware architecture should be designed in order to use the multicore technology effi-
ciently. We will focus on two principles as scheduling algorithms and parallel pro-
gramming to partition software in multicore systems.

1 Introduction

In Figure 1 the evolution of multicore processors with some historical examples is
shown. Starting with a multiprocessor architecture at the super computer and main frame
classes in the 1970’s and 1980’s the technology process got improved which enabled
chipset manufacturers to layout several cores on one die. The year 2005 was the inflec-
tion point when the increase of the clock frequency got restricted around 4 GHz, primar-
ily because of huge power consumption and it was then, when multicore technology hit
the consumer market.

Super Computer

Cray X-MP
Multiprocessor

1982

Mainframe

IBM s370/158
Multiprocessor

1972

Server

IBM POWER4
Multicore
2001

Workstation

AMD Opteron
Multicore
2005

PC

Intel Core Duo
Multicore
2006

ECU

Head Unit

Renesas
Multicore
2007

Figure 1: Evolution of multiprocessors and multicore systems from super computers to classical
embedded electronic control units (ECU).

Now the multicore architecture is entering the embedded automotive domain. The first
adopters are driver information systems (like car navigation or head units) followed by
multicore systems for classical electronic control units (like body electronics).

Driver information systems combine functionality from the consumer electronics market
(like MP3 or video playback functionality) as well as from the automotive domain (like
CAN or MOST networking). Therefore it will be interesting to see if and how already
established principles to use parallelism can be re-used for the automotive environment.

643



1.1 Embedded Automotive Multicore Systems

Homogenous multicore architectures are available for example from ARM and MIPS for
Systems-on-Chip (SoC). Since 2007 commercial samples for navigation devices are
offered by NEC and RENESAS [PU08].

In homogenous multicore systems, the shared access to the memory subsystem is sym-
metric and peripherals are identical from individual core point-of-view. Heterogeneous
architectures constituting core connecting with a DSP are out of scope of this paper.

The major use-cases for multicore in the automotive domain can be classified as:

Deployment of new Functions. For the realisation of upcoming features additional
computing power is required. This is to support technology advancement, on one hand
(like the European satellite navigation system Galileo). On the other hand, more rigid
laws and standards (like the European eCall) have to be implemented.

Redundant Systems. For automotive control units that require high safety and reliabil-
ity, the use of multicore is a cost-efficient approach. However a failure of the underlying
hardware will affect the entire system. Further investigations are necessary to verify
which application can be designed in this approach.

Concentrating of Functions. Since cars are equipped with up to 100 ECUs, the minimi-
zation of the amount is a strong objective. This is driven by many factors, hardware costs
being one of them. Also the configuration management and therefore the test and release
process gets less complex and time-consuming as the amount of possible combinations
of software and hardware versions goes down.

Convergence of Domains. The availability of the current position as well as the calcu-
lated route to some destination can be used for other applications in the car like vehicle
control. The domain of driver information gets closer to driver assistance or to the pow-
ertrain domain (see example from Toyota [Ta06]).

1.2 Parallelism

Parallelism can be separated into 4 levels [RR08]. In multi-purpose systems as well as in
embedded devices further progress on bit-level or on instruction-level is limited. Since
1985 instruction pipelining is applied in most of the systems [HP03]. Data parallelism
depends heavily on how the data can be processed by an algorithm and requires sophisti-
cated programming languages and/or compilers that are seldom used in industrial solu-
tions.

Parallelism on control level utilizes (light-weight) threads, as provided by the underlying
real time operating system (RTOS) to get computing done concurrently. In order to
schedule these threads for execution on the individual cores, the kernel of the operating
system has several options. It turns out that different mechanisms need to be considered
for partitioning software on embedded systems compared to the desktop world.

644



2 Scheduling

Scheduling in desktop or server systems for user level programs is round-robin in nature
to give enough justice to all user programs under execution. This scheduling mechanism
is non-deterministic as the operating systems (OS) steals control from threads to realize
round-robin scheduling. In case of embedded systems, the scheduling is generally prior-
ity based pre-emptive. And in such scheduling schemes, an application may misbehave
or lead to data race condition if more than two threads of different priority go to RUN
state at the same time.

2.1 Symmetric Multiprocessing

In case of priority-based, pre-emptive scheduling on SMP kernels, the kernel provides
flexibility to decide, which thread runs on which core. Dynamic load balancing is one of
the properties of SMP mode. The advantages of symmetrical multiprocessing are:

1. The operating system manages automatic dynamic load balancing. The OS decides
how to distribute threads across processors/cores to assure effective usage of all
processors/cores.

2. Inter-core communication can be implemented very easily using inter-processor
interrupts as memory is visible to all processors/cores. No explicit message passing
mechanism is required.

The drawbacks of symmetrical multiprocessing are:

1. Deterministic behaviour gets degraded because of automatic load balancing. Also
the load balancing algorithm consumes more CPU time as the number of proces-
sors/cores in the system, increases.

2. Cache coherency, synchronization mechanism and shared data, limits application
scalability.

3. Synchronization among threads compels execution across cores to become sequen-
tial.

2.2 Asymmetric Multiprocessing

SMP is the de-facto standard of multicore server and desktop operating systems [Kl08].
For the embedded world also other architectures are under consideration. On systems
with asymmetric multiprocessing (AMP) different operating systems or several instances
of the same are executed in parallel sharing the same physical hardware.

In this case load balancing is not supported and the communication between the cores is
costly. On the other hand porting of existing single-core applications is less difficult.

A promising approach is hybrid architecture: running just one RTOS but putting restric-
tions on the scheduling strategy.

645



Core 0 Core 1 Core 2

Real Time Operating System (priority-based, pre-emptive)

Thread A0

Thread A1

Thread An

Application

Thread R0

Thread R1

Thread Rn

Redundancy

Thread C0

Control & Voting

Core 0 Core 1 Core 2

Real Time Operating System (priority-based, pre-emptive)

Thread Vn

Thread MnThread M1

Thread M0

Thread V1

Thread N1 Thread NnThread N0

Thread V0

Navigation

Video Processing

Multimedia

Figure 2: Vertical and horizontal partitioning. For the implementation of a redundant system verti-
cal partitioning of the software is appropriate, running each redundant application on a separate
core and the control application on the third. For combining several legacy applications horizontal
partitioning gives the flexibility of load balancing and preserving of execution order.

Such hybrid configuration is supported by the clever design of the scheduler logic and its
associated data structures available as a part of the kernel:

Single Core. A core is configured in the way that a set of threads is defined to run exclu-
sively on a specific core. Neither migrating of threads from this, nor to this core is al-
lowed. The scheduling strategy on this core is priority-based. Load balancing is not pos-
sible.

Execution Order Preserving. Threads are pooled to a partition with dependencies. The
scheduler assures that the execution order of the depending threads is kept. If two
threads have no dependencies the scheduler is allowed to run these in parallel for load
balancing reasons.

Core Affinity. A thread is bound to a specific core. The scheduler does not migrate the
thread for execution even a different core is idle. Other threads can migrate to this core
and will be scheduled priority-based.

The most flexibility is given if the RTOS supports the combination of SMP and the de-
scribed AMP modes. For example, on a three core system, the system designer can con-
figure at boot-time one core as one scheduling unit and the remaining two cores together,
as another scheduling unit.

Another configuration for a three core system could be that each core is treated as one
scheduling unit. Here the situation tends to be like an AMP system. Such configuration
gives flexibility to port existing legacy applications from single-core systems to multi-
core systems.

646



In Figure 2 vertical and horizontal partitioning for the implementation of the described
use cases is sketched.

Currently there are no standards on scheduling for multicore available. Some RTOS like
eT-Kernel [Go06] or Neutrino [LC06] support both these flavours of SMP and AMP.

3 Parallel Programming

The described scheduling modes can support the porting of existing applications from
single-core to multicore architectures. A better load balancing can be achieved if the
parallel programming paradigm is applied at the implementation stage of the algorithms.

3.1 Parallelism of Algorithms

The challenge to get parallelized an application in an embedded device is as complex as
on the desktop or server domain. No general guideline can be given since control paral-
lelism always requires specific knowledge on the problem space. However some design
pattern from the non-embedded world [AR06, RR08] may also be applied for the em-
bedded domain.

If a problem can be divided in the way that the algorithm can work in parallel and inde-
pendent on separate chunks of data, then the master-worker pattern is an appropriate
approach. A master thread controls a set of worker in a fork-join manner. For example
sorting a large array can be implemented as parallel running worker threads quick-
sorting sub-arrays. Merging the workers’ output by the master thread finalizes the algo-
rithm. Since the locality of the sub-arrays is very high negative effects to the cache can
be avoided. The speed-up gets high. Other prominent examples are matrix calculations
like multiplication or solving of linear equations on a mesh for fluid dynamics. Usually
the nature of an embedded automotive application is not that way.

A central time-consuming algorithm of a navigation device is the route calculation. Find-
ing the shortest path in a street network can be computed efficiently by Dijkstra’s greedy
algorithm [Sm89]. Efficient parallelizing of such problem is much harder as the simple
divide-and-conquer can not be used easily. In order to achieve load balancing the pipe-
lining programming pattern which works like an assembly line seems to be a more bene-
ficial approach. In case of route calculation the data reading from some medium like
DVD-Rom or SD-card can be arranged in the way that always a buffer of the next edges
of the street network is available for the shortest path calculation. Using two threads on
separate cores will speed-up the overall performance.

Using control parallelization requires a powerful library of thread functionality like
Pthreads [Bu97] including synchronization objects like barriers or spin-locks. On a
higher abstraction level a promising C++ library named Threading Building Blocks is
available contributed by Intel for desktop OS [Re07]. Other approaches like OpenMP
seem not suitable because of the different nature of embedded automotive domain.

647



3.2 Operating System and Device Driver Architecture

Parallel programming on thread level is the art to find units of execution that can be run
concurrently. These units are not only found in applications but also in the operating
system itself and device drivers. Especially in the automotive domain, the number of
peripherals to be served like for example sensors is high, and also the integration into the
car network, means the RTOS and device drivers have to work in parallel. Therefore
even in embedded systems the trend goes towards kernel threads, which allows paral-
lelising tasks in the RTOS and device drivers.

Another unit of execution is interrupt service routines. In some operating systems, an
interrupt service routine is often coupled with a certain thread, the interrupt service
thread. In the very extreme case, there is actually no longer a specific interrupt service
routine but only the interrupt service thread.

If the time to service an interrupt is long and the interrupt frequency is high, there are
two options: (1) Allow to service the second interrupt on another core concurrently; and
(2) Use the techniques described in section 3.1 to parallelize the interrupt service thread.

4 Conclusion

Embedded systems are usually closed system in means that user interaction is limited
and any direct interference like installing user-defined applications is prohibited. This
gives the software architect for embedded multicore devices the opportunity to effec-
tively use all cores in system by adopting software partitioning, a few of which have
been covered as a part of this article.

References

[AR06] Akhter, S.; Roberts, J.: Multi-Core Programming. Intel Press, 2006.
[Bu97] Butendorf, D. R.: Programming with POSIX Threads. Addison-Wesley Boston, 1997.
[Go06] Gondo, M.: Blending Asymmetric and Symmetric Multiprocessing with a Single OS on

ARM11 MPCore. In Information Quarterly, Volume 5, Number 4, 2006; pages 38-43.
[HP03] Hennessy, J. L.; Patterson, D. A.: Computer Architecture – A Quantitative Approach; 3rd

Edition. Elsevier Science, 2003.
[Kl08] Kleidermacher, D.: Is symmetric multiprocessing for you? In Embedded Systems Design

Europe, January-February 2008; pages 28-31.
[LC06] Leroux, P. N.; Craig, R.: Easing the Transition to Multi-Core Processors. In Information

Quarterly, Volume 5, Number 4, 2006; pages 34-37.
[PU08] Polle, T.; Uelschen, M.: Softwareentwicklung für eingebettete Multi-Core-Systeme. In

iX 3/2008; pages 124-131.
[Re07] Reinders, J.: Intel Threading Building Blocks. O’Reilly, 2007.
[RR08] Rauber, T.; Rünger G.: Multicore: Parallele Programmierung. Springer-Verlag, Berlin

Heidelberg, 2008.
[Sm89] Smith, J.D.: Design and Analysis of Algorithms. PWS-KENT Publishing, Boston, 1989.
[Ta06] Takei, T.: Toyota Works on Own OS for Automotive Terminals. In Nikkei Electronics

Asia, June 2006; http://techon.nikkeibp.co.jp/article/HONSHI/20061026/122752/.

648




