
A Review on XML Document Schemas and
Methods for Schema Design

Eliisa Jauhiainen, Anne Honkaranta
University of Jyväskylä

raelurja@cc.jyu.fi,
anne.honkaranta@it.jyu.fi

Abstract

Due to wide-spread use of XML in applications and the future
arrival of XML to the popular office software XML shall become
the standard de facto for organizational documents. In order to
realize novel, intelligent XML-based document applications
organizations need to pay attention on schema desing. This paper
reviews three differing schema languages and two potential
methods for document-oriented schema design. The paper also
exhorts that schema desing for document-oriented XML-
documents requires differing methods than those applicable for
data-oriented XML document type schema design.

1. Introduction

Organizations use documents as a means for information management
[Salminen, Lyytikäinen & Tiitinen, 2000, 624). Document is a unit of content
meant for human perception with one or more external representations [Salminen
2003]. A digital document is electronically recorded information flexibly
structured for human consumption though documents dependent upon a
computers for their use [Murphy, 2001]. A structured document is a digital
document, which information is defined and presented by XML (Extensible
Markup Language; [Bray 2000] [Salminen 2003].

XML was initially developed for document management, but it is becoming
increasingly used for storing and exchanging all kinds of data on the internet
[Elmasri 2002]. Even though many kinds of documents and messages may utilize
XML, one may make a distinction between “document-oriented” and “data-
oriented” XML. “Document-oriented” XML may also be called as “narrative” or
“content-oriented” XML. Correspondingly “data-oriented” XML may be
considered as “transactional” or “transaction-oriented” XML. These two are not
rigid categories since there is no technical difference between these two.

202 BUSINESS INFORMATION SYSTEMS – BIS 2006

However the distinction is important for XML system analysis and
implementation. [DuCharme 2004]

XML is becoming a standard to represent any kind of content in any
application domain, because it is able to represent any kind of structured or semi-
structured documents, as papers, manuals, technical reports, web pages, database
schemas, style-sheets, etc. [Psaila 2000]. XML has been widely adapted to
enterprise system integration, as e-Business format, and for Web Services. Along
the introduction of XML into common-purpose office software such as Microsoft
Office 2003 Professional [Goldfarb and Walmsley 2004] and becoming
Microsoft Office 12 and OpenOffice the office documents become XML-based.
The growing use of XML shall make large amount of heterogeneous XML
documents available. Each organization or application creates its own document
applications by defining schemas to meet their requirements.

Document schema may describe the organization of a document into
graphical constituents like sections, paragraphs lists, and figures [Power 2003].
Logical structure of a XML document describes the subjects covered on a
document. For example, an agenda may consist of logical components of “list-
of-participants”, and “time-of-meeting”. In addition to logical and layout
structure, each XML document may have also a physical structure. Physically
the document is composed of units called entities, which are storage units that
are identified by entity name and which have some kind of content. The logical
structure of the XML document is hierarchical i.e. tree-structured [Elmasri 2002]
and this structure is described by a schema. A schema for a class of documents,
such as DTD [Maler and El Andaloussi 1996] or XML Schema [Fallside and
Walmsley 2004] describes allowed structure, or the order and names of elements
and attributes for that peculiar class of XML documents. [Boukottaya 2004]

This paper is focused on the “document-oriented” XML. These kinds of
documents are, for example, agendas and reports. The paper reviews three
distinctic schema languages – DTD [Maler and El Andaloussi 1996],
XMLSchema [Bray 2000] and RelaxNg [Clark 2001], and compare their
features. We also introduce two schema design methods; the Maler and El
Andaloussi method [Maler and El Andaloussi 1996], and the Kennedy method
[Kennedy 2003] and discuss their similarities and differences. The aim is to
provide information for those considering the implementation of XML for office
documents.

The Maler and El Andaloussi method [1996] is generally recognized as the
“best practice” for DTD design [Thompson 2000]. However, DTDs differ from
schemas. When new implementation techniques appear, methods in use are
usually outdated or provide a poor match with practices and platforms in use
[Rossi 2000]. Therefore this paper also considers if the Maler & El Andaloussi
method (developed for DTD design) is still the best practice for designing
schemas?

The paper is organized as follows. Chapter 2 reviews the schema languages.
Chapter 3 describes the two methods for schema design, namely the Maler & El
Andaloussi method and the Kennedy method. Chapter 4 discusses the findings
and sums up the paper.

A REVIEW ON XML DOCUMENT SCHEMAS AND METHODS FOR SCHEMA DESIGN 203

2. Schema languages

According to Marinelli, Sacerdoti Coen & Vitali [2004, 164], schema languages
can be divided in two kinds of types:
x Grammar-based languages
x Rule-based languages

XML Schema, RELAX NG, and also DTD belong to grammar-based
languages. Grammar-based schema languages are created by document engineers
who construct context-free grammar according to top-down production rules in a
specified form. An example of rule-based schema language is Schematron. A
rule-based schema language lists the rules that XML document has to meet,
providing either an open or closed specification. [Marinelli, 2004, 164-165]
Schematron is intented to be used for checking up specific parts of document
markup for applications by using for example assertions. It is not intented to be
utilized as a schema for a whole document. Therefore we do not consider the
Schematron in this review.

Following subsections introduce the most popular grammar-based schema
languages; XML DTD, XML Schema and RELAX NG.

2.1. DTD

The first and probably the best known schema language for XML documents is
DTD (Document Type Definition). XML DTD is almost a direct derivation of its
counterpart in SGML, only simplified from its original form. [Marinelli 2004]

DTDs provide a simple, document-specific grammar for schema [Jelliffe
2001]. DTD’s main building blocks consist of an element and an attribute. The
real world is represented with hierarchical element structures [Lee 2000]. DTDs
also provide a sophisticated regular expression language for imposing constraints
on elements and subelements (i.e. content model) However DTD is limited in the
control of attribute and element values. [Marinelli 2004]

DTDs have been originally introduced for validating SGML structures and
they have been found useful in a publishing domain where most rules deal with
the explicit structure of the document, not so much with the contents of the
element values. [Marinelli 2004]

2.2. XML Schema

XML Schema is a W3C recommendation aimed to replace DTDs as the official
schema language for XML documents. The first major improvement compared
to DTDs is that XML Schema is declared by using XML-based syntax. This
made the readability of the schema worse but improved the flexibility and
automatic processability of the schema. [Marinelli 2004]

XML Schema takes the namespace, not the document, as the fundamental unit
of interest in validation [Jelliffe 2001]. It borrows many features from object
oriented languages. W3C XML Schema is a strongly typed schema language. It

204 BUSINESS INFORMATION SYSTEMS – BIS 2006

is generally considered complex. [van der Vlist 2002] XML Schema is the most
wildely used among all the schema languages [Bex 2004].

XML Schema’s expressive power is higher than that of DTD’s. XML Schema
has additional features over DTDs, like namespaces, import facilities and
possibility to define elements as data types. In practice only small amount of
schemas use these features. This means that majority of the schemas found in
web are equivalent to a DTDs even though the modelling power of the XML
Schema is notably higher. [Bex 2005, 712]

2.3. RELAX NG

RELAX NG [Clark 2001b] is a schema language based, developed by a small
working group at the OASIS organization [Jelliffe 2001]. It is built on two
preceding schema languages, TREX (Tree regular expression for XML) and
RELAX (Regular language of description for XML). It was first published in
March 2000 as a Japanese ISO Standard (JIS) Technical Report written by
Murata Makoto. [van der Vlist 2002] The central concepts of RELAX NG are
the patterns. While in DTD a content model is an expression over elements, in
RELAX NG a pattern is an expression over elements, text nodes and attributes.
[Marinelli 2004] A RELAX NG schema is itself an XML document [Clark
2001b].

RELAX NG represents both schemas and their instances by using an abstract
data model. (Clark 2001b). The RELAX NG schema is a pattern that a document
must match, and other patterns may appear as components of the main schema
pattern. In RELAX NG, an attribute list is apart of its content model, which
makes it possible to specify dependencies between elements and attribute
presence and even between element and attribute values. This feature is a
significant difference between RELAX NG and any other schema language.
[DuCharme 2004] One of the limitations of the RELAX NG is its inability to
define default values for element and attributes [Marinelli 2004].

RELAX NG is considered to be simpler than W3C XML Schema and that is
why it might be a serious alternative for it. It even seems to be technically
superior to W3C XML Schema, but the support by the software vendor and
XML developers has not reached to the level of W3C XML Schema.

2.4. Comparison of Schema Languages

Lee and Chu [2000] have compared six schema languages including DTD and
XMLSchema. We appended the Lee and Chu’s (ibid.) comparison with RELAX
NG properties. Following tables provide comparison of DTD, XML Schema and
RELAX NG with respect to properties of schemas, datatypes and attributes, and
properties of elements.

A REVIEW ON XML DOCUMENT SCHEMAS AND METHODS FOR SCHEMA DESIGN 205

Table 1. Comparison of four schema languages concerning properties of
schemas, datatypes and attributes (XSD = XML Schema; RNG = RELAX NG).

XML Schema Datatype Attribute
 XML

syntax
Name-
space

Include
&
import

Built-
in type

User-
defined
type

De-
fault
value

Choice
among
attri-
butes

Optio-
nal vs.
requi-
red

DTD
No No No 10 No Yes No Yes

XSD
Yes Yes Yes 44 Yes Yes No Yes

RNG Yes Yes Yes 2 + 44 - No Yes Yes

Data types can be categorized into two classes: simple types and complex
types. A simple type cannot have element content nor carry attributes, but
complex can. The support of complex types varies between schema languages.
Built-in type is either a primitive or derived simple type provided by the schema
language specification. User-defined types are defined by schema designers. In
Table 1 the number of datatypes supported by RelaxNG is 2+44. There are two
built-in datatypes in RelaxNG but also all 44 simple datatypes used by
XMLSchema may be imported.

DTDs have a built-in set of data types, which can be applied only to the
values of attributes and not to the element content, which in DTD is either
parseable data (PCDATA), non-parseable data (NDATA) or EMPTY. In
RELAX NG there are two major differences. First RELAX NG allows data types
to be specified uniformly for both attribute values and element content. Secondly
RELAX NG decouples the schema language from the set of data types. [Clark
2001a]

Table 2 provides a comparison of the schema languages with respect to their
use of elements.

Table 2. Comparison of four schema languages concerning properties of
elements. (XSD = XML Schema; RNG = RELAX NG).

ELEMENT
 Default

value
Content
model

Ordered
sequence

Unord.
sequence

Choice
among
elements

Min &
Max
occur-
ence

Open
model

DTD
No Yes Yes No Yes Partial No

XSD Partial Yes Yes Yes Yes Yes No
RNG No Partial Yes Yes Yes Yes No

206 BUSINESS INFORMATION SYSTEMS – BIS 2006

In Table 2 the default value of the element concerns both simple and complex
default values. In XML Schema the content model concerns the fact that element
content model can be empty, text, element or mixed (text + element). [Lee 2000]

The element property of “open model” on the right-hand column means that
an open content model enables additional elements or attributes to be present
regardless they are not declared in the schema. In Schematron, the content model
is open by default. [Lee 2000, 6-7]

Following example describes a content model as DTD and its counterparts in
XML Schema and RELAX NG. The example considers a schema for a memo
document type, which consists of one or more items to be discussed in a meeting.
Each item has a title, reference for the department and contents. Content is build
up with one of more paragraphs and a motion. After the meeting it is possible to
add a decision element.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!ELEMENT memo (item+)>

<!ELEMENT item (department-ref*, title, content)>
<!ATTLIST item id ID #REQUIRED>

<!ELEMENT department-ref EMPTY>
<!ATTLIST department-ref id IDREF #REQUIRED>

<!ELEMENT title (#PCDATA)>
<!ELEMENT content (paragraph+, motion, decision?)>
<!ELEMENT paragraph (#PCDATA)>
<!ELEMENT motion (#PCDATA)>
<!ELEMENT decision (#PCDATA)>

Following XML document is valid with the the DTD presented above:

<?xml version="1.0" encoding="ISO-8859-1"?>
<memo>
<item id="all">
<department-ref id="all"/>
<title>Nomination for the CEO</title>
<content>

<paragraph>Authority memebers of the organization have familiarize
themselves with the applications of the applicants.</paragraph>

<paragraph>According the statements of the authority members, it is noted
that Jane Doe is the only qualified applicant for the post of the
CEO.</paragraph>
<motion>It is proposed that Jane Doe is nominated as a CEO.</motion>
<decision>Accordant with the motion.</decision>
</content>
</item>
</memo>

A REVIEW ON XML DOCUMENT SCHEMAS AND METHODS FOR SCHEMA DESIGN 207

Table 3 provides both XML Schema and RELAX NG schema matching the
structure of the DTD represented above.

Table 3. Example of memo-element from memo DTD in XML Schema and
RELAX NG schema languages.

XML Schema RELAX NG

<?xml version=1.0” encoding=”ISO-
8859-1” ?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/
XMLSchema">

<xs:element name="memo">
<xs:complexType>
<xs:sequence>
<xs:element name="item"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="department-ref"
minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="id"
type="xs:IDREF" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

<?xml version=1.0” encoding=”ISO-
8859-1” ?>
<grammar
xmlns="http://relaxng.org/
ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/comp
atibility/annotations/1.0"
datatypeLibrary="http://www.w3.org
/2001/XMLSchema-datatypes">

<start>
 <choice>
 <ref name="memo" />
 </choice>
 </start>
<define name ="memo">
 <element name="memo">
 <oneOrMore>
 <ref name="item" />
 </oneOrMore>
 </element>
 </define>

</grammar>

DTD nor XML Schema provides a choice between attributes, but in RELAX
NG this kind of choice is possible to make. For example if element “student” has
two attributes “department” and “major”, the choice between these attributes
may be defined as follows:

<element name=”student”>
<choice>

<attribute name=”department” />
<attribute name=”major” />
</choice>
</element>

This imposes that element “student” must have either a “department” attribute
or a “major” attribute, but not both of them.

208 BUSINESS INFORMATION SYSTEMS – BIS 2006

DTD and XML Schema have both same strengths and weaknesses, which are
broadness as strength and complexity as weakness. RELAX NG’s strength is its
expressiveness, but its weakness is its limited focus [Jelliffe 2001].

As seen above, a DTD schema is easier to read than XML-based schema
definition even though DTD itself does not adhere to XML-syntax. The example
also shows that the structure of “document-oriented” XML document is usually
hierarchial, i.e. contains a number of nested elements which is comonly not the
case with “data-oriented” XML documents such as those storing content for
application integration. In a case of “document-oriented” XML document, the
structure also contains more variance. There are, for example, optional or
repeating elements or element groups whereas “data-oriented” XML data is
usually organized according to table structures of relational databases or as
application-to-application messages having one root element and a number of
child elements that occur exactly once. These differences exhort that desing for
such a differing kinds of schemas should also have differing approaches.

3. Methods for schema design

This section describes the two potential schema design methods; the Maler and
El Andaloussi [1996] method and the Kennedy method.

3.1. The Maler & El Andaloussi method

Maler and El Andaloussi [1996 methodology has been considered as a best
practice on the field (Maler & El Andaloussi 1996, Thompson 2000). The text in
this subsection follows the content of the Maler & El Andaloussi “Developing
SGML DTDs” book [1996]. The basic idea of the method is to study the text,
model the components and finally to define a DTD.

The methodology can be divided in three phases, which are
x Document analysis
x Document type modelling
x Producing a document analysis report
Document analysists should be familiar with basic XML concepts and the Tree
Diagram notation. Especially important is to learn to identify the differing kinds
of components of XML documents, which are:
x Content-based components (for example addresses, quantities, numbers etc.)
x Structural components (for example paragraphs, lists etc.), and
x Presentational components (for example phrases, regions etc. with special font

or size).
First three steps of the method contain the document analysis. They are as
follows:
1. Identifying potential components
2. Classifying components
3. Validating the needs

A REVIEW ON XML DOCUMENT SCHEMAS AND METHODS FOR SCHEMA DESIGN 209

First task is to identify all the potential semantic components of the document.
All found potential components should be named in an unique way. Every
potential component should also have an example of its use recorded. After step
1 there should be a list of all the potential components.

In step 2 the potential components identified are classified. Classification can
be based on content-based and structural similarities. After step two the classes
of the components should be marked on the component list.

In the third step the existing other schemas for similar kinds of document
types are inspected in order to cross-analyze the design and identify useful
portions of design. It is important that this step is conducted after the component
identification and classification, so earlier works do not effect on the search of
potential components. Every domain and its documentation is unique and one
must understand it in terms of finding existing logical components.

The next phase of the method is document type modeling. During this phase
the seven remaining steps of the method are conducted. These steps are:
1. Selecting semantic components
2. Building the document hierarchy
3. Building the information units
4. Building the data-level elements
5. Populating the branches
6. Making connections (links, special features, entities)
7. Validating the design.

In step 4 the component lists are revisited. The aim is to drop out unnecessary
components. Finally the list of accepted classified components should be made.

Step 5 considers modelling the components into document hierarchy model
(Figure 1), which represents the class of components building the upper part of
the document type. Hierarchy ends where “unspecified text” begins to appear.
These parts are represented in a “cloud” figures.
In Figure 1, components are depicted by rectangles. Three dots underneath
components depict that that the content model is represented in another diagram.
Symbol “+” indicates that the component has to occur at least once and it may be
repeatable whereas “?” defines that the component is optional. Symbol “*”
defines an optional and repeatable component. The sequence of the components
is written from left to right.

210 BUSINESS INFORMATION SYSTEMS – BIS 2006

Figure 1. An Example of document hierarchy model for a memo.

When moving on the step 6, all the component hierarchies have been finished.
During this step there can still be components left, which did not end up in the
hierarchies. The remaining components can be divided in two layers:
x Information units
x Data-level components

Information units are groups of elements that should be modelled as a whole;
such as list with list items and figure and its caption. Data-level components are
small information bits that need to be processed differently for the surrounding
data for some reason. Information units can be considered as “block” information
and data-level components as “in-line” information. During the step 6,
information units should be identified and their internal structures should be
modelled by using the tree diagrams. The information of information units
should be filled into the component forms.

Step 7 considers data-level element modelling. The list of remaining
components is studied for refining the classification of the data-level
components. At this phase the components should be mapped to elements and
attributes. Finally the list of data-level components is built as well as the tree
diagrams for the data-level elements.

Information units and data-level elements are revisited on step 8 for
populating the branches of the tree diagrams with information units and data-
level elements defined.

In step 9 the list of remaining components is again studied for identifying
potential link components. Link components are components that record the
relationship of two or more internal or external pieces of information. Link
components as well as their potential source and target points are listed.

Finally in step 10 the whole design is revisited. One should check all the
documents made and tie up loose end and add all missing information. This step

A REVIEW ON XML DOCUMENT SCHEMAS AND METHODS FOR SCHEMA DESIGN 211

end the second phase of the Maler & El Andaloussi method and only one phase
remains, which is producing the document analysis report.

The next phase is to conduct DTD or schema design. During this phase the
models are replaced with actual DTD or schema textual models.

3.2. The Kennedy method

Kennedy [2003, 92-94] lists nine rules for defining XML schemas. The rules
consider:
1. Data analysis
2. Coding the data
3. Use of container elements
4. Use of group or block elements
5. Use of subelements for multi-value data
6. Avoiding mixed content
7. Use of meaningful names
8. Correct use attributes and elements
9. Reviewing the desing

First rule, data analysis, concentrates following Maler & El Andaloussi
methodology. According to Kennedy, one should
a) identify the components and
b) classify the components into logical groups.

However, the data analysis for XML is more than identifying the components,
because it is also about defining the structures. During the data analysis the
following questions (among the others) should be asked:
x Can this element repeat?
x Is this element optional?
x Is order important?

The second rule is about coding the data. This rule means that any information
about the presentation should be left for the style sheet, because XML is about
separating the data from the presentation. Can this be done? Is it possible to
design XML document’s structure without thinking the result?

Third rule is about using collection elements. By this Kennedy means that if
an element can occur multiple times at the same level, one should create a
container element for them, because it makes the XML more human readable
and more easily to process with loop instructions (like xsl:for-each- loop in the
XSLT transformation language). For example, if element <author> repeats
multiple times, one should define container element <authors> to group the
<author> elements.

Fourth rule is about remembering that XML mark-up is a tree structure.
However the tree should be wide instead of tall. Fifth element reminds that the
best way to represent multi-valued data is via subelements.

Sixth rule means that one should avoid mixed element content. The seventh
rule reminds us to use meaningful names for elements. The eight rule emphasizes
the correct use of elements and attributes. According to Kennedy, XML
structures commonly contain lots of elements and fewer attributes. However,

212 BUSINESS INFORMATION SYSTEMS – BIS 2006

schemas for data-oriented XML documents and data transfer may consist a
dearth of attributes and a small number of elements. The application type for a
schema usually dictates the approach to use.

The final rule is about recognizing that defining the schema is an iterative
process. As Kennedy writes, an XML structure is a data structure. Like in a case
of databases, the analysis is also in that case iterative, because often the
structures of the tables are tested when the data is inserted in the tables and the
possible design flaws occur.

Kennedy summaries the XML design as follows:
x Identify the components and their attributes.
x Identify the structure, identify component groups and look for collections.
x Model the structure by Elm tree diagram then use diagrams to write schema.

4. Discussion and conclusion

The logical structure of document-oriented XML document is hierarchical and
may have a lots of optional and repeating elements whereas the logical structure
for data-oriented XML documents is commonly more straight-forward. There are
several schema languages for XML document schemas. The most common one
is W3C’s XML Schema - a rich schema language with multiple features and
datatypes. However, XML Schema definition is considered as complex. Even
though many applications support the use of XML Schema, only small amount
of defined schemas in practice use its complex features. In fact many schemas
are still equivalent to the expressiveness of DTDs, which are still often used even
though XML Schema was designed to displace them.

RELAX NG is considered as XML Schema’s competitor even though it is not
as widely supported because its syntax is simpler and it is considered as easier to
learn than XML Schema.

XML Schema with its many data types is ideal for the “data-oriented” use of
XML. DTDs have always been a good practice in publishing area, where its
ancestors, SGML DTDs have been used. That is why DTDs are more suitable in
the use of “document-oriented” XML. RELAX NG falls in between, because its
syntax is quite simple and according to Clark [2001], it is an evolution and
generalization of XML DTDs. How ever with RELAX NG there is no need to
flatten the natural hierarchical structure of the document into a list of element
declarations as one would have to do with DTDs. In addition, RELAX NG uses
XML syntax and with its grammar-element it is possible to use the datatypes of
XML Schema if needed.

The Maler & El Andaloussi method is a profound method for DTD design and
implementation. It was defined for SGML DTD design whereas the Kennedy
method was targeted for RELAX NG schema design. There are many similarities
in between the Kennedy and Maler & El Andaloussi method. The Kennedy
method adopts the first two steps of the Maler & El Andaloussi method.
Kennedy’s method also applies Maler & El Andaloussi method on defining
container elements, which are typical for document-oriented XML-document

A REVIEW ON XML DOCUMENT SCHEMAS AND METHODS FOR SCHEMA DESIGN 213

types. Both Kennedy and Maler & El Andaloussi emphasize the importance of
domain-oriented, meaningful element names. Both methods also remind DTD or
schema designers that schema design is usually an iterative process and the
document structures should be tested before implementation.

It may be concluded that both the Kennedy and the Maler & El Andaloussi
method may be adoptable for schema design.

Why one should go all the trouble on analyzing documents and defining
components when current XML editors can convert a schema in few seconds
from a model XML document?

Kennedy [2003] reports that if data analysis with modelling is made before
mark-up, the techniques can be learnt better and more quickly and even the
produces XML structures were more efficient. This seems natural since in
information system development a requirement analysis is usually done before
an implementation of the system so same should apply to implementing
document systems. In addition, Elm tree diagrams are easy to convert into
schemas. Even though the DTDs are nowadays often replaced by schemas the
Maler & El Andaloussi method may prove to be one of the best practices for
schema design also.

An automatic conversion of the schema by XML editor does not support the
identification and analysis of the schema element containers as schema
components. Therefore automatically created schema definitions may fail to
meet the document management needs of an organization. Schema provides a
base for XML processing, content filtering, and content organization. A good
schema also supports finding and using relevant information from the structured
documents. Therefore schema design is a base for document-oriented XML
document management and its importance should not be overlooked. .

5. References
[Bex 2004] Bex G.J., Neven F. & Van den Bussche J.DTDs versus XML Schema: A

practical study. In WebDB 2004, pp 79–84.
[Bex 2005] Bex G.J, Martens M., Neven F. & Schwentick T. Expressiveness of XSDs:

From Practice to Theory, There and Back Again. In Proceedings of the Fourteenth
International World Wide Web Conference, Chiba, Japan, May 2005, pp-.712–721.

[Boukottaya 2004] Boukottaya A., Vanoirbeek C., Paganelli F. & Abou Khaled
O., Automating XML documents transformations: a conceptual modelling
based approach. 1st Asia-Pacific Conference on Conceptual Modelling,
ACSW 2004, Dunedin, New Zealand, January 2004.

[Bray 2000]Bray T., Paoli J., Sperberg-McQueen C.M & Maler E. Extensible Markup
Language (XML) 1.0 (Third Edition) [online], W3C Recommendation.
<http://www.w3.org/TR/ 2004/REC-xml-20040204/>

[Clark 2001a]Clark J. (2001) The design of RELAX NG. [Online]Available at
http://www.thaiopensource.com/relaxng/design.html [16.1.2006]

[Clark 2001b] Clark J. & Murata M. RELAX NG Specification.
[DuCharme 2004]DuCharme B. Documents vs. data, schemas vs. schemas. XML 2004

conference, Washington D.C.

214 BUSINESS INFORMATION SYSTEMS – BIS 2006

[Elmasri 2002] Elmasri R., Wu Y-C., Hojabri B., Li C. & Fu J. Conceptual modeling for
customized XML schemas. In 21st International Conference on Conceptual Modeling
(ER), Tampere, Finland, volume 2503 of Springer LNCS, Springer, 2002, pp. 429–443.

[Fallside and Walmsley 2004] Fallside, D. C., & Walmsley, P. e. (2004, 2 May). XML
Schema Part 0: Primer. 2nd Edition. W3C Recommendation, 28 Oct. 2004. Retrieved
16 June, 2005, from http://www.w3.org/TR/xmlschema-0/

[Goldfarb 1990] Goldfarb C.F. The SGML handbook. Oxford, UK. Oxford University
Press, 1990.

[Goldfarb and Walmsley 2003] Goldfarb, C.F. and P. Walmsley, XML in Office 2003.
Information Sharing with Desktop XML, Prentice Hall, Upper Saddle River: Pearson
Education, 2004.

[Jelliffe 2001] Jelliffe R. The current state of the art of schema languages for XML.
Presentation at XML Asia Pacific, Sidney, Australia, 2001.

[Kennedy 2003] Kennedy D. Relax NG with XML data structures. National Advisory
Committee on Computing Qualifications, Palmerston Nth, July, 2003.

[Lee 2000] Lee D. & Chu W. Comparative analysis of six XML schema languages.
SIGMOD Record, 29(3):76–87, 2000.

[Maler and El Andaloussi 1996] Maler E., El Andaloussi J. Developing SGML
DTDs. From text to markup. Upper Saddle River NJ: Prentice Hall, 1996.

[Marinelli 2004] Marinelli P., Sacerdoti Coen C. & Vitali F. (2004). SchemaPath, a
minimal extension to XML schema for conditional constraints. In Proceedings of the
13th International Conference on the World Wide Web (WWW13), New York City,
U.S.A. ACM, 2004.

[Murphy 2001] Murphy, L.D. Digital documents in organizational communities
of practice: A first look. In R.H. Sprague, Jr. (Ed.), Proceedings of the 34th

Hawaii International Conference on System Sciences. Los Alamitos CA: IEEE
Computer Society, 2001.

[Power 2003] Power R., Scott D. & Boyayad-Agha N. Document structure.
Computational Linguistics, 29(3), 2003 pp. 211–260.

[Psaila 2000] Psaila G. ERX: A conceptual model for XML documents. In In Proc. of
ACM Symposium on Applied Computing (SAC), Villa Olmo, Italy, 2000, pp. 898-903.

[Rossi 2000] Rossi M., Tolvanen J-P., Ramesh B., Lyytinen K. & Kaipala J. Method
rationale in method engineering. In Proceedings of the 33rd Hawaii International
Conference on System Sciences. Maui, HI: IEEE Press, 2000.

[Salminen 2000] Salminen A., Lyytikäinen V. & Tiitinen P. Putting documents
into their work context in document analysis. Information Processing and
Management, 36(4), 2000, pp. 623-641.

[Salminen 2003] Salminen A. Document analysis methods. In Bernie C.L. (Ed.)
Encyclopedia of Library and Information Science, Second Edition, Revised
and Expanded. New York: Marcel Dekker, 2003, pp. 916-927.

[Thompson 2000a] Thompson H. S. XML schema types and equivalence classes
reconstructing DTD best practice. XML Europe 2000 conference, 2000.

[Thompson 200b] Thompson H.S., Beech D., Murray M. & Mendelsohn N. XML Schema
part 1: structures. W3C, Cambridge, MA, USA, 2000. Also available as
http://www.w3.org/TR/ xmlschema-1

[van der Vlist 2002] van der Vlist E. XML Schema languages. In Proceedings of XML
Europe 2002, Barcelona, Spain, May 2002.

