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Abstract: Solid-state disks are promising high access speed at low energy consump-
tion. While the basic technology for SSDs – flash memory – is well established, new
product models are constantly emerging. With each new SSD generation, their behav-
ior pattern changes significantly and it is therefore difficult to make out characteristics
for SSDs in general. In this paper, we accomplish empirical, database-centric perfor-
mance measurements for SSDs, explain the results, and try to derive common charac-
teristics. By comparing our measurement results, we detect no ground truth valid for
all solid-state disks. Furthermore, we show that a number of prevalent assumptions
about SSDs, which several SSD-specific DBMS optimizations are based on, are ques-
tionable by now. As a consequence of these findings, tailor-made DBMS algorithms
for specific SSD types may be unsuitable and optimal use of SSD technology in an
DBMS context may require careful design and rather adaptive algorithms.

1 Introduction

Solid-state disks gained a lot of attention lately. While many research papers present new

algorithms to exploit performance of SSDs, enterprises are thinking of ways to incorpo-

rate them in their own products. Hence, flash chips and solid-state disks have become

established products by now. SSDs offer dramatically improved random access behavior

compared to conventional spinning disks. Due to their lack of mechanical parts, they are

able to answer requests much faster than disks. That makes them perfect candidates for

incorporating into database systems to speed up data processing. Due to the absence of

spinning platters, SSDs also promise to come with a smaller energy footprint. Still, SSDs

are not the swiss army knife of storage devices, they come with some limitations we have

to deal with, for example read/write asymmetry. The market for solid-state disks is con-

stantly changing and newer SSD generations are steadily improving their performance.

With every new SSD generation, new product characteristics are emerging. Some draw-

backs of earlier SSDs have been resolved in recent models. The constant change in the

devices’ properties makes it difficult for upper-layer algorithms to exploit the underlying

storage. Optimizations tailored to a dedicated SSD model can have even negative effects

on differently behaving models.
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In this paper, we measure performance and energy consumption of five solid-state disks

and compare them to manufacturer-provided data sheets. By pinpointing the specific char-

acteristics of each drive, we claim that it is unwise for research to reveal the DB per-

formance benefits of this disruptive technology change by relying on a single SSD type.

We also derive common characteristics of flash drives in order to support research of the

database community and leverage the exploration of flash-specific algorithms. This pa-

per is structured as follows: In Section 2, we briefly summarize the internal structures of

SSDs. Next, we outline important related work in Section 3. In Section 4, we are pre-

senting our measurement methodology and the solid-state disks used for our performance

study. Section 5 shows our experimental results. We interpret our results and compare

them to the properties and facts listed in the data sheets of the manufacturers. In Section 6

we derive common characteristics and review some assumptions made about SSDs in re-

search papers. In Section 7, we reflect our measurement setup and point out some possible

limitations to our approach. Finally, we draw our conclusion in Section 8.

2 General SSD Characteristics

Solid-state disks are using flash chips for persistently storing data. An abstraction layer

(FTL) on top of the chips provides a block device interface and hides the specific flash

chip characteristics.

Flash Chips Flash chips are used to store persistent data on SSDs in a matrix of storage

cells. The cells can either embody NOR or NAND gates. Modern cells, called Multi-Level

Cells (MLC), can store more than one bit per cell. Todays solid-state disks are mostly

composed of MLC NAND chips; we focus our description on that technology.

Reading from flash chips can only be done pagewise, where each page contains about 1 –

4 KB. It takes about 50 µs per page. Writing pages requires higher voltages, it takes about

10 times as long as reading (∼500 µs). Furthermore, each cell has to be erased prior to

writing new values to it. Erasing is even more cost-intensive and can only be done in larger

blocks, not by one page at a time. Typically, a block is 32 – 256 KB in size. It takes about

20 times as long to erase a block as reading a page (∼1000 µs). Erasing flash blocks leads

to a slow but constant destruction of the cells. After about 105 erase cycles, cells will start

to wear out and the block is no longer able to retain data.

Flash chips can be grouped together in so-called planes to increase storage capacity. Mul-

tiple planes can be accessed in parallel to enhance data throughput.

Flash Translation Layer To cope with the limitations of bare-metal flash chips, a mit-

igation layer is used on top of the chips/planes, called Flash Translation Layer (FTL). It

provides a block-device interface to the upper layers, making the SSD look like a common

storage disk. Therefore, the SSD user does not have to worry about erasure-before-write

and handling worn-out blocks; these jobs are handled by the FTL. Because overwriting

data on flash chips requires special treatment, the FTL must provide an erase-before-write

mechanism that is able to save neighboring flash pages from being erased. Further, the

FTL has to take care of worn-out cells.
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Based on these basic functionalities, todays FTLs provide a lot more logic to further im-

prove SSD performance. First of all, to avoid the need for erasing hot-spot areas over

and over again, a page mapping is introduced to redirect logical page accesses to different

physical locations on every new write. This helps to save erase cycles and, therefore, also

improves performance. To free up unused areas of the SSD, a garbage collection schema

can be implemented allowing the SSD to asynchronously perform erase and cleanup oper-

ations when the device is idle. Further reorganization tasks such as summarizing sparsely

filled blocks can be employed. Like conventional hard disks, SSDs usually have an inter-

nal DRAM cache to buffer write requests or store prefetched pages. This buffer enables

solid-state disks to backup and restore pages during erase cycles and to keep in-memory

information, e.g., page-mapping structures. By using an FTL, it is possible to avoid most

drawbacks of flash chips while making use of the advantages. Therefore, the FTL is a

major performance-critical part of every SSD and manufacturers are eager to keep the im-

plementation details a secret. A more detailed explanation of flash memory, SSDs, and

their internal structures can be found in [RKM09, CPP+06].

3 Related Work

SSDs have been intensively explored in recent years with a focus on the characteristics of

SSDs, on its integration into (existing) hardware systems and on its effective exploitation.

Operating Systems At the device level, Wang et al. [WGK09] propose non-in-place

updates when writing to SSDs, which results in a performance improvement in their

work, but which is automatically performed inside modern SSDs to mitigate wear-out.

The same holds for flash-optimized file systems (e.g., YAFFS [Man02]) which employ

journaled writes to avoid random and in-place updates. FTL implementation proposals

[CPP+06, LPC+07, KKN+02] show different techniques that yield a logical-to-physical

block mapping. As the FTL is embedded inside the device firmware, it is unknown whether

any of theses techniques or which particular technique has been adopted by the SSD man-

ufacturers.

System Architecture Approaches concerning the system architecture try to find suit-

able solutions where to place SSDs in computer systems and how to incorporate them.

Three main strategies [RKM09] are feasible using SSDs: as extended system memory, as

storage accelerator, or as alternative storage device. Other works use a hybrid approach

of SSDs and conventional HDDs where the SSD serves as persistent buffer for HDDs in

order to mitigate I/O latency [CMB+10, KJKM09] or – depending on their workload – to

adaptively place pages on one of these device types [KV08].

DBMS-specific Optimizations The exploitation of SSDs to increase the performance of

data-intensive workloads still is in focus of the database systems community. An overview

of the knobs and layers which can be made SSD-aware in a database system is given by

Graefe [Gra09]. Of course, several components which interact and rely on external storage

have been incorporated to be aligned to the characteristics of flash memory, so a lot of

different proposals have been made in recent years. This includes amongst others SSD-
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tailored DB buffer replacement algorithms [OHJ09], page layouts [THS+09], and index

structures [AGS+09, KJKK07, WKC07]. Do et al. [DP09] show the impact of SSDs on

join processing, mainly the tendency to become CPU-bound rather than being I/O-bound

when HDDs are used. Tsirogiannis et al. [THS+09] recommend late materialization for

speeding up join processing on SSDs.

SSD Measurements Papers in this area try to find out more about the SSD behavior and

how to react to certain situations in reality. Most of them are based on micro-benchmarks

used to reveal internal characteristics. Bouganim et al. [BJB09] and Chen et al. [CKZ09]

were the first who tried to derive the intrinsic characteristics of different SSDs. They

conclude that SSDs have to be considered as black boxes, as they follow no common

rule. SSDs in RAID configurations have been examined in [BdNSS10] and [PABG10],

where the latter one states that some effects of SSDs, e.g., the read-write asymmetry,

are amplified due to the RAID mechanism. Overall, some characteristics are differently

interpreted. [BJB09] state that they did not observe any performance improvements from

submitting I/Os in parallel, [BdNSS10] use long queue depths and asynchronous I/O in

order to increase the bandwidth.

As SSD advance, aspects covered by some approaches are already mitigated by the FTL.

Others base their finding on a theoretical flash model, mostly by applying the metrics for

read, write, and erase for raw flash chips or derive their results purely based on simulation.

Even though theoretical effectiveness can be proven in this way, there can be quite a sub-

stantial discrepancy with regard to real-life SSDs. This can be seen in some papers, where

the approaches are also verified on real SSDs, but the results are not as good as anticipated

or derived by simulation. Moreover most papers base their experiments on only one type

of SSD, neglecting the fact that their results could differ attributed to the employed SSD.

4 Methodology

For getting insights into SSD behavior, the read and write performance of the solid-state

disks was measured. To stress all devices with the same access patterns, we developed a

tool (similar to uFlip1 and IOmeter2) that allows us to perform benchmarks on the devices.

The tool is able to read and write different access patterns from/to the devices. The page

size the tool uses is adjustable. Figure 1 outlines the access patterns we used to bench-

mark the SSDs. The first test pattern is sequentially accessing n pages. This pattern is

  1  2  3  4  5           
(a) sequential access 

    5      2    3  1      4
(b) random acccess 

    1      2    3  4      5
(c) skipͲsequential access 

 

Figure 1: Access Patterns

full

empty

read

write

sequential

random

skip-sequential

Figure 2: Measurement Combinations

1http://uflip.inria.fr/∼uFLIP/
2http://www.iometer.org
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common in database servers when scanning through a table where no tailored access paths

are available. Similarly, sequential writes are typical during log-flush operations. The sec-

ond pattern is randomly accessing all pages of the test file. We ensured that each page

gets accessed only once and that the pattern is repeatable. This pattern is often seen in

databases when accessing pre-selected leaf pages in a B-tree. Random writes occur when

updating several database tuples at a time or when flushing modified pages back to disk.

The final pattern we tested is called skip-sequential, which accesses pages sequentially,

but skips randomly over some pages. This pattern can be observed when a set of pages

needs to be accessed, e.g., when – upon reading scattered database pages – the I/O requests

are performed using ascending/descending physical addresses. Hence, this pattern evolves

from the random pattern by pre-sorting the page numbers. This helps conventional disks

to minimize head movement and, thus, reduces access times.

We set up a testing environment to benchmark all SSDs using the same hardware platform.

To measure the device’s energy consumption, we attached the computer to a measurement

device. This enables us to keep detailed track of the devices’ power consumption in addi-

tion to the performance measurements. A detailed description of the measurement setup

can be found in [SHH10]. Using the previously described setup, we ran several tests

against all SSDs and recorded their performance and energy consumption. The tests were

run on a 1GB file filled with random data. We repeated the tests using varying page sizes

and queue depths. First, we measured read and write patterns on a nearly empty drive (de-

noted by empty in Figure 2). After these measurements, we filled the drive with random

data, while preserving the 1GB test file, and ran the same tests again. Figure 2 shows the

benchmark combinations we ran for each device. We verified our results for sequential

and random access by comparing it to results obtained by IOmeter and got more or less

the same performance figures (±10%).

5 Experimental Results

In this section, we will present our measurement results for each SSD individually and

discuss the observations. We measured using 32K pages for bandwith and 2 – 8K pages

for IOPS measurements.3 After we have shown all results, we will compare them and

derive common patterns.

SSD1 – SuperTalent FSD32GC35M 32GB This SSD is the oldest one we tested. Re-

sults clearly show slow performance under all tested patterns as well as heavily degraded

write performance. On the other hand, as the results show, random read is as fast as

sequential read. SuperTalent states in the data sheet that this device can perform over

58,000 IOPS, a number we could not even get close to. Unfortunately, no further informa-

tion about page sizes or queue depths is given.

SSD2 – Mtron MSP-SATA7525 The next SSD shows improved performance compared

to SSD1, as depicted in Figure 5. Still, random writing is tremendously slower than other

access methods. The SSD’s data sheet tells a lot more about the parameters used for

3According to [BJB09], 32KB is the preferable page size for SSDs.
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Figure 3: Performance Measurements Using Different SSD Types

testing. It documents page sizes, queue depths, and access patterns used; therefore, the

measurements are far more comprehensible. Though, we could not reproduce the stated

performance, but get closer to it than we could for the first SSD we tested.

SSD3 – Intel X25-M G1 SSD3 represents the first Intel generation. As shown in Fig-

ure 5, this drive is really good at sequential reading, while random reading is comparatively

slow. Then again, all write patterns are performing equally well. This is a significant oper-

ational difference compared to the first two SSDs. Intel’s data sheet documents the queue

depth, but not the page size used for benchmarking sequential access patterns. For random

accesses, the page size is mentioned. We were unable to get the same performance, even

with the same parameters as in the data sheet.

SSD4 – Intel X25-M G2 The next generation of Intel SSDs came with the additional

feature TRIM support4. Figure 5 indicates improved overall performance for all patterns.

Nevertheless, the disk is showing the same challenges as the first generation. We could

get closer to the performance reported in the data sheet, but were still unable to reach

the advertised 35,000 IOPS. At least, we were able to measure the same sequential read

bandwidth as stated (not shown in this figure).

SSD5 – Crucial RealSSD According to the manufacturer’s data sheet, the device can

read up to 60,000 and write up to 45,000 pages/second. Our own measurements show

quite a different picture. While reading on SSD5 is faster than on all other SSDs we

tested, random writing stresses this device remarkably. Although the data sheet promises

60,000 IOPS for random read, we could not get even close to this number.

6 Results Interpretation

After we presented individual measurement results for each SSD, we are going to examine

some common patterns observed on more than one device. In this section, we will also

4http://t13.org/Documents/MinutesDefault.aspx?keyword=trim
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examine common assumptions regarding SSDs and show that not all of them are true.

Random Access Interestingly, though SSDs do not have moving parts and therefore

should not suffer from random access, in fact, they do. Our measurements show that

random access may be substantially slower than sequential access. Dependent on the

device, this effect ranges from -5% performance on SSD1 and SSD2 up to -50% on SSD3

and SSD4. Therefore, sequential accesses should still be preferred over random accesses,

although it is not as vital as on hard disks.

Considering the break-even point for selecting index-based access over sequential table

scan, there is now a shift on SSDs. For conventional hard disks, a rule of thumb says

to use an index-based scan only if the selectivity is below 1 - 3%, otherwise to scan the

whole table sequentially. On solid-state disks, the selectivity factor can be shifted to higher

percentages. Because of the different performance characteristics of solid-state disks, it is

not possible to spot a clear break-even point. For example for SSD1 and SSD2, break-

even would be at ∼90%, while on SSD3 and SSD4, break-even is at only ∼50%, due

to their worse random access performance. On SSD5, break-even lies at ∼75%, thus a

considerable divergence is visible for SSDs. Our results show that there is a trend towards

faster write support on SSDs. Clearly, SSD1 and SSD2 suffer heavily from random writes,

whereas the newer SSDs from Intel cope with them much better. SSD5, on the other hand,

is again performing badly at random writing while providing fastest sequential writes.

Database query optimizers can decide between random and sequential access based on

configurable disk parameters.Hence, the same care that has to be taken for conventional

disks also has to be applied when using SSDs. Unfortunately, performance characteris-

tics of SSDs are much harder to quantify than for spinning disks: On conventional disks,

RPM, cache size, and bus delay are the only vital characteristics to estimate performance.

On SSDs, there are no key performance indicators and characteristics can only be derived

from measurements. The decision whether to write random pages (logically) in-place or

to employ log-structured sequential writes strongly relies on the behavior of the under-

lying SSD. Therefore, optimizing algorithms for wrong device models can make overall

performance even worse. Especially developers for flash-aware buffer algorithms have to

consider that device-specific tweaks might be obsolete in no time.

Unstable Behavior While verifying the results using IOmeter, we observed another ef-

fect on SSD3. We did some changes to the source code of IOmeter to enable per-second

tracking of measurement values. Using this tweaked version, we were able to get more

detailed performance data from our devices. Figure 4 visualizes the write performance

of SSD3 in pages/second on a per-second basis. As illustrated, every 4 to 5 seconds,

performance is heavily degraded for about 3 seconds. We conclude, the drive is perform-

ing internal re-organization like freeing up flash blocks or searching for another writable

block. We measured the same behavior for sequential writes, though the timespan between

drop-offs was about 3 times longer. On SSD4 – the successor of SSD3 –, we measured

similar behavior, although the performance drops during writes were not that severe.

While benchmarking SSD4, we had a look at the TRIM command introduced for this

model and observed an interesting behavior. Figure 5 depicts our write-performance mea-
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surement right after deleting ∼130 GB of files on the drive and issuing corresponding

TRIM commands to the drive. In this graph, a heavily degraded performance in the first

half of the measurement is evident. Apparently, the SSD tries to free up flash blocks while

we were simultaneously applying a write load to it. The proprietary FTL mapping partic-

ularly concerns device caching, block allocation, and garbage collection. All these mech-

anisms are software controlled and entirely hidden to the upper software layers. Hence,

optimization decisions in the OS or DBMS may be counterproductive and sometimes even

worsen the time-consuming house-keeping activities. As inferred from Fig. 4, write la-

tency may extremely vary. While less than ∼400 µs in the best case, we have observed

outliers of more than some hundred ms, that is a device-dependent variance of more than

∼200 – 500.5 Compared to that, a magnetic disk with a device-dependent variance of ∼2

- 5 exhibits quite a stable access behavior and lends itself to reliable optimizer decisions.

Another aspect is a kind of heterogeneity among the SSD types present in a DBMS envi-

ronment, where several heterogeneous SSDs may coexist in an application (or they may

be dynamically exchanged). As a consequence, tailor-made algorithms for specific SSD

types, e.g., concerning indexing or buffer management, are not very useful. The same

arguments apply for specific workload optimizations (pure OLTP or OLAP processing,

mixed workloads with varying degrees of reads/writes). A continuous adjustment or ex-

change of algorithms affected is not very practical in productive DBMS applications.

Read/Write Asymmetry As mentioned in the literature, reading flash pages is about

10 times faster than writing them because of intrinsic electrical properties. In conclusion,

writing to SSDs should be equally slower than reading. Our measurements show that this

is not true in general. SSD1 and SSD2, for example, do not exhibit degraded performance

for (sequential) write, they are equally fast as sequential read. On all other SSDs, an

asymmetry is measurable, but still not as bad as advertised.

Especially for buffer management algorithms, read/write asymmetries introduce a big po-

tential for optimizations. On conventional disks, reading and writing cost the same; there-

fore, it does not make a big difference whether a clean or a dirty page gets evicted from

the buffer. Considering solid-state disks, dependent on the device, the difference can now

be significant. As mentioned earlier, current research papers already gave attention to this

and flash-aware access algorithms were introduced. Nevertheless, it is crucial for these al-

gorithms to know the exact properties of the underlying device, i. e., the precise read/write

behavior, to enable optimizations.

5Note, we observed similar variance factors at the level of DBMS operations, e.g., splits in B*-trees, but these

were provoked by algorithmic or implementation weaknesses.
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Slower When Full? SSDs have to erase flash blocks prior to writing new values to it. As

a consequence, overwriting some blocks on a full disk should be much slower than writing

to an empty disk. We verified this assumption by filling all drives with random data and

repeating our tests afterwards. No significant differences were measurable. Therefore, the

common advice to leaving some empty space on the SSD to help the FTL find free/erasable

pages can be abandoned. In fact, this is a waste of storage space, since our measurements

do not indicate differences between empty and full drives.

Impact of Queue Depth As mentioned earlier in this paper, the queue depth (QD), that

is, the number of concurrent requests needing access to the device, can make a great dif-

ference to the overall performance. Due to a technique called Native Command Queueing

(NCQ), the device can re-order the sequence of requests in the queue to optimize its in-

ternal access path and improve throughput. This was primarily invented for hard disks to

optimize their access path along the spinning platter. SSDs can still increase performance

by optimizing switches between different flash planes. Furthermore, because access la-

tency of SSDs is very low, bus delays gain greater influence in the overall access delay.

To minimize communication overhead, higher queue depths in combination with NCQ

can also be used to send bulk requests to the drive [Gas08]. This reduces the overhead to

1/bulk size of the original overhead. SSD manufacturers know this fact and tweak their

performance measurements accordingly. A high queue depth results in increased overall

data throughput and higher IOPS, while a queue depth of 1 primarily minimizes access

latency.

To gain more insights, we repeatedly measured various queue depths. By using a random

read pattern, we give the FTLs a fair chance to optimize the queue. As Figure 6 indi-

cates, the only significant improvement is between QD 1 and QD 2. Beyond this point,

extending the QD did not improve data throughput. We did not expect this result, be-

cause manufacturers use even higher queue depths for their performance measurements.

Also, current database servers do benefit from increased queue depths on conventional

hard disks. As mentioned, some papers observed the same behavior [BJB09], while other

papers explicitly recommend using longer queues [BdNSS10]. We see that it is not nec-

essary to maintain long request queues for SSDs, thus database applications do not have

to worry about getting maximum asynchronous I/O rates. A fair amount of outstanding

requests is sufficient to keep an SSD at high bandwidth.

Energy Consumption As energy efficiency is getting a more and more critical factor

for large data centers nowadays, we evaluated the SSDs’ energy consumption. Figure 7(a)

shows the absolute power consumption of the SSDs we tested. For this test, a sequen-

tial read pattern is used. Write patterns might consume even more energy. Obviously,

the drives do consume energy when being idle; therefore, they are not as energy sav-

ing as expected. The SSDs’ power profiles are similar to those of conventional hard disks,

although their peak power consumption is considerably lower. Power consumption of con-

ventional disks ranges from 4 – 6 Watts for mainstream disks to 9 – 14 Watts for enterprise

server hardware. Figure 7(b) shows how many pages can be read by each SSD consum-

ing one Joule of energy. As illustrated, pages/Joule are constantly rising, thus newer

SSDs are getting more energy efficient. On conventional disks we measured only 600 –

1800 pages/Joule. Anyway, a more differentiated comparison is cumbersome, because
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Figure 7: Energy Consumption Measurements

of the different performance characteristics and their implications on energy efficiency. In

general, the best performing SSDs are still the most energy efficient.

7 Limitations

We explored the performance of I/O patterns typically occurring in a DBMS environment.

However, we were and still are not aware of the tricks and assumptions, e.g., massive I/O

parallelism, of the manufacturers under which their performance behavior was achieved as

reported in the data sheets. Our results sometimes indicate substantial deviations confirm-

ing that the “promised” device behavior may not be fully exploited by DB applications.

Although we took care that our measurements are accurate and reliable, there might be

some limitations to our approach. In order to keep up fair publishing policies, we do not

want to hide them from the readers. We mainly focused on two ideas, why our measure-

ments might not be 100% reliable.

SSD Choice The solid-state disks we tested were not fresh out-of-the-box, but were

rather used by our research group for several benchmarks previously. Ranging from SSD1,

which is approximately 3 years old, to our recently bought SSD5, all drives were used in

varying degrees. Therefore, the observations and claims we made in this paper might only

be true for our particular devices. Since the older drives (SSD1 to SSD3) do not support

the TRIM command to free up flash pages, these devices might be worn out exceptionally.

Due to a limited budget, we tested only one device for every model; therefore, we cannot

not make assumptions for whole product models, but rather for single product instances.

Measurement Platform Choice The original use for our measurement track was to

measure and optimize energy consumption. For this reason, we only used a small server

board for testing, which might not have a high-performance SATA bus controller. This

might bottleneck our measurements. In order to eliminate this possibility, we verified our

measurements using a dedicated SAS controller card. Nevertheless, the results stayed the

same and we were unable to get the performance promised in the data sheets. We even

switched the entire hardware to a different system, which did not lead to an improvement.

We can not resolve all doubts for sure, but we assume our measurements were correct

and there is in fact a major gap between manufacturer’s data sheets and real-world perfor-

mance.
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8 Conclusion

As the measurements clearly discover, each SSD exhibits a differing performance profile.

We were able to identify some common patterns and outlined areas that are improving

continuously, e.g., write performance. Still, manufacturers’ claims about their drives’ per-

formance can not be blindly trusted. Because a common benchmarking procedure does not

exist, performance claims of data sheets can hardly be reproduced in real-world scenarios.

Due to the advancement of the internal FTL, larger write caches, and TRIM support, we

believe that the often mentioned drawbacks of SSDs, e.g., slow writes, will soon disappear.

Also, write endurance of SSDs is constantly rising and we do no longer have to care about

destroying the disk by constantly writing to it. As we have proven by our experiments,

every drive has its own characteristics. Optimization towards a single drive or against

flash-chip access characteristics is no longer suitable under these circumstances. A lot of

literature focuses on improved algorithms for flash chips, although there are no bare-metal

flash chips in server systems. As we have shown in Section 6, current solid-state disks

embody unpredictable behavior and performance may sometimes drop unexpectedly. In

order to use SSDs in time-critical operations, like meeting deadlines in a real-time DBMS,

algorithms have to be aware of these characteristics to anticipate even worst-case situa-

tions. More generic algorithms – not adjusted to single SSD types, but able to handle

a widespread of different device characteristics – would be better suited and rather eli-

gible for DBMS use. To suit a specific device, its characteristics could be determined

either offline – prior to using the device in a productive environment – or online – during

use. Then, according to the measured properties, the algorithm could automatically tune

itself to maximize its performance. We propose that this approach would be more sustain-

able, even over SSD generations with changing behavior and be, therefore, more useful

than highly specialized algorithms fitting particular SSDs only. Our benchmarks of todays

solid-state disks unveiled a lot of pitfalls, although these measurements are far from be-

ing complete. For example, focusing on smaller grained, longer running benchmarks could

help identify a lot more peculiarities of SSDs. For example, long running stress tests could

reveal resource exhaustion inside the FTL or, by cutting power to the SSDs, persistence

tests could be performed. Nearly all of the measurements we ran have discovered another

fact for SSDs; therefore, we think there is a lot more to detect. Hopefully, future SSD

generations will no longer need special treatment by the upper layers, because FTLs will

contain more and more logic. We propose that SSDs will soon unite the advantages of

conventional hard disks combined with faster random access behavior.
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