
Ontology Design for Information Integration in Disaster
Management

Grigori Babitski
SAP Research, Karlsruhe
grigori.babitski@sap.com

Florian Probst
SAP Research, Darmstadt

f.probst@sap.com

Jörg Hoffmann
SAP Research, Karlsruhe
joe.hoffmann@sap.com

Daniel Oberle
SAP Research, Karlsruhe

d.oberle@sap.com

Abstract: One of the most pressing issues in improving disaster management is that
of information integration. With many organizations involved in the disaster, crossing
regional or even national borders, information exchange is crucial but cumbersome
due to differing vocabularies and representations both at human language and IT le-
vel. Carefully designed ontologies can be instrumental in addressing this problem, by
providing a reference model for humans, and with that the basis for information inte-
gration at IT level. We devise an ontology stack covering the description of damages
(caused by the disaster), resources (available to organizations fighting the disaster),
and their connection (e.g. which resources are relevant for which damage). To ensure
sustainable modeling, we follow the guiding principles of the foundational ontology
DOLCE. We identify the most relevant design choices, and we discuss their soluti-
on. The resulting ontologies form part of a prototype that integrates information in a
service-oriented architecture. We show how our ontologies are used to implement the
relevant queries for information within that prototype.

1 Introduction

Disasters may be caused by flooding, earthquakes, technical malfunctions, or terrorist at-
tacks, to name a few. The efficient handling of such emergencies, i.e., the management of
the measures taken to fight them, is a key aspect of public security. This is especially true
in an increasingly tightly interlinked world, where problems in one area may quickly cause
problems in connected areas. This phenomenon often causes disasters to exhibit an explo-
sive growth, especially during their early stages. Defensive measures in such a stage are
still premature, leading in combination with the explosive growth to what has been termed
the “chaos-phase” [Vem04]. Methods for shortening that phase are widely believed to be
essential for limiting the damage caused by the disaster.

One of the characteristics of the chaos-phase is the overwhelming flow of information
that must be managed by the defense organizations, such as fire brigades and the police.
Many organizations are typically drawn into the event at rapid speed. To cooperate effec-
tively, these organizations must communicate myriads of details regarding the situation,
regarding the scheduling of resources, and regarding the defensive actions taken. As one



might imagine, this is quite a job when organizations are heterogeneous. Fire brigades and
police do not use the same technical vocabulary. What is worse, in many countries there
are strong regional differences. The local fire brigade of city A might not even be able to
communicate effortlessly with the local fire brigade of city B which is only 50km away.

One might say that what is needed is a standardization of terms, across all the participating
organizations. A difficulty with this is that the set of “participating organizations” is not
necessarily fixed – anyone may become involved if the disaster is big enough. Another pro-
blem is that standardization may be difficult for political and historical reasons; and even
if human terminology is standardized, this does by no means imply that communication at
IT level – e.g., between local resource databases – is possible, too. Maintaining all details
within a single globalized database is often not desirable for reasons of data privacy; the
maintenance is often impossible for technical or political reasons, or it simply causes too
much overhead. Finally, in a world of quick technological change, standards will age fast.

In the SoKNOS project1, we develop technology that, rather than forcing everybody to
use the same terminology and IT level implementation, is aimed at facilitating the integra-
tion of heterogenous information. From the point of view of an individual organization,
this means that data from heterogenous sources (where new sources may become rele-
vant dynamically) needs to be mapped onto the organization’s data schema. For such data
schemata, we propose to use formal ontologies. The motivation is threefold:

1. Reasoning over the ontologies provides superior capabilities in querying for in-
formation (as opposed to a standard SQL-based application).

2. Ontologies carry more information than non-semantic schema languages such as
XSD. Hence an ontological data schema is less ambiguous, which is of vital import-
ance for the ease of schema mapping.

3. Ontologies are better suited to serve as reference models. Of course, different
organizations will need different data schemata (indeed some of the data sources
will typically be the data bases of partner organizations). We suggest to use for those
schemata not a common standard, but a common reference model: a core ontology
which each organization may specialize to obtain its own data schema. This ensures
a large conceptual overlap, and hence greatly facilitates data integration, without
enforcing identical vocabularies.2

Herein, we illustrate our concept with a number of use cases – queries for information –
implemented in the SoKNOS prototype. Our main technical focus is on the design of the
reference ontology. Such design is challenging since absolute clarity is a must – semantic
ambiguities, let alone conceptual inconsistencies, are likely to cause misunderstandings.
To ensure sustainable modeling, we follow the guiding principles of the DOLCE foun-
dational ontology [MGOS03, GGMO03]. Our core contribution is to clarify how those
principles are best applied in the domain of disaster management.

1Service-oriented architectures supporting networks in the context of public security; http://www.soknos.de
2Data sources may of course be integrated even if they do not use the reference model, i.e., in terms of the

SoKNOS architecture that model is a suggestion, not a requirement.



Our ontology devises a high-level “core domain ontology” covering central concepts; we
devise a categorization of damages (caused by the disaster), as well as a categorization of
resources (the equipment available to organizations fighting the disaster). We examine how
to connect the two. For example, intricacies arise in the modeling of tactical units (crews
with equipment) and in appropriately modeling which kinds of resources are relevant for
which kinds of damages. We discuss the issues in some detail, and motivate our solutions.

Some of the SoKNOS partners are fire brigades (Cologne and Berlin), and many of our
design decisions have been taken as a result from information provided by these partners,
in the form of documentation or guidelines, and in the form of feedback at workshops.
Naturally, being designed for German organizations – fire brigades, police – to work with,
our ontologies are formulated in German. For international use, English translations are
annotated. In the presentation herein, we use those English translations.

We proceed as follows. We motivate our work with a sketch of our use cases in Section 2.
We explain our basic ontology design – regarding ontology languages and the DOLCE
ontology – in Section 3. This is followed by a detailed explanation of our domain-specific
ontologies in Section 4. Section 5 briefly specifies how our use cases are implemented
based on the ontology. Section 6 discusses related work and Section 7 concludes.

2 Motivation and Use Cases

We need to integrate information from heterogeneous organizations. One crucial example
is resources availability – which organization has which resources available, and where?
In current disaster management practice, such queries have to be made laboriously via
telephone, constituting one of the main bottlenecks of the information flow. Clearly, this
can be improved by semantic data integration [AG06], where instance data about concrete
resources is fed into a domain ontology. The user can then obtain and process information
via queries on the ontology. The following are a number of use cases we wish to support:

1. Detailed browsing. The simplest way of accessing instance information is to browse
through the ontology. Each time a concept is opened, the system should return all
instances of the concept, along with their known attributes.

2. Abstract browsing. Typically, the crisis team suffers from a huge information over-
load. It is hence essential to provide ways of aggregating information. One natural
way to do so is via the hierarchies provided by an ontology stack. As a simple ex-
ample, we can count the number of resources of a certain type, per organization.
We can then show information at different abstraction levels simply by considering
different levels of the hierarchy – e.g. we can count all vehicles (of any kind), or we
can count all rescue helicopters equipped with intensive care equipment.

3. Showing resource types relevant for fighting damages. It is customary in disaster
management information systems to browse for resources based on damages, sho-
wing the types of resources relevant for the respective damage. We need to cater for
this by modeling the relevant connections between damages and resources.



4. Showing concrete resources relevant for fighting damages. We of course should
also be able to show concrete resources available to fight a damage, rather than only
resource types. Again, we should be able to do this at different levels of detail.

Note that abstract browsing – presentation of data at different levels of abstraction – relies
on the taxonomical structure of an ontology and would, to say the least, be awkward to
realize based on standard database technology.

Technically, the above use cases can be supported based on any reasonably designed onto-
logy with the appropriate scope. However, there is a lot to be gained or lost depending on
how well the ontology is designed. The two key issues are:

(I) How easy is it to integrate information, i.e., to align external terminology and data
schemata with the ontology?

(II) How easy is it to systematically browse the ontology, i.e., find the category one is
looking for?

Both activities are carried out by humans, and for the approach to be useful in practice both
activities should be doable with ease. To what extent this is possible depends crucially on
the clarity of ontology design. Regarding (II), we all know that a bad categorization makes
it impossible to find things. As for (I), information integration may of course still be quite
challenging even if the ontology (the target schema) is perfectly clear to the person doing
the integration. However, lack of such clarity is certainly a problem. Ambiguous or flawed
design will make it difficult to correctly align a data schema, and will probably lead to
alignments not meeting the ontology author’s original intention.

3 Basic Ontology Design

To review our basic design choices, we start with the choice of the ontology language. We
then give a brief introduction to the DOLCE ontology and one of its modules.

3.1 Ontology Language

Description logic based languages are strong for conceptual modeling [BB03]. In our case,
cardinality constraints, modeling primitives for a relation hierarchy, and local range restric-
tions are important for capturing the intended meaning of terms. In addition, we build on
the DOLCE foundational ontology, whose lightweight version is maintained in descrip-
tion logic. Finally, the description logic based Web Ontology Language [MvH04] allows
us to be standards compliant. On the other hand, logic programming approaches, such as
F-Logic [KLW95], are already used successfully in commercial products (cf. [AG06]) for
semantic data integration. Logic programming rules are applied to map between the hete-
rogeneous sources and a target ontology. Further, logic programming typically allows for
efficient and flexible instance retrieval, i.e., querying, which is required for our use cases.



We solve this dilemma as follows: At design time, we model our ontology in OWL DL, le-
veraging its expressiveness to capture our domain as precisely as possible. At run time, we
transform the OWL DL ontology into F-Logic. The transformation is manually triggered
once a stable version of the OWL DL ontology is achieved. We apply the transformati-
on algorithm of the NeOn toolkit [NeO], reducing expressiveness to the class hierarchy,
relations, and range restrictions. That information suffices for our run time use cases.

3.2 Foundational Ontologies and DOLCE

Foundational ontologies are serve as the conceptual foundation for domain ontologies. The
latter are designed to account for a specific domain of discourse, reflecting the conceptua-
lization of a certain user community. The two kinds of ontologies can be used in a layered
architecture where meanings of symbols are inherited from the foundational level to the
domain level. In this sense, the foundational ontology serves to establish the basic building
blocks of the domain ontologies. This way, general errors in ontology engineering can be
avoided, since basic distinctions are easier to clarify at a higher level [Mil04].

Abbildung 1: Basic categories in DOLCE [MGOS03] (slightly modified for presentation purposes).

The following provides a short introduction to the basic categories of DOLCE:

Endurants and Perdurants. Endurants and perdurants belong to the four top categories
of DOLCE. They are distinct regarding their behavior in time. Endurants are wholly pre-
sent at any time they exist. Their parts move with them in time. Perdurants, on the contrary,
extend in time by accumulating different temporal parts. At any given time, they are only
partially present, in the sense that some of their parts are not present anymore or are not
yet present [GGMO03]. Perdurants embrace entities generally classified as events, proces-
ses, and activities. An endurant “lives” in time by participating in some perdurant(s). For
example, a building (endurant) participates in its lifespan (perdurant). Central for our on-
tology of resources is the DOLCE category NON-AGENTIVE PHYSICAL OBJECT. It is a
sub-category of PHYSICAL OBJECT. In contrast to agentive physical objects, non-agentive
objects do not have intentions, beliefs or desires. They are what one would generally refer
to as “object” in physical reality.

Qualities and Abstracts. Qualities are seen as the basic entities we can perceive or measu-



re, for example the volume of a lake, the color of a rose, or the length of a street [MGOS03].
The main characteristics of qualities are that they are observable and that they are inher-
ent in other entities. A quality is understood as being an individual entity itself. DOLCE
makes a strict distinction between a quality, e.g., the depth of a specific lake, and its ma-
gnitude, which might be approximated via a measurement result (e.g. 10m). The “value”
of a quality is considered an abstract entity.

3.3 Descriptions and Situations

Several additional theories exist for DOLCE that come in the form of ontology modules.
Descriptions and Situations (DnS) is such a module and can be considered an ontology
design pattern for (re)structuring application ontologies that require contextualization. The
following paragraph provides a brief introduction, since we use DnS in our ontologies. For
a more detailed description please see [GM03].

DnS introduces a distinction between descriptive and ground entities. The ground entities
are categorized in the basic categories of DOLCE. The categories PARAMETER, ROLE
and COURSE OF EVENT capture descriptive entities. These serve to describe the ground
entities in the following way: Parameters have values, roles are played by endurants and
courses of events sequence perdurants. The descriptive entities are the components of a
situation description that represents the context. For example, DnS can be used to describe
tactical units defining roles such as crew transporter that can be played by a bus, a van
or a special crew carrying vehicle. Also of interest for our ontologies is the category DE-
SCRIPTION since such entities underly the communication about real ”world entities”. A
description is a communicable social object which represents a conceptualization [GM03].
For example, PLAN is a sub-category of DESCRIPTION.

4 Domain-Specific Ontology Design

We now describe our domain-specific ontologies. An exhaustive presentation would of
course not be helpful; we focus on the most relevant design decisions. Figure 2 provides
an overview. The following sub-sections review the core domain ontology for emergency
management, the resources ontology, the damages ontology, and the ontology of deploy-
ment regulations (connecting damages to resources).

Abbildung 2: An overview of our ontology stack.



4.1 Core Domain Ontology for Emergency Management

The Core Domain Ontology for Emergency Management (short: Core Domain Ontolo-
gy) forms the root of our domain-specific ontology tree, giving the basic categories and
their relations. In that way, beside its role in the ontology tree, the core domain ontology
also clarified terminology within the SoKNOS project. Indeed, the ontology was used to
generate our common Java data structures; we get back to this in Section 5.

To clarify the basic terminology, one needs to distinguish a number of closely related ca-
tegories. For example: DAMAGE (to a physical object); DANGER (occurrence prior to a
damage, e.g. danger that a dam breaks); PROBLEM (the super-category of DAMAGE and
DANGER; see Section 4.3); and INCIDENT (geographical and logical group of problems,
damaged objects, measures, and involved resources). Further, one needs to distinguish
between measures as planned by the crisis team and measures as conducted on-site; this
is a good example for the importance of a common understanding (a reference model),
and how alignment with a foundational ontology may further such understanding. While
PLANNED MEASURE may still be ambiguous, defining it as a sub-category of DESCRIP-
TION clarifies for sure that a planned measure does not change the on-site situation, but
instead must be realized through on-site measures. Another useful feature of DOLCE is the
explicit distinction between a quality and its value. This is useful for the representation of
metrics. For example, the length of a ladder is sometimes measured in meters, sometimes
in terms of highest reachable floor; representing such metrics in the model is a prerequisite
for converting them in data integration.

4.2 Ontology of Resources

The main task of our resources ontology is to provide a categorization which will be ac-
cessed by different organizations (fire brigades, police, etc.) during a disaster. “Resource”
here encompasses a broad range of things, from sand sacks over motorized equipment
(chain saws, fire engines, etc.) to specially trained personnel, and to tactical units. A com-
prehensive and intuitive categorization of such a broad range of things is quite a challenge;
alignment with DOLCE involves a number of subtle issues as well. There is a huge gap
between the fundamental categories of DOLCE and (some) very concrete notions of re-
sources. The terminology used by fire brigades is often ambiguous and not well organized.

An example for the gap between DOLCE and the concrete resources dealt with in emergen-
cy management can be shown with the DOLCE category NON-AGENTIVE-PHYSICAL-
OBJECT. In our ontology, this has been sub-categorized into DEVICE (apparat operated by
humans, e.g. a helicopter, a fire engine), MATERIAL (things consisting of non-functional
parts, e.g. a pipe, a barrier), ACCESSOIRES (objects that can only be used in conjunction
with other objects, e.g. a battery), CLOTHING, PHARMACEUTICAL PRODUCT, and WEA-
PON (similar to DEVICE but with the purpose of causing damage). Obviously, from these
categories several further hierarchy levels are required to reach concrete resources such as
the category HAMMER. More generally, an issue is which criterion to use for the categori-



zation. Since the ontology is to be used as a reference model, and since this is the way fire
brigade men tend to think about their equipment, we have decided to use as criterion the
object’s effect when used according to its purpose. Purpose is essential insofar as, for ex-
ample, a hammer may be used as a weapon but that is not what fire brigades will typically
use it for.

The central category in the domain of resources for disaster management is TACTICAL
UNIT (for brevity also referred to as TUnit). A tactical unit comprises a crew and its
operating resources. For example, a fire brigade platoon is a tactical unit comprising the
vehicles and men required to deal with a burning apartment. These are the organizational
units that the crisis team deals with. In that sense, from the point of view of data integration,
tactical units are located at the borderline between the world of particular items (a hammer,
a fire engine) and the world of disaster management in the crisis team.

One important aspect in modeling tactical units is a mismatch between “theory and practi-
ce”. There are detailed regulations regarding the composition of tactical units, e.g., which
types of vehicles an X-Y-Z platoon of a local fire brigade consists of, which qualifications
the crew should have, and what additional equipment (clothing etc.) should be present.
These informations are used by the crisis team, e.g., when searching for resources. In par-
ticular, when searching for external resources (resources from organizations other than the
own one), this kind of information is useful, since it provides a good impression what the
external units could be used for.

The real tactical units often differ from the relevant regulations in terms of the size of
the crew, and details regarding the equipment. Such details are sometimes negligible; re-
gulations (in particular German ones) tend to be meticulous. In most cases, keeping all
the details up to date in the IT system (the local database) would be impossible anyway.
Usually, the only data kept up to date is which tactical unit is currently performing which
operation with a crew of how many people.

(a) (b)

Abbildung 3: Model of (a) tactical unit descriptions (as per regulations) and (b) tactical units (as
maintained in practice).



To cater for the two kinds of information about tactical units – regulations and practice –
we have devised two separate models. The model of regulations serves as a reference, the
model of practice serves for data integration. Both are depicted in Figure 3.

For the regulations, Figure 3 (a), we introduce to the DOLCE (DnS) category DESCRIP-
TION the sub-category TUNIT DESCRIPTION. A TUnit Description may define functional
roles (e.g. a transporter, a tool), qualified skill bearers (a specially trained person, e.g. a
group leader, a voice radio operator), and functional-agentive roles. The latter are played
by TUnits. The generic “DnS:defines” relation that applies between a description and some
(descriptive) entity takes the intuitive meaning of “the particular TUnit consists of other,
smaller-sized TUnits”. Further, a TUnit Description defines the so-called tactical usage
value, i.e., what the unit can be used for.

For practice, we designed a suitable alignment with DOLCE; see Figure 3 (b). The mo-
del is minimalistic. This is appropriate because, as mentioned, the up to date information
maintained about tactical units is minimalistic, too. Tactical units consist of operational
resources (a DnS:collection in which devices participate) and a crew (a DnS:collective).
The currently performed operation is modeled with a relation between TACTICAL UNIT
(Figure 3 (b)) and TUNIT STATUS VALUE (Figure 3 (a)); Figure 3 omits this relation for
the sake of readability. Similarly, TACTICAL UNIT indicates corresponding descriptions,
via a relation to TUNIT DESCRIPTION, which is not shown.

4.3 Ontology of Damages

We first explain the design pattern underlying our model of damages; then we explain how
the relevant entities are categorized. Figure 4 illustrates the design pattern.

Abbildung 4: Design pattern for the description of damages.

On the top of Figure 4 we have the category PROBLEM. A problem is an event (and thus
a perdurant) that may necessitate the deployment of resources. The categories DANGER
(DN), and DAMAGE OR DANGER CAUSING EVENT (DDCE), comprise problems that



are themselves not damages, but that may cause damages. Note that it is important for the
crisis team to make the distinction between an already present damage and a situation that
could lead to a damage. For example, a regular high tide can become a damage causing
event (a flooding) if it is unusually high. Clearly, we need to be able to represent the two
things (the damage and its cause) separately.

The intended meaning of the relations is as follows. The relation “lead to” is a sub-relation
of “related to”. Our interpretation is that there is either a causal or a temporal relation (or
both) between the two problems; “lead to by” is the inverse of “lead to”. Accordingly,
“causes”, “results in”, “generates DDCE”, and “generates Danger” are sub-relations of
“leads to”, while “caused by” is a sub-relation of “lead to by”. The latter sub-relations are
intended to be direct, i.e. they connect problems that lead to other problems immediately,
rather than through any intermediated problems.

To illustrate the design pattern, suppose that the crisis team is notified of an explosion in a
chemical factory. This is represented as the fact i1 ∈DDCE where i1 is a new instance and
DDCE is the acronym of DAMAGE OR DANGER CAUSING EVENT as given in Figure 4.
Note that the explosion as such is not necessarily a damage; but it may cause damages. For
example, we may get a damage of the factory building (i2 ∈DM) and a leakage of the gas
container (i3 ∈DM). Since those damages are caused by the explosion, we further state
that causes(i1, i2) and causes(i1, i3). Due to the damaged building, there is a danger of
collapse (i4 ∈DD and generates-danger(i2, i4)). It is then verified that, due to the leakage
in the gas container (i3), a dangerous substance has been emitted (i5 ∈DDCE, generates-
DDCE(i3, i5)). The latter causes an air pollution (i6 ∈DM, causes(i5, i6)) and generates
a risk of further explosion (i7 ∈DoDDCE, generates-danger(i5, i7)). Note in this example
how problems lead to other problems, resulting in chains of problems that are causally or
otherwise related. Such chains are essential in disaster management, where, proverbially,
one thing leads to the other.

Instantiating our design pattern, we created comprehensive taxonomies of damages and
damage/danger causing events. For the necessary classification, four criteria are concei-
vable: (a) What type of object is damaged (e.g. vehicle, building)?; (b) Which particular
aspect of the object is damaged (its function or its structure)? (c) In which environment
does the damage take place (e.g. industrial area, tunnel)? (d) What is the cause of the da-
mage (e.g. fire, high tide)? Since the taxonomies are to serve as a reference, we need to
ensure that humans can easily find a kind of problem they are looking for (by top-down
browsing of the taxonomy), even if they are not familiar with the ontology. For that pur-
pose, it is of essential importance that the categorization is consistent with respect to the
criteria. Only one criterion should serve for the “top-level” categorization. Generalizing
this, we use prioritized subsets of criteria. For damage/danger causing events, only criteria
(c) and (d) are suitable, since a DDCE is in general not bound to a particular damaged
object. We take (d) to be the primary criterion for classification; if two categories cannot
sensibly be distinguished based on (d), they get categorized according to (c). For exam-
ple, train-accident-in-tunnel and train-accident are foremost train accidents, and are then
further distinguished by their surroundings. The reason for preferring (d) over (c) is that,
when browsing the ontology, a member of the crisis team is more likely to know the type
of the event than the precise surroundings.



For classifying damages, all four criteria (a) – (d) are applicable. In order to not replicate
the DDCE taxonomy, we take (c) and (d) to be inferior to (a) and (b). Since the type of
affected object appears to be more prominent in common perception, (a) is taken as the
primary classification criterion; (b) is secondary.

4.4 Connecting Damages to Resources

Clearly, one should be able to connect damages with resources. Based on the ontology,
we should be able to answer the questions: Which kind of resource is relevant to address
which kind of damage? And, given some damage, which resources (actual instances) are
available to address it? The first question is, for example, important if the user wishes to
browse resources based on which damage they are relevant for, rather than based on their
own categorization. Such browsing is common practice, e.g., in German fire brigades. The
second question is, of course, essential for quickly finding relevant resources – which is
one of the key goals of data integration.

How to model the connection between damages and resources? Spontaneously, one may
think that a relation “requires” between problems and resources (e.g. tactical units) will do.
However, matters are not that simple: different organizations use different tactical units to
address the same kind of damage. Catering for this involves a number of subtle design
decisions. Our design pattern is depicted in Figure 5.

Abbildung 5: Design pattern for connecting damages to resources. (An arrow from relation A to
relation B means that A is a sub-relation of B.)

In disaster management, damages are associated with resources via deployment regulati-
ons (short DR). Such a regulation is a list of situation descriptions (short SD), of which
each has a name implicitly referring to a type of problem (e.g. mass injury), and a chain of
resources (e.g. three rescue helicopters) relevant to address that problem. In general, each
organization has its own deployment regulation; in Germany, this is true for every local
fire brigade. The DRs differ in the used names and the way resources are aggregated to
resources chains; they also differ in terms of granularity (e.g. some do, and some do not,
distinguish between fire and explosion within a building).

Clearly, for the ontology to serve as a reference across organizations, we should be able
to reflect the differences between the DRs of individual organizations. A direct “requires”



relation is not suitable for this purpose, because it leaves the DR implicit. This can in
principle be fixed by using the names of individual DRs as indices of concepts and relations
in the ontology. But this is a contrived and inflexible model; for the sake of brevity, we omit
a detailed discussion of this point.

A clean model needs to include DRs explicitly as elements of the ontology. Doing so in
first-order logic involves the following difficulty. A concrete SD, e.g., “mass injury” should
be modeled as an instance (it cannot be further instantiated). However, that instance does
not refer to concrete resources or problems; it refers to classes of such entities. References
between instances and classes necessitate higher-order logic. Assuming we wish to avoid
that, there are two choices. First, “ABox modeling”: a reference to a class A is represented
in terms of an artificial instance a of A; e.g. we would introduce a “generic rescue heli-
copter”. Clearly, such instances must not show up when querying the data, which at least
leads to implementation and maintenance difficulties. The second option is ”TBox mode-
ling”: we model concrete SDs as concepts. The problem then disappears, at the reasonable
prize of a slight imprecision in what a SD is. As Figure 5 shows, at concept level we can
connect SDs to the relevant classes of problems, measures, and TUnits in a straightforward
fashion.

5 Prototype

The implemented ontologies serve for information integration in the prototype developed
in the SoKNOS project (the prototype covers also other areas, e.g., a workflow system for
planning counter-measures). We use a service-oriented architecture where legacy informa-
tion stores (e.g., existing resource databases containing dynamically updated data on the
status of particular resources) are encapsulated as Web services with WSDL interfaces,
allowing to query/extract the contained data. For data integration, the data schemata of
these Web services are aligned with our ontology. Following [AG06], we use the Onto-
Studio [Ont] “WSDL Web service Import” functionality; the alignment is made through
OntoStudio “Mappings”, a particular form of F-Logic rules editable in a GUI; and the
data integration is performed, i.e., the mappings are executed, by OntoBroker [FDES98]
when a query for information is made. Queries can be made in F-Logic. Concretely, we
implemented the use cases outlined in Section 2:

1. Detailed browsing. Each time a concept C is opened, the system poses the query
∀X,Y,Z X:C AND X[Y->>Z], returning all instances X of C along with all attri-
butes Ywhose value Z is known.3 For effective browsing, a clear use of classification
criteria is essential, c.f. our discussions in Section 4.

2. Abstract browsing. This is accomplished with the query ∀X,Y,Z
X:Organization AND Y:C[belongs-to->>X] AND count(X,Y,Z),
where C is the resource type in question and count(., ., .) is an F-Logic built-in

3Note that C in the F-Logic query is a placeholder that will be replaced with a string – the identifier of the
concept – before the query is submitted. We indicate placeholders in boldface.



aggregating the number of pairs (1st arg, 2nd arg) in its 3rd argument. Depending
on the choice of C, we obtain information at different levels of abstraction, hence
exploiting the taxonomical structure of the ontology.

3. Showing resource types relevant for fighting damages. We do so with the query
∀X,Y Y[refers-to=>>D] AND Y[requires=>>X], which will output all
situation descriptions (entries of deployment regulations) Y and tactical units X rele-
vant to the queried damage type D. This is a query at concept-level, which would be
awkward to realize based on standard database technology, where we would need to
encode the concepts and their relations as instance data.

4. Showing concrete resources relevant for fighting damages. We find all in-
stances and known attributes via ∀X,Y,Z,U,V Y[refers-to=>>D] AND
Y[requires=>>X] AND Z:X AND Z[U->>V]. Here, the flexibility of F-
Logic allows us to mix queries on concept and instance level.4

Note that all these use cases require that data sources have been connected in the first place
– facilitating which is the responsibility of our thoroughly designed reference ontology.

Our ontologies also serve for integration purposes regarding the actual implementation of
the prototype. The Core Domain Ontology (Section 4.1) was used to generate the common
Java data structures. We first exported our OWL ontologies into XML Schema (XSD),
keeping only the tree structure of the subsumption hierarchy, any cardinality restrictions, as
well as the domains and ranges of the properties (aka. relations and attributes). From XSD,
we generated Java data structures by a straightforward ant script; these data structures
served as the basis for further development. The advantages of this approach were twofold:
the connection to the ontology helped to maintain a consistent view of the domain; and the
alignment with DOLCE was instrumental for reaching a common understanding in the
first place.

By keeping a direct relation of Java classes to categories in the domain ontology, the ap-
proach also enables exciting opportunities for assessing the interoperability between the
prototype’s GUIs during runtime (a paper on this is currently under review). Additionally
to the semantic annotation of the communicated information objects, the GUIs’ functiona-
lities are ontologically characterized. For example, if an object is dragged from one GUI
to another, then the receiving GUI checks via the ontologies whether that object belongs
to a (sub-type) of the object types it can handle.

4We remark that, in this use case, the deductive facilities of F-Logic – via the definition of rules – can become
relevant. Particular equipment can be handled only by particular persons. It is often awkward, and sometimes
impossible, to maintain this relation explicitly; an example is the measuring of particular toxins, where the mea-
surement devices and the persons handling them may need to be acquired from different organizations. The
relation can be elegantly constructed deductively by a rule referring the the required/obtained qualifications.



6 Related Work

Several projects are concerned with improving the efficiency of crisis management. One
of those, AKTiveSA, also pursues an ontology-based approach to information integration
[SRS+07]. The developed ontology covers, amongst other things, transportation, humani-
tarian aid, military, equipment, organizations, and weapons.

The AKTiveSA ontology is not aligned with a foundational ontology. It is unclear whe-
ther the ontology separates between endurants and perdurants, and which assumptions are
made regarding the spatio-temporal location of the two. The concept “Phenomenon” is an-
notated with “observable event”, but is not a sub-concept of “Event”. “Event” is annotated
as “something that happens in time, i.e., it has a temporal location”; at the same time, AK-
TiveSA has axioms for “Phenomenon” – but not for “Event” – postulating the existence of
a spatial and temporal location.

AKTiveSA introduces an “Agent” as “anything responsible for the performance of an ac-
tion or participating in an activity”. According to this definition, organizations are agents,
which is correct; but, e.g., vehicles are agents, too. The definition ignores the essential
property of having an intent. In the terminology of OntoClean [GW02], it ignores that
anti-rigid properties (e.g. agent) cannot subsume rigid properties (e.g. vehicle).

Finally, AKTiveSA makes inconsequent use of criteria for categorization. For example,
the ontology contains the top-level concepts “Military related Thing” and “Agent rela-
ted Thing”. “Agent” is a direct sub-concept of “Agent related Thing”, and is further sub-
categorized into “Organism”, “Group”, “Software Agent”, and “Platform”. So, while the
top-level concepts are categorized according to something like “business area” (military,
agents), this is not true of their sub-concepts which are categorized more along the lines
of “physical form” (organism, software agent).

Apart from ontological models of the domain, there are some efforts to standardize some
of its vocabulary. Probably the most successful one is the National Incident Management
System (NIMS) used in the U.S. to coordinate incident management among various fe-
deral, state, and local agencies [NIM]. Generally, our ontologies are NIMS-compliant –
they do not violate any of the underlying assumptions, and they are designed to cover
much of the relevant vocabulary. We do not, however, follow NIMS closely. This would
hardly be possible since our ontology is for German, not U.S., disaster management. Also,
NIMS uses a rather simplified data model, covering a broad range of resources with one
common table structure, which (necessarily) results in imprecisions and ambiguities.

7 Conclusion

We have designed an ontology stack covering the basic concepts of disaster management,
as well as detailed categorizations of damages and resources, and the design needed for
connecting the latter in an appropriate way. Our ontologies are aligned with the DOLCE
foundational ontology, and have proven to be suitable for information integration in the
SoKNOS prototype.



We are currently working on some final touches to the ontologies and the prototype, and
we are in the process of running evaluations through disaster management practitioners.
Apart from this endeavor, we are currently extending the ontology with a module for des-
cribing the data delivered by Geospatial Web services, specifically services conforming to
the “Sensor Observation Service” specification of the Open Geospatial Consortium. That
ontology module will form the basis of facilities for convenient discovery of such services,
as well as data extraction and integration.

Literatur

[AG06] J. Angele und M. Gesmann. Data Integration using Semantic Technology: A use case.
In RuleML, Seiten 58–66, 2006.

[BB03] A. Borgida und R. Brachman. Conceptual Modeling with Description Logics. In Des-
cription Logic Handbook, Seiten 349–372, 2003.

[FDES98] D. Fensel, S. Decker, M. Erdmann und R. Studer. Ontobroker in a Nutshell. Lecture
Notes in Computer Science, 1513:663–664, 1998.

[GGMO03] A. Gangemi, N. Guarino, C. Masolo und A. Oltramari. Sweetening WordNet with
DOLCE. AI Magazine, 24 (3):13–24., 2003.

[GM03] A. Gangemi und P. Mika. Understanding the Semantic Web through Descriptions and
Situations. In Proc. DOA/CoopIS/ODBASE, 2003.

[GW02] N. Guarino und C. Welty. Evaluating Ontological Decisions with OntoClean. Commu-
nications of the ACM, 45(2):61–65, 2002.

[KLW95] M. Kifer, G. Lausen und J. Wu. Logical Foundations of Object-Oriented and Frame-
Based Languages. J. ACM, 42(4):741–843, 1995.

[MGOS03] C. Masolo, N. Guarino, A. Oltramari und L. Shneider. The WonderWeb Library of
Foundational Ontologies. Bericht, 2003.

[Mil04] S. K. Milton. Top-Level Ontology: The Problem with Naturalism. In Proc. FOIS, 2004.

[MvH04] D. McGuinness und F. van Harmelen. Web Ontology Language (OWL) Overview.
http://www.w3.org/TR/owl-features/, Feb 2004. W3C Recommendation.

[NeO] NeOn Toolkit. http://www.neon-toolkit.org/.

[NIM] NIMS standardization initiative. http://www.fema.gov/emergency/nims/rm/rt.shtm.

[Ont] OntoStudio. http://www.ontoprise.de/.

[SRS+07] P. Smart, A. Russell, N. Shadbolt, M. Schraefel und L. Carr. AKTiveSA: A Tech-
nical Demonstrator System For Enhanced Situation Awareness. Computer Journal,
50(6):703–716, 2007.

[Vem04] T. Vemmer. The Management of Mass Casualty Incidends in Germany - From Ramstein
to Eschede. BoD, 2004.


