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Abstract: It is expected, that the application of the virtualization paradigm to network
resources can provide the basis for a Future Internet architecture and stimulate the
introduction of novel protocols, services, and business cases. As a starting point for
further research, we analyze the routing performance of a software router executed
within different open source virtualization solutions, and evaluate the applicability of
existing live-migration mechanisms to virtual routers.

1 Introduction

Network virtualization is an emerging technology, which has the potential to address the
ossification of the current Internet architecture and become a fundamental building block
for the Future Internet. In addition to allowing the operation of independent, parallel vir-
tual networks, e.g. for Infrastructure as a Service (Iaas), virtual routers can be employed
for the gradual introduction of new network protocols into existing infrastructures. In the
network management domain, a major advantage of virtualized network resources, is the
capability to transparently transfer logical router instances between physical routers. ISPs
can utilize this feature, to adapt their infrastructure to changing traffic conditions, customer
requirements or for energy conservation during off-peak hours.

While proprietary router virtualization solutions, such as logical routers, Virtual Devi-
ce Contexts (VDC) or Virtual Routing and Forwarding (VRF), are available today, they
are too limited in terms of interoperability and flexibility to serve as a basis for a virtual
network architecture. Neither router migration, nor the execution of unsupported routing
processes is currently possible. Due to the closed nature of commercial offerings, it is li-
kely that research into router virtualization will be confined to open software platforms, at
least for the near future.

To this end, we evaluate open source system virtualization solutions with respect to their
routing performance, and their potential to serve as a starting point for further research
in the network virtualization domain. Furthermore, we analyze the feasibility of existing
virtualization technology as a basis for live router migration, and investigate the impact of
router mobility on network traffic.
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2 Related Work

Currently, several virtualization platforms are freely available under open-source licenses,
including Xen, OpenVZ, KVM and VirtualBox. The performance level of all solutions
has improved steadily, enabling the execution of virtual servers at near native speeds. As
a result, today virtualization plays a major role for resource consolidation in data centers.
However, I/O performance and the virtualization of network devices in particular, consti-
tute a bottleneck and remain an open research field [AMN06, EGH+07]. An evaluation
of Xen for network virtualization has been conducted in [MCZ06]. The concept of router
migration as a management primitive was first advocated in [WKB+08], where the authors
outline an architecture for control plane migration based on virtual machines (VM). Buil-
ding upon these findings, we quantify the effects of migration mechanisms on the network,
examine the network performance of Xen, KVM and OpenVZ, taking recent developments
of the software suites into account.

2.1 System Virtualization Approaches

Paravirtualization, full virtualization and container-based virtualization are the three current-
ly prevalent system virtualization approaches.

The Xen [BDF+03] virtual machine monitor (VMM), enables the execution of multiple
guest operating systems on a single host machine by providing an abstraction of the un-
derlying hardware. The Xen architecture is comprised of layers, known as domains, with
the VMM (or hypervisor) running in the lowest and most privileged domain. The VMM is
responsible for instantiating guest domains and managing system resources. Guest hosts
require a kernel specifically modified to utilize the interfaces offered by the VMM. A
major advantage of paravirtualization approach used by Xen, is the strict VM isolation,
as well as the low performance penalty in guest domains which results from the adapted
guest kernels. Additionally, the use of virtualization aware network drivers leads to signifi-
cantly higher network performance. Furthermore, recent versions of Xen also support the
virtualization of unmodified guests on CPUs providing hardware virtualization support.

The Kernel-based Virtual Machine (KVM) [KKL+07] project is a full virtualization im-
plementation for Linux. In contrast to Xen, KVM is implemented as a loadable kernel
module, which relies exclusively on hardware virtualization extensions, such as Intel VT-
x or AMD-V. As a result, no guest-side modifications are necessary: each VM can be
regarded as a Linux process executing in a special guest mode. Scheduling is performed
using standard Linux mechanisms. On the downside, all guest I/O requests are trapped
and emulated in user space by a dedicated process (QEMU), resulting in poor performan-
ce for I/O intensive operations. Recently, the availability of paravirtualized network drivers
[Rus08] have led to significant improvements in KVM network and disk performance. In
contrast to Xen, KVM is included in the main-line Linux Kernel, and can therefore benefit
from short development cycles and frequent kernel optimizations.

A more lightweight virtualization strategy is implemented in OpenVZ [ope10]. In con-
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Abbildung 1: Experimental setup

trast to Xen and KVM, OpenVZ provides virtual environments (VE) which share the host
machine’s kernel. Guest system calls are passed through to the host kernel, creating the il-
lusion of a standalone Linux system, with isolated resources. OpenVZ offers quotas, which
can be used to control the allocation of physical resources. Even though VEs are not a true
virtualization solution, they can be checkpointed and migrated across physical machines.
The reduction of processing overheads, is the main motivation behind this approach.

3 Applications of Virtualization in Routers

From a network operator’s viewpoint, two main advantages of network virtualization are
the ability to support multiple concurrent networks, each potentially running different pro-
tocols, as well as increased flexibility resulting from the decoupling of physical and logical
network entities.

Depending on the use-case requirements, different elements of a router architecture can be
virtualized.

A prerequisite for live router migration, is the strict separation of control and forwarding
planes. A router control plane running within a virtual environment (VE) can hence be
transparently migrated while the data plane continues to forward traffic, as outlined in
[WKB+08]. In order to ensure that network operation is not disrupted, for instance by
dropped route update messages, it is vital to minimize the control plane downtime during
the migration process.

Moreover, virtualization mechanisms can be employed to increase router availability. A
possible approach consists of using control plane VE snapshots to ensure a quick router
recovery e.g. after a crash. Additionally, it is conceivable that fallback control plane instan-
ces can be operated concurrently on separate hardware platforms, by suitably modifying
existing migration mechanisms. The use of virtualized routers for testing alternative router
configurations has also been proposed in [AWY08].

To operate isolated, concurrent networks on the same hardware substrate, the forwarding
plane design must be adapted to support virtualization. High performance and efficient
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sharing of hardware resources are key requirements in this case. At the same time, a vir-
tual forwarding plane should be expandable, in order to support a wide range of protocols
- a level of flexibility similar to system virtualization is desirable. The recently proposed
OpenFlow [MAB+08] framework, is a highly promising approach for data plane virtuali-
zation. A different architecture has been proposed in [AF09].

Finally, a straightforward but highly demanding approach consists of executing an entire
router within a virtualized environment. It can be expected, that due to the performance
penalty associated with virtualization, the real-world use of fully virtualized routers will
be limited in the foreseeable future. Nevertheless, we believe such a setup serves as a
means to identify existing technologies which can be adopted for future use in specialized
network virtualization solutions. Therefore, this option is evaluated in this paper.

3.1 Live Migration

The most basic VM migration strategy involves creating a VM snapshot (checkpointing),
stopping VM execution, transferring the VM snapshot to a destination host, and resuming
execution there. This approach, commonly referred to as stop-and-copy, is employed by
OpenVZ [MKK08]. The downside of this mechanism is that it introduces a significant
network downtime, approximately equivalent to the time needed to transfer the allocated
VM memory over a link with a given capacity.

Xen employs a so-called iterative pre-copy migration mechanism followed by a stop-and-
copy step [CFH+05]. When a migration is initialized, the guest’s entire memory content
is transfered to the destination host, and logging of modified (dirty) memory pages is
enabled on the source VM. While the source VM continues to execute, pages modified
since the beginning of the migration are iteratively copied to the destination VM until the
number of dirty pages falls below a pre-defined threshold or a time limit is reached. Xen
dynamically adjusts the migration transfer rate in order to minimize the disruption of the
network. In the final step, the source VM is stopped, and the remaining dirty pages are
copied to the destination VM at maximum speed. Ideally, this final working set should
make up a fraction of the entire memory content, resulting in minimal network downtime.
In this work we aim to quantify this disruption.

A similar approach is used in KVM. However, as shown in the results section, the imple-
mentation details are different.

For the remainder of this paper, we focus on the migration mechanisms of Xen and KVM.

4 Experimental Setup

We used the setup depicted in Fig. 1 to evaluate the routing performance of virtualized
software routers and the effects of live migration on network traffic. Four nodes were
connected by Gigabit Ethernet links, and additionally attached to a separate control net-
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work. Nodes A and B act as a UDP traffic source and sink respectively. As it is not possible
to saturate a Gigabit link using commodity hardware and operating systems, we utilized
NetFPGA cards as traffic generators. The NetFPGA packet generator [CGLM09] is capa-
ble of transmitting 64 byte packets at line rate. A XORP software router [HHK03] was
started within a VM/VE on node R1 and was subsequently migrated to R2 over a dedi-
cated link. We believe, that the assumption of dedicated resources for router migration is
realistic for network operation centers. Each VM was assigned 256 MB RAM and a sin-
gle CPU core. R1 and R2 were booted from a live-CD, eliminating the need for a shared
file-system. In addition, we measured the round-trip time (RTT) between nodes C and D
before and during the migration process.

We used Xen version 3.2.1, KVM version 84 and OpenVZ version 1.2133 FC5.026. Dell
Optiplex 760 with Q8400 Core 2 Quad CPUs and 4GB RAM were used for nodes R1
and R2. The nodes were equipped with Quad Port Intel PRO/1000 network cards. Each
network interface was bound to a dedicated Linux bridge.

All measurements were automated using [BB08] and repeated 25 times. 95% confidence
intervals are included in all plots.

5 Results

5.1 Virtual Machine Forwarding

We measured the performance penalty associated with routing packets within a VM, by
comparing input and output packet rates. We used constant bit rate, UDP cross-traffic con-
sisting of maximum and minimum sized Ethernet packets (1500B and 64B respectively).
As a baseline the forwarding performance of a bare Linux system was also measured.

All evaluated virtualization approaches rely on Linux bridging to provide network connec-
tivity to VMs. KVM and OpenVZ utilize user space virtual network devices (TAP) to the
enable access to the network hardware, while the Xen hypervisor provides dedicated ker-
nel space interfaces.

With large cross-traffic packets the forwarding performance of Linux, Xen and OpenVZ,
was identical and sufficient to fully saturate the Gigabit link. Using the virtio network
driver, KVM was able to fill almost 80% of the link. In contrast, the fully virtualized Intel
e1000e driver, KVM performance was extremely poor at ∼ 5Mbps.

While Linux forwarding was able to achieve slightly over 300 Mbps using small packet
cross-traffic, all virtualization approaches achieved significantly lower throughput speeds.
It is interesting to note that the forwarding performance of Xen and OpenVZ deteriorates
after 500Mbps and 100Mbps respectively. KVM throughput was constant at only ∼ 5% of
the link capacity. Analysis of the traces showed that in all cases, the discrepancy between
the Linux and VM throughput values is mainly due to packet loss between the physical
input interface and the bridged virtual interface, rather than loss withing the VM. This
implies, that the Linux bridging system might be the cause for significant packet loss.
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Abbildung 2: Forwarding performance
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(b) Migration duration

In addition, we measured the performance of Xen’s PCI pass-through capability, which
allows for network devices to be assigned exclusively to a virtual machine. Results were
identical to the pure Linux forwarding case and are not shown here.

The forwarding results, are depicted in Fig. 2. Additionally, Fig. 3a shows the round trip
time dependency on the cross-traffic.

5.2 Live-Migration Effects

A dedicated link between R1 and R2 was used for the migration traffic, in order to examine
the influence of the migration process on the network. Migration while forwarding small
cross-traffic packets proved a challenging task for both Xen and KVM. The Xen migration
process failed repeatedly, even leading to reproducible lockups of the virtual machine. This
poses a significant problem, limiting the usability of Xen migration in real-world scenarios.
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(a) Migration downtime
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(b) Migration traffic volume

In the following, we only present results for large packet cross-traffic under Xen.

The migration process at R1 for KVM and Xen for 500Mbps and 1000Mbps cross-traffic
respectively are exemplified in Fig. 3. The migration is initiated at time 0, with the stop-
and-copy peak visible in the right end of each migration traffic curve. Traffic data was
collected using the Linux proc packet counters, with 10ms resolution. It is notable, that
the total length of the migration process appears reasonably constant for KVM. The mi-
gration is performed as a series of bursts, of increasing transfer rates, each followed by a
inactivity period. As the migration progresses, the migration rate increase, adversely affec-
ting the cross-traffic rate. In contrast, using Xen the migration traffic rate correlates with
the intensity of the cross traffic, resulting in shorter migration times at low cross-traffic
rates.

These notions are confirmed by our series of automated experiments. For both virtuali-
zation approaches, we measured the total duration of the migration process, the network
downtime caused by the stop and copy phase, and the bandwidth generated by the mi-
gration. Using Xen, the total duration time of the migration showed a dependency on the
cross traffic intensity, ranging from 2s up to 12s. An unexpected increase in the migration
time can be observed at a cross-traffic rate of 300Mbps. For the KVM migration imple-
mentation, no significant cross-traffic dependency was apparent. The results are depicted
in Fig. 3b.

The network downtime introduced by the final stop and copy migration phase was inde-
pendent of the cross-traffic at ≈ 0.17s for KVM and highly variable for Xen ranging from
3s to 7s. For small packet cross traffic the KVM downtime is slightly higher than for large
packets. The relationship is shown in Fig. 3a.

Fig. 3b shows the total amount of data transferred during the VM migration. Using Xen,
the migration traffic is slightly higher than the allocated memory for the VM. At 900Mbps
cross-traffic, the amount of data increases significantly. It is evident, that the migration traf-
fic volume can not fully account for the increase in migration time. Hence, the behaviour
visible in Fig. 3b must be due to Xen’s migration rate adaptation mechanism.
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(b) KVM: 1000Mbps cross-traffic
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Abbildung 3: Migration process samples

For KVM no notable increase in the amount of transferred data is evident. It is noteworthy,
that the constant data volume of ≈ 140MB is less than the size of assigned VM memory.

Additionally, the round trip increase during the migration process is plotted in Fig. 3a. As
expected, the RTTs increase as the cross-traffic intensity rises. For Xen, an exceptionally
large increase occurs at cross-traffic speeds larger than 800Mbps.

6 Conclusion

Our evaluation showed, that the performance of the Linux network stack running on com-
modity hardware is insufficient to serve a full Gigabit network link using minimum sized
Ethernet packets. Not surprisingly, the virtualization layers generate additional packet pro-
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cessing overhead, leading to further performance deterioration. Regardless of the utilized
virtualization approach, the penalty on network throughput for small packet sizes remains
extremely high. Moreover, under such conditions, the Xen migration process did not com-
plete reliably in a significant number of cases. This constitutes a major obstacle for the
utilization of Xen based migration of software routers in real-world scenarios.

Nevertheless, examining traffic with larger packet sizes showed that the forwarding per-
formance was acceptable for Linux as well as all virtualization approaches. Among the
evaluated solutions, Xen delivers the best forwarding performance for small Ethernet
packets. KVM’s full virtualization architecture, combined with paravirtualized network
drivers achieves results almost comparable to Xen. Surprisingly, in terms of network per-
formance, OpenVZ’s lightweight, container-based architecture does not achieve significant
improvements and is on par with Xen. Further work is required to verify indications that
the Linux bridging system represents a bottleneck in the system, as all evaluated approa-
ches rely on it to provide connectivity between physical and virtual network devices.

We confirmed that the simple migration mechanism employed in OpenVZ leads to signi-
ficant downtimes, and that extremely short network disruptions can be achieved using the
iterative stop and copy migration mechanism. Assuming migration stability issues are ad-
dressed in future software versions, the migration functionality of both Xen and KVM
can be applied for applications with moderate throughput requirements. The migration of
the control plane of a software router represents a feasible scenario. However, we expect
that dedicated hardware support is essential for the implementation of a high performance
forwarding-plane in virtual routers. In future work, we aim to present a migratable virtual
router platform, with an OpenFlow based data plane, where the controller responsible for
computing routing tables is executed within a virtual environment.
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