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Abstract: This paper outlines a graphical model query approach based on graph
matching. It consists of a graphical query specification language and a matching
algorithm based on graph matching that takes the query as input and returns all
matches found in a model to be searched. The graphical query specification lan-
guage can be used to draw model queries much like a model would be constructed.
To achieve applicability in many different model analysis scenarios, the query ap-
proach provides structurally exact and structurally similar pattern matching as well
as semantic comparison of model node and edge contents. Following a design sci-
ence research process, we derive functional requirements for the query language
and matching algorithm from the literature, outline its syntax, formally specify its
matching principle, and demonstrate its functionality by providing a working pro-
totype implementing previously identified requirements.

1 Introduction

Conceptual models are labeled and typed graphs that can be used to describe and analyze
an organization and its information systems. Examples of conceptual models are process
models that describe the order in which a set of business activities are executed, data
models that capture the data necessary to execute business tasks, or organizational charts
representing the relationships of employees and departments of a company. Conceptual
models do not only serve to document but also to analyze specific aspects of corporate
reality. In this context, we understand “analysis” as the task of extracting relevant struc-
tural and semantic (i.e., label) information out of conceptual models for a given task. In
many cases, such an analysis results in querying a collection of models to identify model
fragments with (partly) given structural characteristics and (partly) given contents. Such
an analysis may serve various business objectives (for a detailed discussion on model
analysis purposes, including different kinds of conceptual models, cf. [De14]):

• One reason for analyzing conceptual models is compliance checking against laws and
regulations [Aw07]. Compliance management has become an important management
task that – if done incorrectly or not at all – can be very costly for an organization.
Compliance checking requires identifying model fragments, either in process models
only or in combination with other types of models (e.g., data models, organizational
charts, etc.), whose structure and contents indicate a compliance violation [Kn10].
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• Identifying weaknesses in process models serves to improve business processes ac-
cording to efficiency, effectiveness, or quality. It aims at avoiding double work or
unnecessary manual processing, for instance [Bec10]. Identifying such weaknesses
requires finding process model fragments whose structure and contents typically in-
dicate a shortcoming of a business process.

• Model translation is about transforming conceptual models from one notation into
another one, for instance from a conceptual into an executable specification. Notable
examples discussed in the literature include translating BPMN models into BPEL
code [ODA08, Ga08] or transforming data models into relational schemas. Model
translation requires identifying model fragments of a source notation that are to be
translated to model or code fragments of a target notation.

• A further purpose of model analysis is checking models for structural or behavioral
conflicts to ensure their syntactical correctness and – in case of process models –
their proper execution semantics [Me08]. Syntax errors or improper execution se-
mantics may disrupt runtime execution. Hence, identifying such problems can help
assuring proper model execution in the case of automation. Identifying structural or
behavioral conflicts requires identifying model fragments that indicate such conflicts.

Querying conceptual models to identify fragments with particular characteristics thus

serves an abundance of analysis tasks that are performed to design, redesign, or improve

corporate information systems in different ways. Hence, many companies have started to

create large collections of conceptual models [DRR12]. Such collections mostly include

process models but may also include other types of conceptual models like data models,

organizational charts, or ontologies. They may contain hundreds to thousands of models

and, in turn, each model may consist of hundreds to thousands of elements [Di11]. Given

the complexity of these collections, the task of analyzing conceptual models is becoming
increasingly difficult [Di11]. Analyzing conceptual models is even more complex consi-
dering that such an analysis may serve different business objectives as described above.
The scientific community has put forth a great number of different model query approa-
ches (cf. Section 6). They allow for querying a model collection automatically in order to
identify particular pattern matches in the models. A pattern match in this context refers
to a model fragment that complies with a predefined query pattern defining the frag-
ment’s structure and labels.

A common characteristic of many recent model query approaches is that they are specif-
ically designed to support one particular business objective (e.g., [YDG12]). In addition,
some of these approaches are designed for analyzing models developed in a particular
modeling language (e.g., [Aw07] or [Be08]). Instead of developing such customized
query approaches, we follow the argument of [Aa13] arguing that it is more beneficial to
develop a query approach that can be used to support multiple business objectives. Fur-
thermore, we argue that it is beneficial to develop an approach that is by default applica-
ble to multiple types of conceptual models (i.e., process models, data models, etc.) and
models of any modeling language. Companies that wish to automatically analyze their
models may not be able to use a given, specialized query approach if it does not fit their
use case or modeling language. Furthermore, for reasons of economy and internal con-
ventions, they may not be willing to change their preferred modeling language for every
new analysis purpose to render some specialized analysis approach applicable [Aa13].
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A previous utility evaluation of a multi-purpose and language independent model query
language [De10] revealed that process managers perceive such a mechanism to be highly
beneficial to support model analysis [Be11]. The query language presented in this study,
however, uses formal set operations to define pattern queries. We argue that the ease of
use of this language is rather low as pattern specification is cumbersome (cf. application
examples in [Be11]). We argue that a query language is much easier to use if it allows
for graphically modeling a pattern in much the same way as a model is developed.

In this paper, we thus present a multi-purpose and modeling language independent mod-
el query approach that allows for specifying patterns graphically. The approach consists
of a graphical pattern editor and a matching algorithm. The theoretical foundations of
our approach are based on graph theory, because any conceptual model is essentially a
graph consisting of nodes and edges, no matter what modeling language is used. These
nodes and edges are usually attributed with a type and a label, sometimes multiple labels,
such as a name, cost, time, etc. A BPMN model [BPM13], for instance, contains nodes
of type “task” and may have a name containing the value “grant credit”.

In graph theory, the problem of pattern matching is known as the problem of subgraph
isomorphism [Ul78]. Corresponding algorithms are able to detect exact pattern matches
(i.e., the pattern match and the pattern have to be structurally and semantically identical).
In the context of analyzing conceptual models however, it is often necessary to identify
paths of model elements that are of previously unknown length (cf. requirements de-
scribed in Section 2). Consequently, a matching mechanism is required that allows for
identifying subgraphs in a model that are not strictly identical to a predefined pattern, but
may contain paths of previously unknown length. In graph theory, this kind of pattern
matching is known as the problem of subgraph homeomorphism [LW09]. Unfortunately,
corresponding algorithms produce a huge number of pattern matches because by default
all pattern edges are mapped to paths of all possible lengths in the model. This, however,
is often not necessary, because only few pattern edges may need to be mapped to paths
in the model. The resulting huge number of potentially irrelevant matching results leads
to increased runtimes [LW09]. We therefore introduce a new type of graph problem that
we call relaxed subgraph isomorphism, in which a node in the pattern graph has exactly
one equivalent node in the model, but an edge in the pattern graph may – if so specified
– be mapped to a path of elements in the model.

The purpose of this paper is thus to formally specify, implement, and evaluate a graph-
based query approach for conceptual models using relaxed subgraph isomorphism detec-
tion. It takes into account that nodes and edges of conceptual model graphs can be anno-
tated with various attributes as described above and that these attributes may have to be
checked within the pattern matching process. Furthermore, we take into account that
conceptual models may contain both directed and undirected edges, as well as more than
one edge between two given nodes (e.g., hierarchy structures in Entity-Relationship
Models (ERM), [Ch76]). Summarizing, the contribution of this paper is as follows:

• From a theoretical point of view, we introduce a new type of graph problem called
relaxed subgraph isomorphism designed to address the particular requirements of
pattern matching in conceptual models. We furthermore present a novel approach to
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solve this problem, including specifics of conceptual models such as mixed di-
rected/undirected edges as well as node and edge semantics. Up to now, only related
work on subgraph isomorphism and subgraph homeomorphism exists. It does not
take into account configurable edge-path mappings as described above. Also, it is re-
stricted to either undirected or directed edges and mostly ignores node and edge se-
mantics, which are both of utmost importance when analyzing conceptual models.

• From a practical point of view, the query approach supports a wide variety of differ-
ent model analysis objectives involving pattern matching (cf. examples above). It is
thus not restricted to supporting one objective alone.

• The query language is furthermore not restricted to finding pattern matches in con-
ceptual models of a particular type or modeling language, but can be used on models
of any type or modeling notation – as long as they are based on graphs.

• The query language allows to graphically model a pattern in much the same way as a
model is developed. We argue that it is thus easier to use than query languages that
rely on text-based pattern specification and follow the evaluation results of [Be11].

The remainder of the paper is structured as follows: In Section 2, we formulate function-
al requirements for pattern matching in conceptual models that were derived from typical
patterns coming from literature on model analysis. In Section 3, we formally introduce
the notions of a conceptual model, of subgraph isomorphism, and of relaxed subgraph
isomorphism as a basis for the matching process. In a next step, we describe the graph-
ical specification of patterns and briefly outline how our matching algorithm realizes
relaxed subgraph isomorphism (Section 4). Section 5 presents a prototypical implemen-
tation of the model query approach using a meta-modeling tool. In Section 6, we evalu-
ate our solution by arguing for its utility in comparison to existing model analysis ap-
proaches. The paper concludes with a summary of its contribution, limitations and an
outlook to future research in Section 7.

2 Requirements of Pattern Matching in Conceptual Models

Several patterns that are relevant for model analysis purposes have been discussed in the
literature and stem from research fields already named in the introduction. In particular,
in order to identify model sections that match such patterns, a model query approach
should comply with the following requirements (for a detailed discussion related to these
requirements and an empirical derivation cf. [De14]):

• Requirement 1 (R1): The matching algorithm of the query approach should be able to
return model subgraphs that structurally exactly match a predefined pattern graph.
For example, this is needed to identify neighbored model elements, as it is necessary,
for instance, for syntax checking (e.g., if two nodes of different types are not allowed
to be connected by edges).

• Requirement 2 (R2): The matching algorithm of the query approach should be able to
return model elements that have a particular type like “BPMN task”, “EPC function”,
etc., whenever this is specified in the pattern. If such types are not specified, ele-
ments of any type should be returned. This is necessary for all of the business tasks
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outlined in Section 1. For instance, for compliance checking, we need to know if two
activities follow each other in a process model.

• Requirement 3 (R3): The matching algorithm of the approach should be able to re-
turn model elements that have a particular label like “Check invoice” whenever this
is specified in the pattern. If such labels are not specified, the algorithm should return
elements with any label. For instance, we need to be able to evaluate labels if we
search for weaknesses (e.g., a “print” activity followed by a “scan” activity).

• Requirement 4 (R4): The matching algorithm of the query approach should be able to
return model fragments containing a path of previously unknown length. This means
that it should be possible to specify a pattern that contains simple edges and edges
that are mapped to a path in the model. For example, compliance incorporates rules
that prescribe that before an activity is performed in a process, another one must have
been performed before, but it is not necessary that these both activities directly fol-
low each other. So, we must be able to check whether there is a path between them.

These requirements have been derived from the structure and the label semantics such
patterns typically have. In the following, we provide a brief example for each require-
ment. For a comprehensive list of patterns, we refer to the literature (e.g., [Bec10],
[Ga08], [ODA08], [Me08], [Be11], [ADW08], [Me07], [PGD12], [Ba05], and [De14]).
In addition to these requirements, we argue that a query language for conceptual models
should be applicable to not only process models, but also to any other type of conceptual
model like data models, organizational charts, ontologies, etc. It should furthermore not
be limited to analyzing models developed in a particular modeling language [Aa13].
Also, the approach should provide a graphical model editor (cf. [SA13] for an additional
discussion on the benefit of graphical pattern editors compared to text-based approach-
es). We therefore add two additional requirements as follows:

• Requirement 5 (R5): The query language should be applicable to conceptual models
of multiple types and languages.

• Requirement 6 (R6): The query language should provide a graphical pattern editor
that allows for modeling a pattern graph according to R1 to R5. This pattern graph is
then augmented to include modeling language-specific type and label information.

3 Formal Specification

In this section, we formalize the functional requirements identified above. To do so, we
first introduce the concepts of a conceptual model in terms of a graph and then proceed
with defining the problem of subgraph isomorphism (cf. R1). Finally, we note that sub-
graph isomorphism must be relaxed to account for the requirements we identified (cf.
R4). To account for the variety of conceptual modeling languages, we keep our defini-
tion of a conceptual model as abstract as possible. The goal is to ensure that the model
query language can be used flexibly, no matter what modeling language is used or in
which way a language was adapted (cf. R5). We assume that conceptual models consist
of nodes representing any domain object of interest, and of edges describing relation-
ships between them. Additional information regarding the nature of objects and relation-
ships are conceptualized as attributes annotated to nodes and edges (cf. R2, R3).
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Definition 1 (conceptual model): A conceptual model is a tuple M=(O,R,A,α), with O
being a non-empty set of objects (nodes) and R being a non-empty set of relationships
(edges). We write E=O∪R to denote the set of all model elements. R=RD∪RU consists of
directed and undirected relationships. As in many modeling languages, multiple relation-
ships are allowed between the same two nodes (like, e.g., hierarchy structures in ERMs),
we use multi-edges to define relationships as follows: RD⊆O×O×N is the set of directed
relationships between the objects of a conceptual model (i.e., directed edges of the model
graph). RU⊆{{ox,oy,n}│ox,oy∈O, n∈N, ox≠oy} is the set of undirected relationships be-
tween the objects of a conceptual model (i.e., undirected edges of the model graph). N is
the set of natural numbers used to number multi-edges. Numbering of multi-edges al-
ways starts at n=1 and increases by one for each additional edge. A is a non-empty-set of
attributes carrying all information that can be associated with elements of E. It can be
used, for example, to assign an element a type (e.g., a BPMN “task” or an EPC “func-
tion”, cf. R2) or a label (e.g., “receive goods” to describe an activity in a process, cf.
R3). In general, elements from A can be high-dimensional vectors of attributes assigned
to either objects or relations via the function α: EA.

As the goal of the model query language is to map elements of one conceptual model (a
pattern) to those of another one (the model), we must define which elements are compat-
ible with each other. Clearly, this depends on the context of application (cf. Section 2). It
may be a simple equality check of element types (cf. R2) or a full-fledged check apply-
ing similarity measures to textual descriptions (cf. R3). Again, to keep things general, we
define only an equivalence relation ~⊆A×A on attributes. As an example, this equiva-
lence relation could be implemented as a simple equality check on types. More compli-
cated equivalence relations taking into account multiple attribute dimensions and based
on, for instance, string similarity, linguistic [DHL09] or ontological [TF09] similarity
measures are easily conceivable.

We use the notation M'≤M to denote that M' is a model that can be obtained from M by
removing objects from O, relationships from R, and by reducing the domain of α accord-
ingly. Formally, this reduction can be described as O'⊆O, R'⊆R, and α'=α|E'. In terms of
graph theory, M' is called a subgraph of M and exactly matches a fragment of M. We
define a pattern query P as a model that is searched for in another one M (|OP|≤|OM| and
|RP|≤|RM|). Given a model graph M and a pattern graph P, P is isomorphic to a subgraph
M’≤M if there is a structure preserving one-to-one mapping ϕ between all elements of P
and all elements of M’ (cf. R1) satisfying the equivalence relation α(eP)~α(ϕ(eP)). The
following definition formalizes this subgraph isomorphism relation.

Definition 2 (subgraph isomorphism): Given a pattern graph P=(OP,RP,A,αP), a model
graph M=(OM,RM,A,αM), and an equivalence relation ~⊆A×A, P is subgraph-isomorphic
to M if and only if it exists an M’⊆M such that there exists a bijection ϕ: EPEM' satis-
fying the isomorphism condition:

(ox,oy,nP)∈RP⟺ (ϕ(ox),ϕ(oy),nM)∈RM'; {ox,oy,nP}∈RP⟺ {ϕ(ox),ϕ(oy),nM}∈RM';

α(oPj)~α(ϕ(oPj)), α(rPj)~α(ϕ(rPj)), nP,nM∈N
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To extend this definition towards relaxed subgraph isomorphism, we first have to intro-
duce the notion of a path. A path in a model graph M can be understood as a sequence of
objects <o1,…,on> such that (oi,oi+1,zi)∈R ∨ (oi+1,oi,zi)∈R ∨ {oi,oi+1,zi}∈R ∀ i∈{1..n-1},
zi∈N. We write paths(ox,oy) to denote the set of all paths between nodes ox and oy. Spe-
cial types of paths are those obeying certain constraints on the directions of their edges.
pathsd(ox,oy) shall denote the set of all directed paths from ox to oy, meaning all sequenc-
es of objects <ox,…,oy> such that (oi,oi+1,zi)∈R ∀ i∈{x..y-1}, zi∈N. Conversely,
pathsu(ox,oy) shall denote the set of all undirected paths between ox to oy, meaning all
sequences of objects <ox,…,oy> such that {oi,oi+1,zi}∈ R ∀ i∈{x..y-1}, zi∈N. Finally,
pathsa(ox,oy) shall denote the set of all paths between ox and oy, ignoring the direction of
the contained edges, that is, all sequences of objects <ox,…,oy> such that {oi,oi+1,zi}∈R ∨
(oi,oi+1,zi)∈R ∨ (oi+1,oi,zi)∈R ∀ i∈{x..y-1}, zi∈N.

Based on paths, we define the notion of relaxed subgraph isomorphism (cf. R4). In the
subgraph isomorphism definition, any pair of model nodes must be connected directly
via an edge (i.e., a path of length one) whenever the two pattern graph nodes that map on
them are connected by an edge. In the relaxed notion, these model graph nodes may be
connected via paths of any length. Effectively, edges in the pattern graph can be mapped
to paths instead of edges in the model graph, but only when this is explicitly specified in
the pattern. To choose for which pattern edges this generalization shall be used, and
which kind of path definition should be applied, we define a function p: RP {edge,
normalPath, mixedPath}. It indicates whether an edge of the pattern graph shall corre-
spond to an edge in the model graph (edge), a directed or undirected path (normalPath),
or any path regardless of the directions of its edges (mixedPath). The value must be
specified by the user for each pattern edge. In the following, we call edges of the pattern
to be mapped to paths in the model path-edges.

Definition 3 (relaxed subgraph isomorphism): Given a pattern graph P=(OP,RP,A,αP), a
model graph M=(OM,RM,A,αM), an equivalence relation ~⊆A×A, and a function p: RP
{edge, normalPath, mixedPath}, P is relaxedly subgraph-isomorphic to M if and only
if it exists an M’⊆M such that there exists a left-total relation ψ: EPP(EM') satisfying
the relaxed isomorphism condition:

(ox,oy,nP)∈RP∧ p((ox,oy,nP))=edge⟺ (ψ (ox),ψ(oy),nM)∈RM', α(oPj)~α(ψ(oPj)),
α(rPj)~α(ψ(rPj)), nP,nM∈N; {ox,oy,nP}∈RP ∧ p({ox,oy,nP})=edge⟺ {ψ(ox),ψ(oy),nM}∈RM',

α(oPj)~α(ψ(oPj)), α(rPj)~α(ψ(rPj)), nP,nM∈N; (ox,oy,nP)∈RP ∧ p((ox,oy,nP))=normalPath
⟺ |pathsd(ψ(ox),ψ(oy))|=max(nP), α(oPj)~α(ψ(oPj)), nP∈N; {ox,oy,nP}∈RP ∧

p({ox,oy,nP})=normalPath⟺ |pathsu(ψ(ox),ψ(oy))|=max(nP), α(oPj)~α(ψ(oPj)), nP∈N;
(ox,oy,nP)∈RP ∧ p((ox,oy,nP))=mixedPath⟺ |pathsa(ψ(ox),ψ(oy))|=max(nP),

α(oPj)~α(ψ(oPj)), nP∈N; {ox,oy,nP}∈RP ∧ p({ox,oy,nP})=mixedPath⟺
|pathsa(ψ(ox),ψ(oy))|=max(nP), α(oPj)~α(ψ(oPj)), nP∈N

The definition assures that, in one mapping, each node of the pattern is matched to exact-
ly one node in the model, every simple edge of the pattern is matched exactly to one
edge in the model, and every path-edge of the pattern is matched to exactly one path in
the model. Whenever two nodes of the pattern are connected by more than one (n) path-
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edge, the definition assures that these n path-edges are always mapped to n different
paths in the model (cf. the max(nP) condition).

4 The Query Language

Based on the definitions above, pattern matching always starts with the definition of a
pattern that should be searched for in conceptual models. To that end, we introduce the
syntax of a pattern query. A pattern query is essentially a graph consisting of nodes and
edges as described in Definition 1. To define a pattern query, we propose not to have it
specified formally, but have it drawn and transformed automatically into a formal repre-
sentation complying with the pattern definition afterwards. For example, consider the
pattern query shown in Figure 1. It represents a behavioral conflict in EPCs. In particu-
lar, when the triggering event fires, the succeeding AND connector may never fire when
the process instance was routed to the other path by the XOR connector [Me07].

Exemplary pattern
Node,

type unspecified

Node, type

specified by icon

Edge, undirected

Edge, directed

Path, undirected Path, directed

Path, arbitrary

direction of

contained edges

Figure 1: Pattern specification in the graphical concrete syntax

Nodes oP of such a visual pattern query are represented by circles and edges/paths rP by
lines. If a node is assigned a node type (e.g., “entity type”) as part of α(oP), we propose
to attach an icon according to the representation of a corresponding node type in a mod-
el. In the example, three nodes are typed, so they appear as a red hexagon, a circle con-
taining an “x” and a circle containing a “∧”, standing for “event”, “XOR connector”, and
“AND connector”. One node is not typed, so it can be mapped to any node of a model.
Labels as further parts of α(oP) should appear within the boundary of a node. Further
attributes of α(oP) should not appear as a visual part of the pattern query. In an imple-
mentation, they should be specified by opening a context menu. Pattern edges to be
mapped to edges in a model rP are represented by solid lines with one attached arrow if
they are directed. Pattern edges to be mapped to paths in a model rP are represented by
dashed lines with an arrow attached if they are directed. Without an arrow, they are undi-
rected. With arrows at both ends, they should be mapped to paths containing edges of
any direction. As we cannot identify the type of an edge only from its representation in
many modeling languages, we propose to attach the type of the edge – if specified –
textually. Any other attributes of α(rP) should be handled like those of α(oP).

5 Implementation

To demonstrate the feasibility of our model query language, we implemented it as a
plugin for a meta-modeling tool that was available from a previous research project.
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Being a meta-modeling tool, it allows for specifying modeling languages at runtime.
Conceptually, it is based on the idea that any modeling language essentially provides a
set of object types and relationship types. To create a model these types are instantiated
into concrete objects and relationships. The query language we propose is thus based on
the same constructs that are used on meta-level to define a modeling language. This is
why the query language is essentially modeling language-independent.

Figure 2: Pattern editor

The implementation of the query language includes a pattern editor as depicted in Figure
2. This editor allows for drawing a pattern graph complying with the Requirements R1 to
R5 derived above (R6). The analyst can specify a name for the pattern query and choose
the modeling language the pattern query is supposed to be valid for (R5). The type of a
node or edge can be customized according to the corresponding modeling language. The
plugin accesses the modeling language specification in order to get all type information
that is required during the matching process. The exemplary pattern query in Figure 2
matches the example in Figure 1.

After having specified a pattern query or choosing a previously specified one, the user
can specify which models should be analyzed. We implemented an algorithm that
matches the pattern to the models according to the formal definitions in Section 3. The
algorithm determines all pattern matches in all input models. The plugin returns a list of
models that contain pattern matches. By selecting an entry from this list, the model is
loaded in the modeling environment of the meta-modeling tool. All returned pattern
matches are highlighted in different colors to allow for retracing which pattern node was
mapped to which model node and which pattern edge was mapped to which model edge
or path (cf. Figure 3). In the example, a pattern match was found that contains a path
between the XOR split and the AND join. If a model contains more than one pattern
match, the user can browse through the matches, meaning that the highlighting of the
model changes to the corresponding places for every match.

To assure the applicability of the model query approach and its implementation, we
performed a preliminary runtime experiment, in which we searched for fourteen specific
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patterns. Seven of these patterns were EPC patterns, and seven were ERM patterns. We
applied them to 53 EPCs (sizes from 15 to 294 elements) and 42 ERMs (sizes from 16 to
97 elements) coming from the retail industry (for details on the models and patterns,
please see [De14], where we used the same patterns and models to test another query
language). We conducted the performance evaluation on an Intel® Core™ 2 Duo CPU
E8400 3.0 GHZ with 4 GB RAM and Windows 7 (62-Bit edition). We disabled the en-
ergy saving settings in Windows and executed the application as a 32-bit real-time pro-
cess to avoid any unnecessary hardware slow down or process switching. As a result, we
observed runtimes for searching one pattern in one model ranging from fractions of a
millisecond to just under five seconds. In more than 90% of the pattern matching cases,
results could be obtained in less than 100 milliseconds for ERMs (in less than 10 milli-
seconds for EPCs). Note that the (few) long runtimes were due to path searches with
most of the restrictions like type, label etc. turned off. For instance, one ERM search that
took 2130 milliseconds returned 22856 matches. Hence, we evaluate the overall perfor-
mance of the approach satisfactory.

Figure 3: Pattern match visualization

6 Related Work

Table contains a detailed comparison of our work to other model query languages pro-
posed in the literature. We draw on the requirements for a graph-based model query
language presented in Section 2 to compare our work with existing approaches. A query
language thus has to be able to find arbitrary isomorphic substructures in a model graph
(R1), consider type (R2) and (R3) label information in its matching process and find
paths of arbitrary length (R4). A query language should furthermore support querying
conceptual models of any type or graph-based modeling language (R5) and provide a
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graphical pattern editor (R6). The table contains a “+” if the query language fulfills a
given requirement and a “-“ otherwise. The table contains a “0” if the given requirement
is only partly fulfilled (see details below).

Three classes of query languages can be distinguished. The first class contains all pro-
cess model query languages. aFSA [MW06], APQL [So11], BeehiveZ [Ji10], BPMN
VQL [FT09], BPMN-Q [Aw07], BPQL [MS04], BP-QL [Be08], IPM-PQL [CKJ07],

PPSL [Fö07] and an approach based on indexing and untanglings [PRH14] belong to
this class. These query languages can only be applied to process models. Some of these
languages were designed to query models of a particular process modeling language.
BPMN-Q [Aw07] is a prominent example. Other authors define a new process modeling
language and propose a query approach for this language (cf. BPQL and BP-QL). The
second class of query languages contains those approaches that are specific to UML

models. EMF-IncQuery [Ber10] and OCL [OCL13] fall into this category. As with pro-

cess model query languages, these approaches are thus designed to query models of a

particular type or modeling languages. Pattern queries are created by means of a declara-

tive programming language. The third class contains general graph query languages.

SPARQL [W3C13] as well as the Neo4j query language Cypher [Ne13] are prominent

examples that fall into this category. They provide functionality that is similar to the
feature set of our query language. These approaches are essentially declarative pro-
gramming languages. A graphical pattern editor is not provided.

Query Language / Requirement R1 R2 R3 R4 R5 R6

aFSA + + + - - +

APQL + + + + - -

BeehiveZ + + + - - +

BPMN VQL + + + + - +

BPMN-Q + + + + - +

BPQL + + + - - -

BP-QL + + + + - +

Cypher (Neo4j) + + + + + -

EMF-IncQuery + + + + - -

IPM-PQL + + + + - -

OCL + + + - - -

PPSL + + + + - +

SPARQL + + + + + -

Untanglings - 0 + + 0 -

VMQL + + + + 0 0

Our work + + + + + +

Table 1: Comparison of our work to other model query languages

VMQL [St11] is a visual model query language providing functionality that is similar to
that of our approach. The language is also intended to be applicable on models devel-

oped in any modeling language. However, this has been demonstrated for UML as well

as BPMN models only (i.e., R5=“0”) [SA13]. Extending VMQL to additional modeling
languages however requires developing a new pattern editor that provides the element

types of that particular modeling language (i.e., R6=“0”).
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7 Contributions, limitations, and outlook

The purpose of this paper was to introduce a query language for conceptual models that
is applicable to models of any type or modeling language. Our work can furthermore
support multiple business objectives of analyzing models and is thus expected to be
broadly applicable. Hence, the contribution of the paper can be summarized as follows:

• The query language we propose includes a matching algorithm that is based on a new
kind of graph search problem called relaxed subgraph isomorphism, which is par-
ticularly related to the analysis of conceptual models. Therefore, we contribute to al-
gorithmic graph theory by introducing a new class of graph search problem. With our
work, we expect to trigger further research on this problem from a graph theoretical
perspective. For instance, novel efficiency-enhanced algorithms would contribute
both to graph theory and – in turn – to conceptual model analysis.

• In practice, only few multi-purpose and language-independent model query lan-
guages exist up to now. With our work we hence contribute to a variety of different
model analysis objectives requiring pattern matching. Furthermore, our approach can
be used on models of any graph-based modeling language. Therefore, we expect
wide-spread application, as model analysis and model analysts are no longer restrict-
ed to particular modeling languages or few analysis objectives.

• Another important characteristic of our work is its graphical pattern editor easing the
usage of the query language.

However, our work reveals some limitations resulting from its broad applicability:

• Defining pattern queries for a particular application scenario is the responsibility of
an analyst. Furthermore, a pattern query has to be defined according to the modeling
languages of the models to be analyzed. Naturally, although searching for ERM pat-
terns in EPCs is possible using our query language, it will not return any results.

• Another restriction of our query language also results from its applicability to multi-
ple modeling languages. It is by design not able to analyze special characteristics of
special model types, for instance execution semantics of process models.

• Our approach has not yet been subject to a comprehensive utility evaluation. Despite
this, we expect analysts to appreciate it, as related works have already proven to be
highly relevant for model analysis purposes [Be11]. Moreover, due to the possibility
to specify patterns graphically, we expect an even higher utility of our approach.
Comprehensive utility evaluations are subject of short-term research. In particular,
we plan to apply our work in financial institutions to check model repositories con-
taining integrated business process models, data models and organizational charts for
regulatory compliance violations and weaknesses. This will furthermore carve out
additional functional requirements that have to be included in the query language.

Although we already conducted performance experiments suggesting satisfactory
runtime of the query approach (not included in this paper), medium-term research will
focus on performing additional runtime experiments on extremely large models with the
aim of further increasing execution speed and applying the algorithm to further model
analysis scenarios in practice. At the moment, we investigate graph-theoretical structural
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characteristics of conceptual models that can speed up pattern matching. In particular,
we expect bounded treewidth and planarity of conceptual model graphs to be very prom-
ising characteristics to increase matching performance significantly.
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