Sicherheit 2006 - "Sicherheit - Schutz und Zuverldssigkeit"

Experimental results on algebraic attacks on stream ciphers

Frederik Armknecht* Jorg Brandeis® Egor Ilinykh?
Universitit Mannheim

Abstract: Stream ciphers are designed for fast encryption of data of arbitrary length,
for example between mobile phones and base stations. Widely used in practice are
keystream generators based on linear feedback shift registers (LFSRs). One prominent
example is the Fy generator from the Bluetooth standard for wireless communication.

Algebraic attacks on LFSR-based keystream generators have gained more and
more attention in cryptography in the recent years. With these attacks, the secret key is
recovered by finding and solving a (possibly large) system of equations. A remarkable
fact about algebraic attacks is that the time effort is in the best case only polynomial
in the key size.

In this paper, we briefly sketch algebraic attacks and present some experimental
results on algebraic attacks on reduced versions of Ejy.

Keywords: Keystream generators, Ey, LFSR, algebraic attacks

1 Introduction

Today, electronic communication plays a more and more important role in everybody’s
life, invoking an increasing demand for confidentiality. Widely used are keystream gen-
erators which produce bitstreams z := 2z, 29, ... of arbitrary length in dependence on
a (secret) initial value K € {0,1}". The sender encrypts a stream of plaintext bits
p = p1,P2,... to a stream of ciphertext bits ¢ := ¢y, ¢a,... by XOR-ing p and z com-
ponentwise, i.e., ¢; := py & 2z;. A receiver who uses the same secret key K can produce
z by himself and decrypt ¢; by p, = ¢; @ z;. Following Kerckhoff’s principle, it is as-
sumed that an adversary knows the specification of the keystream generator and some of
the keystream bits z;, whereas K is secret to him. Consequently, an attack consists of
recovering the secret key K.

2 Algebraic attacks on keystream generators

Due to their efficiency in hardware, keystream generators based on LFSR are widely used
in practice. An LFSR is a finite state machine with a linear state transition function which

*armknecht@th.informatik.uni-mannheim.de
Tjoerg.brandeis@zetvisions.com
igroebnerbases@gmail.com

279

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

outputs one bit of its internal state at each clock. In this paper, we consider the class of
combiners with memory, which includes the Ej keystream generator. A combiner with
memory consists of one or several LFSRs and some memory bits. For example, Fy uses
four LFSRs of lengths 25, 31, 33 and 39 and four memory bits. Before keystream gen-
eration, the LFSRs and memory bits are initialized to K’ and M, respectively. At each
clock ¢, some bits X; € {0,1}* are extracted from the LFSRs by L;(K') where L; is
a linear function. The keystream bit z; is computed by f(M;, X;). Finally, the LFSRs
are updated according to their state transition functions and the memory bits changed to
Mt+1 = 6(Mt, Xt)

The security analysis is based on the assumption that an adversary knows the specifica-
tions of the keystream generators, particularly the definitions of L;, f and §. Further on, it
is assumed that he is able to figure out the values of some keystream bits z;. A straightfor-
ward approach, called brute force, is to compute keystreams for all possible values of K’
and M and then compare them to the observed data.

Algebraic attacks on memoryless LFSR-based keystream generators have been introduced
in [2] and later been extended to combiners with memory in [1]. The first step consists
of describing K’ by a system of equations.! This can be done by using a (preferably
low-degree) function F such that the following holds:

F(Lt(K/),,Lf+T(K,)7Zf‘7Zf+T):0 Vit (l)

Whereas solving systems of linear equations is feasible using Gaussian elimination, it
poses an NP-hard problem in the case of non-linear equations. One of the best studied
algorithm so far is based on computing Grobner bases. Unfortunately, it is still not possible
to predict the time effort of the algorithm for a given system of equations, which in the
worst case can be exponential in |K”’|. Unfortunately, the performance of a Grébner bases
approach might heavily depend on the arrangement of the equations what makes a general
rigid analysis impossible. Albeit simulations indicate that the time effort decreases with
increasing number of equations (see [4]).

In the case of equations as displayed in (1), one can make use of the fact that the degree
is less than or equal to the degree of F' for all clocks ¢. Thus, the number of monomials
occurring in the system of equations cannot exceed the value m := (‘Igl) +...+ (dt‘ag((/ll:‘))'
In the case that the number of known keystream bits (and thus the number of equations)
is at least m, linearization [5] is the first choice. The idea is to substitute each occurring
monomial by a new variable, thereby getting a linear system which is easily solvable
by Gaussian elimination. In the best case, i.e., enough keystream bits are known to the
adversary, the time effort is in O (| K'|*"4¢¢()) with w < 3.

ISince in general, only few memory bits are used, it suffices to recover the value of K. Once this is done,
the value of the memory bits can be easily computed.

280

Sicherheit 2006 - "Sicherheit - Schutz und Zuverldssigkeit"

Table 1: Experimental results on different attacks on Ey with reduced key sizes

|K|

Brute force Linearization H Grobner bases

Time |Memory|Data|| Time Memory Data Time Memory |Data

16 11s [3.IMB]| 40 || <Im | <6.04MB | <213 2m2s 65.49 MB | 350

17 32s [31MB| 42 || <Im | <985MB [<2T5[17m42s| 180.08 MB | 350

18 46s [3.1MB| 44 || <1Im | <15.63MB | < 2'19%8[[30m 23 5| 303.37 MB | 350

19 [Im28s [3.1MB | 46 || <1m | <24.19MB | <223 | 1h12m | 460.27 MB | 350

20 [[3m44s [3.1MB | 48 || <1Im | <36.61 MB | <226 2h3Im | 696.63 MB | 350

22 {[18m 13s| 3.1 MB | 52 52s <79.13MB | < 253-15[114 h 14m| 2150.33 MB | 400

23 [20m 33s[3.1 MB | 54 || Im9s [<113.37 MB|< 25341 > 24h |>3060.92 MB | 500

24 [1h12m | 3.1MB | 56 || 2m2s |<159.96 MB|< 21360(- -

25 2h |3.1MB] 58 || 3m |<22255MB]| <27 - .

26 | 4h22m | 3.1MB | 60 | 4m 38s |<305.64 MB|< 21713[[- :

27 - - - || 6m36s | <414.74 MB| < 21435 - -
28 - - - [9m21s | <556.57 MB| < 21456 - -
29 - - - | 16m 6s [<739.21 MB| < 21476 - -
30 - - - [[20m 51s]<972.36 MB | < 21496 - -

3 Experimental results

In this section, we present some experimental results on algebraic attacks on reduced ver-
sions of Ejy. Instead of using the original LFSRs, shorter LFSRs were used such that
|K’| < 128. Hereby, the function F' of degree 4, derived in [1] for the original F, was
used for all test cases. We tested three different kinds of attacks: brute force, algebraic
attacks using the linearization method and using the Grobner bases method. In the first
case, all possible values of K’ were tried until the correct one was found. In the second
case, we produced keystream bits and created the according equations until the system of
equations could be solved by linearization. In the third case, we limited the number of
known keystream bits and tried to solve it with an implementation of the Grobner bases
algorithm F4 (see [3]). The results are displayed in table 1. The time effort is given in
minutes and seconds, the memory consumption in Megabytes and data is the number of
keystream bits assumed to be known.

The results are not directly comparable. The linearization method and the Grobner bases
algorithm have been written in Java, the brute force attack simulated in Magma. Brute
force and Grobner bases have both been simulated on the same computer, a Pentium 4 with
3.5 GHz and 3 Gigabytes RAM. The linearization attack has been simulated on a Pentium
4-M with 1.8 GHz and 512 Megabytes RAM. Since the amount of data and memory has
not been recorded during the simulations on linearization, we provide some upper bounds
instead. To compute the Grobner bases, we used the F4 algorithm [3] together with the
Becker-Weispfenning-criterion.

281

3. Jahrestagung Fachbereich Sicherheit der Gesellschaft fiir Informatik

Nevertheless, the simulation results give some clues about the attacks behaviour in respect
to the key size. As expected, the linearization method is the most successful, outperform-
ing the two other attacks by far. It was possible to derive the secret value K’ for |K'| < 30
within a reasonable amount of time of several minutes. Indeed, instances with key sizes
of 34 and higher were intractable due to memory shortness. Further on, the knowledge of
several kilobytes of keystream has to be required, a rather unrealistic assumption.

In this regard, Grobner bases are much more realistic. It was possible to find the value of
K’ even if only the moderate amount of 350 keystream bits is known. Indeed, we found
out that the attack is only feasible if the amount of data is significantly larger than |K|.
Even worse, our naive brute force attack implementation proved to be faster and required
less data and memory. However, this may be different for larger key sizes.

Another problem are the memory requirements. Since the memory is mainly used to
store sparse matrices, this bound may be pushed further by developing appropriate data
structures and algorithms. Nevertheless, the experiments indicate that memory is again
the bottle neck of this attack.

4 Conclusion

In this paper, we presented simulation results on different types of algebraic attacks and a
simple brute force attack on versions of Ey with reduced key sizes. As expected, a practical
attack on the original E) is still out of scope on nowadays’ computers. Further on, it turned
out that memory is the bottle neck of algebraic attacks. Hence, further research could
consist in trying to combine the methods from algebraic attacks with guess-and-determine
attacks where part of K’ is guessed.

References

[1] Frederik Armknecht, Matthias Krause: Algebraic attacks on Combiners with Memory, Proceed-
ings of Crypto 2003, LNCS 2729, pp. 162-176, Springer, 2003.

[2] Nicolas Courtois, Willi Meier: Algebraic attacks on Stream Ciphers with Linear Feedback,
Proceedings of Eurocrypt 2003, LNCS 2656, pp. 345-359, Springer, 2003. An extended version
is available at http://www.cryptosystem.net/stream/

[3] Jean-Charles Faugere: A new efficient algorithm for computing Grébner bases (F}), Journal of
Pure and Applied Algebra 139, 1-3 (1999), 61-68.

[4] Jean-Charles Faugere, Gwénolé Ars: An algebraic cryptanalysis of nonlinear filter generators
using Grobner bases, 2003. Available at http://www.inria.fr/rrrt/rr-4739.html.

[5] Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov: Efficient Algorithms for

Solving Overdefined Systems of Multivariate Polynomial Equations, Proceedings of Eurocrypt
’00, Springer LNCS 1807, pp. 392-407.

282

