

Birgitta König-Ries, Stefanie Scherzinger,

Wolfgang Lehner, Gottfried Vossen

(Hrsg.)

Datenbanksysteme für

Business, Technologie und Web

(BTW 2023)

06. – 10. März 2023

in Dresden, Deutschland

Gesellschaft für Informatik e.V. (GI)

Lecture Notes in Informatics (LNI) - Proceedings

Series of the Gesellschaft für Informatik (GI)

Volume P-331

ISBN 978-3-88579-725-8

ISSN 1617-5468

Volume Editors

Prof. Dr. Birgitta König-Ries

 Friedrich-Schiller-Universität Jena

 Lehrstuhl für verteilte Informationssysteme

 Leutragraben 1, 07743 Jena, Germany

 Email: birgitta.koenig-ries@uni-jena.de

Prof. Dr. Stefanie Scherzinger

 Universität Passau

 Lehrstuhl für Informatik mit Schwerpunkt Skalierbare Datenbanksysteme

 Innstraße 43, 94032 Passau, Germany

 Email: stefanie.scherzinger@uni-passau.de

Prof. Dr.-Ing. Wolfgang Lehner

 Technische Universität Dresden

 Lehrstuhl für Datenbanken

 Nöthnitzer Straße 46, 01187 Dresden, Germany

 Email: wolfgang.lehner@tu-dresden.de

Prof. Dr. Gottfried Vossen

 Universität Münster

 European Research Center for Information Systems (ERCIS)

 Leonardo-Campus 3, 48149 Münster, Germany

 Email: vossen@uni-muenster.de

Series Editorial Board

Andreas Oberweis, KIT Karlsruhe,

(Chairman, andreas.oberweis@kit.edu)

Torsten Brinda, Universität Duisburg-Essen, Germany

Dieter Fellner, Technische Universität Darmstadt, Germany

Ulrich Flegel, Infineon, Germany

Ulrich Frank, Universität Duisburg-Essen, Germany

Michael Goedicke, Universität Duisburg-Essen, Germany

Ralf Hofestädt, Universität Bielefeld, Germany

Wolfgang Karl, KIT Karlsruhe, Germany

Michael Koch, Universität der Bundeswehr München, Germany

Peter Sanders, Karlsruher Institut für Technologie (KIT), Germany

Andreas Thor, HTWK Leipzig, Germany

Ingo Timm, Universität Trier, Germany

Karin Vosseberg, Hochschule Bremerhaven, Germany

Maria Wimmer, Universität Koblenz-Landau, Germany

Dissertations

Rüdiger Reischuk, Universität Lübeck, Germany

Thematics

Agnes Koschmider, Universität Kiel, Germany

Seminars

Judith Michael, RWTH Aachen, Germany

 Gesellschaft für Informatik, Bonn 2023

printed by Köllen Druck+Verlag GmbH, Bonn

This book is licensed under a Creative Commons BY-SA 4.0 licence.

Vorwort

Die 20. Fachtagung “Datenbanksysteme für Business, Technologie und Web” (BTW‘23)

des Fachbereichs “Datenbanken und Informationssysteme” (DBIS) der Gesellschaft für

Informatik (GI) findet vom 6. bis 10. März 2023 an der Technischen Universität Dresden

statt (https://btw2023-dresden.de). Die BTW‘23 sticht dabei nicht nur durch das Jubiläum

hervor – seit 40 Jahren wird sie alle zwei Jahre an einem anderen Standort veranstaltet und

findet somit in diesem Jahr zum 20. Mal statt – sondern sie ist nach der Corona-Pandemie

eine der ersten Möglichkeiten der Datenbank-Community in Deutschland und den Nach-

barländern, sich wieder in Präsenz zu treffen und fachlich auszutauschen. Organisiert wird

sie von der Database Research Group der TU Dresden (https://wwwdb.inf.tu-dresden.de/),

die soeben ihr 20-jähriges Bestehen beging. Auch die BTW‘21 wurde vom Team der TU

Dresden organisiert, musste jedoch pandemiebedingt in den virtuellen Raum verlegt wer-

den. Im Rahmen einer wöchentlichen Lecture Series fand das wissenschaftliche Pro-

gramm einschließlich der geplanten Keynotes während des Sommersemesters 2021 gro-

ßen Zuspruch. Umso mehr freuen wir uns auf die 20. Ausgabe der BTW – nach 1995 –

zum zweiten Mal vor Ort in der sächsischen Landeshauptstadt Dresden.

Der Großraum Dresden, bekannt für die Vielzahl touristischer Highlights, hat sich mitt-

lerweile zu einem weltweit sichtbaren Standort der High-Tech Industrie entwickelt. Neben

der Halbleiterindustrie hat sich in den letzten Jahren eine junge und extrem erfolgreiche

Software-Szene etabliert, die das gesamte Portfolio von Embedded Systems (als logische

Ergänzung der klassischen hardware-orientierten Industrie) bis hin zu KI-Lösungen um-

fasst. Neue Forschungsinstitute interagieren im Umfeld einer agilen Gründerszene. „Data

as the new oil“ ist in diesem Kontext von zentralem Interesse für die Wissenschaft und

Wirtschaft. Entsprechend zeugt die BTW-Schirmherrschaft des Ministerpräsidenten des

Freistaates Sachsen, Herrn Michael Kretschmer, von großem Interesse und umfangreicher

Unterstützung seitens der Politik.

Die BTW als Treffpunkt für die deutschsprachige Datenbank-Community hat von Anfang

an Internationalität gelebt. Mittlerweile sind internationale Teilnehmende, ausschließlich

englische Tagungsbeiträge, sowie Englisch als die Vortragssprache zur Normalität gewor-

den. Auch das Spektrum der Beiträge hat sich kontinuierlich verändert. Das wissenschaft-

liche Kernprogramm wird ergänzt durch ein Demonstrationsprogramm und ein Studieren-

denprogramm, letzteres wurde erstmals auch zentral in das Hauptprogramm integriert. Die

Data Science Challenge, vier Workshops, zwei Tutorials und ein eigener Industrietag

(„Dresden Data Day“), welcher neben Vorträgen von „Big Playern“ auch die regionale

IT-Industrie involviert, komplettieren das Programm der BTW‘23.

Einreichungen zum wissenschaftlichen Hauptprogramm konnten einem oder mehreren

von vier Tracks, die die fachliche Breite der Datenbank-Community konsequent abde-

cken, zugeordnet werden: „Database Technologies and Systems“, „Text, Semi-structured

Data and IR“, „Data Engineering, Data Science and Machine Learning“ sowie „Database

Languages and Theory“. Bewusst wurden Beiträge aus der Praxis in die einzelnen Tracks

mit einbezogen. Die hohe Zahl von Einreichungen, bei denen mehr als ein Track angege-

ben wurde, spiegelt die engen Querbezüge zwischen unterschiedlichen Schwerpunkten der

Datenbankforschung wider.

Aus insgesamt 60 Einreichungen wurden 19 reguläre Beiträge sowie 12 Kurzbeiträge zur

Präsentation angenommen. Der eigens organisierte Review-Prozess mit einer zusätzlichen

Feedback- und Revision-Phase und das hohe Engagement der PC-Mitglieder schufen hier-

bei beste Voraussetzungen für diese qualitativ hochwertigen Beiträge für das Tagungspro-

gramm.

Zum zweiten Mal wurde im Begutachtungsprozess besonderes Augenmerk auf die Repro-

duzierbarkeit wissenschaftlicher Artefakte, also von Experimenten und Analysen gelegt.

Autorinnen und Autoren der akzeptierten Beiträge konnten ihre Arbeiten einem entspre-

chenden Verfahren unterziehen lassen. Die Beiträge, die dies erfolgreich durchlaufen ha-

ben, sind im vorliegenden Tagungsband entsprechend gekennzeichnet.

Als wissenschaftliche Keynote-Speaker konnten zwei herausragende Persönlichkeiten der

internationalen Datenbank-Forschung gewonnen werden: Sihem Amer-Yahia, CNRS Re-

search Director Laboratoire d'Informatique de Grenoble/Frankreich mit einem Vortrag

zum Thema „Commodifying Data Exploration“ sowie Andy Pavlo, Carnegie Mellon Uni-

versity/USA mit seinen Ausführungen über „Why Machine Learning for Automatically

Optimizing Databases Doesn‘t Work“.

Die „Fresh Thinking Talks“ – erstmals bei der virtuell durchgeführten BTW‘21 eingeführt

– setzen innovative Impulse. Meike Klettke, Universität Regensburg spricht zum Thema

“Between Data Lakes and Research Data Management – Data Engineering Tasks for the

Next Decade”. Der Beitrag von Wolfram Wingerath, Universität Oldenburg steht unter

dem Motto „What You Say is What You Get: Hands-Free Coding in 2023”.

Ergänzt wird das wissenschaftliche BTW-Programm durch im Vorfeld stattfindende

Workshops, in denen aktuelle Trends aufgegriffen werden und im kleinen Rahmen anhand

von Impulsvorträgen diskutiert werden. Diese Beiträge sind auch in diesem Tagungsband

enthalten:

 Workshop on Novel Data Management Ideas on Heterogeneous Hardware Ar-

chitectures (NoDMC)

 Workshop on Big (and Small) Data in Science and Humanities (BigDS2023)

 Workshop on Data Engineering for Data Science (DE4DS)

 A Tutorial Workshop on ML for Systems and Systems for ML

Zwei Tutorials, die jeweils parallel zum wissenschaftlichen Programm abgehalten werden,

ergänzen das Programmportfolio der BTW‘23. Mit dem Tutorial “From BERT to GPT-3

Codex: Harnessing the Potential of Very Large Language Models for Data Management”

adressiert Immanuel Trummer, Cornell University/USA einen extrem spannenden und für

die Rolle von Datenmanagement in modernen Anwendungsszenarien überaus relevanten

Themenkomplex. Auf der Systemebene wird das Tutorienprogramm durch ein von Al-

berto Lerner, University of Fribourg/Schweiz und Philippe Bonnet, ITU University of Co-

penhagen/Dänemark gemeinsam angebotenes Tutorial zum Thema „The Principles of

Database and SSDs Co-Design” getragen.

Das Demo-Programm bietet die Möglichkeit, praktische Ergebnisse der Forschung im Be-

reich der Datenbank- und Informationssystemtechnologien auf interaktive Weise vorzu-

stellen. Von den 11 Einreichungen wurden sechs Beiträge akzeptiert, die während der

Konferenz präsentiert werden und deren Beschreibungen in diesem Tagungsband veröf-

fentlicht sind.

Die Förderung des wissenschaftlichen Nachwuchses ist ein zentrales Anliegen das Fach-

bereichs DBIS. Das Studierendenprogramm der BTW ermöglicht Studierenden und ange-

henden Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern, ihre Arbeiten

einem Fachpublikum vorzustellen, das Fachgebiet "Datenbanken und Informationssys-

teme" kennenzulernen und sich mit Fachleuten und Gleichgesinnten aus Wissenschaft und

Praxis auszutauschen und zu vernetzen. Erstmals wird bei der BTW23 das Studierenden-

programm in das Hauptprogramm integriert: so haben die Studierenden freien Zugang zu

allen Programm-Elementen der BTW, können ihre Arbeiten in den Poster-Sessions prä-

sentieren und erhalten ein gezieltes Mentoring durch wissenschaftliche Persönlichkeiten

der Datenbank-Community. Selbstverständlich werden die qualitätsgesicherten Beiträge

des Studierendenprogramms auch in diesem vorliegenden Tagungsband veröffentlicht.

Zum 12. Mal werden bei der BTW mit dem Dissertationspreis des GI-Fachbereichs DBIS

hervorragende Dissertationen aus dem Gebiet der Konzepte, Verfahren, Erweiterungen

und Anwendungen von Datenmanagement- und Informationssystemen gewürdigt. Aus

den insgesamt zwölf Einreichungen wurden zwei Arbeiten ausgezeichnet und Kurzfassun-

gen in diesem Tagungsband veröffentlicht: „Adaptive Architectures for Robust Database

Management Systems“, Dissertationsschrift von Tiemo Bang an der TU Darmstadt und

„Enhancing Explainability and „Scrutability of Recommender Systems” Dissertations-

schrift von Azin Ghazimatin an der Universität des Saarlands.

Neben dem Dissertationspreis werden weitere Awards im Rahmen der BTW‘23 verliehen:

Mit dem „Best Long Paper Award“ für den besten wissenschaftlichen Beitrag wird die

Arbeit mit dem Titel „WannaDB: Ad-hoc SQL Queries over Text Collections” von Ben-

jamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban und Carsten Binnig

ausgezeichnet. Mit dem „Best Short Paper Award“ für den besten wissenschaftlichen

Kurzbeitrag wird die Arbeit zum Thema „NN2SQL: Let SQL Think for Neural Networks”

von Maximilian Emanuel Schüle, Alfons Kemper und Thomas Neumann ausgezeichnet.

Des Weiteren wird ein „Best Demo Award“ für die innovativste Demo vergeben.

Im Rahmen der Data Science Challenge haben sich vier teilnehmende Gruppen der Her-

ausforderung der Lösung konkreter datenzentrischer Anwendungsproblemen gestellt.

Thema der im Rahmen der BTW‘23 stattfindenden Data Science Challenge sind städtische

Verkehrs- und Fahrraddaten und die Entwicklung innovativer Konzepte für die Verkehrs-

wende von morgen.

Erstmalig auf der BTW‘23 wurde das Industrieprogramm ausgegliedert und zu einem ei-

genständigen „Industrietag“ erweitert (http://dresden-data-day.de/). So steht der Freitag

als abschließender Konferenztag im Zeichen der Vernetzung mit der Praxis durch eine

Keynote von Stefan Bäuerle (SAP SE) zum Thema „Enabling Enterprise Data Applica-

tions with SAP HANA Cloud”, Sessions mit eingeladenen Vorträgen der regionalen und

überregionalen Industrie sowie Break-Out Sessions. Als Co-Organisator konnte hierfür

der Silicon Saxony e.V., die Digitalagentur Sachsen sowie als idealer Gastgeber die Säch-

sische Aufbaubank SAB als Partner für die BTW‘23 gewonnen werden.

Ein ganz besonderer Dank geht natürlich an die Vielzahl der Sponsoren, ohne deren En-

gagement die Durchführung einer BTW nicht möglich wäre. Auch gilt ein großer Dank

der GI-Geschäftsstelle für die umfangreiche Unterstützung in der finanziellen Abwicklung

der Tagung.

Vielen Dank an alle Beteiligten für das große Engagement!

Dresden, im Februar 2023

Sponsoren

Wir danken den folgenden Unternehmen für die Unterstützung der Konferenz.

Platinum

Gold

Silber

Bronze

Tagungsleitung / General Chair

Wolfgang Lehner, TU Dresden

Organisationsteam der BTW‘23

Ulrike Schöbel, TU Dresden

Dirk Habich, TU Dresden

Maik Thiele, HTW Dresden

Ehrenvorsitzender und Organisation Dissertationspreis

Gottfried Vossen, Universität Münster

PC Chairs

Birgitta König-Ries, Universität Jena

Stefanie Scherzinger, Universität Passau

Track Chairs

Meike Klettke, Universität Regensburg

Viktor Leis, TU München

Wim Martens, Universität Bayreuth

Philipp Schaer, TH Köln

Gutachterinnen und Gutachter wissenschaftliches Hauptprogramm

Christian Beecks, Fernuniversität in Hagen

Klaus Berberich, HTW Saarland

Christoph Berkholz, HU Berlin

Carsten Binnig, TU Darmstadt

Alexander Bondarenko, Universität Jena

Timo Breuer, TH Köln

Leyla Jael Castro, ZB MED

Jens Dittrich, Universität des Saarlandes

Michael Elberfeld, THM Gießen

George Fletcher, TU Eindhoven

Dominik Freydenberger, Loughborough University

Rainer Gemulla, Universität Mannheim

Michael Gertz, Universität Heidelberg

Anika Groß, Hochschule Anhalt

Torsten Grust, Universität Tübingen

Claudia Hauff, TU Delft

Gernot Heisenberg, TH Köln

Andreas Henrich, Universität Bamberg

Katja Hose, Aalborg University

Alfons Kemper, TU München

Dagmar Kern, GESIS

Udo Kruschwitz, Universität Regensburg

Ulf Leser, HU Berlin

Thomas Mandl, Universität Hildesheim

Norman May, SAP

Philipp Mayr-Schlegel, GESIS

Stefan Mengel, CNRS

Jelena Mitrovic, Universität Passau

Ingo Müller, Google Zürich

Felix Naumann, Hasso Plattner Institut Potsdam

Thomas Neumann, TU München

Daniela Nicklas, Universität Bamberg

Thorsten Papenbrock, Philipps-Universität Marburg

Gunter Saake, Universität Magdeburg

Ralf Schenkel, Universität Trier

Felix Schuhknecht, Universität Mainz

Maximilian E. Schüle, Universität Bamberg

Bernhard Seeger, Philipps-Universität Marburg

Thomas Seidl, LMU München

Christin Seifert, Universität Duisburg-Essen

Günther Specht, Universität Innsbruck

Knut Stolze, IBM

Uta Störl, Fernuniversität in Hagen

Andreas Thor, HTWK Leipzig

Nils Vortmeier, Universität Zürich

Lena Wiese, Goethe-Universität Frankfurt

Wolfram Wingerath, Universität Oldenburg

Tobias Ziegler, TU Darmstadt

Demo Program

Vorsitz: Tilmann Rabl, Hasso Plattner Institut Potsdam

David Broneske, Deutsches Zentrum für Hochschul- und Wissenschaftsforschung

GmbH

Hazar Harmouch, Hasso Plattner Institut Potsdam

Alexander Krause, TU Dresden

Ruben Mayer, TU München

Ingo Müller, Google Zurich

Eleni Tzirita Zacharatou, IT University Copenhagen

Workshops and Tutorials

Vorsitz: Carsten Binnig, TU Darmstadt

Studierendenprogramm

Vorsitz: Rainer Gemulla, Universität Mannheim

Harald Kosch, Universität Passau

Sebastian Michel, TU Kaiserlautern

Thomas Rakow, Hochschule Düsseldorf

Eike Schallehn, Universität Magdeburg

Uta Störl, Fernuniversität in Hagen

Jens Teubner, TU Dortmund

Andreas Thor, HTWK Leipzig

Reproducibility Committee:

Vorsitz: Ziawasch Abedjan, Leibniz Universität Hannover

 Sheeba Samuel, Universität Jena

Matthias Böhm, TU Berlin

Paul Blockhaus, Otto-von-Guericke-Universität Magdeburg

Pascal Hirmer, Universität Stuttgart

Peter Reimann, Universität Stuttgart

Felix Schuhknecht, Universität Mainz

Mohammed Sedir, Hasso Plattner Institut Potsdam

Christoph Stach, Universität Stuttgart

Ahmed Waqas, Friedrich-Schiller-Universität Jena

Proceedings Chair

Alexander Krause, TU Dresden

Data Science Challenge

Eric Peukert, Universität Leipzig

Contents

Scientific Program

Session 1

Goetz Graefe
Priority queues for database query processing 27

Ben Hurdelhey, Marcel Weisgut, Martin Boissier
Workload-Driven Data Placement for Tierless In-Memory Database Systems 47

Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel
Reutegger
Workload-Aware Contention-Management in Indexes for Hierarchical Data 71

Florian Eppinger, Uta Störl
Tuning Cassandra through Machine Learning 93

Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler
GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 105

Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić
IBM Data Gate: Making On-Premises Mainframe Databases Available to
Cloud Applications . 119

Felix Schuhknecht, Simon Jörz
The Easiest Way of Turning your Relational Database into a Blockchain —
and the Cost of Doing So . 131

Session 2

Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias
Urban, Carsten Binnig
WannaDB: Ad-hoc SQL Queries over Text Collections 157

Maximilian E. Schüle, Alfons Kemper, Thomas Neumann
NN2SQL: Let SQL Think for Neural Networks 183

Dennis Aumiller, Jing Fan, Michael Gertz
On the State of German (Abstractive) Text Summarization 195

Manfred Moosleitner, Günther Specht, Eva Zangerle
Detection of Generated Text Reviews by Leveraging Methods from
Authorship Attribution: Predictive Performance vs. Resourcefulness . . . 221

Session 3

Alice Rey, Michael Freitag, Thomas Neumann
Seamless Integration of Parquet Files into Data Processing 235

Adnan Alhomssi, Michael Haubenschild, Viktor Leis
The Evolution of LeanStore . 259

Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich,
Wolfgang Lehner
PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization . . 283

Ivan Ilic, Ilin Tolovski, Tilmann Rabl
RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 305

Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard
Mitschang
Approach to Synthetic Data Generation for Imbalanced Multi-class
Problems with Heterogeneous Groups 329

John Ziegler, Michael Gertz
No Mayfly: Detection and Analysis of Long-term Twitter Trends 353

Session 4

Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan
Duplicate Table Discovery with Xash . 367

Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten
Papenbrock
DPQL: The Data Profiling Query Language 391

Leonardo Hübscher, Lan Jiang, Felix Naumann
ExtracTable: Extracting Tables from Raw Data Files 417

Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm
Value-specific Weighting for Record-level Encodings in
Privacy-Preserving Record Linkage . 439

Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock
HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 461

Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm
Evolution of Degree Metrics in Large Temporal Graphs 485

Session 5

Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole
Schweikardt, Matthias Weidlich
Discovering Multi-Dimensional Subsequence Queries from Traces – From
Theory to Practice . 511

Henriette Behr, Volker Markl, Zoi Kaoudi
Learn What Really Matters: A Learning-to-Rank Approach for ML-based
Query Optimization . 535

Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle
Pairwise Learning to Rank for Hit Song Prediction 555

Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann,
Alfons Kemper
Communication-Optimal Parallel Reservoir Sampling 567

Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum
CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 579

Session 6

Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan
Conrad
RAPP: A Responsible Academic Performance Prediction Tool for
Decision-Making in Educational Institutes 595

Stefan Brass, Alexander Hinneburg
Semantic Watermarks for Detecting Cheating in Online Database Exams . 607

Thomas C. Rakow, André Kless, Charlotte Hasler, Harm Knolle,
Heide Faeskorn-Woyke, Inga Marina Saatz, Jens Lambert, Mareike
Focken
Developing OERs for Teaching Database Systems 621

Azin Ghazimatin
Enhancing Explainability and Scrutability of Recommender Systems . . . 633

Tiemo Bang
Adaptive Architectures for Robust Data Management Systems 641

Demo Track

Lucas Woltmann, Katja Ferger, Claudio Hartmann, Wolfgang Lehner
JumpXClass: Explainable AI for Jump Classification in Trampoline Sports 651

Mirjam Bayer, Yorik Timo Hansen, Kimberley Kosbü, Andrea Kulow,
Peer Kröger
UniDash: Interactive Dashboard for Data Driven Insights on Universities 657

Alexander Kerth, Felix Schuhknecht, Lukas Pensel, Justus Henneberg
Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding
Courses of Study . 665

Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler
JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and
Scalable . 673

Joshua Reibert, Arne Osterthun, Marcus Paradies
Meduse : Interactive and Visual Exploration of Ionospheric Data 681

Johannes Schildgen, Florian Heinz
Interactive SQL Queries and Program Code in Presentations 687

Workshop Track

Dirk Habich, David Broneske
Second Workshop on Novel Data Management Ideas on Heterogeneous
(Co-)Processors (NoDMC) . 697

Andreas Henrich, Naouel Karam, Birgitta König-Ries, Bernhard
Seeger
Fourth Workshop on Big (and Small) Data in Science and Humanities (BigDS) 701

Ralf Schenkel, Ansgar Scherp
Workshop on Data Engineering for Data Science (DE4DS) 705

Manisha Luthra, Andreas Kipf, Matthias Boehm
A Tutorial Workshop on ML for Systems and Systems for ML 707

Workshop on Novel Data Management Ideas on Heterogeneous Hardware
Architectures (NoDMC)

Adrian Lutsch, Gagandeep Singh, Martin Mundt, Ragnar Mogk,
Carsten Binnig
Benchmarking the Second Generation of Intel SGX for Machine Learning
Workloads . 711

Felix Schuhknecht, Tamjidul Islam
Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 719

Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich
An FPGA Avro Parser Generator for Accelerated Data Stream Processing 729

Andreas Geyer, Daniel Ritter, Dong Hun Lee, Minseon Ahn, Johannes
Pietrzyk, Alexander Krause, Dirk Habich, Wolfgang Lehner
Working with Disaggregated Systems. What are the Challenges and
Opportunities of RDMA and CXL? . 751

Lawrence Benson, Marcel Weisgut, Tilmann Rabl
What We Can Learn from Persistent Memory for CXL 757

Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang
Lehner
Improving GPU Matrix Multiplication by Leveraging Bit Level
Granularity and Compression . 763

Alex El-Shaikh, Bernhard Seeger
DNAContainer: An object-based storage architecture on DNA 773

Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler
Accelerating Large Table Scan using Processing-In-Memory Technology . . 797

Patrick Damme, Matthias Boehm
Enabling Integrated Data Analysis Pipelines on
Heterogeneous Hardware through Holistic Extensibility 815

Workshop on Big (and Small) Data in Science and Humanities (BigDS)

Johannes Schildgen, Florian Heinz, Andreas Olijnyk, Arvid Lindenau
Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice
Commands . 821

Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich
Integrating Access to Authority Data for Improved Interoperability of
Research Data in the Digital Humanities 829

Christian Beilschmidt, Johannes Drönner, Michael Mattig, Philip
Schweitzer, Bernhard Seeger
Geo Engine: Workflow-backed Geo Data Portals 837

Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries,
Friederike Klan
Semantic Search for Biological Datasets: A Usability Study on Modes of
Querying and Explaining Search Results 851

Wolfgang Müller, Lukrécia Mertová
ReStoRunT: Simple Recording, Storing, Running and Tracing changes in
Spreadsheets . 865

Aly Abdelmageed, Shahenda Hatem, Tasneem Wael, Walaa Medhat,
Birgitta König-Ries, Susan F. Ellakwa, Passent Elkafrawy, Alsayed
Algergawy
A Core Ontology to Support Agricultural Data Interoperability 879

Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and
Wolfgang Stille
The InsightsNet Climate Change Corpus (ICCC) 887

Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta
Störl, Matthias Hemmje
Towards a User-Empowering Architecture for Trustability Analytics 901

Workshop on Data Engineering for Data Science (DE4DS)

Valerie Restat, Meike Klettke, Uta Störl
“FAIR ” is not enough – A Metrics Framework to ensure Data Quality
through Data Preparation . 917

Maximilian E. Schüle
Recursive SQL and GPU-Support for In-Database Machine Learning . . . 931

Sabrina Göllner, Marina Tropmann-Frick
VERIFAI - A Step Towards Evaluating the Responsibility of AI-Systems . . 933

David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen
Zeuch, Volker Markl
Workload Prediction for IoT Data Management Systems 943

Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries
A Provenance Management Framework for Knowledge Graph Generation
in a Web Portal . 951

Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel
MLProvLab: Provenance Management for Data Science Notebooks 965

Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje
Wulff
Data Extraction for Associative Classification using Mined Rules in
Pediatric Intensive Care Data . 981

Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten
Binnig
SportsTables: A new Corpus for Semantic Type Detection 995

Björn Engelmann, Philipp Schaer
Reliable Rules for Relation Extraction in a Multimodal Setting 1009

Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler,
Görschwin Fey
Predictive Maintenance for the Optical Synchronization System of the
European XFEL: A Systematic Literature Survey 1023

Student Track

Jüri Keller, Meik Bittkowski, Philipp Schaer
Automated Statement Extraction from Press Briefings 1049

Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel
MLProvCodeGen: A Tool for Provenance Data Input and Capture of
Customizable Machine Learning Scripts 1059

Tim Fischer
To Iterate Is Human, to Recurse Is Divine — Mapping Iterative Python to
Recursive SQL . 1069

Jerome Thiessat, Lucas Woltmann, Claudio Hartmann, Dirk Habich
Optimizing Query Processing in PostgreSQL Through Learned Optimizer
Hints . 1075

Lucas Fabian Naumann
WebTensor : Towards high-performance raster data analysis in the browser1083

Tim Gutberlet, Janik Sauerbier
Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs . . . 1091

Lukas Laskowski, Florian Sold
Explainable Data Matching: Selecting Representative Pairs with Active
Learning Pair-Selection Strategies . 1099

Benjamin Uwe Killisch, Thomas Kudraß, Florian Scheffler
Efficient handling of recursive relationships in ORM frameworks using
Entity Framework Core as an example 1105

Christoph Köhnen
Witness Generation for JSON Schema Patterns 1113

List of Authors

Scientific Program

Session 1

cbe

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Priority queues for database query processing

New techniques for tree-of-losers priority queues and for offset-value coding

Goetz Graefe1

Abstract: Interesting orderings let sort-based query processing out-perform hash-based algorithms,
but only tree-of-losers priority queues and offset-value coding permit competing in all cases including
large unsorted inputs with large or complex keys. As long as this competition persists, alternative
algorithms with equivalent functionality will plague query execution, e.g., in software maintenance
and in query plan scheduling, and mistaken algorithm choices will plague query optimization, e.g.,
for joins, intersection, and grouping.
After explaining tree-of-losers priority queues and offset-value coding, our work introduces necessary
extensions for efficient run generation (in external merge sort) with variable-size records. The required
changes in tree-of-losers priority queues support increasing and decreasing any key value at any
time in logarithmic time, including incremental maintenance of offset-value codes, with the expected
time for key value increases independent of the size of the priority queue. As all kinds of scheduling
applications use priority queues, our contributions go beyond database query processing. A discussion
of double-ended priority queues illustrates the concepts.
This may be the first time that tree-of-losers priority queues are extended to addressable priority
queues and to non-monotone sequences of input keys; and that offset-value coding is extended to
non-monotone sequences of input keys. The proposed solutions and the included code snippets are
simple, small, and fast, in contrast to the time and effort spent on bringing them to this state.

Keywords: sorting; grouping; merge join; interesting orderings; tree of losers; offset-value coding.

1 Introduction

In many classic algorithms for database query execution [BE77, Ep79], from in-stream
duplicate removal, grouping, and aggregation (for sorted streams) to in-sort grouping, merge
join, and index nested-loops join, each algorithm’s core is either a database index or a
sort operation. Hash-based query execution algorithms, e.g., [Br84, DG85, De84, KTM83,
NKT88], seem to have changed that, but other than computing hash values from column
values, hash join and hash aggregation have at their core an index, i.e., a hash table, and a
sort, i.e., internal and external distribution sort [IS56] on hash values rather than column
values. Thus, sorting techniques are crucial for efficient database query processing, e.g.,
distribution sort, quicksort [Ho62], merge sort [Fr56], and priority queues.

Tree-of-losers priority queues [Go63, Kn98] are more efficient than the traditional and
better known tree-of-winners priority queues because the former use only leaf-to-root
1 Google; Madison, Wisconsin, USA GoetzG@Google.com

cba doi:10.18420/BTW2023-01

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 27

GoetzG@Google.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-01

2 Goetz Graefe

passes with 𝑙𝑜𝑔2𝑁 comparisons, whereas the latter also need root-to-leaf passes with up to
2× 𝑙𝑜𝑔2𝑁 comparisons. Therefore, tree-of-losers priority queues can guarantee internal and
external sorting with counts of comparisons practically equal to the provable lower bound2.
Just as importantly, tree-of-losers priority queues work with offset-value coding [Co77],
which minimizes the effort per row comparison by combining prefix truncation and order-
preserving surrogate keys. Together, these techniques guarantee at most 𝑁 × 𝐾 column
value comparisons when sorting 𝑁 rows with 𝐾 key columns; the remainder of the required
𝑙𝑜𝑔2 (𝑁!) row comparisons are compiled-in single-instruction integer comparisons and thus
similar to hash values in hash-based query processing.

Tree-of-losers priority queues seem to require monotone (ever-increasing) sequences of
keys, making tree-of-losers priority queues perfect for merging sorted runs. They can
be adapted [Go63] to internal sorting, run generation in read-sort-write cycles, and run
generation with continuous replacement selection for fixed-size data records. In continuous
replacement selection for variable-size data records, e.g., using best-fit or first-fit memory
management [LG98], occupancy counts in a priority queue change frequently, which
published methods for tree-of-losers priority queues cannot accommodate.

Tree-of-losers priority queues as used to-date, i.e., with complete leaf-to-root passes, can
serve neither as non-monotone priority queues nor as addressable priority queues. On the
other hand, only tree-of-losers priority queues can sort with comparison counts near the
provable lower bound – neither quicksort nor tree-of-winners priority queues do. Moreover,
only tree-of-losers priority queues can use offset-value coding for linear costs for column
value comparisons – neither quicksort nor tree-of-winners priority queues do.

Initially motivated by variable-size records in replacement selection, our contributions are:

1. a small extension to leaf-to-root passes in tree-of-losers priority queues that elevates
them to addressable priority queues;

2. a significant extension to leaf-to-root passes in tree-of-losers priority queues that
supports non-monotone sequences of input keys, including early and late fences for
invalid (not occupied) slots;

3. new techniques for offset-value coding in tree-of-losers priority queues with non-
monotone sequences of input keys;

4. an implementation of double-ended priority queues that uses two priority queues in
opposite sort order and that, after popping the top element from one priority queue,
repairs the other one in constant expected time (independent of the size, capacity, or
tree height of the priority queue); and

2 Sorting is equivalent to finding a permutation: 𝑁 distinct key values permit 𝑁 ! permutations; at best, each key
comparison disproves half of the remaining possibilities; determining the permutation of the input requires at
least 𝑙𝑜𝑔2 (𝑁 !) ≈ 𝑁 × 𝑙𝑜𝑔2 (𝑁/𝑒) comparisons with Euler’s number 𝑒 ≈ 19/7.

28 Goetz Graefe

Priority queues for database query processing 3

5. an implementation of run generation using offset-value coding and continuous
replacement selection for variable-size records.3

The next section provides technical background and reviews related prior work. Section 3
introduces a small extension in leaf-to-root passes of tree-of-losers priority queues that
elevates them to addressable priority queues, whereupon Section 4 introduces a significant
extension to support non-monotone sequences of input keys. Section 5 employs these
extensions for a double-ended priority queue using two priority queues, one ascending and
one descending. Section 6 adds a third extension for efficient incremental maintenance of
offset-value codes in spite of non-monotone sequences of input keys. Section 7 uses all
three extensions for run generation with variable record counts in memory. The final section
sums up and concludes with thoughts on adopting offset-value coding in a broader context,
specifically in all sort-based algorithms for database query evaluation.

2 Background and related prior work

This section provides some technical background about priority queues, offset-value coding,
and external merge sort.

2.1 Priority queues

A priority queue manages a set of pairs, each a priority and some associated information.
The priority is the sort key within the pair. The associated information can be detailed
information, a pointer, an array index, or something else. The purpose of priority queues is
to provide the minimum (or maximum) key value very quickly (from the root of a tree) and
to absorb additional key-value pairs efficiently. For simplicity, all data structures considered
here for priority queues assume a balanced binary tree of height 𝑛 and capacity 2𝑛 or 2𝑛 − 1.

In a tree-of-winners priority queue [Kn98], the principal invariant is that a parent’s key
is lower than the key values in its two children (assuming an ascending ordering of key
values). Popping (removing) the key-value pair with the minimum key value moves the
right-most leaf entry to the root and then pushes it into the tree (with 2𝑛 comparisons in a
worst-case root-to-leaf pass). A subsequent insertion requires only a leaf-to-root pass with n
comparisons. Alternatively, if the removal leaves an invalid entry in the root (with logical

3 Prior work [LG98] used a very early version of this technique, without explicit mention, without detail or
explanation, and without offset-value coding. Early versions built a stack of move targets, which nominally cut
moves to one third but on superscalar CPUs performs no better than swapping (see line 7 in Figure 1), separated
partial and complete leaf-to-root traversals and their different looping conditions (see line 15 in Figure 3),
gated the repair loop with an extra key comparison (see line 31 in Figure 4), supported incomplete binary trees
(capacities other than 2𝑛), and organized the tree as b-tree of cache lines, with no benefit if the entire tournament
tree easily fits into the L1 cache as recommended for sorting.

Priority queues for database query processing 29

4 Goetz Graefe

key value −∞), pushing (inserting) a new key value simply replaces the invalid entry but
then repairs the tree invariants, which usually requires two comparisons per tree level and
may require all 𝑛 tree levels, for 2𝑛 comparisons in a worst-case root-to-leaf pass.

2.1.1 Tree-of-losers priority queues

A tree-of-losers priority queue [Go63, Kn98], also known as a tournament tree, is a balanced
binary tree. When mapped to an array, the tree’s unary root is in array slot 0. It is efficient
due to leaf-to-root passes with one comparison per tree level; root-to-leaf passes with two
comparisons per tree level are not required. A pair of “pop” and “push” operations requires
only a single leaf-to-root pass. The principal rules are that (i) two candidate keys compete at
each node in the tree and (ii) after a comparison of two candidates, the loser remains in the
node and the winner becomes a candidate in the next tree level. Thus, a new overall winner
reaches the root node after 𝑛 comparisons in a priority queue with 2𝑛 entries. When merging,
a fixed pair of runs competes at each leaf node. Run generation using read-sort-write cycles
merges “sorted runs” of a single row each. Run generation by continuous replacement
selection tries to extract longer sorted runs from the unsorted input.

Fig. 1: The traditional leaf-to-root pass

Figure 1 shows code extracted from a working prototype of a tree-of-losers priority queue.
The “index” parameter is the information associated with the key value, e.g., a run identifier
between 0 and 𝐹 − 1 during a merge step with fan-in 𝐹. Line 3 creates a new tree node that
will be swapped into the array “heap” that holds the priority queue. Line 4 defines an index
for this array; line 5 initializes it, halves it to navigate from a child to its parent, and terminates
the loop at the root. An equivalent to lines 4 and 5 is “for (Index slot = capacity + index;
(slot /= 2) != 0;)”, but the syntax in Figure 1 more readily enables the extensions required
later. Another alternative is “for (Index slot = capacity/2 + index/2; slot != 0; slot /= 2)”,
which more directly shows skipping over the non-leaf nodes in the tree and assigning two
index values to each tree leaf. Lines 6 and 7 in Figure 1 compare key values and ensure that
the loser remains behind as the winner becomes a candidate at the parent. Line 8 saves the
overall winner in the tree’s root node.

With only leaf-to-root passes (and no root-to-leaf passes), run generation and merging
with tree-of-losers priority queues guarantee near-optimal comparison counts. The count

30 Goetz Graefe

Priority queues for database query processing 5

of comparisons in the best case, the worst case, and the expected case are all within
rounding errors of the provable lower bound of 𝑙𝑜𝑔2 (𝑁!), i.e., better than the expected case
of quicksort and far better than the worst case of quicksort. This includes the expected
case for replacement selection, where one additional comparison per input row doubles
the expected run size, cuts the run count in half, and saves one comparison per row
in the merge process. With excellent expected and worst-case run-time complexity yet
very limited implementation complexity, some hardware supports tree-of-losers priority
queues. More specifically, the UPT “update tree” instruction of IBM’s 370- and z-series
mainframes [IB88, Iy05] implements essentially the logic of Figure 1.

In a tree-of-losers priority queue, each key value is paired with an index in the range 0 to
2𝑛 − 1 for a priority queue with tree height 𝑛. During a merge step, these indexes identify
runs; during run generation, they identify rows in memory or more precisely slots in an
array. These indexes determine where a leaf-to-root pass starts. At all times, each index
value exists exactly once in the priority queue, possibly marked as an invalid entry by a
fence with logical key value −∞ or +∞.

2.1.2 Addressable priority queues

In a tree-of-losers priority queue, an index value maps to a specific leaf and therefore to a
specific leaf-to-root path, which can be used to identify, find, read, and perhaps modify or
even delete any entry. For the same functionality, a tree-of-winners priority queue requires
an additional data structure to find an entry in the tree. While this data structure permits
finding an entry quickly, it must track every movement in the tree representing the priority
queue, thus increasing the cost of any movement within the priority queue.

If a key value is modified or deleted, the priority queue and its invariants need repair.
For tree-of-losers priority queues, Section 3 introduces efficient techniques without any
additional data structure yet with efficient maintenance for key change and deletion.

2.1.3 Monotone priority queues

A tree-of-winners priority queue tolerates insertion of any low or high key value at any time.
In contrast, a traditional tree-of-losers priority queue depends on ever-increasing key values.
Section 4 introduces an efficient leaf-to-root pass that overcomes this limitation.

2.2 Offset-value coding

Offset-value coding [Co77] encodes one row’s key value relative to another key that is
earlier in the sort sequence. Offset-value codes are a by-product of comparisons, specifically

Priority queues for database query processing 31

6 Goetz Graefe

in the loser of a comparison. The offset within a loser’s new offset-value code is the position
where the keys first differ, e.g., a column index, and the value is the loser’s data value at that
offset. Alternatively, the offset is the size of the shared prefix. For example, a duplicate key
shares the entire key and thus has an offset equal to the key size.

Fig. 2: Offset-value codes in a sorted file or stream

Figure 2 illustrates descending and ascending offset-value codes in a stream of rows in
ascending sort order on all columns. With four sort columns, the arity of the sort key is 4; the
domain of each column is 1 to 99. For an ascending sort order, descending offset-value codes
take the actual offset but the negative of the column value, whereas ascending offset-value
codes take the negative offset but the actual column value. The first row has offset 0 by
definition. Figure 2 ignores that small key domains permit encoding multiple key columns
together. IBM’s CFC “compare and form codeword” instruction [IB88, Iy05] supports
offset-value coding for a descending sort order of normalized keys (order-preserving byte
strings), blocks of bytes as values, and block counts as offsets.

With offsets and values combined as shown in Figure 2, a single integer instruction may
decide a comparison. If two rows and their key values 𝐴 and 𝐵 are encoded relative to the
same key 𝐶 that is earlier in the sort sequence, and if the offsets of 𝐴 and 𝐵 differ, then
the one with the higher offset is earlier in the sort sequence. Otherwise, if the two data
values at the common offset differ, then these data values decide the comparison. Otherwise,
additional data values in 𝐴 and 𝐵 must be compared.

In a tree-of-losers priority queue with offset-value coding, each tree node lost to the local
winner and its local offset-value code is set relative to the local winner. Conversely, the local
key value in a tree node other than a leaf was a winner in all nodes up from the leaf where it
entered the tree, and all key values along that path are encoded relative to this local key
value. The overall winner in the tree’s root is no exception: along its entire leaf-to-root path,
all key values lost to (and are encoded relative to) the overall winner.

Merging sorted runs repeatedly replaces the overall winner with its successor from the
same merge input. With merge inputs’ fixed assignment to leaf nodes in a tree-of-losers
priority queue, a successor retraces the leaf-to-root path of the prior overall winner. As

32 Goetz Graefe

Priority queues for database query processing 7

this successor and all keys on its leaf-to-root path are encoded relative to the prior overall
winner, offset-value coding applies to all comparisons in a tree-of-losers priority queue.

Offset-value codes decide many comparisons in a tree-of-losers priority queue. Column
value comparisons are required only if two rows have equal offset-value codes. They start
after the offset and value encoded in these offset-value codes. After such a row comparison
is decided, the loser’s offset is incremented by the count of column value comparisons.
With 𝐾 sort columns, the sum of all offset increments is limited to 𝐾 in each row; in
an input with 𝑁 rows, the sum of all increments and thus the count of all column value
comparisons are limited to 𝑁 × 𝐾. Importantly, there is no 𝑙𝑜𝑔(𝑁) multiplier here. Thus,
tree-of-losers priority queues and offset-value coding guarantee that the effort for column
value comparisons is linear in the count of rows and in the count of sort columns, quite like
the effort for computing hash values in hash-based query execution.

This limit on column value comparisons resonates with data-specific analysis of string
sorting [Se10]: the total count of “=” comparisons of symbols (within strings) or of column
values (within database rows) equals the opportunity for compression in a sorted dataset.
Compression here may be prefix truncation in row storage (e.g., using offset-value coding
as shown in Figure 2), run-length encoding of leading columns in column storage, or shared
prefixes in a trie [Se10]. Conversions between these alternative formats do not require
additional comparisons of symbols or column values [DG22].

Comparisons of offset-value codes are free if they are subsumed in other algorithm activities.
In quicksort, for example, the inner-most loop not only compares key values but also looping
indexes: when the loops from the left and the right meet, the partitioning step is complete.
In priority queues, the inner-most loop compares key values only after testing whether there
even are valid key values. This is needed because during queue construction, some entries
have not yet been filled; after the end of some merge inputs, some queue entries no longer
have valid keys; and during run generation by merging single-row runs, there is only queue
build-up and tear-down.

During run generation by continuous replacement selection, the run identifier can prefix the
user-defined key as an artificial leading key column. If so, early and late fence values may
be modeled as initial and final runs with multiple early and late fence key values, e.g., one
for each merge input [Gr06]. All of this can be folded into each row’s offset-value code: if
two rows have equal offset-value codes, they are both valid (neither early nor late fences),
they go to the same output run, they differ from their shared base row (an earlier winner)
at the same offset, they have the same value at that offset, and the next step must compare
further columns. Thus, comparisons of offset-value codes are not overhead as they simply
take the place of testing for fence keys during continuous replacement selection.

The design also reduces CPU cache faults. If a tree-of-losers priority queue requires 8 bytes
per entry, an L1 cache can retain a priority queue (an array) of 512 or 1,024 entries. The
data records may or may not fit in a lower-level cache but offset-value codes decide many

Priority queues for database query processing 33

8 Goetz Graefe

comparisons without cache fault, many more than traditional pairs of key prefix and data
pointer [Hu63, Ny95]. Mini-runs of this size remain in DRAM until merged (with fan-in
512 or 1,024) to form initial runs on temporary external storage [BL89, Fr56, Ny95].

2.3 External merge sort

Priority queues enable efficient external merge sort in multiple ways. The most obvious
one is merging sorted runs. In fact, merging runs is a perfect application for traditional
tree-of-losers priority queues with only complete leaf-to-root passes. A related application is
forecasting [Fr56], i.e., predicting which merge input benefits most from an additional input
buffer for asynchronous read-ahead. Forecasting tracks, for each merge input, the highest
key value read so far and selects the lowest of these values. A third application of priority
queues in external merge sort chooses which runs to merge next, e.g., the smallest existing
runs [Hä77b] or the set with the most similar sizes. The former heuristic is widely used; the
latter heuristic applies when the final input size is not yet known, i.e., when merging while
still consuming unsorted input rows.

Another well-known application of tree-of-losers priority queues in external merge sort is run
generation, whether in read-sort-write cycles or in continuous replacement selection [Go63].
In read-sort-write cycles, priority queues suffer from repeated build-up and tear-down such
that quicksort is often preferred. In cache-optimized read-sort-write cycles, however, merging
cache-sized runs in memory to form the initial run on external temporary storage [BL89,
Fr56, Ny95] uses a priority queue; moreover, creating many cache-sized runs permits using
a tree-of-losers priority queues very efficiently in a way similar to replacement selection.
In traditional replacement selection using a single priority queue for all unsorted rows
in memory, fixed-size rows enable runs twice the size of memory, but variable-size rows
require the techniques introduced in Sections 4 and 6.

Finally, priority queues are useful in many scheduling decisions around external merge sort,
e.g., which query to run next, where to grant more memory, where to pinch memory, etc.

3 Addressable priority queues

In a scheduling application or a simulation, if a future event is cancelled, an entry in the
priority queue must be found and deleted, which requires an addressable priority queue. In
a tree-of-losers priority queue, a deletion replaces a valid key value with a late fence.

In a tree-of-losers priority queue, the index is the handle by which to find and identify
an entry. As each index maps to a specific leaf node, a search along one leaf-to-root path
suffices. The search ends at the sought index value, with a 50% probability that the sought
entry was a loser left behind in the leaf, a 25% probability for the parent node, etc. On

34 Goetz Graefe

Priority queues for database query processing 9

average, just less than two nodes are inspected along a leaf-to-root path, for a constant
expected time independent of the size or capacity of the priority queue.

If the new key value associated with an index is higher than the one in the priority queue,
which is always true if the new key value is a late fence, the leaf-to-root pass can repair the
tree-of-losers priority queue and its invariants. In fact, the required logic treats the sub-tree
rooted at the sought index as the entire priority queue. The principal code change merely
adds a termination condition to the core logic of tree-of-losers priority queues.

Fig. 3: The modified leaf-to-root pass

Figure 3 highlights the code changes relative to Figure 1, including saving the final candidate
in the position of the replaced entry (line 18), not necessarily in the tree’s root (line 8 in
Figure 1). Note that swaps may occur along the path from leaf to replaced value (lines 16
and 17), that the new loop continuation condition (line 15) could replace rather than augment
the original condition, and that line 18 could replace line 8 in Figure 1.

If the new key value associated with an index is lower than the one in the priority queue,
the final position of the new key value is not between leaf and replaced entry but between
replaced entry and root. Section 4 introduces the required new logic.

4 Non-monotone priority queues

If, in an ascending sort, a new key value is higher than the key value it replaces, the input
key value cannot go further on its leaf-to-root pass than the position of the replaced key
value. If, however, a new key value is lower than the key value that it replaces, including a
valid key value replacing a late fence, its final position is on the path between the position
of the replaced key value and the root. This requires an initial leaf-to-root pass that ends at
the key value to be replaced. This first part equals the search discussed in Section 3, except
that the lower key does not swap places with tree entries between the leaf and the replaced
value. In fact, the absence of such swaps indicates that the new key value may be smaller
than the key value that is about to be replaced in the priority queue.

The new key value may even be lower than some of the key values between the replaced
value and the tree’s root. If so, such a value might need to move backward on its leaf-to-root

Priority queues for database query processing 35

10 Goetz Graefe

path in order to make room for the new, lower key value. Importantly, only one key value
between replaced tree entry and root is a candidate for moving backward, namely the entry
that formerly emerged as winner from the sub-tree rooted at the replaced key value. Thus,
the first step is to locate this former winner between replaced value and root. The second
step compares the new key value with this former winner; if the former winner wins again,
then the new value simply overwrites the value to be replaced. Otherwise, the former winner
moves backward, overwriting the replaced key value, and the steps repeat.

Fig. 4: The repair loop added

Figure 4 shows the repair loop (lines 30 to 43) that moves former winners backward on
their leaf-to-root path. Instead of saving the final candidate directly (line 18 in Figure 3),
the replaced key value becomes the initial destination for the candidate (line 30) and the
candidate moves into the heap eventually (line 43). Line 31 ensures that the repair loop
runs only if the new key value is small, i.e., after a search loop (lines 25 to 28) without a
swap. The repair loop ends when it reaches the tree root (line 32) or when it finds a former
winner with a lower key value (line 38). A nested loop searches for a former winner to
move backward (lines 35 and 36). After a backward move (line 40), its source becomes the
candidate’s new destination (line 41). The tree level is tracked to test whether an ancestor
was a former winner at the current destination and therefore could move backward to the
current destination (lines 24, 25, and 34 to 36). Extended “leaf” and “parent” methods
(lines 25 and 35) initialize the level to 0 and increment it by 1. Even with three loops in total
(lines 25, 32, and 35), the complexity of the entire process is still strictly logarithmic like

36 Goetz Graefe

Priority queues for database query processing 11

the height of the tree, with at most n invocations of the “less” comparison method (lines 27
and 38) in a tree-of-losers priority queue with capacity 2𝑛.

The conditions for the repair loop permit a few optional optimizations. First, the repair loop
is not required if the old key value is an early fence or if the new key value is a late fence.
Second, the four conditions for entering the loop could be reordered by probability and
execution cost [Ha77a]. Third, the loop’s continuation test could move to the bottom.

Fig. 5: Alternative conditions for the repair loop

Figure 5 shows the relevant code fragments with these optional optimizations in lines 46
and 47. Lines 45 and 52 are lines 30 and 43 in Figure 4, respectively. Line 50 stands for
lines 34 to 41 in Figure 4.

5 Double-ended priority queues

The example problem to be solved here is the following: a number of sellers frequently
change their asking prices (for some goods or service); the lowest-price sellers often sell out
and must withdraw their offer or raise their asking prices; and the highest-price sellers often
withdraw their uncompetitive offers or drop their asking prices. Both buyers and sellers
want the current lowest and highest asking prices readily available.

The solution employs an array of sellers with their current asking price if any. In addition,
two priority queues, one ascending and one descending, track the lowest and highest asking
prices. Together, they form a double-ended priority queue.

Both priority queues use the same indexes as the array, must be addressable to support
deletion by index, and must be non-monotone to track all possible changes in asking prices,
both increases and decreases.

Seeing current lowest and highest asking prices requires “top” methods. The lowest-price
seller withdrawing requires a “pop” method in the ascending priority queue and a “delete”
method in the descending priority queue. The highest-price seller withdrawing is just the
opposite. Any other seller withdrawing requires a “delete” method in both priority queues.
Any change in asking price requires an “update” method in both priority queues.

All of these methods invoke the “pass” method of Figure 4. The exception is “pop”: it might
just replace a valid key value in the tree root with an early fence, but then subsequent “pop”

Priority queues for database query processing 37

12 Goetz Graefe

or “top” invocations must invoke the “pass” method with the appropriate index and a late
fence to propel a valid key value to the tree root. “Delete” also invokes “pass” with a late
fence and “update” invokes “pass” with the new asking price.

Each invocation of the “pass” method requires time at most linear with the height and
logarithmic with the capacity of the priority queue. The “delete” and “update” methods
inspect just less than two tree nodes on average for constant expected time (independent of
the size of the priority queue). The effort required in “delete” is likely less when invoked
to match a “pop” in the other priority queue, but deleting the entry at a tree root forces a
complete leaf-to-root pass in one of the priority queues. An optimization avoids or delays
this full pass by placing an early fence in the root node.

The following experiments simulate up to 1,024 sellers (tree height 2-10) and 225 ≈ 33.5𝑀
changes in asking prices. They ran the code of Figures 4 and 5 on an Intel Celeron N3060
CPU (launched in 2016, 1.6 Ghz base frequency, 2.48 GHz burst frequency).

Fig. 6: Maintenance effort for changing key value [CPU seconds]

Figure 6 shows the CPU times in seconds for two experiments. The first experiment (middle
column) assumes that only lowest- and highest-price sellers change their asking prices.
In other words, the double-ended priority queue runs “pop” and “delete” followed by an
“insert” in both priority queues. For tree capacities of 4 and 1,024, i.e., tree heights of 2
and 10, the time difference is 1.796 seconds (3.046−1.250). Multiplying with the burst
frequency (2.48 GHz) and dividing by the count of changes in asking prices (225) as well as
the difference in tree heights (10−2) suggests that each tree level adds only about 17 CPU
cycles to the effort of maintaining a double-ended priority queue constructed from two
tree-of-losers priority queues.

The second experiment (right column) assumes that all sellers randomly change their asking
prices. Recall that a randomly chosen seller (index in a priority queue) has remained in
a tree leaf with a 50% probability, in a leaf’s parent with a 25% probability, etc., for an
average search depth of just under two tree nodes. This is independent of the tree height,
and indeed the elapsed times remain fairly steady. The differences observed are more likely
a result of array sizes and CPU caches than of algorithm or code complexity.

38 Goetz Graefe

Priority queues for database query processing 13

6 Offset-value coding for non-monotone priority queues

Offset-value coding speeds up sorting with tree-of-losers priority queues. In fact, Section 2.2
shows how, in an external merge sort for 𝑁 rows with 𝐾 key columns, these techniques
reduce worst-case counts of column value comparisons from 𝑂 (𝐾 × 𝑁𝑙𝑜𝑔𝑁) to 𝑁 × 𝐾.
It has been unclear, however, whether scheduling and sorting applications with complex
keys can benefit similarly from offset-value coding. Of course, no crisp benchmark and
complexity metric exist for scheduling, but can offset-value coding reduce the comparison
effort and can comparisons skip over column values already compared earlier?

The main difference to merging sorted runs is that predecessors and successors in a merge
input are sorted and their offset-value codes can be known. In contrast, in scheduling
applications, predecessor key values may not be known and successors may not have
offset-value codes. In fact, as offset-value coding always is relative to a smaller key, a
replacement value smaller than its predecessor cannot possibly have an offset-value code. A
replacement key value without offset-value code relative to its predecessor (for the same
index) requires full comparisons, i.e., starting at offset 0 within the key.

Fortunately, such a replacement key value still requires only a single leaf-to-root pass with
a search loop (lines 25 to 28 in Figure 4) and a repair loop (lines 30 to 43 in Figure 4).
Just as fortunately, full comparisons without the benefit of offset-value coding are required
only until the search loop swaps a replacement key value into its correct location within
the tree-of-losers structure. Thereafter, all comparisons benefit from offset-value coding. A
replacement key value belongs into the leaf with 50% probability, into the leaf’s parent with
25% probability, etc., for only about two full comparisons on average.

The first swap puts the new key value into its correct place within the tree-of-losers priority
queue. After a swap, no repair loop is needed (see line 31 in Figure 4 and line 46 in Figure 5).
A repair loop, if needed, may move some key values backward on their leaf-to-root paths
(see Section 4 and Figure 4). In this case, offset-value codes along the leaf-to-root path must
be adjusted such that losers are always encoded relative to the correct winner.

Figure 4 shows the traditional search loop (lines 25 to 28) and the new repair loop (lines 30
to 43). The traditional search can maintain offset-value codes in the traditional way: if
column value comparisons are required, the loser’s offset increases by their count. The
comparison logic (line 27) can readily adjust the loser’s offset-value code in this way.

Maintenance of offset-value codes in the repair loop seems expensive when a former winner
moves backward on its leaf-to-root path, skipping backward over other tree nodes and key
values (the ones skipped in lines 35 and 36 of Figure 4). When a new key value emerges as
the new winner, existing skipped-over offset-value codes must be re-encoded relative to the
new winner, incurring full row comparisons and thus column value comparisons.

Fortuitously, a recent theorem [GD22] on offset-value codes supplies a remedy: for
three sorted key values 𝐴 < 𝐵 < 𝐶, the offset-value code of the third key value rela-

Priority queues for database query processing 39

14 Goetz Graefe

tive to the first one is the extreme of the other two offset-value codes, or 𝑜𝑣𝑐(𝐴,𝐶) =

𝑚𝑎𝑥(𝑜𝑣𝑐(𝐴, 𝐵), 𝑜𝑣𝑐(𝐵,𝐶)) for ascending offset-value codes4. When a former winner
moves backward, the new winner is lower (earlier in the sort order) than the former winner,
which in turn is lower than the skipped-over key values between the former winner’s old and
new locations along the leaf-to-root path. If the new winner is key value 𝐴 in the theorem,
the former winner is key value 𝐵, and each skipped-over key value is key value 𝐶, then
the new offset-value codes for the skipped-over key values is simply the maximum of their
existing offset-value codes relative to the former winner and the offset-value code of the
former winner relative to new key value.

In order to adjust those offset-value codes, the repair loop of Figure 4 needs another nested
loop. Its range matches the first nested loop (lines 35 and 36 in Figure 4). The new nested
loop does not change the complexity of the process even if it is no longer strictly true that a
tree-of-losers priority queue can absorb any new key in a single leaf-to-root pass.

Fig. 7: Repair of offset-value codes added

4 This theorem implies Iyer’s “unequal value theorem” [Iy05]: After offset-value codes decide a row comparison,
the loser retains its offset-value code. Formally: 𝑜𝑣𝑐 (𝐴, 𝐵) < 𝑜𝑣𝑐 (𝐴, 𝐶) ⇒ 𝑜𝑣𝑐 (𝐵, 𝐶) = 𝑜𝑣𝑐 (𝐴, 𝐶) . Proof:
𝑜𝑣𝑐 (𝐴, 𝐶) = 𝑚𝑎𝑥 (𝑜𝑣𝑐 (𝐴, 𝐵) , 𝑜𝑣𝑐 (𝐵, 𝐶)) ∧ 𝑜𝑣𝑐 (𝐴, 𝐶) ≠ 𝑜𝑣𝑐 (𝐴, 𝐵) ⇒ 𝑜𝑣𝑐 (𝐴, 𝐶) = 𝑜𝑣𝑐 (𝐵, 𝐶) .

40 Goetz Graefe

Priority queues for database query processing 15

Figure 7 adds a parameter to the “pass” method (line 55) to indicate whether full comparisons
ought to be used in the “less” method (lines 62 and 73). If set initially, it remains true until
the new key value is in its correct place after the first swap (line 63).

Figure 7 also adds the new loop (lines 76 and 77). The variable “dest” is abused as a looping
variable, yet the loop’s continuation condition (“dest != slot” in line 76) echoes the direct
move that the loop replaces (“dest = slot” in line 41 of Figure 4). The “parent” method in
line 76 is the same as in Figures 1 and 3. The loop body (line 77) applies the theorem to any
skipped-over offset-value codes. The “key” field in each tree entry is the offset-value code
relative to the local winner. Auxiliary method “setMax” is given in line 53.

Like the key comparison in the search loop (line 62), the “less” method in the repair loop
(line 73) must set the loser’s new offset-value code if column value comparisons are required.
If the candidate wins, then the key value in the heap is the loser and must be encoded relative
to the candidate when it travels backward to the current destination (line 75). Otherwise, the
candidate goes back to the current destination (line 79) and must be encoded relative to the
(old and new) winner.

In a general scheduling application and its priority queues, many index values will be active
and inactive at various times. In a merge step, e.g., in an external merge sort, some of the
merge inputs might disconnect from the merge and reconnect later, e.g., during a key range
that is not represented in one (or several) of the input runs. A tree-of-losers priority queue
models such inactive index values using invalid keys or fences with effective key value +∞.
But how does offset-value coding deal with fence keys? What are the offset-value codes for
a valid key value relative to an early fence and for a late fence relative to a valid key value?

The solution follows directly from the role of fences: artificial keys preceding the first row
and succeeding the last row in a sorted run. If all column values in fences are −∞ or +∞,
then the first difference with any valid key value is at offset 0 and the value at that offset is
+∞ in a late fence. With these definitions, all algorithms above, including calculation of
offset-value codes, work not only with valid key values but also with fences.

There is one important difference for “pop” and “delete” operations, however. Without
offset-value coding, deletion of a valid key value in the root node can simply replace the key
value with an early fence. With offset-value coding, offset-value codes in its leaf-to-root
path require repair. This new leaf-to-root pass resets all offsets to 0 (because the winner is
or would have been the new early fence in the root node); the value is the first column or
±∞ for fence keys. Alternatively, instead of a “pop” operation, a “top” operation is more
desirable and is sufficient if the next operation is a “push” for the same index. For “delete”
operations, the optimization above must be disabled in a priority queue with offset-value
coding such that deletion always invokes a leaf-to-root pass, even when deleting the key
value in the tree’s root.

Priority queues for database query processing 41

16 Goetz Graefe

7 Replacement selection for variable-size records

In the context of external merge sort and specifically run generation, multiple situations
require the repair loop of Figure 4. First, in run generation for fixed-size records arriving
and evicted in groups (e.g., pages) rather than one record at a time, the logic of Figure 3 can
replace multiple entries in the tree by late fences until a group is complete. When new valid
key values replace these late fences, the repair logic of Figure 4 is required because all valid
key values sort lower than late fences. If the external merge sort uses offset-value coding to
reduce column value comparisons to 𝑁 × 𝐾 , it requires the new logic of Figure 7.

Second, run generation with variable-size records may require evicting multiple records
from the in-memory workspace before it can absorb an arriving large record. In the opposite
situation, when the sort logic evicts a large record from the workspace, multiple arriving
small records might be inserted, replacing multiple late fences with valid key values.

Third, if a key range of non-trivial size occurs in only one of the merge inputs, there is no
need to “merge” each key in this range. After observing successive overall winners from the
same merge input, one might want to know the runner-up key and then scan or skip forward
within the winning input. One way to determine the runner-up pushes the runner-up to
the root by using a late fence to fake the winner’s end-of-input. Re-introducing the former
winner into the tree-of-losers priority queue after moving a key range directly to the merge
output requires the new logic of Figure 7.

Fig. 8: Priority queue comparison counts with various group sizes

Figure 8 shows counts of comparisons in a priority queue during run generation in an
external merge sort. There are 225 ≈ 33.5𝑀 input rows; the priority queue holds 210 = 1, 024
entries. The run generation logic deletes groups of rows (to fill an output page) and re-inserts
the same count of rows (from an input page). The group or page size varies from 1 row,
i.e., traditional replacement selection, to 256 rows. The center pair of columns in Figure 8
clearly shows that grouped removal and insertion into priority queues is somewhat less
efficient than traditional replacement selection. Large group or page sizes require about 25%
more comparisons.

42 Goetz Graefe

Priority queues for database query processing 17

The right pair of columns in Figure 8 shows how many comparisons benefit from offset-value
coding and the new techniques of Section 6 and Figure 7. Their practical impact depends on
column count, each column’s count and distribution of distinct values, etc. This experiment
aims to assess the new techniques independently of these parameters. It is obvious that in
one-for-one replacement, practically all comparisons benefit from offset-value coding. For
larger group or page sizes, the benefit remains substantial as about 70% of all comparisons
might be decided by offset-value codes alone, meaning that in practical settings the new
techniques saves substantially more than half of the effort for row comparisons.

8 Summary and conclusions

In summary, prior work has shown that

1. a tree-of-losers priority queue requires fewer comparisons than an equivalent tradi-
tional tree-of-winners priority queue;

2. internal and external merge sort with tree-of-losers priority queues comes very close
to the provable lower bound of 𝑙𝑜𝑔2 (𝑁!) row comparisons for 𝑁 rows;

3. offset-value coding reduces column or byte comparisons in large keys;

4. the count of column value comparisons in internal and external sorting with offset-
value coding is bounded by 𝑁 × 𝐾 for sorting 𝑁 rows with 𝐾 key columns, i.e., linear
in the count of rows and the count of key columns; and

5. the core logic for a traditional leaf-to-root pass in a tree-of-losers priority queue is
small, simple, and efficient.

In addition, new work shows how

6. data-specific analysis of string sorting [Se10] applies equally to prefix sharing in a
trie of strings, to offset-value coding in a sorted database table, and to the count of
symbol comparisons or of column value comparisons in an internal or external merge
sort using tree-of-losers priority queues and offset-value coding;

7. a small extension turns tree-of-losers priority queues into addressable priority queues,
i.e., any key value can increase at any time and can be logically deleted at any time;

8. a larger extension turns tree-of-losers priority queues into non-monotone priority
queues, i.e., new key values may be lower or higher than earlier key values;

9. a third extension enables efficient incremental maintenance of offset-value codes,
even in cases of non-monotone sequences of input key values;

10. the first two extensions permit very efficient double-ended priority queues, among
many other scheduling applications within and beyond database systems; and

Priority queues for database query processing 43

18 Goetz Graefe

11. all three extensions together enable new flexibility and efficiency in external merge
sort for query processing, index creation and maintenance, database reorganization,
and data processing frameworks such as MapReduce and its many successors.

In conclusion, the new techniques for tree-of-losers priority queues and offset-value coding
complement recent innovations in database query processing. These innovations include
passing offset-value codes from one query execution operation to the next, thus reducing
most of their matching logic to comparisons of compiled-in integers rather than comparisons
of large records with complex fields and expensive comparison logic [DG22, GD22]. For
example, when a query like “. . . count (distinct. . .). . . group by. . . ” requires first duplicate
removal and then grouping, these operations can share not only the sort but also offset-value
codes such that the grouping logic never compares column values. For a second example,
merge joins of sorted scans or streams can avoid many column value comparisons, perform
their required row comparisons using offset-value codes just as efficiently as a hash join
does using hash values, and save lots of CPU effort, memory, and overflow (compared to
a hash join). In a variation of this example, complex-object assembly by multiple merge
joins on the same column can use offset-value codes in all join operations if the join logic
produces offset-value codes for its sorted output even if a join suppresses some input rows
and duplicates others [GD22]. For a third example, if grouping on a foreign key can be
“pushed down” to a join input, early aggregation and wide merging [DGN22] can speed up
the sort and offset-value codes from the sort can speed up the merge join. On the other hand,
if a grouping operation cannot be pushed down but the merge join produces offset-value
codes for its output, then grouping on the join column(s) never needs to compare column
values. More examples readily come to mind.

Put differently, wherever query planning can exploit interesting orderings in storage structures
and intermediate query results [Se79], query execution can exploit offset-value codes [Co77].
Just as any industrial-grade state-of-the-art query optimizer exploits interesting orderings,
query execution should exploit offset-value codes. Although both concepts originated in the
1970s, almost half a century ago, they were linked only recently by widening the scope of
offset-value coding from merge sort to all sort-based query execution algorithms. Together,
recent innovations for priority queues and for offset-value coding enable sort-based query
processing to compete with hash-based query processing and to shine even for large unsorted
inputs with large keys.

9 Acknowledgements

Jim Gray suggested exploring offset-value coding. Wey Guy and Thanh Do requested some
of the explanations in this paper. Raimund Seidel pointed out bottom-up heapsort and
data-specific algorithm analysis. Their help and contributions are gratefully acknowledged.

44 Goetz Graefe

Priority queues for database query processing 19

References
[BE77] Blasgen, Mike W.; Eswaran, Kapali P.: Storage and access in relational data bases. IBM

Syst. J., 16(4):362–377, 1977.

[BL89] Baer, Jean-Loup; Lin, Yi-Bing: Improving Quicksort performance with a codewort data
structure. IEEE Trans. Software Eng., 15(5):622–631, 1989.

[Br84] Bratbergsengen, Kjell: Hashing methods and relational algebra operations. In: VLDB. pp.
323–333, 1984.

[Co77] Conner, W. M.: Offset-value coding. In: IBM Technical Disclosure Bull. pp. 2832–37,
1977.

[De84] DeWitt, David J.; Katz, Randy H.; Olken, Frank; Shapiro, Leonard D.; Stonebraker,
Michael; Wood, David A.: Implementation techniques for main memory database systems.
In: ACM SIGMOD. pp. 1–8, 1984.

[DG85] DeWitt, David J.; Gerber, Robert H.: Multiprocessor hash-based join algorithms. In:
VLDB. pp. 151–164, 1985.

[DG22] Do, Thanh; Graefe, Goetz: Robust and efficient sorting with offset-value coding. Accepted
for publication in ACM TODS, March 2022.

[DGN22] Do, Thanh; Graefe, Goetz; Naughton, Jeff: Efficient sorting, duplicate removal, grouping,
and aggregation. ACM TODS, 47(4), December 2022.

[Ep79] Epstein, Robert: Techniques for processing of aggregates in relational database systems.
In: Univ. of California at Berkeley, UCB/ERL Memorandum M79/8. 1979.

[Fr56] Friend, Edward H.: Sorting on electronic computer systems. J. ACM, 3(3):134–168, 1956.

[GD22] Graefe, Goetz; Do, Thanh: Offset-value coding in database query processing. submitted
for publication, September 2022.

[Go63] Goetz, Martin A.: Internal and tape sorting using the replacement-selection technique.
Commun. ACM, 6(5):201–206, 1963.

[Gr06] Graefe, Goetz: Implementing sorting in database systems. ACM Comput. Surv., 38(3),
2006.

[Ha77a] Hanani, Michael Z.: An optimal evaluation of Boolean expressions in an online query
system. Commun. ACM, 20(5):344–347, 1977.

[Hä77b] Härder, Theo: A scan-driven sort facility for a relational database system. In: VLDB. pp.
236–244, 1977.

[Ho62] Hoare, C. A. R.: Quicksort. Comput. J., 5(1):10–15, 1962.

[Hu63] Hubbard, George U.: Some characteristics of sorting computing systems using random
access storage devices. Commun. ACM, 6(5):248–255, 1963.

[IB88] IBM: Enterprise system architecture/370, principles of operation. IBM publication
SA22-7200-0, 1988.

Priority queues for database query processing 45

20 Goetz Graefe

[IS56] Isaac, Earl J.; Singleton, Richard C.: Sorting by address calculation. J. ACM, 3(3):169–174,
1956.

[Iy05] Iyer, Bala R.: Hardware assisted sorting in IBM’s DB2 DBMS. In: International Conference
on Management of Data (COMAD). 2005.

[Kn98] Knuth, Donald Ervin: The art of computer programming, Volume III: sorting and searching,
2nd edition. Addison-Wesley, 1998.

[KTM83] Kitsuregawa, Masaru; Tanaka, Hidehiko; Moto-Oka, Tohru: Application of hash to data
base machine and its architecture. New Gener. Comput., 1(1):63–74, 1983.

[LG98] Larson, Per-Ake; Graefe, Goetz: Memory management during run generation in external
sorting. In: ACM SIGMOD. pp. 472–483, 1998.

[NKT88] Nakayama, Masaya; Kitsuregawa, Masaru; Takagi, Mikio: Hash-partitioned join method
using dynamic destaging strategy. In: VLDB. pp. 468–478, 1988.

[Ny95] Nyberg, Chris; Barclay, Tom; Cvetanovic, Zarka; Gray, Jim; Lomet, David B.: AlphaSort:
a cache-sensitive parallel external sort. VLDB J., 4(4):603–627, 1995.

[Se79] Selinger, P. Griffiths; Astrahan, M. M.; Chamberlin, D. D.; Lorie, R. A.; Price, T. G.:
Access path selection in a relational database management system. In: ACM SIGMOD. p.
23–34, 1979.

[Se10] Seidel, Raimund: Data-specific analysis of string sorting. In: ACM-SIAM SODA. pp.
1278–1286, 2010.

46 Goetz Graefe

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Workload-Driven Data Placement for Tierless In-Memory
Database Systems

Ben Hurdelhey1, Marcel Weisgut2, Martin Boissier3

Abstract: High main memory consumption is a significant cost factor for in-memory database
systems. Tiering, i.e., placing parts of the data on memory or storage devices other than DRAM,
reduces the main memory footprint. A controlled data placement can assign rarely accessed data to
slow devices while frequently used data remains on fast devices, such as main memory, to maintain
acceptable query latencies. We present an automatic data placement decision system for the in-memory
database Hyrise. The system organizes the memory and storage devices in a tierless pool, with no fixed
device class categorization or performance order. The system supports data placement use cases, such
as minimizing end-to-end query latencies and making cost-optimal purchase recommendations in
cloud environments. In this paper, we introduce an efficient calibration process to derive cost models
for various storage devices. To determine data placements, we introduce a linear programming-based
approach, which yields optimal configurations, and an efficient heuristic. With a set of main memory
and SSD devices, we can reduce the main memory consumption for base table data of the TPC-DS
benchmark by 74 percent when accepting a workload latency increase of 52 percent. In a comparison of
data placement algorithms and cost models, we find that simplistic algorithms (e.g., greedy algorithms)
can present viable alternatives to optimal linear programming algorithms, especially under cost
prediction inaccuracies.

Keywords: Tiering; Data Placement; In-Memory Database Systems; Linear Programming; Cost
Models

1 Data Placement for In-Memory Database Systems

In contrast to traditional disk-based database management system (DBMS), in-memory
database management systems (IMDBMSs) store their data in dynamic random-access
memory (DRAM) instead of comparatively slow hard disk drives (HDDs) or solid state
drives (SSDs). Holding all data in main memory allows for faster query processing, which
in turn facilitates business applications, for example, by flexibly computing aggregates
on-the-fly [ÖTT17, Pl14]. However, IMDBMSs inherently come with high main memory
consumption, which can result in increased operating costs for pure in-memory database
systems [Lo19]. The continuously growing amounts of data aggravate this problem,
increasing the need for larger-than-memory DBMS [Ma16]. Furthermore, DRAM capacity
growth is slowing down and is expected to reach an upper limit [Ma02, Sh20].
Concluding, we argue that it can be desirable to reduce the main memory consumption
of IMDBMS. Tiering, i.e., placing selected data on other memory/storage devices with a
lower cost per dollar, is a viable strategy to reduce the DRAM consumption [Du16]. When
1 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Deutschland ben.hurdelhey@student.hpi.de
2 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Deutschland marcel.weisgut@hpi.de
3 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Deutschland martin.boissier@hpi.de

cba doi:10.18420/BTW2023-02

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 47

mailto:ben.hurdelhey@student.hpi.de
mailto:marcel.weisgut@hpi.de
mailto:martin.boissier@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-02

2 Hurdelhey, Weisgut, and Boissier

moving data from DRAM to devices such as persistent memory (PMem) or SSD, we have
to keep in mind that these memory/storage devices offer worse performance characteristics
than DRAM, i.e., higher latencies and lower bandwidths. Moving the entire stored database
to another device could therefore cause substantial data access cost increases and, thus,
increased query latencies. However, data access in database queries is often highly skewed
because some part of the data is frequently accessed while another part is only rarely or
never queried. This skew is demonstrated by analyses of production database systems by
Höppner et al. [HWR14, p. 68], Dreseler [Dr22, p. 12], and Boissier et al. [BSU18, p. 210].
With tiering, we can exploit data access skew by preferably storing the infrequently accessed
data on the slower but less expensive memory/storage devices. The critical challenge is
determining a data placement [Dr22, Vo20], i.e., an assignment of data to devices, to
minimize the runtime performance impacts while reducing the DRAM usage. We refer to
the series of instructions that determines a data placement as the placement algorithm.
We make the following contributions to advance automatic data placement for IMDBMS.

• We propose a placement system for columnar relational in-memory database systems
with horizontally partitioned tables. The system is based on linear programming (LP)
algorithms and supports multi-constraint multi-device data placement decisions before
and after the hardware purchase (Sect. 2). We exemplarily implemented the placement
selection system for the open-source in-memory research database Hyrise [Dr19].

• For efficient and accurate placement cost prediction, we propose and evaluate a
calibrated cost model based on access tracking data, which allows for efficient cost
prediction (Sect. 3).

• We propose and compare multiple placement algorithms and determine a Pareto-
optimal trade-off between resource efficiency and result quality, demonstrating that
simple algorithms (e.g., Greedy, Knapsack) can be viable alternatives to optimal
linear programming algorithms (Sect. 4).

2 Automatic Placement Decisions

Our data placement approach has the following general characteristics.
• The data placement module works autonomously. Manual database administration is

laborious and error-prone [Ma21]. Placement decisions can be complex, and it can
be infeasible to manually determine the optimal data placement.

• While it is possible to place temporary data structures used during query processing
on secondary devices (i.e., devices other than DRAM) [Da21], we focus on evicting
append-only data structures of the database system’s base tables. Eviction of temporary
data structures is required for database operator execution when an operator requires
more DRAM than available.

• Our goal is to move infrequently accessed data to slower devices to maintain
acceptable query latencies. The workload of the database, i.e., the queries being
run, determines the access characteristics of the stored data. We incorporate access
tracking information. Thus, our approach is workload-driven.

48 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 3

• While some of the related research has considered only two de-
vices [BSU18, Dr22, La22], we examine data placement techniques that support an
arbitrary number of devices. In addition, we organize the devices in a tierless pool,
with no fixed categorization or performance ordering of the devices, similar to [Vo20].
Contrarily to the traditional memory and storage hierarchy shown in Fig. 1a, we regard
the devices as separate entities with different access characteristics, as illustrated
in Fig. 1b. The term tiering is widely used and understood [BSU18, Dr22, Du16].
However, we use the term devices instead of tiers to not imply any fixed categorization
or ordering of the devices by their price or access performance4.

L3 Cache

DRAM

SSD

HDD

...

...

Pr
ic

e,
 B

an
dw

id
th

C
ap

ac
ity

, L
at

en
cy

(a) Traditional memory and storage hierarchy.
Latency

Ba
nd

w
id

th

L3
Cache

DRAM

Low-latency
SSD

Multi-SSD RAID 0

HDD

AWS S3

(b) Bandwidth and latency of exemplary de-
vice classes.

Fig. 1: Tierless device pool concept. Device characteristics based on [Am21, Ap19, Dr22, Wu21] and
fio [Ax22] measurements for the devices in Sect. 2.2 as specified at https://github.com/benrobby/
hyrise-data-placement#fio.

2.1 Data Placement in Hyrise

We propose a data placement selection module for Hyrise. The module’s main objective
is to support placement algorithm and cost model experiments. The placement module
consists of a plugin for Hyrise, which interacts with the database system, and a standalone
module to determine the data placements5.
Hyrise is a columnar in-memory database system. As described by Dreseler et al. [Dr19,
p. 316], tables are horizontally partitioned into chunks, whereas chunks are mutable as long
as data is added and become immutable and read-optimized once their capacity is reached.
With the default chunk size used in this work, a single chunk stores 65 535 tuples. Each
chunk is vertically partitioned into segments, whereas each segment corresponds to one
fraction of a column of the table. Each segment can be encoded independently. Dictionary
encoding is the default encoding in Hyrise, which we also use in this work. Hyrise uses

4 The Encyclopædia Britannica defines a tier as “a row or layer of things that is above another row or layer”. The
definition can be found at https://www.britannica.com/dictionary/tier

5 More information on the placement selection module for Hyrise can be found at https://github.com/benrobby/
hyrise-data-placement.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 49

https://github.com/benrobby/hyrise-data-placement#fio
https://github.com/benrobby/hyrise-data-placement#fio
https://www.britannica.com/dictionary/tier
https://github.com/benrobby/hyrise-data-placement
https://github.com/benrobby/hyrise-data-placement

4 Hurdelhey, Weisgut, and Boissier

multi-version concurrency control (MVCC) to isolate concurrent transactions. Instead of
updating a row, a new row is written, and the old row is marked as invalid [Dr19, p. 320].
The placement granularity defines the data unit at which we make placement decisions
and move data between tiers. We make placement decisions at a segment granularity to
capture both unused columns and vertical skew with multi-dimensional access tracking and
placement decisions [Dr22, pp. 97–100].
Access tracking allows observing the access frequencies of stored data. This information
is crucial for deciding on which device a specific part of the data is to be stored on.
Corresponding to the segment granularity of the placement decisions, we track data accesses
for each individual segment using Hyrise’s per-segment access counters [Dr22, pp. 102–104].
For each segment, Hyrise maintains access counters for sequential, monotonic, random,
and point access patterns [Dr22, p. 92].
Hyrise uses C++17’s polymorphic memory resources (PMRs) to encapsulate the alloca-
tion behavior on different devices and add eviction capabilities to arbitrary data struc-
tures [Dr22, p. 79-81]. We supply custom memory resources to allocate and deallocate
memory on given devices. This approach is based on an existing implementation for
Hyrise [We22]. The memory resources use jemalloc to manage the memory allocations and
deallocations. In particular, the resource for block devices supplies hooks (i.e., function
pointers) to jemalloc to control the underlying memory allocations of the memory allocator.
These hooks allocate memory from memory-mapped UMap regions corresponding to
one file on the given device (e.g., on an SSD). UMap [Pe19] is a user-space page fault
handler that allows for configurations such as adjusting the page size or buffer size. Limiting
the memory mapped buffer size gives us control over UMap’s eviction behavior. For
our experiments, restricting the memory mapped buffer size is crucial so a device does
not degenerate to a buffer that can hold all stored data in DRAM. Therefore, we limit
the UMap buffer size to 250 MB. Previous research found the optimum page size to be
workload-dependent [We22, p. 1205]. However, we use a fixed page size of 128 KiB as this
configuration is not our research focus. With the segment granularity, we migrate given
segments between devices during the runtime of the DBMS. The database system might
perform work during the migration and even access the exact segment currently being
migrated. For this reason, we first copy the segment to the new device and then replace the
old segment in the chunk with the new segment using an std::atomic_store [Dr22, p. 83].

2.2 Multi-Objective Data Placement with Linear Programming

In modern cloud environments, traditional on-premise assumptions regarding the device
purchase no longer apply. For example, the device hardware is no longer purchased and
used throughout the entire device lifespan. Instead, cloud environments allow users to
easily migrate between different compute and storage hardware6 with pay-as-you-go pricing
models. This ability to flexibly reconfigure the used devices allows for new data placement

6 For example, virtual machines can be rented and migrated on Amazon AWS (https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/ec2-instance-resize.html).

50 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html

Automatic Data Placement 5

applications throughout the entire DBMS life-cycle. Our placement selection module
supports the following three use cases, which we refer to as objectives. For objective O1, we
assume the devices are already purchased, and their respective byte capacities constrain the
data placement. The goal is to achieve the best possible query runtime performance within
the memory budget. Objective O2 occurs during the purchase phase of database deployment.
This objective aims to determine purchase recommendations that satisfy a latency constraint
for the workload runtime while minimizing the monetary costs for the memory and storage
devices. Objective O3 aims to determine purchase recommendations that minimize the
predicted query runtimes given a fixed monetary budget for memory/storage devices. We
formulate these placement selection problems as linear programming models.

Objective O1: Byte Capacity Constrained Placement Configurations The first objective
that our solution supports is minimizing the end-to-end runtime of the database system for a
given set of devices, each with a fixed byte capacity. The task of the placement selection
algorithm is to determine values for the decision variable 𝑥𝑡 ,𝑎, 𝑝,𝑑 , which corresponds to
assigning a segment in table 𝑡, attribute 𝑎, partition 𝑝, to a device 𝑑.𝑇 and 𝐷 are the numbers
of tables and devices. 𝐴 and 𝑃 are the maximum numbers of attributes and partitions over
all tables. For these numeric parameters, we use the notation 𝑡 ∈ 𝑇 , which is equivalent to
𝑡 = 1, ..., 𝑇 , for improved readability. For example, for three devices, 𝑑 ∈ 𝐷 ≡ 𝑑 ∈ {1, 2, 3}.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥𝑡,𝑎,𝑝,𝑑∈{0,1}𝑇×𝐴×𝑃×𝐷

∑︁
𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑐𝑡 ,𝑎, 𝑝,𝑑 (1)

𝑠.𝑡.
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 ≤ 𝑏𝑑 ∀𝑑 ∈ 𝐷 (2)

(
∑︁
𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑) = 𝑖𝑡 ,𝑎, 𝑝 ∀𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑃 (3)

The objective (1) of the integer linear programming (ILP) model is to minimize the predicted
costs 𝑐𝑡 ,𝑎, 𝑝,𝑑 of all segment assignments. Depending on the cost model’s accuracy, the
objective value can become an accurate runtime prediction for data placements. The LP
objective is subject to two constraints. The constraint (2) ensures that the capacity of each
device 𝑏𝑑 is not exceeded by the accumulated segment size 𝑠𝑡 ,𝑎, 𝑝 of the segments assigned
to it. Furthermore, the constraint (3) requires the model to assign each segment to exactly
one device: 𝑖𝑡 ,𝑎, 𝑝 ∈ {0, 1} is a binary function guaranteeing that only existing segments
(due to some tables having more attributes than other tables) will be assigned to a device.
Contrarily, non-existing segments will not be assigned to any device.

Objective O2: Latency Constrained Buying Recommendations Objective O2 assumes
that the user, i.e., the database administrator, wants to pose latency constraints on the
database system and spend as little money as possible on devices to satisfy these constraints.
In our case, we select the latency constraint that the cumulative runtime of all queries in a

Workload-Driven Data Placement for Tierless In-Memory Database Systems 51

6 Hurdelhey, Weisgut, and Boissier

given workload must not exceed a given maximum latency. The algorithm minimizes the
dollar costs for the devices required to comply with the given latency constraints. For this,
the algorithm determines the hypothetical data placement that satisfies the given latency
constraint. In the resulting data placement, the memory or storage usage per device will
become the buying recommendation for the memory/storage devices.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥𝑡,𝑎,𝑝,𝑑∈{0,1}𝑇×𝐴×𝑃×𝐷

∑︁
𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 · 𝑔𝑑 (4)

𝑠.𝑡.
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑐𝑡 ,𝑎, 𝑝,𝑑 ≤ 𝑜 (5)

(
∑︁
𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑) = 𝑖𝑡 ,𝑎, 𝑝 ∀𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑃 (6)

The ILP model is similar to the O1 model. We introduce the maximum runtime cost value 𝑜
and the variable 𝑔𝑑 for the cost of a device 𝑑 in dollars per byte. The objective (4) of this ILP
model is to minimize the total dollar cost of the data placement. The model calculates the
dollar cost for a specific data placement using the segment sizes in bytes and the respective
device prices in dollars per byte. The constraint (5) calculates the total predicted runtime
cost value and poses an upper limit to this cost.
Our cost model’s runtime predictions are inaccurate. Therefore, we infer the maximum
runtime cost value 𝑜 from a given maximum end-to-end latency using experimentally-
determined linear interpolation. Calculating the parameters for this formula requires
measurements of end-to-end database execution times, which can be slow. Furthermore, a
recalculation is necessary for every database and hardware change. For these reasons, we
consider improving the underlying cost model to output more accurate end-to-end runtime
predictions as the critical challenge.

Objective O3: Dollar-Budget Constrained Buying Recommendations The third ob-
jective serves the use case that a user has a certain amount of money to spend on their
infrastructure. While allocating more central processing unit (CPU) resources can be a
strategy to reduce query runtimes, we focus on a given budget for memory and storage
devices. With their monetary budget 𝑚, the user wants to buy the devices that allow for the
best runtime performance. The parameter 𝑔𝑑 stores the cost of a device 𝑑 in dollars per byte.

52 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 7

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥𝑡,𝑎,𝑝,𝑑∈{0,1}𝑇×𝐴×𝑃×𝐷

∑︁
𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑐𝑡 ,𝑎, 𝑝,𝑑 (7)

𝑠.𝑡. (
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 · 𝑔𝑑) ≤ 𝑚 (8)

(
∑︁
𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑) = 𝑖𝑡 ,𝑎, 𝑝 ∀𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑃

(9)

The objective (7) of this ILP model is to minimize the predicted runtime costs of the data
placement. The objective is subject to two constraints. The constraint (8) asserts that the
data assignment to the devices does not exceed the monetary budget. Furthermore, this ILP
model also includes constraint (9) that forces segments to be assigned to exactly one device.
In the above model for objective O3, we considered the dollar costs of the devices as a
continuous price in dollars per used byte. This assumption can hold for fine-granular storage
rentals from cloud service providers. However, we are limited to a discrete set of available
byte capacities when purchasing raw storage device hardware. To support discrete device
capacities, we replace the constraint (8) with the constraint (11). For each device 𝑑, we
assume a given list of length 𝐽 that is sorted in ascending order. The list contains the
discrete device capacities 𝑒𝑑, 𝑗 where 𝑗 = 1..𝐽 indexes the 𝐽 distinct available capacities.
Furthermore, equation (10) introduces a variable 𝑠𝑥,𝑑 for the size in bytes of the segments
assigned to a device 𝑑 according to the values of the decision variables 𝑥𝑡 ,𝑎, 𝑝,𝑑 .

𝑠𝑥,𝑑 =
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 (10)

(
∑︁
𝑑∈𝐷

𝑔𝑑 · 𝑎𝑟𝑔𝑚𝑖𝑛𝑒𝑑, 𝑗 ,𝑠𝑥,𝑑≤𝑒𝑑, 𝑗 𝑒𝑑, 𝑗) ≤ 𝑚 (11)

The formalization above contains a non-linearity in the 𝑎𝑟𝑔𝑚𝑖𝑛 expression (11) as it is not
a linear combination of its input variables. Therefore, we cannot solve this model in the
presented form using linear solvers. However, the non-linearity can be substituted by an
equivalent formulation in linear terms.

Evaluation Setup We conduct our measurements on a machine with two AMD EPYC
7F72 CPUs, each with 24 physical cores, 48 threads, a 192 MB shared L3 cache, and 256 GB
of DDR4 memory with a theoretical per-socket memory bandwidth of 204.8 GB/s [Ad21].
Per CPU, the DRAM is distributed across eight Samsung M393A4G43AB3 dual in-line
memory modules (DIMMs), each with a size of 32 GB. We pin processes and memory to a
single node using numactl for our measurements on this multi-socket system. The machine

Workload-Driven Data Placement for Tierless In-Memory Database Systems 53

8 Hurdelhey, Weisgut, and Boissier

runs Ubuntu 22.04 LTS with the Linux kernel 5.15.0-41-generic. We compile Hyrise with
GCC 10.3 and use Python 3.10.4 to execute the placement selection module. We configure
Hyrise to use all available cores on the given non-uniform memory access (NUMA) node.
For our measurements, we set the number of cores that Hyrise can use to 24, which is the
number of available physical cores on one NUMA node of our test system. Furthermore, we
set the number of clients to eight. Each client corresponds to one stream of queries we send to
the database system concurrently. Moreover, we randomize the order of the queries for each
client to utilize the database’s resources evenly. In combination, our parameter values for the
number of cores and clients allow us to measure the multi-threaded database performance.
To evaluate the query latencies, we execute queries of the join order benchmark (JOB), TPC
Benchmark DS (TPC-DS), and TPC Benchmark H (TPC-H) benchmarks. Unless specified
otherwise, we set the scale factors of TPC-H and TPC-DS to ten to obtain a data size that
exceeds the benchmark machine’s cache sizes. The JOB does not have a scale factor.
In our experiments, we use the following three devices: DRAM, a redundant array of
independent disks (RAID) of two Micron 7450 NVM Express (NVMe) SSDs (SSD_BAND),
and a low-latency Intel Optane DC Series SSD (SSD_LAT). The SSD RAID is of type
0. SSD_LAT has a lower access latency, while SSD_BAND offers higher bandwidth.
In measurements with the fio utility [Ax22] and the Intel Memory Latency Checker
(MLC) [Vi21], the devices DRAM, SSD_BAND, and SSD_LAT had a read latency of 130,
70 000, and 12 000 nanoseconds, respectively. Furthermore, the sequential multi-core read
bandwidth was 141.3, 12.5, and 2.4 GB per second. As a baseline, we also investigated a
second set of devices consisting of DRAM, an SSD, and an HDD. We refer to this set as the
ordered device set, opposed to the tierless device set. These devices have a clear ordering
by their access performance.
We use the commercially available Gurobi solver [Gu21a] to solve the specified LP models.
Previous research has found this solver to offer good runtime performance for similar
applications [Bo22, p. 785] compared to other solvers, such as SCIP [Ga20] or Cbc [Lo03].
The optimality gap [Gu21b] is the maximum accepted gap between the objective value of
the solution that the solver terminates with and the optimal objective value. We set this
optimality gap to 1% as we experienced solver timeouts for smaller values. Furthermore, we
limit the maximum execution time to 500 seconds. Finally, we set the number of threads to
the number of cores of the test machine, i.e., 24 threads. We formulate the LP models using
Pyomo [By21, HWW11], a Python-based open-source optimization modeling language
that allows for interchangeable solvers.

Exemplary Placement Decisions Fig. 2 shows exemplary placement decisions of our
system for the TPC-H benchmark using the three objectives O1, O2, and O3. The placement
behavior for the JOB and TPC-DS benchmark shows similar patterns. For each given
constraint (e.g., DRAM capacity, latency budget, dollar budget) that we vary along the
x-axis, the plots display the percentage of data stored on the respective devices on the y-axis.
Fig. 2a shows the objective O1 placements. For each DRAM budget, the algorithm uses
all available DRAM as it allows for the lowest predicted workload runtime. We define the

54 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 9

(a) O1 device usages. The DRAM
budget is varied between zero and
ten GB in 11 steps.

(b) O2 purchase recommenda-
tions. The latency budget is var-
ied between 9 and 132 seconds
in 50 steps.

(c) O3 purchase recommendations for dis-
crete device sizes. The dollar budget is varied
between 241 and 6436 dollars in 50 steps.

Fig. 2: Exemplary Data Placements for objective O1, O2, and O3 for the TPC-H benchmark with
scale factor ten. TPC-H scale factor five for the O2 purchase recommendations.

workload runtime as the runtime required to execute all queries of a workload (e.g., all
TPC-H queries) once. For a DRAM budget of zero GB, most segments are assigned to
SSD_LAT while SSD_BAND holds two GB of data. The latency-optimized SSD_LAT
holds the segments with predominately random accesses, while SSD_BAND holds segments
that are frequently accessed sequentially. In a comparison between the tierless device set
and the alternative ordered device set, we found that our placement system can leverage
the tierless property adequately. Fig. 2b shows the placements for objective O2. For the
minimum latency budget, approximately 45 percent of the data is stored in DRAM. In
comparison, the remaining 55 percent of data are unused segments that can be stored on
SSD_BAND without affecting the workload latency. For the JOB and TPC-DS benchmark,
25 and 49 percent of the data is unused, respectively. In our algorithm, a post processing
step assigns the unused segments to the least expensive device with available capacity.
Directly implementing this functionality in the LP model by adding a device penalty to the
unused segments’ cost proved infeasible. The device penalty value had to be larger than the
optimality gap but smaller than the minimum cost for used segments. With the minimum
cost for used segments being smaller than the optimality gap in our experiments, this was
not possible. Fig. 2c shows the objective O3 placements for discrete device sizes. With an
increasing dollar budget, the algorithm can gradually afford more device space for faster
devices, such as DRAM. As we artificially limited the available discrete device capacities to
integer GB values (e.g., 1 GB, 2 GB, 3 GB), the algorithm affords the devices in steps. The
less expensive SSD_LAT precedes the DRAM purchase. Interestingly, the DRAM usage is
not monotonically increasing. For a dollar budget of 2000 cents, the model increases the
SSD_LAT usage to two GB while it reduces the DRAM usage from two GB to one GB.
Random access is the dominant access pattern of the segments assigned to SSD_LAT. As
the bandwidth-optimized SSD_BAND has a higher read latency than the other devices,
this decrease in DRAM usage thus allows the model to assign more random access-heavy
segments to other devices than SSD_BAND and minimize the predicted runtime.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 55

10 Hurdelhey, Weisgut, and Boissier

2.3 Dynamic Workloads

We define a workload as dynamic if it has a temporal skew in the queries being run during
its duration. Our system supports these workloads by updating the placement regularly. We
use windowing to collect access tracking information. The system bases the placement
decisions on only the tracked segment accesses that occurred since the last placement update.
In our experiments, we set the window size to two minutes. With these periodic updates,
we successfully adapted the placement to the changing workload and reduced the query
latencies accordingly. However, this reactive approach cannot predict future workloads.
Furthermore, recurring workload changes might cause the placement to oscillate between
multiple configurations, incurring high segment migration costs. Frequent and fast updates
of the data placement are critical to quickly react to workload changes. The update frequency
is limited by the runtime of the placement algorithm and the runtime required to apply a
placement configuration. Thus, dynamic workload support is an application that requires
low-latency placement algorithms, which we investigate in Sect. 4.2.

3 Data Placement Cost Models

We want to investigate how to efficiently estimate data placement effects on query runtime
with sufficient accuracy using simple cost models. For this, we build cost models based on
(i) Hyrise’s segment access counters and (ii) device calibration data.

3.1 Assumptions

All cost models proposed in this work make the following similar underlying assumptions.

I/O-Dominated Workloads Our approach focuses on estimating data access costs. Thus,
we do not directly estimate the costs of operators, such as joins or aggregates, executed
during query processing. However, we indirectly include their costs as these operators might
perform data accesses tracked with Hyrise’s access counters. Similarly to Vogel et al. [Vo20,
p. 2666], we argue that our focus on data access costs might decrease the absolute accuracy
of our runtime predictions. However, the runtime predictions can still be correct in relation
to each other. Nevertheless, even this relative measure is subject to the accuracy of the
data access runtime cost predictions. As an example for input/output (I/O)-focused runtime
predictions, let us consider a workload defined by one query that is executed. For this query,
we assume that the CPU-heavy work in the query’s operators (e.g., building a hash map in
a join operator) is independent of the data access in the operators (e.g., materializing all
values of a position list before building the hash map). The CPU-heavy work then adds a
static overhead that is independent of the data placement of the segments. Therefore, we can
compare the cost estimations of different data placements, and the differences between the
estimates are correct, except for a constant overhead. In general, I/O is often a bottleneck
for modern CPUs [HSY01]. Thus, I/O-dominated workloads are a relevant category of
workloads. We argue that data access costs can be a good approximation for these workloads’
overall query latency performance with the previous reasoning.

56 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 11

Independent Data Placement Decisions In this work, a placement decision for one
segment can be made independently of a placement decision for another segment. While
interactions between placement decisions could be possible, we exclude this case to limit
the complexity of the placement algorithms. Similarly, our cost models make independent
predictions per segment. This simplification allows us to limit the complexity of the cost
models but can lead to inaccuracies. For example, an operator execution might read two
columns in parallel, and its execution time might be determined by the maximum scan time
of both columns. Furthermore, we consider the devices’ access performance characteristics
unaffected by our placement decisions. Similarly to the simplification above, this assumption
allows us to limit the complexity of the data placement algorithms and cost models. To
illustrate where this assumption can fail, let us assume that an operator execution reads
two segments in parallel. If these two segments reside on the same device, the device’s
bandwidth can be impacted, and it could be beneficial to distribute the segments to different
devices. On HDDs, multi-threaded reads can even decrease the read throughput due to
increased seek time [Vo20, p. 2666].

3.2 Cost Model Definition

We propose the calibrated and workload-based cost model C3. Furthermore, we compare
model C3 with previous development iterations C0, C1, and C2. The cost model C3 uses
device calibration data and segment access information to estimate the runtime performance
impact when a segment is assigned to a specific device.

𝑐3
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑢𝑑,𝛾, b𝑡,𝑎,𝑝 · ℎ𝑡 ,𝑎, 𝑝,𝛾 ·
𝑠𝑡 ,𝑎, 𝑝

𝑛𝑡 ,𝑎, 𝑝
(12)

Model C3 predicts the runtime cost of assigning a segment in table 𝑡, attribute 𝑎, and
partition 𝑝 to device 𝑑 using the formula in (12). The formula sums over all access patterns
𝛾 ∈ Γ (sequential, monotonic, random, and point). Per access pattern, the model calculates
the cost prediction as a product of the calibration value 𝑢𝑑,𝛾, b𝑡,𝑎,𝑝 , the access counter
ℎ𝑡 ,𝑎, 𝑝,𝛾 for the respective access pattern, and the byte size per value 𝑠𝑡,𝑎,𝑝

𝑛𝑡,𝑎,𝑝
, where 𝑛𝑡 ,𝑎, 𝑝 is

the number of values in a segment. The calibration value 𝑢 takes the parameter b𝑡 ,𝑎, 𝑝 that
yields the segment’s data type. The set of possible values b𝑡 ,𝑎, 𝑝 ∈ Ξ = {𝑠𝑡𝑟𝑖𝑛𝑔¬𝑆𝑆𝑂, 𝑓 𝑙𝑜𝑎𝑡}
contains two data types: non-small string optimization (SSO) strings and floating-point
numbers. Our specialized 𝑠𝑡𝑟𝑖𝑛𝑔¬𝑆𝑆𝑂 calibration reads strings with an average length of 44
bytes, which exceeds the SSO threshold. The float calibration is used as the default for all
other segment data types. SSO is a technique that compilers use to avoid dynamic memory
allocations on the heap and improve data locality. As Hyrise stores the values of string
segments as C++ std::string objects, this optimization applies in Hyrise. If a string’s
size is below the SSO threshold, the content of the string can be stored on the stack in
the string object itself. For example, GCC has an SSO threshold of 15 bytes. Contrarily,
the content of strings that exceed this threshold is stored on the heap, which means that
the string object has to hold a heap pointer to the underlying string buffer. This additional
pointer redirect when reading the string’s content is equivalent to random access, as the

Workload-Driven Data Placement for Tierless In-Memory Database Systems 57

12 Hurdelhey, Weisgut, and Boissier

memory layout of the underlying string buffers is undefined. For strings residing on devices
with poor random access characteristics (i.e., a high read latency), access to string segments
can incur high runtime costs. We experimentally determine the calibration values 𝑢𝑑,𝛾, b𝑡,𝑎,𝑝
by benchmarking a read workload for each combination of access pattern, device, and
data type. For the data type, we consider strings with a length larger than 15 bytes and
floating-point numbers with single precision. However, segments of integer data type showed
the same calibration values in our experiments. The calibration workload reads all values of
a column with an uncompressed total size of 720 MB. Google Benchmark [Go22a] repeats
the measurements until a stable runtime is reached. Between benchmark iterations, random
data is read to flush the UMap cache and the CPU caches, so we do not measure cache
effects. The calibration finishes in less than 90 minutes, though it could be reduced to a
fraction of that by reducing the number of values read without significantly sacrificing
accuracy.

Fig. 3: Device calibration for different access patterns, data types, and devices. Multi-threaded reads
(24 threads) measured on TPC-H data with scale factor ten.

Fig. 3 shows the calibrated runtimes for both data types. The calibrated values are the
read times normalized as nanoseconds to read one byte with the respective access pattern.
For example, the calibrated sequential byte access time for DRAM is 0.011 nanoseconds,
equivalent to a read bandwidth of 90 GB per second. This calibrated DRAM bandwidth is
smaller than the maximum bandwidth measured with Intel MLC of 141.3 GB per second,
demonstrating that the calibration can improve the cost model’s accuracy. We explain this
difference between theoretical and utilized bandwidth with CPU overhead for decoding
and processing the read data. In the calibration data, the low-latency SSD_LAT shows
faster random access speed while SSD_BAND is faster for the remaining access patterns.
For example, for the sequential accesses, the SSD_BAND achieves a bandwidth of 8.25
GB per second, which exceeds the theoretical maximum bandwidth of SSD_LAT by 3.4
times. The calibration not only allows us to distinguish the runtime performance of the
devices but also supplies information about the importance of specific access patterns and
data types. Fig. 3 shows that sequential access allows for the fastest read speed while the
random access pattern has the highest runtime. Previous research showed that the ability to
pre-fetch and cache data significantly influences the runtime performance of random data
accesses [He21, p. 32]. Therefore, data accesses that follow the random and point access
pattern incur the highest runtime. However, in an exemplary TPC-H benchmark run in

58 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 13

Hyrise, 106 as many random accesses as point accesses were recorded. These measured
calibration values thus support the findings of Dreseler [Dr22, p. 120] that random access
runtime performance greatly influences end-to-end database system runtime for Hyrise. The
calibrated runtime for the string data type is significantly higher than for the float data type.
The geometric mean of the string calibration values is 389.6 nanoseconds, which is 20 times
higher than 19.9 nanoseconds, the geometric mean of the float calibration. We explain these
differences with the second pointer indirection required to read non-SSO strings, which is
equivalent to random memory access.
We compare the presented cost model with three iterations shown in (13)-(15). Model C0
does not use calibration data and corresponds to the model proposed by Dreseler [Dr22]
using manually-determined weights 𝑤𝛾 . The superscript number 𝑣 in the cost formula
𝑐𝑣
𝑡,𝑎, 𝑝,𝑑

indicates the cost model version.

𝑐0
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑤𝛾 · ℎ𝑡 ,𝑎, 𝑝,𝛾 (13)

𝑐1
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑢𝑑,𝛾 · ℎ𝑡 ,𝑎, 𝑝,𝛾 (14)

𝑐2
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑢𝑑,𝛾 · ℎ𝑡 ,𝑎, 𝑝,𝛾 ·
𝑠𝑡 ,𝑎, 𝑝

𝑛𝑡 ,𝑎, 𝑝
(15)

Furthermore, we considered extending our cost model C3 with a cache miss rate prediction,
as introduced by Lasch et al. [La22]. However, the proposed function did not model the
CPU cache behavior accurately in our experiments. The maximum segment size in Hyrise
was one order of magnitude smaller than the last level cache size, and thus the predicted
cache miss rate was 0.05 for all segments. Therefore, the authors’ assumption that the cache
miss rate is independent for each single data structure was not met in our application.

3.3 Evaluation

The upper plots in Fig. 4 show the measured workload runtime for data placements
determined with the objective O1 algorithm based on the respective cost model. The
runtimes were measured for the JOB, TPC-DS, and TPC-H benchmark with scale factor
ten and the DRAM capacity is varied between zero GB and full capacity. We consider only
DRAM and SSD_BAND due to the limitations of cost model C0. The data placements
for zero GB DRAM capacity and full capacity are thus the same across all cost models
because all segments are assigned to the same device. Consequently, the measured query
latencies are almost equal for these two cases. For all three workloads, the figures show
that DRAM capacity thresholds exist where adding additional capacity does not decrease
the end-to-end runtime. These thresholds correspond to the unused data per benchmark.
Compared to the C3 cost model, the mean end-to-end measured runtimes for the C0, C1,
and C2 models are 31, 18, and 3 percent higher, respectively. The lower plots in Fig. 4
show the predicted runtimes by the respective cost models. The cost models predict the

Workload-Driven Data Placement for Tierless In-Memory Database Systems 59

14 Hurdelhey, Weisgut, and Boissier

0 1 2 3 4
DRAM Capacity [GB]

0

100

101

102

103

104

W
or

kl
oa

d
Ru

nt
im

e
W

ith
 D

at
a

Pl
ac

em
en

t B
as

ed
On

 O
1

LP
 A

lg
or

ith
m

 [s
]

Measure-
ment

C0
C1
C2
C3
End-
To-
End

0 1 2 3 4 5 6 7
DRAM Capacity [GB]

0 2 4 6 8 10
DRAM Capacity [GB]

Fig. 4: Comparison of (i) measured end-to-end workload runtime and (ii) runtime prediction accuracy
for data placements determined with the objective O1 ILP algorithm based on the respective cost
model.

workload runtimes for data placements determined with the O1 algorithm and cost model
C3. Model C0 underestimates the runtime by up to two orders of magnitude compared
to the end-to-end measured runtimes. We argue that the costs predicted by C0 are on an
arbitrary scale as it is not calibrated and cannot be seen as runtime predictions. Model C3
often overestimates the workload runtime. Potential reasons why the end-to-end measured
runtimes are lower than expected are that model C3 overestimates data access costs because
parallelization and caching speed up data accesses.
In conclusion, we showed that calibrated cost models offer significantly better cost predictions
than models with manually-determined weights. To efficiently estimate data placement
effects on runtime, we argue that our calibrated cost models are both simple and offer
sufficient accuracy for our application. Assessing the accuracy of single cost predictions is
challenging because no gold standard cost model exists to compare against. Experimentally
determining the cost of each segment placement is infeasible due to the large size of
the placement decision space. However, the demonstrated end-to-end placement decision
and the runtime prediction accuracy of cost model C3 show solid results and allow us to
recognize differences between the placement selection algorithms. Further adjustments
to the device calibration (e.g., by better modeling the caching behavior) could improve
the runtime prediction accuracy. Based on our development efforts, we argue that both
(i) the usage of calibration data and (ii) the calibration data quality are significant factors for
making calibrated cost models a reliable decision basis for placement selection algorithms.

60 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 15

4 Placement Selection Algorithms

Previous research [Bo22] has shown that simple heuristics can be tractable alternatives to
optimal solutions because they often offer comparable results at lower algorithm runtime
and memory usage. We investigate which trade-offs users have to make between different
data placement algorithms. We compare algorithms for objective O1 as a proxy for all
objectives. The algorithms include the LP algorithm introduced in Sect. 2, a second linear
programming algorithm that makes placement decisions with column granularity, a greedy
heuristic, and a multi-tier Knapsack algorithm.

4.1 Algorithm Descriptions

In the Greedy and Knapsack algorithm, we require computing an access performance
metric 𝑣𝑑 per device 𝑑 and calculate it with the formula in (16). The existence of such an
access performance metric implies an ordering of the devices by their access speeds (e.g.,
latency, bandwidth). This ordering contradicts our goal to organize the memory and storage
mediums in a tierless device pool with no fixed ordering. However, this sorting is not used
in our ILP solution.

𝑣𝑑 =
∑︁
𝛾∈Γ

(
∑︁
b ∈Ξ

𝑢𝑑,𝛾, b ·
∑︁

𝑡∈𝑇,𝑎∈𝐴,𝑝∈𝑃
ℎ𝑡 ,𝑎, 𝑝,𝛾) (16)

Multi-Device Greedy The Greedy algorithm orders the devices by their access perfor-
mance and assigns the segments greedily to the fastest devices. This algorithm bases on
the greedy heuristics proposed by Boissier et al. [BSU18, p. 214] and the HOT strategy by
Vogel et al. [Vo20, pp. 2667–2668]. These two related works use cost models optimized
for their respective database systems and intertwine the cost models with the placement
selection algorithms. In our work, we focus on the Greedy algorithm itself and distinguish
the placement selection algorithm from the cost model.
In the algorithm described in Algorithm 1, we first sort the devices by their access
performance 𝑣𝑑 in ascending order. To assign segments to devices, we regard the devices in
a pairwise manner, starting with the fastest devices. We thus model the decision problem
as a series of binary decisions between two devices. For each pair, we compute in Line 6
the segment scores and sort the segments according to these scores in descending order. A
segment’s score is calculated as the difference between the segment’s cost values for the two
corresponding devices. The variable 𝑐𝑤,𝑑 holds the predicted costs for assigning a segment
𝑤 to device 𝑑. We then greedily assign the segments to the current device as the device’s
byte capacity permits. Assuming 𝑆 is the number of segments and 𝐷 the number of devices,
the asymptotic complexity of this Greedy algorithm is O(𝑆 · log 𝑆 · 𝐷 + 𝐷 log 𝐷). However,
the number of devices 𝐷 is constantly three in our experiments. Another difference between
our Greedy algorithm and the previously-mentioned greedy algorithms from related work is
our focus on supporting more than two devices. For example, the HOT algorithm at table
granularity by Vogel et al. “places tables descending in order of their number of accesses on
the fastest device with enough space for the whole table” [Vo20, p. 2668]. In comparison

Workload-Driven Data Placement for Tierless In-Memory Database Systems 61

16 Hurdelhey, Weisgut, and Boissier

Algorithm 1: Greedy Placement Selection Algorithm
Data: set of all segments 𝑊 , segment sizes, segment costs 𝑐𝑤,𝑑 , device byte capacities, device

calibration
Result: data placement

1 sorted devices = sort devices by 𝑣𝑑 ascending;
2 for (𝑑𝑖 , 𝑑𝑖+1) in sorted devices do
3 if all segments assigned then
4 return data placement;
5 end
6 sorted segments = sort segments 𝑤 ∈ 𝑊 that are unassigned by (𝑐𝑤,𝑑𝑖+1 − 𝑐𝑤,𝑑𝑖) descending;
7 for segment 𝑤 of sorted segments do
8 if 𝑤 fits onto device 𝑑𝑖 then
9 assign 𝑤 to 𝑑𝑖 ;

10 end
11 end
12 end

with these related work algorithms, we argue that our Greedy algorithm can produce data
placements for multiple devices that induce lower end-to-end query latencies because we
model the cost increase between the two devices instead of the absolute costs. With the
proposed technique, our Greedy algorithm resembles the cost model usage of our ILP
models.

Linear Programming with Column Granularity We compare the objective O1 LP
algorithm and an adapted version that uses columns instead of segments as the placement
decision unit. We refer to this segment-granular LP algorithm as LP and the algorithm that
makes decisions at a column granularity as Column-LP. In related work by Vogel et al.
[Vo20, p. 2674], the authors of the Mosaic storage engine find that their column-granular
HOT column strategy outperforms the table-granular HOT table algorithm by a factor of
1.99. Similarly, we compare column and segment granularities. Our Column-LP is inspired
by Mosaic’s LOPT optimization model, which also uses column granularity. A complete
re-implementation of the LOPT model was infeasible for our comparison because the LOPT
model builds on a cost model that is intertwined with the authors’ proposed LP model and
specific to the database system’s execution model.

Multi-Tier Knapsack The multi-tier Knapsack algorithm is an implementation of the
multilevel generalized assignment problem (MGAP) simplification proposed by Dreseler
[Dr22, p. 113]. The author models the placement selection problem as a series of independent
binary decision problems between pairs of devices, similarly to our proposed Greedy
algorithms in Sect. 4.1. Due to this simplification, the MGAP approach does not necessarily
yield the optimal solution. The algorithm first sorts the devices by their access performance
𝑣𝑑 in ascending order. The devices are regarded in a pairwise manner to assign the segments
to them, starting with the fastest devices. Each binary decision problem is formulated as
a Knapsack problem to determine which segments to place on the current device 𝑑𝑖 . All

62 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 17

segments not selected for the current device will be reconsidered for the next device pair. Thus,
we do not assign segments to device 𝑑𝑖+1. The segments correspond to the Knapsack items.
The computed segment costs 𝑐𝑤,𝑑𝑖+1 − 𝑐𝑤,𝑑𝑖 are the items’ values, and the segment sizes are
the items’ weights. The byte capacity of the current device defines the size of the Knapsack.
We use the Google OR-Tools KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER with
a timeout of 500 seconds [Go22b].

4.2 Evaluation

The upper plots in Fig. 5 show the predicted workload runtime for data placements determined
with the respective algorithm. The LP algorithm consistently determines the placements with
the lowest runtime predicted by cost model C3. Relative to the LP algorithm’s mean predicted
runtime, the Column-LP algorithm’s placements incur the highest mean predicted runtime
with 203% of the LP placement’s runtime. The Column-LP is followed by the Greedy
algorithm at 136% and the Knapsack algorithm at 115% of the LP placement’s runtime. The
column-granular decisions of the Column-LP incur significantly higher runtimes because
(i) they cannot capture vertical data access skew and (ii) they cannot exhaust the device
capacities as efficiently as segment-granular placements. Furthermore, the Knapsack and
Greedy algorithms are unable to determine the optimum data placement in some conditions
due to their greedy strategy.

0 1 2 3 4
DRAM Capacity [GB]

102

103

En
d-

To
-E

nd
 M

ea
su

re
d

W
or

kl
oa

d
Ru

nt
im

e
[s

]

Algorithm
Greedy
LP
Column-
LP
Knap-
sack

0 2 4 6
DRAM Capacity [GB]

0.0 2.5 5.0 7.5 10.0
DRAM Capacity [GB]

Fig. 5: Predicted and measured runtime of data placements determined with different placement
algorithms based on cost model C3. Measurements for JOB, TPC-DS with scale factor ten, and
TPC-H with scale factor ten.

The lower plots in Fig. 5 show the end-to-end measured workload runtime for data
placements determined with the respective algorithm. Due to cost prediction inaccuracies,
not all measured runtimes show the same patterns as the predicted runtimes. In our
experiments, we also discovered cases where simpler algorithms (e.g., Greedy, Knapsack)
produced placements that incurred lower end-to-end runtimes than the placement determined
by the LP algorithm because of these inaccuracies. However, on average, the LP algorithm

Workload-Driven Data Placement for Tierless In-Memory Database Systems 63

18 Hurdelhey, Weisgut, and Boissier

determines the placements with the lowest end-to-end workload runtime. The Knapsack
algorithm’s results have the highest mean predicted runtime at 147 percent of the LP
algorithm’s results. The Greedy algorithm follows at 135 percent and the Column-LP
algorithm at 132 percent.

Fig. 6: Mean algorithm runtime and solution quality
across JOB, TPC-DS, and TPC-H benchmarks. The
solution quality corresponds to the cost model C3’s
predicted runtime to execute the workload queries
once per data placement.

An evaluation of the trade-off between al-
gorithm runtime and solution quality is
shown in Fig. 6. The algorithm choice is
subject to a pareto-optimal trade-off be-
tween both metrics. Compared to the LP
algorithm, the Knapsack algorithm’s result-
ing data placements are only 15 percent less
optimal, while the algorithm has an 80 per-
cent shorter runtime. Similarly, the Greedy
algorithm trades a 36 percent optimality de-
crease for an 81 percent runtime decrease,
making it a viable alternative to the op-
timal LP algorithm. For example, for the
TPC-H benchmark with scale factor 1 000,
1 818 000 segments need to be assigned to
the devices. In this context, the LP algorithm takes 60 minutes to determine a data placement,
whereas the Pyomo setup time and the Gurobi solver runtime are responsible for one-third of
the runtime, respectively. In contrast, the Greedy and Knapsack algorithms terminate within
20 minutes, and the Column-LP algorithm takes only 81 seconds. Memory consumption
measurements show similar patterns.

5 Related Work

Several related works on automated decision-making are shown in Tab. 1. Some of the stated
research does not determine data placements but related configurations, such as encoding
or index selection. Similar to our approach, the Mosaic storage system for the Umbra
DBMS [Vo20] determines data placements with a linear optimization model and two greedy
algorithms. However, Mosaic uses a cost model focused on sequential reads, matching
Umbra’s data access patterns. The authors compare column-granular data placements with
table-granular placements and find a 1.99× relative speedup. Further related works include
the Hybrid Data Layouts for Tiered HTAP Databases [BSU18] and the automatic tiering
research by Dreseler [Dr22].
Boissier [Bo22] proposes an optimal linear programming encoding selection algorithm
and a greedy heuristic that he often found on par with the optimal solution. The heuristic
strategy weighs the candidates by their benefit-to-cost ratio [Va00]. To predict runtime costs
of encoding configurations, Boissier uses multiple linear regression models comparable to
the work of Ma et al. [Ma21]. Another cost model approach are zero-shot models [HB22].

64 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 19

Related Decision-Making Work Granularity Config Optimization Placement Features

D
at

a
Pl

ac
em

en
t

En
co

di
ng

In
de

x

St
or

ag
e

La
yo

ut

D
ev

ic
e

C
ou

nt

O
bj

ec
tiv

e
O

1

O
bj

ec
tiv

e
O

2

O
bj

ec
tiv

e
O

3

Mosaic [Vo20] Columns n
Hybrid Layout Hyrise [BSU18] Columns 2
Automatic Tiering [Dr22] Segments 2
Encoding Configuration [Bo22] Segments - - - -
Config Optimization [RSB22] Segments n
Cost Modeling HANA [La22] Data Structures 2
Proteus and Tiresias [ALD22] Varying 2
This Work Segments n

Tab. 1: Overview of Related DBMS Configuration Selection Research

However, compared to our calibrated cost models, such learned models have high complexity,
long training times, and are hard to generalize.
Richly et al. [RSB22] optimize multiple configuration aspects jointly. The underlying cost
model exhaustively calibrates scan operations for various configurations, which results in a
long preparation phase to establish cost estimates.
Lasch et al. [La22] propose a data placement cost model for PMem, limiting the number
of devices where a data unit can be placed to two (DRAM and PMem). Their model uses
(i) device calibration data and (ii) workload information in the form of access counts, similar
to our model C3. However, the authors also model the costs for additional data structures
and regard cache miss ratios.
Finally, Abebe et al. [ALD22] propose Tiresias, a storage cost model that can predict future
workloads to optimize multiple configuration aspects jointly. Such a predictive capability
could be useful for our data placement system to anticipate dynamic workload changes.

6 Discussion

We proposed an automatic placement selection system for IMDBMS that supports multiple
placement objectives, makes workload-driven placement decisions, and manages its devices
in a tierless pool. In our exemplary implementation for the database system Hyrise, we
compared several cost models and placement selection algorithms. The proposed cost
models are applicable for database systems making similar assumptions as Hyrise (cf.
Sect. 3.1), while the proposed placement algorithms have general applicability.
Based on our comparison of an optimal linear programming algorithm, a heuristic based
on the Knapsack problem, and a greedy algorithm, we argue that the algorithm choice is

Workload-Driven Data Placement for Tierless In-Memory Database Systems 65

20 Hurdelhey, Weisgut, and Boissier

subject to a pareto-optimal trade-off between algorithm resource usage and solution quality.
The Knapsack and Greedy algorithms are viable alternatives to the resource-intensive LP
algorithm, especially under inaccurate cost predictions. Placement granularity significantly
influences the solution’s optimality, as we found column-granular placements to incur, on
average, 103 percent higher query latencies than segment-granular decisions. However,
such column-granular decisions can be viable for low-latency applications (e.g., frequent
placement updates for dynamic workloads) requiring fast re-computations of the data
placement, as the column-granular linear programming algorithm to required up to two
orders of magnitude less runtime compared to the segment-granular LP algorithm.
We found our cost model using (i) data access pattern tracking information and (ii) device
calibration data to offer sufficient accuracy to distinguish the differences between placement
selection algorithms and determine suitable placements. While other approaches, such as
learned cost models, can offer higher accuracy, they can be complex, hard to generalize, and
require expensive data collection. In comparison, our cost model is inexpensive to calibrate.
Merely moving the unused data from DRAM to secondary devices already allows for
significant DRAM usage reductions. For the JOB, TPC-DS, and TPC-H benchmark, the
share of data that could be removed from DRAM without increasing the workload latencies
were 25, 49, and 55 percent, respectively. Even naive algorithms and cost models can
determine such placement decisions, as it suffices to track data accesses.

Future Work To further improve our system’s data placements and determine the optimal
end-to-end placement, the choice of both the placement algorithm and the cost model
is relevant. Placement selection algorithms determining placements close to the optimal
solution are a necessary condition. In comparison, an optimal cost model accurately
predicting all real-world database system behavior does not exist. Thus, placement cost
modeling is a complex challenge that requires further research. Future improvements to our
cost model include calibration for all available data types and predicting database system
behavior such as caching. Additionally, operator-granular placement cost models could
enable robustness guarantees for single query runtimes. Furthermore, an open question is
whether the Greedy placement algorithm could be improved with alternative segment sorting
metrics (e.g., by their benefit-to-cost ratio). In addition, we consider extending objective O3
to optimize purchases of the entire infrastructure, including CPU resources, a future work
item. In this work, we focused on block-level devices as placement alternatives to the system’s
DRAM. Extending our system to place data on heterogeneous memory with different access
qualities, e.g., CPU-local DRAM and Compute Express Link (CXL)-attached [CX22],
disaggregated memory, is a potential future effort.

66 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 21

References

[Ad21] Advanced Micro Devices, Inc: AMD EPYC 7F72 - Technical Specification,
https://www.amd.com/en/product/9656, 2021, visited on: 10/05/2022.

[ALD22] Abebe, M.; Lazu, H.; Daudjee, K.: Tiresias: Enabling Predictive Autonomous
Storage and Indexing. Proc. VLDB Endow. 15/11, pp. 3126–3136, 2022.

[Am21] Amazon Web Services, Inc.: Maximum Transfer Speed between Amazon EC2
and Amazon S3, https://aws.amazon.com/premiumsupport/knowledge-
center/s3-maximum-transfer-speed-ec2/, 2021, visited on: 10/05/2022.

[Ap19] Appuswamy, R.; Graefe, G.; Borovica-Gajic, R.; Ailamaki, A.: The Five-
Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy. Commun.
ACM 62/11, pp. 114–120, 2019.

[Ax22] Axboe, J.: Flexible I/O Tester, https://github.com/axboe/fio, 2022, visited
on: 10/04/2022.

[Bo22] Boissier, M.: Robust and Budget-Constrained Encoding Configurations for
In-Memory Database Systems. Proc. VLDB Endow. 15/4, pp. 780–793, 2022.

[BSU18] Boissier, M.; Schlosser, R.; Uflacker, M.: Hybrid Data Layouts for Tiered
HTAP Databases with Pareto-Optimal Data Placements. In: Proceedings of
the IEEE International Conference on Data Engineering, ICDE. Pp. 209–220,
2018.

[By21] Bynum, M. L.; Hackebeil, G. A.; Hart, W. E.; Laird, C. D.; Nicholson, B. L.;
Siirola, J. D.; Watson, J.-P.; Woodruff, D. L.: Pyomo–Optimization Modeling
in Python. Springer Science & Business Media, 2021.

[CX22] CXL Consortium: Compute Express Link: The Breakthrough CPU-to-Device
Interconnect, https://www.computeexpresslink.org, 2022, visited on:
10/09/2022.

[Da21] Daase, B.; Bollmeier, L. J.; Benson, L.; Rabl, T.: Maximizing Persistent
Memory Bandwidth Utilization for OLAP Workloads. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data. Pp. 339–
351, 2021.

[Dr19] Dreseler, M.; Kossmann, J.; Boissier, M.; Klauck, S.; Uflacker, M.; Plattner, H.:
Hyrise Re-engineered: An Extensible Database System for Research in Re-
lational In-Memory Data Management. In: Proceedings of the International
Conference on Extending Database Technology, EDBT. Pp. 313–324, 2019.

[Dr22] Dreseler, M.: Automatic Tiering for In-Memory Database Systems, DOI:
10.25932/publishup-55825, PhD thesis, Universität Potsdam, 2022, 143 pp.

[Du16] Dulloor, S.; Roy, A.; Zhao, Z.; Sundaram, N.; Satish, N.; Sankaran, R.;
Jackson, J.; Schwan, K.: Data tiering in heterogeneous memory systems. In:
Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys. 15:1–15:16, 2016.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 67

https://www.amd.com/en/product/9656
https://aws.amazon.com/premiumsupport/knowledge-center/s3-maximum-transfer-speed-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-maximum-transfer-speed-ec2/
https://github.com/axboe/fio
https://www.computeexpresslink.org

22 Hurdelhey, Weisgut, and Boissier

[Ga20] Gamrath, G.; Anderson, D.; Bestuzheva, K.; Chen, W.-K.; Eifler, L.; Gasse, M.;
Gemander, P.; Gleixner, A.; Gottwald, L.; trin Halbig, K.; Hendel, G.; Hojny, C.;
Koch, T.; Bodic, P. L.; Maher, S. J.; Matter, F.; Miltenberger, M.; Mühmer, E.;
jamin Müller, B.; Pfetsch, M. E.; Schlösser, F.; Serrano, F.; Shinano, Y.;
Tawfik, C.; Vigerske, S.; Wegscheider, F.; Weninger, D.; Witzig, J.: The SCIP
Optimization Suite 7.0, http://www.optimization-online.org/DB_HTML/
2020/03/7705.html, 2020, visited on: 10/04/2022.

[Go22a] Google, LLC: Google Benchmark: A Microbenchmark Support Library,
https://github.com/google/benchmark, 2022, visited on: 10/08/2022.

[Go22b] Google, LLC: Google OR-Tools, https : / / developers . google . com /
optimization, 2022, visited on: 10/04/2022.

[Gu21a] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual, https:
//www.gurobi.com/documentation/9.5/refman/index.html, 2021, visited
on: 10/04/2022.

[Gu21b] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual - Parameter
Documentation: MIPGap, https://www.gurobi.com/documentation/9.5/
refman/mipgap2.html#parameter:MIPGap, 2021, visited on: 10/05/2022.

[HB22] Hilprecht, B.; Binnig, C.: Zero-Shot Cost Models for Out-of-the-box Learned
Cost Prediction. Proc. VLDB Endow. 15/11, pp. 2361–2374, 2022.

[He21] Heinzl, L.; Hurdelhey, B.; Boissier, M.; Perscheid, M.; Plattner, H.: Evaluating
Lightweight Integer Compression Algorithms in Column-Oriented In-Memory
DBMS. In: International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures - ADMS. Pp. 26–36, 2021.

[HSY01] Hsu, W. W.; Smith, A. J.; Young, H. C.: I/O reference behavior of production
database workloads and the TPC benchmarks - an analysis at the logical level.
ACM Trans. Database Syst. 26/1, pp. 96–143, 2001.

[HWR14] Höppner, B.; Waizy, A.; Rauhe, H.: An Approach for Hybrid-Memory Scaling
Columnar In-Memory Databases. In: International Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures
- ADMS. Pp. 64–73, 2014.

[HWW11] Hart, W. E.; Watson, J.-P.; Woodruff, D. L.: Pyomo: modeling and solving
mathematical programs in Python. Mathematical Programming Computation
3/3, pp. 219–260, 2011.

[La22] Lasch, R.; Legler, T.; May, N.; Scheirle, B.; Sattler, K.-U.: Cost Modelling
for Optimal Data Placement in Heterogeneous Main Memory. Proc. VLDB
Endow. 15/11, pp. 2867–2880, 2022.

[Lo03] Lougee-Heimer, R.: The Common Optimization Interface for Operations Re-
search: Promoting open-source software in the operations research community.
IBM J. Res. Dev. 47/1, pp. 57–66, 2003.

68 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://github.com/google/benchmark
https://developers.google.com/optimization
https://developers.google.com/optimization
https://www.gurobi.com/documentation/9.5/refman/index.html
https://www.gurobi.com/documentation/9.5/refman/index.html
https://www.gurobi.com/documentation/9.5/refman/mipgap2.html#parameter:MIPGap
https://www.gurobi.com/documentation/9.5/refman/mipgap2.html#parameter:MIPGap

Automatic Data Placement 23

[Lo19] Lomet, D. B.: Cost/Performance in Modern Data Stores: How Data Caching
Systems Succeed. In: Proceedings of the IEEE International Conference on
Data Engineering, ICDE. P. 140, 2019.

[Ma02] Mandelman, J. A.; Dennard, R. H.; Bronner, G. B.; DeBrosse, J. K.; Di-
vakaruni, R.; Li, Y.; Raden, C. J.: Challenges and future directions for the
scaling of dynamic random-access memory (DRAM). IBM J. Res. Dev. 46/2-3,
pp. 187–222, 2002.

[Ma16] Ma, L.; Arulraj, J.; Zhao, S.; Pavlo, A.; Dulloor, S. R.; Giardino, M. J.;
Parkhurst, J.; Gardner, J. L.; Doshi, K. A.; Zdonik, S. B.: Larger-than-memory
data management on modern storage hardware for in-memory OLTP database
systems. In: Proceedings of the International Workshop on Data Management
on New Hardware, DaMoN. 9:1–9:7, 2016.

[Ma21] Ma, L.; Zhang, W.; Jiao, J.; Wang, W.; Butrovich, M.; Lim, W. S.; Menon, P.;
Pavlo, A.: MB2: Decomposed Behavior Modeling for Self-Driving Database
Management Systems. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. Pp. 1248–1261, 2021.

[ÖTT17] Özcan, F.; Tian, Y.; Tözün, P.: Hybrid Transactional/Analytical Processing: A
Survey. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. Pp. 1771–1775, 2017.

[Pe19] Peng, I. B.; McFadden, M.; Green, E. W.; Iwabuchi, K.; Wu, K.; Li, D.;
Pearce, R.; Gokhale, M. B.: UMap: Enabling Application-driven Optimizations
for Page Management. In: Workshop on Memory Centric High Performance
Computing, MCHPC@SC. Pp. 71–78, 2019.

[Pl14] Plattner, H.: The Impact of Columnar In-Memory Databases on Enterprise
Systems. Proc. VLDB Endow. 7/13, pp. 1722–1729, 2014.

[RSB22] Richly, K.; Schlosser, R.; Boissier, M.: Budget-Conscious Fine-Grained Con-
figuration Optimization for Spatio-Temporal Applications. Proc. VLDB Endow.
15/13, pp. 4079–4092, 2022.

[Sh20] Shiratake, S.: Scaling and Performance Challenges of Future DRAM. IEEE
International Memory Workshop, IMW/, pp. 1–3, 2020.

[Va00] Valentin, G.; Zuliani, M.; Zilio, D. C.; Lohman, G. M.; Skelley, A.: DB2
Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes. In:
Proceedings of the IEEE International Conference on Data Engineering, ICDE.
Pp. 101–110, 2000.

[Vi21] Viswanathan, V.; Kumar, K.; Willhalm, T.; Lu, P.; Filipiak, B.; Sakthivelu, S.:
Intel Memory Latency Checker, https://www.intel.com/content/www/
us/en/developer/articles/tool/intelr-memory-latency-checker.html,
2021, visited on: 10/04/2022.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 69

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

24 Hurdelhey, Weisgut, and Boissier

[Vo20] Vogel, L.; van Renen, A.; Imamura, S.; Leis, V.; Neumann, T.; Kemper, A.:
Mosaic: A Budget-Conscious Storage Engine for Relational Database Systems.
Proc. VLDB Endow. 13/11, pp. 2662–2675, 2020.

[We22] Weisgut, M.; Ritter, D.; Boissier, M.; Perscheid, M.: Separated Allocator
Metadata in Disaggregated In-Memory Databases: Friend or Foe? In: IEEE In-
ternational Parallel and Distributed Processing Symposium, IPDPS Workshops.
Pp. 1202–1208, 2022.

[Wu21] Wu, K.; Guo, Z.; Hu, G.; Tu, K.; Alagappan, R.; Sen, R.; Park, K.; Arpaci-
Dusseau, A. C.; Arpaci-Dusseau, R. H.: The Storage Hierarchy is Not a
Hierarchy: Optimizing Caching on Modern Storage Devices with Orthus. In:
19th USENIX Conference on File and Storage Technologies. Pp. 307–323,
2021.

70 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Workload-Aware Contention-Management
in Indexes for Hierarchical Data

Kevin Wellenzohn1, Michael H. Böhlen2, Sven Helmer3, Marcel Reutegger4

Abstract: Queries in hierarchical databases (HDBs) often combine predicates referring to values of
node properties with path predicates relating to the structure, which are called property-and-path (PP)
queries. Usually, PP indexes are used to support these types of queries efficiently. In an environment
in which HDBs are updated concurrently, we encounter conflicts which may lead to transaction aborts.
We identify preventable aborts caused by conflicts in the index, while the operations in the actual
database are executed without any problems. These index conflicts are due to the deletion of a path
in the index concurrently taking place with an insertion underneath a node on the deleted path. We
leverage recent workload information to detect and suspend the deletion of substructures in PP indexes
that are likely to conflict with concurrent insertions. However, the suspension of these deletions has
a detrimental effect on the query performance, which means this becomes a tradeoff between the
number of transaction aborts and the speed of the query evaluation. We implement our approach
in Apache Jackrabbit Oak and FOEDUS, experimentally investigate the tradeoff, and show how to
balance the effects to maximize the transactional throughput for a given workload.

Keywords: hierarchical databases; structural indexes; concurrency control

1 Introduction

A lot of the data in business and engineering applications, such as bills of materials [Fi13],
enterprise asset hierarchies [Fi13], and business rules [Lo15], is organized in a hierarchical
way. Additionally, many NoSQL content stores manage hierarchical data, e.g. in the form of
JSON. Similar to relational databases, though, in which we index a subset of attributes in
a relation to speed up query evaluation, in hierarchical databases (HDBs), we also often
index a subset of nodes in a hierarchy relevant for frequent queries. This set of nodes is
application-dependent and we assume that a user flags these nodes, which are then indexed
by the system.

Clearly, in a multi-user environment, node indexes can become a bottleneck if nodes are
frequently updated concurrently. This leads to conflicts not just on the node level, but may
also result in path conflicts on common ancestor nodes of updates. We show how to prevent
path conflicts in node indexes that would otherwise lead to transaction aborts. Figure 1a
1 University of Zurich, Dept of Informatics, Binzmühlestrasse 14, 8050 Zurich, Switzerland wellenzohn@ifi.uzh.ch
2 University of Zurich, Dept of Informatics, Binzmühlestrasse 14, 8050 Zurich, Switzerland boehlen@ifi.uzh.ch
3 University of Zurich, Dept of Informatics, Binzmühlestrasse 14, 8050 Zurich, Switzerland helmer@ifi.uzh.ch
4 Adobe Systems, Barfusserplatz 6, 4051 Basel, Switzerland mreutegg@adobe.com

cba doi:10.18420/BTW2023-03

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 71

mailto:wellenzohn@ifi.uzh.ch
mailto:boehlen@ifi.uzh.ch
mailto:helmer@ifi.uzh.ch
mailto:mreutegg@adobe.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-03

2 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

(a) Hierarchical database 𝐺

content

dax

... ...

dow

tech

aapl msft∗

aid:9

pub:now

retail

wmt∗

aid:5

ftse100

... ...

(b) Node index 𝐼

index

aid

5

content

dow

retail

wmt

aid:5

9

content

dow

tech

msft

aid:9

pub

now

content

dow

tech

msft

pub:now

(c) Updates

index

aid

5

content

dow

retail

wmt

aid:5

9

content

dow

tech

msft

aid:9

pub

now

content

dow

tech

msft

pub:now

retail

wmt

pub:now

Fig. 1: Transactions 𝑇𝑖 and 𝑇 𝑗 conflict when 𝑇𝑖 deletes index node msft and its ancestors upwards (red
nodes), while 𝑇 𝑗 adds a new child to a deleted ancestor (green hatched nodes).

shows an example of a content management system (CMS), such as Adobe Experience
Manager [Ad23] or Magnolia [Ni06], built on top of an HDB. In this application scenario,
users change webpages in a private workspace of the CMS and, when finished, flag them as
being publishable: this adds a property pub with the value now to publishable nodes. For
example, in Figure 1a, the node msft is ready to be published. Eventually, the CMS pushes
the changes to the webserver and removes the property pub:now from the node msft. We
marked the indexed nodes in the HDB with an asterisk (∗) to make them easier to spot and
Figure 1b shows the corresponding index, containing the flagged nodes and their ancestors.
We now run the two transactions 𝑇𝑖 and 𝑇𝑗 on this database: 𝑇𝑖 removes the property pub
from the node msft, while 𝑇𝑗 concurrently adds pub:now to the node wmt. These updates
need to be propagated to the index (Figure 1c). 𝑇𝑖’s deletion of index node msft propagates
upwards: the empty path pub/now/content/dow/tech/msft is deleted (red nodes) since
we do not have any nodes with the property pub anymore. Concurrently, 𝑇𝑗 needs to add
the green nodes retail/wmt below dow to update the index. This results in a path conflict
between 𝑇𝑖 and 𝑇𝑗 since 𝑇𝑖 wants to delete a path, while 𝑇𝑗 wants to insert a branch on
this path. The conflict arises at the shared ancestor nodes. In our example, the nodes msft
and wmt in the index have the lowest common ancestor dow and share the path from dow to
the root. We propose a technique identifying problematic regions in node indexes leading
to conflicts, i.e., regions in which the same shared ancestor nodes are frequently inserted
and deleted. In our example, if we had kept the path from dow upwards in the index when
removing node msft, anticipating an insertion, we could have inserted node wmt without any
problems. However, this comes at a price: we temporarily keep purposeless nodes in the
index, slowing down query evaluation. We experimentally show how to balance reducing
contention with query performance to maximize the throughput.

In summary, we make the following contributions:

• We describe and define preventable aborts, which are aborts caused by propagated
node insertions and deletions in node indexes for hierarchical databases.

72 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 3

• We introduce the notion of node volatility, which allows us to identify nodes that are
repeatedly involved in preventable aborts.

• We develop the robust node index (RNI), which detects and suspends the deletion of
volatile nodes to decrease the number of preventable aborts significantly.

• We implemented RNI in Apache Jackrabbit Oak [Ap22] and FOEDUS [Ki15] and
evaluated it experimentally with different workloads and datasets. We show that
making the node index robust is more effective than (a) alternative concurrency-
control protocols reducing aborts [WK16] and (b) lazy techniques for node deletions
in indexes [Lo04, LS97], increasing the throughput by up to a factor of six.

2 Related Work

High-contention workloads are a significant bottleneck for database systems [Ap17, Ha17,
RFA16, RTA14, Ti18]. We discuss approaches that deal with contention (a) on the level of
the concurrency-control protocol and (b) on the level of the index.

The most similar approach to RNI among the protocol-level approaches is MOCC [WK16]
(that is the reason why we chose it for the experimental evaluation). It starts by using
optimistic concurrency-control (OCC) to synchronize accesses to records. However, it
also monitors the number of aborts caused by a record due to concurrent accesses. If this
number reaches a certain threshold, the record is regarded as hot and MOCC switches
to a pessimistic locking protocol to reduce the number of aborts. Like MOCC, in RNI
we monitor the load on heavily contentious nodes and switch to a different mode when
necessary. In the following, we briefly describe other protocol-level approaches. Yuan
et al. [Yu16] reduce the number of aborts in OCC by aborting a transaction only if an
essential pattern exists between transactions, which is more restrictive than the read-write
conflict OCC checks for. Similarly, Bumper [DR13] only aborts a transaction if a so-called
triad (conceptually similar to an essential pattern) is detected. Tian et al. [Ti18] propose a
contention-aware locking scheme that reduces the overall lock-waiting times. They choose
which transaction 𝑇 to grant a lock to based on the number of other transactions that depend
on 𝑇’s progress. Johnson et al. [JPA09] reduce contention in the lock manager by passing
hot locks directly from transaction to transaction, without releasing and re-acquiring them.
QURO [YC16] analyzes program code and reorganizes the code within transactions to
reduce contention by acquiring a lock as late as possible. Deterministic concurrency-control
has been proposed to reduce synchronization in replicated databases [TA10]. A transaction
acquires all locks at its start, which means that transactions competing for exclusive access
to a contended record must execute in serial order [Th12]. This prevents conflicts and aborts
due to deadlocks at the expense of concurrency (especially under contention). Calvin [Th12]
and other deterministic systems require that the read/write sets of transactions be known a
priori [Ha17], which is not the case in our application scenario.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 73

4 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Frequently inserting and deleting nodes into and from indexes is a known concurrency
bottleneck [LY81, LS97]. Lomet et al. [Lo04, LS97] propose to defer node deletions during
updates in B-trees. During deletion, the key is (eagerly) removed from the correct leaf
and if it becomes underutilized, the node deletion is deferred and processed later. When
to exactly process deferred operations is not specified [LS97], though. Even though there
is a lot of work on indexing hierarchical data [HL11, Sh15], concurrency control (CC)
specifically for indexes in HDBs has received little attention in comparison to CC for HDBs
in general [Be15, Be11, Fi02, HHL06]. For instance, there are path indexes only considering
the structure, such as DataGuides [GW97] and APEX [CMS02], and indexes that consider
the structure and values, such as IndexFabric [Co01] and CAS (content-and-structure)
indexes [Ma15, WBH20]. However, none of these papers discuss concurrency control and
we believe there is still untapped potential in this area. For example, node deletions in HDB
indexes can be suspended as long as the indexed values are removed during the deletion.
In general, this is not possible for CC in the HDB itself, as the actual removal of the node
is part of a transaction’s semantics. Workload-aware indexing has been shown to improve
index query and/or update performance [CMS02, Id11, TYJ09]. APEX [CMS02] optimizes
frequently queried paths in XML databases. QU-Trade [TYJ09] uses the recent workload
to balance the cost of writing/reading frequently updated/queried objects. Again, none of
these approaches discuss concurrency control. In contrast, adaptive indexing incrementally
sorts and refines an index during query execution [Id11], sketching ideas on how to realize
CC in the future work section. This promise is delivered in [Gr14], which provides more
details on concurrency control. Queries can cause contention if they concurrently attempt
to optimize overlapping query-ranges. In that case adaptive indexing forgoes the chance to
optimize the index and skips the optional optimization.

3 Background

3.1 Data Model

We model a database 𝐺 as an unordered tree that is defined as a set of nodes 𝐺 =

{𝑛1, 𝑛2, . . .}.5 A node 𝑛 = /_1/. . ./_𝑥 is uniquely identified by the node labels _𝑖 on the
path from the root node to node 𝑛. The last node label in this sequence, _𝑥 , is 𝑛’s label. The
label of the root node is the empty string.

Example 1 Consider the database 𝐺 in Fig. 1a. Node 𝑛 = /content/dow/tech/msft

has label msft. If no ambiguity arises, we shorten node labels by using only
the initials, hence 𝑛 = /c/d/t/m. 𝐺 consists of the labels of all its nodes
{/, /c, /c/d, /c/d/t, /c/d/r, /c/d/t/a, /c/d/t/m, /c/d/r/w, . . .}. From now on, we denote
a node by its label _; the full ID can be derived from its ancestors’ labels. �

5 Based on Apache Jackrabbit Oak’s data model [Ap22].

74 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 5

A node may have an arbitrary number of properties. We define the property set 𝑃(𝐺) of
tree 𝐺 as a set of triples (𝑛, 𝑘, 𝑣), which denote that node 𝑛 ∈ 𝐺 has property 𝑘 set to
value 𝑣 ≠ 𝜖 . We use the notation 𝑛[𝑘] (𝐺) = 𝑣 iff (𝑛, 𝑘, 𝑣) ∈ 𝑃(𝐺), and 𝑛[𝑘] (𝐺) = 𝜖 iff
�𝑣((𝑛, 𝑘, 𝑣) ∈ 𝑃(𝐺)) to denote that node 𝑛 does not have property 𝑘 in 𝐺. If it is clear
from the context which tree we are referring to, we omit the subscript and write 𝑛[𝑘] = 𝑣 or
𝑛[𝑘] = 𝜖 . A node 𝑛 is an ancestor of node 𝑚 (and 𝑚 is a descendant of 𝑛) iff 𝑛 = /_1/. . ./_𝑥

is a prefix of 𝑚 = /_1/. . ./_𝑥/. . ./_𝑦 or, stated shortly, prefix(𝑛, 𝑚). A node is an ancestor
and descendant of itself, i.e., prefix(𝑛, 𝑛) is true for every node 𝑛.6

Example 2 Consider Fig. 1 and let 𝑛 = /c/d/t/m. We have 𝑛[pub] (𝐺) = now before running
transaction 𝑇𝑖 and 𝑛[pub] (𝐺) = 𝜖 after running 𝑇𝑖 . Node /c/d is an ancestor of 𝑛, since
prefix(/c/d, /c/d/t/m) is true. �

Typically, queries in HDBs are property-and-path (PP) queries, meaning we need to provide
a property, a value to compare to, and a path. As we only consider paths (and not twigs), the
order of the siblings in a tree does not matter.

Definition 1 (PP Query) A PP query 𝑄 = (𝑘, 𝑣, 𝑚) returns the set of nodes with property
𝑘 equal to value 𝑣 that are descendants of 𝑚, i.e., {𝑑 | 𝑑 [𝑘] = 𝑣 ∧ prefix(𝑚, 𝑑)}. �

3.2 The Property-and-Path (PP) Index

A property-and-path (PP) index 𝐼 is used to efficiently query all nodes in a subtree that have
a property 𝑘 set to a value 𝑣. Essentially, a PP index is modeled as an unordered tree, similar
to an HDB as described in Section 3.1. The first label of every path in 𝐼 is called index, the
second is the name of a property 𝑘 , and the third is a value 𝑣 for 𝑘 . This is then followed
by paths to all nodes in the indexed database 𝐺 that have a property 𝑘 with a value 𝑣 (cf.
Figure 1b). In a typical application, a node can have many properties (e.g., author ID aid
and other metadata), but usually only some are indexed.

Querying: Evaluating PP query 𝑄 = (𝑘, 𝑣, /_1/. . ./_𝑥) with index 𝐼 translates to
navigating down the path /index/𝑘/𝑣/_1/. . ./_𝑥 , traversing all descendants of _𝑥 , searching
for index nodes 𝑛 with 𝑛[𝑘] = 𝑣, and returning their corresponding content nodes. These
are obtained by truncating the three leading node labels of 𝑛. For example, for index node
/i/p/n/c/d/t/m the corresponding content node is /c/d/t/m.

Example 3 Assume we want to find pages under dow that are ready for publication, i.e., we
run the query 𝑄 = (pub, now, /c/d) on 𝐺. Using the index 𝐼 in Figure 1b, we descend to

6 This is similar to the ancestor-or-self and descendant-or-self axes in XPath.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 75

6 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

node /i/p/n/c/d and check if any descendant contains the property-value pair pub:now.
This is the case for node 𝑚 = /i/p/n/c/d/t/m, thus the query returns {/c/d/t/m}. (As we
will see later, there may be unproductive nodes in the index missing the property-value pair
pub:now. These nodes are currently not active and will not be returned.) �

Insertion: An insertion into index 𝐼 is described by a triplet (𝑘, 𝑣, 𝑛 = /_1/. . ./_𝑥),
where 𝑘 is a property, 𝑣 is a value, and 𝑚 is a node (that now has a property 𝑘 set to value
𝑣). The insertion is executed as follows. First, the system traverses the nodes along path
𝑛 = /index/𝑘/𝑣/_1/. . ./_𝑥 or creates them if they do not exist yet. Then, the system sets
𝑛[𝑘] = 𝑣.

Example 4 When transaction𝑇𝑗 adds property pub:now to node /c/d/r/w in𝐺 (cf. Figure 1a),
we add a branch /r/w underneath /i/p/n/c/d in index 𝐼 in Figure 1b, setting the property
pub in node wmt to now. �

Deletion: A deletion is also described by a triplet (𝑘, 𝑣, 𝑛 = /_1/. . ./_𝑥). During the
deletion, we first descend to node 𝑛 = /index/𝑘/𝑣/_1/. . ./_𝑥 and remove property 𝑘 by
setting 𝑛[𝑘] = 𝜖 . However, it does not stop there. We prune 𝑛 and all its ancestors one by
one as long as they are a leaf and do not have the property 𝑘 (we do not prune the index
definition /index).

Example 5 When transaction 𝑇𝑖 removes property pub from node /c/d/t/m in 𝐺, the
property pub is removed from index node 𝑛 = /i/p/n/c/d/t/m. As 𝑛 is now a leaf node
without a property, it is deleted. The pruning continues up to index, essentially removing
the path p/n/c/d/t/m from index 𝐼 (cf. Figure 1b). �

4 Conflicts and Aborts

This section describes concurrent operations that lead to conflicts in HDBs.We assumemulti-
version concurrency control (MVCC) with snapshot isolation. MVCC resolves conflicts by
aborting transactions.

4.1 Snapshots

The state of an HDB logically progresses from one snapshot of the database to the next as
transactions commit. A history is a sequence 𝐻 = 〈. . . , 𝐺𝑖〉 of databases (including any
indexes) ordered by commit time. A committed HDB 𝐺𝑖 ∈ 𝐻 is an immutable snapshot.
A new transaction 𝑇𝑗 logically creates a mutable copy 𝐺 𝑗 of the last committed snapshot

76 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 7

content

. . . dow

tech

aapl msft

. . .

index content

. . . dow

tech

aapl msft

retail

wmt

pub:now

. . .

index

pub

now

content

dow

retail

wmt

pub:now

content

. . . dow

tech

aapl msft

retail

wmt

. . .

index content

. . . dow

tech

aapl msft

pub:now

retail

wmt

. . .

index

pub

now

content

dow

tech

msft

pub:now

HDB 𝐺0, Index 𝐼0 HDB 𝐺1, Index 𝐼1 HDB 𝐺2, Index 𝐼2 HDB 𝐺3, Index 𝐼3

Transaction 𝑇1 Transaction 𝑇2 Transaction 𝑇3

Each transaction’s changes to the content subtree:
⊲ Transaction 𝑇1: An author adds a webpage wmt with property pub set to now
⊲ Transaction 𝑇2: The CMS removes property pub from wmt after pushing it to the webserver
⊲ Transaction 𝑇3: An author publishes webpage msft by setting its property pub to now

Fig. 2: A typical CMS-workload in which authors repeatedly publish webpages.

𝐺𝑖 ∈ 𝐻 with snapshot 𝐺𝑖 being the base snapshot of 𝑇𝑗 . Transaction 𝑇𝑗 applies all its read
and write operations on 𝐺 𝑗 .

Example 6 Our running example (see Figure 2) shows an initial HDB 𝐺0 with a corre-
sponding (empty) index 𝐼0.7 After running the transactions 𝑇1 to 𝑇3, one after the other, we
have the history 𝐻 with the committed snapshots 𝐺0 to 𝐺3: 𝐻 = 〈𝐺0, 𝐺1, 𝐺2, 𝐺3〉. �

4.2 Conflict Detection and Handling

Before going into the details of resolving conflicts between concurrent transactions, we
define basic notions of transactions in HDBs. A transaction 𝑇𝑗 can change a database with
two primitives: node-write operations wn(𝑛), to insert or delete nodes, and property-write
operations wp(𝑛, 𝑘), to add, delete, or change a property 𝑘 of node 𝑛.

Definition 2 (Write Set) The write set Δ𝑇𝑗 of a transaction 𝑇𝑗 is the set of node- and
property-write operations in tree 𝐺 𝑗 . Let 𝐺𝑖 be 𝑇𝑗 ’s base snapshot. Δ𝑇𝑗 contains:

1. Node-write operations wn(𝑛):

wn(𝑛) ∈ Δ𝑇𝑗 ⇔ (𝑛 ∈ 𝐺𝑖 − 𝐺 𝑗) ∨ (𝑛 ∈ 𝐺 𝑗 − 𝐺𝑖)
7 For the sake of simplicity, we dropped the property aid.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 77

8 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

2. Property-write operations wp(𝑛, 𝑘):

wp(𝑛, 𝑘) ∈ Δ𝑇𝑗 ⇔(𝑛 ∈ 𝐺 𝑗 − 𝐺𝑖 ∧ 𝑛[𝑘] (𝐺 𝑗) ≠ 𝜖) ∨
(𝑛 ∈ 𝐺𝑖 − 𝐺 𝑗 ∧ 𝑛[𝑘] (𝐺𝑖) ≠ 𝜖) ∨
(𝑛 ∈ 𝐺𝑖 ∩ 𝐺 𝑗 ∧ 𝑛[𝑘] (𝐺𝑖) ≠ 𝑛[𝑘] (𝐺 𝑗)) �

Example 7 The write set Δ𝑇1 of transaction 𝑇1 in Figure 2 contains the follow-
ing operations: wn(/c/d/r and /c/d/r/w), creating the node retail and then
the node wmt, and wp(/c/d/r/w, pub:now), adding the property pub with the
value now to the node wmt. Moreover, it also includes the operations wn(/i/p),
wn(/i/p/n), wn(/i/p/n/c), wn(/i/p/n/c/d), wn(/i/p/n/c/d/r), wn(/i/p/n/c/d/r/w),
and wp(/i/p/n/c/d/r/w, pub:now), updating the index. �

We have to distinguish different types of conflicts between two concurrent transactions 𝑇𝑖
and 𝑇𝑗 : path conflicts and property conflicts. Path conflicts include at least one wn operation
that inserts or deletes a node and are denoted by wn-wn, wn-wp, and wp-wn. We encounter
a wn-wn conflict if one transaction adds/deletes a node while the other adds/deletes one
of its descendants, i.e., the label of one node is a prefix of the other. A wn-wp or wp-wn
conflict exists if one transaction deletes a node, while the other adds, changes, or deletes
any property on the same node. Property conflicts (wp-wp conflicts) occur when 𝑇𝑖 and 𝑇𝑗

simultaneously try to change the same property on the same node.

Definition 3 (Path Conflict) We have a path conflict between concurrent transactions 𝑇𝑖
and 𝑇𝑗 iff at least one of the following conflicts occurred:

1. wn-wp conflict: ∃𝑛, 𝑘 (wn(𝑛) ∈ Δ𝑇𝑖 ∧ wp(𝑛, 𝑘) ∈ Δ𝑇𝑗)

2. wp-wn conflict: ∃𝑛, 𝑘 (wp(𝑛, 𝑘) ∈ Δ𝑇𝑖 ∧ wn(𝑛) ∈ Δ𝑇𝑗)

3. wn-wn conflict: ∃𝑛, 𝑚(wn(𝑛) ∈ Δ𝑇𝑖∧wn(𝑚) ∈ Δ𝑇𝑗 ∧(prefix(𝑛, 𝑚)∨prefix(𝑚, 𝑛)))�

Definition 4 (Property Conflict) A property conflict, i.e., wp-wp conflict, exists between
concurrent transactions transactions 𝑇𝑖 and 𝑇𝑗 iff ∃𝑛, 𝑘 (wp(𝑛, 𝑘)∈Δ𝑇𝑖 ∧ wp(𝑛, 𝑘)∈Δ𝑇𝑗) �

Example 8 Assume that transactions𝑇4 and𝑇5 start concurrently in HDB𝐺3 (see Figure 3),
hence 𝐺3 becomes 𝑇4’s and 𝑇5’s base snapshot. 𝑇4 and 𝑇5 run into a path conflict (wn-wn),
since the former deletes a node under which the latter adds a child. The conflicting operations
in the write sets of 𝑇4 and 𝑇5, wn(/i/p/n/c/d) ∈ Δ𝑇4 and wn(/i/p/n/c/d/r) ∈ Δ𝑇5, are
highlighted in red in Figure 3. �

When a transaction 𝑇𝑗 attempts to commit, a verification phase checks whether 𝑇𝑗 conflicts
with a concurrent transaction. If a conflict is detected one of the involved transactions

78 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 9

content

. . . dow

tech

aapl msft

pub:now

retail

wmt

. . .

index

pub

now

content

dow

tech

msft

pub:now

content

. . . dow

tech

aapl msft

pub:now

retail

wmt

. . .

index

pub

now

content

dow

tech

msft

pub:now

content

. . . dow

tech

aapl msft

pub:now

retail

wmt

pub:now

. . .

index

pub

now

content

dow

tech

msft

pub:now

retail

wmt

pub:now

HDB 𝐺3, Index 𝐼3

HDB 𝐺4, Index 𝐼4 HDB 𝐺5, Index 𝐼5

Transaction 𝑇4
finishes publishing
webpage msft

Transaction 𝑇5
prepares wmt
for publishing

Δ𝑇4={wp(/c/d/t/m, pub) , wn(/i/p) , wn(/i/p/n) , wn(/i/p/n/c) , wn(/i/p/n/c/d) , wn(/i/p/n/c/d/t) ,
wn(/i/p/n/c/d/t/m) , wp(/i/p/n/c/d/t/m, pub) }

Δ𝑇5={wp(/c/d/r/w, pub) , wn(/i/p/n/c/d/r) , wn(/i/p/n/c/d/r/w) ,
wp(/i/p/n/c/d/r/w, pub) }

deleted nodes/properties created nodes/properties

Fig. 3: Transactions 𝑇4 and 𝑇5 conflict, because 𝑇4 deletes index node dow, while 𝑇5 adds child retail.

has to abort. Oak implements the first-committer-wins rule [Be95], which means that the
transaction that issues the commit first is allowed to commit, while the other is aborted (other
policies, such as timestamp-based priority to favor older transactions are also possible). In
our running example 𝑇4 commits first and therefore 𝑇5 must abort due to the conflict shown
above.

Clearly, if there is a conflict caused by operations in the database, one transaction has to
abort. Two different transactions concurrently changing the same node at the same time
are just not compatible. However, what is particularly interesting in Example 8 is that the
conflict is caused by operations updating the index. The operations updating the actual
database 𝐺3 are perfectly fine, as they update properties in two completely different nodes.
It turns out that if a conflict occurs only in the index, we sometimes have options to avoid
such an abort. We take a closer look at this in the following section.

5 The Robust Node Index (RNI)

Workload-Aware Contention-Management in Indexes for Hierarchical Data 79

10 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

5.1 Volatile Nodes

Path conflicts occur frequently in index hotspots where transactions insert and delete nodes
sharing a large number of ancestors. We call nodes that are repeatedly inserted and deleted
volatile. These are a main source for path conflicts in indexes. We propose the robust node
index (RNI) that detects and manages volatile index nodes. RNI suspends the deletion of a
volatile index node, as we expect the node to be inserted again soon. Not repeatedly deleting
and inserting a volatile node 𝑛 means that node-write operations on 𝑛, wn(𝑛), are avoided,
reducing contention and, consequently, the number of aborting transactions.

We define the volatility of a node 𝑛 as the number of times 𝑛 was inserted or deleted.
This corresponds to checking the number of wn(𝑛) operations that have been executed
(cf. Definition 2). In order to do so, we look at the recent transactional workload, which
is defined by a sliding window SW(𝐻, 𝐿) of length 𝐿 over history 𝐻. SW(𝐻, 𝐿) denotes
the set of transactions that committed over the last 𝐿 ≥ 0 time units. Let 𝑡now be the
current time and 𝑡 (𝑇) be the commit time of transaction 𝑇 , then SW(𝐻, 𝐿) = {𝑇𝑗 | 𝑡 (𝑇𝑗) ∈
(𝑡now − 𝐿, 𝑡now] ∧ 𝐺 𝑗 ∈ 𝐻}.

Definition 5 (Volatile Node) A node 𝑛 is volatile in history 𝐻 iff the number of transactions
in sliding window SW(𝐻, 𝐿) that executed a wn(𝑛) operation is at least equal to the
volatility threshold 𝜏, i.e.,

|{𝑇 | 𝑇 ∈ SW(𝐻, 𝐿) ∧ wn(𝑛) ∈ Δ𝑇}| ≥ 𝜏 �

Example 9 Consider index node 𝑛 = /i/p/n/c/d in index 𝐼3 in Figure 2. Assuming time
𝑡now = 11 and sliding window length 𝐿 = 10, Figure 4 shows the commit times 𝑡 (𝑇1), 𝑡 (𝑇2),
and 𝑡 (𝑇3) of the transactions we ran on our HDB. Since all commit times lie in the sliding
window, SW(𝐻1, 𝐿) = {𝑇1, 𝑇2, 𝑇3}. All these transactions either insert or delete 𝑛, thus
∀𝑇 ∈ SW(𝐻1, 𝐿) : wn(𝑛) ∈ Δ𝑇 and for a volatility threshold 𝜏 ≤ 3, node 𝑛 is volatile. �

1 2 3 4 5 6 7 8 9 10 11 𝑡

𝑇0 𝑇1 𝑇2 𝑇3

𝑡nowSliding Window length 𝐿 = 10

Fig. 4: Transactions 𝑇1 through 𝑇3 from Figure 2 are contained in the sliding window 𝑆𝑊 (𝐻1, 10).

RNI checks for volatile nodes during the pruning of nodes in the index. The deletion of
pair (𝑣, 𝑚) with path 𝑚 = /_1/. . ./_𝑥 and value 𝑣 from index 𝐼 is described in Algorithm 1.
RNI descends to index node 𝑛 = /index/𝑘/𝑣/_1/. . ./_𝑥 , deletes 𝑛’s property 𝑘 , and tries
to prune 𝑛. RNI only prunes a node if three conditions are satisfied: (a) it is (or has become)
a leaf, (b) it does not have property 𝑘 , and (c) it is not volatile.8

8 It also does not prune the topmost node, index.

80 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 11

Algorithm 1: Deletion in RNI
Input: Index 𝐼 , pair (𝑣, 𝑚) , and history 𝐻 . 𝑘 is a property, 𝑣 a value, and 𝑚 = /_1/_2/. . ./_𝑥 a node.

1 𝑛← /index/𝑘/𝑣/_1/_2/. . ./_𝑥

2 𝑛[𝑘] ← 𝜖

3 while 𝑛 ≠ /index ∧ isLeaf(𝑛) ∧ 𝑛 [𝑘] = 𝜖 ∧ ¬volatile(𝑛) do
4 𝑢 ← 𝑛

5 𝑛← parent of 𝑛
6 Delete node 𝑢

Example 10 RNI prunes node 𝑢1 = /i/p/n/c/d/t/m in response to transaction 𝑇4 deleting
property pub from node /c/d/t/m. The node can be deleted since 𝑢1 is not volatile. The
pruning propagates to 𝑢1’s parent node 𝑢2 = /i/p/n/c/d/t, which can also be pruned.
However, the parent of 𝑢2, 𝑢3 = /i/p/n/c/d, is not pruned and the deletion is not propagated
farther up the index, because 𝑢3 is volatile (cf. Example 9). Since /i/p/n/c/d is no longer
deleted by 𝑇4, 𝑇5’s insertion of a child node is not a conflict anymore. �

Currently, we have implemented the tracking of volatile nodes in a naive fashion, i.e., we
just count the number of insertions and deletions executed on each node. However, the
performance of volatility tracking can be improved considerably by employing algorithms
from stream processing for finding frequent items. For our purposes, we do not need exact
numbers, so an approximation is enough, which improves the performance even more. For
instance, Cormode and Hadjieleftheriou use a sketch algorithm for finding frequent items in
data streams [CH10].

5.2 Preventable Aborts

As we have seen in Example 10, we can avoid aborting a transaction when a path conflict
occurs in the index by not deleting volatile nodes. We now take a closer look at these
preventable aborts.

Definition 6 (Preventable Abort) Let 𝑇𝑗 be a transaction that is aborted due to a conflict
with transaction 𝑇𝑖 . 𝑇𝑗 ’s abort is preventable iff each conflict with 𝑇𝑖 is a path conflict in the
index. �

Lemma 1 Let 𝑇𝑖 and 𝑇𝑗 be two concurrent transactions. 𝑇𝑖’s and 𝑇𝑗 ’s write operations on
an existing node 𝑛 in a RNI index cannot cause a preventable abort if 𝑛 is volatile or has a
volatile descendant. �

Proof 𝑇𝑖 and 𝑇𝑗 can only cause a path conflict if both contain operations changing the same
property 𝑘 . If they change different properties, the index updates take place in completely

Workload-Aware Contention-Management in Indexes for Hierarchical Data 81

12 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

separate branches of 𝐼. Let node 𝑛 be a node in RNI 𝐼. Let 𝑑 be a volatile descendant of
𝑛 (recall that 𝑛 is a descendant of itself). Since 𝑑 is volatile, neither 𝑇𝑖 nor 𝑇𝑗 can prune
𝑑 or any of its ancestors, including 𝑛. Therefore wn(𝑛) ∉ Δ𝑇𝑖 and wn(𝑛) ∉ Δ𝑇𝑗 . As a
consequence, we can rule out any path conflict (i.e., wn-wn, wn-wp, and wp-wn conflicts).
The only possible conflict between 𝑇𝑖 and 𝑇𝑗 is a wp-wp property conflict on property 𝑘 .
However, this is a property conflict, i.e., wp(𝑛, 𝑘) ∈ Δ𝑇𝑖 and wp(𝑛, 𝑘) ∈ Δ𝑇𝑗 , for which an
abort is not preventable. �

5.3 Unproductive Nodes

While not deleting volatile nodes reduces the number of aborting transactions, this slows
down query evaluation, thus it is a trade-off. We call non-deleted volatile nodes unproductive,
as they have to be traversed during query evaluation, but do not contribute to the result set
of the query. A characteristic of an unproductive node in an RNI is that neither the node
itself nor any of its descendants have a value for a property.

Definition 7 (Unproductive Node) An index node 𝑛 is unproductive in tree 𝐺 iff no
descendant of 𝑛 has any property:

∀𝑑
(
(𝑑 ∈ 𝐺 ∧ prefix(𝑛, 𝑑)) ⇒ �𝑘 (𝑑 [𝑘] ≠ 𝜖)

)
�

Example 11 After running 𝑇4 in Example 10, the index node /i/p/n/c/d and its ancestors
are unproductive because they do not have any properties. Nevertheless, during query
evaluation, we still traverse these nodes. �

5.4 Parameterization

Volatility Threshold 𝜏 Let us consider two extreme values for 𝜏. With 𝜏 = ∞, RNI is
identical to a basic PP index as described in Section 3.2, since a node never becomes volatile.
With 𝜏 = 0, index nodes are never pruned and the performance of queries deteriorates,
because many nodes will be unproductive. Additionally, the index will keep growing,
meaning we also waste a lot of space. Our goal is to choose threshold 𝜏 that best balances
the number of path conflicts and query runtime to maximize the throughput.

This tradeoff is workload-dependent; a write-heavy workload calls for small values of 𝜏 to
reduce the number of aborts, while a read-heavy workload benefits from larger values of
𝜏 so that query performance does not suffer too much. In a balanced workload, moderate
values of 𝜏 are most promising. Nodes in mostly static subtrees with few updates and few
conflicts, which constitute the largest part of the index, are pruned and queries perform well.
Nodes in dynamic subtrees that are repeatedly inserted and deleted are already retained after
a small number of updates, minimizing the number of aborts. We investigate this tradeoff in
our experimental evaluation (Section 6).

82 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 13

Sliding Window Length 𝐿 Parameter 𝐿 determines how much of the recent workload
is used to determine whether a node is volatile. If we set 𝐿 = 0, the sliding window is
empty and a node cannot become volatile unless 𝜏 = 0. As we increase 𝐿, a node is more
likely to be classified as volatile, because we consider a larger portion of history 𝐻. The
sliding window length 𝐿 is naturally upper-bounded by the time frame that history 𝐻 covers.
For instance, Oak periodically runs a garbage collection to delete old snapshots in 𝐻 and
snapshots are retained for a minimum amount of time (the default is 24 hours). We choose
𝐿 = 24 hours to use all workload information that Oak provides.

6 Experimental Evaluation

Our experimental evaluation considers synthetic and real-world datasets (see Section 6.1)
as well as different workloads (see Section 6.2), i.e., read-heavy and write-heavy scenarios.
We organize the evaluation as follows:

1. In Section 6.3 we show how to calibrate RNI. We experimentally determine the
optimal threshold 𝜏 that balances query performance and number of aborts. We also
look at the impact of the length of the sliding window.

2. In Section 6.4, we compare RNI to an enhanced basic PP index running the
concurrency-control protocol MOCC [WK16] that was specifically designed to
reduce the number of aborts. We demonstrate that a basic PP index modified with
MOCC still suffers from many path conflicts and show that RNI provides a better
throughput.

3. Finally, in Section 6.5, we investigate an approach deferring node deletions to improve
concurrency during updates (proposed by Lomet et al. [Lo04, LS97]). However,
this only delays the conflicts: the deferred deletions often clash with regular user
transactions later on and RNI’s performance is still better.

6.1 Preliminaries

We use real-world and synthetic datasets in our experimental evaluation. The real-world
dataset is the Dell website9 and contains 12,244,893 nodes. A node has an average
(maximum) depth of 13.68 (24) and an average (maximum) fanout of 2.88 (1729). The
synthetic dataset is a binary tree of depth 19 and contains 220−1 ≈ 1M nodes. Using a
binary tree increases the likelihood of path conflicts, so this dataset simulates a kind of
worst-case scenario.
9 https://dell.com; Dell uses AEM [Ad23] as CMS and Oak as HDB for its website. The Dell dataset has been
extracted from a dump of Oak.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 83

https://dell.com

14 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Each experiment was run for five minutes. At the beginning of an experiment, the index is
pre-populated with 10% of the nodes from the dataset. The experiments are conducted on
virtual machines, each having 8 CPU cores and 32GB of RAM. Unless stated otherwise, we
use 8 threads that run concurrent transactions.

6.2 Workloads

We use two types of transactions, writers and readers, that simulate the publishing of
webpages. Each writer picks a set of 50 content nodes, adds a property, and updates the
index accordingly. A subsequent writer removes this property from the same content nodes
and updates the index. A reader simulates the background process that looks for publishable
webpages by executing a PP query against the index. We use three variations of this workload
that differ in the ratio between writer and reader transactions (cf. Table 1).

Workload Abbrev. Writer:Reader Ratio
Write-Intensive WI 5:1
Balanced BA 1:1
Read-Intensive RI 1:5

Tab. 1: The three considered workloads.

Writers We generate the writer transactions to provoke preventable aborts. We do so
by splitting the database 𝐺 into the same number of partitions as concurrent transactions
(or threads) and assigning them to writers. Writers only randomly modify properties of
nodes in their partition, i.e., there are no conflicts in the database itself, we can only have
path conflicts in the index. The partitioning is done as follows. We assign each node 𝑛
a unique rank 𝑟, 1 ≤ 𝑟 ≤ 𝑁 , with 𝑁 being the number of nodes in the tree 𝐺. The rank
of each node is determined by an inverse level-order traversal of 𝐺, i.e., the first leaf has
rank 1 and the root has rank 𝑁 . A node with rank 𝑟 belongs to partition 𝑝 = 𝑟 mod 𝑃,
where 𝑃 is the number of partitions, thus each partition contains b𝑁/𝑃c nodes. When
determining the write set of a write transaction, the 𝑗-th node in a partition is picked
with a probability of Zipf (𝑗 , b𝑁/𝑃c, 𝑠𝑤), where 𝑠𝑤 is the skew (of the write transactions).
The Zipfian distribution Zipf (𝑗 , 𝐽, 𝑠) is equal to (𝑗 𝑠 ∑𝐽

𝑖=1
1
𝑖𝑠
)−1, where 𝐽 is the number of

elements, 𝑗 the position of an element (1 ≤ 𝑗 ≤ 𝐽), and 𝑠 the skew (𝑠 = 0 being the uniform
distribution). The default value of 𝑠𝑤 in our experiments is 1.

Readers A reader executes a single PP query 𝑄 = (𝑘, 𝑣, /_1/. . ./_𝑑). The root of the
traversed subtree is randomly chosen among all nodes at a certain depth 𝑑 (in our experiments
we choose 𝑑 = 8). For our synthetic dataset, which is a binary tree with depth 19, a PP
query with 𝑑 = 8 traverses a subtree with at most 219−8+1 = 4096 nodes. Let 𝑁𝑑 be the
number of nodes at depth 𝑑. The 𝑗-th node among all nodes at depth 𝑑 is picked with

84 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 15

probability Zipf (𝑗 , 𝑁𝑑 , 𝑠𝑟), where parameter 𝑠𝑟 is the reader skew. The default value of 𝑠𝑟
in our experiments is 1.

6.3 Calibration of RNI and Comparison with Basic PP Index

We begin with the calibration of the threshold 𝜏 and show how it affects the tradeoff between
contention (expressed as the number of preventable aborts) and the query performance
(expressed as the number of nodes read). The results of the experimental evaluation in
Figure 5 also serve as a comparison of RNI with a basic PP index. The measurements at the
far right-hand side of every diagram (𝜏 = 1000) represent the performance of a basic PP
index: all the curves flatten off at that point and continue on the same level for even larger
values of 𝜏.

6.3.1 Volatility Threshold 𝜏

Volatile Nodes The first column of diagrams in Figure 5 shows the percentage of index
nodes that are volatile, depending on the threshold 𝜏, at the end of an experimental run.
Clearly, the smaller 𝜏, the more volatile nodes there are. For 𝜏 = 1, between 40% and 70%
of all index nodes are volatile for the synthetic dataset, while the numbers are lower for the
Dell dataset at around 10% to 20% (this dataset is larger and, thus, each individual node is
inserted and deleted less frequently). Also, write intensive workloads have more volatile
nodes than read-intensive ones, as they contain more insert and delete operation. With
increasing 𝜏 the percentage of volatile nodes eventually reaches zero, which is equivalent to
a basic PP index: it has no volatile nodes.

Abort Ratio The second column of diagrams in Figure 5 illustrates the impact of 𝜏 on the
abort ratio of transactions. For small values of 𝜏, we can eliminate almost all preventable
aborts, as many nodes become volatile and path conflicts occur rarely. With increasing 𝜏,
the abort ratio increases. For write-intensive workloads, the abort ratio reaches 50%, while
for read-intensive workloads, this ratio is much lower, at about 10%, since read transactions
do not conflict with each other. In summary, this confirms that RNI is able to detect and
retain index nodes that are responsible for preventable aborts, which are detrimental to the
performance of a basic PP index.

Number of Read Nodes The third column of diagrams in Figure 5 shows the flip side:
while a small value of 𝜏 reduces the number of aborted transactions, the query performance
suffers, as many unproductive volatile nodes have to be traversed. For 𝜏 = 1, a PP query
visits two-and-a-half to four times as many nodes during query evaluation for the synthetic
dataset compared to the number of nodes for a large value of 𝜏. Due to the larger size of the

Workload-Aware Contention-Management in Indexes for Hierarchical Data 85

16 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

100 101 102 103
0

20

40

60 SYNTH

Threshold 𝜏

Vo
l.
N
od
es
[%
]

WI BA RI

100 101 102 103

0.1

0.3

0.5 SYNTH

Threshold 𝜏
A
bo
rt
R
at
io

100 101 102 103

500

1,000

1,500

2,000 SYNTH

Threshold 𝜏

Re
ad
N
od
es

100 101 102 103

2

4

6

8
SYNTH

Threshold 𝜏

Th
ro
ug
hp
ut

100 101 102 103
0

20

40

60 DELL

Threshold 𝜏

Vo
l.
N
od
es
[%
]

100 101 102 103

0.1

0.3

0.5 DELL

Threshold 𝜏

A
bo
rt
R
at
io

100 101 102 103

500

1,000

1,500

2,000 DELL

Threshold 𝜏

Re
ad
N
od
es

100 101 102 103

2

4

6

8
DELL

Threshold 𝜏

Th
ro
ug
hp
ut

Fig. 5: Threshold 𝜏 trades query performance and abort ratio to increase the throughput.

Dell dataset and (therefore) fewer volatile nodes, these numbers are smaller. For increasing
𝜏, the number of read nodes eventually levels off at just under 500, which is the number of
nodes that have to be accessed to answer a query in a basic PP index.

Throughput We report normalized values here to make the results comparable to those in
Sections 6.4 and 6.5. Normalizing means calculating the ratio between the serial execution
of the basic PP index (as a baseline) and the concurrent execution of RNI. The last
column of diagrams in Figure 5 shows the results for our experiments on throughput. As
already mentioned, RNI trades the reduction of contention against query performance.
However, the situation is not quite that simple. For write-intensive workloads, aborts are the
major performance bottleneck as opposed to query performance, so 𝜏 = 1 yields the best
throughput (recall that we run the experiments on an eight-core machine, so a throughput of
eight means perfect parallelization). We observe the most pronounced effect for balanced
workloads: here values of around 10 for 𝜏 feature the best performance, with smaller and
larger values showing significantly less performance. For read-intensive workloads, the
optimal throughput performance is not as distinctive as for balanced workloads. Moreover,
the optimal value for 𝜏 is shifted to the right, as query performance plays a more important
role. Nevertheless, by using an appropriate value of 𝜏, we can always achieve a better
performance with RNI compared to a basic PP index.

6.3.2 Sliding Window Length 𝐿

Finally, we look at the impact of the length 𝐿 of the sliding window. 𝐿 = 0 mirrors the case
𝜏 = ∞: in both cases no node can be become volatile, so a number greater than zero has to
be chosen to see any kind of effect. As we see in Figure 6, the measured numbers for the
throughput stabilize quickly.

86 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 17

0 100 200 300
0

2

4

6

8 SYNTH

Sliding Window Length 𝐿 [sec]

Th
ro
ug
hp
ut

WI BA RI

0 100 200 300
0

2

4

6

8 DELL

Sliding Window Length 𝐿 [sec]

Fig. 6: RPP’s throughput is insensitive to 𝐿 as long as 𝐿 > 0.

6.4 Comparison with MOCC

Next, we investigate whether a basic PP index running the MOCC protocol [WK16],
which we call MOCCPP, is able to compete with our approach RNI. We ran the MOCCPP
experiments in the in-memory system FOEDUS [Ki15], in which MOCC is natively
implemented. Table 2 illustrates the differences in terms of (normalized) throughput
between MOCCPP and RNI (the best result per dataset and approach is shown in boldface).
For RNI, we show two rows with results. The first row (optimized) uses the optimal value
of 𝜏 for each of the different workloads. In practice, it will be difficult to tune RNI for
every individual workload, so the second row (𝜏 = 10) shows the results for a configuration
employing a common value of 𝜏 = 10 for all the workloads.

workload SYNTH DELL
approach WI BA RI WI BA RI
MOCCPP 1.48 3.45 5.94 1.63 3.30 5.80
RNI (optimized) 4.69 4.00 4.48 7.51 6.39 7.42
RNI (𝜏 = 10) 4.15 4.00 3.74 6.73 6.31 7.07

Tab. 2: Comparison of normalized throughput between MOCCPP and RNI.

We make a couple of observations here. The higher the ratio of read transactions, the better
MOCCPP performs. This does not come as a surprise: for highly contentious workloads,
MOCC runs an optimistic concurrency protocol with a low overhead, i.e., no locks are used,
and during a validation phase transactions that are in conflict with other transactions have to
abort. In read-intensive workloads, conflicts rarely occur. However, when faced with heavy
contention, MOCC switches to a pessimistic lock-based protocol to avoid a large number of
transactions to abort during the validation phase. While this does bring down the number of
aborted transactions, it introduces an overhead in the form of lock management and in a
write-intensive workload with many conflicts, transactions have to wait for the release of
locks. In case of a deadlock, we may even have to abort transactions. The performance of
RNI is much more balanced across the different workloads: it can handle environments with
a lot of write conflicts much better than MOCCPP. In summary, there is only one scenario,
the read-intensive synthetic workload, for which MOCCPP performs better than RNI. In all
other cases, RNI outperforms MOCCPP.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 87

18 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

6.4.1 MOCCRNI: Combining MOCC with RNI

Since RNI and MOCC use orthogonal principles, we can combine the two to obtain an even
better approach by running MOCC with volatile nodes. We call this protocol MOCCRNI.
Figure 7 shows the results for calibrating the parameter 𝜏 for MOCCRNI. Comparing these
results to the last two diagrams in the bottom row of Figure 5 (illustrating the tuning of RNI),
we see that the performance of MOCCRNI is worse than that of RNI for write-intensive
and balanced workloads (i.e., workloads with a higher proportion of write transactions).
In these cases, the advantage of using a small value of 𝜏 is offset by the overhead of using
a pessimistic locking protocol. Consequently, we should never use small values of 𝜏 for
MOCCRNI.

100 101 102 103 104 105 106

2

4

6

8
SYNTH

Threshold 𝜏

Th
ro
ug
hp
ut

WI BA RI

100 101 102 103 104 105 106

2

4

6

8
DELL

Threshold 𝜏

Fig. 7: Optimal thresholds 𝜏 for MOCCRNI.

6.4.2 Comparing MOCCRNI with MOCCPP

We now take a closer look at the performance of MOCCRNI versus that of MOCCPP. As
combining MOCC with volatile nodes aims at improving the performance of MOCC for
write-heavy scenarios, we focus on the WI and BA workloads.

First, we investigate how well MOCCPP and MOCCRNI handle skewed workloads with
hotspots, i.e., nodes that are accessed very frequently. The first two columns of Figure 8
depict the results for varying the skewedness (determined by the parameter 𝑠 of the Zipfian
distribution). In the first column, we alter the writer skew 𝑠𝑤 , in the second column the
reader skew 𝑠𝑟 . We can see clearly, that MOCCPP cannot cope with high writer skew at all.
As soon as 𝑠𝑤 increases beyond 0.5, the performance of MOCCPP deteriorates drastically.
Due to the high contention, MOCCPP switches to a pessimistic lock-based protocol. This
keeps transactions from aborting, but introduces waiting times for the release of locks,
because a lot of transactions want to access the same data items in a skewed workload.
The only case for which MOCCPP performs better is a uniformly distributed workload on
the synthetic dataset. However, this case is the least relevant one in practice: real-world
workloads are rarely uniformly distributed. The picture changes, when we look at the reader
skew 𝑠𝑟 (second column of Figure 8). MOCCRNI’s performance degrades slightly for a
higher reader skew, as the skewed read operations traverse unproductive nodes more often.
MOCCPP, on the other hand, shows constant performance for the synthetic dataset and even
profits a bit for the Dell dataset. Nevertheless, MOCCRNI maintains an edge over MOCCPP.

88 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 19

0 0.5 1 1.5 2
0
2
4
6
8
10

SYNTH

Writer Skew 𝑠𝑤

Th
ro
ug
hp
ut

MOCCPP (WI) MOCCPP (BA) MOCCRNI (WI) MOCCRNI (BA)

0 0.5 1 1.5 2
0
2
4
6
8
10

SYNTH

Reader Skew 𝑠𝑟

2 4 6 8 10 12 14 16
0
2
4
6
8
10

SYNTH

Number Threads

0 0.5 1 1.5 2
0
2
4
6
8
10

DELL

Writer Skew 𝑠𝑤

Th
ro
ug
hp
ut

0 0.5 1 1.5 2
0
2
4
6
8
10

DELL

Reader Skew 𝑠𝑟

2 4 6 8 10 12 14 16
0
2
4
6
8
10

DELL

Number Threads

Fig. 8: MOCCRNI has a higher throughput than MOCCPP.

Second, we illustrate how MOCCRNI and MOCCPP compare for different degrees of
concurrency (third column in Figure 8, 𝑠𝑤 and 𝑠𝑟 are set to the default value of 1). We
increase the number of transactions that are running concurrently to see how well the two
approaches can adapt to higher levels of concurrency. MOCCRNI scales much better, since
it avoids many path conflicts from the outset with the use of volatile nodes.

6.5 Comparison with Deferred Node Deletions

In the next set of experiments, we compare RNI with an approach that defers node deletions
as proposed by Lomet et al. [Lo04, LS97]. We implement deferred node deletions in PP as
follows. When a user transaction attempts to delete an index node, the indexed property is
removed (so that query results are correct) but the node deletion is deferred and the node
is added to a queue. A background process periodically polls this queue and attempts to
batch-prune the queued index nodes. If a background transaction fails due to a conflict, the
index nodes are re-enqueued. We call this approach DeferredPP. Table 3 shows a comparison
of the (normalized) throughput of DeferredPP with RNI. We conducted these experiments
in Oak.

workload SYNTH DELL
approach WI BA RI WI BA RI
DeferredPP 2.90 2.44 1.70 4.62 4.41 4.13
RNI (optimized) 4.69 4.00 4.48 7.51 6.39 7.42
RNI (𝜏 = 10) 4.15 4.00 3.74 6.73 6.31 7.07

Tab. 3: Comparison of normalized throughput between deferred node deletion and RNI.

The first interesting observation is that DeferredPP’s performance goes down with an
increasing ratio of read transactions. For read-intensive workloads, deferring the deletions
comes with a drawback. Essentially, the nodes scheduled for deletion are unproductive

Workload-Aware Contention-Management in Indexes for Hierarchical Data 89

20 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

nodes that have to be traversed by queries, driving down the query performance. The
more read transactions we have, the more pronounced this effect is. More generally, when
pruning a batch of nodes in background transactions, these transactions can clash with other
transactions running in the system. While we always roll back a background transaction in a
conflict (i.e., the regular transactions have precedence), this still consumes system resources
and further reduces the throughput. Thus, DeferredPP is worse than RNI for all workloads.
A scenario for which DeferredPP could potentially work is a system with write-intensive
workloads that experiences phases of calm with a light load, e.g. during the night, in which
the pruning takes place with a low probability of causing conflicts.

7 Conclusion

We investigated a problem that property-and-path (PP) indexes are faced with in hierarchical
databases: the occurrence of path conflicts in the index when nodes with the same property
(on different paths but with common ancestors in the database) are concurrently inserted
and deleted. While the operations in the database go ahead without any issues, due to the
propagation of deletes to ancestor nodes in the index, this causes a conflict and aborts the
whole transaction. However, these aborts are preventable by leaving volatile nodes, i.e.,
nodes that are frequently inserted and deleted, in the index.

We propose the robust node index (RNI) that detects volatile nodes and prevents path
conflicts due to the propagation of deletes. However, leaving volatile nodes in the index has
a cost attached to it. The index becomes larger than it has to be and traversing additional,
unproductive nodes during query evaluation has a negative impact on the performance. We
experimentally evaluated the tradeoff between reducing the number of aborts and increasing
query execution time and show how to tune RNI to maximize the throughput. This is done
by only keeping volatile nodes in the index if their volatility is above a threshold 𝜏, i.e., if a
node is inserted and deleted more than 𝜏 times during a certain timeframe. Comparisons
with other approaches, such as MOCC [WK16] and deferred delete [Lo04, LS97], confirm
that RNI is able to significantly reduce the abort ratio from around 50% to below 10% for
write-heavy workloads, thereby increasing the throughput up to a factor of five.

Bibliography
[Ad23] Adobe: , Adobe Experience Manager. https://www.adobe.com/marketing-cloud/

experience-manager.html, 2023. [Online; accessed January 2023].

[Ap17] Appuswamy, Raja; Anadiotis, Angelos; Porobic, Danica; Iman, Mustafa; Ailamaki,
Anastasia: Analyzing the Impact of System Architecture on the Scalability of OLTP
Engines for High-Contention Workloads. PVLDB, 11(2):121–134, 2017.

[Ap22] Apache: , Apache Jackrabbit Oak. https://jackrabbit.apache.org/oak/, 2022. [Online;
accessed January 2023, last updated November 2022].

90 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

https://www.adobe.com/marketing-cloud/experience-manager.html
https://www.adobe.com/marketing-cloud/experience-manager.html
https://jackrabbit.apache.org/oak/

Workload-Aware Contention-Management in Indexes for Hierarchical Data 21

[Be95] Berenson, Hal; Bernstein, Philip A.; Gray, Jim; Melton, Jim; O’Neil, Elizabeth J.; O’Neil,
Patrick E.: A Critique of ANSI SQL Isolation Levels. In: SIGMOD. 1995.

[Be11] Bernstein, Philip A.; Reid, Colin W.; Wu, Ming; Yuan, Xinhao: Optimistic Concurrency
Control by Melding Trees. PVLDB, 4(11), 2011.

[Be15] Bernstein, Philip A.; Das, Sudipto; Ding, Bailu; Pilman, Markus: Optimizing Optimistic
Concurrency Control for Tree-Structured, Log-Structured Databases. SIGMOD, 2015.

[CH10] Cormode, Graham; Hadjieleftheriou, Marios: Methods for finding frequent items in data
streams. The VLDB Journal, 19(1):3–20, 2010.

[CMS02] Chung, Chin-Wan; Min, Jun-Ki; Shim, Kyuseok: APEX: An adaptive path index for XML
data. In: SIGMOD. ACM, pp. 121–132, 2002.

[Co01] Cooper, Brian F.; Sample, Neal; Franklin, Michael J.; Hjaltason, Gísli R.; Shadmon,
Moshe: A Fast Index for Semistructured Data. In: VLDB. 2001.

[DR13] Diegues, Nuno Lourenco; Romano, Paolo: Bumper: Sheltering Transactions fromConflicts.
In: IEEE SRDS. 2013.

[Fi02] Fiebig, Thorsten; Helmer, Sven; Kanne, Carl-Christian; Moerkotte, Guido; Neumann,
Julia; Schiele, Robert; Westmann, Till: Anatomy of a native XML base management
system. VLDB J., 11(4):292–314, 2002.

[Fi13] Finis, Jan; Brunel, Robert; Kemper, Alfons; Neumann, Thomas; Färber, Franz; May,
Norman: DeltaNI: An Efficient Labeling Scheme for Versioned Hierarchical Data. In:
SIGMOD. pp. 905–916, 2013.

[Gr14] Graefe, Goetz; Halim, Felix; Idreos, Stratos; Kuno, Harumi A.; Manegold, Stefan; Seeger,
Bernhard: Transactional support for adaptive indexing. VLDB J., 23(2), 2014.

[GW97] Goldman, Roy; Widom, Jennifer: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In: VLDB. 1997.

[Ha17] Harding, Rachael; Van Aken, Dana; Pavlo, Andrew; Stonebraker, Michael: An Evaluation
of Distributed Concurrency Control. PVLDB, 2017.

[HHL06] Haustein, Michael Peter; Härder, Theo; Luttenberger, Konstantin: Contest of XML Lock
Protocols. In: VLDB. 2006.

[HL11] Haw, Su-Cheng; Lee, Chien-Sing: Data storage practices and query processing in XML
databases: A survey. Knowledge-Based Systems, 24(8):1317–1340, 2011.

[Id11] Idreos, Stratos; Manegold, Stefan; Kuno, Harumi A.; Graefe, Goetz: Merging What’s
Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory Column-Stores.
PVLDB, 4(9):585–597, 2011.

[JPA09] Johnson, Ryan; Pandis, Ippokratis; Ailamaki, Anastasia: Improving OLTP Scalability
using Speculative Lock Inheritance. PVLDB, 2(1):479–489, 2009.

[Ki15] Kimura, Hideaki: FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In:
SIGMOD. 2015.

[Lo04] Lomet, David B.: Simple, Robust and Highly Concurrent B-trees with Node Deletion. In:
ICDE. pp. 18–27, 2004.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 91

22 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

[Lo15] Loro, Alessandra; Gruenheid, Anja; Kossmann, Donald; Profeta, Damien; Beaudequin,
Philippe: Indexing and Selecting Hierarchical Business Logic. PVLDB, 8(12):1656–1667,
2015.

[LS97] Lomet, David B.; Salzberg, Betty: Concurrency and Recovery for Index Trees. VLDB J.,
6(3):224–240, 1997.

[LY81] Lehman, Philip L.; Yao, s. Bing: Efficient Locking for Concurrent Operations on B-trees.
ACM TODS., 6(4):650–670, December 1981.

[Ma15] Mathis, Christian; Härder, Theo; Schmidt, Karsten; Bächle, Sebastian: XML indexing and
storage: fulfilling the wish list. Computer Science - R&D, 30(1), 2015.

[Ni06] Nicolaisen, Thomas Ferris: The Use of Open Source and Open Standards in Web Content
Management Systems. Master’s thesis, University of Oslo, Oslo, Norway, May 2006.

[RFA16] Ren, Kun; Faleiro, Jose M.; Abadi, Daniel J.: Design Principles for Scaling Multi-core
OLTP Under High Contention. In: SIGMOD. 2016.

[RTA14] Ren, Kun; Thomson, Alexander; Abadi, Daniel J.: An Evaluation of the Advantages and
Disadvantages of Deterministic Database Systems. PVLDB, 2014.

[Sh15] Shukla, Dharma; Thota, Shireesh; Raman, Karthik; Gajendran, Madhan; Shah, Ankur;
Ziuzin, Sergii; Sundaram, Krishnan; Guajardo, Miguel Gonzalez; Wawrzyniak, Anna;
Boshra, Samer; Ferreira, Renato; Nassar, Mohamed; Koltachev, Michael; Huang, Ji;
Sengupta, Sudipta; Levandoski, Justin J.; Lomet, David B.: Schema-Agnostic Indexing
with Azure DocumentDB. PVLDB, 2015.

[TA10] Thomson, Alexander; Abadi, Daniel J.: The Case for Determinism in Database Systems.
PVLDB, 2010.

[Th12] Thomson, Alexander; Diamond, Thaddeus; Weng, Shu-Chun; Ren, Kun; Shao, Philip;
Abadi, Daniel J.: Calvin: Fast Distributed Transactions for Partitioned Database Systems.
In: SIGMOD. 2012.

[Ti18] Tian, Boyu; Huang, Jiamin; Mozafari, Barzan; Schoenebeck, Grant: Contention-Aware
Lock Scheduling for Transactional Databases. PVLDB, 2018.

[TYJ09] Tzoumas, Kostas; Yiu, Man Lung; Jensen, Christian S.: Workload-Aware Indexing of
Continuously Moving Objects. PVLDB, 2009.

[WBH20] Wellenzohn, Kevin; Böhlen, Michael H.; Helmer, Sven: Dynamic Interleaving of Content
and Structure for Robust Indexing of Semi-Structured Hierarchical Data. Proc. VLDB
Endow., 13(10):1641–1653, 2020.

[WK16] Wang, Tianzheng; Kimura, Hideaki: Mostly-optimistic Concurrency Control for Highly
Contended Dynamic Workloads on a Thousand Cores. PVLDB, 10(2):49–60, 2016.

[YC16] Yan, Cong; Cheung, Alvin: Leveraging Lock Contention to Improve OLTP Application
Performance. PVLDB, 9(5):444–455, 2016.

[Yu16] Yuan, Yuan; Wang, Kaibo; Lee, Rubao; Ding, Xiaoning; Xing, Jing; Blanas, Spyros;
Zhang, Xiaodong: BCC: Reducing False Aborts in Optimistic Concurrency Control with
Low Cost for In-memory Databases. PVLDB, 9(6):504–515, 2016.

92 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Tuning Cassandra through Machine Learning

Florian Eppinger1, Uta Störl2

Abstract: The distributed nature and scalability of NoSQL databases make them an ideal data storage
repository for a variety of use cases. While NoSQL databases are delivered with a default ”off-the-shelf”
configuration, they offer configuration settings to adjust a database’s behavior to a specific use case
and environment. The abundance and oftentimes imperceptible inter-dependencies of configuration
settings make it difficult to optimize and performance-tune a NoSQL system. This work explores
Machine Learning as a means to automatically tune a NoSQL database for optimal performance.
Using Ensemble Machine Learning algorithms, multiple ML models were fitted with a training dataset
that incorporates properties of the NoSQL physical configuration (replication and sharding). The best
models were then employed as surrogate models to optimize the Database Management System’s
configuration settings for best performance using a Black-box Optimization algorithm. Multiple
experiments were carried out with an Apache Cassandra database to demonstrate the feasibility of
this approach, even across varying physical configurations. The tuned Database Management System
configurations yielded throughput improvements of up to 4%, read latency reductions of up to 43%,
and write latency reductions of up to 39% when compared to the default configuration settings.

Keywords: AI for Database Systems; NoSQL; Machine Learning; Performance Modeling; Tuning;
Black-box Optimization

1 Introduction

The rate at which data is created, used, and persisted increases rapidly. While Relational
Database Management Systems (RDBMSs) continue to play an important role in today’s
technology environments, Non-relational SQL or Non-SQL (NoSQL) Databases (DBs)
have become an integral part of real-time analytics or big data applications [CL19; SF12].
Choosing the best NoSQL solution and developing the best physical design for a given use
case can be a challenging task on its own [HAR16; Lo15; QCH18]. Furthermore, NoSQL
technologies offer an abundance of configuration settings that allow the system administrator
to adjust the DB behavior to further meet the requirements of a particular use case. Many of
the configuration parameters have an impact on the performance of the NoSQL DB, i.e., its
throughput and latency.

Finding the configuration that maximizes throughput or minimizes latency for a given use
case is complex, and DB behavior is not always self-explanatory as shown by Preuveneers;
Joosen [PJ20].
1 University of Hagen, Databases and Information Systems, Hagen, Germany florian.eppinger@gmail.com
2 University of Hagen, Databases and Information Systems, Hagen, Germany uta.stoerl@fernuni-hagen.de

cba doi:10.18420/BTW2023-04

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 93

mailto:florian.eppinger@gmail.com
mailto:uta.stoerl@fernuni-hagen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-04

2 Florian Eppinger, Uta Störl

Having the ability to predict performance measures for varying workloads and physical
configurations, and to optimize Database Management System (DBMS) configuration
settings accordingly, could be beneficial due to a variety of reasons, including sudden
changes in user behavior, application changes, and changes to the hardware environment.

The methodology and results outlined in this study consider aspects of the physical
configuration and the DBMS configuration settings during tuning, and we thus make the
following contributions:

• We analyze the quality of Machine Learning (ML) models that are trained to predict
performance metrics for varying workloads, physical configurations, and DBMS
configurations.

• We measure the influence of the training dataset size on the quality of these ML
models.

• We evaluate how features representing the physical configuration impact the quality
of the ML models.

• We explore the ability to tune the DBMS configuration settings for a specific physical
configuration using the ML models and Black-box Optimization (BBO).

Section 2 reviews related work. Section 3 briefly introduces the end-to-end methodology
and the training dataset. Results and findings are presented and evaluated in section 4. The
document concludes with section 5, which discusses the results and suggests areas of future
work.

2 Related Work

A variety of proposals have been made to mitigate the performance tuning challenges
outlined in section 1 through automation. Some of these methods are able to tune a variety
of software solutions in a generic fashion [Wa18; Zh17], while others are geared specifically
toward RDBMS or NoSQL technology. This work can be categorized into solutions that
tune DB performance via the DBMS configuration settings [Ak21; KAS15; Xi17; Zh19]
and solutions that tune DB performance via the physical design of the DB [Be15; Cr13;
Fa16]. Tuning Methods include Control Theory, Expert Systems, and a variety of Machine
Learning algorithms.

The main difference between this paper and related performance-tuning work for NoSQL
systems is that the Tuning Domain includes both DBMS configuration settings and the DB
physical design in form of sharding and replication. While Preuveneers and Joosen consider
both aspects [PJ20], their technique differs in several ways. First, Preuveneers and Joosen
utilize multiple predefined tactics in an attempt to tune the NoSQL system online. Second, the
authors utilize the ML model to map DB scenarios consisting of workload metrics, resource
utilization, physical configuration, etc. to an ideal DBMS configuration and DB physical
design. On the other hand, this study evaluates ML techniques to fit ensemble models to

94 Florian Eppinger, Uta Störl

Tuning Cassandra through Machine Learning 3

predict DB performance. These models are then used by BBO algorithms to find an optimum
DBMS configuration for a given workload and physical configuration. Consequently, the
methods used in this paper are related much closer to the approach presented by Xiong et
al. [Xi17], except that this work includes features for the physical configuration, utilizes
Apache Cassandra instead of HBase, and employs a different optimization algorithm. For
an in-depth study of related work and a point-by-point comparison refer to the extended
version of this paper [ES22].

3 Methodology

Apache Cassandra3 (“Cassandra”) was selected as the basis for the experiments. A tuning
domain was defined, and a training dataset was generated using a sample database. This
training dataset was then transformed into input for Decision Tree (DT) ML algorithms
to fit various ML models. The models’ objective is to accurately predict performance
metrics of the database for a given workload, DBMS configuration, and physical design. The
performance of the ML models was evaluated using commonly accepted quality measures.
The predictions of the ML models were then used to find optimized DBMS configuration
values for a given workload and physical configuration using a Black-box Optimization
algorithm. Finally, actual performance of the optimized configurations was evaluated and
compared against the DB performance of the default DBMS configuration.

3.1 Tuning Domain

This section describes the Tuning Domain (TD), i.e., the workload properties, the specific
DBMS configuration settings, as well as aspects of the Cassandra physical configuration
that were considered within the scope of this study:

• Workload: To follow the approach chosen in related work, such as [Cr13] and [PJ20],
three workloads were included:

– 50% read using the primary key, 50% write (readwrite)
– 95% read using the primary key, 5% write (readyheavy)
– 5% read using the primary key, 95% write (writeheavy)

• DBMS Configuration: To reduce the complexity of this study, a subset of performance-
relevant Apache Cassandra configuration settings was selected through research and
targeted experiments.

• Physical Design: to account for aspects of the physical configuration, we considered
both sharding and replication.

Table 1 provides a summary of the features and feature domains that were considered in this
study.

3 https://cassandra.apache.org/ (visited on Sept. 19𝑡ℎ , 2022)

Tuning Cassandra through Machine Learning 95

https://cassandra.apache.org/

4 Florian Eppinger, Uta Störl

Feature Feature Category Domain

wl_read_% Workload (0% − 100%)
wl_write_% Workload (0% − 100%)
trickle_fsync DBMS Configuration {true, false}
key_cache_size_in_mb DBMS Configuration {0, 20, ..., 25}
row_cache_size_in_mb DBMS Configuration {0, 20, 40, 60, ..., 200}
commitlog_segment_size_in_mb DBMS Configuration {22, ..., 26}
concurrent_reads DBMS Configuration {21 ∗ 𝑑𝑖𝑠𝑘𝑠, ..., 25 ∗ 𝑑𝑖𝑠𝑘𝑠}
concurrent_writes DBMS Configuration {21, ..., 28}
memtable_heap_space_in_mb DBMS Configuration {2−5 ∗ ℎ𝑒𝑎𝑝, ..., 2−1 ∗ ℎ𝑒𝑎𝑝}
node_count (n) Physical Design {2, 3, 4}
replication_factor (rf) Physical Design {1, 2, 3, 4}

Tab. 1: Features included in the Tuning Domain

3.2 Tuning Subdomains

In this study, we analyzed the impact of the workload, DBMS configuration, and the physical
design on the accuracy of the ML models and their ability to serve as a surrogate model for
performance tuning. We, therefore, defined TD1-TD4 as subsets of the TD. As shown in
table 2, these Tuning Subdomains focus on specific aspects of the feature set.

TD Physical Config. Workload DBMS Config.

TD1 * * *

TD2 * wl_read_%=fixed, wl_write_%=fixed *

TD3 n=fixed, rf=fixed * *

TD4 n=fixed, rf=fixed wl_read_%=fixed, wl_write_%=fixed *

Tab. 2: Definition of the tuning subdomains

TD1 represents the entire tuning domain, i.e. all of the features introduced in Table 1. TD2
reduces complexity by removing the workload features from the feature vector. It was
designed to train ML models that are able to make predictions for a fixed workload. TD3,
on the other hand, excludes the physical configuration features from the feature vector. TD4
only considers the DBMS configuration settings.

3.3 Tuning Methodology

The methodology applied in this study used ensemble-based ML algorithms to develop
models that are able to make DB throughput and latency predictions. Leveraging the
ML models’ predictions, a BBO algorithm is then utilized to search the optimum DBMS
configuration for a given workload and DB physical configuration.

96 Florian Eppinger, Uta Störl

Tuning Cassandra through Machine Learning 5

Ensemble methods combine multiple ML models to make a final prediction. Two popular
ensemble methods are Bootstrap Aggregation (Bagging) [Br01] and Boosting [Fr01; NK13],
which were explored in form of Random Forest (RF) and Gradient Boosting Decision
Tree (GBDT) ML algorithms for various reasons that are outlined in the extended version
of this paper [ES22].

The fitted ML model can be considered a surrogate model that can respond with a
performance prediction for a given set of inputs. Because the model itself is a black-box
and does not expose any meaningful information that could be used to find an optimum
using a gradient-based optimization approach, this study utilized BBO as a means to find
an optimum configuration using the ML model’s performance predictions. Various BBO
algorithms were explored. However, the results presented in this paper are based on the
Simulated Annealing algorithm, which was shown to be the most efficient among the ones
evaluated [ES22]. The algorithm is similar to Local Optimization except that it attempts
to avoid getting stuck in a non-global optimum by adding a random element for further
exploration of the domain [Jo89].

3.4 Training Data

A new dataset consisting of 32,757 training examples was created. A training example
comprises workload properties, the values for DBMS configuration settings, a representation
of the DB physical configuration, as well as the actual performance values that were measured
when the workload was executed against the DB using this particular DBMS and physical
configuration. Additional details about the training dataset can be found in the extended
version of this study [ES22].

4 Experimental Evaluation

The following results and findings were gathered during experiments that were carried
out on a DB cluster with 5 nodes provided by the University of Hagen. Please refer to the
extended version of this paper [ES22] for additional details regarding the implementation as
well as a more in-depth analysis of results beyond the DB read and write latencies that this
paper focuses on.

4.1 ML Model Quality

Table 3 lists the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for
DB throughput and latencies. The measurements were established by training a total of 6
individual ML models using TD1, i.e. the entire training dataset as defined in section 3.2.

Tuning Cassandra through Machine Learning 97

6 Florian Eppinger, Uta Störl

Overall Throughput Read Latency Write Latency
RF GBDT RF GBDT RF GBDT

MAE 2,810.940 2,880.110 0.307 0.279 0.203 0.189
MAE (%) 3.290 3.370 2.940 2.730 3.030 2.890
RMSE 4,646.420 5,064.020 0.500 0.493 0.369 0.369

Tab. 3: ML Model Quality

It should be noted that the hyperparameters of the ML models referenced in this study were
tuned for each ML model individually. Using a random split methodology, 75% of the
dataset was used to fit the models with holdout validation (see [Gé17]), and the remaining
25% were used for testing.

To understand the correlation between dataset size and ML model prediction accuracy,
various experiments were conducted with artificially reduced datasets. A total of 9 ML
models were trained for each of the performance measures using the following dataset
sizes: 128, 256, 512, 1,024, 2,048, 4,096, 8,192, 16,384, 24,672. To ensure a fair evaluation
and reduce the chance of randomly selecting a non-representative test distribution, the
test dataset was kept at a fixed size of 8,000 examples. The results are shown in figure 1.
A training dataset size of 128 examples yielded a GBDT model that predicted overall
throughput with an MAE of 7,326 and a RF model that predicted overall throughput with
an MAE of 9,973. Increasing the training dataset size to just 1,024 records significantly
reduced the MAE values to 3,903 (GBDT) and 4,305 (RF). Additional accuracy could be
gained by further increasing the dataset size. However, only minor improvements could be
seen for read and write latencies with datasets exceeding 4,096 examples.

2,500
3,500
4,500
5,500
6,500
7,500
8,500
9,500

12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
24

,6
72

M
A

E

Dataset Size

Overall Throughput (ops/s) GBT RF

0.00

0.50

1.00

1.50

2.00

12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
24

,6
72

M
A

E

Dataset Size

Read Latency (ms) GBT RF

0.00

0.50

1.00

1.50

2.00

12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
24

,6
72

M
A

E

Dataset Size

Write Latency (ms) GBT RF

Fig. 1: Influence of the dataset size on the prediction accuracy of the ML models

To compare the TD1 ML model quality to the less complex Tuning Domains, ML models
were trained for TD2-TD4 to predict write latencies. Four individual models were fitted for
each combination of TD and ML algorithm using datasets with 128, 256, 512, and 1,024
training examples. For this experiment, a test dataset size of 250 was used to determine
the MAE values for each of the models. The results are shown in figure 2 and confirm
that the ML models trained with TD1 performed worse compared to TD2-TD4 when
identically sized training datasets were used. A GBDT model trained with 128 randomly

98 Florian Eppinger, Uta Störl

Tuning Cassandra through Machine Learning 7

selected examples from the TD1 dataset yielded an MAE of 1.42, which represents an error
percentage of 13.62% compared to 0.65 (5.88%) for TD2. The MAE of the GBDT model
dropped to 0.39 (3.55%) with 512 training examples for TD2, while it took four times the
number of training examples to reach comparable accuracy within TD1. It is also worth
noting that with 1,024 training examples, the TD1 and TD3 models were of similar quality
despite the added complexity of the TD1 model that is able to make predictions for eight
different physical configurations.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

128 256 512 1,024

M
A

E

Dataset Size

Tuning Domain 1 GBT RF

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

128 256 512 1,024
M

A
E

Dataset Size

Tuning Domain 2 GBT RF

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

128 256 512 1,024

M
A

E

Dataset Size

Tuning Domain 3 GBT RF

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

128 256 512 1,024

M
A

E

Dataset Size

Tuning Domain 4 GBT RF

Fig. 2: Influence of the dataset size on the write latency prediction accuracy of the ML models trained
with different Tuning Domains

4.2 Tuning performance with Black-box Optimization

The Simulated Annealing BBO algorithm was then used to optimize the DBMS configuration
settings in a variety of experiments that involved the fitted ML models. The configurations
proposed by the algorithm were then applied to the Cassandra cluster, workloads were
executed, and results were captured.
First, we optimized DBMS configuration settings for various workloads with a fixed physical
configuration (n=4, rf=3) using the fitted TD1 model. In addition to the readwrite (50%
read, 50% write), readheavy (95% read, 5% write) and writeheavy (5% read, 95% write)
workloads, experiments were conducted with a workload that differed from the workloads
used to train the ML model (25% read, 75% write). For each performance measure, five
independent experiments were carried out for each proposed DBMS configuration and
workload, and the average performance was calculated. Results for the actual read and write
latencies are shown in figure 3. Tuned configurations reduced the read latency by more than
42% for write-heavy workloads and the write latency by more than 39% for workloads with
a significant amount of read operations. It should be noted that configurations that improved
read latency resulted in a higher write latency and vice versa, reducing overall throughput.

Tuning Cassandra through Machine Learning 99

8 Florian Eppinger, Uta Störl

+5
.7

1%

-0
.9

5%

-4
2.

96
% -2

8.
01

%

3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00

50%/50% 95%/5% 5%/95% 25%/75%

Re
ad

La
te

nc
y

(m
s)

Default ML Tuned

-3
9.

29
%

-3
7.

83
% +1
.1

5%

-1
.5

3%

3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00

50%/50% 95%/5% 5%/95% 25%/75%

W
rit

e
La

te
nc

y
(m

s)

Default ML Tuned

Fig. 3: Actual latency measurements for default and ML/BBO-tuned DBMS configurations

However, the results clearly demonstrate that the ML model was able to successfully derive
information regarding the DBMS configuration settings’ impact on the DB performance.

Next, we applied the optimization method to different physical configurations. This time the
objective of the algorithm was to tune the performance by adjusting the DBMS configuration
for varying physical configurations. The measurements also included a physical configuration
with two nodes and a replication factor of one to analyze how well the methodology works
for previously unseen physical configurations. Figure 4 compares the write latency of the
ML-tuned configuration to the default configuration (readwrite workload). The results
demonstrate that the ML-based tuning method successfully tuned the DB latency for a
variety of physical configurations. However, it also highlights that it failed to optimize

-3
9.

29
%

-3
1.

77
%

- 2
1.

64
%

-1
5.

07
%

-1
8.

07
%

+1
2.

58
%

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

n=4,rf=3 n=4,rf=2 n=3,rf=3 n=3,rf=2 n=3,rf=1 n=2,rf=1

W
rit

e
La

te
nc

y
(m

s)

Default ML Tuned

Fig. 4: Write latencies for default and ML/BBO-tuned DBMS configurations under varying physical
configurations

performance for the physical configuration that was not previously encountered during
the training phase. The write latency increased by 12.58% from 4.57𝑀𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠(ms)
to 5.14ms. It is possible that the ML algorithms failed to extract and derive a meaningful
trend or that the ordinal encoding method for the corresponding features did not cultivate
this kind of predictive quality in the model.

We also analyzed models that were trained with the tuning subdomains TD2-TD4. Section 4.1

100 Florian Eppinger, Uta Störl

Tuning Cassandra through Machine Learning 9

showed significant accuracy differences depending on what tuning domain was used to fit
the ML models. To evaluate the ability to tune the DBMS configurations with these models,
the Simulated Annealing algorithm was used to search for an optimum DB configuration
for each of the TDs using the ML models fitted with 1,024 training examples. The actual
DB performance was then measured for the proposed configurations. This process was
repeated three times for each TD, and average performance results were calculated. The
goal of the experiment was to optimize read and write latency for the readheavy workload
(95% read/5% write). The results are shown in figure 5.

-0
.9

5%

-2
.6

3%

1.
63

%

-1
.1

9%

-

2.00

4.00

6.00

8.00

TD1 TD2 TD3 TD4

Re
ad

La
te

nc
y

(m
s)

ML Tuned Default

-3
4.

52
%

-3
9.

48
%

-3
6.

17
%

- 3
6.

17
%

-

2.00

4.00

6.00

8.00

TD1 TD2 TD3 TD4

W
rit

e
La

te
nc

y
(m

s)

ML Tuned Default

Fig. 5: Actual latency measurements for DBMS configurations that were optimized with ML models
trained with TD1-TD4

The superior accuracy of TD2 and TD4 models did not result in better DBMS configuration
proposals. We determined that the model’s tuning ability depended both on its accuracy as
well as the quality of the training data. Because the training subset was chosen randomly,
it contained examples with poor performance. The ML models for the less complex TDs
were able to make more accurate predictions, but this did not help the BBO algorithm find a
better configuration if they were not fitted with high-performance training examples.

5 Discussion

This study evaluated Machine Learning and Black-box Optimization as a means to
performance-tune NoSQL DBs for varying physical configurations and workloads. When
fitted with the entire dataset, the ML models yielded an MAE of 2.73% and 2.89% for
read and write latencies, respectively. Omitting the workload from the feature set (TD2)
significantly improved accuracy, while omitting the features representing the physical
configuration (TD3) resulted in moderate improvements only. This observation may lead
to the conclusion that the physical configuration adds less complexity to the model than
varying workloads. When using training datasets of 1,024 examples, the MAE of the TD1
and TD3 GBDT models were almost identical when predicting read latencies, thereby
implying that it is more efficient to train a single predictive model for multiple physical
configurations than it is to train an individual model for each physical configuration.
The most accurate models were then used to optimize DBMS configuration settings for
a given workload and physical configuration using BBO. The algorithm was able to find
configurations for improved performance in most situations. For a physical design with
four NoSQL nodes and a replication factor of three, latencies could be reduced by up to

Tuning Cassandra through Machine Learning 101

10 Florian Eppinger, Uta Störl

42.96% (read) and 39.29% (write) depending on the workload composition. Similar results
were achieved for varying physical configurations. Additional experiments showed that DB
latency could be improved even for previously unseen workloads.
While the tuned DBMS configurations did result in performance improvements, none of
the results matched or exceeded the performance of the best-performing training examples.
As an example, the BBO-tuned DBMS configuration (n=4, rf=3, writeheavy) resulted in
maximum throughput of 103,965 operations per second (op/s) compared to 95,240 op/s
for the default configuration. However, the most performant training example resulted in
111,018 op/s, implying an additional tuning potential of 6.5%. A potential explanation for
this is the generalization capability of the ML model, which enables the ML model to make
more accurate predictions for previously unseen DBMS configurations but also regulates
outlier configurations. These outliers represent subpar and also optimum configurations.

Several discoveries and choices were made regarding technology and methodology. Fur-
thermore, several areas remained unexplored due to time and resource constraints. The
following list reflects on some of these items and highlights potential areas for future work:

• This study targeted individual DB performance measures. Performance objectives
vary, and it may be necessary to meet multiple performance goals. Xiong et al.
approach this by combining multiple weighted performance measures into a single
optimization objective [Xi17], an attempt that could be explored further.

• It was also noted that the training dataset captures performance results that are specific
to the hardware environment and technologies used. Exploring the transformation
or scaling of training examples or derived knowledge for a different environment or
technology stack appears worthwhile.

• The tuning domain of this study is limited. More aspects exist, including indexes,
schema design, consistency levels, etc., that could be evaluated in more detail.

• Attempting to tune the DBMS configuration for previously unseen physical designs
did result in performance that under-performed the default DBMS configuration. The
corresponding features were encoded as ordinal values, and changing the encoding
scheme may improve these results.

• The study treated DBMS configuration settings as global settings, i.e., the same
configuration settings were used for all nodes of the Cassandra node ring. However,
many settings can be configured individually for each cluster node. Research in
this area presented by Cruz et al. [Cr13] could be evaluated as an extension to the
methodology outlined in this document.

• This study evaluated RF and GBDT to develop a surrogate model for DB performance
predictions. Other ML algorithms exist and may exhibit a better prediction quality.
Similarly, various BBO algorithms exist, some of which have been shown to produce
better results than the Simulated Annealing algorithms [Ch21]. A more systematic
evaluation of different algorithms could be carried out.

102 Florian Eppinger, Uta Störl

Tuning Cassandra through Machine Learning 11

References

[Ak21] Aken, D. V.; Yang, D.; Brillard, S.; Fiorino, A.; Zhang, B.; Bilien, C.; Pavlo, A.:
An Inquiry into Machine Learning-based Automatic Configuration Tuning Ser-
vices on Real-World Database Management Systems. Proc. VLDB Endowment
14/, pp. 1241–1253, 2021.

[Be15] Bermbach, D.; Müller, S.; Eberhardt, J.; Tai, S.: Informed Schema Design for
Column Store-Based Database Services. In: Proc. SOCA 2015. IEEE, pp. 163–
172, Oct. 2015.

[Br01] Breiman, L.: Random Forests. Machine Learning 45/, pp. 5–32, Jan. 2001.
[Ch21] Chen, P.; Huo, Z.; Li, X.; Dou, H.; Zhu, C.: ConfAdvisor: An Automatic

Configuration Tuning Framework for NoSQL Database Benchmarking with a
Black-box Approach. In: Bench 2020, Revised Selected Papers. Vol. 12614,
Springer, pp. 106–124, 2021.

[CL19] Chen, J. K.; Lee, W. Z.: An introduction of NoSQL databases based on their
categories and application industries. Algorithms 12/, May 2019.

[Cr13] Cruz, F.; Maia, F.; Matos, M.; Oliveira, R.; Paulo, J.; Pereira, J.; Vilaça, R.: MeT:
Workload aware elasticity for NoSQL. In: Proc. EuroSys 2013. Pp. 183–196,
2013.

[ES22] Eppinger, F.; Störl, U.: NoSQL Database Tuning through Machine Learning.
CoRR abs/2212.12301/, 2022, arXiv: 2212.12301, url: http://arxiv.org/
abs/2212.12301.

[Fa16] Farias, V. A.; Sousa, F. R.; Maia, J. G.; Gomes, J. P.; MacHado, J. C.: Machine
Learning Approach for Cloud NoSQL Databases Performance Modeling. In:
Proc. CCGrid 2016. IEEE, pp. 617–620, July 2016.

[Fr01] Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine.
Source: The Annals of Statistics 29/, pp. 1189–1232, 2001.

[Gé17] Géron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
Inc., 2017.

[HAR16] Herrero, V.; Abelló, A.; Romero, O.: NOSQL design for analytical workloads:
Variability matters. In: Proc. ER 2016. Vol. 9974, Springer, pp. 50–64, 2016.

[Jo89] Johnson, D. S.; Aragon, C. R.; Mcgeoch, L. A.; Schevon, C.: Optimization By
Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning.
Oper. Res. 37/, pp. 865–892, 1989.

[KAS15] Khattab, A.; Algergawy, A.; Sarhan, A.: MAG: A performance evaluation
framework for database systems. Knowledge-Based Systems 85/, pp. 245–255,
Sept. 2015.

Tuning Cassandra through Machine Learning 103

http://arxiv.org/abs/2212.12301
http://arxiv.org/abs/2212.12301

12 Florian Eppinger, Uta Störl

[Lo15] Lourenço, J. R.; Cabral, B.; Carreiro, P.; Vieira, M.; Bernardino, J.: Choosing
the right NoSQL database for the job: a quality attribute evaluation. Journal of
Big Data 2/, Dec. 2015.

[NK13] Natekin, A.; Knoll, A.: Gradient boosting machines, a tutorial. Frontiers in
Neurorobotics 7/, 2013.

[PJ20] Preuveneers, D.; Joosen, W.: Automated configuration of NoSQL performance
and scalability tactics for data-intensive applications. Informatics 7/, Aug. 2020.

[QCH18] Qader, M. A.; Cheng, S.; Hristidis, V.: A comparative study of secondary
indexing techniques in LSM-based NoSQL databases. In: Proc. SIGMOD 2018.
ACM, pp. 551–566, May 2018.

[SF12] Sadalage, P. J.; Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. Addison-Wesley Professional, 2012.

[Wa18] Wang, S.; Li, C.; Hoffmann, H.; Lu, S.; Sentosa, W.; Kistĳantoro, A. I.: Un-
derstanding and auto-adjusting performance-sensitive configurations. In: Proc.
ASPLOS 2018. Vol. 53, ACM, pp. 154–168, Mar. 2018.

[Xi17] Xiong, W.; Bei, Z.; Xu, C.; Yu, Z.: ATH: Auto-Tuning HBase’s Configuration
via Ensemble Learning. IEEE Access 5/, pp. 13157–13170, June 2017.

[Zh17] Zhu, Y.; Liu, J.; Guo, M.; Bao, Y.; Ma, W.; Liu, Z.; Song, K.; Yang, Y.: BestCon-
fig: Tapping the performance potential of systems via automatic configuration
tuning. In: Proc. SoCC 2017. ACM, pp. 338–350, Sept. 2017.

[Zh19] Zhang, J.; Liu, Y.; Zhou, K.; Li, G.; Xiao, Z.; Cheng, B.; Xing, J.; Wang, Y.;
Cheng, T.; Liu, L.; Ran, M.; Li, Z.: An End-to-End Automatic Cloud Database
Tuning System Using Deep Reinforcement Learning. In: Proc. SIGMOD 2019.
ACM, pp. 415–432, June 2019.

104 Florian Eppinger, Uta Störl

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark

Muhammad Attahir Jibril1, Alexander Baumstark2, Kai-Uwe Sattler3

Abstract: Graph databases are gaining increasing relevance not only for pure analytics but also
for full transactional support. Business requirements are evolving to demand analytical insights on
fresh transactional data, thereby triggering the emergence of graph systems for hybrid transactional-
analytical graph processing (HTAP). In this paper, we present our ongoing work on GTPC, a hybrid
graph benchmark targeting such systems, based on the TPC-C and TPC-H benchmarks.

Keywords: Benchmarking; Graph HTAP; Graph Databases

1 Introduction

With the ever-growing amount of data from various real-world applications that lend them-
selves to being modelled as graphs, graph databases are receiving more and more attention
from both the industry and academia for efficiently managing and processing such graph
data. Various enterprises driven by their respective markets such as social media, logistics,
e-commerce etc., are capitalizing on graph analytics for decision-support purposes. On top
of that, in reality, the graph data is hardly without update operations. In fact, enterprises aim
at continuously acquiring fresh business insights in order to make crucial business decisions.
Some graph databases e.g. Neo4j [Neo4j], TigerGraph [TigerGraph], Ultipa [Ultipa] etc.
support analytical workloads in addition to transactional workloads [Be19]. Additionally,
more work is being put into graph storage systems such as LiveGraph [Zh20] that support
concurrent execution of transactional and analytical workloads – towards the development
of hybrid transactional-analytical (HTAP) graph databases.

Despite the relevance of emerging HTAP graph database systems, we identify the lack of a
hybrid benchmark with mixed workloads that aims at these systems. Although there exist
hybrid OLTP-OLAP benchmarks for other data models e.g, the relational model, however,
they cannot be used directly for graphs. One such benchmark is the CH-benCHmark [Co11],
which is based on the TPC-C [TPC-C10] and TPC-H [TPC-H21] benchmarks. In this paper,
we propose GTPC, a hybrid graph benchmark modelled on a product graph (as obtained
in domains like e-commerce) by adapting the underlying concepts of the CH-benCHmark.
Firstly, GTPC employs schema optimizations to convert the relational CH-benCHmark
schema into a property graph schema. Secondly, it provides a data generator (presently
1 TU Ilmenau, DBIS, Helmholtzplatz 5, 98693 Ilmenau, muhammad-attahir.jibril@tu-ilmenau.de
2 TU Ilmenau, DBIS, Helmholtzplatz 5, 98693 Ilmenau, alexander.baumstark@tu-ilmenau.de
3 TU Ilmenau, DBIS, Helmholtzplatz 5, 98693 Ilmenau, kus@tu-ilmenau.de

cba doi:10.18420/BTW2023-05

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 105

mailto:muhammad-attahir.jibril@tu-ilmenau.de
mailto:alexander.baumstark@tu-ilmenau.de
mailto:kus@tu-ilmenau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-05

2 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

a modified version of the CH-benCHmark data generator) for generating product graphs.
Thirdly, it transforms the CH-benCHmark queries into transactional and analytical graph
queries. Lastly, it specifies a mixed workload of the formulated graph queries. Although
relational databases would traditionally be the solution for product graphs (i.e. products,
orders and transactions data modelled as graphs), however, interestingly, product graphs
are the most popular among graphs that model non-human entities [Sa20]. There is a need
for benchmarks targeting such graph data and workloads, as none of the existing property
graph benchmarks addresses the issue [Sa20]. This would provide a metric(s) with which
to compare the systems used for such product graphs. Moreover, it would allow obtaining
empirical insights into why industry practitioners use graph systems for processing data
that would otherwise be considered suitable for relational systems.

To summarize, the increasing relevance of executing mixed workloads using HTAP graph
databases as well as the huge adoption of graphs in modelling product data by industry
practitioners motivate the need for a hybrid OLTP-OLAP graph benchmark. Such a
benchmark is important as it serves as a useful tool for testing and comparing systems
in terms of HTAP metrics such as freshness and performance isolation of concurrently
running transactional and analytical workloads. Therefore, we present our ongoing work on
benchmarking graph HTAP systems. Our contributions in this paper are as follows:

• We propose GTPC, a hybrid graph benchmark with mixed OLTP-OLAP workloads on
a synthetically generated product graph based on the TPC-C and TPC-H benchmarks.

• Using our Poseidon graph database [Ji21] as an example, we implement and run the
GTPC benchmark4 to show its effectiveness in testing graph systems’ handling of
mixed workloads and revealing the performance interplay between analytical and
transactional graph query workloads executed concurrently in a multi-user setting.

2 Related work

There exist various benchmarking solutions for graph databases stressing different workloads
such as subgraph pattern matching, recursive path queries etc. These solutions include
HPC Scalable Graph Analysis Benchmark [HPC09], LSQB [Mh21], gMark [Ba17], Wat-
Div [Al14] etc. All of these target specific use cases but without considering any OLTP.
The rapid growth of social media led to the development of benchmarks modelling social
networks, e.g. LinkBench [Ar13], Linked Data Benchmark Council (LDBC) Social Network
Benchmark (SNB) [Er15; LDBC FinBench] etc. However, unlike GTPC, they do not consider
HTAP. Moreover, they are built around social graphs while GTPC targets product graphs
(see Sect. 1). The LDBC Financial Benchmark (FinBench) targets workloads for financial
scenarios. It is still ongoing, with the analytical queries not yet specified. Nevertheless, it
also does not consider HTAP.
4 https://dbgit.prakinf.tu-ilmenau.de/code/gtpc-neo4j

106 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

https://dbgit.prakinf.tu-ilmenau.de/code/gtpc-neo4j

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 3

None of the aforementioned graph benchmarks tackles our use case of a product-graph-based
benchmark for HTAP graph databases. GTPC stresses graph systems with transactional
updates and analytical queries concurrently on the same graph. Contrary to graph databases,
there are HTAP benchmarks for relational databases such as CH-benCHmark [Co11]
and HTAPBench [Co17]. Both aim at merging the transactional-workload-based TPC-C
benchmark and the analytical-workload-based TPC-H benchmark into a hybrid benchmark.
The mixed workloads are run concurrently on the same tables in the same database.

3 Benchmark Design

In the following, we describe the design of the GTPC benchmark, which adapts the
CH-benCHmark to a property graph model and the corresponding mixed query workload.

3.1 Data Model

The product graph of GTPC is based on the Labeled Property Graph Model (or property
graph) [An17]. The property graph model is widely adopted as it offers a rich representation
of graphs where nodes (vertices) and relationships (edges) have types or labels and are
associated with a set of properties stored as key-value pairs. In mathematical notation, a
property graph 𝐺 is a tuple

(𝑁, 𝑅, 𝑠𝑑, 𝐿, 𝑙𝑁 , 𝑙𝑅, 𝐷, 𝑃𝑁 , 𝑃𝑅)

where 𝑁 is a finite set of nodes, 𝑅 ⊆ 𝑁 × 𝑁 is a set of relationships, 𝑠𝑑 : 𝑅 ↦→ 𝑁 × 𝑁

is a relationship function that maps each relationship to its source and destination nodes,
𝐿 is a set of labels that define different types of nodes and relationships, 𝑙𝑁 : 𝑁 ↦→ 𝐿

and 𝑙𝑅 : 𝑅 ↦→ 𝐿 are labelling functions that assign types to nodes and relationships,
𝐷 = ∪𝑖𝐷𝑖 is the union of atomic domains 𝐷𝑖 (since nodes and relationships may have an
arbitrary number of properties), and 𝑃𝑁 and 𝑃𝑅 are sets of node and relationship properties
respectively. A node property 𝑝𝑖 ∈ 𝑃𝑁 is a partial function 𝑝𝑖 : 𝑁 ↦→ 𝐷𝑖 ∪ {NULL}, which
assigns a property value from a domain 𝐷𝑖 ∈ 𝐷 to a node 𝑛 ∈ 𝑁 if 𝑛 has the property
𝑝𝑖 , otherwise 𝑝𝑖 (𝑛) returns NULL. Similarly, a relationship property 𝑝 𝑗 ∈ 𝑃𝑅 is a partial
function 𝑝 𝑗 : 𝑅 ↦→ 𝐷 𝑗 ∪ {NULL}, which assigns a property value from a domain 𝐷 𝑗 ∈ 𝐷

to a relationship 𝑟 ∈ 𝑅 if 𝑟 has the property 𝑝 𝑗 , otherwise 𝑝 𝑗 (𝑟) returns NULL.

3.2 Schema

The product graph of GTPC results from a merging of the TPC-C and TPC-H benchmarks,
and their adaptation for graphs. Merging of TPC-C and TPC-H schemas had been done prior
with the CH-benCHmark [Co11], a mixed workload benchmark for relational databases.
We adopt some of its design considerations in GTPC.

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 107

4 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

Warehouse District

W W ∗ 10

Stock

W ∗ 100k

Item

100k

Customer

W ∗ 30k

History

W ∗ 30k+

Order

W ∗ 30k+

OrderLine

W ∗ 300k+

NewOrder

W ∗ 9k+

(a) TPC-C

Nation

25

Cutomer

SF ∗ 150k

Region

5

LineItem

SF ∗ 600k

PartSupp

SF ∗ 800k

Orders

SF ∗ 1500k

Supplier

SF ∗ 10k

Part

SF ∗ 200k

(b) TPC-H

Fig. 1: (a) TPC-C Schema (b) TPC-H Schema.

TPC-C. The TPC-C simulates a general complex OLTP environment by way of five
read-only and update-intensive transactions for the management, sale and distribution
of a product or service. Specifically, it models a wholesale supplier having a certain
number of warehouses and respective sales districts. The TPC-C schema covers nine
relations as depicted in Fig. 1a, each associated with an entity of the database: warehouse,
district, customer, order, order-line, item, stock, new-order and history.
The transactions are New-Order, Payment, Order-Status, Delivery, and Stock-Level. In
Fig. 1a, the arrows point in the direction of many-to-one relationships between the tables.
The numbers denote the table cardinalities (the number of rows) and are expressed as factors
of W, the number of warehouses, to show the scaling of the database. The “+” sign means
that the number is subject to small variations as the number of rows changes [TPC-C10].

TPC-H. The TPC-H on the other hand simulates a business analytics application. It
consists of 22 analytical queries for operations such as pricing, shipping management and
market study. The business queries are executed on 8 relations: region, nation, supplier,
customer, order, lineitem, part and partsupp, as shown in Fig. 1b. Similarly to
Fig. 1a, the arrows in Fig. 1b point in the direction of many-to-one table relationships and
the numbers represent the cardinalities of the tables, expressed as factors of SF, the Scale
Factor, which determines the database size [TPC-H21]. As we are adopting aspects of
the CH-benCHmark, we use TPC-H instead of TPC-DS [TPC-DS21]. Moreover, unlike
TPC-H, TPC-DS has a snowflake schema with multiple dimension and fact tables. It also
incorporates an Extract-Transform-Load (ETL) process, which is contrary to HTAP systems.
And with regards to having a unified schema for the mixed workloads, the similarities
between the TPC-C schema and the TPC-H schema make TPC-H more suitable.

GTPC. GTPC combines the entities of TPC-C and TPC-H, where the entities are
transformed into nodes. Both TPC-C and TPC-H share customer and order as common

108 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 5

Item

id
im_id
name
…

District

id
name
street_1
…

Stock

id
quantity
dist_01
…

OrderLine

id
number
delivery_d
…

Order

id
entry_d
carrier_id
…

Warehouse

id
name
street_1
…

Region

id
name
comment
…

Nation

id
name
comment
…

Customer

id
first
middle
…

Supplier

id
name
address
… isLocatedIn

hasStock

hasSupplier

hasStock

hasPlaced

isLocatedIn

serves

contains

isPartOf

covershasStock

Fig. 2: GTPC Schema.

entities. Also, orderline and item entities of TPC-C map to lineitem and part
entities of TPC-H respectively. We thus maintain the entities of TPC-C as base entities and
incorporate the remaining supplier, region and nation entities of TPC-H which are
used solely for the analytical queries. By incorporating nation, there is a need to introduce
a relationship function 𝑠𝑑 that associates customers to their respective nations. Similarly to
the CH-benCHmark, we take it from the first character of the state property of a customer,
which has 62 distinct values. Thus, we top up the 25 nations of the TPC-H to 62 nations.

We introduce identifiers for all node entities. This is required since, unlike in the relational
model where entities contain foreign key attributes to denote relationships, nodes in a
property graph do not store reference properties to other nodes. Each and every node of
any given label is associated with an identifier that is unique to it within nodes of the same
label. However, the identifiers are not unique across different labels. Nevertheless, each
node is identifiable irrespective of the nodes to which it is connected, obviating the typical
identifiers that are composites of foreign keys in the relational model.

Five out of the eight attributes of the history entities in TPC-C are foreign key attributes.
As the benchmark does not require the history entities to be uniquely identifiable, we
simply merge the remaining three attributes into the customer entity in GTPC. As a result,
history is not a separate entity in GTPC. This is a property graph schema optimization
step that we take to avoid extra relationship traversal when retrieving history information.
Additionally, we save space because the history data are simply stored as property key-
values instead of as entire node objects [Al21]. Similarly, we do not store new-order as
separate node entities. And coupled with the fact that there are no attributes associated

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 109

6 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

with new-order entities, we simply extend the properties of order nodes with an extra
property that indicates whether or not an order node is new. The graph model elevates
relationships to first-class entities. We thus model all relationships between all pairs of node
entities as separate relationship entities. Fig. 2 depicts the resulting GTPC schema.

Note that Part_Supp in the TPC-H schema is an instance of a part entity supplied by
a certain supplier. In the TPC-C schema however, stock is an instance of an item
entity available in a certain warehouse. Since item maps to part, it follows that the
information in Part_Supp in the TPC-H schema is analogous to that in stock in the GTPC
schema. Hence, there is a relationship between supplier and stock in the GTPC schema
(supplier does not exist is the TPC-C schema) much like there is a foreign key relationship
between supplier and Part_Supp entity.

Future work includes addition of more graph features in the schema, e.g. self-edges. Self-
edges could be introduced via supplier to supplier edges where bigger suppliers supply
to smaller ones, via merging the region and nation entity types into a single entity type,
thereby transforming the existing regular edges with label isPartOf into self-edges etc.

3.3 Data Generation

Product graphs in GTPC are generated as property graphs based on the GTPC schema.

Generator: The GTPC graph generator is adapted from the CH-benCHmark data gen-
erator [CH]. Different graph generators employ various distributions such as power-law,
Zipfian, uniform etc [Bo20]. As a first step, we simply follow the original TPC specification
and adapt it in terms of assigning node degrees and property values, i.e. based on a uniform
distribution. The graph data sets are output as CSV files.

Scaling: We use the number of warehouses as the basic scaling unit, similar to TPC-C. It
determines the total number of nodes and other graph characteristics such as the degrees of
all nodes, with the exception of item, supplier, region and nation.

3.4 Query Workloads

GTPC stresses the execution of concurrent OLTP and OLAP graph workloads. GTPC’s
OLTP graph workload is an adaptation of the five TPC-C transactions while its OLAP graph
workload is an adaptation of the 22 TPC-H queries. We implement the OLTP and OLAP
queries in C++ using the set of operators provided by Poseidon5. For other graph systems,
the queries simply need to be implemented in the corresponding query language. As an
example, we show the implementation of the GTPC OLAP #4 for Neo4j in List. 1.

5 https://dbgit.prakinf.tu-ilmenau.de/code/poseidon_core

110 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

https://dbgit.prakinf.tu-ilmenau.de/code/poseidon_core

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 7

OLTP: GTPC OLTP queries 1–5 are transformations of the New-Order, Payment, Order-
Status, Delivery, and Stock-Level transactions respectively into graph queries.

OLTP #1: This read-write transaction inserts an order node along with a number of
orderline nodes associated with it. The association is captured by adding a contains
relationship for each orderline node, with the order and orderline nodes as source
and destination nodes respectively. Note that no new-order nodes are created. Rather,
the newly created order nodes have one of their properties set to indicate they are new
orders. Also note that additional relationships are created to connect the inserted order
node with its respective customer node, and to connect the inserted orderline nodes to
their respective stock nodes. The transaction also entails other read and write operations
like retrieving warehouse, district, customer and stock nodes, as well as projecting
some of their properties; and updating the properties of district and stock nodes.

OLTP #2: This transaction updates a customer’s balance. The transaction additionally
updates the warehouse and district nodes so that the sales tally with the new payment.

OLTP #3: This read-only transaction checks the order status of a customer. It covers retrieval
of the customer node, a relationship traversal(s) to retrieve the order node(s), and a
further relationship traversal(s) to retrieve the orderline node(s) connected to it.

OLTP #4: This read-write transaction delivers a batch of 10 new orders. It consists in
retrieving the order node and updating its properties to signify that it has been delivered
and thus no longer a new order. Besides that, in order to reflect the delivery, its relationships
are traversed to retrieve and update the delivery date properties of its associated orderline
nodes; as well as the balance and delivery count of its associated customer node.

OLTP #5: This read-only transaction computes the number of stock items sold recently and
having a stock level below a certain threshold value. The transaction entails relationship
traversals of up to four levels and an aggregate operation (count).

OLAP: We adapt the 22 queries of TPC-H for graphs, resulting in GTPC’s OLAP queries
1–22. The TPC-H presents systems with a rich set of chokepoints or challenges with respect
to optimized and efficient query processing. An analysis of the TPC-H chokepoints is
presented in [BNE13]. The authors integrated chokepoints in their design of the LDBC
benchmarks [LDBC SNB]. GTPC thus preserves those chokepoints. Additionally, since the
OLAP queries are largely traversal operations ranging from one to eight hops, GTPC thus
tests a system’s ability to efficiently traverse the graph topology by choosing the optimal
traversal order. This is central to the performance of graph processing.

Execution Mode: GTPC’s mixed workload is run as concurrent streams of OLTP and
OLAP queries. We dispatch an OLTP stream as a randomly permuted yet complete set
of OLTP queries while an OLAP stream consists of the full set of OLAP queries ordered
sequentially. Each OLAP stream starts with a different query. Each stream (OLTP or OLAP)
is assigned a thread from a thread pool and, within the thread, the queries of the stream are

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 111

8 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

executed sequentially. Hence, the mixed execution mode consists in a mix of OLTP and
OLAP streams that are dispatched in parallel from the thread pool and executed concurrently.
As part of future work, an aspect of the execution to consider for fair comparison, especially
as to systems with high OLTP performance, is bounding the graph size. This could be done
by converting inserts into updates after a certain size limit or by using the number of OLTP
streams that results in the maximum OLTP throughput.

MATCH(o:Order)-[:contains]->(ol:OrderLine)
WHERE o.entry_d >= datetime('2007-01-02T00:00:00.000000')
AND o.entry_d < datetime('2012-01-02T00:00:00.000000')
AND ol.delivery_d >= o.entry_d

WITH o.ol_cnt AS o_ol_cnt, COUNT(*) AS order_count
RETURN o_ol_cnt, order_count

List. 1: GTPC OLAP #4 in Cypher.

3.5 Benchmark Parameters

Our benchmark parameters are the database size in terms of the total number of nodes,
which is a function of the number of warehouses; the number of concurrent OLTP and
OLAP streams, which determines the level of contention between transactions; and the
transaction isolation level, which determines transactional guarantees.

3.6 Performance Metrics

Most of the benchmarks discussed make use of execution time (latency) and/or throughput
as performance metrics. Other metrics considered in benchmarking include CPU usage,
memory footprint etc. In GTPC, we currently evaluate OLTP-OLAP performance interplay
based on execution time and throughput.

4 Evaluation

We use our graph database, Poseidon [Ji21], as an example graph system for our evaluation
in this paper. It should be noted here that although Poseidon is based on persistent memory,
however, persistent memory is not relevant to GTPC. Poseidon is only a graph system we
use here to make an example implementation of the GTPC benchmark. For concurrency
control in this evaluation, we use the multi-version two-phase locking protocol, where the
number of versions is limited to two (2V2PL).

We conduct our evaluations on a dual-socket Intel Xeon Gold 5215 with 10 cores per socket
running at a maximum of 3.40 GHz. The machine is equipped with 384 GB DRAM, 1.5

112 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 9

1 5 10 15 20

0

200

400

600

OLAP Streams

Th
ro

ug
hp

ut

(a)

1 5 10 15 20

0

500

1,000

1,500

OLTP Streams

Th
ro

ug
hp

ut

(b)

1 5 10 15 20

0

500

1,000

1,500

OLTP Streams

Ti
m

e

(c)

1 5 10 15 20

0

10

20

OLAP Streams

Ti
m

e

(d)

Fig. 3: (a) OLAP-only throughput (in Qph) with increasing number of OLAP streams (b) OLTP-only
throughput (in Qph) with increasing number of OLTP streams (c) Execution time of OLAP stream
(in sec) with increasing number of OLTP streams (d) Execution time of OLTP stream (in sec) with
increasing number of OLAP streams.

TB Intel Optane DC Persistent Memory Module (DCPMM) operating in AppDirect mode,
4x 1.0 TB Intel SSD DC P4501 Series connected via PCIe 3.1; and runs on CentOS 7.9
with Linux Kernel 5.10.6. We use the Intel Persistent Memory Development Kit (PMDK)
version 1.9.1 and libpmemobj-cpp version 1.11 for directly accessing the PMem device.
Meanwhile, all executions were fixed to a single socket to factor out NUMA effects.

We load the GTPC dataset of two warehouses into Poseidon to execute the GTPC workloads.
The input graph has 1.031.312 nodes and 1.992.528 relationships. We first execute OLAP
streams exclusively. There is thus no contention for graph objects in this setting. Although
the latency per OLAP stream increases with an increasing number of concurrent streams,
Fig. 3a shows that the overall query throughput (expressed in queries per hour) increases.
With OLTP-only stream execution, however, contention between transactions on graph
objects results in some of them aborting. Also, different transactions abort at different stages
of execution – with computation being wasted for each transaction that aborts. All these
depend on the graph characteristics and workload pattern. More skew would result in higher
contention on common graph objects, as transactions are more likely to access the same
nodes – especially those with higher degrees. We currently adopt the TPC specification in
our relationship mapping and substitution parameters. Nevertheless, we see in Fig. 3b that
transaction throughput increases initially with an increase in concurrent OLTP streams until

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 113

10 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

it reaches a threshold at 10 streams, after which dispatching additional concurrent streams
decreases throughput.

Thereafter, we run the mixed OLTP-OLAP workload to demonstrate the effectiveness of
GTPC in testing performance isolation in a system – i.e. the system’s ability to handle the
interference between concurrently running OLTP and OLAP query streams without the
performance of either of the two being compromised as a result of the other. We start by
fixing the OLAP stream at a single stream while varying the concurrent OLTP streams.
Fig. 3c shows the execution times (in seconds) of the individual queries in the OLAP
stream when run concurrently with a varying number of OLTP streams. For each query,
its execution times in the presence of the varying number of OLTP streams lie within a
relatively narrow range. This shows that the OLTP streams do not interfere much with the
OLAP query execution times, as the OLTP transactions do not block the OLAP queries due
to multi-versioning. Compared with the earlier OLAP-only runs, we see that the execution
time of an OLAP stream is influenced more by concurrent OLAP streams than by the same
number of OLTP streams. Finally, we maintain a single OLTP stream and run it concurrently
with a varying number of OLAP streams. We expect the OLTP stream execution time to
increase with more OLAP streams partly because the improved concurrency of OLAP
queries in the 2V2PL is a trade-off with delaying transaction commit when the OLTP
transactions wait for OLAP queries before acquiring a certify lock. The initial part of Fig. 3d
shows that. We note here that we omit the execution time of OLTP #4, which is the most
write-heavy transaction after OLTP #1, as it fails starting from 10 OLAP streams.

5 Conclusion

In this paper, we have presented our ongoing work on GTPC, a hybrid OLTP-OLAP graph
benchmark based on the TPC-C and TPC-H benchmarks. We implemented and ran GTPC
on Poseidon, our graph database, as an example to showcase the effectiveness of GTPC in
testing HTAP graph systems with respect to performance isolation between concurrently
running OLTP and OLAP graph query streams. Future work towards developing GTPC into
a fully-fledged hybrid graph benchmark include extending the mixed workload to further
include graph algorithms, incorporating more real-world data characteristics in the data
generation, introducing more benchmark parameters and performance metrics to facilitate
better comparison between different HTAP graph systems.

Acknowledgements. This work was partially funded by the German Research Foundation
(DFG) in the context of the project “Hybrid Transactional/Analytical Graph Processing
in Modern Memory Hierarchies (#TAG)” (SA 782/28-2) as part of the priority program
“Scalable Data Management for Future Hardware” (SPP 2037) and by the Carl-Zeiss-Stiftung
under the project “Memristive Materials for Neuromorphic Electronics (MemWerk)”.

114 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 11

References

[Al14] Aluç, G.; Hartig, O.; Özsu, M. T.; Daudjee, K.: Diversified Stress
Testing of RDF Data Management Systems. In (Mika, P.; Tudorache, T.;
Bernstein, A.; Welty, C.; Knoblock, C. A.; Vrandecic, D.; Groth, P.;
Noy, N. F.; Janowicz, K.; Goble, C. A., eds.): The Semantic Web -
ISWC 2014 - 13th International Semantic Web Conference, Riva del
Garda, Italy, October 19-23, 2014. Proceedings, Part I. Vol. 8796.
Lecture Notes in Computer Science, Springer, pp. 197–212, 2014,
url: https://doi.org/10.1007/978-3-319-11964-9%5C_13.

[Al21] Alotaibi, R.; Lei, C.; Quamar, A.; Efthymiou, V.; Özcan, F.: Property
Graph Schema Optimization for Domain-Specific Knowledge Graphs.
In: 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021. IEEE, pp. 924–935, 2021,
url: https://doi.org/10.1109/ICDE51399.2021.00085.

[An17] Angles, R.; Arenas, M.; Barceló, P.; Hogan, A.; Reutter, J. L.; Vrgoc, D.:
Foundations of Modern Query Languages for Graph Databases. ACM
Comput. Surv. 50/5, 68:1–68:40, 2017, url: https://doi.org/10.
1145/3104031.

[Ar13] Armstrong, T. G.; Ponnekanti, V.; Borthakur, D.; Callaghan, M.:
LinkBench: a database benchmark based on the Facebook social graph.
In (Ross, K. A.; Srivastava, D.; Papadias, D., eds.): Proceedings of
the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. ACM,
pp. 1185–1196, 2013, url: https://doi.org/10.1145/2463676.
2465296.

[Ba17] Bagan, G.; Bonifati, A.; Ciucanu, R.; Fletcher, G. H. L.; Lemay, A.;
Advokaat, N.: gMark: Schema-Driven Generation of Graphs and
Queries. IEEE Trans. Knowl. Data Eng. 29/4, pp. 856–869, 2017, url:
https://doi.org/10.1109/TKDE.2016.2633993.

[Be19] Besta, M.; Peter, E.; Gerstenberger, R.; Fischer, M.; Podstawski, M.;
Barthels, C.; Alonso, G.; Hoefler, T.: Demystifying Graph Databases:
Analysis and Taxonomy of Data Organization, System Designs, and
Graph Queries. CoRR abs/1910.09017/, 2019, arXiv: 1910.09017,
url: http://arxiv.org/abs/1910.09017.

[BNE13] Boncz, P. A.; Neumann, T.; Erling, O.: TPC-H Analyzed: Hidden
Messages and Lessons Learned from an Influential Benchmark. In
(Nambiar, R.; Poess, M., eds.): Performance Characterization and
Benchmarking - 5th TPC Technology Conference, TPCTC 2013,
Trento, Italy, August 26, 2013, Revised Selected Papers. Vol. 8391.
Lecture Notes in Computer Science, Springer, pp. 61–76, 2013, url:
https://doi.org/10.1007/978-3-319-04936-6%5C_5.

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 115

https://doi.org/10.1007/978-3-319-11964-9%5C_13
https://doi.org/10.1109/ICDE51399.2021.00085
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1109/TKDE.2016.2633993
http://arxiv.org/abs/1910.09017
https://doi.org/10.1007/978-3-319-04936-6%5C_5

12 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

[Bo20] Bonifati, A.; Holubová, I.; Prat-Pérez, A.; Sakr, S.: Graph Generators:
State of the Art and Open Challenges. ACM Comput. Surv. 53/2,
36:1–36:30, 2020, url: https://doi.org/10.1145/3379445.

[CH] CH-benCHmark, url: https://db.in.tum.de/research/projects/
CHbenCHmark/index.shtml.

[Co11] Cole, R. L.; Funke, F.; Giakoumakis, L.; Guy, W.; Kemper, A.;
Krompass, S.; Kuno, H. A.; Nambiar, R. O.; Neumann, T.; Poess, M.;
Sattler, K.; Seibold, M.; Simon, E.; Waas, F.: The mixed workload
CH-benCHmark. In (Graefe, G.; Salem, K., eds.): Proceedings of
the Fourth International Workshop on Testing Database Systems,
DBTest 2011, Athens, Greece, June 13, 2011. ACM, p. 8, 2011, url:
https://doi.org/10.1145/1988842.1988850.

[Co17] Coelho, F.; Paulo, J.; Vilaça, R.; Pereira, J.; Oliveira, R.: HTAP-
Bench: Hybrid Transactional and Analytical Processing Benchmark.
In (Binder, W.; Cortellessa, V.; Koziolek, A.; Smirni, E.; Poess, M.,
eds.): Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering, ICPE 2017, L’Aquila, Italy, April 22-26,
2017. ACM, pp. 293–304, 2017, url: https://doi.org/10.1145/
3030207.3030228.

[Er15] Erling, O.; Averbuch, A.; Larriba-Pey, J. L.; Chafi, H.; Gubichev, A.;
Prat-Pérez, A.; Pham, M.; Boncz, P. A.: The LDBC Social Network
Benchmark: Interactive Workload. In (Sellis, T. K.; Davidson, S. B.;
Ives, Z. G., eds.): Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015. ACM, pp. 619–630, 2015, url: https:
//doi.org/10.1145/2723372.2742786.

[HPC09] HPC Scalable Graph Analysis Benchmark, 2009, url: http://
www.graphanalysis.org/benchmark/GraphAnalysisBenchmark-

v1.0.pdf.
[Ji21] Jibril, M. A.; Baumstark, A.; Götze, P.; Sattler, K.: JIT happens:

Transactional Graph Processing in Persistent Memory meets Just-In-
Time Compilation. In (Velegrakis, Y.; Zeinalipour-Yazti, D.; Chrysan-
this, P. K.; Guerra, F., eds.): Proceedings of the 24th International
Conference on Extending Database Technology, EDBT 2021, Nicosia,
Cyprus, March 23 - 26, 2021. OpenProceedings.org, pp. 37–48, 2021,
url: https://doi.org/10.5441/002/edbt.2021.05.

[LDBC FinBench] The LDBC Financial Benchmark, url: https://ldbcouncil.org/
ldbc_finbench_docs/ldbc-finbench-specification.pdf.

[LDBC SNB] The LDBC Social Network Benchmark, url: http://ldbc.github.
io/ldbc_snb_docs/ldbc-snb-specification.pdf.

116 Muhammad Attahir Jibril, Alexander Baumstark, Kai-Uwe Sattler

https://doi.org/10.1145/3379445
https://db.in.tum.de/research/projects/CHbenCHmark/index.shtml
https://db.in.tum.de/research/projects/CHbenCHmark/index.shtml
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/3030207.3030228
https://doi.org/10.1145/3030207.3030228
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/2723372.2742786
http://www.graphanalysis.org/benchmark/GraphAnalysisBenchmark-v1.0.pdf
http://www.graphanalysis.org/benchmark/GraphAnalysisBenchmark-v1.0.pdf
http://www.graphanalysis.org/benchmark/GraphAnalysisBenchmark-v1.0.pdf
https://doi.org/10.5441/002/edbt.2021.05
https://ldbcouncil.org/ldbc_finbench_docs/ldbc-finbench-specification.pdf
https://ldbcouncil.org/ldbc_finbench_docs/ldbc-finbench-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 13

[Mh21] Mhedhbi, A.; Lissandrini, M.; Kuiper, L.; Waudby, J.; Szárnyas, G.:
LSQB: a large-scale subgraph query benchmark. In (Kalavri, V.;
Yakovets, N., eds.): GRADES-NDA ’21: Proceedings of the 4th ACM
SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics
(NDA), Virtual Event, China, 20 June 2021. ACM, 8:1–8:11, 2021,
url: https://doi.org/10.1145/3461837.3464516.

[Neo4j] Neo4j, url: https://neo4j.com/.
[Sa20] Sahu, S.; Mhedhbi, A.; Salihoglu, S.; Lin, J.; Özsu, M. T.: The ubiquity

of large graphs and surprising challenges of graph processing: extended
survey. VLDB J. 29/2-3, pp. 595–618, 2020, url: https://doi.org/
10.1007/s00778-019-00548-x.

[TigerGraph] TigerGraph, url: https://www.tigergraph.com.
[TPC-C10] TPC-C Specification, 2010, url: http://tpc.org/tpc_documents_

current_versions/pdf/tpc-c_v5.11.0.pdf.
[TPC-DS21] TPC-DS specification, 2021, url: https://www.tpc.org/tpc_

documents_current_versions/pdf/tpc-ds_v3.2.0.pdf.
[TPC-H21] TPC-H Specification, 2021, url: http://tpc.org/tpc_documents_

current_versions/pdf/tpc-h_v3.0.0.pdf.
[Ultipa] Ultipa, url: https://www.ultipa.com/.
[Zh20] Zhu, X.; Serafini, M.; Ma, X.; Aboulnaga, A.; Chen, W.; Feng, G.: Live-

Graph: A Transactional Graph Storage System with Purely Sequential
Adjacency List Scans. Proc. VLDB Endow. 13/7, pp. 1020–1034,
2020, url: http://www.vldb.org/pvldb/vol13/p1020-zhu.pdf.

GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark 117

https://doi.org/10.1145/3461837.3464516
https://neo4j.com/
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1007/s00778-019-00548-x
https://www.tigergraph.com
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://www.ultipa.com/
http://www.vldb.org/pvldb/vol13/p1020-zhu.pdf

cba

(Hrsg.):
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

IBM Data Gate: Making On-Premises Mainframe Databases
Available to Cloud Applications

Knut Stolze1, Felix Beier1, Vassil Dimov1, Eirini Kalogeiton1, Mateo Tošić1

Abstract:

Many companies use databases on the mainframe for their mission critical applications. It is important
to exploit this existing data for analysis and business decisions via modern applications that are often
built exclusively for cloud environments. IBM Db2 for z/OS Data Gate (Data Gate) is bridging the
gap between mainframe databases and such cloud-native applications. It offers high-performance data
synchronization for connecting both worlds, while providing data coherence at the level of individual
transactions. Data Gate is a hybrid cloud solution that protects existing systems, applications, and
investments into those, while enabling new use cases to work with mainframe data. In this paper, we
give an overview of Data Gate and discuss how it evolved from IBM Db2 Analytics Accelerator (IDAA)
technology by adjusting the system architecture and some of the functionality in order to make IBM
Db2 for z/OS (Db2/z) data a first-class citizen the cloud.

1 Introduction
Database systems are the well-established approach to manage application data since the
relational model was invented. In 1983, IBM released Db2/z, a relational DBMS for IBM’s
mainframe. As of today, Db2 and Db2/z are the core data management products for many
organizations, as they ensure excellent availability, performance, scalability, and storage
saving options. Nowadays, the need of organizations has grown to take advantage of their
huge amount of data that is generated or collected every day. To cope with this need, cloud
solutions are introduced, providing a simple, efficient, cost-effective, scalable, and flexible
environment [Ch15]. IBM offers various solutions for making on-premises data sources,
such as Db2/z, available as first-class citizens in cloud-native environments while addressing
a series of requirements, like ensuring that business-critical systems are not impacted
negatively, existing investments are protected, and risks to such systems are minimized.

This paper focusses on an approach for integrating on-premises databases into the new cloud-
native landscape rather than migrating such systems. While this integration methodology
protects decades of customers’ investments in their data management infrastructure, it rises a
set of requirements that have to be addressed in order to seamlessly integrate business-critical
databases into a managed cloud ecosystem, without having to relocate existing applications
and/or workloads. First, integration solutions have to optimize data placement with caching
strategies in order to collocate cloud-based data accesses. Those cloud-based caches need
1 IBM Germany Research & Development GmbH, {stolze,febe}@de.ibm.com, {Vassil.Dimov1,Eirini.Kalogeiton,

Mateo.Tosic}@ibm.com

cba doi:10.18420/BTW2023-06

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 119

mailto:{stolze,febe}@de.ibm.com
mailto:{Vassil.Dimov1,Eirini.Kalogeiton,Mateo.Tosic}@ibm.com
mailto:{Vassil.Dimov1,Eirini.Kalogeiton,Mateo.Tosic}@ibm.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-06

2 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

to be synchronized with the on-premises data sources, which comes with high requirements
w.r.t. change replication performance. Second, any data replication mechanism inevitably
introduces latencies that need to be hidden by some cache coherency protocols to guarantee
consistent views when data is accessed by consuming applications. Third, compatibility
aspects need to be considered. Although the SQL standard pretends a uniform specification
of relational data management and processing, the actual systems implementing them
differ largely in available features and functions. These differences need to be hidden
from customer applications for a truly transparent data access experience. Finally, various
non-functional requirements w.r.t. security, administration, monitoring, stability, etc. have
to be satisfied for enterprise readiness. In the following, we will discuss how Data Gate
[IB22e] solved these challenges for making Db2/z data available and synchronized in the
cloud. Based on well-proven database accelerator technologies of IDAA [IB22d], Data Gate
replicates Db2/z data into a cloud database and uses patented cache coherence protocols to
guarantee data consistency, irrespective from where the data is accessed. Data Gate can be
considered the cloud evolution of IDAA. We will present important aspects of Data Gate’s
architecture and will also shed some light on architectural decisions that led to dead ends.

2 Related Work
Data Gate is primarly an integration component that makes data available from mainframe
databases (ie. Db2/z) in established cloud databases. Generally, different approaches exist to
integrate on-premise data sources in the cloud The most common ones are described below.

The Lift-&-Shift approach transfers not only the data, but the complete on-premises
environments, consisting of data stores and the applications working with them, to a
virtualized cloud-based infrastructure. This is beneficial for data stores and applications
running on platforms that are available in the cloud already. Lift-&-Shift may require
recompiling code, changes to the packaging/installation procedures or security and user
management due to the different underlying environment. Additionally, data and file
conversions may change [Me18]. If suitable, this approach eliminates the need for on-
premises environments, as it benefits from reusability and is faster then rewriting existing
applications [In20]. On the other hand, future enhancements are slower to adopt because
the software stack is not modernized [PP20].

Custom data ingestion pipelines use a combination of tools for bulk loading and continuous
data replication to copy the data from on-premises databases to a cache in the cloud for
minimizing data access costs of cloud-native applications. The required tools can be
implemented from scratch or by combining open-source technologies, like Kafka [Kr11],
Debezium [Co22] and others [De21]. Alternatively, a combination of existing products
with different performance characteristics and consistency semantics can be used, e. g.,
AWS Database Migration Service [Ge22]. Such data ingestion pipelines minimize risks for
existing applications because the source database systems are not impacted and allow to
embed data transformations that may be required by consuming cloud applications. On the
other hand, this approach has a longer time-to-market because multiple components are
involved that have to be separately implemented and integration-tested as a whole system.

120 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud Applications 3

Many companies offer integrated data replication tools that provide all benefits of custom
data ingestion pipelines while abstracting the implementation complexity, e. g. Oracle
Golden Gate [Gu16] and Cyniti Data Replication [Sy19]. Those tools replicate data from
the on-premises data store to a target database in the cloud, offering features for initial bulk
data ingestion, continuous data replication, and utilities to orchestrate the whole process.
These tools take care of encryption and data transformations and, usually, offer better data
movement performance and superior consistency semantics than home-grown solutions.
An integration with other cloud services is provided to ease data consumption in cloud
environments. Examples for such integrations are cataloging data in enterprise data catalogs,
automated data governance, and data profiling. Data Gate falls into this group.

While the previous approaches involve movement of data from on-premises data sources to
the cloud, data virtualization allows consuming the data from cloud-based applications
without creating a cached data copy. Inconsistencies between different data versions are
avoided because all data consumers operate on the same data. To achieve that, a data
virtualization layer is defined that combines separate data sources from different platforms.
The ease of integrating various data platforms at one place enables rapid prototyping of new
cloud applications [MAT19]. On the other hand, the on-premises data store has to facilitate
the whole workload, analytical and transactional, stemming from both, on-premises and
cloud applications. Thus, a virtualization approach can be more costly in terms of operations
of the source data store and pose a risk for existing business-critical applications.

3 Evolution from IDAA to Data Gate
Data Gate can be categorized as integrated data replication tool that facilitates the movement
of data from an on-premises mainframe database to a cloud database. Data Gate is integrated
into IBM Cloud Pak for Data (CP4D) [IB22c], IBM’s cloud platform for data analytics
with a unified service architecture for user management, encryption, and common user
experience for working with a wide variety of data sources. It interacts with the platform’s
metadata catalog for making mainframe data discoverable and consumable by any cloud
application. Applications can access the data in the cloud database at any time with the
guarantee that they always operate on the latest, consistent view of the data. Furthermore,
Data Gate supports seamless routing of analytic workload stemming from Db2/z to the
cloud. It evolved from IDAA, an on-premises accelerator appliance for processing analytical
Db2/z queries. The architectural evolution is illustrated in Figure 1.

The architecture of IDAA that acts as the base for Data Gate is illustrated in Figure 1A. IDAA
is a pre-configured cluster that runs a tuned IBM Db2 Warehouse (Db2 WH) installation and
an accelerator server middleware. IDAA is deeply integrated into Db2/z as internal resource
for processing analytic queries (green flow in Figure 1A). IDAA exists only as an extension
to Db2/z and the data residing on the accelerator can only be accessed through Db2/z.
IDAA’s main purpose is to make mainframe workload more predictable and to execute
the analytical part of it more efficiently. Queries that are submitted by client applications
are analyzed by the Db2/z optimizer which decides to route the query to IDAA if it is

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud
Applications 121

4 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

Vy
at

ta
 V

PN
G

at
ew

ay

Admin Tools

Db2
Warehouse
(Db2 LUW)

Local Client
Applications

Db2 for z/OS IDAA

Optimizer

Accelerator
Services

Accelerator
Server

TXN
Log

Bulk Load / Archiving

log apply

Accelerated
Queries

SQL

Query
ResultsQuery Results

changes
(INSERT,
UPDATE,
DELETE)

Table Management

Admin Tools

Db2
Warehouse
(Db2 LUW)

Local Client
Applications

Db2 for z/OS IDAA on Cloud

Optimizer

Accelerator
Services

Accelerator
Server

TXN
Log

Bulk Load / Archiving

log apply

Accelerated
Queries

SQL

Query
ResultsQuery Results

changes
(INSERT,
UPDATE,
DELETE)

Table Management

IBM
Marketplace

encrypted
RAID

IBM Cloud

service
config

cloud storage
Container Runtime

Admin Tools

Local Client
Applications

Db2 for z/OS

Optimizer

Accelerator
Services

TXN
Log

Bulk Load / Archiving

log apply

Accelerated
QueriesSQL

Query Results

changes
(INSERT,
UPDATE,
DELETE)

Table Management

Cloud Pak For Data

Data Gate
Service
Instance

Red Hat OpenShift

Data Gate
Server

Data
Gate UI

Integrated
Sync

St
un

ne
l

G
at

ew
ay

Privileged Init
Containers

Watson
Knowledge

Catalog

WKC
Integration

Data Gate
Operator

Db2 Service
Instance
Wait-for-

Data

Data Gate
Metadata

Data Gate API

C
lo

ud
-n

at
iv

e
Ap

pl
ic

at
io

ns

Direct
Target
Db2

Access

Metadata
Access for

Governance,
Lineage,
Profiling

accelerated
queries

sync with
log apply

Bulk INSERT

Image
Registries

Pods and
Services

Data Gate

Other Services

log apply

Application

Admin Tools

Db2
Warehouse
(Db2 LUW)

Local Client
Applications

Db2 for z/OS
IDAA DRDA

Gateway

Optimizer

Accelerator
Services

Accelerator
Server

TXN
Log

Bulk Load / Archiving

log apply

Query
Results

changes
(INSERT,
UPDATE,
DELETE)

Table Management

Rewritten
Query

Query Admin Tools

A) B)

D)C)

Fig. 1: IDAA and Data Gate Architecture Overview

an analytical one. Otherwise, it is executed locally. In case it is routed to IDAA, it will
be transformed to the Db2 WH SQL dialect, executed on the appliance, and its result set
is streamed back to the application via Db2/z. The offloading is, therefore, completely
transparent to the application and no modifications are needed. That is a critical requirement
for many Db2/z users. The data residing on IDAA is always kept in the same encoding as on
the source database so that queries will deliver the same results as if they are run on Db2/z.

Accelerated queries are executed on a copy of the Db2/z data. An administrator selects tables
that should be accelerated and adds them to the appliance (orange flow in Figure 1A), which
registers the table’s schema. The actual copy of the table data is triggered via a bulk load
mechanism that unloads table partitions from Db2/z in an efficient way using a dedicated
utility (see [IB22b]). The partition data is transferred to the accelerator and inserted in
parallel to Db2 WH (blue flow Figure 1A). The load process creates a snapshot of the tables
that can later be updated with another bulk load in case many changes accumulated before
the accelerator data copy needs to be refreshed.

Consistency of the copied data in the accelerator is realized by a multi-version concurrency
control (MVCC) mechanism that employs views to define visible vs. invisible rows [SBM19].
Therefore, each bulk load assigns a unique ID to all processed rows which is stored in an
internal column of the target table. This ID is used by a view for filtering rows when queries
are executed. The view is updated after each load operation and synchronized with potential
concurrent incremental update operations. Cross-table consistency is guaranteed because
DDL statements are fully transactional in Db2 WH and adhere to the ACID properties.

122 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud Applications 5

An alternative to bulk loading is the incremental update strategy, called IBM Integrated
Synchronization (InSync) (red flow in Figure 1A). It can be used if changes happen frequently
and accelerated queries should run on the latest data version. InSync captures changes to
observed tables from the Db2/z transaction log and applies them to the target database [Bu20].
The overall data flow is highly optimized and avoids data transformations, e. g., the raw log
format written by Db2/z is directly consumed by Db2 WH. The specialized incremental
update implementation is further exploited during query processing. An application can
request to process the data as it was in Db2/z at the time when a query was submitted. Upon
such a request, the accelerator captures the current head-of-transaction-log from Db2/z or
the newest log position for the tables specified in the query. Query execution is delayed until
this log position has been applied by InSync to the target database.

IDAA provides a High Performance Storage Saver (HPSS) feature to move data from Db2/z
to Db2 WH. Historical partitions that do not change anymore on Db2/z can be loaded to
IDAA and are removed from the source database. Only partitions that are still being updated
remain on Db2/z. Although the “archived” data is not present on Db2/z anymore, it can
still be queried via the accelerator [IB22a]. HPSS reduces the data volume on Db2/z which
leads to faster index maintenance, more efficient reorganizations and statistics collection,
and, thus, processing overall.

Another feature allows tables to exist only on the accelerator without being present on Db2/z
at all [BSM16]. For those Accelerator-only Tables (AOTs), not only analytical queries but
also all Data Manipulation Language (DML) statements are routed to the accelerator. AOTs
can be used for efficient in-database transformations, data preparation tasks, and are a
perfect fit for storing temporary data for subsequent queries or reports.

IDAA’s architecture has been adjusted several times in the past in order to enable additional
use cases and data access patterns. Figure 1B) illustrates the IDAA on Cloud modification
that provided query acceleration capabilities as standalone cloud service [BS17]. The data
flow and use cases are comparable to the appliance form factor of IDAA. From a high-level
perspective, just the deployment of the accelerator software stack changed so that it can be
hosted in IBM’s public and private cloud environments. Therefore, the Db2 WH as well as
the accelerator middleware have been containerized. To meet the security requirements of
a cloud-based database service offering, encryption mechanisms were introduced, which
were not needed before in the isolated on-premises environment of IDAA. Both, data at rest,
i. e. the table copies stored inside Db2 WH, as well as data in motion, i. e. data that flows
between Db2/z and the accelerator, are protected via encrypted storage and VPN gateways.

A second direction of the IDAA architecture aimed at opening the encapsulated target
database to minimize data transfer overheads for large result sets to external applications.
The corresponding IDAA DRDA Gateway architecture is depicted in Figure 1C). An
application can directly connect to the accelerator for executing a query via the DRDA
protocol [DRD03]2 (purple flow in Figure 1C). From there, the query is passed on to Db2/z

2 For IBM’s database systems, the DRDA protocol is the underlying technology used by ODBC/CLI or JDBC.

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud
Applications 123

6 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

where the statement is validated (privileges, object existence, etc.) and rewritten according
to the SQL dialect of Db2 WH. Db2/z routes the query to the accelerator, which hands it
over to the cloud database for execution. Contrary to normal query execution, IDAA returns
an empty result set to Db2/z while forwarding the actual result set from Db2 WH to the
application.

Although the DRDA gateway showed a 10x performance improvement for transferring
result sets, data could not be directly accessed. All queries had to be processed by Db2/z
during preparation and IDAA was handling the execution in Db2 WH. IDAA itself was an
additional hop for transferring result sets and applications had to use the SQL constructs of
Db2/z and could not take advantage of native constructs available in the cloud database.
Hence, the product never got beyond the prototyping stage. The standalone IDAA on Cloud
service was also discontinued because it lacked a deep integration into a cloud-based data
analytics environment.

A third direction was the integration of additional data processing engines with the target
database. For example, IBM Netezza Analytics Stored Procedures [IB16, BSM16] have
been made available as separate package that could be added to IDAA. The package enabled
additional stored procedures for analytics that directly run in the target database. The
stored procedures were callable in Db2/z, but processing was forwarded to the accelerator.
The intention was to generalize the query acceleration idea to custom analytical packages.
Spark was also provided as additional processing engine that was collocated with the target
database, Netezza at that point in time. Stored procedures could be used to submit Spark
jobs. However, a shift in the underlying database technology from Netezza to Db2 WH lead
to a setback.

The path of Db2/z data towards the cloud has been paved by Data Gate which can generally
be regarded as consolidation of the previous architectures. Data Gate’s architecture is
illustrated in Figure 1D), which will be explained in more details in Section 4.

4 Deep Dive into Data Gate

4.1 Data Gate Architecture

Data Gate mainly inherited its functionality from IDAA on Cloud. IDAA and Data Gate
can coexist and be connected to the same Db2/z system. While IDAA is attached locally and
used for accelerating analytic queries, Data Gate is an extension of Db2/z to a cloud-based
environment where it maintains a cached twin copy of the tables. In contrast to IDAA,
Data Gate allows direct access from applications to the target database. In fact, it is the
user’s responsibility to provide, configure, and maintain a Db2 on Cloud instance and
connect it to Db2/z via Data Gate. This offers the flexibility to use the cached Db2/z data
for various use cases in the cloud-based environment.

Unlike IDAA on Cloud, Data Gate is integrated in a common cloud architecture (cf.
section 4.2), which is more flexible since it allows organizations to tailor their system
architecture towards specific needs of the target applications by allowing:

124 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud Applications 7

• Independent configuration of the computation and storage resources that should be
allocated for Data Gate and the cloud database instance

• Selection between multiple storage types with different capabilities with regard to
failover and performance characteristics

• Selection of different cloud database form factors: row store for OLTP workloads,
Db2 WH for analytics, and Db2 WH with query acceleration for OLAP workloads from
cloud-native applications and accelerated query routing via Db2/z, like IDAA

Internally, Data Gate uses a microservices architecture. Therefore, IDAA’s monolithic
middleware was split into more fine-granular component containers which are loosely
coupled and controlled over an API layer that maintains stateful information and metadata.
These APIs communicate with Db2/z over secure connections and invoke administrative
stored procedures that are used to control IDAA or Data Gate. Data Gate uses encryption in
all layers of communication and data propagation (cf. section 4.2). This differs from IDAA
where a dedicated, private network is used to avoid any encryption-related overhead.

4.2 Cloud Platform Mandates
Data Gate is available through CP4D that is deployed on top of an Red Hat OpenShift
(OpenShift) cluster. One advantage of OpenShift is the use of operators for integrating
all components. A Data Gate operator observes container registries and automatically
reconciles the cluster on updates, e. g., for security patches, which can be applied in short
time intervals. Moreover, CP4D provides a set of common services that can be used by
any service offering, like user and credentials management, logging and diagnostics, and a
common user interface. Unlike IDAA, Data Gate enables direct access to the cloud database,
which allows to consume Db2/z data by cloud-native applications. Since the target database
is not fully controlled by Data Gate, high security requirements are implemented by:

• Providing fewer privileges for run-time users
• Deploying a dedicated init container for separation of duties and target database tuning
• Encrypting data everywhere: at rest and in motion between all components, e. g., TLS

encryption between Db2/z and Data Gate is provided via a dedicated stunnel container

4.3 Integration with Cloud Services
Most organizations have huge amounts of data stored in many forms in various locations.
Finding relevant data quickly and connecting disparate data sources can be challenging and
time-consuming. IBM Watson Knowledge Catalog (WKC) [IB22f] unites all information
assets into a single metadata catalog. A single click in Data Gate’s User Interface (UI)
is sufficient to publish metadata about the source database connection and its data assets
(tables), along with the target database connection and all replicated data assets to WKC
(orange data/metadata flow in Figure 1D). In addition to making the metadata discoverable,
the main purpose of the integration is to enable WKC’s built-in tools for data governance,
lineage, and profiling, as well as numerous other cloud-native applications, e. g., Watson
Studio for data analysis. This is particularly useful to ensure that each user can only see data
according to their roles, where WKC masks and randomizes sensitive data.

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud
Applications 125

8 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

4.4 Changes in the Backend Database

The target database is not owned by Data Gate but integrated as separate cloud service.
To ensure high performance of the whole system the target database has to be tuned.
For example, the archive log is disabled for better data synchronization performance in
any deployment. Other parameters, such as automated statistics maintenance and table
reorganizations, are enabled for the analytical use case only. For protecting the runtime
environment, the tuning is done in a special init container that runs as privileged user in
comparison to the normal Data Gate operations (see Figure 1D).

Data Gate caches data in the cloud for new applications which require data in UNICODE
rather than EBCDIC encoding that is typically used in Db2/z. Thus, Data Gate is re-encoding
the data when it is copied. Because such code page conversions may increase string lengths,
the column widths of target tables is increased based on heuristics that implement a trade-off
between the range of supported values, maximum column widths, and storage utilization.

In IDAA, queries are routed from Db2/z to the target database. With Data Gate, the cloud
database is directly accessible by applications. The replicated database is impacted by the
data synchronization latency and is only eventually consistent to the source database –
similarly to most asynchronously replicated databases. Eventually consistent systems make
no guarantees for the staleness of the data [Vo09]. Applications accessing the target database
could retrieve data older than the one already persisted in the source database. Similarly
to IDAA, Data Gate provides a way to run queries on the target database with the newest
data from Db2/z. Query can retrieve transactionally consistent data as if the execution
happens on the source database by using new SQL syntax in the cloud database, which uses
Data Gate under the covers. A query can be annotated to wait for the newest data from the
on-premises database to be replicated to the cloud database:

SET CURRENT QUERY WAITFORDATA = 10;

SELECT COUNT(*) FROM BANK.TRANSACTION;

The first line sets the WAITFORDATA special register of the cloud database to 10 seconds.
The subsequent query will wait until the most recent changes from the source database
have been replicated or the 10 seconds timeout has expired. Since Data Gate comes with
very low latency (usually a few seconds only), query execution commences well before
the timeout expires. If the timeout is reached, an appropriate error is returned. With this
extension, read-after-write inconsistencies [Je] are avoided for applications that access data
on the target database.

5 Performance Evaluation
After discussing the most important architectural changes that transform IDAA from a
highly tuned on-premises analytical database accelerator to Data Gate as cloud database
replication tool, this section sheds some light on the performance impact of these changes.
From a use case perspective, we compared the performance of the initial data loading

126 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud Applications 9

phase (bulk load), the incremental update performance for replicating changes from the
source database to the target database, and also the query acceleration flow from Db2/z.
Additional Data Gate use cases that employ different Db2 service versions as target database
or different data access patterns, such as direct query processing from cloud applications on
the target database, are out of scope for this paper.

Operation IDAA Data
Gate

Initial Load 4.2 1.4Throughput
(TB/h)
Average InSync 511 k 364 kThroughput
(Tx/s)
Average InSync 6.4 10.4Latency (s)
Total Query 969 1260Runtime (s)

Tab. 1: Operations Fig. 2: Accelerated Query Performance

Since IDAA and Data Gate share large portions of the underlying code base, comparable
performance results were expected with respect to the software stack. However, the cloud
infrastructure abstraction layers (from OpenShift) and the new microservices architecture
(introducing additional network communication between containers) may result in overhead
reflected in the performance of Data Gate. The biggest performance impact is expected from
the hardware resources and the Db2 service configuration that need to be specified when
Data Gate is instantiated. While IDAA is preconfigured and tuned under lab conditions,
Data Gate offers more options for its users. For the sake of space, just a single comparable
configuration will be examined, without additional tuning on Data Gate side.

As testbed, a full-rack IDAA V7.5.8 on IBM Integrated Analytics System (IIAS) cluster
with 168 cores, 3.5 TB RAM, SSD storage, and 20 Gbps network connection to Db2/z was
used. As counterpart, a Data Gate 2.1 on a IBM Cloud Pak for Data System (CP4DS) cluster
with comparable hardware specification was used. Since the CP4DS offers more resources
than the IIAS cluster, the Db2 WH service was configured with less resources than the
maximum to obtain a comparable target database. Data Gate uses Red Hat OpenShift Data
Foundation (ODF) for storage which creates three replicas of each block that are distributed
over multiple worker nodes. By using hostpath storage mapping, the performance could be
increased because no data replicas are created and each worker node just mounts locally
attached disks. However, since this configuration does not guarantee high availability, just
the ODF results will be discussed. We used a 5 TB TPCH benchmark, extended by additional
queries to match existing IDAA production workloads.

The performance results are outlined in Table 1. It can be seen that the initial load performance
of Data Gate did not match expectations. The reason is a bottleneck in the network layer
where additional tuning will be required. However, we do not consider this as a restriction

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud
Applications 127

10 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

because tables are typically bulk-loaded just once and then incremental update is used.
Hence, InSync performance is more important. Table 1 shows that both IDAA and Data Gate
perform well in terms of throughput and latency during the incremental update process.
We highlight that both IDAA and Data Gate were validated in real environments where the
InSync pipeline could keep up with the maximum change rate of the corresponding Db2/z
subsystem. The query results of the benchmark were also almost on par. The drill-down
in the query timings in Figure 2 shows that most queries perform equally good in both
environments. Some regressed while others performed better, both stemming from the
configuration differences.

Overall, the assumptions were met. The experiments have shown that the architecture
changes of Data Gate work well. In most cases the requirements of current Data Gate users
are already satisfied. But the load performance may be improved with additional tuning.

6 Conclusion & Outlook

In this paper, we gave an introduction on Data Gate and demonstrated how it makes Db2/z
data accessible to cloud applications by replicating and subsequently synchronizing the data
with a cached twin in a Db2 on Cloud service. We discussed how Data Gate was built on
IDAA technology, which parts of it could be reused, and which parts had to be adjusted and
why. Our performance measurements revealed that classic IDAA use cases can be executed
by Data Gate without major performance impact and identified bottlenecks that can be
addressed by additional architecture tuning.

The evolution is not done, however. Today, the interfaces between Data Gate and IDAA are
kept very similar which is not practical in the long run. Applications accessing the data in the
cloud database should not have to use Db2/z to obtain information, like replication latency
or details about synchronization errors. We are working on providing such administrative
and monitoring information directly in the cloud database.

Another feature we are working on is to use the cloud database as a replication source.
Organizations have expressed interest to selectively propagate data provided by Data Gate on
to other database for further processing. Such a daisy-chain replication requires adjustments
in how Data Gate stores the data in its cloud database because internal abstraction layers,
like views that are used today, cannot serve as sources for replication tools like CDC [Be12].

A third major functional enhancement is to enable data modifications in the cloud database,
propagating such changes back to the mainframe, and making other tables that exist in the
cloud database known on the mainframe. Of course, such features will break the concept of
treating Db2/z as master of the data. In this respect, security, consistency, and durability are
important concerns that needs to be taken into account.

128 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud Applications 11

Trademarks

IBM, DB2, and z/OS are trademarks of International Business Machines Corporation in the
United States and/or other countries. Other company, product and service names may be
trademarks, or service marks of IBM or other companies. All trademarks are copyright of
their respective owners.

Bibliography
[Be12] Beaton, A.; Noor, A.; Parkes, J.; Shubin, B.; Ballard, C.; Ketchie, M.; Ketelaars, F.;

Rangarao, D.; Tichelen, W.V.: . Smarter Business: Dynamic Information with IBM
InfoSphere Data Replication CDC. IBM Redbooks, 2012.

[BS17] Beier, Felix; Stolze, Knut: Architecture of a data analytics service in hybrid cloud
environments. it-Information Technology, 59(3):151–158, 2017.

[BSM16] Beier, Felix; Stolze, Knut; Martin, Daniel: Extending Database Accelerators for Data
Transformations and Predictive Analytics. In: Proceedings of the 19th International
Conference on Extending Database Technology, EDBT 2016, Bordeaux, France, March
15-16, 2016, Bordeaux, France, March 15-16, 2016. pp. 706–707, 2016.

[Bu20] Butterstein, Dennis; Martin, Daniel; Stolze, Knut; Beier, Felix; Zhong, Jia; Wang, Lingyun:
Replication at the speed of change: a fast, scalable replication solution for near real-time
HTAP processing. Proceedings of the VLDB Endowment, 13(12):3245–3257, 2020.

[Ch15] Chou, David C: Cloud computing: A value creation model. Computer Standards &
Interfaces, 38:72–77, 2015.

[Co22] Community, Debezium: . Debezium Documentation, 2022.
https://debezium.io/documentation/reference/stable/index.html.

[De21] Densmore, James: Data Pipelines Pocket Reference. O’Reilly Media, 2021.

[DRD03] The Open Group. DRDA V5 Vol. 1: Distributed Relational Database Architecture, 2003.

[Ge22] Ge, Zhiyu: Technologies and Strategies to Leverage Cloud Infrastructure for Data Integra-
tion. Future And Fintech, The: Abcdi And Beyond, p. 311, 2022.

[Gu16] Gupta, Ravinder: Introduction to Oracle GoldenGate (OGG). In: Mastering Oracle
GoldenGate. Apress, Berkeley, CA, pp. 3–10, 2016.

[IB16] IBM: . Supported IBM Netezza Analytics stored procedures, 2016.
https://www.ibm.com/docs/en/daafz/5.1?topic=procedures-support-netezza-analytics-
remote-stored.

[IB22a] IBM: . Archiving partition or table data with the High-Performance Storage Saver, 2022.

[IB22b] IBM: . Db2 13 for z/OS documentation, 2022. https://www.ibm.com/docs/en/db2-for-
zos/13?topic=utilities-unload.

[IB22c] IBM: . IBM Cloud Pak for Data 4.5 documentation, 2022.

IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud
Applications 129

12 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

[IB22d] IBM: . IBM DB2 Analytics Accelerator for z/OS 7.5, 2022.

[IB22e] IBM: . IBM DB2 for z/OS Data Gate Analytics Accelerator for z/OS 7.5, 2022.

[IB22f] IBM: . IBM Watson Knowledge Catalog 4.5.x documentation, 2022.
https://www.ibm.com/docs/en/cloud-paks/cp-data/4.5.x?topic=services-watson-
knowledge-catalog.

[In20] Inc, TmaxSoft: Lift, shift and modernize: proven mainframe modernization strategies that
enable digital transformation. 2020.

[Je] Jeena, R; Saravanakumar, S; Bharathi, B Poornima; Priyancaa, RP: Providing Consistency
in Cloud Using Read after Write Technique to Endusers.

[Kr11] Kreps, Jay; Narkhede, Neha; Rao, Jun et al.: Kafka: A distributed messaging system for
log processing. In: Proceedings of the NetDB. volume 11, pp. 1–7, 2011.

[MAT19] Muniswamaiah, Manoj; Agerwala, Tilak; Tappert, Charles: Data Virtualization for Decision
Making in Big Data. Int. J. Softw. Eng. Appl, 10(5):45–53, 2019.

[Me18] Mead, Larry: Microsoft:Migrating:Mainframe:Environments. 2018.

[PP20] Paul, Ajo; Paul, Dipyaman: Migrating Mainframe workloads to Azure. Mindtree, 2020.
https://www.mindtree.com/sites/default/files/2020-11/Migrating-Mainframe-workloads-
to-Azure-Whitepaper.pdf.

[SBM19] Stolze, Knut; Beier, Felix; Müller, Jens: Partial Reload of Incrementally Updated Tables in
Analytic Database Accelerators. BTW 2019, 2019.

[Sy19] Syniti: . Syniti Data Replication - User Guide, 2019.

[Vo09] Vogels, Werner: Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.

130 Knut Stolze, Felix Beier, Vassil Dimov, Eirini Kalogeiton, Mateo Tošić

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

The Easiest Way of Turning your Relational Database into a
Blockchain — and the Cost of Doing So

Felix Schuhknecht1, Simon Jörz2

Abstract: Blockchain systems essentially consist of two levels: The network level has the responsibility
of distributing an ordered stream of transactions to all nodes of the network in exactly the same way,
even in the presence of a certain amount of malicious parties (byzantine fault tolerance). On the node
level, each node then receives this ordered stream of transactions and executes it within some sort of
transaction processing system, typically to alter some kind of state. This clear separation into two levels
as well as drastically different application requirements have led to the materialization of the network
level in form of so-called blockchain frameworks. While providing all the “blockchain features”, these
frameworks leave the node level backend flexible or even left to be implemented depending on the
specific needs of the application. In the following paper, we present how to integrate a highly versatile
transaction processing system, namely a relational DBMS, into such a blockchain framework to power
a large variety of use-cases. As framework, we use the popular Tendermint Core, now part of the
Ignite/Cosmos eco-system, which can run both public and permissioned networks and combine it
with relational DBMSs as the backend. This results in a “relational blockchain”, which is able to run
deterministic SQL on a fully replicated relational database. Apart from presenting the integration and
its pitfalls, we will carefully evaluate the performance implications of such combinations, in particular,
the throughput and latency overhead caused by the blockchain layer on top of the DBMS. As a result,
we give recommendations on how to run such a systems combination efficiently in practice.

Keywords: Blockchain; Relational Databases; Distributed Query Processing; Tendermint

1 Introduction
In recent years, blockchain systems gained interest in various contexts, as they provide dis-
tributed transaction processing in potentially untrusted environments. Whereas the original
applications mainly targeted public environments such as crypto currencies [Na09, Et22],
blockchain systems have also gained interest in permissioned setups, where independent
and potentially distrusting organizations, such as for instance companies trading with each
other, want to perform some sort of mutual transaction processing [IB22a, IB22b, Te22a].
While the needs and environments for blockchain systems exist, a major downforce for the
application of this technology has always been its hard entry level. Existing blockchain
systems are often tailored towards a specific use-case or application domain and therefore
are hard to apply for new application types. To deal with this challenge, one of the three
following strategies is typically applied: (1) To reinvent the wheel and to engineer a new
1 Johannes Gutenberg University Mainz, Institute of Computer Science, Staudingerweg 9, 55128 Mainz, Germany

schuhknecht@uni-mainz.de
2 sjoerz@students.uni-mainz.de

cba doi:10.18420/BTW2023-07

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 131

mailto:schuhknecht@uni-mainz.de
mailto:sjoerz@students.uni-mainz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-07

2 Felix Schuhknecht, Simon Jörz

blockchain system from scratch, fitting to the specific needs. (2) To carefully adapt an
existing blockchain system to the new requirements. (3) To not install a blockchain solution
at all. Of course, often, consequence (3) is picked as (1) and (2) are cumbersome and
therefore costly.

A step towards solving this problem is the observation that all blockchain systems essentially
consist only of two major components. The first component manages the network level. It
receives input transactions, orders them globally, and distributes the transaction sequence to
each node of the network in exactly the same way. The challenge here lies in performing
this in an untrusted environment, where a certain amount of participants might behave
maliciously. To guarantee safety and liveness in such an environment, network levels
implement sophisticated consensus mechanisms, secure message passing, and tamper-proof
transaction logging. Despite various different implementations, the network level is rather
independent from the actual application, as the semantics of the transactions are not
relevant for this part. The second component manages the node level and centers around the
processing of transactions within each node. Naturally, the requirements here are highly
application dependent. As a consequence of these observations, blockchain frameworks have
emerged that try to strictly separate their components by design. The prominent framework
Tendermint Core [Te22b], that we will utilize in the following, even leaves the node level
backend fully unimplemented. It is up to the application to provide a backend which receives
and processes the transactions that are distributed by the framework to each node.

This allows us to easily tackle another typical downside of blockchain systems: an overly
simplistic data model and low-level transaction logic. Many prominent systems, like the
widely-used Hyperledger Fabric [An18], implement only a key-value model that is accessed
via put()/get()/delete() calls, from a smart contract containing the transaction logic,
often written in a general-purpose programming language like Go [An18]. Of course, this
highly complicates the process of transaction writing. To tackle this problem, we want to
support the widely-used relational model SQL, by connecting a relational DBMS as backend
to the framework. Therefore, we create a “relational blockchain” with minimal effort and are
especially interested in the overhead that is caused by this combination. We will investigate
the latency and throughput of the relational blockchain under the drastically different
synchronous, pseudo-synchronous, and asynchronous communication, each appropriate for
different types of applications. Further, we will look at the scaling behavior of the system and
discuss important configuration parameters. In summary, we will provide recommendations
on how to use such a relational blockchain efficiently in practice.

1.1 Contributions

(1) We present how to integrate a stand-alone single-node relational DBMS into the
blockchain framework Tendermint. Our current implementation supports PostgreSQL and
MySQL and can easily be extended for further systems. As a result of this combination, we
produce a relational blockchain that can execute (deterministic) SQL transactions equally
across a set of potentially untrusted nodes to modify a fully replicated database.

132 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 3

(2) We evaluate latency and throughput/end-to-end runtime of the relational blockchain
under Smallbank [Sm13] and TPC-C [TP22] transactions. We compare its performance
with a standalone execution of the workloads in single-instance and distributed PostgreSQL
to identify the overhead that is caused by the blockchain framework.
(3) We evaluate the impact of three different communication methods, namely synchronous,
pseudo-synchronous, and asynchronous communication. We show that the choice of the
communication method has a drastic impact on the performance of the system.
(4) We evaluate the impact of the relational backends, namely PostgreSQL and MySQL,
under synchronous and asynchronous communication.
(5) We evaluate the scaling capabilities of the relational blockchain. Here, we first scale
the number of virtual nodes within a physical node, which factors out network latency and
resembles the Blockchain-as-a-Service (BaaS) setup. Then, we scale number of physical
nodes within and across data-centers, resembling the classical distributed setup, facing
network/internet latency.
(6) We provide practical recommendations in which situations a relational blockchain yields
a good performance – and in which situations it does not. To allow and easy application of
our findings, all code, results, scripts and auxiliary material of this paper is available in the
repository: https://gitlab.rlp.net/fschuhkn/relational-blockchain

2 Related Work
Before presenting our relational blockchain, let us discuss other work that sits at the
intersection of blockchains and database systems.

There exists other interesting work that analyzes and/or builds upon the Tendermint
framework. In [Ca21, Bu22], the authors perform an interesting performance analysis of the
internal behavior of the framework. In [Am18], the authors analyze correctness and fairness
of the system. The findings in these works justify our use and setup of Tendermint: The
framework powers hundreds of applications of the Cosmos network, where most networks
are tightly coupled with only few nodes. Latency and throughput decreases gracefully with
the number of nodes participating in the consensus. Tendermint has also been used before
to connect DBMSs as the backend. A prominent example is BigchainDB [Bi22], which
uses the document store MongoDB [Mo22] as backend. Apart from Tendermint, there exist
other blockchain frameworks. The most prominent representative is clearly Hyperledger
Fabric [An18], designed to power permissioned blockchain networks. The modular design is
composed of interchangeable components that allow a tuning of the network to the specific
needs of the application up to a certain degree. Unfortunately, the system is hardcoded
against a key-value model, such that the integration of a relational backend is not possible
without deep changes of the system. Another blockchain framework is ChainifyDB [Sc21b],
that allows the creation of heterogeneous blockchain networks. Here, heterogeneous means
that different relational systems can be used across a single network. The applied processing
model still ensures correctness of transaction processing.

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 133

https://gitlab.rlp.net/fschuhkn/relational-blockchain

4 Felix Schuhknecht, Simon Jörz

Apart from frameworks, many research papers discuss the interconnection and rela-
tion of classical DBMSs and blockchain systems and how to combine both worlds. In
BlockchainDB [El19b, El19a], a database layer is placed on top of a blockchain layer to
combine the proper query interface of a database systems with the replication guarantees
of a blockchain. In [Na19], the authors take the other route and extend a relational system,
namely PostgreSQL, with a blockchain layer in order to create a blockchain network between
multiple PostgreSQL instances. Unfortunately, this project requires a deep modification of
PostgreSQL. Another interesting project is Veritas [Ge19]. Therein, the authors propose
to extend existing DBMSs with blockchain features in a cloud environment. Apart from
architectural works, many projects try to improve the performance of blockchain systems
in order to converge towards the performance of traditional (distributed) DBMSs. In Fab-
ric++ [Sh19], several optimization techniques from the database domain are transferred to
Fabric in order to speed up processing. Other works try to improve blockchain performance
via sharding [Da19] and various low-level optimizations in the transaction processing
flow [Go19].

Note that originally, we planned to add a comparison with another comparable blockchain
system to this paper to put our system into perspective. Unfortunately, there are very few
systems targeting our specific setup and if they target it, they either (a) deeply modify the
relational DBMS, (b) their code is not available, (c) have a very different query interface, or
(d) run a different execution model providing different guarantees. Consequently, in this
paper we focus on an in-depth evaluation of our relational blockchain system.

3 Setting up a Relational Blockchain
In the following section, we will discuss how to integrate a relational DBMS into the
Tendermint framework, which we believe is a good template for how blockchain frameworks
are reasonably engineered. On the backend side, we will focus on relational DBMSs in this
work. However, the general process is applicable to non-relational transaction processing
backends in a similar fashion.

3.1 The Blockchain Framework: Tendermint Core

The design goal of the blockchain framework Tendermint Core [Te22b] is to provide
essentially all those components that are shared in typical blockchain environments [Di18,
Sc21a], but nothing more than that. Precisely, the entire transaction processing backend is
left unimplemented and must be provided by the application side. There are two requirements
for the backend: (1) The same backend must be used within all nodes of the network. (2) This
backend must be deterministic, i.e., it executes a block of transactions in the same way on
all nodes.

The most essential components that are already provided by Tendermint Core are:
(1) A transaction pool which has the responsibility to receive and hold transactions that
are pending for ordering and execution. All submitted input transactions first go into this

134 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 5

pool, where they can be rejected already, if they do not match user-specified criteria, by
implementing the function CheckTx(). The pool itself is lazily replicated across the nodes,
i.e., nodes share pending transactions with other nodes via gossip broadcasting.
(2) A consensus mechanism called Polka, which is a variation of the well-known
PBFT [CL99] consensus. It can tolerate up to 𝑓 maliciously behaving parties in a set
of 3 𝑓 + 1 parties. While the mechanism is tailored towards a permissioned setup, where all
participants are known at all times, it can be extended to work in a public environment as
well by using a Proof-of-Stake-like approach. As this requires the integration of a currency,
we run the default version of the consensus mechanism in a permissioned setup.
(3) The ledger, which stores the observed sequence of committed transactions at the
granularity of blocks within each node in a tamper-resistant way.
(4) A message passing system that ensures a secure communication between individual
parties of the network.

On the network level, the workflow of the system essentially looks as follows: First, a client
submits a new transaction to the network. The network then stores this transaction in the
transaction pool with other pending transactions. A node then picks a set of transactions
from the pool and groups them into a block in an ordered way. The block then goes through
multiple consensus rounds until it is either globally accepted or globally rejected. If it
is rejected, another block will be proposed (potentially by another node) and consensus
restarts. However, if the block is accepted, it is distributed to all nodes of the network. Each
node that receives a block then appends it to its copy of the ledger and passes the block to
the transaction processing backend.

Apart from transaction processing, Tendermint Core also handles the network coordination
such as the integration of new nodes to an already established network. A joining node
essentially downloads the ledger from another node, verifies its integrity, and executes all
blocks and their transactions in the backend to reach the up-to-date state.

3.2 Communicating with the Transaction Processing Backend

The block passing between the framework and the transaction processing backend happens
via a so-called Application Blockchain Interface (ABCI). The interface essentially consists
only of the four functions BeginBlock(), DeliverTx(), EndBlock(), and Commit(), which
must be implemented by the backend and which are called by the framework. For every
agreed-upon block that is distributed, the core first calls BeginBlock() on each node to
signal the arrival of a new block to the backend. Then, for each transaction within the
block, the core calls DeliverTx() sequentially. This function is responsible for the actual
processing of the transaction. It also returns whether the execution of a transaction was
successful or not. After all transactions have been delivered, the core calls EndBlock()
to signal that the block is done. Finally, the core calls Commit(). This tells the backend
that all changes made by the transactions of the block must become real and visible for
upcoming processing, if all transactions in the block succeeded. Otherwise, Commit() is
responsible for rolling back all changes made by all transactions of the block. To implement

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 135

6 Felix Schuhknecht, Simon Jörz

this ABCI and to connect a backend to Tendermint core, there are two options which we call
the server-variant and the builtin-variant. In the server-variant, the backend implementing
the ABCI runs as an independent socket-server and the core calls the interface via TCP. In
the builtin-variant, the ABCI is implemented by the backend as a component of Tendermint
core and directly compiled into it. While the server-variant offers a higher flexibility, the
builtin-variant allows the core to communicate with the backend via simple function calls.
In Section 4.2, we will evaluate both variants.

3.3 Integrating a Relational DBMS as Backend

Connecting a relational DBMS to the blockchain framework by implementing the ABCI is
fairly natural, as both sides provide transaction semantics. However, to avoid confusion,
we now have to clearly differentiate between different types of transactions and different
types of commits in our system composition: We will call transactions, that are submitted to
the blockchain network as bc-transactions. As discussed, multiple bc-transactions can be
grouped in a block, which is committed as a whole by the framework. We call this a bc-
commit. In contrast to that, we refer to transactions that are executed by the relational DBMS
as db-transactions. The DBMS commits at the granularity of individual db-transactions,
which we call db-commit.

Before being able to communicate with the relational DBMS from within the ABCI
functions, we establish a connection to it in the bootstrapping part of Tendermint Core. To
do so, we utilize the drivers pgx [pg22] and go-sql-driver/mysql [go22a] for PostgreSQL
and MySQL, respectively, to open a connection to the DBMS instance. Table 1 now shows
the pseudo-code implementation of BeginBlock(), DeliverTx(), and Commit(), where we
show only the communication with the DBMS and removed any boilerplate code or error
handling. As EndBlock() does not involve any DBMS communication, we do not show it.

1 BeginBlock() {

2 // start db-transaction

3 db-transaction dbTx

4 = db.Begin()

5 return dbTx

6 }

1 DeliverTx(db-transaction dbTx,

2 bc-transaction bsTx) {

3 // extract SQL statement

4 // from bc-transaction

5 sql stmt = DecodeTx(bsTx)

6 // execute SQL statement

7 // as part of db-transaction

8 status s = dbTx.Execute(stmt)

9 return s

10 }

1 Commit(db-transaction dbTx,

2 status[] s) {

3 if(s.Contains(bsTxFailed))

4 dbTx.Rollback()

5 else

6 // perform db-commit

7 // (= perform bc-commit)

8 dbTx.Commit()

9 }

Tab. 1: Pseudo-code for BeginBlock(), DeliverTx(), and Commit().

In our implementation, BeginBlock() has the sole purpose to begin a new db-transaction.
The context db is provided by Tendermint and implements a generic interface from the
Go package sql [Go22b] that allows the communication with relational DBMSs. Relying
on a generic interface enables an easy switching between PostgreSQL and MySQL (and
other relational systems). Underneath this generic interface, we again use pgx respectively

136 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 7

go-sql-driver/mysql as a compatibility layer. It essentially translates the generic calls to
their DBMS-specific counterparts. In each call to DeliverTx(), we receive the db-transaction
in progress as well as a bc-transaction of the current block. We first decode the received
bc-transaction and extract the SQL statement that is stored therein as a string. Then, we
pass the SQL statement to the db-transaction context for execution. This execution returns a
status (success or failure), which also contains the result of the db-transaction. We return this
status to Tendermint Core. After all bc-transactions have been delivered, Commit() is called,
which receives the open db-transaction and the execution statuses of all bc-transactions
of the block. Based on the statuses, we check whether there is a bc-transaction that failed
the execution. This could for instance be the case if the SQL statement contained in a
bc-transaction is malformed. If a failed bc-transaction exists, we command the DBMS to
rollback the db-transaction, including all changes made by bc-transactions of the block.
Otherwise, we can safely db-commit the db-transaction, such that all changes of this block
become visible for the processing of the next block.

Note that we use the previously described communication protocol only for modifying
transactions. To answer read-only transactions, we implement the ABCI function Query()
which allows us to fire read-only queries against the backend of a single node3, effectively
bypassing the costly transaction processing flow of the blockchain framework.

3.4 Synchronous vs Asynchronous Transaction Processing

To process modifying transactions in the blockchain network, the client has essentially two
different modes available: (1) A synchronous mode, where a client-request blocks until it
receives an answer from the system. (2) An asynchronous mode, where the request returns
before receiving an answer. As we will evaluate both modes in the following, let us discuss
their precise realization and behavior in the following.

We start with synchronous processing. First of all, to communicate with Tendermint Core,
the client uses a Broadcast API in order to submit bc-transactions. From this API, we utilize
the function BroadcastTxCommit(). This function basically resembles a synchronous submit
that receives a bc-transaction and blocks until either it has been worked into a bc-committed
block or it is rejected from the transaction pool (due to being malformed). Consequently, our
test suite looks fairly simple for the synchronous case: In each iteration of the loop, a client
fires a bc-transaction using BroadcastTxCommit() and waits for the result before proceeding
with the next iteration. The asynchronous transaction processing is more complex. Here, we
use the weaker API function BroadcastTxSync() to communicate with Tendermint Core,
which already returns after the bc-transaction has been successfully added to the transaction
pool. Thus, the client does not get a synchronous response on whether the transaction was
committed successfully in a block or not. As we still require a reliable feedback on the
success of execution, we implement a test suite as depicted in Figure 1.

3 This can be extended to query multiple nodes to handle the risk of querying a malicious node.

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 137

8 Felix Schuhknecht, Simon Jörz

coordinator

RPC-listenerRPC-sender Blockchain
Framework

starts and distributes transactions starts

BroadcastTxSync()

added to transaction pool?

NewBlockHeader event

number of transactions added to transaction pool

all transactions processed

request
relevant
blocks

relevant blockIDs

receive
and inspect

relevant
blocks

1 1

2
4

5
6

3

Fig. 1: Workflow of asynchronous transactions processing.

It consists of three components: (a) The coordinator, responsible for orchestrating the
entire run. (b) The RPC-sender, which broadcasts the bc-transactions to the framework.
(c) The RPC-listener, which listens for bc-committed blocks. In 1 , the main loop first starts
both RPC-sender and RPC-listener. Then, in 2 , the RPC-sender uses the aforementioned
BroadcastTxSync() to push bc-transactions into the network. While doing so, the RPC-
sender monitors the number of bc-transactions that made it into the transaction pool –
this is the number of transactions expected to make it through the system. In 3 , after
submitting all bc-transactions, this number is passed to the RPC-listener. For every block
that is bc-committed by the framework, in 4 , the RPC-listener receives a NewBlockHeader
event from the framework and calculates the number of already seen bc-transactions based
on it. As soon as it has seen all previously entered bc-transactions, in 5 , it informs the
coordinator that all bc-transactions have now been processed and passes the blockIDs
containing these transactions. In 6 , the coordinator then requests all relevant blocks and
checks whether the bc-transactions have been processed successfully. Note that the steps 2
and 4 can happen interleaved, i.e., the sender can still push in new bc-transactions while
the listener is already receiving headers of committed blocks.

3.5 Deterministic Execution, Error Handling, and Provided Guarantees

As the blockchain framework essentially resembles a fully replicated state machine, it
requires the backend to behave deterministically, which we ensure in two steps:
(1) The repetitive calls to the ABCI function DeliverTx() by the framework happen
sequentially. As we ensure that any communication with the relational DBMS within
DeliverTx() happens synchronously, all bc-transactions will be executed within a db-
transaction in exactly the same order within the relational DBMS of each node. Note that
there exist mechanisms [Sc21b] to process transactions concurrently and deterministically in
the backend of all nodes that could be used here. However, as we will see in the experimental
evaluation, the backend-execution is dominated by Tendermint Core, and therefore, such an
optimization would not lead to significant performance improvements. Consequently, we

138 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 9

kept the execution sequential. (2) We submit only bc-transactions that contain deterministic
SQL statements, similar as done in the related work [El19b, El19a]. This requires stripping
SQL from components such as random-number generators, timestamp functions, and the
LIMIT-statement.

Orthogonal to that, our framework supports the (optional) computation and comparison
of checksums on the state after each block commit to detect any occurred state deviation.
However, this check comes with a significant overhead and is currently not practical in
performance-critical production systems. Also note that a state deviation would require
to be followed by a roll-back of the block that caused the deviation in order to recover.
Such a recovery is currently not supported by our system, similar to the situation for other
blockchain systems. Instead, a deviating node is excluded from the network. In terms
of transactional safety, any communication with the relational DBMS happens through
db-transactions. This also holds for read-only queries. Therefore, read-only queries are also
guaranteed to see a consistent state (resembling the state after a block commit).

4 Experimental Setup
Before starting with our actual experimental evaluation and analysis, let us discuss the setup
in the following. As blockchain systems are used in different setups, we will evaluate different
network configurations. First, to completely factor out network latency overhead, we perform
a set of experiments on a single powerful machine equipped with an Intel i9-12900K CPU
(Alder Lake) running at up to 5.2GHz with 16 cores. This state-of-the-art processor is able
to run a set of virtual nodes and simulates a very low latency blockchain network. The
machine contains 128GB of DDR4-3200. All database files are located on a 2TB Samsung
980 Pro M2 PCIe 4.0 SSD. As operating system, a 64-bit Arch Linux is installed. Note that
such a setup consisting of a single physical node running the blockchain network is not fully
artificial nowadays: So called Blockchain-as-a-Service (BaaS) solutions [So22, AEE21]
host all virtual nodes of the network in a single data-center, often also on the same physical
node. Second, to measure the impact of a distributed setup across the internet, we also
perform an additional set of experiments on a network of up to eight AWS EC2 instances
(t2.small), which are distributed across the four regions Frankfurt, Ireland, London, and
Paris, with up to two instances per region. Each instance has one vCPU, contains 2GB of
RAM, has 16GB of gp2 volume attached (general purpose SSD), and runs Ubuntu 20.04.
Additionally, in the Frankfurt data-center, we run a separate instance (t2.micro) that serves
as the client and orchestrates our runs. Note that for all experiments, each client establishes
a single connection that is kept alive and re-used during the benchmark run to keep the
communication overhead as low as possible.

4.1 Benchmarks: Smallbank & TPC-C

In the following evaluation, we use transactions and datasets from two established transac-
tional benchmarks from the world of blockchains and databases, namely Smallbank [Sm13]
and TPC-C [TP22]. We use transactions from these two benchmarks as they offer very

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 139

10 Felix Schuhknecht, Simon Jörz

different characteristics: While Smallbank contains a set of five extremely simple and short-
running transactions which essentially resemble only money transfers between accounts,
the three used TPC-C transactions are far more complex and long-running. In the following,
we give a brief overview of the used benchmarks.

For Smallbank, the database consists of a single table with four columns, where each tuple
contains a user-ID and a name having both a balance for a checking account and a savings
account, initialized with random integers. We use the five modifying transactions that are
specified in the original benchmark description. The transactions TransactSavings and
DepositChecking each increase the respective account balance. SendPayment modifies two
checking account balances. WriteCheck decreases a checking account balance. Finally,
Amalgamate moves money from a savings account to the checking account of the same
user. For each transaction, we randomly pick the account(s) as well as the amount to
modify/move following a uniform distribution. For TPC-C, the database has nine tables
in total and essentially represents a multi-warehouse wholesale operation. We implement
the two modifying transactions NewOrder and Payment and select the parameters of each
fired transaction randomly within meaningful bounds as specified by the TPC-C benchmark
description. Additionally, we implement the read-only transaction OrderStatus to test the
query-interface of the framework. We selected these three transactions as they are rather
complex by accessing all nine tables and by modifying five of them, resulting in more
long-running transactions than for Smallbank. The warehouses and districts are accessed
by the transactions following a uniform distribution. Note that all Smallbank transactions
are transmitted to the system on-the-fly. In contrast to that, the TPC-C transactions are
registered in the relational DBMS as stored procedures due to their significantly higher
code complexity and size. The transactions of TPC-C then simply contain a call of the
corresponding stored procedure.

4.2 Framework and Backend Configuration

For Tendermint Core, we use the latest stable version 0.34 for all experiments. For
PostgreSQL, we use version 14.5, for MySQL, we run version 8.0.30. Tendermint Core,
PostgreSQL, and MySQL run in Docker containers and are installed from the corresponding
Docker images. Tendermint Core as well as the relational DBMS are deeply configurable.
To measure the “out-of-the-box” performance, we start with the default configuration and
try to tune the systems as little as possible. We state and justify in the following all changes.

On the side of Tendermint Core, we first increase the size of the transaction pool from
5,000 to 100,000 transactions, such that the whole transaction sequence of each benchmark
always fits in. Next, there are multiple timeout parameters that have an impact on both the
performance and the behavior of the network. We set timeout_broadcast_tx_commit to
a sufficiently large value (10s), such that synchronous communication never times out in
our experiments. Also, we have to tune the important parameter timeout_commit, which
determines how long the consensus mechanism does wait for additional votes, if 2/3 of
the votes have been received already. To empirically identify a good value, in Figure 2, we

140 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 11

perform an experiment where we vary timeout_commit from 25ms to 1000ms for both
1,000 synchronous and 10,000 asynchronous transactions of Smallbank. As a value of
100ms yields the best end-to-end runtime in both cases, we use a timeout of 100ms in all
upcoming experiments. Further, we set the maximum allowed block size to 21MB such that
the size is never the limiting factor for forming a block. We disable the creation of empty
blocks (in case the transaction pool runs dry) as well. For PostgreSQL and MySQL, we
essentially keep the configuration of the used Docker images as is.

25 50 100 250 500 1000
Configured timeout_commit [ms]

0

200

400

600

800

1000

1200

1400

En
d-

to
-e

nd
 ru

nt
im

e
[s

]

Relational Blockchain (Tendermint Core + PostgreSQL)

0

200

400

600

800

1000

Nu
m

be
r o

f g
en

er
at

ed
 b

lo
ck

s

(a) Synchronous communication.

25 50 100 250 500 1000
Configured timeout_commit [ms]

0

1000

2000

3000

4000

5000

6000

7000

8000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Tendermint Core + PostgreSQL)

0

1

2

3

4

5

6

7

Nu
m

be
r o

f g
en

er
at

ed
 b

lo
ck

s

(b) Asynchronous communication.

Fig. 2: Varying the timeout_commit parameter from 25ms to 1000ms.

As mentioned in Section 3.2, there are two ways of connecting the backend to the
framework, where the server-variant is more flexible than the builtin-variant. To identify the
performance impact, we implemented both variants and evaluate them against Smallbank
and TPC-C transactions. Figure 3 shows the results for both synchronous and asynchronous
communication. We can see that for synchronous communication, there is hardly a difference

builtin server builtin server
Variant

0

50000

100000

150000

200000

250000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Smallbank TPC-C

(a) Synchronous communication.

builtin server builtin server
Variant

0

2000

4000

6000

8000

10000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Smallbank TPC-C

(b) Asynchronous communication.

Fig. 3: Server-variant vs builtin-variant.

visible. The type of connecting the backend is fully overshadowed by the high cost of
synchronous communication (which we will evaluate in detail in Section 5.1.1). However, for
the cheaper asynchronous communication, the builtin-variant is 1.53x faster for Smallbank

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 141

12 Felix Schuhknecht, Simon Jörz

and 1.23x faster for TPC-C than the server-variant. This is due to the fact that in the server-
variant the ABCI calls happen via TPC sockets, which are significantly more expensive
than the direct function calls in the builtin-variant. Due to the higher performance, we use
the builtin-variant in all following experiments.

5 Experimental Evaluation & Analysis
In the following, we perform a set of experiments to determine the performance of the
relational blockchain. We are particularly interested in its overhead (Section 5.1) over the
raw relational DBMS. Then, we perform a cost breakdown to see where the time actually
goes (Section 5.2). Next, analyze the impact of the number of clients (Section 5.3) and
the relational DBMS (Section 5.4). Then, we investigate the scaling capabilities of the
network (Section 5.5). Finally, we analyze the overhead of our relational blockchain over a
distributed PostgreSQL cluster (Section 5.6).

5.1 Overhead of the Blockchain Framework

We start our experimental evaluation with the central question of how much overhead
the blockchain frameworks actually adds on top of the relational DBMS. We compare
the performance of our relational blockchain setup (Tendermint Core + PostgreSQL) as
described previously, with the performance of the raw (single-instance) DBMS (PostgreSQL
only). Note that the idea of this is not to compare our relational blockchain with PostgreSQL,
but to measure the overhead of the blockchain framework over the backend.

As setup we use a fairly typical permissioned configuration: We have a single client firing
the bc-transactions into a network of four virtual nodes, where each node consists of a
Tendermint Core instance as well as a PostgreSQL instance, each running in its docker
container. Again, we use virtual nodes here to factor out any network latency. We test two
workloads: (1) The previously described TPC-C workload with 10 warehouses. (2) The
Smallbank workload with 100,000 accounts. Note that to distinguish the transactions of the
workload from bc-transactions/db-transaction, we will call the former wl-transactions in
the following. As the type of communication impacts cost and usability, we perform in the
following a synchronous as well as an asynchronous variant of the experiment.

5.1.1 Synchronous and Pseudo-synchronous Communication

We start with synchronous communication. It basically resembles the typical communication
with a DBMS: A client submits a transaction to the system and the call blocks until eventually,
it returns the result. As we have described in Section 3.4, the blockchain framework supports
such a communication style via its Broadcast-API. Additional to this fully synchronous
communication, where one wl-transaction is packed into one bc-transaction, we also test a
pseudo-synchronous communication style. Therein, we pack multiple wl-transactions into a
single bc-transaction and fire this bc-transaction synchronously. On one hand, this results in
fewer bc-transactions that have to go through the system, potentially lowering the pressure

142 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 13

on the network and the transaction processing overhead. On the other hand, this relaxes our
notion of synchronicity (hence pseudo), as the client receives a synchronous response only
for a batch of wl-transactions, not for each wl-transaction individually.

To asses the overhead, we are interested in both the latency and the end-to-end runtime.
In this context, latency is the time between submitting a bc-transaction and receiving a
response to it. Note that we submit a new bc-transaction only after receiving a response
to the previous one. The end-to-end runtime is the time between submitting the first
bc-transaction and receiving the response to the last bc-transaction. Figure 4 and Figure 5
show the results for Smallbank and TPC-C, respectively, where we fire a uniform mixture of
1,000 writing wl-transactions in total. On the 𝑥-axis, we vary the number of wl-transactions
per fired bc-transaction from 1 to 2,048 in logarithmic steps. As discussed, 1 resembles the
synchronous case, whereas 2 to 2,048 resemble different pseudo-synchronous configurations.
On the 𝑦-axis, we show in the Figures 4a and 5a the average latency of a wl-transaction over
the whole transaction sequence. In Figures 4b and 5b, we show the end-to-end runtime on
the 𝑦-axis. To improve readability, we use a logarithmic scale on the 𝑦-axis.

0 1 2 3 4 5 6 7 8 9 10 11
Number of wl-transactions per bc-transaction [2x]

100

101

102

103

Av
er

ag
e

la
te

nc
y

of
 w

l-t
ra

ns
ac

tio
n

[m
s]

Relational Blockchain (Tendermint Core + PostgreSQL)
Only PostgreSQL

(a) Latency for a mixture of writing transactions.

0 1 2 3 4 5 6 7 8 9 10 11
Number of wl-transactions per bc-transaction [2x]

101

102

103

104

105

106

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Tendermint Core + PostgreSQL)
Only PostgreSQL

(b) Throughput for a mixture of writing transactions.

Fig. 4: Synchronous communication (Smallbank)

In the results, we can observe a significant overhead of the blockchain framework over the
relational DBMS under both workloads and all synchronicity configurations. However, we
can also see that the overhead depends on (a) the type of workload and (b) the number of
wl-transactions packed into a single bc-transaction, i.e., the amount of required synchronicity.

Regarding (a), we can see that under Smallbank (Figure 4), the overhead of the blockchain
framework over the raw relational DBMS is much more significant than under TPC-C
(Figure 5). While for Smallbank, the smallest observed overhead is a still a slowdown of 32x
and 25x in latency and end-to-end runtime, respectively, for TPC-C, the latency and runtime
overhead decreases to only 2.5x and 2.4x in the best case. The reason for this lies in the
complexity and individual runtime of the wl-transactions. As complex TPC-C transactions

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 143

14 Felix Schuhknecht, Simon Jörz

0 1 2 3 4 5 6 7 8 9 10 11
Number of wl-transactions per bc-transaction [2x]

100

101

102

103

Av
er

ag
e

la
te

nc
y

of
 w

l-t
ra

ns
ac

tio
n

[m
s]

Relational Blockchain (Tendermint Core + PostgreSQL)
Only PostgreSQL

(a) Latency for a mixture of writing transactions.

0 1 2 3 4 5 6 7 8 9 10 11
Number of wl-transactions per bc-transaction [2x]

101

102

103

104

105

106

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Tendermint Core + PostgreSQL)
Only PostgreSQL

(b) Throughput for a mixture of writing transactions.

Fig. 5: Synchronous communication (TPC-C)

require more processing time in the relational backend than the short-running Smallbank
transactions, the overhead of the framework makes a smaller fraction of the total runtime.

Regarding (b), we observe that packing mutliple wl-transactions into a single bc-transaction
heavily impacts the performance, both for the relational blockchain and the raw relational
DBMS. While for the fully synchronous case, we measure a devastating overhead of
218x (latency) and 208x (end-to-end runtime) for Smallbank and 133x (latency) and 129x
(end-to-end runtime) for TPC-C, the situation gradually improves when relaxing the required
synchronicity. Particularly for TPC-C, a reduction in synchronicity has a positive impact on
the amount of overhead introduced by the framework, which decreases to the aforementioned
acceptable 2.5x (latency) and 2.4x (end-to-end runtime). This is due to the fact that less
blocks are formed for the transaction sequence, requiring less consensus rounds, decreasing
the central bottleneck of the blockchain framework.

5.1.2 Asynchronous Communication

Let us now look at the asynchronous case, which resembles the typical communication style
with a blockchain system: The client submits a bc-transaction and the submission returns
immediately. Then, after some time, the client checks whether the transaction has been
bc-committed or not (yet).

Here, ensuring a fair experimental setup between the relational blockchain and the standalone
DBMS is a bit more complicated. The reason lies in the way Tendermint Core handles
asynchronous transaction processing internally: As we do not have to wait for a response,
we push the whole batch of wl-transactions into the network in one go. Tendermint Core
then forms blocks out of pending wl-transactions and commits them one after the other. As
previously described, for each block, an individual db-transaction is opened and eventually

144 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 15

committed, each containing a sequence of applied wl-transactions. However, as Tendermint
now decides by itself how many wl-transactions it packs into a single block, it is more
difficult to set up a comparable run for the standalone DBMS. To solve the problem, we
record the transactions that were packed in each committed block during the run of the
relational blockchain. Then, to set up the run with standalone PostgreSQL, we pack the
exact same transaction sequences in individual db-transactions and fire them one by one.

Figure 6 and Figure 7 show the experimental results. As asynchronous communication
is less expensive than synchronous communication in total, we fire a larger sequence of
10,000 wl-transactions this time. In the Figures 6a and 7a, we show the measured latency of

0 1 2 3 4 5 6 7 8
ID of the generated block

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

La
te

nc
y

of
 b

c-
co

m
m

it
re

sp
. d

b-
co

m
m

it
[m

s]

Latency: Relational Blockchain
Latency: Only PostgreSQL

0

250

500

750

1000

1250

1500

1750

2000
Nu

m
be

r o
f w

l-t
ra

ns
ac

tio
ns

wl-transactions per block resp.
wl-transactions per db-transaction

(a) Latency for a mixture of writing transactions.

Transact
Savings

Deposit
Checking

Send
Payment

Write
Check

Amalgamate
0

1000

2000

3000

4000

5000

6000

7000

8000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Step 6)
Relational Blockchain (Steps 1-5)

Only PostgreSQL

(b) End-to-end runtime.

Fig. 6: Asynchronous communication (Smallbank)

0 1 2 3 4 5 6 7
ID of the generated block

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

La
te

nc
y

of
 b

c-
co

m
m

it
re

sp
. d

b-
co

m
m

it
[m

s]

Latency: Relational Blockchain
Latency: Only PostgreSQL

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f w
l-t

ra
ns

ac
tio

ns

wl-transactions per block resp.
wl-transactions per db-transaction

(a) Latency for a mixture of writing transactions.

NewOrder Payment OrderStatus
(read-only)

0

2000

4000

6000

8000

10000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Step 6)
Relational Blockchain (Steps 1-5)

Only PostgreSQL
Relational Blockchain (Query)

(b) End-to-end runtime.

Fig. 7: Asynchronous communication (TPC-C)

each block respectively fired db-transaction. Here, we measure latency as the time between
the start of the experiment (firing the first wl-transaction) until the notification about the
bc-commit of the respective block (step 4 in Figure 1). We fire a uniformly selected mix of
only writing transactions of the respective benchmark and plot the ID of each block that
has been generated on the 𝑥-axis in relation to the latency of the corresponding bc-commit

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 145

16 Felix Schuhknecht, Simon Jörz

on the 𝑦-axis. Additionally, we plot the number of wl-transactions that were packed by the
framework in each individual block (blacks dots) with respect to a second 𝑦-axis. As for
individual runs, the framework might produce a different number of blocks, we plot each of
the three performed runs individually.

Additionally, in the Figures 6b and 7b, we perform a set of experiments where we measure
the end-to-end runtime. In this case, we fire 10,000 transactions of each type individually
to analyze an effect of the transaction type. For the relational blockchain, we split the
end-to-end runtime for the sequence of modifying transactions into the actual transaction
processing time (steps 1 to 5 of Figure 1) and the time to check whether the transaction has
been processed successfully (step 6 of Figure 1). For the read-only transaction OrderStatus
of TPC-C, we show the runtime when using the query-interface of the framework.

Let us first look at the results for Smallbank in Figure 6. We can see that the difference
in latency and end-to-end runtime between the relational blockchain and stand-alone
PostgreSQL is significant. Processing the transactions in the framework increases the
latency of the last generated block respectively db-commit by up to 24x and the end-to-end
runtime by an average of 21x over all transactions. We see that the result inspection (step
6) is not responsible for the overhead, the actual transaction processing in the framework
takes the majority of time. We can also see that the framework packs around 1, 000 to
2,000 wl-transactions in one block, leading to the generation of 8 blocks in total. This clearly
improves the performance over the synchronous case, however, still generates significant
overhead. Between the individual transaction, we observe little difference. All transactions
are extremely short-running in the backend and modify at most two accounts each.

Let us now inspect the TPC-C results in Figure 7, which look quite different to the results
of Smallbank. First of all, we can see that the overhead of the framework over stand-alone
PostgreSQL is significantly smaller for this benchmark. This time, the framework increases
the latency at most by 2.6x. The end-to-end runtime of the sequence of NewOrder and
Payment transactions increases only by 2.0x and 4.3x, respectively. The reason lies in the
much higher complexity of the performed transaction: If the backend requires more time
to process a transaction, the overhead of processing it in the framework becomes less
significant in the end-to-end runtime. For the read-only transaction, the overhead of the
framework is even smaller with 1.52x, as we can bypass block forming and consensus
entirely. This shows that for queries, the framework should be bypassed entirely. Overall, we
can also see that the overhead under asynchronous communication is significantly smaller
than in the synchronous case.

5.2 Cost Breakdown

To get a deeper insight on where the overhead originates from, we analyze the produced
logfiles of Tendermint Core and isolate four individual phases: (1) The proposal phase, in
which pending transactions are grouped in a block to propose. (2) The consensus phase, in
which consensus on the proposed block is performed. (3) The execution phase, in which

146 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 17

the bc-transactions of the block are executed against the backend. (4) The commit, that
marks the state change. Figure 8 shows the life a block under synchronous and asynchronous

Sync.

Async.

Time [s]

0 0,1 0,2 0,3 0,4 0,5

Proposal phase Consensus phase Execution phase Commit

Fig. 8: Cost breakdown into individual phases.

communication. In the synchronous case, it contains one bc-transaction, whereas in the
asynchronous case, 1311 bc-transactions are packed in the block. We can see clearly that
the consensus phase is by far the dominating phase of the pipeline. In both cases, the actual
execution is negligible in comparison. Also, we can observe that the runtime of the proposal
and consensus phase varies across runs.

5.3 Impact of the Number of Clients

Let us now inspect the impact of the number of clients on the end-to-end runtime of the
system. In Figure 9, we vary the number of clients firing transactions from 1 to 32 in
logarithmic steps while keeping the total number of Smallbank transactions fixed to 10,000.

1 2 4 8 16 32
Number of virtual clients

0

1

2

3

4

5

En
d-

to
-e

nd
 ru

nt
im

e
[1

00
0s

]

1e6 Relational Blockchain (Tendermint Core + PostgreSQL)

(a) Synchronous communication.

1 2 4 8 16 32
Number of virtual clients

0

1000

2000

3000

4000

5000

6000

7000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Tendermint Core + PostgreSQL)

0

5

10

15

20
Nu

m
be

r o
f g

en
er

at
ed

 b
lo

ck
s

(b) Asynchronous communication.

Fig. 9: Impact of the number of clients.

We can see that in the synchronous case, the performance drastically increases with the
number of clients. This is the case as concurrently submitted transactions are now packed
in the same block. For asynchronous communication, the performance improvement is
naturally smaller, but also significant, showing that a single client does not saturate the
system.

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 147

18 Felix Schuhknecht, Simon Jörz

5.4 Impact of the Relational Backend

So far, we used PostgreSQL as the relational DBMS in the backend for all experiments. Let
us now investigate whether the choice of the relational system actually matters or whether
its performance is completely overshadowed, if it is part of the blockchain framework.
In Figure 10, we show the end-to-end runtime of our relational blockchain under a
uniform mixture of 1,000 synchronous respectively 10,000 asynchronous wl-transactions of
Smallbank, where we use either PostgreSQL or MySQL as the backend in all four nodes.

PostgreSQL MySQL PostgreSQL MySQL
Relational Backend

0

100000

200000

300000

400000

500000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain Only Relational Backend

(a) Synchronous communication.

PostgreSQL MySQL PostgreSQL MySQL
Relational Backend

0

1000

2000

3000

4000

5000

6000

7000

8000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain Only Relational Backend

(b) Asynchronous communication.

Fig. 10: Impact of the relational DBMS in the backend.

Let us first look at the raw backend performance shown on the right side of the plots. We
can see that PostgreSQL is able to process the sequence of transactions significantly faster
than MySQL. In the synchronous case, PostgreSQL is 6.6x faster than MySQL. In the
asynchronous case, where multiple wl-transactions are packed in a single db-transaction,
the speedup is still 2.6x. While the backends perform drastically different, this difference
becomes less significant when embedding the backend within the relational blockchain. In
the synchronous case, the backend makes no difference at all, as the runtime is dominated by
block forming and consensus. Only in the asynchronous case, we see a significant difference.
Therein, using PostgreSQL improves the end-to-end runtime by 1.2x over MySQL.

5.5 Impact of Scaling across Virtual Nodes and Physical Nodes

Until now, we ran all experiments using four virtual nodes running on one physical node. In
the following, we will vary both the number of virtual nodes (Figure 11a) as well as the
number of physical nodes (Figure 11b) to represent the network.

We start by varying the number of virtual nodes in Figure 11a. This experiment still factors
out network latency. We set up a network of only one virtual node, four virtual nodes, and
eight virtual nodes and report the end-to-end runtime for 10,000 modifying Smallbank
transactions using asynchronous communication. Additionally, we show the number of
generated blocks for the total run. Note that a network consisting of only one node can
skip the consensus phase, as no other participants exist to coordinate with. We see this

148 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 19

1 4 8
Number of virtual nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Tendermint Core + PostgreSQL)

0

5

10

15

20

Nu
m

be
r o

f g
en

er
at

ed
 b

lo
ck

s

(a) Virtual scaling.

1, (1) 4, (2) 4, (4) 8, (4)
Number of physical nodes, (Number of regions)

0

5000

10000

15000

20000

25000

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Relational Blockchain (Tendermint Core + PostgreSQL)

0

20

40

60

80

100

120

Nu
m

be
r o

f g
en

er
at

ed
 b

lo
ck

s

(b) Physical scaling.

Fig. 11: Scaling the number of virtual and physical nodes.

setup as the baseline for the throughput that can be achieved in the system. When looking
at the results in Figure 11a, we can see that the end-to-end runtime is unsurprisingly the
shortest when running only one node. When using four nodes, the runtime increases by
a factor of 1.47x over the single node configuration, when using eight nodes, it increases
by a factor of 1.69x. This shows that an increase in the number of nodes clearly increases
the overhead, however, only sublinearly. When inspecting the number of generated blocks,
we can see that for one node, 20 (smaller) blocks are generated on average, whereas for
four and for eight nodes, only 6 (larger) blocks are generated for the whole sequence of
10,000 transactions. This shows that the consensus that is performed for a block throttles
the forming of the next block.

Let us now look at the results when scaling the number of physical nodes in Figure 11b.
Here, we test one physical node in one region (Frankfurt), four physical nodes in two
different regions (Frankfurt and Paris), four physical nodes in all four different regions, and
eight physical nodes in all four different regions. Note that for this experiment, we repeat
each run 10 times (instead of 3 times as before) to factor out variance caused by the cloud
provider as much as possible. First of all, we can observe that the end-to-end runtime is
overall higher than when scaling the number of virtual nodes within one physical node. This
is caused by the internet latency, but also by the slower physical nodes. Again, using only
one node is unsurprisingly fastest, however, using more physical nodes does not decrease the
performance as heavily as for virtual scaling. Using four physical nodes within two regions
shows worse performance than four physical nodes within four regions. We deduct from this
that the internet traffic between the nodes is not the bottleneck here, but that the two physical
nodes within the same region potentially share the same hardware resources. Going to eight
physical nodes decreases the performance only marginally in comparison to four nodes.
We also observed a relatively high variance between individual runs as soon execute on a
distributed setup. For four physical nodes on two regions, we measured runtimes between
22s and 37s, for four physical nodes across four regions, we observed runtimes between 20s
and 25s, and for eight physical nodes, we saw runtimes between 21s and 28s. This indicates
that other computations happened on the same instances.

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 149

20 Felix Schuhknecht, Simon Jörz

5.6 Comparison with a Distributed Relational DBMS

0 1 2 3 4 5 6 7 8 9 10
Number of wl-transactions per bc-transaction [2x]

103

104

105

En
d-

to
-e

nd
 ru

nt
im

e
[m

s]

Distributed Relational Blockchain (Tendermint Core + PostgreSQL)
Distributed PostgreSQL

Fig. 12: Comparison of our relational blockchain
with a fully-replicated distributed PostgreSQL.

Let us finally investigate the overhead of
our system in comparison with a fully-
replicated distributed PostgreSQL cluster
using Citus [Cu21] across our four EC2
nodes. We fire our typical set of Small-
bank transactions against the coordinator
node. This coordinator uses 2PC to syn-
chronize all modifications with the three
replicas. In comparison, we install our
relational blockchain on the same nodes.
Figure 12 shows the results for a varied
pseudo-synchronous communication. We
can see that for few wl-transactions per
bc-transaction, distributed PostgreSQL per-
forms drastically better. However, the fewer bc-transactions are formed, the more the
performance of our relational blockchain approaches distributed PostgreSQL.

6 Takeways and Conclusion
In this work, we have presented a practical and feasible way of integrating a full-fledged
relational DBMSs into a blockchain framework to support the execution of deterministic
SQL transactions in byzantine environments. We analyzed the performance implications
of such a systems combination and identified situations where the overhead is acceptable.
Also, we have seen setups where the overhead is dramatic and completely overshadows the
backend performance. In Table 2, we conclude with practical recommendations on how to
achieve the best performance of such a setup.

Property Recommendation

Communication
If possible, chose asynchronous communication. Alternatively, chose
pseudo-synchronous communication with as many wl-transactions per
bc-transaction as acceptable.

Clients Use several clients to propose bc-transactions (improvement till up to 32
clients), especially under synchronous communication.

Backend
If the workload contains complex transactions and communication is
asynchronous, chose a high-performance backend (e.g. PostgreSQL over
MySQL). Otherwise, the choice of backend is less important.

Transactions Fire transactions as read-only transactions if possible to bypass the
transaction processing flow of the framework.

Network
Use as few nodes as possible to keep the overhead of the consensus phase and
the communication between the nodes as low as possible. Across physical
nodes, the system scales better than across virtual nodes.

Tab. 2: Practical recommendations on how to achieve good performance.

150 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 21

Bibliography
[AEE21] Alshurafa, Samer Muneer; Eleyan, Derar; Eleyan, Amna: A survey paper on blockchain as

a service platforms. Int. J. High Perform. Comput. Netw., 17(1):8–18, 2021.

[Am18] Amoussou-Guenou, Yackolley; Pozzo, Antonella Del; Potop-Butucaru, Maria; Tucci
Piergiovanni, Sara: Correctness and Fairness of Tendermint-core Blockchains. CoRR,
abs/1805.08429, 2018.

[An18] Androulaki, Elli; Barger, Artem; Bortnikov, Vita; Cachin, Christian; Christidis, Kon-
stantinos; Caro, Angelo De; Enyeart, David; Ferris, Christopher; Laventman, Gennady;
Manevich, Yacov; Muralidharan, Srinivasan; Murthy, Chet; Nguyen, Binh; Sethi, Manish;
Singh, Gari; Smith, Keith; Sorniotti, Alessandro; Stathakopoulou, Chrysoula; Vukolic,
Marko; Cocco, Sharon Weed; Yellick, Jason: Hyperledger fabric: a distributed operating
system for permissioned blockchains. In (Oliveira, Rui; Felber, Pascal; Hu, Y. Charlie, eds):
Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April
23-26, 2018. ACM, pp. 30:1–30:15, 2018.

[Bi22] BigchainDB: https://www.bigchaindb.com/, September 2022.

[Bu22] Buchman, Ethan; Guerraoui, Rachid; Komatovic, Jovan; Milosevic, Zarko; Seredinschi,
Dragos-Adrian; Widder, Josef: Revisiting Tendermint: Design Tradeoffs, Accountability,
and Practical Use. In: 52nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2022, Supplemental Volume, Baltimore, MD, USA, June
27-30, 2022. IEEE, pp. 11–14, 2022.

[Ca21] Cason, Daniel; Fynn, Enrique; Milosevic, Nenad; Milosevic, Zarko; Buchman, Ethan;
Pedone, Fernando: The design, architecture and performance of the Tendermint Blockchain
Network. In: 40th International Symposium on Reliable Distributed Systems, SRDS 2021,
Chicago, IL, USA, September 20-23, 2021. IEEE, pp. 23–33, 2021.

[CL99] Castro, Miguel; Liskov, Barbara: Practical Byzantine Fault Tolerance. In (Seltzer, Margo I.;
Leach, Paul J., eds): Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999.
USENIX Association, pp. 173–186, 1999.

[Cu21] Cubukcu, Umur; Erdogan, Ozgun; Pathak, Sumedh; Sannakkayala, Sudhakar; Slot, Marco:
Citus: Distributed PostgreSQL for Data-Intensive Applications. In (Li, Guoliang; Li,
Zhanhuai; Idreos, Stratos; Srivastava, Divesh, eds): SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021. ACM, pp. 2490–2502,
2021.

[Da19] Dang, Hung; Dinh, Tien Tuan Anh; Loghin, Dumitrel; Chang, Ee-Chien; Lin, Qian; Ooi,
Beng Chin: Towards Scaling Blockchain Systems via Sharding. In (Boncz, Peter A.;
Manegold, Stefan; Ailamaki, Anastasia; Deshpande, Amol; Kraska, Tim, eds): Proceedings
of the 2019 International Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, pp. 123–140, 2019.

[Di18] Dinh, Tien Tuan Anh; Liu, Rui; Zhang, Meihui; Chen, Gang; Ooi, Beng Chin; Wang, Ji:
Untangling Blockchain: A Data Processing View of Blockchain Systems. IEEE Trans.
Knowl. Data Eng., 30(7):1366–1385, 2018.

[El19a] El-Hindi, Muhammad; Binnig, Carsten; Arasu, Arvind; Kossmann, Donald; Ramamurthy,
Ravi: BlockchainDB - A Shared Database on Blockchains. Proc. VLDB Endow.,
12(11):1597–1609, 2019.

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 151

22 Felix Schuhknecht, Simon Jörz

[El19b] El-Hindi, Muhammad; Heyden, Martin; Binnig, Carsten; Ramamurthy, Ravi; Arasu, Arvind;
Kossmann, Donald: BlockchainDB - Towards a Shared Database on Blockchains. In (Boncz,
Peter A.; Manegold, Stefan; Ailamaki, Anastasia; Deshpande, Amol; Kraska, Tim, eds):
Proceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, pp.
1905–1908, 2019.

[Et22] Ethereum Yellow Paper, https://gavwood.com/paper.pdf, September 2022.

[Ge19] Gehrke, Johannes; Allen, Lindsay; Antonopoulos, Panagiotis; Arasu, Arvind; Hammer,
Joachim; Hunter, James; Kaushik, Raghav; Kossmann, Donald; Ramamurthy, Ravi; Setty,
Srinath T. V.; Szymaszek, Jakub; van Renen, Alexander; Lee, Jonathan; Venkatesan,
Ramarathnam: Veritas: Shared Verifiable Databases and Tables in the Cloud. In: 9th
Biennial Conference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA,
USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019.

[Go19] Gorenflo, Christian; Lee, Stephen; Golab, Lukasz; Keshav, Srinivasan: FastFabric: Scaling
Hyperledger Fabric to 20, 000 Transactions per Second. In: IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2019, Seoul, Korea (South), May 14-17, 2019.
IEEE, pp. 455–463, 2019.

[go22a] go-sql-driver/mysql - MySQL Driver, https://github.com/Go-SQL-Driver/MySQL/, October
2022.

[Go22b] Golang sql package, https://pkg.go.dev/database/sql, September 2022.

[IB22a] IBM Food Trust: https://www.ibm.com/de-de/blockchain/solutions/food-trust, September
2022.

[IB22b] IBM Health: https://www.ibm.com/de-de/blockchain/industries/healthcare, September
2022.

[Mo22] MongoDB: https://www.mongodb.com/, September 2022.

[Na09] Nakamoto, Satoshi: Bitcoin: A Peer-to-Peer Electronic Cash System. May 2009.

[Na19] Nathan, Senthil; Govindarajan, Chander; Saraf, Adarsh; Sethi, Manish; Jayachandran,
Praveen: Blockchain Meets Database: Design and Implementation of a Blockchain Relational
Database. Proc. VLDB Endow., 12(11):1539–1552, 2019.

[pg22] pgx - PostgreSQL Driver and Toolkit, https://github.com/jackc/pgx, September 2022.

[Sc21a] Schuhknecht, Felix Martin: Talking Blockchains: The Perspective of a Database Researcher.
In: 37th IEEE International Conference on Data Engineering Workshops, ICDE Workshops
2021, Chania, Greece, April 19-22, 2021. IEEE, pp. 72–75, 2021.

[Sc21b] Schuhknecht, Felix Martin; Sharma, Ankur; Dittrich, Jens; Agrawal, Divya: chainifyDB:
How to get rid of your Blockchain and use your DBMS instead. In: 11th Conference on
Innovative Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online
Proceedings. www.cidrdb.org, 2021.

[Sh19] Sharma, Ankur; Schuhknecht, Felix Martin; Agrawal, Divya; Dittrich, Jens: Blurring the
Lines between Blockchains and Database Systems: the Case of Hyperledger Fabric. In
(Boncz, Peter A.; Manegold, Stefan; Ailamaki, Anastasia; Deshpande, Amol; Kraska, Tim,

152 Felix Schuhknecht, Simon Jörz

The Easiest Way of Turning your Relational Database into a Blockchain and the Cost of Doing So 23

eds): Proceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, pp. 105–122,
2019.

[Sm13] Smallbank Benchmark, https://hstore.cs.brown.edu/documentation/deployment/
benchmarks/smallbank/, May 2013.

[So22] Song, Jie; Zhang, Pengyi; Alkubati, Mohammed; Bao, Yubin; Yu, Ge: Research advances
on blockchain-as-a-service: architectures, applications and challenges. Digit. Commun.
Networks, 8(4):466–475, 2022.

[Te22a] Telekom Blockchain Applications: https://dmexco.com/stories/how-deutsche-telekom-uses-
blockchain/, September 2022.

[Te22b] Tendermint Core, https://tendermint.com/core/, September 2022.

[TP22] TPC-C Benchmark, https://www.tpc.org/tpcc/, September 2022.

The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of
Doing So 153

https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/

Session 2

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

WannaDB: Ad-hoc SQL Queries over Text Collections

Just tell it what you want, what you really, really want

Benjamin Hättasch,1,2,3 Jan-Micha Bodensohn,1,2 Liane Vogel,1,2 Matthias Urban2 and
Carsten Binnig2,3

Abstract: In this paper, we propose a new system called WannaDB that allows users to interactively
perform structured explorations of text collections in an ad-hoc manner. Extracting structured data
from text is a classical problem where a plenitude of approaches and even industry-scale systems
already exist. However, these approaches lack in the ability to support the ad-hoc exploration of texts
using structured queries. The main idea of WannaDB is to include user interaction to support ad-hoc
SQL queries over text collections using a new two-phased approach. First, a superset of information
nuggets from the texts is extracted using existing extractors such as named entity recognizers. Then,
the extractions are interactively matched to a structured table definition as requested by the user based
on embeddings. In our evaluation, we show that WannaDB is thus able to extract structured data from
a broad range of (real-world) text collections in high quality without the need to design extraction
pipelines upfront.

Keywords: interactive text exploration; text to table; matching embeddings

1 Introduction

A question like “What were the days with a COVID-19 incidence rate higher than 750 in
Germany?” can be answered with a simple SQL query if the relevant information is present
in a database. Yet, in case there are only written (i.e., textual) reports available such as those
published by governmental organizations like the RKI in Germany,4 the situation is much
more complex: answering such queries over collections of textual documents that each
contain only a part of the information needed requires that first the relevant attributes are
extracted from each document, before they are stored in a structured form (i.e., a spreadsheet
or a database table) in order to make them available for structured queries.

One could now argue that extracting structured data from text is a classical problem for
which there is a plethora of approaches and where even several industry-scale systems
already exist: for example, DeepDive [Sa16] that was acquired by Apple or System-T
1 Primary Authors
2 Technical University of Darmstadt, Systems Group, 64287 Darmstadt, Germany, firstname.lastname@cs.tu-

darmstadt.de
3 DFKI
4https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html

cba doi:10.18420/BTW2023-08

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 157

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-08

2 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

SELECT report_date WHERE incidence_rate > 500;
SELECT region, AVG(incidence_rate) GROUP BY region HAVING AVG(incidence_rate) > 500;
SELECT AVG(vaccinated_twice) WHERE report_date > 21-01-01 AND report_date < 21-02-01;

Fig. 1: Exemplary ad-hoc information needs phrased as SQL-like queries in WannaDB. Two classes of
ad-hoc queries are supported: Queries that extract facts from individual documents (e.g., first query)
as well as queries that involve aggregation and grouping (e.g., the latter two queries).

[Le20a] from IBM are such systems that have developed rather versatile tool suites to
extract structured facts from textual sources. However, these systems require a team of
highly-skilled engineers that compile extraction pipelines, which often includes training
particular machine learning models, and then populate a structured database from the given
text collection. And even more importantly, the resulting extraction pipelines are typically
static and can only be used to extract a pre-defined (i.e., fixed) set of attributes and tables
for a certain text collection. This prevents exploratory scenarios where users can ask ad-hoc
queries regardless of whether a pipeline has been set up to extract the attribute or not.

Hence, being able to ad-hoc execute SQL-like queries over a text collection without the
need to manually compose extraction pipelines would be a major step forward compared to
existing approaches for structured data extraction from text. Use cases with needs for such
ad-hoc structured querying of unstructured text can be found in various domains beyond the
example mentioned before, e.g., data scientists together with medical doctors looking for
new insights through medical reports or data journalists examining hundreds of documents
as part of their investigations. Structured queries provide a higher expressiveness (e.g.,
aggregation and filtering operations), and more rigorousness in the calculation of the results
compared to the usage of natural language queries in classical question answering systems.

Contributions. In this paper, we hence propose WannaDB, a system that can execute
SQL-like queries on text collections in an ad-hoc manner. Examples for queries that
WannaDB supports can be found in Figure 1. Overall, WannaDB supports two classes
of queries: (1) Ad-hoc Fact Queries: queries that extract facts from text documents to
construct table rows. This also involves applying filter predicates and projection operations,
as shown by the first query in Figure 1. (2) Ad-hoc Aggregate Queries: queries that in
addition involve aggregations and grouping over multiple documents as shown by the
two other queries in Figure 1, which come with additional challenges like named entity
disambiguation/cross-document co-reference resolution that we discuss later in this paper.
WannaDB can therefore directly produce tables stating information that is not explicitly
mentioned in the documents and hence not discoverable by pure extraction or search
approaches. To enable such ad-hoc SQL queries over a given text collection, WannaDB
implements a novel extraction and querying pipeline that builds on two key ideas:

The first key idea of WannaDB is that, different from existing approaches which aim to
extract information for a specific (i.e., fixed) information need from a given text collection,
WannaDB instead implements a holistic extraction approach that aims to extract a wide
spectrum of information from a given text collection (called information nuggets in the

158 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 3

sequel). For this holistic extraction, WannaDB implements a framework approach and
relies on a set of different general-purpose extraction methods, such as approaches for
named-entity recognition. Moreover, during extraction, WannaDB computes embeddings
for all the information nuggets, taking several signals such as the textual mentions itself,
and the position in the text into account.

As a second key idea, to answer ad-hoc queries on top of the extracted information
nuggets, WannaDB implements a novel interactive matching approach that aims to map
the information nuggets to the information needs specified by the user in form of an SQL
query: embeddings of the extracted information nuggets together with the embeddings of
the query attributes are used to decide which information nuggets qualify for answering
the query. For this matching, WannaDB requests feedback from the user whether certain
information nuggets are the correct values for the required query attributes. The system
carefully selects these requests to minimize the amount of required feedback. The query
attributes can be of a much finer granularity than the labels of the extraction approaches
used in the first stage (e.g., airline instead of ORG) and WannaDB can even distinguish
between similar attributes with just a small semantic difference (e.g., the amounts of people
vaccinated once and twice).

While other approaches that can extract tables from text such as learned sequence-to-
sequence models [WZL22] often suffer from a phenomenon called hallucination (i.e., they
generate values that are not in the actual source document), our approach can guarantee
that the contents of the produced result tables always originate from the queried documents.
Moreover, compared to learned question answering approaches, WannaDB can perform
numerical reasoning on the data without the need to rely on the limited mathematical
abilities [He21] of a language model.

In order to evaluate the abilities of WannaDB, we conduct a wide range of experiments on
text collections from different domains ranging from aviation reports over daily COVID-19
situation reports to multiple text collections created from Wikipedia that cover different
categories (Nobel laureates, countries, and skyscrapers). We show that WannaDB not only
outperforms other baselines that can be used for ad-hoc query answering on text collections,
but is also competitive with approaches that are trained or refined on domain-specific data.
Moreover, our evaluation shows that typically only a few interactions per query attribute
are sufficient to answer a query over hundreds or thousands of source documents. Overall,
answering an SQL query over text documents with WannaDB (by providing minimal
interactive feedback) only takes a few minutes, compared to hours and hours of manually
extracting information or refining an extraction pipeline without WannaDB. Finally, to make
the results reproducible, we will make our source code and the data sets used for evaluation
available at https://link.tuda.systems/wannadb.

Outline. Next, we describe the functions of WannaDB in an exemplary usage scenario,
before we explain the different components in Section 3. In Section 4, the algorithms behind
the interactive components are discussed in further depth, followed by a short overview of

WannaDB: Ad-hoc SQL Queries over Text Collections 159

https://link.tuda.systems/wannadb

4 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

the current limitations in Section 5. We provide an evaluation of WannaDB in Section 6 and
an overview of existing and related work in Section 7, before we conclude in Section 8.

2 Exemplary Usage

In this exemplary usage scenario, we aim to show how WannaDB can be used to satisfy
an information need based on a text collection. Imagine, e.g., a data journalist who just
obtained a large collection of airline incident reports and is now looking for noticeable
events, like a high rate of incidents for a certain carrier or airport. They use WannaDB for
that purpose. The data journalist starts by loading the collection of text files into WannaDB
for processing and triggers the pre-processing of the files, a process that needs to be done
only a single time for each text collection.

Next, the data journalist enters an SQL-like query as a starting point for their exploration
(e.g., SELECT airline, airport, COUNT(*) GROUP BY airline, airport). As there is no
pre-existing table yet, the FROM-part of a typical SQL query can be omitted, simplifying
the query syntax. After entering the query, WannaDB presents a list of possible matches for
each required attribute (e.g., airline) found in texts of the collection, as shown in Figure 2.
Not all the found matches will be correct right away, therefore WannaDB relies on some user
input to adjust the results. The data journalist confirms a few of the correctly found matches,
corrects wrong matches by choosing the relevant extraction or marks if the required attribute
does not occur in a given text (see Figure 2). Meanwhile, WannaDB continuously updates
the list of all guessed matches during this interactive phase, leveraging the feedback. The
user interface allows to quickly identify entries that stand out and get an impression of the
quality already achieved. Once the data journalist is satisfied with the quality of the matches,
they continue with the next attribute of their query.

Fig. 2: Graphical user interface of WannaDB, more details can be found in our SIGMOD’22 demo
[HBB22]. Left: potential matches over and under the threshold are shown, the user is asked to either
confirm or fix them. Right: Inspect a document and fix by selecting the correct match.

160 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 5

After all attributes are processed, WannaDB will execute the query on the resulting table. If
the query contains grouping operations, the data journalist might be asked again for some
interactive feedback (e.g., to confirm that Lufthansa and LH refer to the same airline, but
LHS does not). WannaDB will again try to transfer this feedback to other rows. In the end,
the data journalist will receive an answer to their query and can export the resulting table to
a spreadsheet, an SQLite table, or a Pandas Dataframe for further investigation. If they have
further queries to submit to WannaDB, the interactive matching process only needs to be
repeated for new attributes, as WannaDB leverages existing results from previous queries.

3 System Overview & Architecture

In this section, we describe the architecture of WannaDB. It consists of two stages: an
offline stage to extract information nuggets (i.e. short information-bearing text snippets),
followed by the interactive stage to answer the query by table extraction and if required
interactive filtering or grouping. The overall workflow is visualized in Figure 3. Here, we
give an overview of both stages and the relevant components of WannaDB. More details of
the table extraction as well as grouping and filtering, which are the main contributions of
WannaDB, are described in Section 4.

Fig. 3: Architecture & exemplary usage: The offline extraction phase obtains information nuggets from
the documents. The online phase then infers the required structure from a query, matches between the
extracted information nuggets and the user’s schema, performs the grouping and executes the query.

WannaDB: Ad-hoc SQL Queries over Text Collections 161

6 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

3.1 Stage 1: Offline Extraction

In the first stage we employ off-the-shelf information extractors to extract a superset of
potentially relevant information nuggets (e.g., named entities) from the given text collection.
This step is independent of user queries and can thus be executed offline to prepare the
text collection for ad-hoc exploration by the user. The extractors process the collection
document-by-document to generate the corresponding extractions. Clearly, a limiting factor
of WannaDB is which kinds of information nuggets can be extracted in the extraction stage,
since only this information can be used for the subsequent matching stage. As a default, we
use named entity recognizers from Stanza [Qi20] and spaCy [Ho20]. In general, WannaDB
can be used with any extractor that produces label-mention pairs; i.e. a textual mention of
an information nugget in the text (e.g., American Airlines) together with a natural language
descriptor representing its semantic type called label (e.g., Company). Moreover, additional
information about the extraction (e.g., its position in the document and the surrounding
sentence) is also stored and used for computing the embeddings, as we describe below.

After extraction, the information nuggets are pre-processed to derive their actual data values
(i.e., a canonical representation, e.g., for timestamps) from their mentions. For this we also
rely on state-of-the-art systems for normalization [Ma14]. The nuggets are then represented
based on the following signals: (1) label – the entity type determined by the information
extractor (e.g. Company),5 (2) mention – the textual representation of the entity in the text
(e.g., Lufthansa), (3) context – the sentence in which the mention appears, (4) position – the
position of the mention in the document. Each information nugget representation comprises
embeddings for the individual signals (1-4). We compute semantic representations for the
natural language signals using FastText [Mi18] (1), Sentence-BERT [RG19] (2) and BERT
[De19] (3) and normalize the position by dividing it by the document length.

3.2 Stage 2: Interactive Query Execution

At runtime, a user issues queries and interacts with the system. WannaDB infers the table
structure required to answer a query, and employs a novel interactive matching stage to map
the information nuggets extracted in the first stage to the required query attributes.

Interactive Table Extraction. The first step of the interactive query execution of WannaDB
is the interactive table extraction from the text documents. In this step, a table with
attributes is filled by WannaDB to answer a given user query. The required table structure
is automatically inferred from the user’s SQL query. WannaDB checks which attributes
are mentioned explicitly as attributes to return, and as part of aggregation operations, or
implicitly in filter predicates or group-by statements. Then, WannaDB starts to fill the table
with the derived schema by executing the interactive table extraction algorithm.

5We map the named entity recognizers’ labels like ORG to suitable natural language expressions according to the
descriptions in their specification.

162 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 7

In the interactive table extraction, the user interacts with WannaDB in order to fill the
required attributes of the result table with the information nuggets extracted before. To find
matching nuggets, WannaDB first computes embeddings for the target attributes similar to
the ones computed for the information nuggets in the offline phase.

A classical approach to determine a mapping between information nuggets and attributes of
the user table would be to train a machine learning model in a supervised fashion to classify
to which attribute the extracted information nugget should be mapped to. However, learning
such a classification model would require a substantial set of labeled training data for each
attribute and thus prevent ad-hoc queries. Instead, our approach leverages embeddings to
quantify the intuitive semantic closeness between information nuggets and the attributes of
the user table. For the attributes of the target table, only the attribute names are available to
derive an embedding, while for the extracted nuggets we can make use of more information
as we described above.

WannaDB therefore employs a novel interactive matching strategy that incorporates user
feedback and operates in the joint embedding space of nuggets and target attributes. This
strategy works in an attribute-by-attribute fashion and collects user feedback (e.g., confirming
or correcting a possible match). WannaDB uses distances between possible and confirmed
matches to populate the remaining cells. This process is steered by carefully selecting
potential matches that are presented to the user for feedback to reach a high matching quality
with as little feedback as possible.

Interactive Filtering & Grouping. After the interactive table extraction step, WannaDB
executes the interactive filtering and grouping stage for answering a user query. Remember,
WannaDB has the aim to work on text collections from domains without pre-existing
resources like refined language models or custom knowledge bases. Grouping and filtering
the extracted table thus is challenging, since it is filled with mentions from the text directly,
hence applying these operations might lead to faulty query results if entities are not correctly
resolved: e.g., the table might contain entries such as Deutsche Lufthansa and German
Lufthansa Airline which both refer to the same entity. Applying GROUP BY or a WHERE directly
on such an extracted table would return multiple lines (i.e., one for each different mention
even though they refer to the same entity). WannaDB therefore again uses interaction to
perform those operations on the level of embeddings instead of string representations, as
will be described in detail in the next section.

4 Interactive Query Execution

WannaDB introduces novel embedding-based algorithms for interactive table extraction as
well as filtering and grouping. In this section, we describe these algorithms in further detail
(see Figure 4 for a pseudo-code representation).

WannaDB: Ad-hoc SQL Queries over Text Collections 163

8 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

4.1 Interactive Table Extraction

In the interactive table extraction stage, WannaDB populates the attributes of the table one by
one. To fill the cells of a certain attribute, WannaDB aims to select one matching information
nugget from each of the documents. To do so, WannaDB associates each information nugget
with a cached distance that corresponds to the certainty with which it believes that the nugget
matches the attribute. For each document, WannaDB considers the information nugget
with the lowest cached distance as the document’s currently guessed match. Furthermore,
WannaDB uses a distance threshold for each attribute to decide when a cell should be left
empty instead. The details of how this threshold is calculated and interactively adapted are
explained in Section 4.2. The overall procedure of the table extraction is shown in Figure 4.

In the beginning, each nugget’s cached distance is initialized as the cosine distance between
the nugget’s label embedding (e.g., Organization) and the embedding of the attribute name
(e.g., Airline) (Figure 4, line 2-3). After initialization, the interactive feedback phase starts.
WannaDB presents a ranked list of documents with their currently guessed matches to the
user for feedback (see Figure 2) and will continuously update the list after every given
feedback. This allows the user to quickly identify (incorrect) entries that stand out and to
get an impression of the quality already achieved. The ranked list is centered around the
threshold and thus hopefully shows both correct guesses with a low certainty, and incorrect
guesses, where WannaDB would profit most from feedback.

The user can then provide feedback for any of these guesses (line 7): they may either
confirm the guess, select another information nugget from the document, or state that the
document does not contain a matching information nugget. In case their feedback results
in a confirmed match, this matching information nugget is used to update the cached
distances of all other remaining information nuggets (line 13-16). To compute the distance
between two information nuggets, WannaDB calculates the mean of the cosine distances
between their individual signal embeddings. The distance updates ensure that a nugget’s
cached distance is always the distance to the closest confirmed match. Considering distances
between information nuggets allows WannaDB to capitalize on more signals like the textual
mentions (e.g., American Airlines) of other matching information nuggets.

Next, WannaDB updates the documents’ currently guessed matches by selecting the
information nuggets with the lowest cached distances (line 21). Finally, WannaDB then
adjusts the threshold accordingly (see Section 4.2 for more details). Moreover, the user can
at any time decide to terminate the interactive feedback phase and continue with the next
attribute. All remaining documents’ cells without explicitly confirmed matches will then be
populated with their currently guessed matches (line 24-28) if there is at least one with a
distance that is low enough (i.e., below the threshold).

164 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 9

1 for attribute in query.attributes: # Process each attribute separately
2 for nugget in all_nuggets:
3 nugget.distance = compute_distance(attribute, nugget) # Compute initial distances

4

5 while interactive_feedback_phase: # Interactively get user feedback

6 ranked_list = make_ranked_list(threshold, documents)

7 feedback = get_user_feedback(ranked_list)

8 match feedback:
9 # Positive feedback (confirmation or manually correction):

10 case ConfirmNugget(document, confirmed_nugget):
11 # Mark this particular cell as manual confirmed...

12 set_match(document, confirmed_nugget)

13 # ... and update distances for all nuggets based on user feedback

14 for nugget in all_nuggets:
15 new_distance = compute_distance(nugget, confirmed_nugget)

16 nugget.distance = min(new_distance, nugget.distance)

17 # Negative feedback:

18 case NoMatchInDocument(document):
19 # Direct effect only on the given document...

20 leave_empty(document)

21 update_guessed_matches(documents)

22 adjust_threshold(feedback) # ... but both feedback types can have effects indirectly

through threshold adjustment on other document's rows, too↩→
23

24 for document in documents: # Only consider values up to a given maximum distance

25 if current_guess(document).distance < threshold:
26 set_match(document, current_guess(document)) # compute final result table

27 else:
28 leave_empty(document)

29

30 def adjust_threshold(feedback): # Feedback can be further exploited in certain cases

31 match feedback:
32 case ConfirmNugget(document, confirmed_nugget):
33 if confirmed_nugget.distance > threshold:
34 increase_threshold(confirmed_nugget)

35 case NoMatchInDocument(document):
36 if current_guess(document).distance < threshold:
37 decrease_threshold(document)

38

39 def decrease_threshold(document): # Consider fewer matches as valid (especially those

above last marking as incorrect that are currently accepted nevertheless)↩→
40 nuggets = ranked_list.between(threshold, document)

41 min_dist = min(n.distance for n in nuggets)
42 threshold = min(min_dist, threshold)

43

44 def increase_threshold(confirmed_nugget): # Consider more matches as valid (especially

those below last confirmation that are currently discarded because of the threshold)↩→
45 nuggets = ranked_list.between(confirmed_nugget, threshold)

46 max_dist = max(n.distance for n in nuggets)
47 threshold = max(max_dist, threshold)

Fig. 4: Pseudo-Code representation of our interactive algorithm for table extraction, including threshold
adjustment.

WannaDB: Ad-hoc SQL Queries over Text Collections 165

10 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

4.2 Threshold Adjustment

WannaDB uses a threshold for two purposes: (a) to decide when it is better to leave a cell
empty than to use a very unlikely guess (mostly because the desired value is not mentioned
in the document) and (b) to select guesses to present to the user where feedback will have
as much effect as possible. This threshold is automatically tuned during the runtime of
WannaDB to fit the data at hand. Given the approximate query setting WannaDB is built
for, we decided to use a common threshold for all regions forming in the embedding space
instead of individually tuning it, to keep the number of interaction cycles low.

The adjustment of the threshold is shown in Figure 4 (line 30-47). The general idea is to
incorporate the additional knowledge gained from the user confirming a nugget even though
it was above the threshold or correcting an entry below the threshold. This feedback action
will only affect a certain nugget directly, but other similarly well fitting nuggets from other
documents might still be accepted or discarded wrongly because of the threshold, which is
therefore carefully adapted after feedback actions: If the user confirms a nugget from the
ranked list that is above the threshold, all nuggets between the threshold and this nugget
should be considered as a good guess. In the case that any of the nuggets is still above the
threshold after the calculation of the new distances, the threshold is adapted accordingly. In
contrast, if the user states that for a nugget with a distance below the threshold there is no
match in the document, the threshold is decreased to also exclude other matches that are
in the list above the nugget if necessary. The threshold is only adapted in these two cases,
where implicit hints about the quality assessment by the user can be incorporated.

4.3 Interactive Filtering & Grouping

In the following, we explain how interactive grouping is supported in WannaDB to tackle
the problem of different surface forms for the same entries. Filtering works similarly, but
we omit the details due to space limitations.

To resolve entities correctly, the interactive grouping algorithm is based on agglomerative
clustering using the distances between the information nugget embeddings for an attribute.
Entries with the same string representation are merged without interaction. For the remaining
ones, the different signals from the extraction phase are utilized. WannaDB presents all
distinct members of two clusters that should potentially be merged to the user and asks them
to confirm whether these all describe the same entity. If that is the case, the clusters are
merged and the distances are recalculated. To minimize the amount of necessary interactions
with the user, WannaDB does not always ask for the pair of clusters with the lowest distance,
but chooses a pair with a higher distance, using a step size that is adapted based on the last
interactions. If the user confirms the equivalence of the candidates, not only that pair but
also those with a substantially lower distances are merged. If the entries of the merging
candidates are marked as different, WannaDB continues to search for a better threshold for
the distance between clusters using a binary search pattern.

166 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 11

5 Current Limitations of WannaDB

In order to build a system that can quickly compute query results on various domains, we
introduce two limitations: First, WannaDB currently can only answer single-table queries on
top of document collections; i.e., we extract one table per document collection where each
row of the table corresponds to one document. However, this is not a severe limitation, since
the extracted table can be seen as the materialized result of a join. WannaDB will extract a
wide table (e.g., containing information about an incident itself but also the airlines and
airports involved)—but only with the attributes that are required for a given query.

Second, the results produced by WannaDB are always approximate. While WannaDB can
achieve a high F1-score for all attributes (as we will show below), query results might be
incomplete (i.e., values of attributes might be missing) or the extracted values might be
dirty (e.g., a group-by statement might result in two instead of one group due to a not fully
correct clustering). However, we believe that the query results of WannaDB are still of
high value to users, providing them with a trend and allowing them to decide if something
interesting is contained in the document collection in a short time.

6 Experimental Evaluation

In this evaluation, we aim to show the abilities of WannaDB on text collections from
different domains. We will demonstrate the end-to-end performance, compare our table
filling approach to non-interactive and learned models, and evaluate the effects of interaction,
and the scalability of WannaDB. To the best of our knowledge, there is no system working
like WannaDB yet. Therefore, we cannot compare our results end-to-end with existing
systems. As the whole task of running SQL queries over text collections is quite complex,
there is no simple baseline for comparison either. However, we evaluate the components of
our approach individually, and show that WannaDB performs better compared to various
baselines. We perform our evaluation on three data sets from very different domains. Each
of them consists of a document collection as well as a ground-truth extraction of structured
data that we can use to evaluate the results of executing ad-hoc queries with WannaDB.

Aviation. The first data set is based on aviation accident reports published by the United
States National Transportation Safety Board (NTSB).6 Each report documents a severe
aviation accident and provides details like the prevailing circumstances, probable causes,
conclusions, and recommendations. For the experiments, we use the executive summaries
that the NTSB publishes with each report. As a ground-truth, we compiled a list of twelve
attributes based on frequently occurring facts from the summaries. We then manually created
annotations that capture where the summaries mention the attributes’ values. The final
data set comprises 100 annotated documents and a table which provides the ground-truth
structured data for all attributes.
6https://www.ntsb.gov/investigations/AccidentReports/Pages/Reports.aspx?mode=Aviation

WannaDB: Ad-hoc SQL Queries over Text Collections 167

https://www.ntsb.gov/investigations/AccidentReports/Pages/Reports.aspx?mode=Aviation

12 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

COVID19. The second data set is based on the German RKI’s daily reports outlining the
situation of the Covid-19 pandemic in Germany.7 We again used the summaries of the
full documents, which contain information like the number of new laboratory-confirmed
Covid-19 cases or the number of Covid-19 patients in intensive care. We compiled a list of
seven all-numeric attributes, which is in particular challenging compared to string-valued
attributes, since these are harder to separate into different attributes in the embedding space.
As a ground-truth for the experiments, we manually annotated the occurrences of all these
seven attributes again in 100 reports.

T-REx: Countries, Nobel & Skyscrapers. In addition to the data sets before that we
explicitly created for evaluating WannaDB, we adapted the T-REx data set [El18] that was
also used in other papers. The original data set consists of 11 million Wikidata triples
aligned with 3.09 million Wikipedia abstracts. We extracted three subsets based on article
categories from different domains: Countries consists of 187 documents with three annotated
attributes, Nobel challenges to extract four attributes (date of birth and death, field of work
and country) for 209 Nobel Prize laureates, and Skyscrapers is by far the largest data set
with 2683 documents containing annotations for three attributes. All these data sets are quite
sparse, since most of the time only a subset of the attributes is contained in a document.
Therefore, this data set is valuable to test how well WannaDB can work when information
in documents is missing.

Metrics. As a main metric, we report the F1 score in most experiments (values between
0 and 1, higher is better) as an aggregated value that incorporates both the precision (i.e.,
the correctness of the table cell values) of our approach and its recall (i.e., the extent to
which table cells are filled as expected). The F1 scores we report are calculated based on
the ground truth and predictions in the filled tables. We thereby consider cells (i.e., an
attribute value) as true positives when they are correctly filled with information from the
text corresponding to that row, and as true negatives when they are correctly left empty,
in case the required information is not present in the corresponding text. False positive
predictions occur, when a cell is filled incorrectly. False negatives occur when a cell is left
empty that should have been filled with data from the text, and also for incorrectly filled
cells, as the correct nugget has not been found.

6.1 Exp. 1 – End-to-end Queries

To provide an indication of how WannaDB works end-to-end, we perform a qualitative
analysis on queries involving aggregation and grouping over multiple documents before we
later-on show quantitative results for WannaDB. For the experiments, we assume that a user
always provides correct feedback for WannaDB to execute the matching of extractions to
query attributes. However, we do not expect optimal feedback, i.e., the simulated feedback
actions are not chosen in a way to maximize speed of convergence. We report the results after

7https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html

168 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html

WannaDB: Ad-hoc SQL Queries over Text Collections 13

using 20 simulated user interactions (i.e., 20 times confirming an extraction or choosing an
alternative one as a match for a query attribute). We discuss the interaction effort that is
needed for WannaDB to perform extractions in a separate experiment.

Figure 5 shows the first five rows of the query results for two aggregation queries executed
on the T-REx Nobel and the T-REx Countries data sets. Additionally, precision and recall, as
well as a numeric score of the correctness of the clusters, can be seen. While WannaDB
delivered the correct values for the group-by operation, the aggregation (COUNT) deviates
slightly from the ground-truth. The reason is that for some documents, WannaDB could
not extract the requested information. As such, the results of WannaDB can be seen as
an approximation of the true query result that can be used for quickly gaining (initial)
insights into text collections. Moreover, it is important to note that existing extraction
baselines—that in contrast to WannaDB do not support ad-hoc queries—also do not provide
perfect extractions (as we show in the following experiments).

Fig. 5: End-to-end results for two queries executed on T-REx data sets. The tables show the first five
rows of the resulting table (one attribute column filled by WannaDB plus aggregation results). The
bracketed values indicate the ground truth values. Additionally, precision (P) and recall (R) computed
at cluster level, and mean Jaccard Index (MJI) averaged over all clusters are reported.

6.2 Exp. 2 – Interactive Table Extraction

In the second experiment, we quantitatively evaluate how well WannaDB can fill a table
specified by a user’s query with information from the texts. For this, we focus on the quality
of the interactive table extraction, which is the most important step for WannaDB to provide
high-quality query results; i.e., if the table extraction is not able to provide high accuracy,
grouping and filtering will also not be able to provide high accuracy. For showing the
quality of WannaDB, we run the experiments in this section on all three data sets (Aviation,
COVID19 and T-REx).

Baselines. To put the results of WannaDB into perspective, we compare it to two baselines
based on BART [Le20b]. BART is a state-of-the-art pre-trained transformer model, with
a high capacity to learn text-based tasks with minimal overhead of fine-tuning. Its robust
architecture outperformed older transformers, especially on tasks like question answering.
We use the openly available bart-large model from the Huggingface [Wo19] library and
formulate information extraction for individual query attributes as a sequence-to-sequence

WannaDB: Ad-hoc SQL Queries over Text Collections 169

14 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig
M

ac
ro

 F
1

S
co

re

0.00

0.25

0.50

0.75

1.00

Aviation COVID19 T-REx: Nobel T-REx:
Countries

T-REx:
Skyscrapers

(a) Table filling results. It can be seen that ■WannaDB
performs comparable to the ■ BART model trained
explicitly on the data (fine-tuned per topic individually)
and outperforms the generic ■ BART model (fine-
tuned on SQuAD) most of the time.

M
ac

ro
 F

1
S

co
re

0.00

0.25

0.50

0.75

1.00

Aviation T-REx: Countries

(b) Upper Baseline BART models show low general-
ization abilities on unseen data sets—the performance
of a ■ model trained on one data set drops drastically
when applied to ■ the other data set. ■ WannaDB for
comparison.

Fig. 6: Text-to-Table Results

task (i.e., the input is a text document and the output is the structured data extracted from
the text). For fine-tuning BART for the information extraction task on a particular data set
(i.e., transforming a text into a table) we use the following procedure: We split each data set
into 75% that we use as train set for fine-tuning, 15% as validation set and 10% as a holdout
test set. We then fine-tune one BART model on each data set for 50 epochs with a learning
rate of 1𝑒 − 5 and batch size of 2, which yielded the best performance in our experiments.
Moreover, we select the best checkpoint from the 50 epochs based on the validation set
for evaluation. Important to note here is that the resulting fine-tuned BART models are an
upper baseline for WannaDB, as they are trained supervised on the annotated data and all
possible query attributes; i.e., with this baseline we do not test the ad-hoc scenario that we
envision for WannaDB, but instead assume that all query attributes are known in advance.

For comparing WannaDB to a baseline that supports ad-hoc queries on a new (unseen) text
collection, we use a second variant that is also based on BART but not pre-trained on the
particular data set and query attributes. For this baseline, we instead use a BART model8
that is already fine-tuned for extracting structured information from the SQuAD 2.0 data
set [RJL18].9 For the experiment, we use this fine-tuned model on an unseen data set and
extract attributes that the model has not seen during fine-tuning.

WannaDB vs. Baselines. The results of WannaDB in comparison with the two BART
models are shown in Figure 6a. For WannaDB, we report the median over 20 randomized
runs, and again use 20 simulated user interactions per attribute. As baselines, we use the
two variants of BART discussed before.10 BART models fine-tuned per data set (red bars)

8Used Checkpoint: phiyodr/bart-large-finetuned-squad2 from Huggingface [Wo19]
9In particular the fine-tuning task is QA on text collections which can be used to extract query attributes.
10The results of WannaDB and the second BART model that is used out-of-the-box are calculated on the whole

data sets, whereas the results of the first BART model that is fine-tuned for the given data set are computed only
on the 10% holdout test sets.

170 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 15

are able to achieve high F1 scores on the data and query attributes they were trained on,
outperforming WannaDB on all data sets. Nevertheless, this approach is relying on the
availability of annotated training data, which prevents ad-hoc queries. In comparison to the
BART model that is used without fine-tuning on a given data set and set of query attributes
(yellow bar), WannaDB achieves substantially better results. Especially for the Aviation and
COVID19 data sets, WannaDB clearly outperforms this BART baseline. On the T-REx data
sets, WannaDB provides competitive or better performance depending on the subset of data.
We assume that BART’s performance on the T-REx data is influenced by the fact that both
the SQuAD data set it was fine-tuned on and the T-REx data set are based on Wikipedia.

Generalization of BART. As we have seen, while fine-tuning a BART model per data
set yields the best performance, the BART model that is not fine-tuned for a data set
provides inferior performance up to a point that it cannot extract any attributes correctly.
To understand the generalization capabilities of BART in more depth and see if this is a
systematic problem of BART, we now systematically use BART on data sets it has not been
fine-tuned for. To be more precise, Figure 6b shows the results of two fine-tuned BART
models: one fine-tuned on the Aviation data set and then used on the T-REx Countries
data set and another model that we used vice versa; i.e., we applied both of them to the
respective other data set, for which they have not been fine-tuned. The model fine-tuned on
the Aviation data (reaching an F1 score of 91.95% tested in-domain on the Aviation data)
only achieves 21.23% when tested on the T-REx Countries data set. At the same time, the
model fine-tuned on the T-REx Countries data set (reaching an F1 score of 0.6633 on the
in-domain test set) fails completely for extracting information correctly from the unseen
aviation data domain with an F1-score of 0.0. This shows that a fine-tuned BART model
is a valid approach to information extraction when annotated data is available and a fixed
set of attributes is queried, but the resulting models are not able to generalize ad-hoc to
other domains. In contrast, the results of WannaDB show that it can generalize well across
data sets even without any particular training per data set and that the interactive approach
provides an advantage over using generic embeddings or transformers directly.

Detailed Analysis of WannaDB. As a last point, we now zoom into the performance of
WannaDB and analyze the results for all data sets on a per-attribute level to show that
WannaDB can provide stable high performance and not just high performance for some
query attributes. We used a combination of two different named entity recognizers,11 Stanza
[Qi20] and SpaCy12 [Ho20] followed by our interactive matching approach.
Figure 7 shows that WannaDB can provide high accuracy and recall (measured by the
combining F1 score, blue bars, right axis) for a wide spectrum of attributes from the three
different data sets used in our evaluation. However, for some attributes the table is filled
with a much lower quality than for others or not at all (e.g., for weather conditions). One

11WannaDB allows using multiple extractors at the same time, even if they produce overlapping nuggets. As
default configuration for WannaDB and our experiments, we employ a combination of two robust general
purpose extractors that are designed to work for a broad variety of domains. However, any other (combination of)
extractors could be used in WannaDB as well.

12Using the en_core_web_lg model

WannaDB: Ad-hoc SQL Queries over Text Collections 171

16 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

reason can be that the currently employed information extractors are not able to extract the
necessary information nuggets from the text (yellow bars). In particular, aircraft_damage
and weather_condition are examples, where not only a large heterogeneity of mentions can
be found but also very domain-specific terminology is used. Another reason for low table
filling quality can be that the attributes occur in only a small fraction of the documents, as
in the case of the attribute owned_by (which only occurs in 6% of the documents).

Fr
ac

tio
n

E
xt

ra
ct

ed

M
ac

ro
 F

1

0.00%

25.00%

50.00%

75.00%

100.00%

0.00

0.25

0.50

0.75

1.00

event_date

location_city

location_state

airport_code

airport_name

aircraft_damage

aircraft_registration_numbe

aircraft_make

aircraft_model

far_description

air_carrie
r

weather_condition
Fr

ac
tio

n
E

xt
ra

ct
ed

M
ac

ro
 F

1

0.00%

25.00%

50.00%

75.00%

100.00%

0.00

0.25

0.50

0.75

1.00

date

new_cases

new_deaths

incidence

patients_intensive_care

vaccinated

twice_vaccinated

Fr
ac

tio
n

E
xt

ra
ct

ed

M
ac

ro
 F

1

0.00%

25.00%

50.00%

75.00%

100.00%

0.00

0.25

0.50

0.75

1.00

N: date_of_birth

N: date_of_death

N: fie
ld_of_work

N: country

C: official_language

C: capital

C: continent

S: country

S: architect

S: owned_by

Fig. 7: ■ Fraction of values that could be extracted successfully and ■ table filling results per attribute
of the Aviation, COVID19 and T-REx data sets (in this order). WannaDB produces high scores for the
majority of attributes, more than half are 0.7 or above.

In conclusion, WannaDB has the advantage over fine-tuned BART models, that it neither
requires annotated training data, nor several hours of training time in order to work on
unseen text collections. Furthermore, it does not suffer from the problem of hallucination
[Ma20] that transformer-like models regularly experience, since they aim to also generate
values for attributes even if no information nugget is present in the text. WannaDB instead
generates an empty value in that case.

6.3 Exp. 3 – Effects of Interaction

In the previous experiments, we assumed a fixed amount of user interaction. In the third part
of our evaluation, we instead investigate how the amount of interactive feedback given affects
the table filling performance of WannaDB. We therefore simulate the interactive matching
process with different interaction limits (i.e., the number of interactions per extracted query
attribute). The resulting F1 scores can be seen in Figure 8.

172 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 17

As we can see, for some attributes, WannaDB achieves very high F1 scores with only
one interaction with the user (e.g., for event date or aircraft registration number in the
Aviation data set). These are attributes where the entity type of the extracted information
nugget is very similar to the attribute name or the pattern of the extracted information
nugget is rather unique. For example, the extraction has the named entity tag DATE which
is similar to event date. For other attributes though, the performance of WannaDB strongly
depends on the amount of interactive feedback. However, important is that WannaDB can
typically provide high quality with only a few interactions. For most attributes, the first
5 − 10 interactions massively improve the F1-score to achieve gains of up to 0.5. This
overall confirms the interactive matching procedures we presented in Section 4 and the
algorithm to select the right threshold. Yet, as we can additionally see, for a few attributes
(e.g., weather condition), even many interactions cannot further improve the F1 scores. As
we showed in the last experiment, the reason is that none of the extractors used in WannaDB
can provide the information nugget for this attribute. Thus, as a future direction we want to
combine WannaDB with a much broader set of existing extraction approaches beyond the
named entity recognizers which we currently use, such as approaches for open information
extraction.

6.4 Exp. 4 – Scalability

In our final experiment, we aim to assess the scalability of WannaDB to large text collections.
Since WannaDB is an interactive system, the response times experienced by users are the
most important performance metric. Across all used data sets, we measure that WannaDB
takes on average 0.43 seconds to process a single user interaction.13 This latency includes all
computations between two user interactions; i.e., updating the cached distances and guessed
matches as well as presenting the next set of candidate matches to the user for feedback. In
general, we find that the interaction latency scales linearly with the number of nuggets. To
measure the offline extraction phase, which has to be executed only once per text collection,
we report the runtime on our largest data set T-REx Skyscrapers, which comprises 2, 683
documents. Running our default extraction phase takes about 48 minutes and produces
102, 467 nuggets. Comparing runtimes across data sets, we again find that the extraction
runtime scales linearly with the number of generated nuggets.

In summary, it can be seen that WannaDB can scale to extensive text collections with
thousands of documents and more than 100, 000 information nuggets by finishing the offline
phase in a reasonable time and providing response times that allow for an interactive usage
of the system [LH14].

13We executed this and all other of our experiments on a consumer desktop machine (CPU: AMD Ryzen 9 3900X;
RAM: 32GB @3000MHz; GPU: NVIDIA GeForce RTX 2070 SUPER with 8GB VRAM).

WannaDB: Ad-hoc SQL Queries over Text Collections 173

18 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

Feedback Interactions

F1
-S

co
re

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

event date location city location state airport code
airport name aircraft damage aircraft registration number

aircraft make aircraft model far description air carrier
weather condition

Feedback Interactions

F1
-S

co
re

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

date new cases new_deaths incidence
patients intensive care vaccinated twice vaccinated

Feedback Interactions

F1
-S

co
re

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

C: official language C: capital C: continent N: date of birth
N: date of death N: field ofwork N: country S: country

S: architect S: owned by

Fig. 8: F1 scores of WannaDB for the different attributes of the Aviation, COVID19 and T-REx data
sets for different amounts of feedback iterations per attribute (1-40). For most attributes, already a
small amount of interactions drastically improves the quality, and more interactions lead to continuous
improvements.

7 Related Work

Running SQL queries on text collections is a new task, and to the best of our knowledge,
there is no other system yet working in the same way as WannaDB. However, some parts of
the task resemble existing tasks and for some components of our approach there is previous
work. Therefore, in this section, we give an overview of the related work of different areas,
including knowledge base population and schema matching based on embeddings.

Information Extraction Systems. Existing approaches to answer queries over text collec-
tions heavily rely on manual labor, requiring users either to read through vast amounts of
texts and extract relevant information manually, or to build specific extraction pipelines.
One category of information extraction systems focuses on the task of knowledge base
population, where a graph-structured knowledge base is constructed or expanded based
on knowledge from natural language texts. Extractive approaches like DeepDive [Sa16],
SystemT [Ch10], DefIE [BTN15], and QKBFly [Ng17] build upon (open) information
extractors like ClausIE [CG13] and also perform the adaption, cleaning, and combination

174 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 19

stages of the knowledge base building process. Most of these approaches require high manual
efforts to design extraction pipelines for each knowledge base and domain specifically.
Google Squared could be used to create fact-tables similar to the ones we propose from
web contents, but was unfortunately discontinued without publications about the underlying
techniques. Closest to our work are recent approaches for query-driven on-the-fly knowledge
base construction, such as QKBFly. Yet, QKBFly extracts general subject-predicate-object
triples and does not populate a user-defined table as WannaDB does. The vision of INODE
[Am21] is to provide an end-to-end data exploration system that is also able to include
information from natural language texts. For this task, the knowledge base population
approach LILLIE [Sm22] extracts triples from text domain-independently. However, the
system has not been thoroughly evaluated for generalization to unseen domains. Recent
approaches use transformer models to tackle information extraction tasks like relation
extraction [EU21, CN21, Ng20] in an end-to-end fashion to avoid the errors accumulating
in pipeline-based approaches. However, transformer-based methods are costly to train and
suffer from issues like hallucination [Ma20]. A more explainable approach to information
extraction is introduced by [Ko22, Re21] with a framework for learning text classifiers with
a human-in-the-loop. Recently, [Sa22] introduced an interactive system that allows users to
specify templates that are then used to perform zero-shot information extraction.

Text-To-Table. The idea of automatically transforming a text into a table was also approached
by [WZL22] as text-to-table task, which inversely tackles the well studied table-to-text
problem. Yet, their work is not directly comparable, since they assume that each text fills
one or more entire tables, while we assume that a text collection fills one table in which
each text corresponds to a row.

Template Filling & Named Entity Recognition. The goal of slot or template filling is
similar to our objective [GS96], yet in contrast to our approach, most template filling
approaches are specifically crafted for a fixed set of slots. A common approach to extract
a fixed set of attributes from a text is to learn a named entity recognizer specifically for
the desired entity types (e.g., [SJ19]). Named entity recognizers extract a set of entity
types like organizations, locations, or products from natural language texts. However,
the training requires a substantial amount of annotated data, and the learned system will
not generalize to entity types not present in the training data. Some approaches (e.g.,
[Ch15, We19, Kh17]) attempt to avoid this problem by using active learning, which allows
the learning algorithm to query the user, for example by selecting training instances that
the user then labels by hand. Another strategy is distantly-supervised or weakly-supervised
named entity recognition (e.g., [Fr17, Li20]). In contrast to our system, these approaches
train named entity recognizers specifically for the desired set of entity types, whereas we
use the output of conventional named entity recognizers to populate the user-provided
attributes. Together with the interactive matching, this allows WannaDB to generalize to
unseen domains without the costly training of domain-specific named entity recognizers.

Other Matching Tasks. Approaches for schema matching (e.g., [Hä20, He20]), are related
to WannaDB, too, since we frame the mapping between the information extractors’ output

WannaDB: Ad-hoc SQL Queries over Text Collections 175

20 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

and the user-provided list of attributes as a matching problem, but try to find correspondences
between attributes and possible values, and not between columns or even full tables. Another
recent approach focuses on matching texts to structured data, in particular also matching
texts to table rows [ASP21]. Yet, this task differs from the matching task in WannaDB, as it
assumes the tables are given, whereas in WannaDB a table is filled through the matching.

Entity Disambiguation & Cross Document Co-Reference Resolution. The surface form
of an entity in a text is often not sufficient to uniquely identify it. Yet, knowing whether
two mentions of the same type describe the same entity is relevant for correct grouping in
our case, but also existing tasks like entity linking/knowledge base alignment. For the latter
there are three main challenges (see [Dr10]): name variations (e.g., different mention forms,
abbreviations, alternate spellings, and aliases), entity ambiguity (same written form for
different entities), and absence (i.e., the text mentions a previously unknown entity). The last
one is not relevant for our use-case, since we do not rely on a given KB but build tables only
based on the current text collection. We can concentrate on the problem of ambiguity, i.e.,
decide, whether two nuggets that were matched as different rows of the same attribute are in
fact the same or represent different concepts. The field of computing equivalence classes
of textual mentions for the same entity is called cross-document co-reference resolution
(CCR). It was, e.g., tackled by [DW15, KCP18, Ca21], but these existing approaches often
concentrate only on entities from certain domains or of certain types (like events).

Prior Results of WannaDB. A first version of the matching component of WannaDB
including an initial evaluation on two real-world data sets was published at [HBB21]. In
this paper, we pick up the vision of the whole application cycle presented at [Hä21]. As
such, we present the integration of the table extraction procedure of WannaDB into a
full system. Moreover, compared to the original submission, we also developed a new
interactive matching procedure where we leverage the human ability to quickly find patterns
by presenting multiple guessed matches at once, which allows users to quickly correct wrong
matches. Multiple ways to give feedback (confirm, fix, or mark that there is no match in the
document) further enhance quality and flexibility of matching. A demo of the interactive
GUI for this matching process was presented at [HBB22].

8 Conclusions

In this paper, we presented WannaDB, a novel tool to explore the contents of unstructured
data (text) using SQL-like queries in an ad-hoc fashion and without the need to manually
design extraction pipelines upfront. It builds on embeddings and a novel interactive query
execution strategy and consists of components to infer the required table structure from
the query, extract and organize the required information from the text, group results on the
embedding level and execute the query. Our evaluation shows that the individual components
of WannaDB can achieve similar performance to models trained on large data sets for partial
or related tasks, and gives an impression of the end-to-end quality that makes WannaDB
suitable for many exploratory use cases.

176 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 21

Acknowledgments

This work has been supported by the German Federal Ministry of Education and Research
(BMBF) as part of the Project Software Campus 2.0 under grant ZN 01IS17050, by the
BMBF and the state of Hesse as part of the NHR Program, the Hochtief project AICO (AI in
Construction), and the HMWK cluster project 3AI. Finally, we want to thank hessian.AI, and
the Centre Responsible Digitality (ZEVEDI) at TU Darmstadt, as well as DFKI Darmstadt
for their support.

Bibliography
[Am21] Amer-Yahia, Sihem; Koutrika, Georgia; Braschler, Martin; Calvanese, Diego; Lanti, Davide;

Lücke-Tieke, Hendrik; Mosca, Alessandro; de Farias, Tarcisio Mendes; Papadopoulos,
Dimitris; Patil, Yogendra; Rull, Guillem; Smith, Ellery; Skoutas, Dimitrios; Subramanian,
Srividya; Stockinger, Kurt: INODE: Building an End-to-End Data Exploration System in
Practice. SIGMOD Rec., 50(4):23–29, 2021.

[ASP21] Ahmadi, Naser; Sand, Hansjorg; Papotti, Paolo: Unsupervised Matching of Data and Text.
CoRR, abs/2112.08776, 2021.

[BTN15] Bovi, Claudio Delli; Telesca, Luca; Navigli, Roberto: Large-Scale Information Extraction
from Textual Definitions through Deep Syntactic and Semantic Analysis. Trans. Assoc.
Comput. Linguistics, 3:529–543, 2015.

[Ca21] Cattan, Arie; Johnson, Sophie; Weld, Daniel S.; Dagan, Ido; Beltagy, Iz; Downey, Doug;
Hope, Tom: SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts.
In: 3rd Conference on Automated Knowledge Base Construction, AKBC 2021, Virtual,
October 4-8, 2021. 2021.

[CG13] Corro, Luciano Del; Gemulla, Rainer: ClausIE: clause-based open information extraction.
In: 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil,
May 13-17, 2013. International World Wide Web Conferences Steering Committee / ACM,
pp. 355–366, 2013.

[Ch10] Chiticariu, Laura; Krishnamurthy, Rajasekar; Li, Yunyao; Raghavan, Sriram; Reiss,
Frederick; Vaithyanathan, Shivakumar: SystemT: An Algebraic Approach to Declarative
Information Extraction. In: ACL 2010, Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden. The
Association for Computer Linguistics, pp. 128–137, 2010.

[Ch15] Chen, Yukun; Lasko, Thomas A.; Mei, Qiaozhu; Denny, Joshua C.; Xu, Hua: A study of
active learning methods for named entity recognition in clinical text. J. Biomed. Informatics,
58:11–18, 2015.

[CN21] Cabot, Pere-Lluís Huguet; Navigli, Roberto: REBEL: Relation Extraction By End-to-end
Language generation. In: Findings of the Association for Computational Linguistics:
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021.
Association for Computational Linguistics, pp. 2370–2381, 2021.

WannaDB: Ad-hoc SQL Queries over Text Collections 177

22 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

[De19] Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina: BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers). Association for Computational
Linguistics, pp. 4171–4186, 2019.

[Dr10] Dredze, Mark; McNamee, Paul; Rao, Delip; Gerber, Adam; Finin, Tim: Entity Disambigua-
tion for Knowledge Base Population. In: COLING 2010, 23rd International Conference on
Computational Linguistics, Proceedings of the Conference, 23-27 August 2010, Beĳing,
China. Tsinghua University Press, pp. 277–285, 2010.

[DW15] Dutta, Sourav; Weikum, Gerhard: Cross-Document Co-Reference Resolution using Sample-
Based Clustering with Knowledge Enrichment. Trans. Assoc. Comput. Linguistics, 3:15–28,
2015.

[El18] ElSahar, Hady; Vougiouklis, Pavlos; Remaci, Arslen; Gravier, Christophe; Hare,
Jonathon S.; Laforest, Frédérique; Simperl, Elena: T-REx: A Large Scale Alignment
of Natural Language with Knowledge Base Triples. In: Proceedings of the Eleventh
International Conference on Language Resources and Evaluation, LREC 2018, Miyazaki,
Japan, May 7-12, 2018. European Language Resources Association (ELRA), 2018.

[EU21] Eberts, Markus; Ulges, Adrian: An End-to-end Model for Entity-level Relation Extraction
using Multi-instance Learning. In: Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021,
Online, April 19 - 23, 2021. Association for Computational Linguistics, pp. 3650–3660,
2021.

[Fr17] Fries, Jason A.; Wu, Sen; Ratner, Alexander; Ré, Christopher: SwellShark: A Genera-
tive Model for Biomedical Named Entity Recognition without Labeled Data. CoRR,
abs/1704.06360, 2017.

[GS96] Grishman, Ralph; Sundheim, Beth: Message Understanding Conference - 6: A Brief
History. In: 16th International Conference on Computational Linguistics, Proceedings
of the Conference, COLING 1996, Center for Sprogteknologi, Copenhagen, Denmark,
August 5-9, 1996. pp. 466–471, 1996.

[Hä20] Hättasch, Benjamin; Truong-Ngoc, Michael; Schmidt, Andreas; Binnig, Carsten: It’s
AI Match: A Two-Step Approach for Schema Matching Using Embeddings. In: 2nd
International Workshop on Applied AI for Database Systems and Applications (AIDB20).
In conjunction with the 46th International Conference on Very Large Data Bases, Virtual,
August 31 - September 4, 2020. 2020.

[Hä21] Hättasch, Benjamin: WannaDB: Ad-hoc Structured Exploration of Text Collections Using
Queries. In: Proceedings of the Second International Conference on Design of Experimental
Search Information REtrieval Systems, Padova, Italy, September 15-18, 2021. volume
2950 of CEUR Workshop Proceedings. CEUR-WS.org, pp. 179–180, 2021.

[HBB21] Hättasch, Benjamin; Bodensohn, Jan-Micha; Binnig, Carsten: ASET: Ad-hoc Structured
Exploration of Text Collections. In: 3rd International Workshop on Applied AI for Database
Systems and Applications (AIDB21). In conjunction with the 47th International Conference
on Very Large Data Bases, Copenhagen, Denmark, August 16 - 20, 2021. 2021.

178 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 23

[HBB22] Hättasch, Benjamin; Bodensohn, Jan-Micha; Binnig, Carsten: Demonstrating ASET: Ad-
hoc Structured Exploration of Text Collections. In: SIGMOD ’22: International Conference
on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, pp. 2393–2396,
2022.

[He20] Hernández, Daniel Ayala; Hernández, Inma; Ruiz, David; Rahm, Erhard: LEAPME:
Learning-based Property Matching with Embeddings. CoRR, abs/2010.01951, 2020.

[He21] Hendrycks, Dan; Burns, Collin; Kadavath, Saurav; Arora, Akul; Basart, Steven; Tang,
Eric; Song, Dawn; Steinhardt, Jacob: Measuring Mathematical Problem Solving With the
MATH Dataset. In: Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual. 2021.

[Ho20] Honnibal, Matthew; Montani, Ines; Van Landeghem, Sofie; Boyd, Adriane: spaCy:
Industrial-strength Natural Language Processing in Python. 2020.

[KCP18] Kenyon-Dean, Kian; Cheung, Jackie Chi Kit; Precup, Doina: Resolving Event Coreference
with Supervised Representation Learning and Clustering-Oriented Regularization. In:
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics,
*SEM@NAACL-HLT 2018, New Orleans, Louisiana, USA, June 5-6, 2018. Association
for Computational Linguistics, pp. 1–10, 2018.

[Kh17] Kholghi, Mahnoosh; Vine, Lance De; Sitbon, Laurianne; Zuccon, Guido; Nguyen, An-
thony N.: Clinical information extraction using small data: An active learning approach
based on sequence representations and word embeddings. J. Assoc. Inf. Sci. Technol.,
68(11):2543–2556, 2017.

[Ko22] Kovács, Ádám; Gémes, Kinga; Iklódi, Eszter; Recski, Gábor: POTATO: exPlainable
infOrmation exTrAcTion framewOrk. CoRR, abs/2201.13230, 2022.

[Le20a] Lembo, Domenico; Li, Yunyao; Popa, Lucian; Scafoglieri, Federico Maria: Ontology
mediated information extraction in financial domain with Mastro System-T. In: Proceedings
of the Sixth International Workshop on Data Science for Macro-Modeling, DSMM 2020,
In conjunction with the ACM SIGMOD/PODS Conference, Portland, OR, USA, June 14,
2020. ACM, pp. 3:1–3:6, 2020.

[Le20b] Lewis, Mike; Liu, Yinhan; Goyal, Naman; Ghazvininejad, Marjan; Mohamed, Abdelrah-
man; Levy, Omer; Stoyanov, Veselin; Zettlemoyer, Luke: BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.
In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2020, Online, July 5-10, 2020. Association for Computational Linguistics, pp.
7871–7880, 2020.

[LH14] Liu, Zhicheng; Heer, Jeffrey: The Effects of Interactive Latency on Exploratory Visual
Analysis. IEEE Trans. Vis. Comput. Graph., 20(12):2122–2131, 2014.

[Li20] Liang, Chen; Yu, Yue; Jiang, Haoming; Er, Siawpeng; Wang, Ruĳia; Zhao, Tuo; Zhang,
Chao: BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant
Supervision. In: KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August 23-27, 2020. ACM, pp. 1054–1064,
2020.

WannaDB: Ad-hoc SQL Queries over Text Collections 179

24 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban and Carsten Binnig

[Ma14] Manning, Christopher D.; Surdeanu, Mihai; Bauer, John; Finkel, Jenny Rose; Bethard,
Steven; McClosky, David: The Stanford CoreNLP Natural Language Processing Toolkit.
In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, System Demonstrations.
The Association for Computer Linguistics, pp. 55–60, 2014.

[Ma20] Maynez, Joshua; Narayan, Shashi; Bohnet, Bernd; McDonald, Ryan T.: On Faithfulness
and Factuality in Abstractive Summarization. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020.
Association for Computational Linguistics, pp. 1906–1919, 2020.

[Mi18] Mikolov, Tomás; Grave, Edouard; Bojanowski, Piotr; Puhrsch, Christian; Joulin, Armand:
Advances in Pre-Training Distributed Word Representations. In: Proceedings of the
Eleventh International Conference on Language Resources and Evaluation, LREC 2018,
Miyazaki, Japan, May 7-12, 2018. European Language Resources Association (ELRA),
2018.

[Ng17] Nguyen, Dat Ba; Abujabal, Abdalghani; Tran, Khanh; Theobald, Martin; Weikum, Gerhard:
Query-Driven On-The-Fly Knowledge Base Construction. Proc. VLDB Endow., 11(1):66–
79, 2017.

[Ng20] Nguyen, Minh-Tien; Le, Dung Tien; Son, Nguyen Hong; Minh, Bui Cong; Duong, Do
Hoang Thai; Linh, Le Thai: Understanding Transformers for Information Extraction
with Limited Data. In: Proceedings of the 34th Pacific Asia Conference on Language,
Information and Computation, PACLIC 2020, Hanoi, Vietnam, October 24-26, 2020.
Association for Computational Linguistics, pp. 478–487, 2020.

[Qi20] Qi, Peng; Zhang, Yuhao; Zhang, Yuhui; Bolton, Jason; Manning, Christopher D.: Stanza: A
Python Natural Language Processing Toolkit for Many Human Languages. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, ACL 2020, Online, July 5-10, 2020. Association for Computational
Linguistics, pp. 101–108, 2020.

[Re21] Recski, Gábor; Lellmann, Björn; Kovács, Ádám; Hanbury, Allan: Explainable Rule
Extraction via Semantic Graphs. In: Joint Proceedings of the Workshops on Automated
Semantic Analysis of Information in Legal Text (ASAIL 2021) and AI and Intelligent
Assistance for Legal Professionals in the Digital Workplace (LegalAIIA 2021) held online
in conjunction with 18th International Conference on Artificial Intelligence and Law
(ICAIL 2021). volume 2888 of CEUR Workshop Proceedings, CEUR-WS.org, Sao Paolo,
Brazil (held online), pp. 24–35, 2021.

[RG19] Reimers, Nils; Gurevych, Iryna: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-ĲCNLP 2019, Hong Kong, China, November 3-7, 2019. Association
for Computational Linguistics, pp. 3980–3990, 2019.

[RJL18] Rajpurkar, Pranav; Jia, Robin; Liang, Percy: Know What You Don’t Know: Unanswerable
Questions for SQuAD. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2:
Short Papers. Association for Computational Linguistics, pp. 784–789, 2018.

180 Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

WannaDB: Ad-hoc SQL Queries over Text Collections 25

[Sa16] Sa, Christopher De; Ratner, Alexander; Ré, Christopher; Shin, Jaeho; Wang, Feiran; Wu,
Sen; Zhang, Ce: DeepDive: Declarative Knowledge Base Construction. SIGMOD Rec.,
45(1):60–67, 2016.

[Sa22] Sainz, Oscar; Qiu, Haoling; Lopez de Lacalle, Oier; Agirre, Eneko; Min, Bonan: ZS4IE: A
toolkit for Zero-Shot Information Extraction with simple Verbalizations. In: Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies: System Demonstrations. Association for
Computational Linguistics, Hybrid: Seattle, Washington + Online, pp. 27–38, July 2022.

[SJ19] Sharma, Shreyas; Jr., Ron Daniel: BioFLAIR: Pretrained Pooled Contextualized Embed-
dings for Biomedical Sequence Labeling Tasks. CoRR, abs/1908.05760, 2019.

[Sm22] Smith, Ellery; Papadopoulos, Dimitris; Braschler, Martin; Stockinger, Kurt: LILLIE:
Information extraction and database integration using linguistics and learning-based
algorithms. Inf. Syst., 105:101938, 2022.

[We19] Wei, Qiang; Chen, Yukun; Salimi, Mandana; Denny, Joshua C.; Mei, Qiaozhu; Lasko,
Thomas A.; Chen, Qingxia; Wu, Stephen; Franklin, Amy; Cohen, Trevor; Xu, Hua:
Cost-aware active learning for named entity recognition in clinical text. J. Am. Medical
Informatics Assoc., 26(11):1314–1322, 2019.

[Wo19] Wolf, Thomas; Debut, Lysandre; Sanh, Victor; Chaumond, Julien; Delangue, Clement;
Moi, Anthony; Cistac, Pierric; Rault, Tim; Louf, R’emi; Funtowicz, Morgan; Brew,
Jamie: HuggingFace’s Transformers: State-of-the-art Natural Language Processing. ArXiv,
abs/1910.03771, 2019.

[WZL22] Wu, Xueqing; Zhang, Jiacheng; Li, Hang: Text-to-Table: A New Way of Information
Extraction. In: Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022.
Association for Computational Linguistics, pp. 2518–2533, 2022.

WannaDB: Ad-hoc SQL Queries over Text Collections 181

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

NN2SQL: Let SQL Think for Neural Networks

Maximilian E. Schüle1, Alfons Kemper2, Thomas Neumann3

Abstract: Although database systems perform well in data access and manipulation, their relational
model hinders data scientists from formulating machine learning algorithms in SQL. Nevertheless,
we argue that modern database systems perform well for machine learning algorithms expressed in
relational algebra. To overcome the barrier of the relational model, this paper shows how to transform
data into a relational representation for training neural networks in SQL: We first describe building
blocks for data transformation in SQL. Then, we compare an implementation for model training using
array data types to the one using a relational representation in SQL-92 only. The evaluation proves
the suitability of modern database systems for matrix algebra, although specialised array data types
perform better than matrices in relational representation.

Keywords: SQL-92, Neural Networks, Automatic Differentiation

1 Introduction

Modern database systems generate code to achieve a nearly hard-coded performance. In
pipelined processing, code-generation eliminates interpreted function calls, so that the
generated machine code processes data in-place of CPU registers. Together with modern
hardware trends leading to a performance increase of database servers, code-generation
allows database systems to take over more complex computations. One example for complex
computations is the emergence of machine learning [Bu22] to solve several tasks such
as image classification or even replacing database system’s components [He22; MD22].
These tasks rarely happen within database systems but in external tools [Re22; WP22]
requiring the data to be extracted from database systems [Na22]. Thus, current research
mostly focuses on eliminating the extraction process [Bu20; Ma15; Sc21a; SK22; WGR20]
and developing systems that combine data management and machine learning [Ra18]. In
contrast, in this paper, we argue that code generation allows database systems to perform
well for machine learning when training neural networks [WH21] based on matrix algebra
in SQL only [MAF21; OVZ22; Sa22; Sc19; Sc21d].

In a previous study, we stated that training neural networks in SQL is possible as long as the
database system provides an array data type and recursive tables for gradient descent [Sc21c].
However, the use of an array as a nested data type interferes with the first normal form
(referring to the definition of arrays as a non-atomic data type) and requires copying the data
1 University of Bamberg, An der Weberei 5, 96047 Bamberg, maximilian.schuele@uni-bamberg.de
2 TUM, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching, kemper@in.tum.de
3 TUM, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching, neumann@in.tum.de

cba doi:10.18420/BTW2023-09

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 183

mailto:maximilian.schuele@uni-bamberg.de
mailto:kemper@in.tum.de
mailto:neumann@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-09

12 M. Schüle, A. Kemper, T. Neumann

©«
𝑎1,1 · · · 𝑎1,𝑛
.
.
.

. . .
.
.
.

𝑎𝑚,1 · · · 𝑎𝑚,𝑛

ª®®®¬ i j value
1 1 𝑎1,1
.

1 n 𝑎1,𝑛
.

m 1 𝑎𝑚,1
.

m n 𝑎𝑚,𝑛

rowno. col1 . . . coln
1 𝑎1,1 . . . 𝑎1,𝑛
.

m 𝑎𝑚,1 . . . 𝑎𝑚,𝑛

Relational
Representation

Tabular
Representation

Fig. 1: Tabular and relational representation of matrices in database systems: the latter is used in this
study for representing the weights and training neural networks.

between operations. Instead, to process data in-place of CPU registers, we suggested an array
backend for code-generating database systems [Sc21b], which stores matrices in a relational
representation (cf. Figure 1). This representation stores arrays in normal formwith the indices
and the elements as table attributes [Sc22]. In a vision paper, Blacher et al. [Bl22] combined
our both approaches to show that recursive CTEs (common table expressions) [DMG22]
can deal with matrices in relational representation as input. Nevertheless, their study was
limited to logistic regression using matrix algebra and no study has benchmarked training
neural networks in SQL without further extensions such as arrays before.

In this paper, we even argue that the relational representation allows database systems
to efficiently process the computations along with neural networks. Therefore, this paper
uses the relational representation of matrices to train neural networks. We first describe
the mathematical background for reverse mode automatic differentiation that is needed to
understand the individual matrix operations. We then discuss the intuitive implementation
in Python and deduce an implementation in SQL using the relational representation. This
includes building blocks for data transformation using one-hot-encoding, matrix/Hadamard
product and recursive tables to imitate procedural loops. The evaluation compares the
relational representation to the use of array data types within the Umbra database system.
An implementation in Python provides the baseline, whose runtime is compared with regard
to the batch size and the size of the hidden layer. We conclude with an outlook on optimising
recursive tables for this context and on automatically generating the proposed queries.

2 Machine Learning in SQL

This section first describes the theoretical background for training neural networks and
names the variables, which are later used to name the CTEs. Each variable represents one
cached expression computed in the forward pass on function evaluation or in the backward
pass on deriving the weight matrices. To discuss the derivation rules, we exemplary choose
a neural network with one hidden layer. Although this limits the number of hidden layers,
the derivation rules can be applied similarly to deep neural networks with further weight

184 Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

NN2SQL 13

Algorithm 1 Automatic Differentiation (Matrices)
1: function derive(𝑍, 𝑠𝑒𝑒𝑑)
2: if 𝑍 = 𝑋 + 𝑌 then derive(𝑋 ,𝑠𝑒𝑒𝑑); derive(𝑌 ,𝑠𝑒𝑒𝑑)
3: else if 𝑍 = 𝑋 ◦ 𝑌 then derive(𝑋 ,𝑠𝑒𝑒𝑑 ◦ 𝑌); derive(𝑌 ,𝑠𝑒𝑒𝑑 ◦ 𝑋)
4: else if 𝑍 = 𝑋 · 𝑌 then derive(𝑋 ,𝑠𝑒𝑒𝑑 · 𝑌𝑇); derive(𝑌 ,𝑠𝑒𝑒𝑑𝑇 · 𝑋)
5: else if 𝑍 = 𝑓 (𝑋) then derive(𝑋 ,𝑠𝑒𝑒𝑑 ◦ 𝑓 ′(𝑋))
6: else 𝜕

𝜕𝑍
← 𝜕

𝜕𝑍
+ 𝑠𝑒𝑒𝑑

7: end if
8: end function

matrices in-between. Thus, the limitation keeps the example short enough to present the
implementations in SQL.

2.1 Theoretical Background

Neural networks consist of subsequently applied matrix multiplications each followed by
an activation function. They transform an input vector 𝑥 with 𝑚 attributes into a vector
of probabilities for 𝑙 categories. With one hidden layer of size ℎ, we gain two weights
matrices 𝑤𝑥ℎ ∈ R𝑚×ℎ and 𝑤ℎ𝑜 ∈ Rℎ×𝑙 . The first one computes the vector 𝑎𝑥ℎ ∈ Rℎ for the
hidden layer, the second one the result vector 𝑎ℎ𝑜 ∈ R𝑙 . Each activation function returns a
normalised value (e.g. 𝑠𝑖𝑔(𝑥) ∈ [0, 1], Equation 1) that is interpreted as the probability per
category. The result vector is compared to the one-hot-encoded categorical label (𝑦𝑜𝑛𝑒𝑠).
The difference is elementwisely taken to the power of two (�◦2), which is called mean
squared error, a common loss function (Equation 3).

𝑠𝑖𝑔(𝑥) = (1 + 𝑒−𝑥)−1, (1)

𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) = 𝑠𝑖𝑔(

𝑎𝑥ℎ︷ ︸︸ ︷
𝑠𝑖𝑔(𝑥 · 𝑤𝑥ℎ) ·𝑤ℎ𝑜)︸ ︷︷ ︸

𝑎ℎ𝑜

, (2)

𝑙 (𝑥, 𝑦𝑜𝑛𝑒𝑠) = (𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) − 𝑦𝑜𝑛𝑒𝑠)◦2. (3)

After computing the loss, reverse mode automatic differentiation computes the derivatives
per weight matrix in one pass. This mode derives a function 𝑓 (𝑔(𝑙)) by decomposing and
partially deriving its parts in top-down order: 𝜕 𝑓 (𝑔 (𝑙))

𝜕𝑙
=

𝜕 𝑓

𝜕𝑔
· 𝜕𝑔

𝜕𝑙
. Alg. 1 shows reverse

mode automatic differentiation for matrices [Mu17]: The function DERIVE takes as input an
arithmetic expression 𝑍 and a seed value 𝑠𝑒𝑒𝑑 (the parent partial derivation). The algorithm
follows pattern matching on the arithmetic expression 𝑍 to compute and further propagate
the partial derivatives until arriving at a leaf node.

By step-wise applying the derivation rules, we obtain the expression tree shown in Fig-
ure 2. The derivative of mean squared error calculates the difference between propagated

NN2SQL: Let SQL Think for Neural Networks 185

14 M. Schüle, A. Kemper, T. Neumann

probabilities and the one-hot-encoded labels (Equation 4). This value gets propagated as
initial seed value. Each seed value is elementwise multiplied to each partial derivation, so
either the derivation of each activation function (Equation 5, 7) or the matrix multiplication
(Equation 6). Finally, the derivation of each weight matrix times the learning rate 𝛾 is
subtracted from the weight matrix to form the updated weights (Equation 8, 9).

𝑙ℎ𝑜 = 2 · (𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) − 𝑦𝑜𝑛𝑒𝑠), (4)

𝛿ℎ𝑜 = 𝑙ℎ𝑜 ◦ 𝑠𝑖𝑔′(𝑎ℎ𝑜) = 𝑙ℎ𝑜 ◦ 𝑎ℎ𝑜 ◦ (1 − 𝑎ℎ𝑜), (5)

𝑙𝑥ℎ = 𝛿ℎ𝑜 · 𝑤𝑇
ℎ𝑜, (6)

𝛿𝑥ℎ = 𝑙𝑥ℎ ◦ 𝑠𝑖𝑔′(𝑎𝑥ℎ) = 𝑙𝑥ℎ ◦ 𝑎𝑥ℎ ◦ (1 − 𝑎𝑥ℎ), (7)

𝑤′ℎ𝑜 = 𝑤ℎ𝑜 − 𝛾 · 𝑎𝑇𝑥ℎ · 𝛿ℎ𝑜, (8)

𝑤′𝑥ℎ = 𝑤𝑥ℎ − 𝛾 · 𝑥𝑇 · 𝛿𝑥ℎ . (9)

(𝑠𝑖𝑔(𝑠𝑖𝑔(𝑥 · 𝑤𝑥ℎ) · 𝑤ℎ𝑜) − 𝑦𝑜𝑛𝑒𝑠)◦2

�◦�

− 2

𝑠𝑖𝑔 𝑦𝑜𝑛𝑒𝑠

·

𝑤ℎ𝑜𝑠𝑖𝑔

·

𝑤𝑥ℎ𝑥

𝑎ℎ𝑜

𝑎𝑥ℎ

𝑙ℎ𝑜

𝑙ℎ𝑜

𝛿ℎ𝑜

𝑎𝑇
𝑥ℎ

𝛿ℎ𝑜𝑙𝑥ℎ

𝛿𝑥ℎ

𝑥𝑇 · 𝛿𝑥ℎ

Fig. 2: Automatic differentiation for (𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) − 𝑦𝑜𝑛𝑒𝑠)◦2.

2.2 Implementation in Python and SQL-92

Having defined the equations for training a neural network, we can deduce a Python
implementation (List. 1) that uses NumPy for data loading (line 3), transformation (lines 4-8)
and generating randomised weights (lines 10-12). Afterwards, a procedural loop (line 14)
performs gradient descent that updates the weights according to the derivation rules in each
iteration (lines 15-24). So each variable represents one equation needed to backpropagate
the loss.

In order to update the weight matrices of neural networks in SQL, we need to map
matrix multiplication (𝑋 · 𝑌), function application (𝑓 (𝑋)) and elementwise operations

186 Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

NN2SQL 15

(addition: 𝑋 + 𝑌 , Hadamard multiplication 𝑋 ◦ 𝑌) to the relational representation in SQL.
For binary elementwise operations such as Hadamard multiplication or addition/subtraction,
a join on the indices combines both tables so that the arithmetic operation is part of the
select-clause. Multiplication of two matrices 𝑚 ∈ R𝑚×𝑜 and 𝑛 ∈ R𝑜×𝑛 with equal inner
dimensions is defined as the sum of the product over 𝑜 row/column elements for each
entry (𝑚 · 𝑛)𝑖 𝑗 =

∑𝑜
𝑘=1 𝑚𝑖𝑘𝑛𝑘 𝑗 . In relational algebra, this means a join on the inner index,

followed by a summation: 𝛾𝑚.𝑖,𝑛. 𝑗,𝑠𝑢𝑚(𝑚.𝑣 ·𝑛.𝑣) (𝑚 ⊲⊳𝑚. 𝑗=𝑛.𝑖 𝑛). To transpose a matrix in
relational representation, only the indices have to be renamed. The corresponding SQL
building blocks are shown in List. 3 with their NumPy counterparts in List. 2.
1 import numpy as np

2 # load data

3 arr = np.loadtxt("iris.csv", delimiter=",", dtype=float,skiprows=1)
4 X = arr[:,0:4]/10

5 y = arr[:,4].astype(int)
6 # one-hot-encode y

7 y_oh = np.zeros((y.size, y.max()+1))
8 y_oh[np.arange(y.size),y] = 1 # one-hot-encode: set one

9 # initialise weights

10 np.random.seed(1)

11 w_xh = 2*np.random.random((X[0].size,20)) - 1 # size: 4*20

12 w_ho = 2*np.random.random((20,3)) - 1 # size: 20*3

13 # train

14 for j in range(10):
15 print("Iteration: " + str(j))
16 a_xh = 1/(1+np.exp(-np.dot(X,w_xh))) # sigmoid(x*w_xh)

17 a_ho = 1/(1+np.exp(-np.dot(a_xh,w_ho))) # sigmoid(a_xh*w_ho)

18 l_ho = 2*(a_ho - y_oh)

19 print("Loss: " + str(np.mean(np.abs(l_ho))))
20 d_ho = l_ho * a_ho * (1-a_ho)

21 l_xh = d_ho.dot(w_ho.T)

22 d_xh = l_xh * a_xh * (1-a_xh)

23 w_ho -= 0.01 * a_xh.T.dot(d_ho)

24 w_xh -= 0.01 * X.T.dot(d_xh)

List. 1: Training a neural network with NumPy.

1 m.dot(n) # matrix multiplication

2 m * n # hadamard multiplication

3 1/(1+np.exp(-m)) # sigmoid function

4 m.T # transpose

List. 2: Building blocks for matrices in NumPy.

1 -- create two matrices m and n

2 create table m (i int, j int, v float); create table n (i int, j int, v float);
3 insert into m ...

4 -- matrix multiplication

5 select m.i, n.j, SUM(m.v*n.v)) from m inner join n on m.j=n.i group by m.i, n.j

6 -- hadamard multiplication

7 select m.i, m.j, m.v*n.v from m inner join n on m.i=n.i and m.j=n.j

8 -- sigmoid function

9 select i, j, 1/(1+exp(-v)) from m;

10 -- transpose

11 select i as j, j as i, v from m;

List. 3: Building blocks for matrices in SQL-92.

NN2SQL: Let SQL Think for Neural Networks 187

16 M. Schüle, A. Kemper, T. Neumann

i j v
1 1 1
1 2 0
1 3 0
.

150 3 1

i j v
1 1 5.1
1 2 3.5
1 3 1.4
1 4 0.2
.

row sepal length s. width petal length p. width species
1 5.1 3.5 1.4 0.2 0
.

.

.

150 5.9 3.0 5.1 1.8 2

Feature Matrix
One-Hot-Encoded

Fig. 3: Transformation of the original data set into the relational representation.

To train the neural network in SQL, we first have to convert the data into the relational
representation (List. 4). Therefore, we create a table of two indices and a value corresponding
to the two-dimensional feature matrix (img: {[𝑖, 𝑗 , 𝑣]}, line 3). We assign a column index 𝑗

to each attribute of the original input table (lines 5-8) and use the row number as index 𝑖.
Afterwards, we one-hot-encode the label: We generate a sparse matrix containing only the
one values (line 11) and a matrix shape—defined by all indices within the dimensions—out
of null values (lines 12-14). Then, an outer join (lines 11/15) combines both tables and
assigns zero to missing values (coalesce: line 10).
1 create table if not exists iris (id serial, sepal_length float, sepal_width float, petal_length float,

petal_width float, species int);
2 copy iris from './iris.csv' delimiter ',' HEADER CSV;

3 create table if not exists img (i int, j int, v float);
4 create table if not exists one_hot(i int, j int, v int);
5 insert into img (select id,1,sepal_length/10 from iris);

6 insert into img (select id,2,sepal_width/10 from iris);

7 insert into img (select id,3,petal_length/10 from iris);

8 insert into img (select id,4,petal_width/10 from iris);

9 insert into one_hot(

10 select n.i, n.j, coalesce(i.v,0), i.v

11 from (select id,species+1 as species,1 as v from iris) i right outer join
12 (select a.a as i, b.b as j from
13 (select generate_series as a from generate_series(1,select count(*) from iris)) a,

14 (select generate_series as b from generate_series(1,4)) b

15) n on n.i=i.id and n.j=i.species order by i,j);

List. 4: Data transformation: Feature matrix img and one-hot-encoded label one_hot.

After having transformed the data, we can create and initialise the weights again in relational
representation. Using generate_series according to the matrix dimensions together with
random, we initialise all required weights matrices.
1 create table if not exists w_xh (i int, j int, v float);
2 create table if not exists w_ho (i int, j int, v float);
3 insert into w_xh (select i.*,j.*,random()*2-1 from generate_series(1,4) i, generate_series(1,20) j);

4 insert into w_ho (select i.*,j.*,random()*2-1 from generate_series(1,20) i, generate_series(1,3) j);

List. 5: Create and initialise weights in SQL-92.

The feature matrix in relational representation forms the input for training the neural
network within a recursive CTE (List. 6) that computes the weights per iteration of gradient

188 Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

NN2SQL 17

descent. As we need to compute all weights within the recursive CTE, a unique number (id)
identifies each weight matrix. Thus a union of all weight matrices forms the base case for
the recursion. Within the recursive step, nested CTEs help to evaluate the model (lines 6-15),
to backpropagate the loss (lines 16-29) and to compute the derivative per weight matrix
(lines 30-37). The first CTE w_now—just referring to the original weights—is necessary, as
PostgreSQL only allows one reference to the recursive table. Each following CTE computes
one matrix operation, so either a matrix or a Hadamard multiplication, whose CTE name
refers to the variable name (cf. Section 2.1). Finally, the weights were updated by subtracting
their derivatives (lines 39-41).
1 with recursive w (iter,id,i,j,v) as (

2 (select 0,0,* from w_xh union select 0,1,* from w_ho)

3 union all
4 (with w_now as (-- recursive reference only allowed once in PSQL

5 select * from w

6), a_xh(i,j,v) as (-- sig(img * w_xh)

7 select m.i, n.j, 1/(1+exp(-SUM (m.v*n.v)))

8 from img as m inner join w_now as n on m.j=n.i

9 where n.id=0 and n.iter=(select max(iter) from w_now) -- w_xh

10 group by m.i, n.j

11), a_ho(i,j,v) as (-- sig(a_xh * w_ho)

12 select m.i, n.j, 1/(1+exp(-SUM (m.v*n.v)))

13 from a_xh as m inner join w_now as n on m.j=n.i

14 where n.id=1 and n.iter=(select max(iter) from w_now) -- w_ho

15 group by m.i, n.j

16), l_ho(i,j,v) as (-- 2 * (a_ho-y_ones)

17 select m.i, m.j, 2*(m.v-n.v)

18 from a_ho as m inner join one_hot as n on m.i=n.i and m.j=n.j

19), d_ho(i,j,v) as (-- l_ho ° a_ho ° (1-a_ho)

20 select m.i, m.j, m.v*n.v*(1-n.v)

21 from l_ho as m inner join a_ho as n on m.i=n.i and m.j=n.j

22), l_xh(i,j,v) as (-- d_ho * w_hoˆ T

23 select m.i, n.i as j, SUM (m.v*n.v)

24 from d_ho as m inner join w_now as n on m.j=n.j

25 where n.id=1 and n.iter=(select max(iter) from w_now) -- w_ho

26 group by m.i, n.i

27), d_xh(i,j,v) as (-- l_xh ° a_xh ° (1-a_ho)

28 select m.i, m.j, m.v*n.v*(1-n.v)

29 from l_xh as m inner join a_xh as n on m.i=n.i and m.j=n.j

30), d_w(id,i,j,v) as (

31 select 0, m.j as i, n.j, SUM (m.v*n.v)

32 from img as m inner join d_xh as n on m.i=n.i

33 group by m.j, n.j

34 union
35 select 1, m.j as i, n.j, SUM (m.v*n.v)

36 from a_xh as m inner join d_ho as n on m.i=n.i

37 group by m.j, n.j

38)

39 select iter+1, w.id, w.i, w.j, w.v - 0.01 * d_w.v

40 from w_now as w, d_w

41 where iter < 20 and w.id=d_w.id and w.i=d_w.i and w.j=d_w.j

42)

43)

44 select * from w;

List. 6: Training a neural network in SQL-92.

NN2SQL: Let SQL Think for Neural Networks 189

18 M. Schüle, A. Kemper, T. Neumann

In order to predict the accuracy of the trained weights, an SQL query measures the number
of correctly classified labels (List. 7). Evaluating the model (lines 3-9) returns a vector of
probabilities per tuple and category. The SQL query ranks the predicted probabilities per
tuple (line 2) and the one-hot-encoded vector of the original labels (line 11) to compare
whether the index of the highest probability matches the index of the one value (line 14).
Although window functions were used for the ranking, they could be replaced by an anti-join
using not exists to conform SQL-92.
1 select iter, count(*)::float/(select count(distinct i) from one_hot)

2 from (select *, rank() over (partition by m.i,iter order by v desc)
3 from (select m.i, n.j, 1/(1+exp(-sum (m.v*n.v))) as v, m.iter

4 from (select m.i, n.j, 1/(1+exp(-sum (m.v*n.v))) as v, iter

5 from img AS m inner join w as n on m.j=n.i

6 where n.id=0

7 group by m.i, n.j, iter) AS m inner join w as n on m.j=n.i

8 where n.id=1 and n.iter=m.iter

9 group by m.i, n.j, m.iter

10) m) pred,

11 (select *, rank() over (partition by m.i order by v desc) from one_hot m) test

12 where pred.i=test.i and pred.rank = 1 and test.rank=1

13 group by iter, pred.j=test.j

14 having (pred.j=test.j)=true
15 order by iter

List. 7: Prediction in SQL:2003 (with window functions).

3 Evaluation

System: Ubuntu 22.04 LTS, 20 Intel Xeon E5-2660 v2 CPU with hyper-threading, running
at 2.20 GHz with 256 GB DDR4 RAM.

We compare the performance of the relational representation for matrices (SQL-92, List. 6)
to their representation as an array data type [Sc21c] (SQL + Arrays). We apply both
representations for use within neural networks in SQL and let the benchmarks4 run in
Umbra [NF20] and PostgreSQL (PSQL) 14.5 [SR86] as target engines. The implementation
with NumPy (List. 1) serves as the baseline. We use two different data sets: Fisher’s Iris
flower data [Fi36] (four attributes, one label) and the MNIST data [CMS12] for image
classification (ten categories, 784 pixels).

3.1 Scaling the Number of Input Tuples

Figure 4 shows the first benchmark on the Iris data set. As we are interested in the
performance numbers and not in the model quality, we replicate the Iris flower data set
for the first benchmark to enable a flexible input size. A neural network with one hidden

4 https://gitlab.db.in.tum.de/MaxEmanuel/nn2sql

190 Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

https://gitlab.db.in.tum.de/MaxEmanuel/nn2sql

NN2SQL 19

20 50

10
100

1000

300 500 1000 300 500 1000

0.01
0.10
1.00

10.00
100.00

0.1
1.0

10.0
100.0

1,000.0

10

1,000

100,000

Tuples

Ex
ec

ut
io

n
Ti

m
e

[s
]

NumPy PSQL: SQL-92 Umbra: SQL + Arrays Umbra: SQL-92

Fig. 4: Runtime for training a neural network with one hidden layer (size 20/50, 10/100/1000 iteration).

20 200

30 100 300 1000 30 100 300 1000
0.1

1.0

10.0

100.0

0.1

1.0

10.0

Batch Size

Ex
ec

ut
io

n
Ti

m
e

[s
]

NumPy Umbra: SQL + Arrays Umbra: SQL-92

Fig. 5: Runtime for training one epoch with the MNIST data set with increasing batch size (one hidden
layer size 20/200).

NN2SQL: Let SQL Think for Neural Networks 191

20 M. Schüle, A. Kemper, T. Neumann

layer is trained to classify the flower category. We vary the size of the training data set, the
number of iterations and the size of the hidden layer. Although the NumPy implementation
outperforms both SQL variants, the performance increase of Umbra with its in-memory
performance in comparison to PostgreSQL is visible. With only four attributes, the overhead
for array operations dominates, so the relational representation performs better than the
array data type for larger input data. Both SQL variants perform better with an increasing
number of tuples per iteration. A small number of input tuples corresponds to a small
batch size, leading to a small number of tuples used during one recursive step. This thwarts
database systems as they excel in batched processing.

3.2 Image Classification

The second benchmark simulates image classification based on the MNIST data set using
a neural network with one hidden layer. We measure the runtime for training one epoch
depending on the batch size. As we can see in Figure 5, database systems perform better the
bigger the batch size is. With a larger batch size, the runtime of the SQL implementations
approximates the one of the baseline implementation. As the MNIST data set contains
more attributes than the latter, the cost for aggregation into arrays is amortised and the
SQL array data type outperforms the relational representation. To conclude, in-memory
database systems are able to carry out matrix operations as required for neural networks.
Nevertheless, use-case-specific optimisations are needed to support smaller batch sizes.

4 Conclusion

This paper has discussed and benchmarked building blocks for training neural networks
in SQL. In order to deduce the necessary SQL queries that represent matrix algebra
for evaluating and training neural networks, we first discussed reverse mode automatic
differentiation to reuse partial derivations. The partial derivations formed the foundation for
nested CTEs. They were cached within a recursive CTE when deriving the weight matrices
to compute the optimal weights. In the evaluation, in-memory enhanced database systems,
i.e. Umbra, showed comparable performance to state-of-the-art libraries used in machine
learning, i.e. NumPy in Python, when training with larger batch sizes only.

Future research is required on optimising recursive CTEs for this use case and on automati-
cally generating the presented queries. As we are using recursion to imitate a procedural
loop, the recursive CTE grows with each iteration. Therefore, the memory consumption
increases per iteration, which restricts the number of iterations and the model size. To
overcome the restrictions, database optimisers should either detect subsequent selections to
eliminate intermediate results within the CTE or output intermediate results to free memory.
Assuming these optimisations, one can use the presented queries to train more complex
models with more weight variables.

192 Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

NN2SQL 21

References

[Bl22] Blacher, M.; Giesen, J.; Laue, S.; Klaus, J.; Leis, V.: Machine Learning, Linear
Algebra, and More: Is SQL All You Need? In: CIDR. www.cidrdb.org, 2022.

[Bu20] Butterstein, D.;Martin, D.; Stolze, K.; Beier, F.; Zhong, J.;Wang, L.: Replication
at the Speed of Change - a Fast, Scalable Replication Solution for Near Real-
Time HTAP Processing. Proc. VLDB Endow. 13/12, pp. 3245–3257, 2020.

[Bu22] Budach, L.; Feuerpfeil, M.; Ihde, N.; Nathansen, A.; Noack, N. S.; Patzlaff, H.;
Harmouch, H.; Naumann, F.: The Effects of Data Quality on ML-Model
Performance. CoRR abs/2207.14529/, 2022.

[CMS12] Ciresan, D. C.; Meier, U.; Schmidhuber, J.: Multi-column deep neural networks
for image classification. In: CVPR. IEEE Computer Society, pp. 3642–3649,
2012.

[DMG22] Dietrich, B.; Müller, T.; Grust, T.: Data provenance for recursive SQL queries.
In: TaPP. ACM, 9:1–9:8, 2022.

[Fi36] Fisher, R. A.: The use of multiple measurements in taxonomic problems. Annals
of eugenics 7/2, pp. 179–188, 1936.

[He22] Heinrich, R.; Luthra, M.; Kornmayer, H.; Binnig, C.: Zero-shot cost models
for distributed stream processing. In: DEBS. ACM, pp. 85–90, 2022.

[Ma15] May, N.; Lehner, W.; P., S. H.; Maheshwari, N.; Müller, C.; Chowdhuri, S.;
Goel, A.K.: SAP HANA - From Relational OLAP Database to Big Data
Infrastructure. In: EDBT. OpenProceedings.org, pp. 581–592, 2015.

[MAF21] Miedema, D.; Aivaloglou, E.; Fletcher, G.: Identifying SQL Misconceptions of
Novices: Findings from a Think-Aloud Study. In: ICER. ACM, pp. 355–367,
2021.

[MD22] Maltry, M.; Dittrich, J.: A Critical Analysis of Recursive Model Indexes. Proc.
VLDB Endow. 15/5, pp. 1079–1091, 2022.

[Mu17] Murray, I.: Machine Learning and Pattern Recognition (MLPR): Backpropa-
gation of Derivatives, 2017, url: https://www.inf.ed.ac.uk/teaching/
courses/mlpr/2017/notes/w5a_backprop.pdf, visited on: 09/02/2021.

[Na22] Nath, R. P. D.; Romero, O.; Pedersen, T. B.; Hose, K.: High-level ETL for
semantic data warehouses. Semantic Web 13/1, pp. 85–132, 2022.

[NF20] Neumann, T.; Freitag, M. J.: Umbra: A Disk-Based System with In-Memory
Performance. In: CIDR. www.cidrdb.org, 2020.

[OVZ22] Olteanu, D.; Vortmeier, N.; Zivanovic, D.: Givens QR Decomposition over
Relational Databases. In: SIGMOD Conference. ACM, pp. 1948–1961, 2022.

[Ra18] Raasveldt, M.; Holanda, P.; Mühleisen, H.; Manegold, S.: Deep Integration
of Machine Learning Into Column Stores. In: EDBT. OpenProceedings.org,
pp. 473–476, 2018.

NN2SQL: Let SQL Think for Neural Networks 193

https://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/notes/w5a_backprop.pdf
https://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/notes/w5a_backprop.pdf

22 M. Schüle, A. Kemper, T. Neumann

[Re22] Renz-Wieland, A.; Gemulla, R.; Kaoudi, Z.; Markl, V.: NuPS: A Parame-
ter Server for Machine Learning with Non-Uniform Parameter Access. In:
SIGMOD Conference. ACM, pp. 481–495, 2022.

[Sa22] Salimzadeh, S.; Gadiraju, U.; Hauff, C.; van Deursen, A.: Exploring the
Feasibility of Crowd-Powered Decomposition of Complex User Questions in
Text-to-SQL Tasks. In: HT. ACM, pp. 154–165, 2022.

[Sc19] Schüle, M. E.; Passing, L.; Kemper, A.; Neumann, T.: Ja-(zu-)SQL: Evaluation
einer SQL-Skriptsprache für Hauptspeicherdatenbanksysteme. In: BTW. Vol. P-
289. LNI, Gesellschaft für Informatik, Bonn, pp. 107–126, 2019.

[Sc21a] Schuhknecht, F.M.; Priesterroth, A.; Henneberg, J.; Salkhordeh, R.: AnyOLAP:
Analytical Processing of Arbitrary Data-Intensive Applications without ETL.
Proc. VLDB Endow. 14/12, pp. 2823–2826, 2021.

[Sc21b] Schüle, M. E.; Götz, T.; Kemper, A.; Neumann, T.: ArrayQL for Linear Algebra
within Umbra. In: SSDBM. ACM, pp. 193–196, 2021.

[Sc21c] Schüle, M. E.; Lang, H.; Springer, M.; Kemper, A.; Neumann, T.; Günne-
mann, S.: In-Database Machine Learning with SQL on GPUs. In: SSDBM.
ACM, pp. 25–36, 2021.

[Sc21d] Schüle, M. E.; Schmeißer, J.; Blum, T.; Kemper, A.; Neumann, T.: TardisDB:
Extending SQL to Support Versioning. In: SIGMOD Conference. ACM,
pp. 2775–2778, 2021.

[Sc22] Schüle, M. E.; Götz, T.; Kemper, A.; Neumann, T.: ArrayQL Integration into
Code-Generating Database Systems. In: EDBT. OpenProceedings.org, 1:40–
1:51, 2022.

[SK22] Störl, U.; Klettke, M.: Darwin: A Data Platform for Schema Evolution Man-
agement and Data Migration. In: EDBT/ICDT Workshops. Vol. 3135. CEUR
Workshop Proceedings, CEUR-WS.org, 2022.

[SR86] Stonebraker,M.; Rowe, L. A.: TheDesign of Postgres. In: SIGMODConference.
ACM Press, pp. 340–355, 1986.

[WGR20] Wingerath, W.; Gessert, F.; Ritter, N.: InvaliDB: Scalable Push-Based Real-
Time Queries on Top of Pull-Based Databases (Extended). Proc. VLDB Endow.
13/12, pp. 3032–3045, 2020.

[WH21] Wiese, L.; Höltje, D.: NNCompare: a framework for dataset selection, data
augmentation and comparison of different neural networks for medical image
analysis. In: DEEM@SIGMOD. ACM, 6:1–6:7, 2021.

[WP22] Wenig, P.; Papenbrock, T.: DataGossip: A Data Exchange Extension for
Distributed Machine Learning Algorithms. In: EDBT. OpenProceedings.org,
2:373–2:377, 2022.

194 Maximilian E. Schüle, Alfons Kemper, Thomas Neumann

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft fÃ¼r Informatik, Bonn 2023 1

On the State of German (Abstractive) Text Summarization

Dennis Aumiller1, Jing Fan2, Michael Gertz3

Abstract: With recent advancements in the area of Natural Language Processing, the focus is slowly
shifting from a purely English-centric view towards more language-specific solutions, including
German. Especially practical for businesses to analyze their growing amount of textual data are
text summarization systems, which transform long input documents into compressed and more
digestible summary texts. In this work, we assess the particular landscape of German abstractive
text summarization and investigate the reasons why practically useful solutions for abstractive text
summarization are still absent in industry.
Our focus is two-fold, analyzing a) training resources, and b) publicly available summarization systems.
We are able to show that popular existing datasets exhibit crucial flaws in their assumptions about
the original sources, which frequently leads to detrimental effects on system generalization and
evaluation biases. We confirm that for the most popular training dataset, MLSUM, over 50% of the
training set is unsuitable for abstractive summarization purposes. Furthermore, available systems
frequently fail to compare to simple baselines, and ignore more effective and efficient extractive
summarization approaches. We attribute poor evaluation quality to a variety of different factors, which
are investigated in more detail in this work: A lack of qualitative (and diverse) gold data considered for
training, understudied (and untreated) positional biases in some of the existing datasets, and the lack
of easily accessible and streamlined pre-processing strategies or analysis tools. We therefore provide a
comprehensive assessment of available models on the cleaned versions of datasets, and find that this
can lead to a reduction of more than 20 ROUGE-1 points during evaluation. As a cautious reminder
for future work, we also highlight the problems of solely relying on =-gram based scoring methods
by presenting particularly problematic failure cases. The code for dataset filtering and reproducing
results can be found online: https://github.com/dennlinger/summaries

Keywords: Abstractive Text Summarization; Natural Language Generation; German; Evaluation

1 Introduction

Libraries simplifying the access to pre-trained neural models have greatly pushed the recent
advancement of state-of-the-art performance in many tasks [Wo20]. However, with the
general absence of non-English resources, one of the prevalent challenges in the Natural
Language Processing (NLP) community is the extension of approaches to other languages
beyond English. Subsequently, evaluation quality and consistency is even harder to maintain
1 Heidelberg University, Institute of Computer Science, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

aumiller@informatik.uni-heidelberg.de
2 Heidelberg University, Institute of Computer Science, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

j.fan@stud.uni-heidelberg.de
3 Heidelberg University, Institute of Computer Science, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

gertz@informatik.uni-heidelberg.de

cba doi:10.18420/BTW2023-10

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 195

https://github.com/dennlinger/summaries
mailto:aumiller@informatik.uni-heidelberg.de
mailto:j.fan@stud.uni-heidelberg.de
mailto:gertz@informatik.uni-heidelberg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-10

2 Dennis Aumiller, Jing Fan, Michael Gertz

in setups, where high-quality gold data is scarce. This can lead to unintended consequences
during the interpretation of model performance and generalization capabilities beyond
narrow domain-specific use cases.

A sub-task of the NLP community that deserves particular attention is text summarization.
The focus here is to produce an abridged version of an input text that accurately summarizes
the key points of the original text. Such systems offer an immediate benefit in times with
ever-increasing amounts of textual information, and allow users to quickly grasp the contents
of even complex documents. In particular, we differentiate between various sub-tasks of text
summarization: extractive systems provide summaries by simply copying text snippets from
the original input, which is efficient to compute, but comes at the cost of lower textual fluency.
On the other hand, abstractive summarization systems may introduce new phrases, or even
full sentences, which are not present in the original document. This potentially increases a
summary’s fluency and conciseness over extractive methods. Abstractive text summarization
systems are generally built upon the more recent development of sequence-to-sequence
neural models [SVL14, BCB15], which come with an exploding computational cost.

Particularly for (abstractive) summarization, the previously mentioned issues of data scarcity
for non-English methods are further worsened by a lack of diverse (and readily available)
evaluation metrics. Most works rely entirely on =-gram-based analysis of system summaries,
such as ROUGE [Li04], which cannot accurately judge the truthfulness of a generated
summary, i.e., how accurately the original text’s factual statements are represented in the
generated summary. Only few works extend their evaluation to human result inspections,
given its higher cost. However, there are several critical assumptions that –even under
basic premises– are exposed as oftentimes insufficient for a comprehensive analysis [SJ97,
tHKdR20]. Examples are the focus on singular target summaries, ignoring the subjective
nature of differing viewpoints of annotators, as well as the focus on particularly prominent
sentences in the first few paragraphs of reference articles [Zh21b].

In this work, we focus on German abstractive summarization systems and set out to investi-
gate, reproduce, and evaluate summarization systems. In conjunction to a model-centric view
of summarization, we further review the existing training resources for German, including
their particular domain and data curation processes.

1. We find that in particular automatically created and multilingual resources suffer from
insufficient pre-processing, potentially due to the absence of a native speaker during
the curation process.

2. News documents seem to be overly represented in trained systems, potentially due to
a popularity bias in English summarization datasets for news resources.

3. Baseline scores are heavily affected by data biases in test sets of prominent datasets.

196 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 3

Upon conducting a qualitative analysis of outputs from publicly available models, we further
find that most systems fall severely short of the expected quality in at least one of the
following areas:

1. Due to positional biases, text snippets may be directly copied from the beginning of
the input text, constituting an extractive instead of an abstractive summary. Especially
considering the computational requirements of neural systems being orders of mag-
nitudes greater than simple extractive summarizers, this undermines the quality of
neural text generations.

2. Generated outputs may contain (severe) syntactic errors, to the point of becoming
illegible or hard to interpret.

3. Semantic mistakes introduce factual errors, leading to incorrect conclusions from the
summary alone. This problem is exacerbated for longer input documents, where a
structured content understanding is necessary to maintain factual consistency.

For data-centric issues, current pipelines are not taking user-specified filtering steps into
account; oftentimes, datasets are directly used “out of the box”, without any further data
verification step involved. For this purpose, we extend available summarization-specific
filtering steps and provide a simple-to-use and language-agnostic processing library.
For model-centric problems, it is near impossible to identify failure cases with existing
metrics; costly manual inspection of individual samples would be required. Simultaneously,
we work towards expanding the available scores to help facilitate a better understanding of
current expectations towards summarization systems. In the following, we will briefly men-
tion work on automated evaluation of summarization systems, including a comprehensive
look at the current landscape of German abstractive summarization; we follow with a formal
introduction of our proposed filtering methods for summarization datasets, as well as a list
of model-centric checks to consider. We discuss exhibited quality issues in existing datasets
and systems for German summarization, and conclude with a brief outlook for future work.

2 Related Work

We establish an extensive overview of currently available training resources for German
summarization systems and survey the landscape of trained models, with a particular focus
on publicly available methods.
Aside from this, we further reiterate some of the common pitfalls in evaluating summarization
systems, which will become particularly relevant during the experiments in this work.

On the State of German (Abstractive) Text Summarization 197

4 Dennis Aumiller, Jing Fan, Michael Gertz

2.1 German Data Sources for Summarization

In our experiments, we focus on seven different datasets across a variety of domains. To
our knowledge, these cover all of the publicly available sources used for training German
systems.

MLSUM [Sc20] This multilingual dataset was presented as one of the first efforts in
making larger-scale training sets available for multiple languages that also include German
as a language. MLSUM is constructed by extracting news articles and associated summary
sections as generation targets. We use the German subset in this work, which is by far the
most popular dataset used for training and evaluating resources in German, based on our
survey. Despite its popularity, issues in the quality of samples have gone unnoticed until
early 2022, when Philip May [Ma22] was the first to report on problems with fully extractive
summaries, an aspect we will analyze in more detail later.

MassiveSumm [VS21] The construction of this particular dataset is similar to MLSUM
and focuses on a large number of automatically extracted summaries from news articles in
multiple languages. The authors perform some rudimentary filtering with respect to empty
samples and even go as far as avoiding similar issues to MLSUM by removing what they call
“ellipsoid summaries”, i.e., fully extractive summaries that appear at the beginning of the
reference text. While the quality of the samples is comparatively low due to the automated
extraction process, this corpus is by far the largest considered, with around 480,000 samples,
and has the potential to improve existing training setups with its sheer number of samples.

Swisstext [FVM20, Fr20] In contrast to the –generally shorter– news articles available in
MLSUM, the Swisstext dataset provides longer-form summaries based on German Wikipedia
pages, which has been later extended to the GeWiki corpus [Fr20]. For the construction,
the central argument is that the introductionary paragraph serves as a “summary” of the
remaining article text. The provided dataset comes with a training portion and a private test
set, meaning no ground truth summaries are available for the test samples. A multilingual
variant of this idea, the XWikis corpus, was introduced shortly after [PBL21]. While the
XWikis corpus contains more samples per language, including for German, monolingual
data is not readily available for download. Adding the fact that German summarization
works primarily deal with the Swisstext dataset, we choose the latter for our experiments.

Klexikon [AG22] Another Wikipedia-related resource, but with different target summaries.
Instead of utilizing a page’s introductionary paragraph, the authors align articles from a
simplified children’s encyclopedia (Klexikon) on the same topic. Consequently, this dataset
has much longer summary lengths but covers a much smaller subset of only around 3,000

198 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 5

samples. Given the secondary focus on simplification in the target summaries, this corpus
requires a considerably higher level of abstractive reformulations during the generation.

WikiLingua [La20] As the third multilingual resource, summaries in this corpus are
extracted from the WikiHow platform. Here, Ladhak et al. [La20] consider short instruction
summaries of individual steps in WikiHow guides and align those with the referenced
paragraphs. The general tone of the dataset is rather informal and is in a more imperative
style in comparison to other data sources. To align non-English samples, associated images
are used to identify paragraphs occurring in different languages. Importantly, this means that
for German articles, frequently only some of the article’s paragraphs are actually contained
in the dataset.

LegalSum [GMM21] Another area benefiting enormously from high-quality summaries
is the legal domain. LegalSum is the first German resource providing summaries of around
100,000 court rulings. On average, these samples require the highest amount of compression
across evaluated datasets.

EUR-Lex-Sum [ACG22] As a secondary resource for legal texts, Aumiller et al. present
a multilingual corpus based on EU-level legal acts, semi-aligned across languages. The
corpus is considerably smaller than LegalSum, with only about 1,900 German documents
available. While the EUR-Lex-Sum corpus has extremely long documents, it also presents a
more challenging summary generation with the longest average summary length across all
considered corpora (generally between 600-800 words). Importantly, summaries are also
written by human expert annotators and therefore present a much higher-quality standard
for summaries compared to some of the other datasets.

Further Resources In addition to these datasets, we are aware of at least two more news-
related resources. One is used in experiments by Nitsche [Ni19], where data was supplied
by the German Press Agency, but no public record of it exists. The second corpus is hinted
at online by users on Huggingface’s platform4.
For clinical summarization, Liang et al. [Li22] present a resource of about 11,000 radiology
reports; given the sensitive nature of the data, no publicly available version exists as of
now. We are also aware of a secondary source of the WikiLingua dataset by GEM5, which
provides additional samples, as well as a pre-split validation and test section not provided in
the original German subset. In preliminary experiments, we found that > 99.89% of the data
were valid samples for the GEM source. Most problematic is the automatic combination of
4 A news corpus with ca. 400,000 articles is indicated here: https://huggingface.co/Einmalumdiewelt/

PegasusXSUM_GNAD/discussions/1#6308eb5037556c4ab03258df, last accessed: 2023-01-14
5 https://gem-benchmark.com/data_cards/wiki_lingua, last accessed: 2023-01-14

On the State of German (Abstractive) Text Summarization 199

https://huggingface.co/Einmalumdiewelt/PegasusXSUM_GNAD/discussions/1#6308eb5037556c4ab03258df
https://huggingface.co/Einmalumdiewelt/PegasusXSUM_GNAD/discussions/1#6308eb5037556c4ab03258df
https://gem-benchmark.com/data_cards/wiki_lingua

6 Dennis Aumiller, Jing Fan, Michael Gertz

paragraphs into one summary, which can cause disjoint reference texts or summaries.
Finally, all of the discussed corpora so far are types of single document summarization
resources, where a summary is extracted from a singular text only. Datasets for training
summarization systems that consider multiple source texts exist at smaller scales, but require
further manual adjustment for acquisition [Be16, Zo18]. More recent experiments with
neural models utilizing the latter corpus have been conducted by Johner et al. [JJB21].

2.2 German Summarization Systems

Model Training data Test Set Evaluation Filtering Public Reprod.
mrm8488/bert2bert6 MLSUM MLSUM ROUGE None 3 3

ml6team/mt5-small7 MLSUM MLSUM ROUGE Length 3 7

T-Systems/mt5-small8
CNN/DailyMail,
MLSUM, XSum,

Swisstext
MLSUM ROUGE Length &

Overlap 3 7

Shahm/t5-small9 MLSUM MLSUM ROUGE None 3 7

T5-base10 ? ? ROUGE ? 3 7

german-t511 Swisstext MLSUM ROUGE ? 7 7

BERT-Copy [Ak20] Swisstext Swisstext ROUGE &
manual ? 3 ?

Transformer [PM19] Swisstext &
CommonCrawl Swisstext ROUGE &

manual None 7 7

Fact-Encoder [Ve19] Swisstext Swisstext ROUGE &
manual None 7 7

Pointer-Gen [FBZ19] Swisstext Swisstext ROUGE &
manual ? 7 7

Enc-Dec [GMM21] LegalSum LegalSum ROUGE ? 3 ?

bert2bert [Li22] Radiology Radiology ROUGE &
manual ? 7 7

Tab. 1: List of German abstractive summarization systems. We detail their known properties from
training recipes or papers. If we have access to models, we denote whether public scores are repro-
ducible within ±0.5 ROUGE points (“Reprod.”); ? in the reproducibility column indicates models
that are available, however, we were unable to successfully run locally.

While we are slowly starting to see a greater diversity in the available training resources
for German text summarization, it comes as a small surprise that the availability of trained
system is much less diverse. As will become more apparent in later sections, the primary
focus for training systems is a combination of a pre-trained checkpoint and one predominant
training resource (“MLSUM”, particularly the German subset). Below, we elaborate on

200 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 7

considered model properties, differentiating between the availability levels of related works
and their backgrounds. A summary of known properties can be seen in Table 1.

2.2.1 Publicly Available Systems

The primary source for available models is the Huggingface Hub12, which allows filtering by
supported language and appropriate task (in our case summarization). We note that some of
the available models are not properly tagged, but spent considerable time to ensure no other
models were accidentally ignored. For users who have uploaded several different versions,
we selected the model with the highest self-reported evaluation scores.
Given that users on the platform are likely familiar with other services of Huggingface
(including their datasets browser), it comes as no surprise that the diversity between models
and training setups is low. The primary choice falls on either mT5 [Xu21] or variants of
T5 [Ra20], with some alternatives based on (m)BART [Le20, Li20] being consistently
outperformed according to self-reported metrics by authors. In order to train effectively on
large quantities on data, most approaches use one of the smaller checkpoints, referring to
model variants with fewer parameters. Outside of the model hub, code repositories exist for
the BERT-Copy architecture by Aksenov et al. [Ak20] and Encoder-Decoder models used
by Glaser et al. [GMM21]. However, we were unable to set up inference for custom datasets
based on the respective code bases.

2.2.2 Private Models

A further selection of models has been published in response to the Swisstext 2019 sum-
marization challenge [PM19, Ve19, FBZ19]. However, neither team has published any
associated public repository. Similarly, no models are available from Liang et al.’s work on
radiology reports [Li22]. As the only one of the major cloud providers, Microsoft offers an
extractive summarization service through Azure that supports German.13 Otherwise, the
only commercial solution providing a platform for abstractive summarization also supporting
German texts is currently Aleph Alpha.14

6 https://hf.co/mrm8488/bert2bert_shared-german-finetuned-summarization, last accessed:
2022-10-06

7 https://huggingface.co/ml6team/mt5-small-german-finetune-mlsum, last accessed: 2022-10-06
8 https://huggingface.co/T-Systems-onsite/mt5-small-sum-de-en-v2, last accessed: 2022-10-06
9 https://huggingface.co/Shahm/t5-small-german, last accessed: 2022-10-06

10 https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD, last accessed: 2022-10-06
11 https://github.com/GermanT5/german-t5-eval, last accessed: 2022-10-06
12 https://huggingface.co/models, last accessed: 2023-01-14
13 https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/

summarization/language-support, last accessed: 2022-10-06
14 https://www.aleph-alpha.com/use-cases/conversion#trilingual-summary, last accessed: 2022-

10-06

On the State of German (Abstractive) Text Summarization 201

https://hf.co/mrm8488/bert2bert_shared-german-finetuned-summarization
https://huggingface.co/ml6team/mt5-small-german-finetune-mlsum
https://huggingface.co/T-Systems-onsite/mt5-small-sum-de-en-v2
https://huggingface.co/Shahm/t5-small-german
https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD
https://github.com/GermanT5/german-t5-eval
https://huggingface.co/models
https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/summarization/language-support
https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/summarization/language-support
https://www.aleph-alpha.com/use-cases/conversion#trilingual-summary

8 Dennis Aumiller, Jing Fan, Michael Gertz

2.3 Evaluation Metrics for Summarization

As previously mentioned, the de-facto gold standard for evaluating summarization systems
is the usage of ROUGE [Li04]. The authors introduce unigram overlap (ROUGE-1), bigram
overlap (ROUGE-2) and the longest common subsequence (ROUGE-L) between system
and gold predictions. The underlying core assumption is based on =-gram co-occurrences
in the generated text with respect to one or more gold summaries. The fact that ROUGE
can handle several reference samples at the same time is crucial for understanding some of
the implications in the later parts of this work: with several references, variation in wording,
e.g., particular expressions, are much easier to compare against than in a single reference
summary. However, despite the theoretical support for multi-labels, few datasets ever provide
such costly annotations.
In turn, more recently proposed alternatives to ROUGE rely on score computation from a
single gold summary only [ECM19]. Examples include primarily neural similarity scoring
between a generated summary and a gold reference [SDP20, Zh20]. Ultimately, neural
methods are also incredibly expensive to employ for evaluation settings, potentially taking
several days to evaluate a single test set [Na21]. Besides the cost factor, the main issue
with such alternative scores is two-fold: On the one hand, a distinct advantage of simple
co-occurrence-based metrics such as ROUGE is the simplicity in transferring it to another
language. Even basic extensions, such as stemmers, are readily available in a multitude
of languages other than English. Trained metrics, such as BERTScore [Zh20] or QAE-
val [DBWR21], however, are severely limited in their transferability to other languages,
and would require dedicated efforts to port them to German, for example. On the other
hand, recent statistical analyses have shown that when accounting for annotator expertise,
correlation can vary significantly [Fa21]. When additionally controlling for variance and
confidence intervals, correlation with human judgments over ROUGE correlation is only
statistically significant in rare cases [DDR21]. A particular investigation on metrics for
German summarization was conducted during the second Swisstext challenge [FVM20].
However, submitted resources were only marginally better than ROUGE baselines for judg-
ing system quality [PC20, Bi20]. For crowd-sourced evaluation approaches, Iskender et
al. [IPM20] further elaborate on the importance of survey setups and considerations for
expert annotators to ground evaluation results.

3 Assessing the Quality of Summarization Systems

When using existing models for abstractive text summarization, the expectation is that
they should work “as expected”, meaning that a model provides appropriate and correct
summaries. However, in practice, the automated collection of samples may lead to insufficient
sample quality or systematic biases in the data. This has further detrimental consequences
for models trained on those datasets.
In this section, we lay out a series of very basic sanity checks for both data and models,
which help to ensure a minimal level of generalization from experimental results. As we will

202 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 9

Issue Reference Summary
Short text Wir verwenden Cookies, um

unser Angebot für Sie zu
verbessern. Mehr Informatio-
nen [...].

–

Duplicates ‘Virtuelles Bergsteigen mit
dem Project360 [...]

Leben und Kultur in Europa

Historische Dokumente:
Bilder der Wende [...]

Leben und Kultur in Europa

Relative Length Chef-Sprüche: “Ich sehe
meine Kinder auch nur im
Urlaub.”

Die besten Chef-Sprüche zum
Thema Überstunden.

Fig. 1: List of faulty summarization samples in the MassiveSumm dataset uncovered by various
data checks. Despite checking for unrelated issues, we notice a trend where filtered samples are of
especially low semantic quality, too.

later find, even such basic data assurances lead to a significant reduction of valid samples in
available German summarization data.

3.1 Data-centric Sanity Checks

The best strategy to achieve decent experimental results is ensuring high quality in the
training data – in line with the popular saying “garbage in, garbage out”. We present a
list of minimal quality checks for individual samples, as well as dataset-wide assurances
of data quality. Most of these measures are fully automated and at most require single
hyperparameter settings to filter datasets.
Further, suggested data checks are language-independent at their core and can therefore be
applied in basic form to any dataset, even beyond German. This also implies that no further
existing tools or libraries for tokenization, etc., are required.

Empty Samples The most trivial sanity check is verifying that both the reference text
and summary are present for all samples. This is simultaneously the most prevalent check
implemented by authors of resource papers in our experience. Even so, several issues can
arise for this criterion, primarily revolving around varying definitions of “emptiness”. For
example, one could also consider a sample as empty if only whitespaces (or whitespace-like
symbols, such as \t) are present. Extensions are, for example, faulty encodings or only
special characters in a text (cf., data audit insights by Kreutzer et al. [Kr22]).

Minimum Text Length A superset of “empty samples”, imposing a required minimum
text length presents a stricter filtering criterion for sample validity. Where empty texts
are universally to be avoided, hard length requirements are harder to impose, since the

On the State of German (Abstractive) Text Summarization 203

10 Dennis Aumiller, Jing Fan, Michael Gertz

appropriate cutoff depends strongly on the dataset domain. For domain-specific datasets,
e.g., the instruction-like texts in the WikiLingua dataset [La20], having extremely short
summaries with only a few characters (and comparatively short references) may make sense.
For summaries stemming from news articles, however, length requirements imposed on the
reference might ensure a longer minimum text length for quality control.

Compression Ratio Filtering Another key metric used in summarization research is the
Compression Ratio (CR), defined as the relation between reference text length and summary
length. We follow the definition by Grusky et al. [GNA18]: �'(ref, summ) =

len(ref)
len(summ) .

For filtering by compression ratio, a significant difference should be ensured by establishing
a minimum compression ratio. For our purposes, we argue that a reduction of at least 20%
in the summary length is required, which equals �' ≥ 1.25. We note that this is not a
strict requirement per se and may depend on domain-specific factors. It can be argued,
however, that samples with summaries longer (or equal) than their respective references
(i.e., �' ≤ 1.0) always pose an inadequate sample and must be filtered.
Related work sometimes takes a more drastic approach to compression ratio filtering, arguing
that extreme content reduction may result in a lossy summary and should therefore also be
avoided [Ur22].

Duplicate Removal Some lesser-checked property seems to be the existence of duplicates
in training data, which is also applicable in more general machine learning settings. However,
given that each sample for summarization comes with two distinct texts (the reference and
the summary), we can further distinguish between different instances of duplication. Trivial
to consider are instances of what we call exact duplicates, i.e., samples that have the exact
same combination of reference and summary appearing as another tuple in the dataset.
We can further expand this idea by three more considerations, which we call partial dupli-
cates. These are instances where we find either the reference or summary in other dataset
instances. Finally, it could also occur that both summary and reference are duplicated,
but across different samples; such instances are also considered partial duplicates and are
relatively rare.
To understand why duplicates, including partial ones, can be considered harmful as a training
resource, we need only look at the potential effects during training or evaluation. For exact
duplicates, no real gain is achieved by including one sample several times in the training
data. Worse yet, if we encounter exact duplicates across different splits, this can cause active
falsification of evaluation results (train-test leakage). While partial duplicates are less severe,
we still encourage removal, as they can cause confusion during the learning process: cases
where different input texts should generate the same summary hamper generalization of
models, and the reverse case of similar input texts generating different summaries conveys
unclear learning signals during training. Finally, we also want to note that partial duplicates
can uncover incorrectly aligned samples (cf. Fig. 1).

204 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 11

While spotting duplicates is fairly straightforward, removing duplicate content is often non-
trivial, as there exist several valid strategies for deduplication, leading to differing results.
In an attempt to reduce impact on smaller test and validation sets, we adopt a “additive”
strategy for the remainder of this work. We start with an empty dataset, and iteratively add
new samples if and only if neither the reference nor the summary have been previously
included.

Sample Inspection Even with all of the proposed automated measures, nothing can ensure
data quality quite as well as manually inspecting data. All of the previous measures can point
to systemic failures in the data collection process, but may ignore more localized quality
issues for particular samples. While a manual analysis step is not feasible at scale, often
enough reviewing few samples will already reveal tendencies about the underlying data
quality. We generally differentiate between the following strategies to inspect data samples
and their respective up- and downsides:

1. Reviewing samples in order: A linear sequence of samples may reveal particular
issues in the consistency of samples, which can be linked to the crawling process.
We emphasize that “linearity” can follow many particular axes, not just the order in
which data is stored. Further possible orderings can be based on available metadata
descriptors, such as sortings by timestamps, source or length. In-order samples are
most likely to uncover systematic issues, such as incorrect alignment settings that
span several samples.

2. Reviewing random samples: Another popular approach is to shuffle data and ran-
domly select instances for review. This is fairly easy to implement and does not require
iterating over the full dataset or sorting operations. Advantages of random reviews
are a more holistic coverage of the data distribution, but requires potentially more
manual reviews to find systemic failures.

3. Outliers and representative samples: If data statistics are already known or easy
to compute, a more targeted approach is to look for distributional outliers. There
are again a variety of metrics that can be considered, with the most obvious being
text length and compression ratio of individual samples. Manually reviewing outliers
can also sharpen the requirements of expected outputs, e.g., the minimum/maximum
length of a summary in relation to the input text. Related are representative samples,
which constitute instances close to the mean or median of a distribution.

3.2 Model-centric Checks

While we have compiled a detailed list of what can be done about checking the data used
for summarization systems, it is significantly harder to judge a trained system, especially

On the State of German (Abstractive) Text Summarization 205

12 Dennis Aumiller, Jing Fan, Michael Gertz

given that many neural methods can only be treated as black box systems. But even with
a lack of clarity around the original training procedures and model learnings, we can use
several probing techniques to estimate the robustness and performance of systems.

Evaluation on Cleaned Test Sets The standard procedure to evaluate on withheld (but still
in-domain) test sets. While these evaluation approaches may give insights on the overfitting
of trained models, such experiments tend to fall short of giving more concrete evidence on
the pattern of how summaries are generated. This is especially crucial if no further manual
evaluation is performed. Testing models on modified or generalized test data can serve
as a partial remedy to this, by probing the generalization ability of particular systems. In
combination with the proposed filtering techniques, we suggest the evaluation on cleaned
test sets for models that were trained on the unfiltered training set. The main advantage
is that no additional re-training with altered training sets is required, and insights can be
acquired from a generally much smaller evaluation set through inference alone. Further, we
hypothesize that intrinsic summarization metrics [NCL18, GNA18, Zh19, BC20] applied
to system summaries can be used as a preliminary gauge for text quality in comparison to
the original input. Especially abstractiveness of generated outputs, essentially constituting
the number of novel =-grams in summaries, could indicate changes in the vocabulary.

Domain Generalization An extreme case of the previous point is testing on completely
out-of-domain data, which usually means taking test splits of a different dataset. While this
approach can be useful to evaluate general purpose summarization systems, the evaluated
models in this work all present rather focused domain-specific summarization systems. For
this reason, we refrain from evaluating performance based on out-of-domain abilities.

Factual Consistency A rather important argument for summarization especially: facts
that are stated in the original reference text must be maintained in the respective summary.
Therefore, models should be measured with respect to their truthfulness, which has been
previously attempted with automatic metrics for English summarization systems [Kr20], or
even implemented as an optimization target for more truthful summaries [Zh21a].

3.3 Extractive Models and Baseline Systems

Given the relatively one-dimensional approach to evaluation, we should at least expect
additional context for better interpretability of model scores. In practice though, we rarely
find a consistent reporting of baseline scores, if any comparisons are reported at all. To this
end, we strive to provide consistent baselines and reporting of such in the context of German
abstractive summarization. In addition to the scores, baselines also serve an important
purpose by providing a sensible complexity trade-off: Unlike most neural methods, they

206 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 13

should be able to generate summaries faster and with fewer parameters than heavy-weight
state-of-the-art approaches. Similar to English works, we therefore fall back on extractive
summarization systems, which – as the name indicates – simply copy text snippets from the
reference to generate a summary.
To our knowledge, the only work that has explicitly worked on extractive summarization for
German is over 20 years old [Re00]. This does not imply, however, that there is no dedicated
extractive system available. Especially for unsupervised methods, such as TextRank [MT04]
or LexRank [ER04], language-specific taggers or lemmatizers can easily be replaced in
existing libraries to enable application on German texts as well. For our experiments, we
rely on three variants of baselines, which extract a specified number of sentences from the
input text to generate a summary. Overall, extractive summaries are guaranteed to ensure a
more factually consistent summary, and have high intra-sentence coherence. On the other
hand, these methods cannot be fine-tuned and rely on singular hyperparameters – the length
of the generated summary. This can still significantly impact the evaluation performance,
but does not factor in domain-specific variance in text distribution. For all systems, we rely
on the sentence splitting module by spaCy15, unless datasets provide a pre-split sentence
format.

Lead-3 The simplest possible baseline system is lead-3, popularized by Nallapati et
al. [NZZ17] as a simple but strong baseline for news article summarization. Here, the
summary is equal to the first three sentences of an input text. The method works particularly
well for news texts, where key information has to be conveyed early on to both inform and
catch the interest of a potential reader. The prevalence of this so-called “lead bias” differs
significantly across different domains.

Lead-: For other domains, three sentences may underestimate the actual summary length.
For this purpose, Aumiller and Gertz [AG22] introduce a variant that extends the lead
baseline to the : leading sentences, in their particular context the full first paragraph of a
Wikipedia page. Given that in general, datasets do not contain paragraph-level information,
the authors later extended this baseline and instead consider an approximate :̂ for each
sample by using the average compression ratio [ACG22]:

:̂ =
len(reference)

�'avg
, (1)

where len(reference) is the number of sentences in the summary, and �'avg denotes the
average compression ratio across the training split of a dataset.

Modified LexRank (LexRank-ST) A more complex baseline that also considers sentences
at other positions of the article is a modification of LexRank [ER04], similarly used by

15 We use the model de_core_news_sm in our experiments.

On the State of German (Abstractive) Text Summarization 207

14 Dennis Aumiller, Jing Fan, Michael Gertz

Aumiller et al. [AG22, ACG22]. The key modification lies in exchanging the centrality
computation – which is originally based on pure occurrence counts – with dense sentence
embeddings obtained through sentence-transformers [RG19, RG20]. While the underlying
neural model can be of arbitrary complexity, it does not need to be trained further to work
in the summarization application. After scoring individual sentences, the highest-ranking :

sentences are selected as the summary; we use the same method for estimating an optimal
length :̂ as for the lead-: baseline.

Finally, we also point towards oracle extractive summaries as a form of upper-bound
for extractive summarization, which can be computed from greedy ROUGE-2 align-
ments [NZZ17, GMM21]. Given that we focus on abstractive results in this work, we
omit the computation of extractive oracle summaries.

4 A Sober Look at State-of-the-Art Results

Given the presented set of tools, we now set out to put current models’ capabilities into a
better context. To this end, we conduct a set of four experiments: We start by applying the
filters introduced in Sect. 3.1 to available German summarization datasets, noting varying
size reductions as a result. To remedy the changes introduced by our filtering, we re-compute
a set of strong baselines as updated results for datasets with available validation and test sets.
Further, given the previously uncovered discrepancies in some datasets, we repeat more
comprehensive experiments on MLSUM and MassiveSumm across the pre- and post-filtered
dataset to highlight the effect of filtering on ROUGE scores. We are able to show that this
change in data quality also significantly impacts the reproducibility of results. Finally, we
provide a small case study in which we examine a subset of generated samples that highlight
some of the particular model-centric issues.

4.1 Filtering Datasets

Key Finding 1: German subsets of two popular multilingual resources (ML-
SUM and MassiveSumm) have extreme data quality issues, affecting more
than 25% of samples across all splits.

Table 2 presents our findings for filtering the available German summarization datasets;
hyperparameters for filters are specified in the table caption. We refrain from imposing any
particularly strict filtering metrics, particularly for the length of texts. Most concerning is
the fraction of affected samples in MLSUM, given its popularity as a training resource for
many public models. While a strong lead bias is to be expected due to the domain of these
samples being exclusively news articles, the eventual performance of models trained on the
unfiltered dataset is severely impacted; a finding that we confirm in subsequent experiments.
Primarily, it indicates that for fully extractive samples, summaries can be generated by

208 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 15

Min Length Min Fully Duplicates
Dataset Split Samples Ref Summ Id CR Extr Exact Ref Summ Valid Samples

Train 220,887 0 0 39 30 126,204 31 45 105 94,433 (42.75%)
MLSUM Val 11,394 0 0 0 0 3,285 1 1 5 8,102 (71.11%)

Test 10,701 0 0 0 0 3,306 1 5 2 7,387 (69.03%)
MassiveS Train 478,143 253 16,294 0 33,959 0 805 73,886 4,882 348,064 (72.79%)
Swisstext Train 100,000 0 0 0 0 3 0 0 2 99,995 (100.00%)
WikiLing Train 58,341 11 0 0 1,435 0 4 2 52 56,837 (97.42%)

Train 2,346 0 0 0 10 0 0 2 0 2,334 (99.49%)
Klexikon Val 273 0 0 0 1 0 0 0 0 272 (99.63%)

Test 274 0 0 0 1 0 0 0 0 273 (99.64%)
Train 1,115 0 0 0 18 0 0 0 0 1,097 (98.39%)

EUR-Lex Val 187 0 0 0 0 0 0 0 0 187 (100.00%)
Test 188 0 0 0 0 0 0 0 0 188 (100.00%)
Train 79,937 0 2 0 12 326 233 95 3,106 76,163 (95.28%)

LegalSum Val 9,992 0 0 0 4 32 14 2 157 9,783 (97.91%)
Test 9,993 0 0 0 7 33 8 1 59 9,885 (98.92%)

Tab. 2: German text summarization datasets in numbers. Given are the original sample count and
breakdown of filtered samples by automated assessment (cf., Sect. 3.1) for all provided splits. We set the
Minimum Length to 20 characters for summaries and 50 for references, except for WikiLingua, which
has limits of 8 and 20 characters, respectively, due to a different domain. Id refers to samples with same
reference and summary text, Min CR ensures references are at least 25% longer than summaries, and
Fully Extr identifies consecutive segments that are used as fully extractive summaries. For duplicates,
we differentiate between both reference and summary appearing in the corpus (Exact), versus partial
duplicates where only one of reference (Ref) or summary (Summ) are appearing elsewhere. Numbers
in bold highlight issues affecting more than 2% of the split data.

directly running an extractive summarization system, and thus obtain similar (or better)
quality at a much lower cost. For MassiveSumm, a large fraction of invalid samples can be
attributed to duplicate content; manual inspection reveals that there are frequent generic
references or summary texts, such as “Read more after logging in!”. We assume the reason
to be a faulty extraction of HTML elements for particular websites.
The remaining inspected datasets were affected at a much lower rate; we see several subsets
that have only a handful of faulty instances. Depending on the overall size of the dataset,
this implies that evaluation scores will differ less between unfiltered and filtered splits of
largely unaffected datasets.

4.2 Consistent Results and Baseline Runs

Key Finding 2: Existing evaluation scores are hard (if not outright impossible)
to reproduce, even with model weights publicly available.
Key Finding 3: Authors frequently fail to put scores into context, not comparing
their own results against baseline methods for further scrutiny.

Another worrying trend we observe in the “reproducibility” column of Tab. 1, is the consis-
tent inability to even approximately reproduce self-reported scores for any of the evaluated

On the State of German (Abstractive) Text Summarization 209

16 Dennis Aumiller, Jing Fan, Michael Gertz

models. In our reproduction attempts, we employed no particular further filtering, and
observed scores that were anywhere from 5 points worse to 3 points better than self-reported
ones on the test set. Only a singular result was reproducible within 0.5 ROUGE points of
the expected results. In particular, we find that implementation details on filtering steps and
other subselection criteria are rarely (if ever) included in the documentation of training pro-
cedures. While the usage of so-called “model cards” [Mi19], i.e., dedicated documentation
pages for particular training results, has improved the availability of at least some form of
documentation, these descriptions are still insufficient to fully reproduce results. As a side
note, it should also be mentioned that multiple implementations for the ROUGE evaluation
metric exist16, which may result in scoring differences by utilizing different text processing
tools or implementations. To ensure reproducibility of our own scores, we mention that
scores were computed with help of the rouge-score package, version 0.1.2. We further
replaced the default stemming algorithm with the German Cistem stemmer [WF17] to
provide a reasonable upper-bound of scores and use the provided bootstrap sampler with
= = 2000.

Aside from the lack of reproducible results, we also noted that only few public models report
against a set of (consistent) baselines, with the most commonly compared approach being
lead-3. Given that we have also presented a cleaned portion of popular evaluation models,
we strive for a more comprehensive comparison of actual results, and investigate resulting
implications that were omitted in the original evaluation settings.
In our particular setup, we compare against the three mentioned extractive baselines men-
tioned in Sect. 3.3 and report scores in Tab. 3. Depending on the dataset, the choice of a
baseline can heavily skew the interpretation compared to neural methods. For example, on
the Klexikon dataset, using lead-3 can lead to a roughly 12-13 point drop in ROUGE-1 scores
compared to scores by the lead-: or LexRank-ST baseline. On the other hand, for lead-heavy
and short texts in MLSUM, lead-3 serves as the best baseline method. Our recommendation
is therefore to similarly use multiple (different) baseline approaches, resulting in a more
defined context for evaluation based on ROUGE scores. While it may be easier to simply
copy results from prior work, we highly recommend the reproduction of these results first,
as scores may ultimately vary between different experimental setups.

4.3 Impact of Data Filtering

Key Finding 4: After filtering, scores can drop by more than 20 ROUGE-1
points on the MLSUM test set.

To illustrate the effect of dataset filtering on downstream performance, we further compare
results on the two most-affected datasets (MLSUM and MassiveSumm). Without any
additional training, we run all available public models on the validation and test portion of

16 e.g., rouge-score (https://pypi.org/project/rouge-score/, last accessed: 2022-10-06) or pyrouge
(https://pypi.org/project/pyrouge/, last accessed: 2022-10-06)

210 Dennis Aumiller, Jing Fan, Michael Gertz

https://pypi.org/project/rouge-score/
https://pypi.org/project/pyrouge/

On the State of German (Abstractive) Text Summarization 17

Validation Set Test Set
Dataset Method R-1 R-2 R-L R-1 R-2 R-L

lead-3 19.06 5.58 13.21 18.90 5.47 13.04
MLSUM lead-: 14.93 4.12 11.31 15.08 4.17 11.45

LexRank-ST 15.78 3.36 11.52 16.04 3.30 11.55
lead-3 15.19 3.46 9.10 15.87 3.64 9.35

Klexikon lead-: 28.11 5.51 12.43 28.34 5.50 12.50
LexRank-ST 27.23 4.63 11.48 27.42 4.58 11.55

lead-3 16.72 2.80 10.51 16.74 2.86 10.53
LegalSum lead-: 14.34 2.27 8.78 14.36 2.34 8.78

LexRank-ST 21.54 6.22 12.97 21.35 5.99 12.74
lead-3 3.31 2.25 2.72 3.31 2.19 2.67

EUR-Lex-Sum lead-: 41.74 17.77 16.04 39.42 17.08 15.52
LexRank-ST 39.37 15.13 15.26 38.48 15.18 15.19

Tab. 3: Baseline results for all datasets with available validation and/or test splits. We report ROUGE
F1 scores on the filtered datasets.

MLSUM, for which we also obtain scores on the original unfiltered sets. Our findings can
be seen in Tab. 4, where one can observe a performance drop in every model, even those
that were not originally trained on the MLSUM dataset itself (t5-base). By far the worst
affected are the two baselines constructed from leading sentences, as well as the mT5-small
models by users mrm8488 and Shahm. These four models all achieve unreasonably high
ROUGE-2 scores before filtering and see a reduction to about one fifth of the original scores
after filtering. Upon inspection, we similarly found that these models were ultimately simply
re-generating the first tokens from the input article. These findings are concerning, as they
ultimately question the current state-of-the-art on the MLSUM dataset. It further validates
the necessity of filtering, given that we can ultimately change the course of evaluation and
interpretation of models. For MLSUM, per our results, the t5-base model, trained on a
related news dataset and utilizing the largest underlying neural model, seems to perform best
on filtered datasets while originally lagging behind even a simple lead-3 baseline. This is
particularly interesting, because the underlying model checkpoint used is primarily trained
on English texts.

Figure 2 further visualizes the impact of filtering on the length distributions of the two
heavily affected datasets, MLSUM and MassiveSumm. Analyzing the resulting changes in
more detail, we can observe a more strictly enforced minimum length for both references and
summaries in the MLSUM dataset even before filtering. In stark contrast, MassiveSumm is
shrunk considerably by the minimum length filter, which in turn shifts the samples towards
generally longer reference texts. Since MLSUM is affected more by the extractiveness filter,
one can observe a noticeable change in the mean of the distribution of summary texts,
particularly longer ones.
Changes in the length distribution, however, do not explain any of the deterioration in raw
ROUGE scores; a further indicator that several different evaluation methods need to be

On the State of German (Abstractive) Text Summarization 211

18 Dennis Aumiller, Jing Fan, Michael Gertz

(a) Reference Text Lengths (b) Summary Text Lengths

Fig. 2: Violin plots illustrating the distributional shift on the MLSUM and MassiveSumm training
splits through filtering. Black dashed lines indicate mean and quartiles of the distribution.

combined in order to paint a more complete picture for the realistic performance of models.
We particularly recommend the utilization of violin plots also for the evaluation of system
outputs, as they allow the comparison of length estimates by the system in comparison to
ground truth data.

4.4 Qualitative Analysis of Generated Summaries

Key Finding 5: With the exception of one work [Ak20], no publicly available
system performs experiments beyond simple ROUGE score computation.
Key Finding 6: Despite high reported scores, catastrophic failures can be
observed in some systems.
Key Finding 7: All utilized architectures only work with a relatively limited
context, proving to be incapable of dealing with long-form summarization.

The first criterion we were looking at when checking for existing systems is the evaluation
setting that was used in the respective work. The findings, reported in Tab. 1, point towards a
more rigorous evaluation setting for models backed by a scientific publication, which comes
as no surprise. However, we also note that these systems are also more likely to withhold
their respective models from public access. This ultimately means that those models can
only be judged based on the reported evaluation and no further black-box model checks can
be performed on them. To aggregate the insights gained across these works, most frequently
mentioned is the issue of factual consistency [Ve19, FBZ19], which does not bode well for
the practical suitability of such systems beyond simple settings. Secondly, several works
also investigate system outputs’ fluency [FBZ19, Ak20], where abstractive models could
provide sensible improvements over extractive systems. However, especially for earlier
works, consistent generations from language models still prove to be difficult.

212 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 19

MLSUM Validation Split MLSUM Test Split
Unfiltered Filtered Unfiltered Filtered

Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Lead-3 36.22 26.24 31.89 19.06 5.58 13.21 37.15 27.48 32.94 18.90 5.47 13.04
Lead-: 29.25 20.92 26.51 14.93 4.12 11.31 31.35 22.86 28.58 15.08 4.17 11.45
LexRank-ST 18.62 6.46 14.26 15.78 3.36 11.52 18.83 6.45 14.36 16.04 3.30 11.55
mrm8488 42.77 31.89 38.93 21.63 6.64 16.32 44.05 33.44 40.36 21.31 6.36 16.09
ml6team 28.17 18.81 26.05 17.08 5.03 14.18 28.51 19.52 26.53 16.56 4.80 13.78
T-Systems 23.74 11.08 20.34 19.87 6.49 16.40 23.67 11.21 20.36 19.20 6.11 15.84
Shahm 42.59 31.96 38.70 21.50 6.87 16.15 43.92 33.62 40.09 21.20 6.62 15.79
t5-base 27.54 11.31 20.88 23.31 7.19 16.99 27.99 11.65 21.20 23.40 7.20 16.91

Tab. 4: ROUGE F1 scores on the MLSUM validation and test splits, comparing results with and
without data filtering. Across all tested models, a stark drop in performance can be observed. We
highlight the highest score for each split in bold.

To follow our own advice, we manually investigated instances of generated outputs from
systems in Table 4. In addition to samples from the MLSUM dataset, we further tested with
instances from the Klexikon and WikiLingua datasets to check for domain generalization.
As others have noted, the factual consistency of abstractive systems is questionable at best,
but understated just how badly summaries can deviate from the original. Several times a
reversed order of aggressors and victims (respectively, winners or losers in sports game)
was generated, and in one particular instance the context was altered from “live-saving”
to “drowning (someone)” by the summarization system. This happened on “in-domain
samples” from the MLSUM test set.
A similar observation can be made for the syntactic quality of generations, where overfitting
of systems becomes particularly apparent during the zero-shot evaluation on other datasets.
While it can be expected that the quality of a generated summary may lack in content
accuracy or truthfulness, oftentimes no coherent sentence was provided. Less tragic, but
difficult for system comparison, is the multitude of parameters for generation functions.
While self-reported scores of public models generally rely on greedily decoded summaries,
one model frequently started repeating short sequences of about three words indefinitely
until the maximum generation length was reached. Importantly, such repetitions are not
obvious from looking at a ROUGE-based evaluation of model outputs alone, but could be
easily suppressed by enabling =-gram-based filtering during the generation.
We were also able to verify that the highly-scoring models by users mrm8488 and Shahm
indeed only copy the leading tokens from the input samples, likely due to training on
unfiltered MLSUM splits. This spells further trouble for “state-of-the-art” models, as it
requires a deeper examination for determining which summaries are actually better than
simple string selection approaches, such as lead-3. We hypothesize that the same concept
used in our extractiveness filter can also be applied to generated outputs; with a slightly
altered similarity scoring mechanism, e.g., the longest common subsequence algorithm,
even near duplicates could be detected and flagged for manual review.

Most prominently though, due to architectural constraints of the underlying neural models,
none of the currently public systems is able to capture an input context beyond 512 subword

On the State of German (Abstractive) Text Summarization 213

20 Dennis Aumiller, Jing Fan, Michael Gertz

tokens, the default length limit for the Transformer architectures [Va17]. In the instance
of domain-specific datasets, such as EUR-Lex-Sum, this means that even the length of
summary texts exceeds the limitation of models, effectively rendering them useless in this
particular context.

5 Conclusion and Future Work

Studying the current landscape of German abstractive summarization initially paints a grim
picture: While the general willingness and ease of sharing systems has greatly increased
over the past years, around half of the currently known German summarization systems still
remain inaccessible to the public. Of those that are available for public scrutiny, a prominent
focus on news summarization is still persisting, preventing more broader applications. Even
worse, the most prominent dataset contains severe flaws in the sample quality, leading to
models whose generalization capabilities, even in-domain, are severely hampered by the
unfiltered data. This also hints at the general level of care practitioners take with respect
to exploratory data analysis, given that several issues can be spotted by simply inspecting
just a few samples. And finally, even models that take care of filtering some of these issues,
a qualitative analysis of generations can still reveal catastrophic problems that prevent an
ethically responsible deployment of the solution in practice.

However, there are some silver linings at the horizon. Many of the major data-centric issues
can be easily fixed with the introduced quality checks, which can be applied cost-effectively
across multiple datasets, as we have demonstrated in this work. Through publishing our pre-
processing pipeline, we hope to encourage others in taking a more data-centric exploration
before starting with the ultimate model training.
Within just two years, we have also seen an unbelievable influx of available summarization
datasets for German, importantly extending past the narrow domains into application-specific
fields, such as law and medicine, and totaling more than 700.000 samples across publicly
available resources. This hopefully paves the way towards a more consistent and generalized
approach in German abstractive summarization research; should the efforts of the community
keep at the current rate, we will likely see meaningful progress within the next year. The
latest trends in the English summarization community also indicate a shift towards greater
awareness of long-form summarization [PZL22]; while dedicated long context German (or
multilingual) model checkpoints are still absent, we estimate that such systems will become
available shortly, serving as a compute-intensive way to escape the current restrictions on
input length.

As for our own efforts, we are currently investigating how systems can be designed to
work well across multiple domains at once, without the need for several distinct models.
This requires careful analysis of the underlying data, as well as a more agnostic training
framework to prevent overfitting towards a particular style.

214 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 21

Bibliography
[ACG22] Aumiller, Dennis; Chouhan, Ashish; Gertz, Michael: EUR-Lex-Sum: A Multi- and Cross-

lingual Dataset for Long-form Summarization in the Legal Domain. In: Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Abu Dhabi, United Arab Emirates, pp. 7626–7639, December
2022.

[AG22] Aumiller, Dennis; Gertz, Michael: Klexikon: A German Dataset for Joint Summarization
and Simplification. In: Proceedings of the Language Resources and Evaluation Confer-
ence. European Language Resources Association, Marseille, France, pp. 2693–2701,
June 2022.

[Ak20] Aksenov, Dmitrii; Schneider, Julián Moreno; Bourgonje, Peter; Schwarzenberg, Robert;
Hennig, Leonhard; Rehm, Georg: Abstractive Text Summarization based on Language
Model Conditioning and Locality Modeling. In (Calzolari, Nicoletta; Béchet, Frédéric;
Blache, Philippe; Choukri, Khalid; Cieri, Christopher; Declerck, Thierry; Goggi, Sara;
Isahara, Hitoshi; Maegaard, Bente; Mariani, Joseph; Mazo, Hélène; Moreno, Asunción;
Odijk, Jan; Piperidis, Stelios, eds): Proceedings of The 12th Language Resources and
Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020. European
Language Resources Association, pp. 6680–6689, 2020.

[BC20] Bommasani, Rishi; Cardie, Claire: Intrinsic Evaluation of Summarization Datasets.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Online, pp. 8075–8096,
November 2020.

[BCB15] Bahdanau, Dzmitry; Cho, Kyunghyun; Bengio, Yoshua: Neural Machine Translation
by Jointly Learning to Align and Translate. In (Bengio, Yoshua; LeCun, Yann, eds):
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. 2015.

[Be16] Benikova, Darina; Mieskes, Margot; Meyer, Christian M.; Gurevych, Iryna: Bridging the
gap between extractive and abstractive summaries: Creation and evaluation of coherent
extracts from heterogeneous sources. In: Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguistics: Technical Papers. The COLING
2016 Organizing Committee, Osaka, Japan, pp. 1039–1050, December 2016.

[Bi20] Biesner, David; Brito, Eduardo; Hillebrand, Lars Patrick; Sifa, Rafet: Hybrid Ensemble
Predictor as Quality Metric for German Text Summarization: Fraunhofer IAIS at Ger-
mEval 2020 Task 3. In (Ebling, Sarah; Tuggener, Don; Hürlimann, Manuela; Cieliebak,
Mark; Volk, Martin, eds): Proceedings of the 5th Swiss Text Analytics Conference
and the 16th Conference on Natural Language Processing, SwissText/KONVENS 2020,
Zurich, Switzerland, June 23-25, 2020. volume 2624 of CEUR Workshop Proceedings.
CEUR-WS.org, 2020.

[DBWR21] Deutsch, Daniel; Bedrax-Weiss, Tania; Roth, Dan: Towards Question-Answering as an
Automatic Metric for Evaluating the Content Quality of a Summary. Transactions of the
Association for Computational Linguistics, 9:774–789, 2021.

[DDR21] Deutsch, Daniel; Dror, Rotem; Roth, Dan: A Statistical Analysis of Summarization
Evaluation Metrics Using Resampling Methods. Transactions of the Association for
Computational Linguistics, 9:1132–1146, 2021.

On the State of German (Abstractive) Text Summarization 215

22 Dennis Aumiller, Jing Fan, Michael Gertz

[ECM19] Ermakova, Liana; Cossu, Jean Valère; Mothe, Josiane: A survey on evaluation of sum-
marization methods. Information processing & management, 56(5):1794–1814, 2019.

[ER04] Erkan, Günes; Radev, Dragomir R.: LexRank: Graph-based Lexical Centrality as Salience
in Text Summarization. Journal of Artificial Intelligence Research, 22:457–479, 2004.

[Fa21] Fabbri, Alexander R.; Kryściński, Wojciech; McCann, Bryan; Xiong, Caiming; Socher,
Richard; Radev, Dragomir: SummEval: Re-evaluating Summarization Evaluation. Trans-
actions of the Association for Computational Linguistics, 9:391–409, 2021.

[FBZ19] Fecht, Pascal; Blank, Sebastian; Zorn, Hans-Peter: Sequential Transfer Learning in
NLP for German Text Summarization. In (Cieliebak, Mark; Tuggener, Don; Benites,
Fernando, eds): Proceedings of the 4th Swiss Text Analytics Conference, SwissText
2019, Winterthur, Switzerland, June 18-19, 2019. volume 2458 of CEUR Workshop
Proceedings. CEUR-WS.org, 2019.

[Fr20] Frefel, Dominik: Summarization Corpora of Wikipedia Articles. In: Proceedings of the
12th Language Resources and Evaluation Conference. European Language Resources
Association, Marseille, France, pp. 6651–6655, May 2020.

[FVM20] Frefel, Dominik; Vogel, Manfred; Märki, Fabian: 2nd German Text Summarization
Challenge. In (Ebling, Sarah; Tuggener, Don; Hürlimann, Manuela; Cieliebak, Mark;
Volk, Martin, eds): Proceedings of the 5th Swiss Text Analytics Conference and the
16th Conference on Natural Language Processing, SwissText/KONVENS 2020, Zurich,
Switzerland, June 23-25, 2020. volume 2624 of CEUR Workshop Proceedings. CEUR-
WS.org, 2020.

[GMM21] Glaser, Ingo; Moser, Sebastian; Matthes, Florian: Summarization of German Court
Rulings. In: Proceedings of the Natural Legal Language Processing Workshop 2021. As-
sociation for Computational Linguistics, Punta Cana, Dominican Republic, pp. 180–189,
November 2021.

[GNA18] Grusky, Max; Naaman, Mor; Artzi, Yoav: Newsroom: A Dataset of 1.3 Million Sum-
maries with Diverse Extractive Strategies. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers). Association for Computational
Linguistics, New Orleans, Louisiana, pp. 708–719, June 2018.

[IPM20] Iskender, Neslihan; Polzehl, Tim; Möller, Sebastian: Best Practices for Crowd-based
Evaluation of German Summarization: Comparing Crowd, Expert and Automatic Eval-
uation. In: Proceedings of the First Workshop on Evaluation and Comparison of NLP
Systems. Association for Computational Linguistics, Online, pp. 164–175, November
2020.

[JJB21] Johner, Timo; Jana, Abhik; Biemann, Chris: Error Analysis of using BART for Multi-
Document Summarization: A Study for English and German Language. In: Proceedings
of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa). Linköping
University Electronic Press, Sweden, Reykjavik, Iceland, pp. 391–397, May 31–2 June
2021.

[Kr20] Kryscinski, Wojciech; McCann, Bryan; Xiong, Caiming; Socher, Richard: Evaluating
the Factual Consistency of Abstractive Text Summarization. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Online, pp. 9332–9346, November 2020.

216 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 23

[Kr22] Kreutzer, Julia; Caswell, Isaac; Wang, Lisa; Wahab, Ahsan; van Esch, Daan; Ulzii-
Orshikh, Nasanbayar; Tapo, Allahsera; Subramani, Nishant; Sokolov, Artem; Sikasote,
Claytone; Setyawan, Monang; Sarin, Supheakmungkol; Samb, Sokhar; Sagot, Benoît;
Rivera, Clara; Rios, Annette; Papadimitriou, Isabel; Osei, Salomey; Suarez, Pedro Ortiz;
Orife, Iroro; Ogueji, Kelechi; Rubungo, Andre Niyongabo; Nguyen, Toan Q.; Müller,
Mathias; Müller, André; Muhammad, Shamsuddeen Hassan; Muhammad, Nanda; Mnyak-
eni, Ayanda; Mirzakhalov, Jamshidbek; Matangira, Tapiwanashe; Leong, Colin; Lawson,
Nze; Kudugunta, Sneha; Jernite, Yacine; Jenny, Mathias; Firat, Orhan; Dossou, Bonaven-
ture F. P.; Dlamini, Sakhile; de Silva, Nisansa; Çabuk Ballı, Sakine; Biderman, Stella;
Battisti, Alessia; Baruwa, Ahmed; Bapna, Ankur; Baljekar, Pallavi; Azime, Israel Abebe;
Awokoya, Ayodele; Ataman, Duygu; Ahia, Orevaoghene; Ahia, Oghenefego; Agrawal,
Sweta; Adeyemi, Mofetoluwa: Quality at a Glance: An Audit of Web-Crawled Multilin-
gual Datasets. Transactions of the Association for Computational Linguistics, 10:50–72,
2022.

[La20] Ladhak, Faisal; Durmus, Esin; Cardie, Claire; McKeown, Kathleen: WikiLingua: A New
Benchmark Dataset for Cross-Lingual Abstractive Summarization. In: Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computational
Linguistics, Online, pp. 4034–4048, November 2020.

[Le20] Lewis, Mike; Liu, Yinhan; Goyal, Naman; Ghazvininejad, Marjan; Mohamed, Abdelrah-
man; Levy, Omer; Stoyanov, Veselin; Zettlemoyer, Luke: BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.
In (Jurafsky, Dan; Chai, Joyce; Schluter, Natalie; Tetreault, Joel R., eds): Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020. Association for Computational Linguistics, pp. 7871–7880,
2020.

[Li04] Lin, Chin-Yew: ROUGE: A Package for Automatic Evaluation of Summaries. In: Text
Summarization Branches Out. Association for Computational Linguistics, Barcelona,
Spain, pp. 74–81, July 2004.

[Li20] Liu, Yinhan; Gu, Jiatao; Goyal, Naman; Li, Xian; Edunov, Sergey; Ghazvininejad, Marjan;
Lewis, Mike; Zettlemoyer, Luke: Multilingual Denoising Pre-training for Neural Machine
Translation. Transactions of the Association for Computational Linguistics, 8:726–742,
2020.

[Li22] Liang, Siting; Kades, Klaus; Fink, Matthias; Full, Peter; Weber, Tim; Kleesiek, Jens;
Strube, Michael; Maier-Hein, Klaus: Fine-tuning BERT Models for Summarizing German
Radiology Findings. In: Proceedings of the 4th Clinical Natural Language Processing
Workshop. Association for Computational Linguistics, Seattle, WA, pp. 30–40, July
2022.

[Ma22] May, Philip: , Anomalies in the MLSUM Dataset. https://may.la/blog/2022/02/
23/anomalies-in-the-mlsum-dataset/, 2022. Accessed: 2023-01-11.

[Mi19] Mitchell, Margaret; Wu, Simone; Zaldivar, Andrew; Barnes, Parker; Vasserman, Lucy;
Hutchinson, Ben; Spitzer, Elena; Raji, Inioluwa Deborah; Gebru, Timnit: Model Cards
for Model Reporting. In (danah boyd; Morgenstern, Jamie H., eds): Proceedings of the
Conference on Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA,
USA, January 29-31, 2019. ACM, pp. 220–229, 2019.

On the State of German (Abstractive) Text Summarization 217

https://may.la/blog/2022/02/23/anomalies-in-the-mlsum-dataset/
https://may.la/blog/2022/02/23/anomalies-in-the-mlsum-dataset/

24 Dennis Aumiller, Jing Fan, Michael Gertz

[MT04] Mihalcea, Rada; Tarau, Paul: TextRank: Bringing Order into Text. In: Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Barcelona, Spain, pp. 404–411, July 2004.

[Na21] Nan, Feng; Nogueira dos Santos, Cicero; Zhu, Henghui; Ng, Patrick; McKeown, Kath-
leen; Nallapati, Ramesh; Zhang, Dejiao; Wang, Zhiguo; Arnold, Andrew O.; Xiang, Bing:
Improving Factual Consistency of Abstractive Summarization via Question Answering.
In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers). Association for Computational Linguistics, Online, pp. 6881–6894,
August 2021.

[NCL18] Narayan, Shashi; Cohen, Shay B.; Lapata, Mirella: Don’t Give Me the Details, Just the
Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, Brussels, Belgium, pp. 1797–1807,
October-November 2018.

[Ni19] Nitsche, Matthias: Towards German Abstractive Text Summarization using Deep Learn-
ing. Master’s thesis, Hochschule für angewandte Wissenschaften Hamburg, 2019.

[NZZ17] Nallapati, Ramesh; Zhai, Feifei; Zhou, Bowen: Summarunner: A recurrent neural network
based sequence model for extractive summarization of documents. In: Proceedings of
the AAAI Conference on Artificial Intelligence. volume 31, 2017.

[PBL21] Perez-Beltrachini, Laura; Lapata, Mirella: Models and Datasets for Cross-Lingual Sum-
marisation. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Punta Cana, Domini-
can Republic, pp. 9408–9423, November 2021.

[PC20] Paraschiv, Andrei; Cercel, Dumitru-Clementin: UPB at GermEval-2020 Task 3: Assess-
ing Summaries for German Texts using BERTScore and Sentence-BERT. In (Ebling,
Sarah; Tuggener, Don; Hürlimann, Manuela; Cieliebak, Mark; Volk, Martin, eds): Pro-
ceedings of the 5th Swiss Text Analytics Conference and the 16th Conference on Natural
Language Processing, SwissText/KONVENS 2020, Zurich, Switzerland, June 23-25,
2020. volume 2624 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.

[PM19] Parida, Shantipriya; Motlícek, Petr: Idiap Abstract Text Summarization System for Ger-
man Text Summarization Task. In (Cieliebak, Mark; Tuggener, Don; Benites, Fernando,
eds): Proceedings of the 4th Swiss Text Analytics Conference, SwissText 2019, Win-
terthur, Switzerland, June 18-19, 2019. volume 2458 of CEUR Workshop Proceedings.
CEUR-WS.org, 2019.

[PZL22] Phang, Jason; Zhao, Yao; Liu, Peter J: Investigating Efficiently Extending Transformers
for Long Input Summarization. arXiv preprint arXiv:2208.04347, 2022.

[Ra20] Raffel, Colin; Shazeer, Noam; Roberts, Adam; Lee, Katherine; Narang, Sharan; Matena,
Michael; Zhou, Yanqi; Li, Wei; Liu, Peter J.: Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

[Re00] Reithinger, Norbert; Kipp, Michael; Engel, Ralf; Alexandersson, Jan: Summarizing
Multilingual Spoken Negotiation Dialogues. In: Proceedings of the 38th Annual Meet-
ing of the Association for Computational Linguistics. Association for Computational
Linguistics, Hong Kong, pp. 310–317, October 2000.

218 Dennis Aumiller, Jing Fan, Michael Gertz

On the State of German (Abstractive) Text Summarization 25

[RG19] Reimers, Nils; Gurevych, Iryna: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics,
Hong Kong, China, pp. 3982–3992, November 2019.

[RG20] Reimers, Nils; Gurevych, Iryna: Making Monolingual Sentence Embeddings Multilingual
using Knowledge Distillation. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, pp. 4512–4525, November 2020.

[Sc20] Scialom, Thomas; Dray, Paul-Alexis; Lamprier, Sylvain; Piwowarski, Benjamin; Staiano,
Jacopo: MLSUM: The Multilingual Summarization Corpus. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Online, pp. 8051–8067, November 2020.

[SDP20] Sellam, Thibault; Das, Dipanjan; Parikh, Ankur: BLEURT: Learning Robust Metrics
for Text Generation. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online, pp.
7881–7892, July 2020.

[SJ97] Sparck Jones, Karen: Summarising: Where are we now? Where should we go? In:
Intelligent Scalable Text Summarization. 1997.

[SVL14] Sutskever, Ilya; Vinyals, Oriol; Le, Quoc V.: Sequence to Sequence Learning with Neural
Networks. In (Ghahramani, Zoubin; Welling, Max; Cortes, Corinna; Lawrence, Neil D.;
Weinberger, Kilian Q., eds): Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. pp. 3104–3112, 2014.

[tHKdR20] ter Hoeve, Maartje; Kiseleva, Julia; de Rijke, Maarten: What Makes a Good Summary?
Reconsidering the Focus of Automatic Summarization. CoRR, abs/2012.07619, 2020.

[Ur22] Urlana, Ashok; Surange, Nirmal; Baswani, Pavan; Ravva, Priyanka; Shrivastava, Manish:
TeSum: Human-Generated Abstractive Summarization Corpus for Telugu. In: Pro-
ceedings of the Language Resources and Evaluation Conference. European Language
Resources Association, Marseille, France, pp. 5712–5722, June 2022.

[Va17] Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez,
Aidan N.; Kaiser, Lukasz; Polosukhin, Illia: Attention is All you Need. In (Guyon,
Isabelle; von Luxburg, Ulrike; Bengio, Samy; Wallach, Hanna M.; Fergus, Rob; Vish-
wanathan, S. V. N.; Garnett, Roman, eds): Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA. pp. 5998–6008, 2017.

[Ve19] Venzin, Valentin; Deriu, Jan; Orel, Didier; Cieliebak, Mark: Fact-aware Abstractive
Text Summarization using a Pointer-Generator Network. In (Cieliebak, Mark; Tuggener,
Don; Benites, Fernando, eds): Proceedings of the 4th Swiss Text Analytics Conference,
SwissText 2019, Winterthur, Switzerland, June 18-19, 2019. volume 2458 of CEUR
Workshop Proceedings. CEUR-WS.org, 2019.

[VS21] Varab, Daniel; Schluter, Natalie: MassiveSumm: a very large-scale, very multilingual,
news summarisation dataset. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
Punta Cana, Dominican Republic, pp. 10150–10161, November 2021.

On the State of German (Abstractive) Text Summarization 219

26 Dennis Aumiller, Jing Fan, Michael Gertz

[WF17] Weissweiler, Leonie; Fraser, Alexander: Developing a Stemmer for German Based on
a Comparative Analysis of Publicly Available Stemmers. In (Rehm, Georg; Declerck,
Thierry, eds): Language Technologies for the Challenges of the Digital Age - 27th Interna-
tional Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017, Proceedings.
volume 10713 of Lecture Notes in Computer Science. Springer, pp. 81–94, 2017.

[Wo20] Wolf, Thomas; Debut, Lysandre; Sanh, Victor; Chaumond, Julien; Delangue, Clement;
Moi, Anthony; Cistac, Pierric; Rault, Tim; Louf, Remi; Funtowicz, Morgan; Davison,
Joe; Shleifer, Sam; von Platen, Patrick; Ma, Clara; Jernite, Yacine; Plu, Julien; Xu,
Canwen; Le Scao, Teven; Gugger, Sylvain; Drame, Mariama; Lhoest, Quentin; Rush,
Alexander: Transformers: State-of-the-Art Natural Language Processing. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Association for Computational Linguistics, Online, pp. 38–45, October
2020.

[Xu21] Xue, Linting; Constant, Noah; Roberts, Adam; Kale, Mihir; Al-Rfou, Rami; Siddhant,
Aditya; Barua, Aditya; Raffel, Colin: mT5: A Massively Multilingual Pre-trained Text-
to-Text Transformer. In (Toutanova, Kristina; Rumshisky, Anna; Zettlemoyer, Luke;
Hakkani-Tür, Dilek; Beltagy, Iz; Bethard, Steven; Cotterell, Ryan; Chakraborty, Tanmoy;
Zhou, Yichao, eds): Proceedings of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021. Association for Computational Linguistics,
pp. 483–498, 2021.

[Zh19] Zhong, Ming; Wang, Danqing; Liu, Pengfei; Qiu, Xipeng; Huang, Xuanjing: A Closer
Look at Data Bias in Neural Extractive Summarization Models. In: Proceedings of the
2nd Workshop on New Frontiers in Summarization. Association for Computational
Linguistics, Hong Kong, China, pp. 80–89, November 2019.

[Zh20] Zhang, Tianyi; Kishore, Varsha; Wu, Felix; Weinberger, Kilian Q.; Artzi, Yoav:
BERTScore: Evaluating Text Generation with BERT. In: 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[Zh21a] Zhu, Chenguang; Hinthorn, William; Xu, Ruochen; Zeng, Qingkai; Zeng, Michael;
Huang, Xuedong; Jiang, Meng: Enhancing Factual Consistency of Abstractive Summa-
rization. In: Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Association
for Computational Linguistics, Online, pp. 718–733, June 2021.

[Zh21b] Zhu, Chenguang; Yang, Ziyi; Gmyr, Robert; Zeng, Michael; Huang, Xuedong: Leveraging
Lead Bias for Zero-shot Abstractive News Summarization. In (Diaz, Fernando; Shah,
Chirag; Suel, Torsten; Castells, Pablo; Jones, Rosie; Sakai, Tetsuya, eds): SIGIR ’21: The
44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, Canada, July 11-15, 2021. ACM, pp. 1462–1471, 2021.

[Zo18] Zopf, Markus: Auto-hMDS: Automatic Construction of a Large Heterogeneous Mul-
tilingual Multi-Document Summarization Corpus. In: Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018). Euro-
pean Language Resources Association (ELRA), Miyazaki, Japan, May 2018.

220 Dennis Aumiller, Jing Fan, Michael Gertz

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Detection of Generated Text Reviews by Leveraging Methods
from Authorship Attribution: Predictive Performance vs.
Resourcefulness

Manfred Moosleitner1, Günther Specht1, Eva Zangerle1

Abstract: Textual reviews are an integral part of online shopping, provided the reviews are authentic.
To this end, pre-trained large language models have been shown to generate convincing text reviews
at scale. Therefore, a critical task is the automatic detection of reviews not composed by humans.
State-of-the-art approaches to detect generated texts use pre-trained large language models, which
exhibit hefty hardware requirements to run and fine-tune. Previous work has shown that texts generated
by the same language model show a coherent writing style. We propose to leverage this property
to identify whether a text was indeed automatically generated. In this paper, we investigate the
performance of features prominently used for authorship attribution, using classifiers with substantially
lower computational resource requirements. We show that features and methods from authorship
attribution can be successfully applied for the task of detecting generated text reviews, leveraging the
consistent writing style exhibited by large language models like GPT-2. We argue that our approach
achieves similar performance as state-of-the-art approaches while providing shorter training times
and lower hardware requirements, necessary for, e.g., ad-hoc detection tasks.

Keywords: Text Classification, Stylometric Text Features, Generated Text Detection

1 Introduction

User-created reviews are often available on online e-commerce platforms. Such reviews
allow users to express their satisfaction or disappointment with products or services in the
form of numeric ratings or written text reviews. While user ratings provide a quantitative
view of user experiences, text reviews allow for providing a more detailed report about
the perceived quality of the product or service. Such reviews may inform other users in
the process of comparing products, finding viable alternatives, or eventually, purchasing a
product. However, this assumes that reviews are authentic and not fictitious and therefore,
fake. Fake reviews can be a threat to businesses [La12, LSV16, LZ16], regardless of whether
a counterfeit review is written by a human or generated with the help of an algorithm.

Recently, machine learning approaches like pre-trained large language models (LLM), such
as BERT [De18] or GPT-2 [Ra19], are prevalent in many natural language processing
and text generation tasks. To this end, GPT-2 was used to generate convincing text
reviews [Ip20, Sa22], substantiating that we need to findways to differentiate between human-
written and algorithmically generated texts. Ott et al. [Ot11] investigated differentiating
1 Universität Innsbruck, Department of Computer Science, Austria; firstname.lastname@uibk.ac.at

cba doi:10.18420/BTW2023-11

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 221

mailto:firstname.lastname@uibk.ac.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-11

2 Moosleitner et al.

between genuine and fabricated human-written reviews based on psycho-linguistic, lexical
and n-gram features. They used these features and trained a Naïve Bayes and a linear Support
Vector Machine as classifiers. Notably, in their evaluation, they also show that automated
classification achieves better results than human judges. Ippolito et al. [Ip20] show that a large
BERT model, fine-tuned for classification, can classify texts as either machine-generated or
written by a human with an accuracy of up to 0.88, but also note less diversity for words
used, due to preferably choosing words with a higher likelihood from the prevailing word
distribution. Shahid et al. [Sh17] argue that if texts are generated by the same algorithm,
these texts share the same author. Along these lines, we propose formulating the task of fake
review detection as an authorship attribution task. Therefore, we leverage stylometric text
features prominently used in the field of authorship attribution [Zl18, St21, TMS19, MS22]
to detect text reviews that are generated by an LLM. Our contributions can be summarized
as follows: (1) We propose modeling the task of detecting generated text reviews as an
authorship attribution task. (2) We investigate and compare the performance of different
stylometric text features and state-of-the-art authorship attribution approaches. (3) We show
that Support Vector Machines and Decision Trees achieve predictive performance (F1,
precision, recall) comparable to those of LLM-based classifiers while having much lower
requirements in terms of training time and hardware requirements. Particularly given the
recent trend towards greener IT and more energy-efficient computing [Mu08], we argue
that this is a pivotal dimension that needs to be considered when evaluating and comparing
potential approaches. (4) To ensure reproducibility, we publish the code of our experiments
and analysis at https://git.uibk.ac.at/c7031305/btw23_textreviewdetection.

2 Related Work

Ott et al. [Ot11] used part-of-speech (POS) tags, psycholinguistic and statistical text features,
and 𝑛-grams to differentiate if human written reviews are genuine or fictive. They used 400
genuine reviews from Tripadvisor and 400 fabricated reviews, created by crowd workers.
The authors used classifiers based on Naive Bayes, and on Support Vector Machines
(SVM). Shahid et al. [Sh17] aim to separate Wikipedia articles and texts generated by
content-spinning tools, using said articles as seed documents, by using an SVM-based
classifier. They employed an assortment of stylometric features like 𝑛-grams, vocabulary
richness, readability, and others. Salminen et al. [Sa22] evaluated the predictive performance
of a RoBERTa [Li19] based model, a GPT-2 based model2, and an SVM based classifier.
They created a balanced data set, consisting of approximately 40,000 text reviews, based on
the Amazon Customer Review data set3. From the ten most occurring product categories in
this data set, they sampled customer reviews to fine-tune an LLM to generate approximately
20,000 artificial text reviews. The authors additionally drew roughly 20,000 reviews from
the Amazon data set as reviews written by humans.

2 https://github.com/openai/gpt-2-output-dataset/blob/master/detection.md

3 https://s3.amazonaws.com/amazon-reviews-pds/readme.html

222 Manfred Moosleitner, Günther Specht, Eva Zangerle

https://git.uibk.ac.at/c7031305/btw23_textreviewdetection
https://github.com/openai/gpt-2-output-data set/blob/master/detection.md
https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 3

Shahid et al. [Sh17] note that the seed documents and the generated texts differ in the way
the texts are composed (i.e., their grammatical structure). Therefore, methods and features
from the field of authorship attribution and plagiarism detection should be able to catch these
differences. Zlatkova et al. [Zl18] proposed to use various frequencies on word and sentence
level, lexical richness, readability metrics, and other features. They reached first place in the
multi-author analysis shared challenge at the PAN4 workshop in 2018. Strøm [St21] used a
similar configuration for this challenge in 2021, reaching high performance in this authorship
attribution task. Murauer et al. [MS22] proposed Dependency Tree-grams (DT-grams) for
the task of authorship attribution. DT-grams capture the writing style of authors by using
the grammatical structure of sentences. Substructures, extracted from the dependency trees,
are used to represent the grammatical style of the text and author.

In this work, we put our focus on identifying whether a reviewwas written by a human, or was
generated by an LLM. Along the lines of Shahid et al. [Sh17], we argue that texts originating
from the same language model share the same author, which in turn should exhibit a similar
writing style across all generated texts. Therefore, contrary to previous works, we model
the task of detecting whether a review was manually written or automatically generated as
an authorship attribution problem. We particularly investigate the use of state-of-the-art
authorship attribution models to the task and particularly investigate the feature sets by
Zlatkova [Zl18]/Strøm [St21], and Murauer et al. [MS22].

3 Methodology

In the following, we first detail the different features employed and subsequently, describe
the experimental setup used for the evaluation.

3.1 Features

The main goal of this work is to investigate generated review detection by leveraging features
and models from the field of authorship attribution. Therefore, we rely on features that have
been shown to capture the writing style of authors well for authorship attribution tasks,
specifically in the sub-tasks of style change detection [Zl18, St21], intrinsic plagiarism
detection [TMS19], and cross-language authorship attribution [MS22], leveraging the
consistent writing style exhibited by texts generated by LLMs [Sh17, Ip20]. As baselines, we
rely on word and character n-grams for comparison, along the lines of previous work [JL08,
Ot11, Sh17]. We propose three types of features to represent reviews: (1) textfeatures
(frequencies on word, phrase, and sentence level, and readability metrics); (2) dtgrams
(substructures extracted from dependency trees); and (3) ngrams (word and character
n-grams of varying lengths).

4 https://pan.webis.de/shared-tasks.html

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 223

https://pan.webis.de/shared-tasks.html

4 Moosleitner et al.

As textfeatures, we use the same collection of features as Zlatkova et al. [Zl18] and
Strøm [St21] to represent thewriting styles of the corresponding authors. Our implementation
is based on the work by Strøm5, in which the following five feature sets are extracted from
the text reviews: (1) count metrics (for instance, number of sentences and words, count of
English POS tags, capitalized words, and others); (2) number of occurrences of function
words and function phrases; (3) the number of uses of digits (0, 1, ..., 9) and their alphabetical
counterpart (zero, one,..., nine), use of UK English (e.g., colour) and US English words (e.g.,
color), and the use of contractions and non-contractions; (4) the frequency of punctuation
marks and other special characters; and (5) nine readability metrics (e.g., Flesch reading
ease [Fl48]). This provides us with a total number of 487 features. For the dtgrams features,
we rely on dependency-tree-based features, aiming to find texts that are composed with a
similar grammatical style, therefore, attributing it to the generating LLM as the single author.
In the following, we briefly introduce DT-grams. At first, we create the dependency tree for
a given sentence (cf. Figure 1 for an example tree of the sentence “The quick brown fox
jumped over the lazy dog.”). In the resulting tree, each node holds the English POS tag for
the corresponding word. Next, specific substructures of the tree are grouped together, where
the substructures can be of different shapes. For our work, we used the shape of pq-grams
with 𝑝 = 2 and 𝑞 = 3, which means that we use the parent-child relation of two nodes
(“jumped” and “dog” as one example from Figure 1) and three sibling nodes (“over”, “the”,
and “lazy” as one example from Figure 1). In the next step, the DT-grams are constructed
using a sliding window, similar to n-grams. Here the grouped substructures are traversed
(from parent to child, and siblings from left to right) and their corresponding POS tags are
concatenated using the underscore as delimiter and the asterisk for when nodes are absent in
the sliding window. The sentence in the given example results in a total of 18 strings, with
“VBD_NN_IN_DT_JJ” being an example with no absent node and “VBD_NN_*_*_IN”
being an example with absent nodes.

VBD
jumped

NN
fox

DT
The

JJ
quick

JJ
brown

NN
dog

IN
over

DT
the

JJ
lazy

.

.

Fig. 1: Tree representation for the given sentence, based on the dependency tree. In each node, we
display the word and its corresponding POS tags. Highlighted in blue is the parent-child relationship
between jumped and dog, and marked in red is the sibling relationship between over, the, and lazy.
Here, “VBD_NN_IN_DT_JJ” and “VBD_NN_*_*_IN” are two examples of the 18 dtgrams.

For the calculation of the dt-grams, we used two Python libraries fromMurauer et al. [MS22]:

5 https://github.com/eivistr/pan21-style-change-detection-stacking-ensemble

224 Manfred Moosleitner, Günther Specht, Eva Zangerle

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 5

tuhlbox6 parses the texts and calculates the dependency trees using the Python library
Stanza [Qi20] from the Stanford NLP group, and treegrams 7, is used to extract the dt-grams
from these dependency trees. For the n-grams feature set and as a baseline, we employ word
and character n-gram TF-IDF vectors, using the scikit-learn library8. We utilized similar
parameters for the vectorization as [Zl18, St21], further details are given in Section 3.2.

3.2 Experimental Setup

We evaluated the classification performance of the proposed approach in multiple experi-
ments. Specifically, we employed stratified ten-fold cross-validation and used F1, precision,
and recall, as evaluation metrics. For the binary classification, the generated reviews were
used as the positive class. Furthermore, we also measured classification runtimes and
memory usage to compare the efficiency and required resources for each of the feature sets
and classifiers. Memory usage was recorded using the Python library memory-profiler; the
experiments were executed on a general-purpose processor.

3.2.1 Dataset

We relied on the data set provided by Salminen et al. [Sa22] for the evaluations. The data set is
balanced in the amount of original and generated text reviews, featuring approximately 20,000
text reviews per class. We computed all features proposed and normalized them by removing
the mean and scaling the values to unit variance (using scikit-learn’s StandardScaler).

rating class text

1 CG Editor was too busy watching “Duck Dynasty” and not paying attention to his work!!!

5 CG I loved this book. The characters were believable and the plot was interesting.
I really enjoyed this book

1 OR Just a bit strange and different for me. Probably excellent for others.

5 OR A truly riveting page turner. All three in the series were fantastic.

Tab. 1: Example reviews from the category Book_5 for the classes Computer Generated (CG) and
Original Review (OR), one with the highest and lowest rating each.

3.2.2 Classification Algorithms and Evaluation Strategy

For the classification, we rely on five established classifiers: Support Vector Machine (SVM)
with linear kernel, SVM with Radial Basis Function kernel, k-Nearest Neighbor (kNN),

6 https://pypi.org/project/tuhlbox/

7 https://pypi.org/project/treegrams/

8 https://scikit-learn.org/

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 225

https://pypi.org/project/tuhlbox/
https://pypi.org/project/treegrams/
https://scikit-learn.org/

6 Moosleitner et al.

Gradient Boosting Decision Tree (gbdt), and Random Forest (rf). For the two SVM-based
and the kNN-based classifiers, we used the corresponding scikit-learn implementations.
For the tree-based classifiers, we utilized the gradient boosting framework LightGBM9.
Following the example of Strøm[St21], we also used the hyperparameter optimization
framework Optuna10 to efficiently tune the hyperparameters for gbdt. The hyperparameters
for the SVM-based classifiers were optimized using a grid-search approach.

This optimized hyperparameters11 were then used for the final set of experiments, where all
the necessary data and results were collected. Since we used the data set from Salminen et
al. [Sa22], we reproduced their setup using a basic RoBERTa [Li19] model and added it
as a state-of-the-art baseline to our experiments. As a more lightweight LLM, we added a
DistilBERT [Sa19] model to the list of classifiers.

Furthermore, we tested the values for F1, precision, and recall, per ten-fold cross-validation,
for normal distribution by performing a Shapiro-Wilk [SW65] test. This showed 𝑝 > .05
for all cases, therefore, we assume that the determined results all stem from a normal
distribution. This allowed us to perform statistical significance tests using paired t-tests,
where the pairs were built within feature set and also within classifier.

3.2.3 Preliminary Experiments

In preliminary experiments, we conducted a coarse grid search for the classifiers. Regarding
the feature set ngrams, the texts were used as input without any further pre-processing. The
following parameters were supplied with the stated values: maximum number of n-grams
(5,000, 25,000, no limit), word and character n-grams, range of n-grams (uni- to six-grams).
The classifier hyperparameters used for the grid search are shown in Table 2.

linear SVM C: 0.1, 1.0, 10; dual: False; tol: 0.001

rbf SVM C: 0.1, 1.0, 10; kernel: rbf; tol: 0.001

kNN n_neighbors: 5, 40, 100

gbdt & rf objective: binary
learning_rate: 0.1, 0.01, 0.001, 0.0001, 0.00001
bagging_freq: 40; bagging_fraction: 0.85

Tab. 2: Hyperparameters used for the initial grid search.

These experiments showed that the linear SVM, the SVM with a radial basis function
kernel, and the Gradient-boosted decision tree constantly outperformed kNN and Random
Forest classifiers. Therefore, we excluded kNN and Random Forest classifiers from further
experiments.

9 https://github.com/microsoft/LightGBM

10 https://optuna.org/

11 Details can be found at https://git.uibk.ac.at/c7031305/btw23_textreviewdetection

226 Manfred Moosleitner, Günther Specht, Eva Zangerle

https://github.com/microsoft/LightGBM
https://optuna.org/
https://git.uibk.ac.at/c7031305/btw23_textreviewdetection

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 7

Likewise, we also experimented with different ranges for n-grams, using word and/or
character n-grams, and the maximum number of features. Again, we performed a grid-
search approach to get the individual F1-scores for word and character uni- to six-grams,
varying values of 5,000, 25,000, 50,000, and unlimited number of maximum features.
The results have shown that character four-, five-, and six-grams performed best with all
three classifiers. Regarding the maximum number of features, the SVM with radial basis
function kernel performed best with a limit of 25,000 features, while the linear SVM and
the Gradient-boosted decision tree performed best without limiting the number of features.

Based on the findings of these preliminary experiments, we performed a final optimization
of the hyperparameters for the classification algorithms. Both SVM variants were tuned
again using a grid-search approach, to find the best-performing value for the regularization
parameter. For the SVM with radial basis function kernel, a value of 10 showed the best
performance across the three feature sets. Regarding the linear SVM, a value 0.1 performed
best for the feature set dtgrams, and 0.001 for the feature sets textfeatures and ngrams.

4 Experimental Results

Based on the collected predictions and measurements from our experiments, we compared
the performance of the combinations of the feature sets with classifiers, in terms of prediction,
runtime, and memory consumption.

4.1 Predictive Performance

We present the average F1, precision, and recall from the stratified ten-fold cross-validations
per feature set for the three classification algorithms and the two LLMs in Table 3.

For the textfeatures feature set, the gradient-boosted decision tree achieved the highest
performance with an F1-score of 90.83%, followed by the SVM with radial basis function
kernel and the linear SVM with a slightly lower performance (89.46% and 89.04%,
respectively). The best performance for the feature set dtgrams was achieved by the SVM
with radial basis function kernel with an F1-score of 91.86%. Here, the F1-score of the linear
SVM achieved a 1.85% and the Gradient-boosted decision tree a 2.82% lower F1-score. For
the ngrams feature set, the SVM with radial basis function kernel obtained an F1-score of
95.45%. This outperformed the F1-scores of the other two classifiers, with the linear SVM
achieving a 1.35% and the gradient-boosted decision tree a 2.16% lower F1-score.

The results of the paired t-tests within the evaluated feature sets and classifiers showed
𝑝 < .05 for all pairs. The paired t-test with the results of RoBERTa and DistilBERT also
showed 𝑝 < .05. We also compared the results of the best non-LLM model with the
RoBERTa model in a paired t-test, which also showed significant differences (𝑝 < .05).

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 227

8 Moosleitner et al.

linear SVM SVM rbf GBDT
` 𝜎 ` 𝜎 ` 𝜎

F 1
textfeatures 0.8904 0.0037 0.8946 0.0044 0.9083 0.0027
dtgrams 0.9028 0.0036 0.9186 0.0042 0.8904 0.0046
ngrams 0.9410 0.0039 0.9545 0.0019 0.9329 0.0039
RoBERTa 0.9794 0.0027
DistilBERT 0.9670 0.0035

PR
EC
IS
IO
N textfeatures 0.9011 0.0050 0.8910 0.0056 0.9078 0.0053

dtgrams 0.8765 0.0044 0.8998 0.0054 0.8832 0.0060
ngrams 0.9639 0.0034 0.9446 0.0020 0.9244 0.0050
RoBERTa 0.9946 0.0015
DistilBERT 0.9882 0.0022

R
EC
A
LL

textfeatures 0.8799 0.0053 0.8982 0.0053 0.9089 0.0037
dtgrams 0.9308 0.0066 0.9384 0.0052 0.8977 0.0091
ngrams 0.9193 0.0078 0.9646 0.0039 0.9415 0.0054
RoBERTa 0.9647 0.0055
DistilBERT 0.9466 0.0065

Tab. 3: Mean and standard deviation for F1, precision, and recall over the values from the ten-fold
cross-validation. Results are reported per classifier per feature set. The best results for the non-LLM
and LLM approaches are marked in boldface.

From these results, we conclude that RoBERTa, as expected, achieves the best F1-scores
regarding the predictive performance. The proposed text features, on the other hand, achieve
only slightly lower F1-scores, with the best classifier achieving a less than 2% lower F1-score.
However, we argue that the differences are subtle and, as we will show in the following
experiments, the non-LLM approaches are able to outperform RoBERTa w.r.t. resource
consumption and runtime.

4.2 Runtime Performance

Given the ever-increasing need for more energy-efficient computation, another important
aspect is the runtime performance of the different approaches. We analyzed the time needed
to fit the algorithms on average for the ten-fold cross-validation. All the experiments
regarding runtime were conducted on the same virtual machine (Debian GNU/Linux 10
(buster) OS with 12 cores and 128GiB of memory). We utilize the grid-search functionality
of scikit-learn. We present the average time to fit a classifier and the corresponding standard
deviation in Table 4. The reported runtimes for ngrams, RoBERTa, and DistilBERT, include
the time to convert the text reviews into their respective representations. The feature sets
textfeatures and dtgrams were pre-computed, with a runtime of ≈ 380 seconds for the former
and 73439.468 seconds for the latter.

The time to fit the models increases with the number of features, with the exception of the
linear SVM when trained with ngrams. This constellation was about 2.4 times faster than

228 Manfred Moosleitner, Günther Specht, Eva Zangerle

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 9

linear SVM SVM rbf GBDT
` 𝜎 ` 𝜎 ` 𝜎

textfeatures 357.69s 54.09s 1,259.42s 107.04s 54.59s 2.17s
dtgrams 490.26s 52.40s 4,020.95s 145.32s 2,135.30s 145.16s
ngrams 146.29s 26.00s 17,605.94s 439.07s 9,695.23s 137.98s

RoBERTa 28149.44s 243.10s
DistilBERT 8293,96s 104.49s

Tab. 4: Average (`) and standard deviation (𝜎) of the measured runtimes in seconds per classifier per
feature set over the ten-fold cross-validation. The best values per feature set are marked in boldface.

when paired with textfeatures, and about 3.3 times faster when using dtgrams. Most notable
are the runtimes for the gradient-boosting decision tree with textfeatures, the SVM with
radial basis function kernel and ngrams, and RoBERTa. The first two displayed the shortest
and the longest mean time to fit, respectively, from the non-LLM models, and RoBERTa
the overall longest average time to fit. These experiments showed that the proposed simple
approaches clearly outperform RoBERTa.

4.3 Memory Usage

Besides runtime, a second important cornerstone when evaluating and comparing these
methods is theirmemory usage and hence, resource consumption. Particularlywith LLMs, the
amount of memory required has increased substantially. Therefore, we are also interested in
comparing memory usage among the proposed approaches. One run of the final experiments
was used to measure the amount of memory that was allocated during the execution of the
cross-validation (cf. 4). We present the results of these analyses in Table 5. As expected, the
memory profiler reported memory usage numbers for the non-LLM classifiers that are only
a fraction of the memory needed by the RoBERTa model. Particularly, the recorded memory
requirements of RoBERTa are in the range of 245.62 to 778.79 times higher compared to
the non-LLM models with the lowest memory consumption.

SVM linear SVM rbf GBDT

textfeatures 42.516 MiB 17.027 MiB 19.520 MiB
dtgrams 17.301 MiB 16.961 MiB 14.152 MiB
ngrams 13.312 MiB 19.543 MiB 13.910 MiB

RoBERTa 10,364.988 MiB
DistilBERT 4,880.535 MiB

Tab. 5: Memory usage was acquired with cross-validation using the memory profiler.

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 229

10 Moosleitner et al.

4.4 Discussion

RoBERTa achieved the highest F1-scores, followed by ngrams with rbfsvm, and ngrams
with linsvm. When comparing these three, the highest F1-score comes at the price of 1.6
and 192.2 times longer training times, for a difference of 1.8% and 3.15% in F1-score,
respectively. In terms of memory requirements, RoBERTa’s memory usage is about 530
and 778 times higher when compared to rbfsvm with ngrams and linsvm with ngrams.
In comparison, textfeatures with gbdt showed the shortest training time. Compared to
RoBERTa, training times of ngrams with rbfsvm, ngrams with linsvm, and textfeatures with
gbdt, were around 515, 322, and 3 times faster, and with a difference in F1-scores of 6.42%,
4.62%, and 3.27%, respectively. The lowest memory requirement was recorded for ngrams
with linsvm, which was 779 and 1.47 times lower than RoBERTa and ngrams with rbfsvc,
with a difference in F1-score of 3.15% and 1.35%.

Our experiments show it is possible to train classifiers quicker or with lower hardware
requirements while sacrificing at most 6.42% of F1-score, which is still higher than the
performance of human raters [Ot11, Sa22]. Therefore, we argue that the proposed features
borrowed from authorship attribution tasks are a valid option for the task of generated text
detection.

5 Conclusion

We proposed using text features borrowed from the field of authorship attribution for the task
of detecting generated product reviews. Related work suggests that generated texts differ in
writing style, grammatical structure, and the diversity of words used from their input texts.
Therefore, we used statistical textfeatures, features based on dependency-tree-grams, and
𝑛-grams to train a linear Support Vector Machine, a Support Vector Machine with radial
basis function kernel, and a gradient-boosting decision tree as classifiers. We utilized a
balanced dataset to evaluate their predictive performance using F1-score, investigated their
runtimes and memory requirements, also in comparison with a state-of-the-art RoBERTa
LLM model. Our results show that classification algorithms like Support Vector Machines
and Decision Trees can be trained using different stylometric features and achieve F1-scores
that come close to the performance of a basic RoBERTa model. While these non-LLM
models show slightly lower performance, they can reach up to 515 faster training time and
need up to 779 times less memory—two factors that become more and more central when
choosing an approach.

In future work, we aim to investigate the importance and impact of individual features and
extend the experiments to further datasets and text domains.

230 Manfred Moosleitner, Günther Specht, Eva Zangerle

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 11

Bibliography
[De18] Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina: BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805, 2018.

[Fl48] Flesch, Rudolph: A new readability yardstick. Journal of applied psychology, 32(3):221,
1948.

[Ip20] Ippolito, Daphne; Duckworth, Daniel; Callison-Burch, Chris; Eck, Douglas: Automatic
Detection of Generated Text is Easiest when Humans are Fooled. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Online, pp. 1808–1822, July 2020.

[JL08] Jindal, Nitin; Liu, Bing: Opinion Spam and Analysis. In: Proceedings of the 2008
International Conference on Web Search and Data Mining. WSDM ’08, Association for
Computing Machinery, New York, NY, USA, p. 219–230, 2008.

[La12] Lappas, Theodoros: Fake Reviews: The Malicious Perspective. In (Bouma, Gosse; Ittoo,
Ashwin; Métais, Elisabeth; Wortmann, Hans, eds): Natural Language Processing and
Information Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 23–34, 2012.

[Li19] Liu, Yinhan; Ott, Myle; Goyal, Naman; Du, Jingfei; Joshi, Mandar; Chen, Danqi; Levy,
Omer; Lewis, Mike; Zettlemoyer, Luke; Stoyanov, Veselin: RoBERTa: A Robustly Opti-
mized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692, 2019.

[LSV16] Lappas, Theodoros; Sabnis, Gaurav; Valkanas, Georgios: The Impact of Fake Reviews on
Online Visibility: A Vulnerability Assessment of the Hotel Industry. Information Systems
Research, 27(4):940–961, 2016.

[LZ16] Luca, Michael; Zervas, Georgios: Fake It Till You Make It: Reputation, Competition, and
Yelp Review Fraud. Management Science, 62(12):3412–3427, 2016.

[MS22] Murauer, Benjamin; Specht, Günther: DT-grams: Structured Dependency Grammar Stylom-
etry for Cross-Language Authorship Attribution. In: Proceedings of the 32nd GI-Workshop
Grundlagen von Datenbanksysteme (GvDB’21). CEUR-WS.org, Aachen, 2022.

[Mu08] Murugesan, San: Harnessing green IT: Principles and practices. IT professional, 10(1):24–
33, 2008.

[Ot11] Ott, Myle; Choi, Yejin; Cardie, Claire; Hancock, Jeffrey T.: Finding Deceptive Opinion
Spam by Any Stretch of the Imagination. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies - Volume
1. HLT ’11, Association for Computational Linguistics, USA, p. 309–319, 2011.

[Qi20] Qi, Peng; Zhang, Yuhao; Zhang, Yuhui; Bolton, Jason; Manning, Christopher D.: Stanza: A
Python Natural Language Processing Toolkit for Many Human Languages. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. 2020.

[Ra19] Radford, Alec; Wu, Jeffrey; Child, Rewon; Luan, David; Amodei, Dario; Sutskever, Ilya:
Language Models are Unsupervised Multitask Learners. OpenAI blog, 1(8):9, 2019.

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 231

12 Moosleitner et al.

[Sa19] Sanh, Victor; Debut, Lysandre; Chaumond, Julien; Wolf, Thomas: DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

[Sa22] Salminen, Joni; Kandpal, Chandrashekhar; Kamel, Ahmed Mohamed; gyo Jung, Soon;
Jansen, Bernard J.: Creating and Detecting Fake Reviews of Online Products. Journal of
Retailing and Consumer Services, 64:102771, 2022.

[Sh17] Shahid, Usman; Farooqi, Shehroze; Ahmad, Raza; Shafiq, Zubair; Srinivasan, Padmini;
Zaffar, Fareed: Accurate Detection of Automatically Spun Content via Stylometric Analysis.
In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 425–434,
2017.

[St21] Strøm, Eivind: Multi-label Style Change Detection by Solving a Binary Classification
Problem—Notebook for PAN at CLEF 2021. In (Faggioli, Guglielmo; Ferro, Nicola; Joly,
Alexis; Maistro, Maria; Piroi, Florina, eds): CLEF 2021 Labs and Workshops, Notebook
Papers. CEUR-WS.org, Aachen, pp. 2146–2157, 9 2021.

[SW65] Shaphiro, S; Wilk, MBJB: An analysis of variance test for normality. Biometrika,
52(3):591–611, 1965.

[TMS19] Tschuggnall, Michael; Murauer, Benjamin; Specht, Günther: Reduce & Attribute: Two-Step
Authorship Attribution for Large-Scale Problems. In: Proceedings of the 23rd Conference
on Computational Natural Language Learning (CoNLL). Association for Computational
Linguistics, Hong Kong, China, pp. 951–960, November 2019.

[Zl18] Zlatkova,Dimitrina;Kopev,Daniel;Mitov,Kristiyan;Atanasov,Atanas; Hardalov,Momchil;
Koychev, Ivan; Nakov, Preslav: An Ensemble-Rich Multi-Aspect Approach for Robust
Style Change Detection. In (Cappellato, Linda; Ferro, Nicola; Nie, Jian-Yun; Soulier,
Laure, eds): Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum.
CEUR-WS.org, Aachen, 9 2018.

232 Manfred Moosleitner, Günther Specht, Eva Zangerle

Session 3

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Seamless Integration of Parquet Files into Data Processing

Alice Rey1, Michael Freitag1, Thomas Neumann1

Abstract: Relational database systems are still the most powerful tool for data analysis. However, the
steps necessary to bring existing data into the database make them unattractive for data exploration,
especially when the data is stored in data lakes where users often use Parquet files, a binary
column-oriented file format.

This paper presents a fast Parquet framework that tackles these problems without costly ETL steps.
We incrementally collect information during query execution. We create statistics that enhance future
queries. In addition, we split the file into chunks for which we store the data ranges. We call these
synopses. They allow us to skip entire sections in future queries.

We show that these techniques only add a minor overhead to the first query and are of benefit for
future requests. Our evaluation demonstrates that our implementation can achieve comparable results
to database relations and that we can outperform existing systems by up to an order of magnitude.

1 Introduction

Data is stored less and less in relational database management systems (RDBMS) [AAS13;
Al12; Id11; Ka14; Ol17]. Instead, users tend to store large amounts of data in data lakes
with standardized file formats such as Parquet [ASF13]. Nevertheless, the users still expect
the same performance as if the data resides in an RDBMS, which improvised tooling cannot
achieve. Even though database systems are much better suited for data exploration, existing
RDBMSs that support directly querying files still cannot reach the performance of database
relations. They face the problem of not having any insights about the underlying data, which
are crucial for efficient data access and query plan optimizations. Usually, an RDBMS
knows the processed data well since it can collect all sorts of information while the user
loads the data into the database.

Parquet files are one of the most used data structures for storing large amounts of data. Big
companies like Twitter [De13], Netflix [WG17] or Skyscanner [SE19] use it to store large
amounts of data for big data analysis. The column-wise storage format is close to how an
RDBMS with a columnar storage engine would store the data, making the Parquet format a
great candidate for integrating it into a data processing pipeline.

The Parquet file format tries to balance data compression and data access. The format
supports different encoding and compression schemes. Therefore, additional decoding and
1 Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany, {rey,freitagm,neumann}@in.

tum.de

cba doi:10.18420/BTW2023-12

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 235

mailto:{rey,freitagm,neumann}@in.tum.de
mailto:{rey,freitagm,neumann}@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-12

2 Alice Rey, Michael Freitag, Thomas Neumann

decompression steps are required to access the underlying values, which database relations
typically do not have. Furthermore, the Parquet file offers a lot of optional fields such as
the minimum and maximum values or the number of null values, which can be helpful for
query execution. However, since these fields are optional, we cannot rely on them.

Naive file access would be very costly if the dataset resides on a remote server. The lineitem
table with 10 million rows of the TPC-H dataset at scale factor 10 has a total size of 2 GB
when we store it in a Parquet file generated by Spark [ASF14]. When accessed via HTTP,
it would require 16 seconds to download the entire file in a typical local network with a
bandwidth of 1 Gbit/s. If we only require one column, a smart access logic can minimize
the download time to less than 2 seconds. Parquet files allow us to use byte-range requests
to only download required columns. In addition, we also keep structural information about
the data in a fixed number of synopses. We split the file into equally sized chunks and track
the minimum and maximum value of the contained data, which allows us to skip entire
chunks in future queries. Since this technique was already used in previous works under
different names [El13; La16; Mo98; Ol17; Zi17], we chose the generic name synopses. To
keep the computational overhead of these synopses small, we only compute the data ranges
for columns that are currently required. If a user requests additional columns in the future,
the corresponding ranges can be added incrementally.

Most users will switch to more complex analytical queries after an initial exploratory phase,
where a fully-fledged database system with a query optimizer comes in handy. Database
systems usually perform great on complex queries since they have prior knowledge about
the data gathered while copying it into database relations. Since we skip this step, we save
initialization costs and avoid accessing data we would never use. On the other hand, we
lose crucial information that might have helped during future query optimization steps.
Therefore, we take the Parquet view feature one step further by allowing a smooth transition
from exploratory data analysis to more complex analytical queries. We will not add an initial
scan over the Parquet file, but instead, we will collect samples and sketches of the used data
while executing the queries. We do not expect complex operators during the exploratory
phase so that we can accept some slowdown. We then benefit from the information we
gathered during the exploratory phase for later queries. To the best of our knowledge, our
implementation is the first to reach comparable execution times to database relations for
Parquet files with these techniques.

The key contributions of this paper are:

1. A smart access logic for Parquet files that introduces minimal initial overhead to the
query execution time and improves performance over time.

2. An incremental procedure for cheap statistics computation that enhances query
optimization steps for future queries.

3. A remote access strategy that minimizes execution time overhead.

236 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 3

The remainder of this work is structured as follows: We start by briefly explaining the
challenges the Parquet file format introduces to an RDBMS in Sect. 2. Second, in Sect. 3, we
explain the techniques we used to conquer the imposed challenges and how scanning Parquet
files can be integrated into database systems. Third, we perform a detailed evaluation of our
implementation in Umbra [NF20] with different benchmarks (Sect. 4). Finally, we conclude
with some related work in Sect. 5 and summarize the work in Sect. 6.

2 Background

Parquet files are an excellent match for databases that use a column-wise storage format
due to their columnar file format. Nevertheless, Parquet files pose some challenges when
integrating them into query processing. In this section, we will discuss the structure and
versatility of the Parquet format in the first two subsections to understand the need for
certain design decisions. Finally, we conclude the section with the challenges that the file
format introduces.

2.1 Parquet File Format

Parquet stores data in columnar format and is not human-readable in contrast to CSV or
JSON files. Instead, the goal of the Parquet format is to store data as densely as possible.
Fig. 1 (b) shows the basic structure of a Parquet file. The data is first separated into row
groups that split the dataset horizontally. Each row group is then split into column chunks
vertically, storing each column in a separate column chunk. The actual elements of the
column chunk are stored on one or more data pages. Parquet does not enforce the number of
rows which should be stored per row group or page. In addition, the number of rows stored
per page does not need to be synchronized between the column chunks of the same row
group or the same column. In our example, we store the values of x on two pages in the first
row group and on three pages in the second row group. Column y stores the values on four
pages and column z on one page for both row groups.

row group 1

x y z

(b) Parquet file

metadata footer

row group 1 meta data:

column "x" meta data:
num values

first page offset
column index offset
column offset offset

min(x11)
min(x12)
max(x11)
max(x12)

pageOffset(x11)
pageOffset(x12)

page header

definition level

data

column chunks

(a) data page

column offsetrow group 2

x y z
column chunks

column index

Fig. 1: Parquet File Structure

Seamless Integration of Parquet Files into Data Processing 237

4 Alice Rey, Michael Freitag, Thomas Neumann

The schema and data arrangement are stored in the Parquet file’s footer. In our example, we
display the first row group’s metadata of column x. In addition to much other information,
the column chunk has to store the offset of the first page as the starting point. The column
index and column offset data structures, which are usually located close to the metadata
footer, are optional and can be referenced via their offset. The column offset stores the offsets
to all pages of the column chunk, and the column index stores the minimum and maximum
value of each page of the column chunk.

In Fig. 1 (a), we display the general structure of a data page. Each page starts with a page
header that contains the page type, the number of contained values, the used encoding,
and the compression. The page writers we examined used SNAPPY [GG11] as the default
compression format for pages. The most commonly used page encoding we found is
dictionary encoding, where the actual values are stored on a dictionary page, and the data
pages store indices into the dictionary. The number of bits required to store the dictionary
indices depends on the number of elements in the dictionary. The indices are stored in
multiple run-length encoded or bit-packed encode runs. Nevertheless, the encoding can
switch to plain pages if the number of distinct elements exceeds the dictionary size.

Parquet also supports nested data types with the record shredding and assembly algorithm
presented in the Dremel paper [Me10]. Datasets containing nested types violate the first
normal form, which poses a fundamental challenge for any relational database management
system regardless of the specific data storage format [DLN21; Sh99]. Our framework is
able to scan any nesting level. Connecting multiple levels is a problem we consider to
be orthogonal to the objective of this paper. We plan to investigate possible solutions in
future work using our current framework as the base layer. The main idea of the Dremel
algorithm is to use definition and repetition levels to store how many elements belong to
the same parent element and at which level a value is undefined. The definition level is
located below the header and is also relevant for nullable columns. If the column chunk
is nullable, each page keeps a definition level buffer at the beginning of the page, which
stores for each row if it is NULL with run-length and bit-packed-encoded. The rest of the
page contains the actual values. Since the definition level already encodes NULL values,
only non-NULL values are stored in this section. Parquet supports a fixed set of physical
types such as BOOLEAN, INT64, or BYTE_ARRAY. All other types combine a physical type
with a converted type. To store decimal values in a Parquet file, the physical type INT64 is
combined with the converted type DECIMAL. The optional fields precision and scale store
additional information about the type.

2.2 Versatility of Parquet Writers

In the previous section, we described the general structure of a Parquet file. However, the
data in a Parquet file can be spread over the row groups and the pages using any encoding
and compression the writer or user wants. This freedom leads to inhomogeneous files even
though they have the same file format. Our goal is to have a fast Parquet framework that

238 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 5

can achieve good performance independently of the used Parquet writer. Therefore, in this
section, we look at three different Parquet writers to show how much Parquet files differ
even though they store the same data.

Generator Rows per Pages per File Sizes
Row Group Row Group SF1 SF10 SF100

CSV - - 719 MB 7.2 GB 74 GB
Spark 3,000,000 150 192 MB 2.1 GB 20 GB

uncompressed 3,000,000 150 333 MB 3.3 GB 33 GB
DuckDB 100,352 1 281 MB 2.8 GB 28 GB
Arrow 67,108,864 15 - 1800 189 MB 2.0 GB 20 GB

Tab. 1: Parquet Writer Comparison

In Tab. 1, we listed the properties of three different writers: Spark [ASF14], Arrow [ASF16],
and DuckDB [RM19]. To measure their differences, we let each generator write the lineitem
relation of the TPC-H benchmark to a Parquet file for the scale factors 1, 10, and 100. Apart
from the size of the generated Parquet files, we listed the size of the underlying CSV file
created by the TPC-H generator to show the compression ratios that the different writers
achieve. The lineitem relation contains 6 million rows times the respective scale factor. We
also included a version where we force Spark not to use any compression to measure the
benefit of page-level compression with SNAPPY.

For each generator, we measure the number of rows and the number of pages that are
stored per row group. The Spark and DuckDB Parquet writers store a fixed number of
elements per page and a fixed number of pages per row group. Since Parquet does not force
synchronization between the column chunks, there are writers such as Arrow that do not
store the same number of elements per page. Arrow uses a fixed data page size between
roughly 0.5MB and 1 MB. For DuckDB and Spark, the page sizes vary from 0.5 MB
to 6 MB. Out of all three writers, DuckDB has the worst compression ratio of 2.6. The
major difference between DuckDB and the other two formats is that DuckDB does not use
any encoding for the columns of the lineitem table. Spark and Arrow have a very similar
compression ratio of 3.6. If we force Spark to write the pages uncompressed into the Parquet
file, the resulting file size is less than 20 % bigger than the DuckDB file. Even though we
only cover three different Parquet writers, we have already observed two extremes. DuckDB
and Arrow do not take advantage of the hierarchical data layout: DuckDB will only use one
page per row group, and Arrow stores the entire dataset in one row group for scale factor 1
and 10 since each row group stores 67 million rows.

2.3 Parquet Format Challenges

In the two preceding sections, we pointed out the structure of the Parquet files and their
versatility. We will conclude our preliminary discussion with the format’s challenges on

Seamless Integration of Parquet Files into Data Processing 239

6 Alice Rey, Michael Freitag, Thomas Neumann

the Parquet integration. We highlighted the freedom Parquet writers have in Tab. 1. The
consequence of this freedom is that we cannot assume anything about how the data is
split across the Parquet file hierarchy. Unfortunately, especially for parallel processing, this
freedom makes scanning more difficult. If Parquet, for example, forces all writers to store
the same amount of elements per page for each column, this would allow more optimized
accesses. The elements of one row would all be stored at the same page index and the same
page offset in the different column chunks, at least for non-nullable columns.

Parquet offers a lot of data structures such as the column index that greatly facilitate data
access since we can directly jump to the page that contains the required value. Nevertheless,
a lot of these structures are optional. If the data structure does not exist, we need to access all
preceding page headers to compute the offset of the required page. Parquet’s encoding and
compression techniques can minimize the size of Parquet files. On the other hand, it adds
additional decompression and decoding steps when reading the data. Dictionary encoded
pages use multiple run-length or bitwise encoded runs. Each run stores the number of values
it encodes in its header. If we search for an element at a specific page offset, we have to
access each run to compute the start of the following run until we reach the required offset.

The definition level encoding is another limiting factor. Storing only non-NULL values on
the page helps decrease the overall size of the file. However, if we want to access an element
at a specific page offset, we have to scan the definition level first to count the number of
preceding non-NULL values to get to the actual offset. Some data types stored in Parquet
also introduce additional transformation steps. For example, BYTE_ARRAY elements are
represented as 32 bit values for the length followed by the actual value. We transform these
into fixed-length 16 byte fields in our internal buffer. If the strings are longer than 12 bytes,
we store the size of the string and the first 4 bytes of the value in the upper 8 bytes. The lower
8 bytes contain a pointer that points to the location where the entire string is stored [NF20].

Γ
80.08

1.44 × 105

4.00 38.46

nation
1.00

customer
1.00

orders
1.00

lineitem
1.00

(a) Parquet files

Γ
1.22

2.23

nation
1.00 2.23

customer
2.232.23

orders
1.06

lineitem
1.00

(b) Database relations

Fig. 2: Q-errors of the cardinality estimates of TPC-H query 10 with scale factor 10.

The only statistics available in Parquet files are the cardinality of the contained dataset and
each page’s minimum and maximum values. Unfortunately, the minimum and maximum

240 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 7

values are optional fields, so Parquet writers are not forced to use them. Out of three Parquet
writers we analyzed, only Spark stores minimum and maximum values. These minimum and
maximum values, as well as the cardinality of the datasets, are the only sources available
for performing cardinality estimates. Therefore, we get imprecise results since we do not
know how the data is distributed within the given boundaries. As a consequence, we get
erroneous cardinality estimates and suboptimal query plans.

For efficient query processing, it is necessary to produce optimal query plans independently
of the amount of metadata the Parquet file provides. Since cost-based query optimizers
heavily rely on statistics and samples gathered during table initialization, the optimizer
suffers a lot when these do not exist. In Fig. 2, we visualize the optimized query plans of
TPC-H query 10 based on Parquet files on the left and database relations on the right. For
each operator, the optimizer tries to estimate the resulting cardinalities. The q-error next to
each operator gives us the deviation of the estimates from the actual cardinality [MNS09].
In the case of the Parquet file version, the estimated result cardinality of the join between
orders and lineitem is off by a factor of 38. The q-error gets even worse with the following
join with a factor of 144 thousand, which is the reason for the suboptimal query plan for the
Parquet files. This shows how crucial a good cardinality estimate is for a Parquet scan to be
an acceptable alternative to database relations. The Parquet scan cannot get close to the
execution times of database relations as long as the query optimizer cannot choose the same
query plans for the Parquet files.

3 Integrating Parquet Files into Query Processing

We now explain the different techniques for integrating Parquet files seamlessly into a query
processing pipeline. We tackle their complex structure, versatility, and lack of metadata
described in the previous section. We propose a parallelization technique with stable
performance, independently of how the data is distributed over the Parquet file hierarchy. In
addition, we minimize the amount of data we have to access, which is especially beneficial
for remote files. Thirdly, we present a technique for collecting information about the dataset
that benefits future queries without notably sacrificing the execution time of the currently
executed query.

Figure 3 describes the concept of how future queries can benefit from information gathered
in preceding scans. We visualize a simplified execution of three different queries, executed
sequentially from left to right. All three queries access the same Parquet file during the
Parquet Scan phase. The Parquet file is split into four row groups (r1, r2, r3, r4) and contains
three columns, namely x, y, and z. Throughout the three queries, we incrementally collect
information about the Parquet file. In the statistics we store HyperLogLog [Fl07] sketches to
estimate the distinct values. We also keep a small set of rows as a sample for multi-column
estimates and predicate selectivity estimates [FN19]. The synopses store the minimum and
maximum value of each column chunk for each row group. To limit the required space of
synopses, the user can choose an upper limit for synopses. If we have more row groups

Seamless Integration of Parquet Files into Data Processing 241

8 Alice Rey, Michael Freitag, Thomas Neumann

than synopses, multiple row groups are grouped into one synopsis. With the help of the
statistics, further queries can choose better query plans during the query optimization phase.
The synopses can be used in future queries to skip the row groups that do not meet the
restrictions of the queries. This is only applicable if the data in the Parquet file is implicitly
clustered, which is often the case in real-world datasets [Mo98; Vo18].

Query Optimizer

Q1

Parquet Scan (x,z)

Result

r1, r2, r3, r4

Statistics

Synopses

x

z

x

z
Query Optimizer

Q2

Parquet Scan (x,y)

Result

r1, r2, r3, r4

Statistics

Synopses

x

y

z

x

y

z
Query Optimizer

Q3

Parquet Scan (z)

Result

r1, r2

Fig. 3: Sequential execution of three queries (Q1, Q2, Q3) with the incremental computation of
synopses and statistics for the accessed Parquet file.

The first query (Q1) in Figure 3 requires the columns x and z. We do not have any prior
knowledge about the Parquet file during the query optimization phase, which we could
consider. Therefore, we most likely end up with a suboptimal query plan. During the Parquet
scan, we will access the column chunks of x and z of all row groups. We store statistics
about those two columns and leave space between them for the second column y. We also
track the data ranges of all four row groups for both requested columns and store them in
the synopses. The next query (Q2) requests the columns x and y. The query optimizer can
consider the statistics for column x that we gathered during the first query, which will help
select a better query plan. While scanning the Parquet file for the second query, we will
gather information about the column y, which we can use to fill in the gap in the statistics
and the synopses.

Since Q1 and Q2 cover all columns, any following query will not have to compute any
statistics or synopses. For query 3 that requests column z, the query optimizer can work
with the statistics and develop a cost-optimized query plan as it could for any database
relation. During the Parquet Scan phase, we can take advantage of the synopses. Query 3
restricts column z. Since we know the minimum and maximum values, we can check if the
requested range and the row group range overlap for each row group. In the case of the third
and fourth row groups, the ranges do not overlap. For this reason, we will only process the
first and second row groups, which we reference with r1 and r2 in Figure 3. Query 2 cannot
take advantage of the synopses yet, since we still need to gather information about column
chunk y while executing that query. To compute correct statistics for column y, we need to
consider all row groups of that column.

To achieve stable parallelization over the Parquet file, we looked at different possible ways
of splitting the Parquet file, which we visualized in Fig. 4. We split the entire workload into

242 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 9

Threads: 1

row group
x y z

(b) assign threads to fixed-size chunks(a) assign threads to entire row groups

x y z x y z
row group row group row group

x y z x y z x y z
row group row group

2 3 4

Fig. 4: Comparison of different parallelization approaches for Parquet files.

smaller work units to be able to process them independently of each other by all threads in a
work-stealing framework such as the one provided by Umbra [NF20]. In our example, the
Parquet file consists of three row groups that contain 60,000 rows each. We assume that we
have four threads available for this Parquet scan. The sections that each thread is scanning
are colored in the corresponding color.

In Fig. 4 (a), each thread is assigned to an entire row group. One of the threads is idle in
this case because we do not have enough row groups in the Parquet file. As we know from
Tab. 1, there are Parquet file generators such as Arrow that only use one row group to store
60 million rows. In that case, all threads except for one would be idle. Therefore, we opted
for another more adaptive approach, as visualized in (b). We work with a fixed-sized chunk
size. For this example, we assume a chunk size of 20,000 rows. Our goal is to keep all
threads busy while ensuring that the helper structures required for the scan do not take up
too much space. Therefore, we limit the number of row groups we process in parallel. We
tested different spaces between 265 MB and 4 GB and achieved the best results by limiting
the required space to 1 GB.

3.1 Parallelizing the Parquet File Scan

Achieving stable parallelization over Parquet files requires parallelizing the scanning below
row group level. We split the Parquet files into independently processable chunks to reach
similar performance to queries that are based on database relations and executed in a
work-stealing framework. The maximum granularity level is the row group size. We further
split each row group into fixed-sized chunks, which we call morsels [Le14], depending
on the row group size. The threads that are processing morsels of the same row group
will have to access and prepare the same file ranges. We therefore reduced the amount of
duplicate work as much as possible while avoiding contention. In Fig. 5 we describe how
we parallelized our framework and how the different aspects we already mentioned work
together.

During the setup of the scan, we use the synopses to filter out row groups that do not meet
the restrictions, which are the filter predicates of the query (Line 3). If the synopses are

Seamless Integration of Parquet Files into Data Processing 243

10 Alice Rey, Michael Freitag, Thomas Neumann

1 def setupScan:
2 if !computeStatistics:
3 requiredRowGroups = synopses.filter(rowGroups)
4 else:
5 if noStatsAvail: computeSamplePos()
6 else: loadSamplePos()
7 computeConcurrentRowGroupCount()

8 rowSize = sum(requiredColumnSizes)
9 blockSize = bufferSize / rowSize

10 bufferPointers = computeColumnWriterOffsets()

11
12 def prepareDictionary(column c, dictionary d):
13 if d.isCompressed:
14 singleAccessBlocking(() => {

15 rowGroupBuffer[c][d] = decompress(d)})

16 if c.tye == 'BYTE_ARRAY':
17 singleAccessBlocking(convertDictionaryEntries)

18
19 def prepareDataPage(column c, page p):
20 if p.isCompressed:
21 singleAccessBlocking(() => {

22 rowGroupBuffer[c][p] = decompress(p)})

23 if p.dictEncoded:
24 prepareDictionary(c, rowGroupBuffer.dictionary)

25 if p.dictEncoded or c.type == 'BYTE_ARRAY':
26 singleAccessNonBlocking(computeSparseOffsets)

27
28 def moveToOffset(row, column):
29 page = moveToPage(row)

30 prepareDataPage(column, page)

31 if sparseOffsetsComputed:
32 moveToSparseOffset(row)

33 moveToRowOffset(row)

34
35 def readColumn():
36 moveToOffset(morsel.currentRow, column)

37 insertElements(column)

38
39 def readNextBlock(morsel):
40 if computeStatistics:
41 for column in reqColumns: readColumn()
42 computeStatistics()

43 else:
44 matches = list(range(0, blockSize)
45 moveToPageWithMatches(restrictedColumns)

46 for column in resColumns:
47 readColumn()

48 checkRestrictions(matches)

49 for column in unresColumns: readColumn()
50
51 setupScan()
52 threads.doInParallel((morsel) => {
53 # wait until rowGroup in rowGroupBuffer

54 singleAccessBlocking(setupRowGroupProps)

55 while not morsel.allRowsProcessed():
56 readNextBlock(morsel)

57 processBlock()

58 })

Fig. 5: Pseudocode for scanning Parquet files in parallel

not available yet, or if we need to compute statistics for a column that is accessed for the
first time, all row groups will be processed. As part of the statistics, we also retrieve a data
sample. If the file is accessed for the first time, we compute 1024 random sample positions
(Line 5). We allocate enough space to store the sample values of all columns. Then, when
the user queries the file again and requires other columns this time, we incrementally add
samples for these columns as well. We also choose the number of row groups we will
process in parallel such that all threads are busy while the required space is limited. The
next step is to prepare for each thread a fixed-sized buffer in which we will write the values
of all required columns (Lines 8 to 10). At first, we compute the space we would require
to store one row, which is the sum of the sizes of all required columns. We group the data
inside the buffer by column for the vectorized evaluation of restrictions and to be able to
copy entire blocks if possible. We use a fixed-sized buffer between the Parquet file layer and
the next operator since it allows consistent processing of all columns independent of how
they were stored inside the file. For strings, the database engine has to use an out-of-line
format to allow fixed-sized elements. Many columns are dictionary encoded by the writers
we examined in Tab. 1 and many data types require additional transformation steps to data
types available in the RDBMS. Therefore, we have to touch most of the tuples either way
and storing them into a buffer only adds minor overhead. The buffer makes our approach
applicable for both push-based execution models [Ne11] as well as vectorized execution
models [BZN05].

244 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 11

After the initial setup, all threads can work in parallel (Line 52). The row groups are split
into morsels that are assigned to free threads until no morsels are left. Whenever a thread
starts processing a specific morsel, the thread has to check at first if the currently required
row group is loaded into the row group buffer. Then, it sets up the data structures for the row
group which is only done by one morsel per row group. Afterwards, the thread processes
the morsel in blockSize chunks that fit into the fixed-sized buffer by repeatedly calling the
readNextBlock function until no data is left.

For each column, we will at first move to the correct offset and then insert the elements at the
correct position in the buffer, given by the bufferPointers. Each morsel can independently
compute the start position of the current block since we know how many rows are stored
per row group and how many values are stored per page. Given the currently required row
number, we will move to the page that contains the row we need, prepare the page and
then move to the correct offset inside the page. For the page preparation (Line 19), we
let only one thread decompress the page and store it in a buffer where all other morsels
can access it afterwards. If the page is dictionary encoded (Line 12), one morsel per row
group decompresses the dictionary and converts the dictionary into a fixed-sized out-of-line
representation in case of a BYTE-ARRAY column. For all other data types, the index can
be multiplied by the data type size to get to the correct offset in the dictionary page. The
same holds for data pages. If Parquet stores the values plainly, we can get to any offset by
multiplying the required offset by the data type size. If the data page is dictionary encoded
or stores plain BYTE-ARRAY values, we can not easily jump to a certain offset. Given we
have multiple morsels that work on the same page, they all have to start reading from the
start of the page to reach their required offset. Letting one morsel compute sparse offsets
distributed over the data page (Line 26) helps future morsels to reach the required offset
earlier. To avoid any contention at this step, we do not let the other threads wait until the
offsets are available. If they are available, the other threads can use them (Line 31). In the
last step we move to the actual row offset, either starting at the beginning of the page or
starting from the closest sparse offset if available.

For the loading step (Line 37), we favor copying whole data blocks at once for each column,
which is only possible for fixed-size, plainly stored, non-nullable columns that need no
transformation step. For nullable columns, we first have to scan the run-length-encoded and
bit-packed-encoded runs of the definition level buffer. Since the pages store non-null values
densely, we will have to check how many non-null values we have to read. In our buffer,
we do not store the non-null values densely. Instead, we store the null information for each
tuple in one byte and leave an empty gap if the element is null. Leaving gaps for null values
makes the access cheaper since we can precompute all offsets independently of other rows.

If we access columns for the first time, we will compute statistics and synopses for each
block independently after all the values of all columns are loaded into the buffer (Line 42).
If the Parquet file stores min/max information, we use these to compute the synopses only
once per row group.

Seamless Integration of Parquet Files into Data Processing 245

12 Alice Rey, Michael Freitag, Thomas Neumann

If we do not have to compute statistics (Lines 43 to 49), we will at first skip as many pages
as possible based on our restrictions and the min/max information from the Parquet file.
Afterwards, we start loading the restricted columns one after the other into our buffer and
evaluate the restrictions with vectorized functions. In the matches list, we store which
indices of our current block are still valid. At the beginning, all indices are stored in the list
since all are valid. Each restricted column evaluates its restriction on its values and updates
the matches list accordingly. Further restricted and unrestricted columns use the matches
list to only load the values of rows that are still valid.

3.2 Parquet File Access

The data retrieval becomes our main bottleneck if the Parquet file is located on a remote
server. We will not download the entire file at once since this would include a lot of unused
data, especially if the user only requires a small fraction of the entire dataset. We can
guarantee that we only request the required data with byte-range requests, given our remote
source is accessible via HTTP. As with query 3 in Fig. 3, we can use the synopses computed
in preceding requests to exclude row groups that do not match the restrictions of the query,
and we only retrieve the column chunks that the query requires.

During data exploration, users will likely access the data of a queried Parquet file again in
the following queries. Therefore, if the user works on a remote Parquet file, it is crucial
to cache the used data locally to reduce the access costs for future queries. Since we want
to integrate the Parquet files into an existing database system, we can utilize its buffer
manager. The buffer manager in Umbra is based on LeanStore [Le18] with the addition of
variable-size pages [NF20]. At first, we will request the size of the Parquet file with a HEAD
request. If the file is smaller than 64 KB, we will download the entire file and load it into
one 64 KB page. Otherwise, we will first access the metadata block at the end of the file to
get some general information about the contained data, such as the data types, the number
of row groups, and the cardinality. Then, when our morsels start processing, we will request
the data as needed. Each column chunk is requested separately and stored on a buffer page.
The only difference between the Parquet file pages and the standard database pages is that
we drop the page instead of writing it to disk when it is evicted. Therefore, we can not
reload an evicted page, but instead we have to download it from the remote source again.

For local Parquet files, we could, in theory, work with memory-mapped files, but its usage
was discouraged by Crotty et al. [CLP22]. Therefore we treat local and remote Parquet files
the same and load both as needed into our buffer manager.

3.3 Query Plan Optimizations

Databases heavily rely on cardinality estimates when it comes to query plan optimizations.
This information is usually provided by the user or computed by the database engine. The

246 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 13

user can give hints to the database with primary and foreign keys. The database computes
its metadata during the INSERT statement. We compute HyperLogLog sketches for single
columns and retrieve samples from our data [FN19; NF20].

When we access our Parquet file for the first time, we do not have any prior knowledge
about the contained data. Nevertheless, we do not want to waste time with an additional
initialization step before starting to work on the actual query. Therefore, we will collect the
information we need while executing the first query. We can use the statistics for query plan
optimizations starting from the second query. Typically, users will start with exploratory
queries when they access Parquet files for the first time. These queries are simple and not very
complex, so we do not need metadata to get a relatively good query plan estimate. However,
suppose the users still want to execute complex queries on a Parquet file immediately. In
that case, they could trigger the computation of the statistics beforehand by accessing all
required columns with a simple scan request. For the first execution, we use vague estimates
for the query plan optimization: For each column chunk that uses dictionary encoding, we
use the number of values in the dictionary as a distinct value estimate. This estimate can be
wrong since the encoding of a column chunk can change back to plain encoding.

During execution of the first query, we will compute HyperLogLog sketches and store a
data sample from the file for each required column, similar to the synopses computation.
For the sample, we compute 1024 random row numbers (Line 5 in Fig. 5). We allocate
enough space to store the sample values of all columns. Then, when the user queries the
file again and requires other columns this time, we will incrementally add sketches and
samples for these columns as well. Since strings are stored using a fixed-sized, out-of-line
format, and all other types required to store the Parquet types have a fixed length, we can
precompute the required space we need. All morsels can fill the sample in parallel since the
sample positions are stored in a sorted list. Each morsel knows its row range in the Parquet
file and can independently check if it contains one or more of the sample positions. The
index in the sample positions list tells the thread the offset of the row in the sample. We
can compute the required position in the data sample with the sample positions’ index, the
index of the required column in the schema, and the type size. Since strings are stored using
an out-of-line string format, we allocate additional space at the end of the data sample for
string columns, as needed. The string format has to work with offsets to allow relocations of
the data sample when the data sample outgrows its current memory location.

In Fig. 5, we depict how the morsels are scanned: We fill our fixed-sized buffers with as
many rows as possible and then push them to the parent operator. Before we call the parent
operator, we reuse the buffer representation to cheaply retrieve all the information we need
for our sketches and statistics computation (Line 42). This step saves much time since we
do not have to decode and decompress the values from the Parquet file separately. We
mentioned that we first load the restricted columns into the buffer and check the restrictions
before loading the values of the qualifying rows for the remaining columns. To compute
correct statistics, we need all rows, and we will therefore load all values when statistics have
to be computed, even though they do not meet the restrictions.

Seamless Integration of Parquet Files into Data Processing 247

14 Alice Rey, Michael Freitag, Thomas Neumann

Γ
7.14

3.17 × 106

3.54 × 103 14.14

4.00 2.64

orders
1.00

lineitem
1.00

nation
1.00

supplier
1.00

part
1.84

partsupp
1.00

(a) without primary key estimates

Γ
6.82

4.09

4.10
orders

1.00

1.02
lineitem

1.00

1.00 1.02

nation
1.00

supplier
1.00

part
1.02

partsupp
1.00

(b) with primary key estimates

Fig. 6: Q-errors of TPC-H query 9 with scale factor 10 on Parquet files.

The data sample and the HyperLogLog sketches already help to generate optimal query
plans. Nevertheless, we still have a significant performance loss for queries that heavily rely
on primary key information, which we do not have in Parquet files. For example, query
9 of the TPC-H benchmark contains multiple primary/foreign key joins. The impact of
the primary key information can be seen in Fig. 6. The query plan without primary key
information is displayed in Fig. 6(a). Fig. 6(b) displays the usage of primary key estimates.
Without primary key estimates, the q-errors are significantly higher, which leads to a
suboptimal query plan.

To enhance query plans such as the one depicted in Fig. 6, we try to retrieve the primary
key from the given Parquet file. A lot of work has already been done on exact methods
for the detection of unique column combinations (UCCs) and functional dependencies
(FDs) [AGN15]. However, discovering all minimal UCCs is an NP-hard problem. Checking
if a column combination is unique, is very costly, therefore we only work with estimates
here. In the literature, some approaches already exist that define different heuristics either to
select a primary key from a given set of primary key candidates [JN20; PN17] or to estimate
them from scratch [MK17].

Since we know the query already, we can also benefit from the query plan properties, as
already discussed by Andersson [An94]. We need the primary keys in our example to know
whether a join is a primary key/foreign key join. Therefore, we only consider those columns
used in an equality condition of a join operator. We might miss the correct primary key.
However, if the primary key is not part of the join condition, knowing the primary key
would be useless since it does not influence the join order. For our approach, we only look
at possible primary keys that consist of one or two columns to keep the complexity of our

248 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 15

estimates low. In addition, according to Papenbrock, Naumann, and Jiang [JN20; PN17], it
is more likely to have short keys because it is easier to work with these.

In their work [MK17], Motl and Kordík present different features that they consider for
their primary key predictions. According to their evaluation, the ordinal position is the
most relevant factor. Therefore, we check the columns in positional order. The first column
used as an equality condition by a join operator that has a distinct values estimate close
to the cardinality of the relation will be our estimated primary key. If we cannot find a
single-column candidate, we repeat our search from the beginning with column pairs. Both
columns have to be a part of an equality comparison in a join, and their combined selectivity
should select almost only one tuple to be considered the primary key. We can compute very
accurate distinct value estimates for single columns with the HyperLogLog sketches we
computed during the first query execution. Our combined selectivity estimates are based on
our retrieved samples.

4 Evaluation

In this section, we measure the performance of our Parquet scan framework, which we
implemented in Umbra. We start with the statistics and synopses computation. We evaluate
the computational overhead they introduce and their benefit by measuring the speedup
the statistics introduce and the data transfer savings of the synopses. The second step is a
look at the scalability of our system. Afterward, we compare our system with three other
systems, namely DuckDB [RM19], Hyper [KN11], and Trino [Se19; TSF20]. We end
our evaluation by comparing the performance of Parquet files and database relations. We
ran all our experiments on an Intel Xeon Gold 6338 CPU with 32 physical cores and 64
logical cores running at 2.0 GHz. The server has 256 GiB of main memory, and all Parquet
files were placed on a local Samsung 850 Pro SSD with 2 TB of storage space. For our
benchmarks, we used the decision support benchmark TPC-H with different scale factors
and the join order benchmark (JOB) [Le15]. All measurements were repeated ten times,
and we always selected the fastest execution to measure performance with warm caches.

4.1 Impact of Statistics and Synopses

When a user accesses a Parquet file for the first time, we will compute statistics and synopses.
This section evaluates the overhead and the benefit of the statistics and synopses for future
queries using the TPC-H benchmark with scale factor 10. In Fig. 7, we display the execution
time of the first and second execution for all 22 TPC-H queries. By first execution, we mean
a pass where we we compute statistics while running the query. For the second execution,
we have statistics available that we can use to optimize our query plan. The first execution
and the second execution are repeated 10 times. For the first execution, we distinguish
between the statistics computation and the query execution time. On average, the statistics

Seamless Integration of Parquet Files into Data Processing 249

16 Alice Rey, Michael Freitag, Thomas Neumann

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

TPC-H queries

0.00

0.25

0.50

0.75

1.00

ex
ec

u
ti

o
n

ti
m

e
[s

]

first execution

statistics & synopses

second execution

Fig. 7: Overhead and benefit of computing statistics on
the performance of Parquet scans in Umbra.

1 3 4 5 6 7 8 10 12 14 15 20

TPC-H queries

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tr
a
n

sf
er

re
d

d
a
ta

[G
B

]

full sizes

requested data size

requested data size with synopses

Fig. 8: Impact of synopses on the amount
of transferred data for the TPC-H queries.

and synopses computation takes up 20% of the overall execution time of the first pass.
In addition, the statistics and synopses for the lineitem Parquet file of the TPC-H dataset
only require 260 KB of space, independently of the scale factor when we limit the number
of synopses to 100. Even though there are queries that do not benefit from the statistics
computation, since the naively chosen query plan is already optimal, they speedup the
queries by 3.6 on average.

To demonstrate the benefit of the synopses, we assume the TPC-H datasets are sorted by
the timestamp columns. In real-life datasets, we will most likely have some bias [Mo98;
Vo18]. For example, the data might have been collected over time, which results in sorted
timestamps. We used the compressed Parquet dataset with a scale factor of 10 for the
measurements and stored the data on a remote server. In Fig. 8, we visualize the amount
of data we have to transfer from the remote server to evaluate the TPC-H queries that are
restricted by timestamps. We compare the total size of all required files with the amount of
data we request from the server, once without synopses and once with synopses available for
each row group. Even without the synopses, the amount of data we request is significantly
smaller than the actual file sizes since we only request the required column chunks. On
average, we request a fourth of the total file size. The benefit of the synopses is dependent
on the restrictiveness of the queries. For queries 1 and 8, we cannot exclude any row groups,
but for query 14, only one of the sixteen row groups meets the restrictions.

4.2 Scalability

Since we work with the buffer manager of Umbra to process local and remote Parquet files,
we can also process files bigger than the main memory. We measured the execution times of
all TPC-H queries for scale factors 1, 10, 100, and 1000 and displayed them in Fig. 9 with a

250 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

TPC-H queries

0.01

0.1

1

10

100

ex
ec

u
ti

o
n

ti
m

e
[s

]
(l

o
g

sc
a
le

)

sf1 sf10 sf100 sf1000

Fig. 9: Execution time of TPC-H queries with different scale factors.

logarithmic scale with base 10. Since the server in our experiments has 256 GiB of main
memory, the lineitem Parquet files for scale factor 1000 do not fit into the buffer manager
of Umbra. All queries are repeated ten times, meaning the data will be preloaded in the
buffer manager if possible. The results show that our approach is stable and scales well on
growing workloads. There are some queries where scale factor 1000 is more than 10 times
slower than scale factor 100, because large chunks of the Parquet files have to be accessed
for these queries, which do not fit into our buffer manager at once, so we have to evict pages.
We also scanned all columns of the Parquet file lineitem and explicitly cleared the cache
beforehand for all four scale factors. In this case, we observed perfect scalability.

4.3 System Comparison

We will now compare our implementation with the Parquet views of other systems. Apart
from the two RDBMSs, DuckDB and Hyper, we also included a distributed query engine,
namely Trino. For these measurements, we used the Trino CLI (v402) and the respective
Python APIs for DuckDB (v0.4.0) and Hyper (v0.0.15530). To compare the systems, we
measure the TPC-H benchmark with a scale factor of 10 and the JOB benchmark for this
evaluation. We use the Parquet files generated by Spark, compressed and uncompressed, to
evaluate the additional costs of the decompression. Fig. 10 shows the relative speedup of
Umbra compared to the other three systems. We grouped the sets by the benchmarks into
two separate graphs. We used a logarithmic scale for the speedup factor. We can see that
our system outperforms all other systems for all queries. Moreover, our implementation is
rarely less than twice as fast as the compared systems. We only display the speedups over
the files generated by Spark since the way it distributes data is between the extremes of
DuckDB and Arrow, but our system outperforms the other systems for all three writers. The
geometric mean speedup for Umbra compared to DuckDB is 7.5× on the TPC-H benchmark
and 13× for the JOB benchmark for the compressed versions. Compared to Hyper, Umbra
is, on average, for both benchmarks 13× faster. Trino is the slowest of all four systems. For
the TPC-H benchmark, we measure a geometric mean slowdown of 21× for the compressed

Seamless Integration of Parquet Files into Data Processing 251

18 Alice Rey, Michael Freitag, Thomas Neumann

over
DuckDB

over
Hyper

over
Trino

sp
ee

d
u

p
fa

ct
o
r

(l
o
g

sc
a
le

)

1

2

5

10

20

50

100

200

500
TPC-H SF10

Uncompressed

Compressed

over
DuckDB

over
Hyper

over
Trino

1

2

5

10

20

50

100

200

500
JOB

Fig. 10: Speedup of the Parquet scan of Umbra over the Parquet scans
of DuckDB, Hyper, and Trino.

in
Umbra

in
Hyper

sl
ow

d
ow

n
fa

ct
o
r

(l
o
g

sc
a
le

)

1

2

5

10

20

50

TPC-H SF10

Uncompressed

Compressed

Fig. 11: Slowdown of Parquet
files over database relations.

version. For the JOB benchmark, the compressed version is 26× faster in Umbra on average.
The speedup for the uncompressed versions is mostly higher than for the compressed
versions. Our system is significantly faster than the other systems because of our advanced
statistics and sample computations. In addition, our approach allows parallelization beneath
the row group level, which makes the approach more stable.

To factor out the impact of the query plan optimization, we reran the TPC-H benchmark
for Hyper and Umbra and forced both systems to use the same query plans. To exclude the
efficiency of other operators, we will execute the queries once on Parquet files and once
on database relations in both database systems. We then compare the slowdown factors
of the Parquet scans over their respective database relation versions. Fig. 11 visualizes
the slowdown of Parquet files for the TPC-H benchmark for scale factors 1 and 10. We
grouped them by the respective benchmark and used a logarithmic scale. We display
the uncompressed version on the left and the compressed version on the right for each
benchmark. On average, the uncompressed Parquet files have a slow down factor of 2.2 in
Umbra. The compressed versions are, on average, 3.4× slower. Hyper is 10.2× slower than
the corresponding database relation version for the compressed version. If we compare the
execution times of the Hyper and Umbra Parquet scans with one another, we still achieve a
speedup factor of 3.5× over Hyper. Compared to our black box evaluation, where we were
12× faster than Hyper, we can see that the statistics computation also added an average
speedup of 3.5× to the overall query execution time.

4.4 Database Relation Comparison

The main goal of adding the Parquet view functionality to our database system is to offer a
reasonable alternative to database relations. The main advantage of database relations is

252 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 19

that they have additional time to get to know the data during the initialization phase. For a
fair comparison, we, therefore, have to consider the time it takes to execute the CREATE
TABLE and INSERT statements. We measure how often a query has to be executed to make
it reasonable to preload the data into the database instead of working on the Parquet files:

𝑑𝑏_𝑖𝑛𝑖𝑡 + 𝑥 · 𝑑𝑏_𝑒𝑥𝑒𝑐 > 𝑝𝑞_ 𝑓 𝑖𝑟𝑠𝑡 + (𝑥 − 1) · 𝑝𝑞_𝑒𝑥𝑒𝑐 (1)

We use the TPC-H benchmark with scale factor 10 and the uncompressed Parquet files for
this evaluation. To get the number of required repetitions, we have to solve Inequality 1. As
long as the left side of the inequation takes longer than the right side, preloading the data is
not beneficial. The left side consists of the execution time of the given query (𝑑𝑏_𝑒𝑥𝑒𝑐)
multiplied by the number of repetitions (𝑥) plus the time it takes to initialize all relations we
require for the query (𝑑𝑏_𝑖𝑛𝑖𝑡). The right side contains the execution time of the Parquet
version (𝑝𝑞_𝑒𝑥𝑒𝑐) times the number of repetitions (𝑥) minus one. We add the first execution
(𝑝𝑞_ 𝑓 𝑖𝑟𝑠𝑡) separately since it contains the statistics computation overhead. All queries must
be executed at least 30 times to amortize the initialization cost. On average, the queries
would need to be executed more than 200 times to pay off the initialization and loading
steps. Our evaluation shows that our framework presents a reasonable alternative to database
relations with comparable performance and without initial loading costs.

5 Related Work

Most related work towards integrating raw data into query processing focuses on CSV
files. Mühlbauer et al. [Mü13] bulk load CSV files in parallel by splitting the file into
chunks, and utilize vectorization methods to speed up the loading process. Similar to our
framework, they allow the user to query CSV files without initial loading. Nevertheless,
missing metadata and the row-wise format limit the performance of CSV scans. The NoDB
system PostgresRAW presented by Alagiannis et al. [Al12] identified and resolved these
performance bottlenecks. Their adaptive indexing strategy collects metadata about the CSV
files that improve future queries, such as the positions of attributes in the CSV file referenced
in previous queries. They also work with the built-in statistics routines of Postgres, which
are very limited, to improve the selectivity estimates of their query plans. Similar to our
approach, they will only compute statistics for columns required by the current query. Olma
et al. [Ol17] partition the underlying CSV file logically depending on the user’s access
patterns. Per partition, they store index structures, statistics, access frequencies and the
average query selectivity to tune the partitions and indices continuously. While we add
new estimates over time when new columns are accessed, the LEO optimizer presented by
Stillger et al. [St01] introduces a feedback loop to incrementally fix estimates that are off by
comparing them to the actual results.

Durner et al. [DLN21] deal with JSON files, where the main challenge is the lack of a schema
and the possibility that the schema can change over time. Li et al. [Li20] build a storage
engine based on the Apache Arrow file format. Their work focuses on improving the export

Seamless Integration of Parquet Files into Data Processing 253

20 Alice Rey, Michael Freitag, Thomas Neumann

costs for data science and machine learning engines. Vogel et al. [Vo20] use the Parquet
file format in their storage layer. Their main goal is to spread the data column-wise across
a tierless device pool, depending on its usage. They split the Parquet files onto different
devices to optimize the throughput. Idreos et al. [Id11], Abouzied et al. [AAS13], and Chenk
et al. [CR14] incrementally improve query execution time on RAW files by loading more
and more parts of the data into the database while executing queries. SAHARA[Br22], a
table partitioning advisor, collects data access statistics and chooses a partitioning layout
based on these statistics. Our synopses come in handy if the SAHARA optimizer is used
since the data will be sorted by columns that are frequently used in the filter predicates.

The idea of synopses was used in the literature under different names. Moerkotte et
al. [Mo98] called them small materialized aggregates (SMAs). They are used to store min,
max, count, and sum aggregates on page-level granularity. Lang et al. [La16] extended these
to PSMAs (positional SMAs) with a lightweight index structure to narrow down scan ranges
further. E3 (Eagle-Eyed Elephant) is the term Eltabakh et al. [El13] used to describe a set
of techniques, namely range indices, inverted indices, materialized views, and a caching
algorithm to prevent reading unnecessary data. Ziauddin et al. [Zi17] store minimum and
maximum values of one or more columns over contiguous blocks called zone maps. Presto,
introduced by Sethi et al. [Se19], is a distributed query engine that also uses the optional
min/max statistics of Parquet files to skip pages and row groups if possible. The system has
custom implementations, for example, for joins that work with the dictionary-encoded data
to build hash tables, which is an interesting opportunity for future work. Armbrust et al.
and Brehm et al. describe in their work [Ar20; Be22] how they process Parquet files. They
can skip unneeded data more aggressively due to the clustering of Delta Lake. In addition,
instead of collecting statistics to make future executions faster, Photon, their vectorized
query engine for lakehouse environments, supports batch-level adaptivity and can switch
execution kernels based on the metadata collected from previous batches.

6 Conclusion

Parquet files are great candidates for integration into the query processing of a database
engine. In this paper, we introduced a framework that solves the challenges of this file format.
We presented different techniques for making the performance of analytical workloads on
Parquet files more convenient. We demonstrated that we achieve comparable execution
times to database relations. Computing statistics while accessing the columns of a Parquet
file for the first time introduces a small overhead, but the query plan optimizer benefits
a lot from these. Furthermore, the synopses computation introduces another significant
performance boost for Parquet files stored remotely. In addition, our approach can compete
with existing Parquet scans and outperforms them in all presented scenarios.

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 725286).

254 Alice Rey, Michael Freitag, Thomas Neumann

Seamless Integration of Parquet Files into Data Processing 21

References

[AAS13] Abouzied, A.; Abadi, D. J.; Silberschatz, A.: Invisible loading: access-driven
data transfer from raw files into database systems. In: EDBT. ACM, pp. 1–10,
2013.

[AGN15] Abedjan, Z.; Golab, L.; Naumann, F.: Profiling relational data: a survey. VLDB
J. 24/4, pp. 557–581, 2015.

[Al12] Alagiannis, I.; Borovica, R.; Branco, M.; Idreos, S.; Ailamaki, A.: NoDB:
efficient query execution on raw data files. In: SIGMOD Conference. ACM,
pp. 241–252, 2012.

[An94] Andersson, M.: Extracting an Entity Relationship Schema from a Relational
Database through Reverse Engineering. In: ER. Vol. 881. Lecture Notes in
Computer Science, Springer, pp. 403–419, 1994.

[Ar20] Armbrust, M.; Das, T.; Paranjpye, S.; Xin, R.; Zhu, S.; Ghodsi, A.; Yavuz, B.;
Murthy, M.; Torres, J.; Sun, L.; Boncz, P. A.; Mokhtar, M.; Hovell, H. V.;
Ionescu, A.; Luszczak, A.; Switakowski, M.; Ueshin, T.; Li, X.; Szafranski, M.;
Senster, P.; Zaharia, M.: Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proc. VLDB Endow. 13/12, pp. 3411–3424, 2020.

[ASF13] Apache Software Foundation: Apache Parquet, 2013, url: https://parquet.
apache.org, visited on: 12/15/2022.

[ASF14] Apache Software Foundation: Apache Spark, 2014, url: https://spark.
apache.org/, visited on: 12/15/2022.

[ASF16] Apache Software Foundation: Apache Arrow, 2016, url: https://arrow.
apache.org/, visited on: 12/15/2022.

[Be22] Behm, A.; Palkar, S.; Agarwal, U.; Armstrong, T.; Cashman, D.; Dave, A.;
Greenstein, T.; Hovsepian, S.; Johnson, R.; Krishnan, A. S.; Leventis, P.;
Luszczak, A.; Menon, P.; Mokhtar, M.; Pang, G.; Paranjpye, S.; Rahn, G.;
Samwel, B.; van Bussel, T.; Hovell, H. V.; Xue, M.; Xin, R.; Zaharia, M.: Photon:
A Fast Query Engine for Lakehouse Systems. In: SIGMOD Conference. ACM,
pp. 2326–2339, 2022.

[Br22] Brendle, M.; Weber, N.; Valiyev, M.; May, N.; Schulze, R.; Böhm, A.; Mo-
erkotte, G.; Grossniklaus, M.: SAHARA: Memory Footprint Reduction of Cloud
Databases with Automated Table Partitioning. In: EDBT. OpenProceedings.org,
1:13–1:26, 2022.

[BZN05] Boncz, P. A.; Zukowski, M.; Nes, N.: MonetDB/X100: Hyper-Pipelining Query
Execution. In: CIDR. www.cidrdb.org, pp. 225–237, 2005.

[CLP22] Crotty, A.; Leis, V.; Pavlo, A.: Are You Sure You Want to Use MMAP in Your
Database Management System? In: CIDR. www.cidrdb.org, 2022.

[CR14] Cheng, Y.; Rusu, F.: Parallel in-situ data processing with speculative loading.
In: SIGMOD Conference. ACM, pp. 1287–1298, 2014.

Seamless Integration of Parquet Files into Data Processing 255

https://parquet.apache.org
https://parquet.apache.org
https://spark.apache.org/
https://spark.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/

22 Alice Rey, Michael Freitag, Thomas Neumann

[De13] Dem, J. L.: Announcing Parquet 1.0: Columnar Storage for Hadoop, 2013, url:
https://blog.twitter.com/engineering/en_us/a/2013/announcing-

parquet-10-columnar-storage-for-hadoop, visited on: 12/15/2022.
[DLN21] Durner, D.; Leis, V.; Neumann, T.: JSON Tiles: Fast Analytics on Semi-

Structured Data. In: SIGMOD Conference. ACM, pp. 445–458, 2021.
[El13] Eltabakh, M. Y.; Özcan, F.; Sismanis, Y.; Haas, P. J.; Pirahesh, H.; Vondrák, J.:

Eagle-eyed elephant: split-oriented indexing in Hadoop. In: EDBT. ACM,
pp. 89–100, 2013.

[Fl07] Flajolet, P.; Fusy, É.; Gandouet, O.; Meunier, F.: Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm. In: Discrete Mathematics
and Theoretical Computer Science. Discrete Mathematics and Theoretical
Computer Science, pp. 137–156, 2007.

[FN19] Freitag, M.; Neumann, T.: Every Row Counts: Combining Sketches and
Sampling for Accurate Group-By Result Estimates. In: CIDR. www.cidrdb.org,
2019.

[GG11] Google: Snappy, a fast compressor/decompressor, 2011, url: https://github.
com/google/snappy, visited on: 12/15/2022.

[Id11] Idreos, S.; Alagiannis, I.; Johnson, R.; Ailamaki, A.: Here are my Data Files.
Here are my Queries. Where are my Results? In: CIDR. www.cidrdb.org,
pp. 57–68, 2011.

[JN20] Jiang, L.; Naumann, F.: Holistic primary key and foreign key detection. J. Intell.
Inf. Syst. 54/3, pp. 439–461, 2020.

[Ka14] Karpathiotakis, M.; Branco, M.; Alagiannis, I.; Ailamaki, A.: Adaptive Query
Processing on RAW Data. Proc. VLDB Endow. 7/12, pp. 1119–1130, 2014.

[KN11] Kemper, A.; Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In: ICDE. IEEE Computer
Society, pp. 195–206, 2011.

[La16] Lang, H.; Mühlbauer, T.; Funke, F.; Boncz, P. A.; and Alfons Kemper, T. N.:
Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both
Vectorization and Compilation. In: SIGMOD Conference. ACM, pp. 311–326,
2016.

[Le14] Leis, V.; Boncz, P. A.; Kemper, A.; Neumann, T.: Morsel-driven parallelism: a
NUMA-aware query evaluation framework for the many-core age. In: SIGMOD
Conference. ACM, pp. 743–754, 2014.

[Le15] Leis, V.; Gubichev, A.; Mirchev, A.; Boncz, P. A.; Kemper, A.; Neumann, T.:
How Good Are Query Optimizers, Really? Proc. VLDB Endow. 9/3, pp. 204–
215, 2015.

[Le18] Leis, V.; Haubenschild, M.; Kemper, A.; Neumann, T.: LeanStore: In-Memory
Data Management beyond Main Memory. In: ICDE. IEEE Computer Society,
pp. 185–196, 2018.

256 Alice Rey, Michael Freitag, Thomas Neumann

https://blog.twitter.com/engineering/en_us/a/2013/announcing-parquet-10-columnar-storage-for-hadoop
https://blog.twitter.com/engineering/en_us/a/2013/announcing-parquet-10-columnar-storage-for-hadoop
https://github.com/google/snappy
https://github.com/google/snappy

Seamless Integration of Parquet Files into Data Processing 23

[Li20] Li, T.; Butrovich, M.; Ngom, A.; Lim, W. S.; McKinney, W.; Pavlo, A.: Mainlin-
ing Databases: Supporting Fast Transactional Workloads on Universal Columnar
Data File Formats. Proc. VLDB Endow. 14/4, pp. 534–546, 2020.

[Me10] Melnik, S.; Gubarev, A.; Long, J. J.; Romer, G.; Shivakumar, S.; Tolton, M.;
Vassilakis, T.: Dremel: Interactive Analysis of Web-Scale Datasets. Proc. VLDB
Endow. 3/1, pp. 330–339, 2010.

[MK17] Motl, J.; Kordík, P.: Foreign Key Constraint Identification in Relational
Databases. In: ITAT. Vol. 1885. CEUR Workshop Proceedings, CEUR-WS.org,
pp. 106–111, 2017.

[MNS09] Moerkotte, G.; Neumann, T.; Steidl, G.: Preventing Bad Plans by Bounding the
Impact of Cardinality Estimation Errors. Proc. VLDB Endow. 2/1, pp. 982–993,
2009.

[Mo98] Moerkotte, G.: Small Materialized Aggregates: A Light Weight Index Structure
for Data Warehousing. In: VLDB. Morgan Kaufmann, pp. 476–487, 1998.

[Mü13] Mühlbauer, T.; Rödiger, W.; Seilbeck, R.; Reiser, A.; Kemper, A.; Neumann, T.:
Instant Loading for Main Memory Databases. Proc. VLDB Endow. 6/14,
pp. 1702–1713, 2013.

[Ne11] Neumann, T.: Efficiently Compiling Efficient Query Plans for Modern Hardware.
Proc. VLDB Endow. 4/9, pp. 539–550, 2011.

[NF20] Neumann, T.; Freitag, M.: Umbra: A Disk-Based System with In-Memory
Performance. In: CIDR. www.cidrdb.org, 2020.

[Ol17] Olma, M.; Karpathiotakis, M.; Alagiannis, I.; Athanassoulis, M.; Ailamaki, A.:
Slalom: Coasting Through Raw Data via Adaptive Partitioning and Indexing.
Proc. VLDB Endow. 10/10, pp. 1106–1117, 2017.

[PN17] Papenbrock, T.; Naumann, F.: Data-driven Schema Normalization. In: EDBT.
OpenProceedings.org, pp. 342–353, 2017.

[RM19] Raasveldt, M.; Mühleisen, H.: DuckDB: an Embeddable Analytical Database.
In: SIGMOD Conference. ACM, pp. 1981–1984, 2019.

[SE19] Skyscanner Engineering: Building a self-served ETL pipeline for third-party
data ingestion, 2019, url: https://medium.com/@SkyscannerEng/building-
a- self- served- etl- pipeline- for- third- party- data- ingestion-

3959eab6840b, visited on: 12/15/2022.
[Se19] Sethi, R.; Traverso, M.; Sundstrom, D.; Phillips, D.; Xie, W.; Sun, Y.; Yegit-

basi, N.; Jin, H.; Hwang, E.; Shingte, N.; Berner, C.: Presto: SQL on Everything.
In: ICDE. IEEE, pp. 1802–1813, 2019.

[Sh99] Shanmugasundaram, J.; Tufte, K.; Zhang, C.; He, G.; DeWitt, D. J.;
Naughton, J. F.: Relational Databases for Querying XML Documents: Limita-
tions and Opportunities. In: VLDB. Morgan Kaufmann, pp. 302–314, 1999.

Seamless Integration of Parquet Files into Data Processing 257

https://medium.com/@SkyscannerEng/building-a-self-served-etl-pipeline-for-third-party-data-ingestion-3959eab6840b
https://medium.com/@SkyscannerEng/building-a-self-served-etl-pipeline-for-third-party-data-ingestion-3959eab6840b
https://medium.com/@SkyscannerEng/building-a-self-served-etl-pipeline-for-third-party-data-ingestion-3959eab6840b

24 Alice Rey, Michael Freitag, Thomas Neumann

[St01] Stillger, M.; Lohman, G. M.; Markl, V.; Kandil, M.: LEO - DB2’s LEarning
Optimizer. In: VLDB. Morgan Kaufmann, pp. 19–28, 2001.

[TSF20] Trino Software Foundation: Trino, 2020, url: https://trino.io/, visited on:
12/15/2022.

[Vo18] Vogelsgesang, A.; Haubenschild, M.; Finis, J.; Kemper, A.; Leis, V.;
Mühlbauer, T.; Neumann, T.; Then, M.: Get Real: How Benchmarks Fail
to Represent the Real World. In: DBTest@SIGMOD. ACM, 1:1–1:6, 2018.

[Vo20] Vogel, L.; van Renen, A.; Imamura, S.; Leis, V.; Neumann, T.; Kemper, A.:
Mosaic: A Budget-Conscious Storage Engine for Relational Database Systems.
Proc. VLDB Endow. 13/11, pp. 2662–2675, 2020.

[WG17] Weeks, D.; Gianos, T.: Petabytes Scale Analytics Infrastructure @Netflix,
2017, url: https://www.infoq.com/presentations/netflix-big-data-
infrastructure/, visited on: 12/15/2022.

[Zi17] Ziauddin, M.; Witkowski, A.; Kim, Y. J.; Lahorani, J.; Potapov, D.; Krishna, M.:
Dimensions Based Data Clustering and Zone Maps. Proc. VLDB Endow. 10/12,
pp. 1622–1633, 2017.

258 Alice Rey, Michael Freitag, Thomas Neumann

https://trino.io/
https://www.infoq.com/presentations/netflix-big-data-infrastructure/
https://www.infoq.com/presentations/netflix-big-data-infrastructure/

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

The Evolution of LeanStore

Adnan Alhomssi 1, Michael Haubenschild 2, Viktor Leis3

Abstract: LeanStore is a high-performance key-value storage engine optimized for many-core
processors and NVMe SSDs. This paper provides the first full system overview of all LeanStore
components, several of which have not yet been described. We also discuss crucial implementation
details, and the evolution of the entire system towards a design that is both simple and efficient.

Keywords: storage engine; LeanStore; B-tree; caching; SSD; multi-core

1 Introduction

In-Memory DBMS. For more than a decade, main-memory database systems have been
the focal point of research on high-performance transaction processing. Academically, this
research program has been a tremendous success, introducing innovative techniques and
achieving unprecedented performance results. However, the real-world adoption of pure
in-memory database system has been limited. It is fair to say that even the most successful
in-memory systems such as VoltDB [SW13], Hekaton [Di13], and HANA [Fä11] remain
niche products. General-purpose transaction processing is still dominated by traditional
(disk-based) database systems such as Oracle, SQL Server, and their cloud-native cousins
Aurora [Ve17] and Socrates [An19].

Storage Cost Trends. The main-memory revolution was primarily fueled by rapidly
shrinking DRAM prices. From 2000 to 2012 the price/byte for DRAM dropped by about
300× [HHL20]. This made it feasible to keep non-trivial databases in main memory. After
2012, however, DRAM prices have largely stagnated [HHL20]. And with Intel cancel-
ing Optane in 2022, persistent memory failed to achieve its promise as a replacement for
traditional storage technologies.

Flash to the Rescue. In contrast to DRAM, the last decade has seen dramatic price reductions
for flash. In 2005, the cost per byte for DRAM and for flash was comparable. Today, flash
is about 20–50× cheaper [HHL20]. And flash SSDs have not just become cheap, with the
introduction of NVMe they have also become very fast. For example, a Samsung PM1733
PCIe 4.0 SSD achieves up to 7 GB/s read throughput and 1.5 million random reads per
second [Sa22a]. Commodity servers have dozens of PCIe lanes, which means that hardware
1 Friedrich-Alexander-Universität Erlangen-Nürnberg, adnan.alhomssi@fau.de
2 Salesforce, mhaubenschild@salesforce.com
3 Technische Universität München, leis@in.tum.de

cba doi:10.18420/BTW2023-13

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 259

mailto:adnan.alhomssi@fau.de
mailto:mhaubenschild@salesforce.com
mailto:leis@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-13

2 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

setups with 8 or 10 NVMe SSDs have become common (see Azure’s Lsv2 [AW22b] and
EC2’s i3en [AW22a] instances). Consequently, servers with 10+ million I/O operations per
second and an aggregated bandwidth rivaling DRAM are not just possible – but affordable
and readily available. And the trend will continue with the upcoming PCIe 5.0 servers and
SSDs [Sa22b], which will almost double I/O bandwidth once more.

NVMe-Optimized Systems. Neither in-memory nor disk-based systems even come close
to being able of exploiting the capabilities of modern SSDs. Many of the design decisions
of in-memory systems (e.g., small index nodes) are simply not suitable for storage on flash.
Existing disk-based systems, on the other hand, look more conceptually promising (e.g.,
page-based data organization), but were developed when storage was slower by several
orders of magnitude. As a result, a system such as PostgreSQL is completely CPU-bound
on out-of-memory workloads on NVMe SSDs [HHL20]. Even though they are often treated
that way, SSDs are not just fast disks – for good performance they require new DBMS
designs.

LeanStore. The LeanStore [Le18] project started in 2016. The goal was to show that one
can achieve performance close to in-memory systems without having to keep all data in
memory. To be efficient and robust on modern hardware, LeanStore combines many of
the modern in-memory optimizations (e.g., CPU and cache efficiency, lightweight syn-
chronization [LHN19], contention avoidance [AL21]) with traditional decades-old DBMS
techniques (e.g., buffer management [Le18], B-trees, paged storage, physiological logging,
fuzzy checkpoints [Ha20]).

This Paper. While many of these novel techniques have already been published in separate
papers [AL21; Ha20; Le18; LHN19] (or will be published in upcoming papers [AL23]),
this paper provides the first overview of the full LeanStore system. Because research papers
usually focus on a single contribution rather than the full system and the interaction of
components, this includes many crucial unpublished aspects – such as the B-tree design,
synchronization primitives, and logging optimizations. Doing so, we also describe the
evolution of the system, which changed considerably over its lifetime. Many original design
decisions had to be reconsidered in the light of hardware evolution, and over time we
managed to radically simplify important implementation details. For example, the original
paper [Le18] argues that a single latch for managing I/O operations is fast enough, and
describes epoch-based memory reclamation. The former quickly proved wrong with fast
SSDs, while the latter proved to be completely unnecessary.

Outline. The rest of the paper is organized as follows. Sect. 2 discusses related work. Sect. 3
then provides an overview of the functionality and key components of LeanStore. We then
focus on four components, namely the B-tree in Sect. 4, the synchronization primitives
in Sect. 5, the buffer manager in Sect. 6, and logging in Sect. 7. Sect. 8 experimentally
compares LeanStore with two state-of-the-art storage engines for both in-memory and
out-of-memory workloads. Finally, we summarize the paper in Sect. 9.

260 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 3

2 Related Work

Surprisingly, in the past decade research on designing flash-optimized database systems
has been fairly sparse. Most of the new system developments focused on designs optimized
for main memory (e.g., VoltDB [SW13], Hekaton [Di13], HANA [Fä11], HyPer [Ke12],
Silo [Tu13]) or persistent memory. A notable exception is the Umbra [NF20] system, which
adopted LeanStore’s swizzling-based buffer management design, but extends it with support
for variable-sized pages. There are two state-of-the-art open source storage engines optimized
for flash that should be mentioned. WiredTiger [Mo22], which is the default storage engine
of MongoDB, has several conceptual similarities with LeanStore, including reliance on
B-trees and pointer swizzling. RocksDB [Do21], in contrast, is the most prominent LSM-
based storage engine, optimizing for lower write amplification rather than read performance.
We experimentally compare with both systems in Sect. 8 and descriptively in the remaining
of this section.

Unlike LeanStore, WiredTiger uses a separate representation for on-disk and in-memory B-
Tree nodes. In-memory nodes are dynamically allocated and not hosted on a fixed-size page
like traditional buffer-managed systems do. On-disk nodes images are stored in immutable
block that are grouped in files. In-memory node use prefix compression while on-disk
blocks are mostly compressed with snappy algorithm. An index operation follows virtual
memory pointers until it hits a non-resident (unswizzled) node. In this case, it reads the
file and builds an in-memory node out of it. Updating a key in a leaf inserts a new entry
in the node’s per-key skip list. When the node is full and it is time to evict, WiredTiger
reconciles, i.e., serializes, the node and merges all updates in the node to create the disk
image. In LeanStore, we update nodes in-place and write the in-memory node as it is on
SSDs without any serialization overhead.

To synchronize indexes, WiredTiger uses lock-free algorithms where LeanStore uses opti-
mistic lock coupling. To make sure a thread is following a valid pointer, WiredTiger pushes
the node’s pointer to a hazard list before it accesses it. Nodes pointed by this list are excluded
from memory reclamation or eviction. The processing thread removes the pointer once it
leaves the node. Compared to LeanStore’s optimistic lock coupling and pointer swizzling,
hazard pointers in WiredTiger cost one more memory flush (fence) to publish the new hazard
pointer for each node access.

RocksDB relies on the Log-Structured Merge-tree (LSM) data structure to reduce (ran-
dom) write and space amplification and prolong the lifetime of SSDs which have limited
endurance. By choosing B-trees as the foundational data structure, LeanStore is a more
read-optimized design. Nevertheless, our design reduces write amplification by using 4 KiB
pages and increases space utilization for B-Trees through the XMerge [AL21] technique
that optimistically merges under-fill neighboring nodes.

The first layer “MemTable” in the LSM resides in memory and absorbs all write operations.
Once it reaches a configured size, RocksDB flushes its content to an immutable Sorted

The Evolution of LeanStore 261

4 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

Buffer Manager (Sect. 6) M
V

C
C

 [A
L2

3]

W
A

L
(S

ec
t.

7)

Synchronization (Sect. 5)

B-tree (Sect. 4)

C++ Interface
insert/update/delete
point/range lookup
begin/rollback/commit

Fig. 1: Overview of main system components

String Table (SSTable). The earlier versions of RocksDB only supported single-writer to the
MemTable. The newer ones allow multiple writers but only for the skip-based implementa-
tion. This signals how multi-core CPU support came a second thought where LeanStore is
built up from the ground to scale on many-core with optimistic lock coupling.

To cache SST blocks, RocksDB relies on third-party allocator to manage its buffer pool
instead from implementing its own. Concretely, RocksDB uses jemalloc to cache KV pairs
from SSTs in variable-length blocks [Do21]. However, this reliance on jemalloc leads to
fragmentation and performance issues that differ between workloads and instances. RocksDB
user has to set two memory budgets. The first one for the size of the first LSM in-memory
layer (called MemTable) – which also impacts the compaction strategy. The second one for
caching which should account for the overhead by the allocator. The complex design and
the resulting different configuration parameters made Tuning memory configuration is one
of the LeanStore design does not suffer from this complication. We use a single buffer pool
with exact capacity and fixed-size pages to host all kind of nodes.

3 LeanStore System Overview

Functionality and System Overview. LeanStore is a storage engine supporting basic key
value operations (insert/update/delete, point/range lookup) and transactional semantics
(begin, commit, rollback). This functionality is exposed through a C++ interface, i.e., as an
embeddable library rather than a server process. Systems with comparable functionality
include RocksDB and WiredTiger, which are often used as building blocks for full-blown

262 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 5

data management systems. Fig. 1 illustrates the main components and the layering of the
system. In the following, we provide a high-level overview of each component.

B-tree. The main data structure in LeanStore for both indexing and storing data is a B+-
tree. Keys and values are opaque byte sequences and the application is responsible for
transforming and interpreting the data4. Although B-trees are not as fast [Wa18] as pure
in-memory data structures such as ART [LKN13] or HOT [Bi22], they offer reasonable
in-memory performance and work well in most out-of-memory situations. We implement
several optimizations to narrow this gap to in-memory data structures as described in
Sect. 4. In comparison with Log-Structured Merge (LSM) trees, which offer lower write
amplification, B-trees are faster for reads and are simpler to implement while having far fewer
parameters. Nevertheless, it is possible to offer LSM-trees in LeanStore as an additional
option, and we already experimented with a prototype LSM implementation.

Synchronization Primitives. Modern CPUs have dozens of cores, which means that overall
performance is often determined by scalability rather than single-threaded performance. In
LeanStore, we implement an innovative synchronization framework that is scalable, has
low overhead, and that is generic and easy to use. The synchronization primitives and their
implementation is described in Sect. 5.

Buffer Manager. The first LeanStore paper [Le18] demonstrated that it is possible to imple-
ment buffer management with very little overhead in comparison with in-memory systems.
The key ideas of that paper are pointer swizzling [Gr14] and a lightweight replacement
strategy. With pointer swizzling, cached pages are directly accessible through pointers –
avoiding any indirection data structure necessary in traditional buffer manager designs.
An access to swizzled pages also does not incur any overhead for the page replacement
algorithm. Once the system is running low on free memory, candidate pages for eviction are
randomly unswizzled and put into a cooling stage. Two things can happen now: a candidate
page is either fairly hot, in which case it will be swizzled again (without incurring I/O); or it
is cold, in which case it is eventually evicted once it reaches the end of a FIFO list. Sect. 6
describes how we have significantly simplified page eviction and how we optimized I/O
management to catch up with the increasing SSD performance.

Snapshot Isolation and MVCC. LeanStore supports snapshot isolation through an im-
plementation of Multi-Version Concurrency Control (MVCC). Surprisingly, we found that
the OLTP performance of state-of-the-art out-of-memory MVCC schemes collapses in the
presence of long-running OLAP queries (and vice versa). In an upcoming paper [AL23], we
propose a design that solves this problem. To do this, we combine (1) a novel out-of-memory
commit protocol that enables efficient fine-granular garbage collection, (2) an auxiliary data
4 LeanStore stores both keys and values/payloads as is. For payloads this is not a problem, but it presents an

additional challenge for keys. For example, if we have a integer key and store it in the index as signed big endian,
range scans will not yield the expected order. To solve this, it is necessary to transform keys (e.g., swap bytes for
little endian). This is a widely-used technique that Graefe [Gr11] calls normalized keys.

The Evolution of LeanStore 263

6 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

Tab. 1: The motivation behind the design decisions and techniques behind LeanStore.

Technique Motivation Technique Motivation

Pointer Swizzling [Le18] Large Buffer Partitioned I/O Stage NVMe IOPS
Optimistic Locking [LHN19] Scale Reads Batched Async Writes NVMe IOPS
Contention Split [AL21] Scale Writes Group Commit NVMe IOPS
Distributed Logging [Ha20] Scale TXs XMerge [AL21] Space Utilization
Tuple-Wise Depend. Tracking Scale TXs 4 KiB Pages Write Amplification

structure that moves logically-deleted tuples out of the way of operational transactions, and
(3) an adaptive version storage scheme.

Logging. In disk-based database systems, transactional durability is guaranteed by a write-
ahead log (WAL). Because the WAL is usually a centralized data structure, it becomes a point
of contention that prevents multi-core scalability. In a SIGMOD paper from 2020 [Ha20],
we propose a solution that uses one WAL per thread, and that ensures correctness through a
lightweight page-based tracking mechanism called Remote Flush Avoidance (RFA). Since
then, we refined this scheme to further reduce unnecessary log flushes as described in
Sect. 7.

In Tab. 1, we list the design decisions and techniques we have implemented in LeanStore
as a response to the different hardware trends like large DRAM buffers, NVMe SSDs and
many-core CPUs. The ones without citations are presented in this paper.

4 B+-Tree

Based on a classic slotted page B-tree node layout, we implement a number of B-tree
optimizations that have been proposed in the literature.

Node Layout. Fig. 2 shows the layout of a leaf node storing three keys (“http://fau.de”,
“http://tum.de”, and “http://uni-jena.de”). The slots at the front of the page contain the offset
and length of the key/payload stored at the end of the page. An inner node looks the same
except that it stores child pointers as a payload instead of values.

Fence Keys and Prefix Compression. Fence keys [Gr04] simplify the implementation of
prefix compression, and they are stored in every node. They are immutable and determined
on node initialization, i.e., after a split or merge. The lower and upper fence values are the
exclusive lower and the inclusive upper bound for the keys that could be potentially stored in
that node. When a new B-tree is created, the initial leaf page conceptually has its fence keys
set to special values −∞ and ∞. All other fence keys are given automatically by the split (or

264 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 7

header + hints lower_fence = "hp://e" upper_fence = "hp://h" prefix = "hp://"

Slot 1: head = "fau." key/value_offset =

Remaining of Key: "de" Value: "…" RK: "de" V: "…" RK: "jena.de" V: "…"

Slot 2: "tum." Slot 3: "uni-"

Fig. 2: Our variable-length keys and values B+-tree features fences, prefix compression, heads extrac-
tion and hints to accelerate binary search and save space

“separator”) keys during node splits. Using the fence keys, it becomes straightforward to
implement the well known key prefix compression technique [BU77]. The prefix is derived
from the fence keys by taking the longest common prefix of both fence keys.

Speeding Up Binary Search with Heads. Although the basic slotted page layout enables
binary search, it does so quite inefficiently because every key comparison will require
dereferencing a pointer to obtain the key – leading to many cache misses. To reduce the
number of cache misses, Graefe and Larson proposed “poor man normalized keys” [GL01],
which are a fixed-size prefix of the key. In each key slot, we therefore store the first 4
bytes of the key in the equivalent unsigned integer representation and call it head. By
default, all keys are stored as strings and we use lexicographical order to compare keys.
That means on little-endian systems (the majority of today’s CPU architectures), we fold
integer and compound keys using byte swap operations to maintain the same sort order
for their serialized string representation. This allows efficient less-than comparisons based
on the integer representation. With the heads available, we can first perform binary search
solely on the heads in the slots array using cheap integer comparison. Only for heads that
equal the lookup key, it becomes necessary to retrieve the full key and perform a byte-wise
comparison.

Avoiding Binary Search with Hints. To accelerate binary search in B-Tree nodes, we
further implement the hints optimization, which can be considered a form of in-page micro-
index [Lo01]. Instead of starting the binary search over the whole range, i.e., [0, #slots],
we try to first shrink the range using cache efficient search over hints. These hints are
stored in a dense array with a fixed number of entries (we use #hints = 16). The distance
between keys from which the heads are taken is constant and defined as distance =

#slots÷ (#hints+ 1). The original position of each hint key is determined using a simple
formula. As shown in List. 1, after finding the candidate range in hints, we can translate it
to the corresponding range in the node keys’ slots array. We also store just a copy of the
first four bytes (hint_size) instead of the whole key in the hints array. Because all hints fit
in a single cache line, we can perform a quick binary search using integer comparisons to
minimize the candidate range (lower, upper) for the key we are looking for. We also found
updating the hints structure to have negligible overhead.

The Evolution of LeanStore 265

8 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

Keys:

Hints:

separators
Lower Fence Higher Fence

Heads:

copy first
4 bytes

Fig. 3: Hints optimization: the heads of equally-distanced keys are stored as 4-byte integers, inner
node binary search starts by narrowing the range using quick binary search over hints

updateHints() { // hints_count = 16, hint_size = 4 -> 64 Bytes
u32 dist = slots_count / (hints_count + 1);
for (u16 i = 0; i < hints_count; i++)

hint[i] = key[dist * (i + 1)].substr(0, hint_size);
}

searchHints(u8* key, u16 key_length) { // Binary search starts with returned range
u32 key_head = head(key, key_length); // first hint_size bytes of key
u32 pos, pos2;
for (pos = 0; pos < hint_count; pos++) // skip smaller hints

if (hint[pos] >= key_head)
break;

for (pos2 = pos; pos2 < hint_count; pos2++) // find equal hints
if (hint[pos2] != key_head)

break;
// convert pos and pos2 to full key range
u32 dist = slots_count / (hints_count + 1);
u32 lower = pos * dist;
u32 upper = (pos2 < hint_count) ? ((pos2 + 1) * dist) : slots_count;
return {lower, upper};

}

List. 1: Narrowing binary search range using efficient integer search over hints

Contention Split and XMerge. In contrast to deterministic data structures such as tries,
the same set of keys may result in different B-tree structures (usually only depending on
the insertion order). We exploit this observation by dynamically and adaptively optimizing
the B-tree structure using the Contention Split and XMerge optimizations. Contention Split
reduces unnecessary latch contention (i.e., where a page contains more than one hot tuple),
by splitting the node – even though the node may not be full. The second optimization,
increases the fill factor of B-tree nodes by opportunistically merging X neighboring nodes
into X-1 nodes. Both optimizations have been described in detail previously [AL21].

266 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 9

5 Practical and Scalable Synchronization

5.1 Optimistic Lock Coupling and Buffer Management in C++

With optimistic latching, we eliminated unnecessary read contention for short page
reads [Le16]. The original implementation relied on a single atomic version counter and a
spin lock implementation. This simple design is not robust enough to handle the variety of
workloads that a database has to deal with [Bö20]. Reverse CPU priority and unfairness are
examples for anomalies that such spins locks exhibit.

Hybrid Latches. In the latest iteration of the LeanStore design, we use hybrid latches
with OS support that allow a “pessimistic shared” and an “exclusive” mode besides the
original optimistic mode. We implemented them using a std::shared_mutex next to a
std::atomic<uint64_t> which serves as the version counter. With the three options in place,
we can use the most suitable one for each operation: For long page reads, e.g., in scans, we
directly use the pessimistic shared mode, which also simplifies the scan logic compared
to our original implementation. Before, we had to worry about concurrent modifications
could lead to restarts while scanning a page. For short reads in leaf nodes and for inner
node traversal, we first try to latch optimistically and immediately fallback to the pessimistic
shared mode if we find the latch is already locked. Page modification operations, i.e., insert,
update, and delete, latch the page in exclusive mode.

Page Guard. To help with the complexity of buffer management and the different latching
modes, we use Page Guards to abstract some of the complexity away from the data structure
implementation. Page Guards are a C++ template class that handle latching and buffer
management and provide a simple interface to implement a data structure with. They follow
the known Resource acquisition is initialization (RAII) programming idiom. Once a page
guard is created on the stack in certain latch mode, it keeps the page latched in that mode
until the guard object goes out of scope. This protects against leaking latches for pages
that we forget to unlock in Code. We also use the page guard to access the underlying data
structure by overloading the “->” operator, which is helpful to make sure we are accessing a
latched page. In List. 2, we show how we use page guards to implement the B-tree insert
method. For tree traversal, we use the optimistic guard to avoid contention on inner nodes.
Once we locate the required leaf node, we upgrade to exclusive mode by constructing an
ExclusivePageGuard from the moved OptimisticPageGuard. The overloaded arrow operator
(->) returns the underlying buffer managed object which is the BTreeNode in our case.

5.2 Implementing Restart in C++

One consequence of our optimistic latch implementation and the fact that we do not hold
a latch on a parent page while reading one of its children from storage is that we have to
make data structure operations restartable. Unlike optimistic concurrency control, where

The Evolution of LeanStore 267

10 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

void insert(key, value) {
while(true) { // restart until success

jumpmuTry() {
// Traverse inner nodes optimistically
OptimisticPageGuard<BTreeNode> p_opt_guard;
// Swizzle the root_swip (load the page) if necessary and
// optimistically latch the page (load the version).
// It can trigger restart if root_latch version has changed in-between
OptimisticPageGuard<BTreeNode> c_opt_guard(root_swip, root_latch);
while(c_opt_guard->is_inner) {

// Binary search to find the child swip
Swip &c_swip = c_opt_guard->searchInner(key);
p_opt_guard = std::move(c_opt_guard); // reassigns without releasing latch
// Checks if p_opt_guard has been modified before following c_swip
c_opt_guard = OptimisticPageGuard(p_opt_guard, c_swip);

}
// Latch the leaf in pessimistic exclusive mode
ExclusivePageGuard c_ex_guard(std::move(c_opt_guard));
p_opt_guard.release(); // parent is not needed anymore
if(c_ex_guard->canInsert(key,value)) {

c_ex_guard->insert(key, value);
jumpmu_return; // success

} else { // Leaf is full. We can't immediately split because
// we released the parent. Thus, we copy the inclusive
// upper bound and release all latches.
upper_bound = c_ex_guard->upper_bound;
c_ex_guard.release();
// Then find and split the leaf that covers given upper bound
// starting from the root
trySplit(upper_bound); // Next iteration will find space in leaf

}
} jumpmuCatch() {} // Jumps are handled simply by restarting from root

}
}

List. 2: B-tree Insert Code Illustrating Page Guard Usage

268 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 11

we potentially restarts the whole transaction at the end, low-level optimistic latching can
force the index operation to restart any point in the code. This makes optimistic latching
more challenging to adopt. In the following, we discuss the options in C and C++ that one
could use to implement such restarts. Then we discuss our custom solution JumpMU that
allows us to implement scalable and efficient restarts while maintaining readable code.

Goto and Labels. The goto statement immediately transfers control to another statement
in the same function. When we detect a concurrent write to the page we optimistically
read from, we can goto back to the first statement in our data structure operation. However,
this works only in the same stack frame (same function call in C++). Storage engines are
usually complex and are composed out of several components like a buffer manager and a
B-tree with several functions calling each other. With goto, a function call has to inform
its caller if it returned successfully or faced a synchronization error that forces a restart.
Integrating these checks everywhere in the code wherever an optimistic read could occur is
very wearisome, error-prone, and makes the code hard to read.

C++ Exceptions. Another native option in C++ is using exceptions. Exceptions at first sight
look like a very good fit. They support jumping up several stack levels to the place where
the data structure started its operation. Also, they automatically unwind the stack and call
the destructors along the path to the exception handler. However, the standard exceptions
implementation does not scale with many CPU cores, because common implementations
(GCC and LLVM) acquire a global lock every time an exception is thrown. Although
the scalability issue can be mitigated by avoiding the global lock that protects the list of
dynamically loaded objects, the CPU cost of handling an exception remains high. A C++
exception is handled in two phases. The first phase traverses the stack up until it finds a
landing pad that handles the thrown exception. The second phase starts from scratch and
unwinds each call stack on the way up to the exception handler. This process costs around
10K instructions and lies on the hot path of B-tree accesses in our engine. For instance, if
the exclusive lock acquisition for a child node failed after we managed to lock the parent,
then the restart process will be triggered after around 10K instructions. During this time, the
parent remains exclusively locked which also affects scalability besides being inefficient.

Long Jump in C. The C standard library provides a mechanism to change control flow back
to a certain checkpoint set by the user across multiple levels of call stacks. The function
setjmp sets this checkpoint which can be used later as a landing pad by the complementary
function longjmp. For storage engines written in C, this mechanism is all what one could
need to implement restarts efficiently. However, the correct stack unwinding that C++ takes
care of automatically for the programmer does not happen with longjmp. This means that
none of the destructors of the objects allocated on the stack between longjmp and setjmp will
be called, which can lead to resource leaks and many other problems. Thus, this mechanism
alone is no viable option either.

JumpMU: Long Jump with Manual Stack Unwinding. To implement restarts efficiently,
we propose a solution that combines the benefits of C++ exceptions and the C longjmp

The Evolution of LeanStore 269

12 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

function at the cost of additional destructor tracking that could be also automated. We
call our solution JumpMU where MU stands for manual unwinding. JumpMU builds on
setjmp and longjmp and provides a C++ safe variant by manually calling all non-trivial
destructors that the C longjmp alone would. Concretely, just before longjump is called,
JumpMU destructs all statically created objects on the stack since the last setjmp – effectively
unwinding the stack. Objects without non-trivial destructors are irrelevant for JumpMU. To
achieve this efficiently, we split the work between compile-time and run-time. At run-time,
we maintain a stack of two pointers: one to the object we destruct when we jump and one to
its destructor function. The order in which the pointers pair is inserted corresponds to the
order of objects construction on the thread stack. An object constructor pushes the needed
pointers to destruct it into JumpMU stack and its destructor pops it from the stack. At
compile-time, we augment the constructors and destructors with the necessary instructions
to keep the JumpMU stack in sync, i.e., push and pop pointers.

JumpMU: Interface. We provide a similar programming experience to C++ exceptions
by using C macros as shown in the example in List. 2. Similar to the C++ try keyword, we
use the jumpmutry() to define a code block that can trigger a restart. Implementation wise,
jumpmuTry calls setjmp and saves the current environment in a thread local array that holds
multiple environment structs so we can nest setjmps. Once a jump is triggered – by calling
jumpmu::jump(), the control is transferred to the block defined in jumpmuCatch().

JumpMU: Current Caveats. When we force the control flow out of a jumpmuTry block, we
have to care of destroying the setjmp environment that was created by the jumpmuTry block.
For now, we use extra macros for every keyword that could move the control flow out of the
surrounding try block. This includes jumpmu_continue, jumpmu_break and jumpmu_return.
Moreover, the current implementation requires the user to manually annotate all objects
definition that lie in a jump range with JumpMU macros. All of the above can be automated
using a compiler plugin, which we leave for a future work.

6 Buffer Manager

In this section, we describe the changes that our buffer manager design witnessed since
its introduction in the original LeanStore paper [Le18]. The changes are geared towards
simplification and better scalability. Although our initial designed delivers very competitive
in-memory performance that is similar to an in-memory system, its implementation remained
complicated. We revised our design and managed to simplify it significantly as we show in
the following.

6.1 Memory Reclamation is Unnecessary

In the original LeanStore design, we implemented an epoch-based memory reclamation.
The epoch-based approach was not only invasive and complex to maintain, it also lacked

270 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 13

OS

P4P1

...

hot P3

...

hot

P2

...

cooling P5

...

cold

(being loaded)...

root

Buffer Pool

(more hot pages)

IO Partition (PID % 1)

HT

P4

...

cold

(being loaded)

P5

OS

IO Partition (PID % 0)

HT

IO Stage partitioned
by Page ID

Fig. 4: The revised buffer manager design obliterates the need for a cooling stage and partitions the
I/O stage by the page id to avoid contention on the hash table latch

robustness because a single slow thread could impede the advancement of the current global
epoch which hinders the eviction of pages. Surprisingly, although memory reclamation
seems mandatory for optimistic and lock-free synchronization, we eventually realized that
this component is not needed after all. Thus, we could simplify our system by ensuring that
1) we do not reset or change the address of the atomic version counter of any buffer frame
and 2) we do not release the memory allocated to the buffer back to the operating system.
Condition 1 can easily be satisfied, and condition 2 is generally true in buffer managers.
Thus, memory reclamation is completely unnecessary. We consequently we removed the
code and got rid of the robustness issues of epoch-based reclamation.

6.2 Page Replacement

Lightweight Replacement Strategy Without a Cooling Stage. To achieve near in-memory
performance, we aim at removing any overhead from the hot path, i.e., from read-only
access to frequently visited pages. To that end, we designed our replacement strategy right
from the start to work differently than in a traditional buffer manager. Instead of tracking
the hot set of accessed pages, we identify the cold set of unused pages in a background
fashion. Our first proposal LeanEvict follows this design principle [Le18], but did so using
an unnecessarily complicated cooling stage, which was also vulnerable to contention. In this
paper, we propose replacing LeanEvict with the well-known Second Chance replacement
strategy. Second Chance does not add any overhead to the hot path and works in the same
background fashion as LeanEvict. At the same time experimental results show that it does
not lead to worse eviction candidates than the much more elaborate LeanEvict. In the
following we describe our implementation of Second Chance in LeanStore.

Swizzling-Based Second Chance Implementation. Whenever free pages are needed, we
pick a set of 64 random buffer frames and load their status. Then, we iterate over them and

The Evolution of LeanStore 271

14 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

“cool the hot” (swizzled) buffer frames by 1) setting the most significant bit in the parent’s
swip that points to them 2) changing their buffer frame status to “cool”. Any page that
is already cool gets written back to disk if dirty, or evicted immediately otherwise. Note
that with second-chance, the whole cooling stage, which includes a hash table and FIFO
queue, is not needed anymore. Moreover, a cool swip holds a virtual memory pointer also
when it is cool but the pointer is tagged to mark the page it points to as cool. This is in
contrast to our previous design where a swip to a cool page gets unswizzled and replaced
by the page identifier. Accessing a cool page does not require any access to the cooling hash
table as is the case in LeanEvict. A hot page access does not require any extra work with
our Second Chance implementation because we encode the status of the child node in the
swip that points to it. If the cooling bit is not set, then it follows the swip pointer as usual.
Otherwise, in the cold page access case, the bit is unset in the swip and the buffer frame
status is changed back to hot.

No Parent Pointers with Top Down Tree Traversals. In order to evict a page, LeanStore
has to unswizzle it by replacing the virtual memory pointer to the page in its parent node
with the page identifier. This means we need to be able to get the parent node of each node
we want to evict. The initial LeanStore implementation [Le18] achieves this by storing a
parent pointer in each buffer frame. Although this seems an efficient way to reach the parent,
it imposes several restrictions and complicates the system. Concretely, whenever we split a
B-tree node, we have to update the parent pointer in the buffer frames of half of its child
nodes. Also, care needs to be taken when latching the parent, as in general lock coupling in
B-trees is based on the invariant that latches may only be acquired top-down. In our current
design, we refrain from storing parent pointers and use a generic findParent method that
returns a handler to the parent by traversing the data structure via its usual access path from
the root down to the requested node. The same mechanism is also used when splitting or
merging a node in the B-tree, as these also require access to the parent node.

6.3 Scaling to Multiple NVMe SSDs

For efficiency and correctness reasons, the system must synchronize I/O requests to prevent
different threads from loading the same page into possibly different locations in the buffer
pool simultaneously. To this end, we use an I/O stage to explicitly serialize I/O requests by
page identifier (PID) like traditional buffer managers. The I/O stage uses a hash table that
maps each PID to its state and a waiting queue that other threads sleep in until the page I/O
finishes. With one SSD, the single I/O stage with the global mutex in the original LeanStore
design from 2018 was enough to saturate the SSD bandwidth. With today’s PCIe 4.0, we
can attach an array of, e.g., ten NVMe SSDs [HHL20], where each drive can deliver up to
7000 MB/s read bandwidth and 3800 MB/s write bandwidth. In such a system, we need high
concurrency to issue a large number of parallel I/O requests to fully utilize all SSDs. The

272 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 15

global mutex that protects the I/O hash table5 would quickly become a scalability bottleneck
and prevent us from reaching exploiting the maximum bandwidth that modern flash drives
can deliver.

Partitioned I/O Stage. We partition our I/O stage according to the page identifier (PID) as
shown in Fig. 4. The least significant bits of a Page ID determines the I/O stage partition
that we will use to handle the I/O operation. Page IDs are assigned randomly and as a result,
the I/O operations are evenly distributed among the different partitions regardless of the
workload characteristics. This reduces the contention on the mutex that protects the I/O
stage significantly and allows more worker threads to read pages in parallel. The number
of partitions is a freely configurable parameter. As a heuristic, we set the number of I/O
partitions at least equal to the number of threads in the system to maximize bandwidth. Note
that the buffer pool is still not partitioned and a buffer frame can host a page that is assigned
to any of the I/O partitions.

Background Page Provider Threads. In the original design, foreground worker threads
cool and evict the pages. This adds latency to transactions that suddenly get paused to
evict the needed free pages. We deviate from this design and implement a page provider
thread routine that cool and evict pages in the background [Ha20]. To fully utilize the
available IOPS, multiple page provider threads can be launched in parallel. Moreover, to
write back dirty pages, each thread submits batches of write commands to the kernel using
a native asynchronous interface like libaio or io_uring. As we have removed the cooling
stage, synchronizing the background threads become simpler.

7 Logging

In our first logging paper [Ha20], we describe a scalable distributed logging scheme that
uses persistent memory (pmem) as a first landing stage for WAL records. However, the
slow adoption of pmem and its total abandonment by Intel encouraged us to implement
a logging scheme that is optimized for flash SSD characteristics solely. LeanStore now
also implements Early Lock Release (ELR) [De84; Jo10] which reduces transaction abort
rates by releasing write locks without having to wait for flushing the log. Both ELR and
distributed logging amplify the cost of cross-worker logging dependencies. Therefore, we
introduce a new fine-granular dependency tracking mechanism to reduce the false positive
dependencies. In the following, we assume that transactions run in Read Committed or
Snapshot Isolation level.

The Evolution of LeanStore 273

16 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

1. Write WAL Logs 2. Harden Logs 3. Commit Wrien Transactions

...

Worker 0

WAL
Ring Buffer

TX 8 TX 10

TX 6

TX
 4

TX
 1

2

TX 14TX 0

TX
2

W
or

ke
r

0
T

X
 8

 |
T

X
 1

0
 |

T
X

 1
2Worker 1

WAL
Ring Buffer

TX 9 TX 11

TX 7

TX
 5

TX
 1

3

TX 15TX 1

TX
 3

flush SSD

T
X

 9
 |

T
X

 1
1

| T
X

 1
3

W
or

ke
r

1

dependencies <=
TX 10 are hardened

13 depends on 12 which is not
hardened -> 13 waits

11 depends on 10 which is also
hardened -> 11 commits

already wrien

asy
nc w

rite

8, 9, 10 commit without dependencies

Fig. 5: Group Commit: Each round collects and writes WAL records on SSD before calling fsync().
Consequently, it signals all safe-to-commit transactions if their dependencies are also hardened

7.1 Group Commit

Despite being a widely implemented technique in database systems, few research papers
describe SSD-optimized group commit. In Fig. 5, we illustrate our group commit imple-
mentation. Group commit works in rounds of 3 steps each. Most of the work is done by a
background Group Committer Thread (GCT). Worker threads only push the pre-committed
transactions, which have already passed the concurrency control validation phase, into a
ready-to-commit queue and the GCT takes on from this point. The first step in a group
commit round is to write WAL records from every worker thread on SSD. On Linux, we
use the asynchronous IO interface from libaio to batch all log writes and submit them using
a single system call. Once the writes are done, we flush the block device with fsync to make
sure that the log records we have just written are durable. Consequently, we calculate the
new safe set of transactions that are hardened and ready to signal their commit to the client.
With this information in hand, we can commit the pre-committed transactions in each worker
that have their own log and their dependencies hardened.

7.2 Dependency Tracking

With distributed logging [Ha20] and Early Lock Release (ELR), transaction commit depen-
dencies to other transactions must be determined. With ELR, a transaction T1 releases the
write locks in its pre-commit phase before having its WAL records hardened on SSD. This
means that a transaction T2 that reads from T1 cannot commit before T1. This dependency
must be determined and hardened with the WAL commit log to preserve this dependency at
recovery. Dependencies across transactions processed by the same worker thread have no
impact on performance as they are processed serially. Cross-worker thread dependencies,
on the other hand, impact latencies negatively as the system has to wait until all of the
transaction’s dependencies are hardened. Coarse-grained dependency tracking using the
Global Sequence Number (GSN) on each page leads to many false positive dependencies.
5 The I/O hash table tracks in-flight I/O operations and is required to avoid race conditions which could otherwise

occur when the same uncached page is accessed multiple times [Le18].

274 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 17

For example, if T1 and T2 concurrently update different tuples on the same page, GSN
synchronization will lead to a false dependency between the two transactions.

System vs. User Transactions Before we define the dependency rule, let us mention
the two types of transactions in our storage engine and how they differ from each other.
User TXs execute the commands of the storage engine client. They have a start and commit
timestamp that are drawn from the same global atomic counter. Their side effects are only
visible after commit and only to user transactions that started from the commit. System TXs
are triggered by the storage engine itself [Gr11]. For example, they are used to split or merge
B-tree pages, manipulate the free space inventory and their side effects are immediately
visible to all other transactions. They have do not change the data written by the user but
only impact the physical representation. A system transaction exclusively locks all the pages
it wants to modify before applying the changes. The start and commit timestamp of a system
TX are thus always equal and drawn from another global atomic counter separate to the user
transactions.

Commit Condition. Because read committed is the lowest sensible isolation level, user
transaction dependencies can be tracked at transaction granularity instead of log sequence
numbers like LSNs or GSNs. A user transaction depends on previous user and system
transactions. For system transactions, it is enough to track the maximum system transaction
ID it has witnessed while reading pages. Each page stores the maximum system transaction
that had written on it. For the user one, we can either use the user TX start timestamp in
case of snapshot isolation level or the start timestamp for the most-recent (pre-)committed
user transaction it has read from. The Group Commit Thread calculates the two watermarks:
user_tx_hardened_up_to and system_tx_hardened_up_to of all workers during each round
and commits the pre-committed transactions that are below them.

8 Evaluation

In this section, we first experimentally compare LeanStore with WiredTiger and RocksDB
using TPC-C and YCSB. Both benchmarks do not involve complex analytical operations like
join or aggregation and are fully supported in all of the competing transactional key-value
storage engines. We then show the effectiveness of the B-tree optimizations described in
Sect. 4 and of the commit dependency tracking discussed in Sect. 7. All benchmarks are
implemented as a C++ client linked with the storage engine library. Unless explicitly stated,
all engines have been configured to run under snapshot isolation. WiredTiger supports the
lower isolation mode read uncommitted (RU) only for read-only transactions which we
denote as WiredTiger (RU) and evaluate to measure the impact of snapshot construction. All
experiments were performed on a single-socket server with an AMD EPYC 7713 64-Core
CPU (128 hardware threads) with 512 GB of DRAM running Linux. For storage, we use a
RAID-0 of ten 3.8 TB Samsung PM1733 SSDs using XFS as file system.

The Evolution of LeanStore 275

18 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

8.1 In-Memory Scalability

0.0M

0.5M

1.0M

1.5M

2.0M

1 20 40 60 80 100 120

Worker Threads

T
h

ro
u

g
h

p
u

t
[t

xn
s/

s
]

LeanStore WiredTiger RocksDB

Fig. 6: TPC-C in-memory scalability

0.0M

5.0M

10.0M

15.0M

20.0M

1 20 40 60 80 100 120

Worker Threads

R
a

n
d

o
m

 L
o

o
ku

p
s

[t
x
n

s
/s

]

LeanStore WiredTiger

RocksDB WiredTiger (RU)

Fig. 7: YCSB read-only in-memory scalability

Let us first investigate in-memory scalability. We compare the performance of LeanStore
with its competitors on TPC-C (Fig. 6) (with warehouse affinity) and a YCSB-like random
lookup workload (Fig. 7). In both experiments, the buffer pool is configured to be large
enough to fit the data sets.

On TPC-C, we see that LeanStore performs much better than the other two systems at
higher thread counts. Note that, as expected, when more than 64 worker threads are used,
the scalability is slightly worse due to hyperthreading. The absolute performance of over 2
million TPC-C transactions per second shows that LeanStore can compete with the fastest
in-memory systems (despite also supporting out-of-memory workloads).

On the read-only random lookup workload, only WiredTiger under the lower isolation
mode read uncommitted (RU) comes close to LeanStore snapshot isolation scalability.
Despite running on higher isolation level, LeanStore remains around 30% faster. In the
absence of concurrency control (RU), hazard pointers and free-lock techniques employed
in WiredTiger make the index lookup scales similar to LeanStore’s pointer swizzling and
optimistic lock coupling. This result highlights the importance of scalability primitives on
modern hardware. In WiredTiger, the cost of constructing a snapshot is proportional to the
number of active threads in the systems. At higher threads count, snapshot construction costs
more the actual lookup which leads to the performance deterioration beyond 20 threads.
With our novel’s MVCC implementation [AL23], LeanStore scales linearly without hard
coding any optimization for single-statement or read-only transactions.

276 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 19

8.2 Out-Of-Memory Scalability

0K

100K

200K

300K

400K

500K

1 20 40 60 80 100 120

Worker Threads

T
P

C
-C

 T
h

ro
u

g
h

p
u

t
[t

xn
s
/s

]

LeanStore WiredTiger RocksDB

Fig. 8: TPC-C out-of-memory scalability

0.0M

0.5M

1.0M

1 20 40 60 80 100 120

Worker Threads

R
a

n
d

o
m

 L
o

o
ku

p
s

[t
x
n

s
/s

]

LeanStore WiredTiger

RocksDB WiredTiger (RU)

Fig. 9: YCSB read-only out-of-memory scalability

For the next two experiments we configured the buffer pool to be smaller than the data set.
For TPC-C we use a 10 GB buffer pool for a 24 GB data set, and for YCSB we use a 10 GB
buffer pool for a 100 GB data set. Fig. 8 shows that only LeanStore scales well, reaching
500 thousand TPC-C transactions per second in an out-of-memory setting. Interestingly, on
the read-only YCSB benchmark shown in Fig. 9, the gap to the other systems is smaller. The
impact of snapshot construction in WiredTiger diminishes because of the dominance of I/O
cost. Apparently, these systems can handle read-only workloads reasonably well, but not
write-intensive workloads like TPC-C. The observed performance with 120 threads of over
1 million random reads per seconds can be explained by being entirely I/O latency bound:
the latency of a single read I/O is about 100 microseconds [HHL20], which corresponds
to 10K per second per thread. Our hardware setup could theoretically support an order of
magnitude higher I/O rates, but this would require more concurrent operations.

8.3 B-tree Optimizations

Tab. 2: Performance impact of B-Tree optimizations on single-threaded lookup performance in a
B-tree of 10 million 8-byte integers or 6.4 million strings with an average length of 63 bytes

Integers Strings

operations/s instr./op. L1-miss/op. operations/s intr./op. L1-miss/op.

baseline 1,094,092 1,255 71 914,693 1,266 99
+ prefix 1,127,396 1,261 72 1,013,265 1,252 83
+ heads 1,811,594 590 36 1,296,897 1,067 58
+ hints 2,427,184 567 17 1,383,918 1,137 45

The Evolution of LeanStore 277

20 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

Let us next evaluate the impact of the B-tree performance optimizations. We look at the
single-threaded in-memory lookup performance. As keys, we use 10 million dense random
8-byte integers (plus 8-byte payload), and 6.4 million real-world URLs with an average
length of 63 bytes. Tab. 2 shows the performance, CPU instructions and L1 cache misses for
both workloads. The baseline is the basic slotted page layout without any optimizations. We
then cumulatively enable the prefix, heads, and hints optimizations. As the table shows, each
optimization improved performance significantly for both workloads. What is interesting is
that in the baseline case, the integer workload is only 20% faster than the string workload,
while with all optimizations the gap increases to 76%. This is because for string data set and
its long keys (63 bytes), many of the cache misses are hard to avoid. In the integer case, on
the other hand, the optimizations are extremely effective, reducing the number of L1 misses
by from 71 to 17 and improving overall performance by 2.2×.

8.4 Commit Dependency Tracking
Tab. 3: Percentage of cross thread transaction dependencies (lower is better)

Tracking Granularity Warehouse Affinity Cross Warehouse

Page Wise 52.0% 95.5%
Tuple Wise 3.9% 91.9%

In our final experiment, we demonstrate the effectiveness of Commit Dependency Tracking
by measuring the ratio of remote flushes necessary. We use TPC-C benchmark with 120
worker threads and 120 warehouses, which corresponds to about 15GB of data. In [Ha20] we
proposed a lightweight page wise tracking scheme, which we now compare with tuple-wise
tracking described in Sect. 7. Tab. 3 shows that tuple-wise tracking reduces the number
of log flushes in both TPC-C settings. In the “Cross Warehouse” setting, many conflicts
are unavoidable, but even here the tuple-wise scheme is more precise. With “Warehouse
Affinity”, there are few logical conflicts, and tuple-wise tracking reduces the flush rate from
52% to 4%.

9 Summary

The goal of LeanStore is to build a high-performance storage engine optimized for multi-core
CPUs and NVMe SSDs. In this paper, we describe some important LeanStore components
for the first time. Seemingly intricate implementation details of the B-tree, synchronization,
buffer management, and logging are crucial for overall performance, scalability, and code
maintainability. While the goal of LeanStore has stayed the same since the start of the project,
many internals have changed and we expect this evolution to continue. For example, we have
recently designed an OS-assisted buffer manager [Le23], which we are now considering for
LeanStore.
Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 447457559.

278 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

The Evolution of LeanStore 21

References

[AL21] Alhomssi, A.; Leis, V.: Contention and Space Management in B-Trees. In: CIDR.
2021.

[AL23] Alhomssi, A.; Leis, V.: Scalable and Robust Snapshot Isolation for High-
Performance Storage Engines. In: Under Submission. 2023.

[An19] Antonopoulos, P.; Budovski, A.; Diaconu, C.; Saenz, A. H.; Hu, J.; Kodavalla, H.;
Kossmann, D.; Lingam, S.; Minhas, U. F.; Prakash, N.; Purohit, V.; Qu, H.;
Ravella, C. S.; Reisteter, K.; Shrotri, S.; Tang, D.; Wakade, V.: Socrates: The
New SQL Server in the Cloud. In: SIGMOD. 2019.

[AW22a] AWS: Amazon EC2 I3en Instances, https : / / aws . amazon . com / ec2 /
instance-types/i3en/, 2022.

[AW22b] AWS: Lsv2-series, https://learn.microsoft.com/en-us/azure/
virtual-machines/lsv2-series, 2022.

[Bi22] Binna, R.; Zangerle, E.; Pichl, M.; Specht, G.; Leis, V.: Height Optimized Tries.
ACM Trans. Database Syst. 47/1, 3:1–3:46, 2022.

[Bö20] Böttcher, J.; Leis, V.; Giceva, J.; Neumann, T.; Kemper, A.: Scalable and robust
latches for database systems. In: DaMoN. 2020.

[BU77] Bayer, R.; Unterauer, K.: Prefix B-Trees. ACM Trans. Database Syst. 2/1, pp. 11–
26, 1977.

[De84] DeWitt, D. J.; Katz, R. H.; Olken, F.; Shapiro, L. D.; Stonebraker, M.;
Wood, D. A.: Implementation Techniques for Main Memory Database Systems.
In: SIGMOD. 1984.

[Di13] Diaconu, C.; Freedman, C.; Ismert, E.; Larson, P.; Mittal, P.; Stonecipher, R.;
Verma, N.; Zwilling, M.: Hekaton: SQL server’s memory-optimized OLTP
engine. In: SIGMOD. Pp. 1243–1254, 2013.

[Do21] Dong, S.; Kryczka, A.; Jin, Y.; Stumm, M.: RocksDB: Evolution of Development
Priorities in a Key-value Store Serving Large-scale Applications. ACM Trans.
Storage/, 2021.

[Fä11] Färber, F.; Cha, S. K.; Primsch, J.; Bornhövd, C.; Sigg, S.; Lehner, W.: SAP
HANA database: data management for modern business applications. SIGMOD
Rec. 40/4, pp. 45–51, 2011.

[GL01] Graefe, G.; Larson, P.: B-Tree Indexes and CPU Caches. In: ICDE. 2001.
[Gr04] Graefe, G.: Write-Optimized B-Trees. In: VLDB. Pp. 672–683, 2004.
[Gr11] Graefe, G.: Modern B-Tree Techniques. Found. Trends Databases 3/4, pp. 203–

402, 2011.
[Gr14] Graefe, G.; Volos, H.; Kimura, H.; Kuno, H. A.; Tucek, J.; Lillibridge, M.;

Veitch, A. C.: In-Memory Performance for Big Data. PVLDB 8/1, pp. 37–48,
2014.

The Evolution of LeanStore 279

https://aws.amazon.com/ec2/instance-types/i3en/
https://aws.amazon.com/ec2/instance-types/i3en/
https://learn.microsoft.com/en-us/azure/virtual-machines/lsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/lsv2-series

22 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

[Ha20] Haubenschild, M.; Sauer, C.; Neumann, T.; Leis, V.: Rethinking Logging, Check-
points, and Recovery for High-Performance Storage Engines. In: SIGMOD.
Pp. 877–892, 2020.

[HHL20] Haas, G.; Haubenschild, M.; Leis, V.: Exploiting Directly-Attached NVMe
Arrays in DBMS. In: CIDR. 2020.

[Jo10] Johnson, R.; Pandis, I.; Stoica, R.; Athanassoulis, M.; Ailamaki, A.: Aether: A
Scalable Approach to Logging. PVLDB 3/1, pp. 681–692, 2010.

[Ke12] Kemper, A.; Neumann, T.; Funke, F.; Leis, V.; Mühe, H.: HyPer: Adapting
Columnar Main-Memory Data Management for Transactional AND Query
Processing. IEEE Data Eng. Bull. 35/1, pp. 46–51, 2012.

[Le16] Leis, V.; Scheibner, F.; Kemper, A.; Neumann, T.: The ART of practical syn-
chronization. In: DaMoN. 2016.

[Le18] Leis, V.; Haubenschild, M.; Kemper, A.; Neumann, T.: LeanStore: In-Memory
Data Management beyond Main Memory. In: ICDE. Pp. 185–196, 2018.

[Le23] Leis, V.; Alhomssi, A.; Ziegler, T.; Loeck, Y.; Dietrich, C.: Virtual-Memory
Assisted Buffer Management. In: SIGMOD. 2023.

[LHN19] Leis, V.; Haubenschild, M.; Neumann, T.: Optimistic Lock Coupling: A Scalable
and Efficient General-Purpose Synchronization Method. IEEE Data Eng. Bull.
42/1, pp. 73–84, 2019.

[LKN13] Leis, V.; Kemper, A.; Neumann, T.: The adaptive radix tree: ARTful indexing
for main-memory databases. In: ICDE. Pp. 38–49, 2013.

[Lo01] Lomet, D. B.: The Evolution of Effective B-tree: Page Organization and Tech-
niques: A Personal Account. SIGMOD Rec. 30/3, pp. 64–69, 2001.

[Mo22] MongoDB: WiredTiger Storage Engine, https://docs.mongodb.com/
manual/core/wiredtiger/, 2022.

[NF20] Neumann, T.; Freitag, M. J.: Umbra: A Disk-Based System with In-Memory
Performance. In: CIDR. 2020.

[Sa22a] Samsung: PCIe Gen 4-enabled PM1733 SSD, https://semiconductor.
samsung.com/ssd/enterprise-ssd/pm1733-pm1735/mzwlj3t8hbls-
00007/, 2022.

[Sa22b] Samsung: PM1743, https : / / semiconductor . samsung . com / ssd /
enterprise-ssd/pm1743/, 2022.

[SW13] Stonebraker, M.; Weisberg, A.: The VoltDB Main Memory DBMS. IEEE Data
Eng. Bull. 36/2, pp. 21–27, 2013.

[Tu13] Tu, S.; Zheng, W.; Kohler, E.; Liskov, B.; Madden, S.: Speedy transactions in
multicore in-memory databases. In: SIGOPS. Pp. 18–32, 2013.

280 Adnan Alhomssi, Michael Haubenschild, Viktor Leis

https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1733-pm1735/mzwlj3t8hbls-00007/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1733-pm1735/mzwlj3t8hbls-00007/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1733-pm1735/mzwlj3t8hbls-00007/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/

The Evolution of LeanStore 23

[Ve17] Verbitski, A.; Gupta, A.; Saha, D.; Brahmadesam, M.; Gupta, K.; Mittal, R.;
Krishnamurthy, S.; Maurice, S.; Kharatishvili, T.; Bao, X.: Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational Databases.
In: SIGMOD. 2017.

[Wa18] Wang, Z.; Pavlo, A.; Lim, H.; Leis, V.; Zhang, H.; Kaminsky, M.; Ander-
sen, D. G.: Building a Bw-Tree Takes More Than Just Buzz Words. In: SIGMOD
Conference. ACM, pp. 473–488, 2018.

The Evolution of LeanStore 281

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

PostBOUND: PostgreSQL with Upper Bound SPJ Query
Optimization

Rico Bergmann1, Axel Hertzschuch1, Claudio Hartmann1, Dirk Habich1, Wolfgang Lehner1

Abstract: A variety of query optimization papers have shown the disastrous effect of poor cardinality
estimates on the overall runtime for arbitrary select-project-join (SPJ) queries. Especially, underesti-
mating join cardinalities for multi-joins can lead to catastrophic join orderings. A promising solution
to overcome this problem is query optimization based on upper bounds for the join cardinalities. In
this domain, our proposed UES concept is presently the most efficient technique featuring a simple,
yet effective upper bound for an arbitrary number of joins. To foster research in that direction, we
introduce PostBOUND, our generalized framework to seamlessly integrate upper bound SPJ query
optimization in PostgreSQL. PostBOUND provides abstractions to calculate arbitrary upper bounds,
to model joins required by an SPJ query and to iteratively construct an optimized join order. To
highlight the extensibility of PostBOUND, and to show the research potential, we additionally present
two tighter upper bound UES variants using top-k statistics in this paper. In our evaluation, we show
the efficiency and applicability of PostBOUND on different workloads as well as using different
PostgreSQL versions. Additionally, we evaluate both presented tighter upper bound variant ideas.

Keywords: SPJ queries; join order; join cardinalities; upper bound; generalization

1 Introduction

The optimization of arbitrary select-project-join (SPJ) queries is still an open research topic
and far from being solved [Le15]. For example, one of the most challenging and open issues
for complex SPJ queries is finding a good join order [CBS19, He21, Le15]. To tackle this
issue, the majority of existing approaches requires reliable precise cardinality estimates for
arbitrary joins including joins over intermediate join results and pre-filtered base tables. To
provide these reliable estimates, traditional techniques frequently rely on basic heuristics that
may assume predicate independence and a uniform distribution of attribute values [Le15].
However, relying on these assumptions can lead to disastrous join orderings [Le15]. Thus,
various sophisticated techniques for the join cardinality estimation have been proposed in
recent years. On the one hand, sampling approaches seem appealing [Le17, MH20, Zh18],
but they do not scale well to many joins [CY17, Zh18]. On the other hand, modern estimation
approaches rely on machine learning techniques [Ki19a, Wo19] as they are able to model
complex data characteristics. However, these ML approaches do not yet cover all relevant
filter predicate types and their training depends on executing a plethora of joins, which may
take days or even weeks [Wo20, Wo21].
1 Technische Universität Dresden, Database Research Group, 01062 Dresden, Germany,
{rico.bergmann1,axel.hertzschuch,claudio.hartmann,dirk.habich,wolfgang.lehner}@tu-dresden.de

cba doi:10.18420/BTW2023-14

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 283

mailto:{rico.bergmann1,axel.hertzschuch,claudio.hartmann,dirk.habich,wolfgang.lehner}@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-14

2 Rico Bergmann et al.

1e+05

1e+09

1e+13

1e+17

Query (ordered by overestimation)

O
ve

re
st

im
at

io
n

fa
ct

or

Fig. 1: Upper bound overestimation of UES for the Join-Order-Benchmark.

Thus, state-of-the-art approaches to find good join orders based on reliable cardinality
estimates do not seem to be the right way. In contrast to that, approaches using guaranteed
upper bounds for join cardinalities are a very promising alternative leading to better and
more robust join ordering for complex SPJ queries [CBS19, De22, He21]. In that direction,
we have recently introduced a novel concept called UES [He21]. The most outstanding
feature of UES is its simplicity, achieved by three building blocks:

U-Block: Assuming only basic attribute statistics and accurate selectivity estimates for
filters over base tables, we defined a simple, yet effective Upper bound for an arbitrary
number of joins. In particular, our UES upper bound calculates the worst-case
cardinality using only the maximum value frequency per join attribute.

E-Block: Appropriately Enumerating joins according to our upper bound effectively
prevents overly aggressive (sometimes disastrous) join orderings.

S-Block: To guarantee accurate selectivity estimates even for complex filters in SPJ-queries
required by the U-Block, we propose using customized Sampling strategies. In case
of less challenging filter operations, other synopsis such as standard histograms might
be used.

Our Contributions: In this paper, we introduce PostBOUND, our generalized framework
implementation around the general UES concept to seamlessly integrate upper bound SPJ
query optimization in PostgreSQL. PostBOUND provides abstractions to integrate arbitrary
upper bounds for join cardinalities, to model joins required by a query and to determine
an optimized join order. These abstractions are supplemented by a customized version of
the UES algorithm and accompanied by other assisting components such as estimation
strategies for base table filters or an infrastructure for physical operator selection. Our overall

284 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 3

framework is implemented in Python with extensibility being one of the primary design
goals.

To demonstrate this extensibility and to show ongoing research potential, we additionally
introduce two tighter upper bound variant ideas as a generalization of UES. Fig. 1 exemplarily
illustrates the overestimation factor of the UES upper bound compared to the real query results
for the Join-Order-Benchmark (JOB) [Le15]. It is clearly visible that the overestimation
in the range from 103 to 1016 is extreme, leading to a very pessimistic approach. One of
the problems of such a high overestimation is that the determined join order for a SPJ
query could be too defensive and there could be a join order providing a faster runtime.
Another disadvantage is that the upper bound cannot be used for the physical operator
selection [He21, He22]. Thus, an obvious optimization opportunity of our UES approach is
to compute tighter upper bounds to overcome these disadvantages.

Contributions in Detail and Outline: To summarize, we make the following contributions,
which also define the outline of this paper:

• In Section 2, we recap our UES concept as foundation for the remainder of the paper.
• Our developed PostgreSQL extension called PostBOUND2 is described in Section 3.

PostBOUND enables seamless integration of upper bound SPJ query optimization in
PostgreSQL and PostBOUND is designed as an extensible framework.
• We enhance the UES concept with an idea for a generalized approach to tighten our

upper bound based on top-k statistics in Section 4.
• Section 5 presents selective results of our comprehensive evaluation. In particular,

we focus on the evaluation (i) of the upper bound optimization on different workloads
as well as different PostgreSQL versions and (ii) of the impact of the tighter bounds.

Finally, we close the paper with related work in Section 6 before concluding in Section 7.

2 UES - Join Ordering with Simple Upper Bound

In contrast to state-of-the-art approaches (see Section 6), our UES concept [He21] follows a
completely different idea to determine good join orderings for SPJ queries: instead of trying
to obtain precise estimates for join cardinalities, it calculates theoretical upper bounds of
the sizes of intermediate result sets and uses these bounds in a heuristic join enumeration
algorithm. This concept is based on the insight that the duration of query workloads is often
dominated by the runtime of very few queries that take an exceptionally long amount of
time. Meanwhile, most queries in a typical workload can be answered rather quickly. This
phenomena is referred to as tail latency. Thus, a novel query optimization strategy should
focus on improving these long-running queries, instead of speeding up queries that are
already fast. However, this can usually not be achieved by improving the runtime in the

2 PostBOUND is available open-source at https://github.com/rbergm/PostBOUND. The btw23-reproducibility
branch is prepared specifically for the reproducibility effort of BTW 2023.

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 285

https://github.com/rbergm/PostBOUND

4 Rico Bergmann et al.

average case, since new outliers can become part of the tail latencies. In contrast, a correct
theoretical upper bound can never be wrong in the sense that the true cardinalities exceed
the bound. By feeding these worst-case estimates to the join enumeration algorithm, it will
probably choose a join order that is too pessimistic in the sense that another join order could
have provided a faster runtime. But it will never choose a join order that is too optimistic, i.e.
a plan that only works if the intermediate cardinalities are indeed small and takes a much
longer time to execute if this hope is not met. Following this general philosophy of focusing
on the long running queries, it is acceptable if very fast queries get slightly slower, as long
as the tail latencies are removed. In the following, we sketch both the upper bounds for join
cardinalities, as well as the heuristic join enumeration algorithm of UES.

Our UES upper bounds of join intermediate cardinalities are estimated via most frequent
value statistics on the join columns. In fact, the only metadata necessary to calculate upper
bounds with UES are the frequencies of the most common values of the join attributes
and the total number of (filtered) tuples per base table. These statistics are then combined
with a number of pessimistic assumptions regarding the distribution and correlation of the
attribute values. For brevity the calculation is only summarized here, since the final formula
is already presented and justified in [He21]. To estimate the size of a join 𝑅.𝑥 ⊲⊳ 𝑆.𝑦 on
(filtered) base tables 𝑅 and 𝑆 while only using the most frequent values for 𝑅.𝑥 and 𝑆.𝑦, a
first pessimistic assumption is used: the attributes are assumed to be uniformly distributed,
with the maximum value frequency (MF) therefore also being the only frequency shared
by all values. Based on these frequencies and the total number of tuples per (filtered)
relation (|𝜎(𝑅.𝑥) |, |𝜎(𝑆.𝑦) |), the minimum number of distinct values per attribute can
be estimated as |𝜎(𝑅) |/𝑀𝐹 (𝑅.𝑥) for 𝑅 and likewise for 𝑆. To combine these per-table
values into an estimate for their join result, a second pessimistic assumption is used: the
attribute values are assumed to overlap perfectly, i.e. each value in 𝑅.𝑥 has a matching
join partner in 𝑆.𝑦 and vice-versa. This leads to 𝑀𝐹 (𝑅.𝑥) · 𝑀𝐹 (𝑆.𝑦) many outgoing
tuples per value combination due to the uniformity assumption. Since there are at most
𝑚𝑖𝑛(|𝜎(𝑅.𝑥) |/𝑀𝐹 (𝑅.𝑥), |𝜎(𝑆.𝑦) |/𝑀𝐹 (𝑆.𝑦)) many such combinations, the upper bound
can be calculated as

𝑢𝑝𝑝𝑒𝑟 (|𝜎(𝑅) ⊲⊳ 𝜎(𝑆) |) := 𝑚𝑖𝑛

(|𝜎(𝑅) |
𝑀𝐹 (𝑅.𝑥) ,

|𝜎(𝑆) |
𝑀𝐹 (𝑆.𝑦)

)
· 𝑀𝐹 (𝑅.𝑥) · 𝑀𝐹 (𝑆.𝑦)

Fig. 2 illustrates our UES upper bound concept, using an example. The left-hand side depicts
the worst-case – used to derive the upper bound – constrained by the table statistics, while the
right-hand side depicts the actual join. Note that 𝑅 and 𝑆 do not need to be base tables. Instead
they can be the result of some other join just as well. For example, without loss of generality,
we can assume that 𝑅 = 𝑅1 ⊲⊳𝑅1.𝑥=𝑅2.𝑦 𝑅2. In this case, |𝜎(𝑅) | = 𝑢𝑝𝑝𝑒𝑟 (|𝑅1 ⊲⊳ 𝑅2 |) and
𝑀𝐹 (𝑅.𝑥) = 𝑀𝐹 (𝑅1.𝑥) · 𝑀𝐹 (𝑅2.𝑦). This enables the calculation of upper bounds for any
join in a recursive manner. One central downside of this approach is the propagation of
errors, in this case of overestimated result sizes. Since the estimation of an 𝑛-way join
requires estimates of 𝑛 − 1 smaller joins building on top of each other, estimates grow larger
and larger as already shown in Fig. 1.

286 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 5

Fig. 2: Illustration of the UES upper bound (taken from [He21]).

Based on this upper bound for join cardinalities, the join order in UES is obtained using
a heuristic algorithm [He21]. The UES join enumeration algorithm tries to choose each
join such that the sizes of intermediate results are minimized in each step. To make this
choice, the upper bounds of candidate joins are calculated and the join with smallest bound
is executed. However, this process is only applied to n:m joins. Primary key/foreign key
joins (P/K joins) are greedily included as soon as possible. This strategy is justified by
a central property of P/K joins: When the foreign key partner is already present in the
intermediate result, joining the primary key table may only reduce but never expand the
size of the intermediate result. In this sense, P/K joins act as special filters. To facilitate
this filtering property even further, a P/K join can be executed as a subquery: suppose an
(intermediate) table 𝑇 should be joined with a foreign key table 𝑇𝐹𝐾 , which in turn has to
be joined with a Primary Key table 𝑇𝑃𝐾 . The canonical way of executing this join would be
(𝑇 ⊲⊳ 𝑇𝐹𝐾) ⊲⊳ 𝑇𝑃𝐾 . The n:m join 𝑇 ⊲⊳ 𝑇𝐹𝐾 would most likely (i.e. following the pessimistic
assumption) increase the size of the intermediate result. Afterwards, joining 𝑇𝑃𝐾 could
potentially reduce the size of the intermediate result again. If such a reduction is guaranteed,
executing 𝑇 ′ := 𝑇𝐹𝐾 ⊲⊳ 𝑇𝑃𝐾 first and afterwards 𝑇 ⊲⊳ 𝑇 ′ would minimize work for the
second join. Thus, when choosing the next n:m join to execute, UES tries to pre-filter the
join partners via P/K joins. If this does not guarantee a smaller intermediate result, the
Primary Key partner will be joined after the n:m join has been executed. To some extent,
this strategy resembles the well-known pushdown of filter predicates.

To better illustrate the concept of P/K filters, consider part of query 8d of
the JOB: SELECT * FROM cast_info ci, company_name cn, movie_companies mc

WHERE cn.country_code = ’[us]’ AND mc.company_id = cn.id AND ci.movie_id =

mc.movie_id. Overall, this query fragment produces about 59 million result tuples. It
contains one P/K join between movie_companies and company_name and one n:m join
between cast_name and movie_companies. In this case, the P/K join 𝑚𝑐 ⊲⊳ 𝑐𝑛 reduces
the cardinality of movie_companies from about 5 million to 2 million. This essentially

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 287

6 Rico Bergmann et al.

input SQL
query

Upper bound-driven
join ordering

annotated +
optimized
SQL query

PostgreSQL
instance

query
result

Physical operator
selection

optimized
SQL
query

PostBOUND

SELECT *
FROM R, S, T
WHERE ...

SELECT *
FROM S
 JOIN R ON ...
 JOIN T ON ...
WHERE ...

SELECT *
FROM S
 JOIN R ON ...
 JOIN T ON ...
WHERE ...

/*+
 NestLoop(S R)
 HashJoin(S R T)
*/

Fig. 3: The basic PostBOUND query optimization workflow.

halves the work for the following n:m join between cast_name and movie_companies, since
company_name “filtered” its P/K partner.

3 PostBOUND - PostgreSQL Extension

In this section, we present PostBOUND, our developed framework to seamlessly integrate
upper bound-driven optimization of SPJ queries into PostgreSQL. At its core, PostBOUND
consists of two components as depicted in Fig. 3, which are completely implemented in
Python: First, for each incoming SQL query, the join ordering component determines
an optimized join order that is used for query execution. The underlying process applies a
generalized and extensible implementation of our UES concept (see Section 2). The output
of this first component is a rewritten SQL query with an explicit join order. Secondly, our
subsequent physical operator selection component enforces the usage of individual
physical join and base table scan operators. The resulting query annotations to enforce
physical operators are used together with the rewritten SQL of our first component to execute
the query with an arbitrary PostgreSQL instance. With this approach, the join order as well
as the physical operator selections are fixed by PostBOUND using an upper bound-driven
optimization concept. Implementation details of both components are described in the
following sections3.

3.1 Upper Bound-driven Join Ordering Component

The upper bound-driven join ordering is the first component of PostBOUND and it focuses
on a robust join sequence in order to prevent disastrous execution plans. The main goal of
this component is to optimize the join order of an arbitrary SQL query by transforming
implicit joins like SELECT * FROM R, S, T WHERE ... into an explicit ordering via JOIN
clauses, such as SELECT * FROM S JOIN R ON ... JOIN T ON During query execution,
PostgreSQL provides means to enforce such an ordering of JOIN statements. Fig. 4 shows
the general steps involved in this process: First, a join graph is constructed by parsing the

3 Although PostBOUND is currently tailored to PostgreSQL, it can be adapted to other database systems and we
plan to integrate different backends in the near future.

288 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 7

input SQL
query Join graph Join graph

enumerator Join tree optimized
SQL query

<<policy>>
Base table
estimator

<<policy>>
Upper bound

calculator

<<policy>>
Subquery
generation

⋈

⋈
⋈⋈

Fig. 4: Interaction between the core PostBOUND components for join ordering.

incoming SQL query. This graph serves as the central data structure for optimization and
describes the role each table plays in the query. We apply the same distinction between n:m
joined tables and primary key joined tables, as originally proposed in UES [He21]. Based on
this graph, the actual optimization loop is executed in the join graph enumerator. During
each iteration, the algorithm pulls n:m candidate tables from the join graph and evaluates
their current upper bounds, such that the candidate with minimum bound is inserted into
the join tree (tables colored in orange in Fig. 4). This selection focuses only on n:m joined
tables, because primary key/foreign joins are again treated as special filters of the foreign key
(and by extension n:m joined) table that can potentially lower the candidate’s upper bound.
Therefore, primary key tables are inserted into the join tree together with their foreign key
counterpart. Again, following the UES philosophy, the join between the candidate table
and its primary key partners can be executed as a subquery, as the enumerator sees fit (see
below for details). Once all tables of the join graph have been included in the join tree,
the rewritten query with an explicit join order syntax is constructed based on the derived
optimal join order.

In PostBOUND we expand on the original UES algorithm in two ways: On the one hand,
this entire enumeration process can be adapted with custom policies to modify specific
aspects of its behavior. These policies include:

Base table estimates: The join ordering component of PostBOUND does not require a
specific strategy to estimate the number of tuples in a (filtered) base table. It only relies
on the existence of a numerical estimate and makes no assumption about how it is
obtained. Nevertheless, three basic strategies are already provided and new strategies
can be injected easily. The provided strategies include: (i) delegating the estimation
process to the PostgreSQL-native optimizer, (ii) sampling a fraction of the filtered
table, or (iii) executing the entire filter predicate and counting the result tuples.

Upper bound calculation and statistics: To obtain upper bounds of join cardinalities,
different strategies have been proposed in recent literature [CBS19, De22, He21].
PostBOUND does not restrict the choice of any particular formula, as long as
it is capable of the calculation of an upper bound of any 𝑛-ary join. Currently,

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 289

8 Rico Bergmann et al.

the UES formula (see Section 2) and two variations (see Section 4) are provided
with PostBOUND. Since join upper bound calculation oftentimes relies on specific
statistical information, each calculation strategy ships its own tailored implementation.
The statistics interface receives update information from the optimization loop.

Subquery generation: Lastly, the join ordering component of PostBOUND also dele-
gates the decision when to generate subqueries for primary key/foreign key joins
to custom policies. In this case, four strategies are already supplied by default: (i)
a greedy strategy that always generates subqueries, (ii) a defensive strategy that
generates subqueries if they guarantee to reduce the size of the foreign key table (as
proposed in [He21]), (iii) a “smart” strategy that generates subqueries if a reduction
below a certain threshold is guaranteed (which is a generalization of strategy (ii)),
and finally, (iv) a strategy that never generates subqueries at all, thereby leaving all
join paths linear.

On the other hand, the entire enumeration process is mainly tailored to SPJ queries containing
a mixture of n:m and primary key/foreign key joins. To broaden this scope, if an incoming
SQL query does not match this structure, it will be handled by specialized procedures:

Primary key/foreign key queries: To optimize queries that do not contain any n:m join –
such as queries on star- or snowflake schemas – a heuristic approach inspired by UES
is used. In this case and since primary key/foreign key joins are bound to never produce
more tuples than the cardinality of the foreign key relation, our enumeration algorithm
starts with the smallest foreign key table and iteratively includes connected tables
according to their respective cardinality estimates. This strategy tries to minimize the
number of tuples that have to be processed, but only treats the join order as a local
optimization problem. An extension that also considers the join cardinalities could be
a natural and effective improvement in future work.

Cross product queries: Queries with cross products are characterized by tables that are
neither directly nor indirectly linked with join predicates. Using the join graph, this
situation can be easily detected through the existence of multiple graph components.
Since each of these components represents a complete join graph on its own, an
optimized upper bound-driven join order can be obtained per partition. Afterwards, a
final join order can be constructed by sorting the individual join trees according to
their upper bounds.

Composite join predicates: In contrast to the two previous extensions, composite join
predicates do not influence the join order itself. Rather, composite join predicates
need to be handled during the upper bound calculation and are, thus, subject to the
policies. However, they still constitute a special case that needs to be considered to
ensure independence from specific workloads. Therefore, they are quickly discussed
here. For upper bound-driven calculation, composite join predicates can be handled
quite naturally: Since a conjunctive predicate requires each of the individual base
predicates to be fulfilled, the final upper bound is constrained by the smallest estimate
of the base predicates. Thus, the upper bound approach can simply calculate the

290 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 9

minimum of base estimates. Other upper bound approaches may rely on different
strategies such as the calculation of mean bounds, but for UES as well as the two
presented variants in Section 4, the minimum strategy is used.

Based on these extensions, PostBOUND is currently capable of optimizing SPJ queries,
as well as some non-SPJ queries, as long as the following requirements are met: (i) each
part of the SELECT clause is either directly derived from a base attribute or an aggregation
of such attributes, (ii) all joins are either equality predicates over base table attributes,
or conjunctions of such predicates, (iii) each base table can optionally be filtered using
arbitrary predicates that are not optimized further, and (iv) each query can optionally
contain a GROUP BY, ORDER BY, or HAVING clause, which are also ignored during optimization.
These restrictions are mostly due to technical reasons to keep the implementation effort
manageable, rather than being caused by limitations of the underlying ideas.

3.2 Physical operator selection component

For an efficient query execution, not only the join order is important, but also the selection of
the best-fitting physical operators [He22]. In PostBOUND, this selection process is handled
by a dedicated physical operator selection component (cf. Fig. 3). Although many state-
of-the-art query optimizers intertwine the operator selection and the determination of the
optimal join order, the upper bound approach makes this difficult due to the overestimation
as shown in Fig. 1. Therefore, new, specific approaches are required. In [He22], we have
recently presented such a selection approach using a learning-based concept that allows
physical operator decisions for arbitrary join paths based on learned query feedback. Other
approaches are also conceivable and thus, we decided to provide a specific component in
PostBOUND to accommodate such selection approaches.

Since forcing the execution of joins or table scans with specific algorithms depends
strongly on the concrete database system, PostBOUND focuses on two means supported
by PostgreSQL. The first strategy uses runtime variables that modify the behavior of the
PostgreSQL planner. For example, the SET enable_nestloop = ’off’; option used by
UES disables nested loop joins globally for all following queries in a workload. Secondly,
PostBOUND also provides interfaces that force individual joins to be executed with specific
operators. This feature is based on the pg_hint_plan4 extension that specifies a number
of query hints. A hint is essentially a comment preceding an SQL query that modifies the
execution and optimization behavior of PostgresSQL for that specific query. For example,
the hint /*+ HashJoin(movies actors) */ would enforce the join between movies and
actors to be executed by a Hash join. How these hints are generated is left to user-specific
selection strategies. In our ongoing research, we want to generate query hints for joins based
on upper bounds, which however requires tighter upper bounds. One approach to infer such
bounds is presented in the following section.

4 https://github.com/ossc-db/pg_hint_plan/

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 291

https://github.com/ossc-db/pg_hint_plan/

10 Rico Bergmann et al.

4 Towards Tighter Upper Bounds with Top-K Lists

As presented in the previous section, PostBOUND is a novel framework for upper bound-
driven query optimization of SPJ queries based on a generalized version of the UES
concept [He21]. Since the original UES algorithm only calculates upper bounds based on
the most frequent attribute value [He21], this upper bound approach highly overestimates the
join intermediate cardinalities (cf. Fig. 1), leading to a very defensive approach and refrains
from using physical join operators and join orders that work best on small amounts of join
tuples. To overcome that challenge and to demonstrate the extensibility of PostBOUND, we
introduce two tighter upper bound variant ideas in this section.

A natural extension of the UES upper bound is to consider not only the largest attribute value
frequency, but the largest 𝑘 frequencies along with their corresponding attribute values.
Such information is typically stored in top-k lists (sometimes also called most frequent
values), which basically are an ordered sequence ((𝑣1, 𝑓1), ..., (𝑣𝑘 , 𝑓𝑘)) of attribute values
𝑣𝑖 and their corresponding frequencies (i.e. number of occurrences) 𝑓𝑖 , such that 𝑣1 is
the most frequent value, 𝑣2 the second most frequent value, and so on. Such a top-k list
can be used for two basic purposes: for all attribute values that are present in the top-k
list of both join partners, their frequency can be used directly to calculate the number of
outgoing tuples for a join. For all attribute values that are not contained in the top-k list,
their maximum frequency can still be derived based on the minimum frequency in the list,
i.e. the 𝑓𝑘 frequency: If the frequency were higher, the attribute value would be present in
the top-k list in the first place.

Based on these top-k lists, we devise two basic families of algorithms to calculate an upper
bound for a join R.a = S.b: The first family divides both R.a and S.b into two disjunct sets,
one that encompasses all attributes that are contained in the respective top-k list, and one
that contains the remaining values. For all values that are in either top-k list, the number of
tuples in the join result can be calculated accurately. For all values that are in neither top-k
list, a fallback strategy is used. The second family calculates the upper bound by simulating
a worst-case join scenario. This is achieved by iteratively joining attribute values from the
top-k lists, such that the overall cardinality is maximized. This strategy directly adopts
the pessimistic nature of UES in that it considers the absolute worst case distributions of
attribute values for both R.a and S.b.

In the remainder of this section, we present two examplary algorithms from both families,
starting with the approximate top-k bound as an instance of the first family, followed by the
cautious top-k bound from the second family. These formulas are not the only instances
of their respective families and they are by no means perfect. Instead, they serve as a
starting point for further research. The section concludes with some remarks regarding the
update of top-k lists when considering 𝑛-way joins. To keep notation short, we use the
following definitions: we calculate an upper bound for a join R.a = S.b between attributes
𝑅.𝑎 = (𝑎1, 𝑎2, ..., 𝑎𝑛) and 𝑆.𝑏 = (𝑏1, 𝑏2, ..., 𝑏𝑚), where 𝑎𝑖 and 𝑏𝑖 denote the different
attribute values in each column. As long as there is no ambiguity, we refer to each attribute

292 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 11

action US

fantasy IT

action IT

fantasy JP

genre country

Relation movies

50 instances

10 instances

30 instances

20 instances

SELECT *
FROM movies
WHERE genre = 'fantasy'

action US

fantasy IT

action IT

fantasy JP

genre country

50 instances

10 instances

30 instances

20 instances

σ(movies)

US: 50 IT: 40 JP: 20Top-3 List
of country JP: 20 IT: 10Top-3 List

of σ(country)

Filter predicate
modifies distribution

or unrelated
attribute

Top-k list of the base table
does not reflect reality

Fig. 5: Static top-k lists can be misleading in the light of filter predicates.

by its relation, e.g. instead of 𝑅.𝑎 we simply write 𝑅. |𝑅 | and |𝑆 | denote the number of
tuples in each relation. Both attribute sets have an associated top-k list top𝑅 ⊆ 𝑅.𝑎 and
top𝑆 ⊆ 𝑆.𝑏. For each attribute value 𝑥, we define the attribute value frequency as follows:

𝐴𝐹𝑅 (𝑥) B
{
|{𝑎 ∈ 𝑅 | 𝑎 = 𝑥}| if 𝑥 ∈ top𝑅
𝑓 ∗
𝑅

otherwise

𝑓 ∗
𝑅

denotes the minimum frequency of any value in the top-k list of 𝑅.

4.1 Approximate Top-k Bound

The main idea of the approximate bound is to split the calculation into two parts, i.e.
upper(𝑅.𝑎 = 𝑆.𝑏) B uppertop (𝑅.𝑎 = 𝑆.𝑏) + upperrem (𝑅.𝑎 = 𝑆.𝑏), where the first bound is
directly based on the top-k lists and the second bound accounts for all remaining attribute
values with lower frequencies. Deriving an upper bound for values in the top-k lists is
pretty straightforward: for each value in either top-k list, its frequency is multiplied by the
value frequency in the other top-k list, falling back to 𝑓 ∗ if necessary. Thus, uppertop can be
expressed as

Definition 4.1 (Top-k based approximate upper bound).

uppertop (𝑅.𝑎 = 𝑆.𝑏) B
∑︁
𝑎∈𝑅.𝑎

𝐴𝐹𝑅 (𝑎) · 𝐴𝐹𝑆 (𝑎) +
∑︁

𝑏∈𝑆.𝑏\𝑅.𝑎
𝐴𝐹𝑅 (𝑏) · 𝐴𝐹𝑆 (𝑏) (1)

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 293

12 Rico Bergmann et al.

Deriving an upper bound for all remaining attribute values is significantly harder: Although
in principle the UES formula can be used to estimate the maximum cardinality of two
attribute sets based on their maximum frequency, some of these values might have already
been processed as part of uppertop. Thus, these values should not be considered again in the
remaining bound. At the same time, frequencies from the top-k lists cannot simply be used to
“initialize” the remaining values, due to a fundamental disconnect between the top-k list of
an attribute R.a and the attribute instances that are actually available during query execution:
while top-k lists are computed for all attribute values in a base table, at query runtime, the
distribution and count of these attribute value instances may be changed fundamentally after
applying filter predicates on the base tables. Consider Fig. 5: the filter predicate completely
removes the most frequent value and changes the order of the remaining two attribute values.
Since the filter predicate can be entirely independent from the attribute being joined, the
top-k list can only be considered as a static upper bound of the true attribute frequencies.
Since there is no direct way to determine which attribute instances are actually available
after executing the filter predicate as long as only basic statistics are considered, we make
the pessimistic assumption that none of the values from the top-k list are actually available
and the remaining values lie entirely in the scope of upperrem. Thus, the upperrem bound
becomes a full UES bound based on the maximum remaining frequency, i.e. 𝑓 ∗:

Definition 4.2 (Remaining UES bound of the approximate top-k bound).

upperrem (𝑅.𝑎 = 𝑆.𝑏) B min
(
|𝜎(𝑅) |
𝑓 ∗
𝑅

,
|𝜎(𝑆) |
𝑓 ∗
𝑆

)
· 𝑓 ∗𝑅 · 𝑓 ∗𝑆 (2)

The issue of top-k lists that are unrelated to the attribute instances is actually also present when
calculating the uppertop bound: the processed frequencies can significantly overestimate the
number of tuples that are truly available. However, in this case, we know the total number of
available tuples as well as the number of processed tuples per relation. Thus, we can slightly
mitigate the impact of overestimation by constructing an adjustment factor for R as well as
for S. Each factor is simply the ratio between available tuples and processed tuples. The
factors will be applied as soon as they are smaller than 1 (i.e. there was an overestimation).
Strictly speaking, this trick assumes a uniform distribution of the overestimation, i.e. that
each attribute value is overestimated by the same fixed delta. This may drop the upper
bound for the top-k list below the actual cardinality in some rare cases. By applying the
upperrem bound as defensively as presented in Definition 4.2, this issue is largely mitigated,
leaving the bound effectively as an upper bound. Still, there may be situations where the
overestimation via upperrem is not enough to compensate the underestimation caused by the
adjustment factors, hence the name of an approximate upper bound.

294 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 13

b: 9 a: 3|S|=9

a: 7 b: 5|R|=15 R.x = a = S.y
bound: 21

R.x = b = S.y
bound: 45

b: 5|R|=8

b: 6|S|=6

Total bound: 45

a: 6|R|=10

a: 0|S|=0

R.x = b = S.y
bound: 51

|R|=3

|S|=0

Total bound: 51

bound is product of
frequencies

terminate since
cardinality is 0

push down
frequencies and

cardinalities

new bound is
former bound +
new frequencies

explore all
possible join

values

top-2 list of R.a

top-2 list of S.b

Fig. 6: Join cardinality estimation using the cautious top-k bound.

4.2 Cautious Top-k Bound

The approximate nature of the previous bound motivates research in an entirely different
direction. The cautious top-k bound iteratively tries to construct the maximum number of
join tuples based on the entries in the top-k lists and the total number of available tuples.
A pseudo-code implementation of this strategy is given in Algorithm 1 and illustrated in
Fig. 6 (branches and decisions of the algorithm are depicted in green):

In each iteration, the cautious top-k bound tries to obtain the maximum possible bound
given its current state. This is achieved by systematically simulating the number of outgoing
tuples for each attribute value in the top-k lists. In Fig. 6, this initially means exploring the
attribute values 𝑎 and 𝑏. For each value, the size of its partial join result is calculated (line
8) and included in the upper bound. Afterwards, the top-k lists as well as the total number
of available tuples are adjusted based on the value that was just “consumed” (lines 9 to 12).
To adjust the total number of tuples available for each relation, the value’s frequency is
simply subtracted from the current count. Top-k lists are updated to no longer include the
candidate value and each frequency including 𝑓 ∗ is enforced to be at most as large as the
remaining number of tuples. In Fig. 6, the top-k lists contain just 1 more value after the first
selection. At this point, the maximum bound for the smaller top-k lists can be calculated
(line 13), leading to a recursive structure. Recursion terminates if either no more tuples are
available (line 2), or the top-k lists are empty (line 4). In the first case, both relations have
been consumed completely and the current bound is the maximum bound for this branch. In
the second case, the remaining values are estimated using the UES bound. Once the bound

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 295

14 Rico Bergmann et al.

Algorithm 1 Pseudo-code implementation of the cautious top-k bound.
1: function cautious bound(top(R), top(S), |R|, |S|, current bound)
2: if |R| = 0 or |S| = 0 then
3: return current bound
4: if top(R) is empty and top(S) is empty then
5: calculate UES bound based on 𝑓 ∗ and remaining tuples counts
6: return current bound + UES bound
7: for all attribute values 𝑣 in top(R) and top(S) do
8: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝐴𝐹𝑅 (𝑣) · 𝐴𝐹𝑆 (𝑣)
9: |𝑅′ | ← 𝑚𝑎𝑥(|𝑅 | − 𝐴𝐹𝑅 (𝑣), 0) ⊲ adjust the remaining tuples

10: |𝑆′ | ← 𝑚𝑎𝑥(|𝑆 | − 𝐴𝐹𝑆 (𝑣), 0)
11: limit top(R’) frequencies and 𝑓 ∗

𝑅
to |R’| ⊲ top(R’) B top(R) \ 𝑣

12: limit top(S’) frequencies and 𝑓 ∗
𝑆

to |S’| ⊲ 𝑓 ′
𝑖
= 𝑚𝑖𝑛(𝑓𝑖 , |𝑅′ |)

13: value bound← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 + cautious bound(top(R’), top(S’), |R’|, |S’|, current bound)
14: return current bound + maximum value bound

for all candidate values has been determined, the algorithm selects the maximum possible
bound and calculates the final bound (line 14).

This strategy effectively determines the upper bound for each permutation of attribute value
instances and thus suffers from a large computational complexity if implemented naively.
However, a more elaborate implementation can effectively prune large parts of the search
space by checking, whether the largest possible bound still contained in the top-k lists can
exceed the maximum bound already observed. If this is not the case, there is no point in
further exploring the current branch. Furthermore, many bounds of intermediate joins can
be re-used if the top-k lists of their recursion branches are equal. For example, if a bound
has been calculated for join 𝐴 ⊲⊳ 𝐵 ⊲⊳ 𝐶 ⊲⊳ 𝐷 and join 𝐴 ⊲⊳ 𝐵 ⊲⊳ 𝐷 ⊲⊳ 𝐶 is explored, the
previous results could potentially be re-used. Additional optimization techniques for an
efficient implementation should be explored in future research.

4.3 Updating Top-k Based Statistics for 𝑛-way Joins

Besides the calculation of the upper bounds themselves, the underlying data structures also
have to be updated to estimate higher-order joins that involve 3 or more relations. In the
case of top-k lists, this issue is twofold: First, the top-k lists of the join attributes have
to be combined, integrating the knowledge of both individual lists. This problem can be
solved in a straightforward manner: The resulting top-k list contains the sum of both source
frequencies for each value in either top-k list, again falling back to the 𝑓 ∗ frequencies as
necessary (Fig. 7). The 𝑓 ∗ frequency of the merged top-k list can likewise be estimated as
the product of both source 𝑓 ∗ frequencies. The second case is the update of a top-k list that is
not directly involved in the join (a third-party list). This process is especially important since
that list may take part in a later join and the associated frequencies must therefore reflect the
current state of the intermediate join result. The fundamental problem for this update is the

296 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 15

a: 10 b: 8 c: 7 d: 7 e: 4 ∗: 4 c: 12 f: 10 a: 8 b: 8 g: 8 ∗: 8

Top-5 List of R.a Top-5 List of S.b

Top-k based update after join R.a = S.b

a: 80 b: 64c: 84 d: 56 e: 32f: 40 g: 32 ∗: 32

Fig. 7: Merging two top-k lists after a join.

lack of correlation information between the joined top-k list and the third-party list. For an
upper bound-driven approach, this demands another pessimistic assumption: In the worst
case, each entry in the third-party list could correlate entirely with the maximum frequency
of the joined top-k list. Thus, the maximum possible frequency of each updated value in the
third-party list is the product of its current frequency and the maximum frequency in the
joined top-k list. In general, this strategy will heavily overestimate the frequencies in the
updated top-k list, but without additional information or simplifying assumptions it is not
possible to figure out how much each frequency has been overestimated. This matches the
basic maximum frequency update of UES and generalizes that idea to top-k lists.

5 Evaluation

We focus our evaluation on two major aspects of PostBOUND: On the one hand, we
examine the independence of PostBOUND from specific workloads using two well-known
benchmarks and different PostgreSQL versions. On the other hand, we explore the potential
of upper bound-driven query optimization in more detail. This includes (i) the computed
join orders, (ii) the generation of subqueries, (iii) the effect of tighter upper bounds, and (iv)
the potential of the selection of physical operators. Generally, all experiments are executed
on an Ubuntu 20.04 machine with an Intel i7-6700 HQ processor, 32 GB of main memory
and an SSD storage. Unless stated otherwise, we run the benchmarks on PostgreSQL 14.

Analyzing UES - Join Orders: To analyze PostBOUND’s applicability to different database
schemas and workloads, we examine the Join-Order-Benchmark (JOB) [Le15] as well
as the Star-Schema-Benchmark (SSB) [Sa16]. Queries of the JOB are optimized with
UES using the precise base table estimation and defensive subquery generation strategies
(cf. Section 3.1). Precise base table estimation allows for the best reproducibility of the
optimized queries, since the estimates are derived directly from the live database. Moreover,
the defensive subquery generation was also used in [He21], enabling better comparability
with these results. The queries of the SSB are optimized based on the base table estimates of

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 297

16 Rico Bergmann et al.

Benchmark PostgreSQL v12.4 PostgreSQL v14.2
Native UES Native UES

Join-Order-Benchmark (JOB) 895.8s 399.5s 848.0s 377.0s
Star-Schema-Bechmark (SSB) 5.1s 5.5s 5.1s 5.3s

Tab. 1: Total runtimes of different benchmarks using different PostgreSQL versions.

the native PostgreSQL optimizer to demonstrate this functionality. The underlying TPC-H
database is setup to use a scale factor of 1. In addition to different benchmarks, we also
evaluate both workloads on two versions of PostgreSQL: v12.4 was already used in [He21]
and v14.2 was the latest release of PostgreSQL at the time initial work on PostBOUND
began. Table 1 contains the total runtime for each benchmark setting. Native optimization in
this context means optimization by the built-in optimizer of PostgreSQL, but without usage
of nested loop joins. This constraint matches a similar requirement by UES and enables us
to focus on the join order, rather than the operator selection, which is beyond the scope of
original UES.

The JOB benchmark results highlight two interesting insights: On the one hand, both
PostgreSQL versions show a much better performance of UES compared to the native
optimizer. This basically confirms the results presented in [He21]. On the other hand, nearly
the entire speedup of UES on both PostgreSQL versions is caused by two queries with
catastrophic join orders. In the case of Postgres v14.2, these queries are 8c and 19d. Each of
these queries is running more than 200 seconds faster when optimized with UES. Execution
of the UES variants takes less than 10 seconds, which demonstrates the disastrous effects bad
join orderings can have. However, some queries are also slowed down by UES, although to
a much smaller degree. For example, query 7c is slowed down the most by about 4 seconds.
Results on SSB are much more similar, which is mostly caused by the much smaller data set.
However, the runtimes show that the UES optimized queries are neither significantly better,
nor significantly worse than native optimization. Nonetheless, the overall simpler queries of
the SSB also stray away from the primary focus of upper bound-driven query optimization,
which is intended for complex queries with many joins and complicated filter predicates.

Analyzing UES - Subquery Generation: A central idea of UES is the evaluation of
primary key/foreign key joins in subqueries to achieve an up-front reduction of the foreign
key cardinality. However, introducing subqueries also implies additional pipeline breakers
when executing the query in PostgreSQL. Thus, we investigate the impact of subqueries on
individual queries next by optimizing the JOB workload with two UES settings: The first
one uses the smart subquery generation strategy while the second setting produces entirely
linear queries. Based on this setup, for example, query 6c shows the largest speedup of about
33% (5.7s to 3.8s) when using subqueries. The resulting execution plans for both settings
are sketched in Fig. 8: executing the join between name and cast_info as a subquery not
only reduces the number of processed tuples, but also allows for a parallel processing of that
join. Nevertheless, subqueries do not always lead to a performance benefit. In fact, query 7a
is slowed down the most with about 0.6 seconds (13% of the linear runtime). Thus, it is

298 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 17

Scan
keyword

0.006s

Scan
movie
keyword

0.162s

Scan
name

0.264s

Scan
cast_info

1.392s

Hash Join

3.429s

Hash Join

5.688s

Scan
title

0.154s

Hash Join

0.346s

Hash Join

0.516s

(a) Linear execution plan.

Scan
keyword

0.006s

Scan
movie
keyword

0.161s

Scan
name

0.265s

Scan
cast_info

1.472s

Hash Join

3.761s

Hash Join

3.245s

Scan
title

0.155s

Hash Join

0.344s

Hash Join

0.516s

(b) Bushy execution plan

Fig. 8: Generating subqueries for JOB query 6c can improve performance substantially.

important to create subqueries carefully and a smart generation policy – e.g. based on tight
upper bounds – seems to work well in these cases.

Advancing UES - Tighter Upper Bounds: Tight upper bounds have been proposed as a
potential solution for many problems in this paper. In this section, we evaluate how large
the impact of the cautious and approximate algorithms presented in Section 4 already is.
For this, we vary the length of the top-k lists for both algorithms and compare the results
to a UES baseline. In all cases, the JOB queries are upper bound-driven optimized using
precise base table estimates and the smart subquery generation policy.

Looking at the median upper bounds across all JOB queries in Fig. 9a indeed reveals a
substantial improvement of the bounds as the top-k lists become longer. In fact, using
top-500 lists achieves a maximum improvement of factor 210,000 compared to the UES
bound. Although this is an extreme case, many upper bounds still improve several orders
of magnitude when using top-k lists with just 50 or 100 attribute values. For shorter top-k
lists, the improvement is much smaller, as is expected. This is caused by two main factors:
shorter lists allow for fewer actual matches of attribute values, causing more usage of the 𝑓 ∗

frequencies. At the same time, shorter lists also allow for less drop-off of frequencies, again
resulting in values that are closer to the UES bound.

A central advantage of the approximate formula becomes apparent when looking at the
optimization time in Fig. 9b: It stays very low at a maximum of 3 seconds for all queries
in the JOB. This is a sharp contrast to the cautious formula, which takes over 1 minute of
optimization time already at top-5 lists. This increase in optimization time is also the reason
why larger top-k lists are not optimized with the naive implementation of the algorithm.
Despite the smaller bounds, only a few join orders are actually updated. In fact, the cautious
algorithm only updates 5 queries across all settings. Although this number becomes slightly
larger with 31 queries for the approximate formula, it is still quite small considering the
113 queries that are executed. This indicates that UES is sufficient for many queries and

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 299

18 Rico Bergmann et al.

3e+08

1e+09

3e+09

1e+10

Top−1
Top−2

Top−3
Top−4

Top−5
Top−10

Top−20
Top−50

Top−100
Top−500

Workload

M
ed

ia
n

up
pe

r
bo

un
d

Bound formula
approximate
cautious
UES

(a) Final bounds of each query.

0

20

40

60

Top−1
Top−2

Top−3
Top−4

Top−5
Top−10

Top−20
Top−50

Top−100
Top−500

Workload

O
pt

im
iz

at
io

n
tim

e
[in

 s
ec

.]

Bound formula
approximate
cautious
UES

(b) Optimization time of the workloads.

Fig. 9: Impact of the top-k based bound estimation on the JOB queries.

that more elaborate algorithms are required to close in on the estimates of the native
optimizer. The few updated queries also lead to very little change of the overall workload
runtime. Across all settings, the maximum deviation from UES is about 10 seconds, which is
almost negligible considering the complexity of the workload and its overall duration. Even
though the evaluated formulas are prototypes by nature, they still achieve a considerable
improvement in terms of their upper bounds. This motivates further research in that direction
and especially the application of the bounds for different tasks.

Advancing UES - Physical Operator Selection: Besides the generation of optimized join
orders, PostBOUND also enables the selection of physical operators (cf. Section 3.2), thereby
removing the restriction to hash joins normally imposed by UES. A natural application of
the operator selection is to further exploit the performance gains enabled by subqueries.
Since these queries are by design joins between a primary key and a foreign key table,
they can be implemented more efficiently using index-nested loop joins. Thus, we again
optimize the JOB workload using UES and the smart subquery generation policy. For each
resulting subquery, we use PostBOUND to generate query hints that enforce the execution
of that subquery as an index-nested loop join. Fig. 10 shows the final execution plan for
query 8d, which is improved the most by this strategy. Primary key filters are shown in
yellow boxes while tables that are n:m joined appear in blue. Each join is annotated by
its operator, as well as the point in time when it is executed. The subquery cast_info
⊲⊳ role_type is executed as an index-nested loop join in parallel to the join aka_name ⊲⊳

name. The choice of operators results in a 45% speedup (5.7s to 2.6s) compared to a pure
hash join-based execution. This simple strategy barely scratches the surface of elaborate
techniques for physical operator selection, it focuses exclusively on joins between base
tables within subqueries and does not consider the upper bounds associated with each join
at all. Advanced approaches such as TONIC [He22] could perform much better. Still, the
simple strategy of executing all subqueries as index-nested loop joins already shows the
potential of appropriate operator choice that can be explored in future work.

300 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 19

<<seq scan>>
company_name

<<seq scan>>
name

<<seq scan>>
aka_name

<<idx scan>>
cast_info

<<seq scan>>
role_type

<<seq scan>>
title

<<seq scan>>
movie_companies HashJoinHashJoin

HashJoin
HashJoin

HashJoin HashJoin
IdxNLJ

1.a

2.a
3

1.b

4 5

Fig. 10: Join order and operator selection for JOB query 8d. Subqueries use Index-NLJ hints.

6 Related Work

Generally, the optimization of SPJ queries entails two major challenges: (i) finding a
good join order and (ii) selecting the best-fitting physical join operator for each single
join within the chosen join order. According to [Ch98], to solve both challenges, state-
of-the-art SPJ query optimizers require precise estimates of intermediate join result sizes
(cardinalities). Unfortunately, as shown in [Pe19], ad-hoc estimation techniques are unlikely
to achieve such precise estimates. Additionally, Leis et al. [Le15] provide empirical
evidence that cost-based optimizers are prone to disastrous planning decisions if precise
cardinality estimates cannot be provided. To tackle this issue, recent work investigates
more computationally intensive sketches [CBS19, Iz21, Ki19b] or machine learning (ML)
approaches [Hi20, Ki19a, Ne21, Wo19, Ya20] to achieve precise cardinality estimates.
Beyond cardinality estimation, some ML approaches apply reinforcement learning (RL)
for holistic query plan optimization [Kr18, Ma21, Ma19]. For example, Bao [Ma21] learns
and injects SQL hints to guide general planning decisions of the underlying optimizer.

An alternative approach to precise cardinality estimates is to compute an upper bound for each
intermediate result. This approach originated in the database theory community [GM06].
Atserias et al. [AGM08] introduced a smart formula – nowadays called the AGM bound
– that gives a tight upper bound on the query result in terms of the cardinalities of the
input tables. This upper bound was improved by the polymatroid bound, which takes into
account both the cardinalities, and the degree constraints as well as including functional
dependencies as a special case [Go12, KNS16, Ng18]. Fundamentally, an upper bound
could be used by any cost-based query optimizer in lieu of precise cardinality estimates
and this idea was recently pursued by the database systems community, where the upper
bound appears under various names such as bound sketch, cardinality bound, or pessimistic
cardinality estimator [CBS19, De22, He21]. For example, Cai et al. [CBS19] introduced a

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 301

20 Rico Bergmann et al.

pessimistic cardinality estimator, which uses Count-Min sketches for capturing join crossing
correlations. The sketch building process introduces significant overhead when the number
of joins increases. In contrast to that, our UES concept [He21] maintains the pessimistic
property for cardinality estimation while replacing sketches with a simple formula based on
available basic statistics (most frequent attribute values). With PostBOUND, we presented a
comprehensive framework for all these upper bound approaches in PostgreSQL consisting
of two separate components as described in Section 3. Each component focuses on a single
challenge for SPJ query optimization, namely finding a good join order and selecting the
best-fitting physical operator. Moreover, we introduced and evaluated ideas to improve our
simple formula on basic statistics – top-k lists – to tighten the upper bound. In this context,
the main challenge is to find upper bound approaches whose computational cost is low.

7 Conclusion

The optimization of arbitrary select-project-join (SPJ) queries is still an active research
topic. In this context, deriving the necessary cardinality estimates from upper bounds is a
promising strategy. To foster research in that direction, we have introduced PostBOUND,
a generalized framework implementation to seamlessly integrate upper bound SPJ query
optimization in PostgreSQL. PostBOUND provides abstractions to integrate arbitrary upper
bounds, to model joins required by an SPJ query and to iteratively construct an optimized
join order. Other than calculating the join order, PostBOUND also enables the selection of
physical operators, and can thus mimic the entire query optimization process. To highlight
the extensibility of PostBOUND and to show the research potential, we have additionally
presented two tighter upper bound variant ideas using top-k statistics in this paper. Our
evaluation has shown the efficiency and broad applicability of PostBOUND on different
workloads and using different PostgreSQL versions. Moreover, we have also highlighted the
impact of the proposed tighter upper bound variants.

Bibliography
[AGM08] Atserias, Albert; Grohe, Martin; Marx, Dániel: Size Bounds and Query Plans for Relational

Joins. In: FOCS. pp. 739–748, 2008.

[CBS19] Cai, Walter; Balazinska, Magdalena; Suciu, Dan: Pessimistic Cardinality Estimation:
Tighter Upper Bounds for Intermediate Join Cardinalities. In: SIGMOD. pp. 18–35, 2019.

[Ch98] Chaudhuri, Surajit: An Overview of Query Optimization in Relational Systems. In
(Mendelzon, Alberto O.; Paredaens, Jan, eds): PODS. pp. 34–43, 1998.

[CY17] Chen, Yu; Yi, Ke: Two-Level Sampling for Join Size Estimation. In: SIGMOD. pp.
759–774, 2017.

[De22] Deeds, Kyle; Suciu, Dan; Balazinska, Magda; Cai, Walter: Degree Sequence Bound For
Join Cardinality Estimation. CoRR, abs/2201.04166, 2022.

302 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

PostBOUND 21

[GM06] Grohe, Martin; Marx, Dániel: Constraint solving via fractional edge covers. In: SODA.
pp. 289–298, 2006.

[Go12] Gottlob, Georg; Lee, Stephanie Tien; Valiant, Gregory; Valiant, Paul: Size and Treewidth
Bounds for Conjunctive Queries. J. ACM, 59(3):16:1–16:35, 2012.

[He21] Hertzschuch, Axel; Hartmann, Claudio; Habich, Dirk; Lehner, Wolfgang: Simplicity Done
Right for Join Ordering. In: CIDR. 2021.

[He22] Hertzschuch, Axel; Hartmann, Claudio; Habich, Dirk; Lehner, Wolfgang: Turbo-Charging
SPJ Query Plans with Learned Physical Join Operator Selections. Proc. VLDB Endow.,
15(11):2706–2718, 2022.

[Hi20] Hilprecht, Benjamin; Schmidt, Andreas; Kulessa, Moritz; Molina, Alejandro; Kersting,
Kristian; Binnig, Carsten: DeepDB: Learn from Data, not from Queries! Proc. VLDB
Endow., 13(7):992–1005, 2020.

[Iz21] Izenov, Yesdaulet; Datta, Asoke; Rusu, Florin; Shin, Jun Hyung: COMPASS: Online
Sketch-based Query Optimization for In-Memory Databases. In: SIGMOD. pp. 804–816,
2021.

[Ki19a] Kipf, Andreas; Kipf, Thomas; Radke, Bernhard; Leis, Viktor; Boncz, Peter A.; Kemper,
Alfons: Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In: CIDR.
2019.

[Ki19b] Kipf, Andreas; Vorona, Dimitri; Müller, Jonas; Kipf, Thomas; Radke, Bernhard; Leis,
Viktor; Boncz, Peter A.; Neumann, Thomas; Kemper, Alfons: Estimating Cardinalities
with Deep Sketches. In: SIGMOD. pp. 1937–1940, 2019.

[KNS16] Khamis, Mahmoud Abo; Ngo, Hung Q.; Suciu, Dan: Computing Join Queries with
Functional Dependencies. In: PODS. pp. 327–342, 2016.

[Kr18] Krishnan, Sanjay; Yang, Zongheng; Goldberg, Ken; Hellerstein, Joseph M.; Stoica,
Ion: Learning to Optimize Join Queries With Deep Reinforcement Learning. CoRR,
abs/1808.03196, 2018.

[Le15] Leis, Viktor; Gubichev, Andrey; Mirchev, Atanas; Boncz, Peter A.; Kemper, Alfons;
Neumann, Thomas: How Good Are Query Optimizers, Really? Proc. VLDB Endow.,
9(3):204–215, 2015.

[Le17] Leis, Viktor; Radke, Bernhard; Gubichev, Andrey; Kemper, Alfons; Neumann, Thomas:
Cardinality Estimation Done Right: Index-Based Join Sampling. In: CIDR. 2017.

[Ma19] Marcus, Ryan C.; Negi, Parimarjan; Mao, Hongzi; Zhang, Chi; Alizadeh, Mohammad;
Kraska, Tim; Papaemmanouil, Olga; Tatbul, Nesime: Neo: A Learned Query Optimizer.
Proc. VLDB Endow., 12(11):1705–1718, 2019.

[Ma21] Marcus, Ryan; Negi, Parimarjan; Mao, Hongzi; Tatbul, Nesime; Alizadeh, Mohammad;
Kraska, Tim: Bao: Making Learned Query Optimization Practical. In: SIGMOD. pp.
1275–1288, 2021.

[MH20] Moerkotte, Guido; Hertzschuch, Axel: alpha to omega: the G(r)eek Alphabet of Sampling.
In: CIDR. 2020.

PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization 303

22 Rico Bergmann et al.

[Ne21] Negi, Parimarjan; Marcus, Ryan C.; Kipf, Andreas; Mao, Hongzi; Tatbul, Nesime; Kraska,
Tim; Alizadeh, Mohammad: Flow-Loss: Learning Cardinality Estimates That Matter. Proc.
VLDB Endow., 14(11):2019–2032, 2021.

[Ng18] Ngo, Hung Q.: Worst-Case Optimal Join Algorithms: Techniques, Results, and Open
Problems. In (den Bussche, Jan Van; Arenas, Marcelo, eds): PODS. pp. 111–124, 2018.

[Pe19] Perron, Matthew; Shang, Zeyuan; Kraska, Tim; Stonebraker, Michael: How I Learned to
Stop Worrying and Love Re-optimization. In: ICDE. pp. 1758–1761, 2019.

[Sa16] Sanchez, Jimi: A Review of Star Schema Benchmark. CoRR, abs/1606.00295, 2016.

[Wo19] Woltmann, Lucas; Hartmann, Claudio; Thiele, Maik; Habich, Dirk; Lehner, Wolfgang:
Cardinality estimation with local deep learning models. In: aiDM@SIGMOD. pp. 5:1–5:8,
2019.

[Wo20] Woltmann, Lucas; Hartmann, Claudio; Habich, Dirk; Lehner, Wolfgang: Best of both
worlds: combining traditional and machine learning models for cardinality estimation. In:
aiDM@SIGMOD 2020. pp. 4:1–4:8, 2020.

[Wo21] Woltmann, Lucas; Hartmann, Claudio; Habich, Dirk; Lehner, Wolfgang: Aggregate-based
Training Phase for ML-based Cardinality Estimation. In: BTW. pp. 135–154, 2021.

[Ya20] Yang, Zongheng; Kamsetty, Amog; Luan, Sifei; Liang, Eric; Duan, Yan; Chen, Xi;
Stoica, Ion: NeuroCard: One Cardinality Estimator for All Tables. Proc. VLDB Endow.,
14(1):61–73, 2020.

[Zh18] Zhao, Zhuoyue; Christensen, Robert; Li, Feifei; Hu, Xiao; Yi, Ke: Random Sampling over
Joins Revisited. In: SIGMOD. pp. 1525–1539, 2018.

304 Rico Bergmann, Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang
Lehner

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting

Ivan Ilic1, Ilin Tolovski2, Tilmann Rabl3

Abstract: In recent years, graphics processing units (GPUs) emerged as database accelerators due
to their massive parallelism and high-bandwidth memory. Sorting is a core database operation with
many applications, such as output ordering, index creation, grouping, and sort-merge joins. Many
single-GPU sorting algorithms have been shown to outperform highly parallel CPU algorithms.
Today’s systems include multiple GPUs with direct high-bandwidth peer-to-peer (P2P) interconnects.
However, previous multi-GPU sorting algorithms do not efficiently harness the P2P transfer capability
of modern interconnects, such as NVLink and NVSwitch. In this paper, we propose RMG sort,
a novel radix partitioning-based multi-GPU sorting algorithm. We present a most-significant-bit
partitioning strategy that efficiently utilizes high-speed P2P interconnects while reducing inter-GPU
communication. Independent of the number of GPUs, we exchange radix partitions between the GPUs
in one all-to-all P2P key swap and achieve nearly-perfect load balancing. We evaluate RMG sort on
two modern multi-GPU systems. Our experiments show that RMG sort scales well with the input size
and the number of GPUs, outperforming a parallel CPU-based sort by up to 20×. Compared to two
state-of-the-art, merge-based, multi-GPU sorting algorithms, we achieve speedups of up to 1.3× and
1.8× across both systems. Excluding the CPU-GPU data transfer times and on eight GPUs, RMG sort
outperforms the two merge-based multi-GPU sorting algorithms up to 2.7× and 9.2×.

Keywords: Multi-GPU sorting; radix partitioning; high-speed interconnects; database acceleration

1 Introduction

Today’s data volumes oftentimes exceed the size that database systems can analyze
efficiently [Gu15, Ja14]. To improve the data processing performance, research and industry
exploit modern hardware. GPUs provide high computational power via thousands of cores,
and a high-bandwidth memory [NV17, NV20]. For compute-intensive tasks on small,
in-GPU-memory data sets, GPUs achieve orders of magnitude higher instruction throughput
(e. g. TFLOPS) than CPUs. Thus, they are commonly used as accelerators for deep learning
and HPC workloads [SMY20]. However, GPUs experience a slower adoption into the
database systems market, because of the transfer bottleneck [CI18, Lu20]. For many GPU-
based operator implementations, copying the data to the GPU and back over the PCIe 3.0
interconnect has been the limiting factor [GK18, Lu20, Ra20, RLT20].

In recent years, high-bandwidth, low-latency interconnects, such as NVIDIA’s NVLink,
AMD’s Infinity Fabric, and the Compute Express Link (CXL) have been introduced [AM18,
1 Hasso Plattner Institute, University of Potsdam, Germany ivan.ilic@student.hpi.de
2 Hasso Plattner Institute, University of Potsdam, Germany ilin.tolovski@hpi.de
3 Hasso Plattner Institute, University of Potsdam, Germany tilmann.rabl@hpi.de

cba doi:10.18420/BTW2023-15

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 305

mailto:ivan.ilic@student.hpi.de
mailto:ilin.tolovski@hpi.de
mailto:tilmann.rabl@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-15

2 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

NV18, ST20]. They increase the GPU-interconnect bandwidth close to that of main memory,
accelerating CPU-to-GPU and P2P transfers. On hardware platforms with high-speed
interconnects, GPUs efficiently accelerate data analytics workloads and core database
operations [Lu20, Ma22, Ra20]. Sorting is one such operation, with applications in index
creation, duplicate removal, user-specified output ordering, grouping, and sort-merge
joins [Gr06]. Over the past years, numerous single-GPU sorting algorithms have been
proposed and shown to outperform highly parallel CPU algorithms by orders of magnitude.
Parallel radix sort algorithms are best suited for modern GPUs [MG16, SMY20, Ma22].

Modern server-grade systems combine multiple GPUs for an even higher computing power.
The research community extended algorithms to utilize multiple GPUs [RLT20, Pa21].
To the best of our knowledge, all published multi-GPU sorting algorithms are sort-
merge approaches [GK18, PSHL10, RLT20, Ta13]. The P2P merge sort by Tanasic et al.
utilizes inter-GPU communication to merge the previously sorted chunks within GPU
memory [Ta13]. The HET merge sort by Gowanlock et al. uses the CPU to merge GPU
chunks. Evaluated on modern multi-GPU systems, both algorithms show promising speedups
over a single GPU [Ma22]. However, their merging workload increases with the number
of GPUs. For HET merge sort, the final multiway merge on the CPU quickly becomes a
bottleneck [GK18, Ma22]. For P2P merge sort, scaling up the number of GPUs linearly
increases the number of key swaps over the P2P interconnects. During their merge phase,
each GPU swaps data with only one other GPU at a time. Thus, multiple merge steps are
necessary. This algorithm design made sense in a time when GPUs had no direct P2P
interconnects and GPUs communicated with each other via the host-side. On such systems,
many concurrent P2P transfers over the PCIe 3.0 tree topology would suffer from shared
bandwidth effects and throttle the overall throughput [Ma22]. Today, modern multi-GPU
platforms incorporate direct high-bandwidth P2P interconnects. Recent hardware systems
support non-blocking all-to-all inter-GPU communication [NV18, NV21b]. In the light
of these hardware improvements, we propose RMG sort, a novel radix-partitioning-based
multi-GPU sorting algorithm that utilizes the bandwidth of modern P2P interconnects more
efficiently. We reduce inter-GPU communication by exchanging the radix partitions between
all GPUs once and in parallel, independent of the number of GPUs. Our contributions are:

1. We design a novel multi-GPU sorting algorithm (RMG sort). We employ an MSB
radix partitioning strategy to exploit modern P2P interconnects (Section 3).

2. We implement RMG sort in the CUDA framework and publish our source code with
automated benchmark scripts to enable reproducible evaluation results4 (Section 4).

3. We evaluate RMG sort on up to eight GPUs. We compare to parallel CPU-only algo-
rithms and state-of-the-art, merge-based multi-GPU sorting algorithms (Section 5).

4 https://github.com/hpides/rmg-sort

306 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

https://github.com/hpides/rmg-sort

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 3

2 Background

In this section, we explain the required background information about the GPU hardware
architecture, modern interconnect technologies, and radix sort algorithms.

GPU Architecture. GPUs are designed to support massively parallel computations, hiding
memory access latency with concurrently executed computation [NV22b]. They are equipped
with thousands of cores that are organized in a specialized hierarchy. The main unit of
computation is the streaming multiprocessor (SM) [NV20], equivalent to the compute unit
for AMD GPUs [AM20]. One GPU consists of an array of SMs [NV17, NV20]. Each SM
can run multiple concurrent groups of threads (thread blocks). A thread block can run up to
1024 threads. The SM schedules these high numbers of threads in groups of 32 consecutive
threads, so-called warps, that execute the same instruction. GPUs excel at achieving high
instruction throughput rates and provide a high-bandwidth memory. The memory hierarchy
is divided into off-chip and on-chip memory. Off-chip memory mainly consists of global
HBM2 memory which all running threads access. It provides peak bandwidth rates of up to
1555 GB/s [NV20]. Compared to main memory, the GPU memory capacity is limited (up to
80 GB). The GPU’s L2 cache hides the latency of global memory accesses. In addition, each
SM comes with a local, high-bandwidth, low-latency L1 cache to accelerate computation
on frequently used data. While the L1 cache automatically hides accesses of all threads of
its SM, shared memory needs to be explicitly managed by the programmer.

GPU Interconnects. GPUs are attached to the CPU memory controller via an interconnect.
The interconnect topology significantly impacts the performance of multi-GPU applica-
tions [Li20]. In the following, we explain modern interconnect technologies. PCIe 3.0 is
used as the standard interconnect for many peripheral devices, including GPUs. It supports
full-duplex communication at 16 GB/s per direction. PCIe 4.0 doubles this bandwidth rate
for a theoretical peak of 32 GB/s. Multi-GPU systems with no direct P2P interconnects only
support P2P communication through multi-hop host-side transfers. Over the last few years,
hardware vendors introduced high-bandwidth, low-latency GPU interconnects for direct P2P
transfers. AMD released the Infinity Fabric interconnect [AM18], while NVIDIA launched
NVLink. NVLink 2.0 achieves 25 GB/s per link per direction. One NVLink 2.0-enabled
GPU supports six links for a theoretical peak bandwidth of 150 GB/s per direction. NVLink
3.0 doubles the number of links per GPU for a bandwidth of 300 GB/s. NVLink is primarily
designed to accelerate inter-GPU communication. NVSwitch is an NVLink-based switch
chip by NVIDIA that enables non-blocking, all-to-all, inter-GPU communication at high
bandwidth. It connects up to 16 GPUs between each other in a point-to-point mesh [NV18].

Radix Sort. Radix sort is a non-comparison-based sorting algorithm with linear computa-
tional complexity [Ag96, Gi19, SJ17]. Radix sort algorithms iterate over the keys’ bits and
partition the keys into distinct buckets based on their radix value. To reduce the number of
iterations, radix sort algorithms look at multiple consecutive bits 𝑐 at a time. Typically, a
radix sort algorithm either starts from the most or the least significant bit (MSB or LSB).
Given 𝑘-bit keys, the number of partitioning passes is 𝑝 = ⌈𝑘/𝑐⌉. In each partitioning

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 307

4 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

pass, each of the 𝑛 input keys is scattered into one of 2𝑐 distinct buckets depending on the
currently considered 𝑐 bits until all 𝑘 bits have been considered, i. e. the keys are sorted.
This leaves radix sort with a computational complexity of 𝑂 (𝑛 × 𝑝). An LSB radix sort
algorithm stores the 2𝑐 buckets of the current partitioning pass only, as long as it respects
the keys’ sort order from preceding rounds. In contrast, an MSB radix sort algorithm refines
the partitioning within each bucket in each round, keeping track of increasing numbers of
buckets. To scatter the keys into their corresponding buckets in parallel, many GPU-based
radix sort algorithms operate out-of-place [Sa10, SJ17, ZB91, ZW12].

3 Algorithm

In this section, we explain our radix-partitioning-based multi-GPU sorting algorithm (RMG
sort). It sorts the input keys using only the GPUs. Therefore, it only sorts data sets that
fit into the combined device memory of the system’s GPUs. We use a most significant bit
(MSB) radix partitioning strategy. Our algorithm requires one all-to-all key swap between
the GPUs over the P2P interconnects, independent of the number of GPUs. Our algorithm
reduces the inter-GPU communication compared to previous sort-merge algorithms. In
summary, RMG sort works as follows: First, the unsorted input keys are copied to the
GPUs in chunks of equal size. Each GPU partitions its keys locally, starting from the most
significant bit, until every radix bucket on each GPU is small enough for the following
all-to-all P2P key swap between the GPUs. The P2P key swap re-distributes all buckets
across all GPUs so that afterwards, 1) each GPU contains keys of a distinct value range
and 2) bringing all keys into the global sort order across the 𝑔 GPUs does not require any
further key swaps. In other words, after the P2P key swap, all keys of GPU 𝑖 have smaller or
equal most significant bits compared to the keys of GPU 𝑖 + 1. Then, each GPU sorts its
buckets locally to bring the keys across all 𝑔 GPUs into the final sorted order.

This allows for two optimizations: First, we reduce the final sorting workload. Instead of
sorting the entire chunk, each GPU sorts its radix buckets individually. Given that the
partitioning phase already examined the most significant 𝑟 bits of each key, we sort each
bucket on the remaining 𝑘 − 𝑟 bits. Secondly, we interleave the sorting computation with
copying the data back to the CPU. Once a bucket is fully sorted, we transfer it back, while the
remaining buckets are still being sorted. Thereby, we hide the time duration of the sorting
computation on the GPUs. In the following sections, we explain how the radix partitioning
phase ensures that one bucket exchange (P2P key swap) between the GPUs is sufficient,
even for skewed data. We outline how we distribute the keys across the GPUs with nearly
perfect load balancing and how we accelerate the final sorting computation.

3.1 On-GPU MSB Radix Partitioning

After the 𝑛 input keys are copied to the 𝑔 GPUs in equal sized chunks, each GPU partition its
keys locally (i. e. in its own device memory). Each GPU first computes the histogram over

308 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 5

its ⌈𝑛/𝑔⌉ keys on the most significant 𝑐 bits. Calculating the prefix sum on the histogram
returns the starting write offsets for each of the 2𝑐 buckets. Using the prefix sum, each GPU
partitions its chunk in device memory so that all keys of bucket 𝑖 precede bucket 𝑖 + 1.

For most data distributions, the probability is high that there is a radix bucket for which
every GPU finds associated keys. In fact, for uniformly distributed keys, every GPU likely
contains keys that belong to every one of the 2𝑐 possible buckets. The goal of the P2P key
swap is to re-distribute the keys across all 𝑔 GPUs so that all keys that belong to the same
bucket are aligned in the device memory of one and the same GPU. We also have to ensure
that all keys of GPU 𝑖 are smaller than or equal to the ones on GPU 𝑖 + 1. We satisfy both
constraints by distributing the keys across the GPUs in the order of their radix digit values,
i. e. by distributing the buckets in ascending order: The buckets of the smallest radix values
to GPU 0, and those with the highest radix values to GPU 𝑔−1. After each partitioning pass,
each GPU sends its histogram to all other GPUs via the P2P interconnects. Thus, each GPU
knows about the entire key distribution and computes the logical distribution of buckets,
i. e. the placement of buckets across the 𝑔 GPUs in ascending order. Here, we check whether
the current level of partitioning allows for each complete bucket to fit onto its designated
GPU. A bucket 𝑏 on GPU 𝑖 is complete if all of the keys that reside on GPU 𝑖 and that
fall into bucket 𝑏 are aligned at subsequent addresses in the memory of GPU 𝑖. Given 𝑔

GPUs, each GPU might produce a complete bucket 𝑏. A set of at most 𝑔 complete buckets
[𝑏]0, [𝑏]1, ..., [𝑏]𝑔−1 forms a spanning bucket under a given logical bucket distribution
if all keys that belong to bucket 𝑏 will not fit into the memory of the designated GPU. A
spanning bucket prevents us from performing the P2P bucket exchange because we could
not fully sort the spanning bucket without further communication between those GPUs that
the bucket spans. We need to refine each spanning bucket in subsequent partitioning passes.

The number of partitioning passes necessary depends on the distribution of input keys. The
input data might be highly skewed and contain only leading zeros in the most significant 𝑐
bits. It is desirable for our partitioning phase to split the keys into reasonably small buckets
to avoid load imbalances between the GPUs. We perform multiple partitioning passes on
subsequent sets of 𝑐 bits, starting from the most significant one, until there are no spanning
buckets left. Any subsequent partitioning pass refines only the spanning buckets while the
buckets that already fit onto one GPU stay untouched. In Figure 1, we show an example of
our radix partitioning algorithm on four GPUs. In the example, we sort 32-bit keys while
considering 𝑐 = 8 bits at a time. In the first pass, each GPU scatters its keys based on the
bits [32..24). We show the result of the local partitioning step in the top half of each pass,
i. e. the physical view of the GPU memory. All GPUs find many keys that belong to bucket
0. They exchange their histogram information which allows each GPU to construct the
logical distribution of complete buckets, shown in the bottom half of each pass in Figure 1.
The complete bucket [0] is a spanning bucket after the first partitioning pass. Consequently,
we continue with another pass on bits [24..16) on the spanning bucket [0]. In the second
partitioning pass, each GPU with keys of the spanning bucket [0] refines its part (e. g. into
two smaller buckets [0:0] and [0:1] on GPU 0). After the histogram exchange of the second

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 309

6 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

[0]

GPU 0 GPU 1

[0] [0]

GPU 2 GPU 3

[1] [3] [3] [2]

[0] [0] [0] [0] [1] [2] [3] [3]

[0]

[0:0]

Logical Distribution of Buckets

Physical View of the GPU Memory after Radix Partitioning on MSB [24..16)

[0:0] [0:1][1] [3] [3] [2]

[1] [2] [3] [3]

[0:0][0:1] [0:1] [0:3] [0:2]

[0:0] [0:0] [0:1] [0:1] [0:1] [0:3][0:0] [0:2]

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓✓✓✓✓✓✓✓

Logical Distribution of Buckets

Physical View of the GPU Memory after Radix Partitioning on MSB [32..24)

Fig. 1: Radix partitioning phase example

pass, we compute the logical bucket distribution and find that we resolved the spanning
bucket. Bucket [0:2] (resident on GPU 3) is not a spanning bucket because we allow for
nearly-perfect load balancing. Thus, our radix partitioning phase is completed.

3.2 Multi-GPU P2P Bucket Exchange

The bottom of Figure 1 shows an example of a final, logical bucket distribution. It aligns the
complete buckets in globally sorted order across the GPUs. After the partitioning phase,
the keys of each bucket still reside in the memory of their initial GPU as they have only
been partitioned locally. In the multi-GPU P2P key swap, we re-distribute them between all
GPUs. Each bucket’s destination GPU can either be the same as the source GPU or a remote
GPU in which case the memory copy goes over the P2P interconnects. For the P2P bucket
exchange, the logical bucket distribution computed from the histogram broadcast of the final
partitioning pass is sufficient. We measure that the overhead of calling one asynchronous
copy per bucket is negligible even for high numbers of buckets. The CUDA driver appends
calls into the CUDA stream queue and performs the copies at peak bandwidth.

Load Balancing. To reduce the number of partitioning passes, we do not enforce perfect
load balancing. Instead, certain GPUs can handle slightly more keys than others. The first
partitioning pass very rarely results in a bucket distribution that is perfectly aligned with

310 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 7

GPU 0 GPU 1 GPU 2 GPU 3

[0]

After P2P Key Swap

[0] [1][3] [2] [2] [2]

[2] [3] [3] [3]

[0][1] [1] [3]

[0] [0] [1] [1] [1] [2][0]

[3]

[2]

Before P2P Key Swap

[0] [0] [1][3] [2] [2] [0][1] [1] [3]

Fig. 2: P2P bucket exchange example

the chunk size. We define a threshold 𝜖 as the number of keys that each GPU can use as
additional padding at the start and the end of its chunk buffer. This avoids treating slightly
overflowing buckets as spanning buckets. Whenever a bucket overflows into a GPU by a
number of keys 𝜎 ≤ 𝜖 , these 𝜎 keys are assigned to the adjacent GPU that already holds
keys of that same bucket. If an overlapping bucket would span over two or three GPUs for
a perfectly load-balanced approach, our additional 𝜖-padding can, in the best case, avoid
an entire partitioning pass. If the spanning bucket spans over more than three GPUs, our
nearly-perfect load balancing approach reduces the number of GPUs that the bucket spans
by up to two. This is because each GPU employs the 𝜖-padding at the start and the end of its
chunk. We empirically determine an optimal 𝜖-padding of 0.5% of the initial GPU chunk
size. With this 𝜖 , we measure that uniformly distributed keys require one partitioning pass.

For extremely skewed distributions, spanning buckets can occur after the last partitioning
pass on the least significant 𝑐 bits (e. g. if all 𝑛 keys are of the same value). Having considered
all 𝑘 bits after the radix partitioning phase, there will still be one spanning bucket with 𝑛

keys over all 𝑔 GPUs. In fact, any spanning bucket that remains after the last partitioning
pass must consist of keys of the same single value. Thus, we can choose arbitrary borders
for where to split the spanning bucket. We simply distribute the keys of each last-pass
spanning bucket in a perfectly load-balanced manner across the involved GPUs. Since
we employ MSB radix partitioning, the number of buckets grows continuously with each
partitioning pass. Considering 𝑐 bits at a time, partitioning one spanning bucket divides
it into 2𝑐 sub-buckets. We view the initial input of 𝑛 keys on the 𝑔 GPUs as the initial
spanning bucket. A GPU can be involved in at most two spanning buckets (one per adjacent
GPU). Thus, the maximum possible number of spanning buckets per partitioning pass is
𝑔 − 1. In that case, each spanning bucket spans over two GPUs. In total, we perform a
maximum of 𝑝 partitioning passes, with 𝑝 = ⌈𝑘/𝑐⌉. In the first pass, we partition the input
data as one spanning bucket. This leaves us with an upper bound for the spanning buckets
of 𝑠𝑚𝑎𝑥 = (𝑔 − 1) · (𝑝 − 1) + 1. The total number of buckets can not exceed 2𝑐 · 𝑠𝑚𝑎𝑥 . For
𝑐 = 8, 64-bit keys and eight GPUs, this is equal to 256 · 𝑠𝑚𝑎𝑥 = 12.545.

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 311

8 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

3.3 On-GPU Bucket Sorting

After the P2P key swap, each GPU contains buckets of distinct value ranges. While the
different buckets are correctly ordered by their MSB values, the keys within each bucket
are still unsorted. To sort each bucket, we use the single-GPU LSB radix sort algorithm
cub::DeviceRadixSort::SortKeys, provided in NVIDIA’s CUB library as it achieves the fastest
performance [NV21a, Ma22]. Depending on the number of partitioning passes performed,
we have already examined a certain number of most significant bits of each key. We use this
information to accelerate the sorting computation. For each bucket, we specify the bit range
that the local radix sort sorts on. The final bucket partitioning level is heterogeneous in the
following sense: Some buckets are sufficiently partitioned after the first pass while others
are refined through multiple passes. As a consequence, for each bucket that we sort, we
have taken a different number of most significant bits into account during the partitioning
phase. Since we store the partitioning pass 𝑝𝑏 that generated each bucket, we determine the
bit range to sort on as follows: [𝑒𝑛𝑑𝑏𝑖𝑡..0], with 𝑒𝑛𝑑𝑏𝑖𝑡 = 𝑘 − ((𝑝𝑏 + 1) · 𝑐). If a bucket
went through the maximum number of partitioning passes 𝑝, we do not need to sort the
bucket at all. Compared to sorting on all bits, specifying a reduced bit range improves the
sorting performance of the local radix sort significantly. We measure a speedups between
30% and 200% for one, two and three partitioning passes on the NVIDIA Tesla V100 GPU.

The overhead of a single kernel launch is insignificant. When calling one kernel per bucket
to sort, the launch times add up. In order to reduce the total number of buckets and mitigate
the associated kernel launch overhead, we fuse neighbouring buckets whose number of
keys is below a certain threshold. We can only fuse neighbouring buckets because we
have to preserve the buckets’ global sort order. We configure the threshold equal to 1%
of the initial GPU chunk size. Whenever we fuse two buckets, the bit range that we sort
the combined bucket on needs to be extended. To avoid extending the bit range too much,
and thereby losing the benefit of the reduced sorting duration, we only fuse buckets of
the same partitioning pass. As a result, the combined buckets share their initial bit range
[𝑒𝑛𝑑𝑏𝑖𝑡..0] which we extend by the necessary minimum, i. e. by the most significant bit
position in which the two bucket values differ. After the buckets have been fused and each
final bucket’s bit range is determined, each GPU sorts its buckets individually. As soon as
a bucket is sorted, we transfer it back to the CPU, asynchronously launching the memory
copy that transfers the latest sorted range of keys. This approach effectively overlaps the
sorting computation with the device-to-host copy operation.

4 Implementation

In this section, we explain how we implement our MSB radix partitioning phase. Each
partitioning pass includes computing histograms and scattering keys accordingly.

312 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 9

4.1 Histogram Computation

After the input data is copied to the GPUs, each GPU computes the histogram on the most
significant 𝑐 bits of its keys. To compute the histogram, we read all keys of the chunk,
and atomically increment one of the 2𝑐 bucket counters in our histogram array depending
on the key’s radix. When parallelizing the computation, we assign each thread block an
equal number of keys to process. To achieve peak performance, each thread block first
computes a block-local histogram stored in its shared memory. Atomic operations on shared
memory are significantly faster than on global memory. After writing each block-local
histogram back to global memory, we need to aggregate these partial histograms into the
final GPU-global histogram. For this, we implement a second kernel function that reads the
block-local histograms from memory and performs global atomic operations. To reduce the
number of global atomics, we launch enough threads for each to pre-aggregate a fixed-sized
group of block-local histograms. The resulting read pattern to the block-local histograms is
perfectly warp-aligned because we orchestrate the memory accesses based on the thread-id.

For very skewed distributions, the shared memory atomics on the block-local histogram
are under increased pressure. In the most extreme case, all keys processed by a thread
block have the same 𝑐 bits. Thus, all threads try to increase the same bucket counter of the
block-local histogram concurrently. To mitigate this performance degradation, we employ
the following lightweight optimization: Each thread stores its first key’s bucket value and
holds back the atomic increment. For every following key, we check if it falls in the same
bucket as the first key, and if so, we increment a local variable. After the thread iterated over
its keys, we perform the postponed shared atomic increment. With this optimization, our
histogram computation is equally fast on skewed and uniform data.

4.2 Key Scattering

In the key scattering step, each GPU locally partitions its keys based on the computed
histogram, i. e. based on the considered 𝑐 bits. Afterward, all keys of bucket 𝑖 precede those
of bucket 𝑖 + 1. To avoid synchronization between reading from and writing to the same
memory buffer with many threads, we perform the key scattering step out-of-place. We
allocate two alternating input/output buffers. Depending on the bucket, each key needs to
be scattered to different locations in global memory. To avoid random write patterns, we
pre-scatter all the keys of a thread block into their respective buckets in shared memory.
This allows each thread block to write its buckets back to global memory one after another.
As a result, the write pattern is sequential for keys of the same bucket. We launch the
same number of threads and thread blocks for our ScatterKeys kernel as for the histogram
computation. Thus, we can re-use the block-local histograms. For both, the pre-scattering
and the global write-back, we know the write position for each key of a bucket. In both
cases, we determine the write positions by computing the prefix sum on the corresponding
histogram, i. e. either the GPU-global or a block-local one.

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 313

10 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

Shared Memory Pre-Scattering. Each thread block, scheduled to one SM, is responsible
for pre-scattering its share of keys into its shared memory buffer. First, the thread block
loads its block-local histogram and computes the prefix sum on it. This gives us the starting
write position 𝑤𝑠ℎ for each bucket 𝑏, i. e. the write position for the first key of 𝑏. Then,
each thread iterates over its assigned keys, determining their buckets. For a key of bucket
𝑏, we performs an atomicAdd operation that reads 𝑤𝑠ℎ [𝑏] and adds 1. We then scatter the
key into the shared memory buffer at the position that we read from 𝑤𝑠ℎ [𝑏]. Thus, we
ensure that any subsequent writes by another or the same thread will be performed on the
incremented offset, avoiding write conflicts. We deliberately perform significantly more
atomic operations in shared memory than in global memory because they are substantially
faster in shared memory. The limited shared memory size (128 KB on the Tesla V100)
sets an upper bound for the number of keys that each thread block can pre-scatter. We
configure our implementation to process twelve 32-bit keys per thread, and each tread block
to run 1024 threads. For 64-bit keys, each thread processes six keys. This results in a shared
memory usage of 49.152 KB, leaving enough memory to be used as the L1 cache.

Global Memory Write-Back. We compute the prefix sum on the GPU-global histogram
before calling the ScatterKeys kernel. It returns the starting write position to the global
memory output buffer 𝑤𝑔𝑙 for each complete bucket. Since all thread blocks concurrently
write their share of keys back to global memory, we pre-determine the exact global memory
buffer spaces that each thread block writes to. For this, every thread block atomically
increments 𝑤𝑔𝑙 [𝑏] by the number of keys it will write per bucket 𝑏. This ensures that the
global memory write-back phase needs no further synchronization. The pre-scattering step
enables sequential writes. But to achieve peak memory throughput, the write pattern needs
to be warp-aligned. We implement each thread warp to be responsible for writing a small,
constant number of consecutive buckets, one after the other. Each thread of a warp writes
one of 32 consecutive keys of the warp’s current bucket, iterating over the bucket’s keys
with a stride of 32 (= thread warp size [NV22a]). With this approach, the bucket size can
negatively influence the memory throughput. If many buckets contained very few keys, the
memory throughput would drop considerably as many threads idle. It is desirable that all
non-empty buckets contain enough keys to fill at least one thread warp memory transaction.
We cannot increase the number of keys per bucket by processing more keys per thread
block because the shared memory size is limited. Rather, the number of consecutive bits
𝑐 considered per partitioning pass influences how many keys can fall into a bucket. For
example, if we chose 𝑐=16, the number of possible buckets 216 would be higher than the
number of keys one thread block processes. This would drastically reduce the memory
throughput since most of the buckets would contain very few or no keys, assuming uniform
distributions. If 𝑐 is too small, we increase the number of partitioning passes, ultimately
increasing the total sort duration. We configure 𝑐=8 as an ideal trade-off between minimizing
the number of partitioning passes and maximizing the throughput. Thus, we confirm the
findings of Stehle et al. for their single-GPU MSB radix sort [SJ17]. We measure a global
write-back throughput of 70-95% of the A100 GPU’s peak memory bandwidth.

314 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 11

5 Evaluation

In this section, we compare the performance of RMG sort to highly parallel CPU algo-
rithms (Section 5.1), and two state-of-the-art merge-based multi-GPU sorting algorithms
(Section 5.2). We analyze RMG sort for varying distributions and data types in Section 5.3.

Experimental Setup. We evaluate our algorithm on two multi-GPU platforms with state-
of-the-art interconnects. We provide system information in Table 1. The IBM Power AC922
is a two-socket system that attaches two NVIDIA Tesla V100 GPUs to each NUMA
node [NSH18] (Figure 3, bandwidth per direction). On the IBM AC922, NVLink 2.0
accelerates data transfers between a NUMA node and its two GPUs. Our second system is
the DGX A100 [NV21b]. It connects eight NVIDIA A100 GPUs with NVLink 3.0-based
NVSwitch for high-speed transfers between all GPUs at 300 GB/s per direction (Figure 4).

Tab. 1: Hardware systems overview

(a) IBM Power System AC922 (b) NVIDIA DGX A100
CPU 2× IBM POWER9 à 16 cores 2.7 GHz 2x AMD EPYC 7742 à 64 cores 2.3 GHz
GPUs 4× NVIDIA Tesla V100 SXM2 32 GB 8× NVIDIA A100 SXM4 40 GB
RAM 2× 256 GB DDR4 2× 512 GB DDR4
Tools CUDA 11.2, GCC 10.2.1 CUDA 11.4, GCC 9.3.0

CPU 0 64 GB/s
X-Bus

GPU
0

GPU
1

CPU 1

GPU
2

GPU
3

75 GB/s

75 GB/s

75 GB/sNVLink 2.0
3x

Fig. 3: IBM AC922 topology

CPU 0 102 GB/s
Infinity Fabric

GPU
1

GPU
0

CPU 1

GPU
5

32 GB/s

GPU
2 GPU

3

GPU
6

GPU
4

GPU
7

NVSwitch
via NVLink 3.0

300 GB/s

PCIe 4.0 PCIe 4.0

32 GB/s

Fig. 4: NVIDIA DGX A100 topology

For all experiments, we measure the end-to-end sort duration which includes the data
transfer times between CPU and GPUs. We run every experiment five times and report the
arithmetic mean. Our experiments results are stable with a standard error across all runs
of less than 4% from the mean. We assume that the input data is not distributed perfectly
among the NUMA nodes. Instead, it lies in the main memory of NUMA node 0 only. An
optimized NUMA strategy would benefit all three evaluated multi-GPU sorting algorithms
equally, and is to consider in future work. We pre-allocate the GPU memory and the pinned
host memory because we assume exclusively reserved accelerators. We publish the source
code of RMG sort with benchmark scripts to automatically run and plot the experiments.
Optimal GPU Sets. Given a fixed number of GPUs 𝑔with 𝑔 ∈ {1, ..., 𝑔𝑚𝑎𝑥}, the interconnect
topology determines which exact 𝑔 GPUs achieve the fastest sorting execution. For instance,
when using a P2P-based algorithm on the IBM AC922, the optimal two-GPU-set is the

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 315

12 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

2
Number of keys [1e9]

0

1

2

3
So

rt
du

ra
tio

n
[s

] 2.219
1.853

0.719
0.225 0.205

gnu-parallel, CPU
paradis, CPU
thrust, 1 GPU(s)
radix-mgpu, 4 GPU(s)
radix-mgpu, 8 GPU(s)

Fig. 5: Sorting performance: CPU vs. GPU(s) on the DGX A100

CPU-local GPU pair (0, 1) (for NUMA node 0). The optimal four-GPU-set on the DGX
A100 is (0, 2, 4, 6) as it includes only one GPU of each pair that shares a PCIe switch.
Across our evaluation, we depict the performance for optimal GPU sets.
Baselines. To compare the performance of RMG sort to that of the CPU, we use the state-
of-the-art parallel CPU radix sort PARADIS as our baseline [Ch15]. We add the parallel
multiway merge sort from the GNU parallel algorithms as our second CPU baseline [FS21].
To compare the performance of multiple GPUs against one, we use the same primitive as in
RMG sort, namely cub::DeviceRadixSort [NV21a]. This LSB radix sort is, to the best of our
knowledge, the fastest single-GPU sorting algorithm [Ma22]. As such, it is integrated into
NVIDIA’s Thrust library as the standard sorting method thrust::sort [NV21d].
Memory consumption. Since CUB’s device radix sort works out-of-place, RMG sort and
the two multi-GPU sorts we compare to have a memory consumption of at least 2𝑛 for 𝑛
input keys. For RMG sort, we additionally store histograms and bucket mapping tables. The
additional memory overhead of RMG sort depends on the upper bound of spanning buckets,
and thus increases with the number of GPUs and partitioning passes. In our implementation,
sorting 16 billion 32-bit keys with eight GPUs requires an additional memory overhead of
3.7 GB – 22% of the 2𝑛 memory overhead (=16 GB). When sorting 8B keys on four GPUs,
the additional overhead is 11%. However, as part of future work, we want to improve our
implementation and reduce the additional overhead significantly by re-using buffers in each
partitioning pass. Then, the additional memory overhead only depends on the number of
GPUs. In the above cases, it would constitute 7%, and 3.5%, respectively.

5.1 CPU Comparison

First, we compare the performance of RMG sort to the CPU. We sort two billion uniformly
distributed 32-bit integer keys with our proposed RMG sort, and our single-GPU and CPU
baselines. We depict the results for the NVIDIA DGX A100 in Figure 5. The system’s
optimal four-GPU-set is (0, 2, 4, 6). We observe that one GPU achieves a speedup of 3×

316 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 13

over gnu-parallel and 2.6× over PARADIS. Given that radix sort algorithms are memory-
bandwidth-bound, one main reason why the GPU outperforms the CPU is the GPU’s
substantially higher memory bandwidth. Compared to gnu-parallel, RMG sort is 9.8×
faster with four GPUs and 10.8× with eight. Also, RMG sort outperforms PARADIS 8×
with four GPUs, and 9× with eight. Overall, eight GPUs achieve the best performance. On
the IBM AC922, we measure that RMG sort outperforms the CPU up to 20×. The speedup
is higher than on the DGX A100 because the POWER9 CPU has 4× fewer cores than the
AMD EPYC 7742 and the IBM AC922 achieves faster CPU-GPU copies with NVLink 2.0.

5.2 Radix-Partitioning vs. Sort-Merge

In this section, we compare the performance of RMG sort to two state-of-the-art merge-
based multi-GPU sorting algorithms, the P2P merge sort by Tanasic et al. [Ta13], and the
heterogeneous merge sort (HET merge sort) by Gowanlock et al. [GK18]. P2P merge sort
sorts and merges on multiple GPUs using P2P interconnects. By selecting a pivot within the
sorted chunks of a GPU pair, blocks of keys are swapped so that the first GPU contains keys
smaller than or equal to the keys of the second GPU. Merging the two blocks of keys on each
GPU locally brings the data across both GPUs into globally sorted order. The algorithm
sorts on more than two GPUs using many subsequent P2P key swaps and GPU-local merge
steps. The number of P2P transfers scales linearly with the number of GPUs 𝑔. P2P merge
sort can only sort on 𝑔 = 2𝑘 GPUs, 𝑘 ∈ N. RMG sort runs on any number of GPUs. HET
merge sort uses a parallel multiway merge algorithm on the CPU to merge chunks that the
GPUs have sorted, and is not limited by the combined GPU memory capacity. Since RMG
sort only sorts data that fits onto the GPUs, we disregard the evaluation of out-of-core data.

To evaluate the performance differences between RMG sort and the merge-based algorithms,
we break down the total sort duration of each algorithm into phases. All three algorithms
start with the host-to-device (HtoD) copy. For RMG sort, the remaining phases are the
radix partitioning, the P2P key swap, and the bucket sorting phase which is interleaved with
copying the buckets back to the host. For P2P merge sort, we analyze the HtoD copy, the
sort phase, the P2P merge phase on the GPUs, and the device-to-host copy (DtoH). In its
sort phase, each GPU chunk is sorted using CUB’s single-GPU radix sort. HET merge sort
entails the same phases as P2P merge sort except for its CPU-based multiway merge.

Sort Duration Breakdown – IBM AC922. In Figure 6, we depict the sort duration
breakdown for RMG sort, P2P merge sort, and HET merge sort for 2B (two billion)
uniformly distributed 32-bit integer keys on the IBM AC922. We depict the results for the
single-GPU baseline, the GPU pair (0, 1), and all four GPUs. Both RMG sort and P2P
merge sort exchange keys via the P2P interconnects. Since the merge phase of P2P merge
sort is bound by the P2P key swaps and not the GPU-local merge steps, we display the P2P
merge phase using the same plot label and bar pattern as for RMG sort’s P2P key swap. We
observe that the radix partitioning achieves the shortest duration out of all algorithm phases,
scaling linearly to the number of keys, i. e. the GPU chunk size. On two GPUs it makes

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 317

14 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

1 2 4
Number of GPUs

0

100

200

300

400

500

So
rt

du
ra

tio
n

[m
s]

351.0

216.9

375.2
HtoD Copy
Radix Partition
P2P Key Swap
Sort Chunk
Sort Buckets & DtoH Copy
DtoH Copy
CPU Multiway Merge

(a) RMG sort

1 2 4
Number of GPUs

0

100

200

300

400

500

So
rt

du
ra

tio
n

[m
s]

351.0

239.0

449.0

(b) P2P merge sort

1 2 4
Number of GPUs

0

100

200

300

400

500

So
rt

du
ra

tio
n

[m
s]

346.0 349.0

446.0

(c) HET merge sort
Fig. 6: Sort duration breakdown: Sorting two billion integer keys on the IBM AC922

up 11% of RMG sort’s total sort time with 22.8ms, while it takes four GPUs 11.4ms. For
the GPU pair (0, 1), the second shortest time duration is the P2P key swap. Powered by a
bandwidth of 75 GB/s, the P2P bucket exchange takes 36ms (16% of the total sort duration).
While the HtoD copy is halved compared to the single-GPU baseline, the Sort Buckets &
DtoH Copy phase makes up 47% of the total sort duration. This is because the DtoH copy
throughput drops by 30% compared to HtoD copies for parallel transfers from multiple
GPUs to the same NUMA node [Ma22]. In addition to this hardware anomaly, we measure
that the sort-copy-overlap does not perfectly hide the sorting time. Still, overlapping the
sorting computation with the DtoH copy saves 50% of the sorting time (=32ms) on two
GPUs. This explains why RMG sort achieves a speedup of 1.6× with two GPUs over one.

Figure 6a also shows why four GPUs perform worse than two on the IBM AC922. The
CPU-interconnect is the system’s transfer bottleneck, as the X-Bus reaches only 41 GB/s of
the theoretical peak bandwidth of 64 GB/s [Pe19, Ma22]. Thus, the slow CPU-GPU copies
on the remote GPUs 2 and 3 slow down the execution. Also, the P2P throughput suffers
from the low X-Bus bandwidth, as the P2P key swap takes 3× longer on four GPUs than on
two. As a result, RMG sort performs 7% slower on four GPUs compared to one GPU. In
Figure 6b, we observe that the number of P2P key swaps of P2P merge sort scales linearly

318 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 15

with the number of GPUs. On two GPUs, P2P merge sort requires only a single key swap,
similar to RMG sort, which results in nearly identical transfer times. However, since we
overlap the sorting computation with the DtoH copy, RMG sort outperforms P2P merge sort
on two GPUs by 11%. When comparing RMG sort with HET merge sort (see Figure 6c),
we observe that the CPU multiway merge is significantly slower compared to our on-GPU
partitioning. On two GPUs, it takes RMG sort 2.7× less time to partition and swap the keys
than it takes the CPU to merge the two sorted chunks. On four GPUs, the P2P throughput of
RMG sort is significantly reduced. Still, the radix partitioning and the P2P key swap phase
combine for a time duration that is 44% lower than that of the CPU merge. In total, RMG
sort outperforms HET merge sort 1.6× on two, and 1.2× on four GPUs for 2B keys.

We conclude that on GPUs with high-bandwidth P2P interconnects, GPU-only approaches
like RMG sort and P2P merge sort are superior to the CPU-based merge. RMG sort reduces
the inter-GPU communication compared to P2P merge sort only for 𝑔 > 2. On this system,
where two NUMA-local GPUs are optimal, we outperform P2P merge sort because we
overlap the sorting computation with the DtoH copy – an optimization of our MSB radix
partitioning. P2P merge sort waits for the last key to be merged before the DtoH copy.
Sorting Large Data – IBM AC922. We observe that the speedup of RMG sort over P2P
merge sort increases with larger inputs. RMG outperforms P2P merge sort by 11% for 2B
keys, and by 17% for 4B keys. We outperform HET merge sort 1.6× for 2B keys, and 1.7×
for 4B keys. Sorting 12B integer keys (48 GB) with four GPUs on the IBM AC922, RMG
sort outperforms HET merge sort by 2.1×. P2P merge sort cannot sort more than 232 keys
per GPU due to an input size limitation in its on-GPU merge implementation.

Sort Duration Breakdown – DGX A100. Figure 7 depicts the sort duration breakdown
sorting 2B (two billion) uniformly distributed keys on the DGX A100. We evaluate the
GPU sets (0, 2), (0, 2, 4, 6), and all eight. First, we note that the HtoD and DtoH copies
take significantly longer on this system than on the IBM AC922 due to the comparatively
low PCIe 4.0 bandwidth. For RMG sort, the CPU-GPU transfers make up 90% of the
end-to-end duration. In Figure 7a, we observe that our partitioning phase scales well to
increasing numbers of GPUs. It takes 14.4ms on two GPUs, 7.2ms on four GPUs, and 3.6ms
on eight GPUs, which constitutes 4%, 3%, and 2% of the total sort duration, respectively.
The P2P key swap time stays constant, independent of the number of GPUs. Given the
high bandwidth of NVLink 3.0. We measure 14-17ms for two, four and eight GPUs (less
than 8% of the total sorting time). The P2P swap time is not reduced when increasing
the number of GPUs even though each GPU copies less data. Even though NVSwitch
does achieve simultaneous all-to-all transfers at high throughput, P2P transfers between
individual pairs of GPUs tend to perform best. Similar to our partitioning phase, the time of
the sorting computation gets halved when we double the number of GPUs. However, the
sorting time on the A100 GPU is insignificant compared to the HtoD/DtoH copies. Thus,
the sort-copy-overlap does not notably improve the end-to-end performance on this system.

Despite the CPU-GPU copy bottleneck on the DGX A100, we observe RMG sort to
scale comparatively well from one to eight GPUs. Compared to a single GPU, we achieve

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 319

16 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

1 2 4 8
Number of GPUs

0
100
200
300
400
500
600
700
800

So
rt

du
ra

tio
n

[m
s]

719.2

370.1

224.7 204.5

HtoD Copy
Radix Partition
P2P Key Swap
Sort Chunk
Sort Buckets & DtoH Copy
DtoH Copy
CPU Multiway Merge

(a) RMG sort

1 2 4 8
Number of GPUs

0
100
200
300
400
500
600
700
800

So
rt

du
ra

tio
n

[m
s]

719.2

383.0
247.0 240.0

(b) P2P merge sort

1 2 4 8
Number of GPUs

0
100
200
300
400
500
600
700
800

So
rt

du
ra

tio
n

[m
s]

719.2

555.0

390.0 368.0

(c) HET merge sort
Fig. 7: Sort duration breakdown: Sorting two billion integer keys on the DGX A100

speedups of 1.9× with two, 3.2× with four, and 3.5× with eight GPUs. We cannot expect
much higher speedups on eight GPUs because of the shared bandwidth effects that result
from the system’s limited number of PCIe switches. As seen in Figure 4, neighbouring
pairs of GPUs share a PCIe switch. For parallel CPU-GPU transfers, the throughput for
neighbouring GPU pairs cannot exceed the 32 GB/s of one PCIe 4.0 instance. This hardware
limitation negatively influences any multi-GPU sorting algorithm, not just RMG sort. In
Figure 7b, we again see that the P2P merge phase time of P2P merge sort increases with the
number of GPUs. We measure it to take almost 4× longer when eight GPUs merge their
chunks compared to two. This explains why RMG sort’s speedup factor over P2P merge
sort increases: 3% with 𝑔=2, 10% with 𝑔=4, and 17% with 𝑔=8. When RMG sort uses
eight GPUs, the radix partitioning phase and the P2P key swap take 20ms, which is 2.7×
less than the P2P merge phase takes. In Figure 7c, we again observe the CPU merge as
the limiting factor of HET merge sort. Compared to the combined duration of RMG sort’s
partitioning phase and its P2P swap on two, four, and eight GPUs, the CPU merge takes
6.6-9.2× longer. In total, RMG sort outperforms HET merge sort up to 1.8× on eight GPUs.
Thus, if we compare the execution times for the on-GPU (or on-CPU) computation and
the P2P transfers only, i. e. excluding the HtoD and DtoH copies, RMG sort outperforms

320 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 17

Tab. 2: Sorting performance by data distribution (2 billion keys, 8 GPUs, DGX A100)

zero sorted nearly-sorted reverse-sorted uniform normal
RMG sort 182ms 190ms 192ms 193ms 205ms 215ms
P2P merge sort 182ms 189ms 200ms 250ms 240ms 243ms

P2P merge sort 2.7×, and HET merge sort 9.2× with eight GPUs. The slow HtoD and DtoH
copies reduce the total end-to-end speedup. Still, we demonstrate the potential speedup
that RMG sort could achieve if the system included high-speed CPU-GPU interconnects.
For the DGX A100, we confirm that P2P-based multi-GPU approaches sort significantly
faster than the heterogeneous strategies. We conclude that, compared to P2P merge sort,
RMG sort more efficiently utilizes the non-blocking all-to-all P2P transfer capability of
NVLink-based NVSwitch. RMG sort scales linearly with the number of GPUs 𝑔 in the radix
partitioning phase and keeps a constant P2P key swap time, independent of 𝑔.
Sorting Large Data – DGX A100. We compare the performance of the three multi-GPU
sorts for increasing input sizes (up to 16B keys) on eight GPUs on the DGX A100. Compared
to P2P merge sort, RMG sort is faster up to 1.3× while outperforming HET merge sort up
to 1.8×. For 32B integer keys (128 GB), RMG sort takes about 3 seconds, which is 1.85×
faster than HET merge sort. Including the data transfers, RMG sort achieves an end-to-end
sorting rate of over 10 billion keys per second and scales linearly to larger input sets.

5.3 Sorting Performance By Data Distributions and Data Types

Varying Data Distributions. In Table 2, we compare the sorting time of RMG sort to that
of P2P merge sort for varying distributions on the DGX A100 for eight GPUs. HET merge
sort is stable across these distributions and purely bound by the main memory bandwidth.
We sort 32-bit unsigned integers and find that RMG sort performs better on sorted (13%),
nearly-sorted (8%), reverse-sorted (7%), and zero entropy (6%) distributions than for
uniform ones. For the zero entropy distribution (i. e. all keys are the same), and already
sorted data, RMG sort skips the P2P key swap. Nearly-sorted distributions require almost
no key swaps. Additionally, for zero entropy data, we skip sorting the buckets as each one is
a last-pass spanning bucket. During the partitioning, we computed the histograms 𝑝 times,
considered all 𝑘 bits, but never scattered the keys. RMG sort is quick for read-intensive
workloads. In the end, P2P merge sort and RMG sort are equally fast for zero and sorted
data, while RMG sort is slightly faster on nearly-sorted keys. Reverse-sorted distributions
benefit RMG sort as the keys are exchanged only between pairs of mirrored GPUs. We
measure that this copy pattern achieves a higher P2P throughput (1.3 − 4.7×). Normal
distributions require two partitioning passes. Overall, RMG sort outperforms P2P merge
sort for reverse-sorted (30%), uniform (17%), and normal distributions (13%).

Sorting Skewed Data. In this section, we evaluate the performance of RMG sort for Zipfian
distributions. For increasing Zipf exponents 𝑧, the probability of a key being one of only a

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 321

18 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

few highly frequent key values increases. Given two billion keys and 𝑧=1.0, the probability
that a key is one of the top-1000 most occurring keys is 34%. The same probability is
at 97.5% for 𝑧=1.5. In Figure 8a, we depict the sort duration of RMG sort for varying 𝑧.
We sort 2B 32-bit keys on two GPUs on the IBM AC922. The sort duration increases for
𝑧 > 0. At the peak at 𝑧=1.5, it reaches 273ms, (+26% over the sorting time of the uniform
distribution). For 𝑧 ≥ 1.5, the sort duration steadily decreases down to the initial duration.

For 𝑧=0.5, one pass completes the partitioning phase. We measure average execution times
for the key scattering and the histogram computation. However, the number of buckets on
the second GPU is greater than our threshold MAX𝐵𝑅𝑆 = 128, despite our optimization
to fuse small neighbouring buckets. For more than MAX𝐵𝑅𝑆 buckets, we sort the entire
GPU chunk instead of individual buckets to avoid too many kernel launches. As a result, we
cannot overlap the sorting with the DtoH copy, which explains why the total time increases
by 30ms. For 0.5 < 𝑧 ≤ 1.5, fusing neighbouring buckets reduces the total number of
buckets significantly, e. g. from 575 to 90 in some cases. For 𝑧 ≥ 0.75, RMG sort performs
the sort-copy-overlap at peak throughput and the bottleneck shifts to the radix partitioning.

For 0.5 < 𝑧 ≤ 1.5, the distribution becomes more skewed, and more spanning buckets
need to be resolved. For 𝑧=1.0, three partitioning passes are necessary, while the 𝑧=1.5
requires all four. Thus, we have little to no sorting computation left after the partitioning
phase considered (almost) all bits. However, the duration of multiple ScatterKeys kernel
executions adds up significantly on this system, i. a. because of the many shared memory
atomic conflicts. We measure the time of one ScatterKeys kernel execution to increase up to
20ms (+25%). This adds 40-70ms to the total sort duration for 𝑧 ∈ [1.0, 1.5]. For 𝑧 ≥ 1.5,
the sort duration decreases as almost all keys belong to the same few buckets, approaching
the zero entropy distribution. Then, we increasingly skip the key scattering steps during the
partitioning passes because all keys of a GPU chunk belong to the same bucket. Computing
the histogram (6ms) takes less than the key scattering (16ms). Also, we do not sort the
buckets since we partitioned on all 𝑘 = 32 bits. We evaluate the sort duration of P2P merge

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf exponent

180

200

220

240

260

280

So
rt

du
ra

tio
n

[m
s]

RMG sort
P2P merge sort

(a) 2 GPUs on the IBM AC922

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf exponent

180

200

220

240

260

280

So
rt

du
ra

tio
n

[m
s] RMG sort

P2P merge sort

(b) 8 GPUs on the DGX A100
Fig. 8: Sorting performance for skewed data (2 billion keys)

322 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 19

sort and HET merge sort to be independent of the Zipf exponent. In the worst case of 𝑧=1.5,
RMG sort is up to 13% slower than P2P merge sort, but 1.3× faster than HET merge sort.

In Figure 8b, we depict the sort duration of RMG sort for varying Zipf exponents 𝑧 on the
DGX A100 on eight GPUs. We measure significantly fewer differences in the sort duration
for skewed data compared to the IBM AC922. The peak sort duration for 𝑧=1.0 constitutes a
6% increase over the sorting time of uniform keys. Again, the time duration increases as the
radix partitioning phase needs multiple passes. The low CPU-GPU interconnect bandwidth
of the DGX A100 is one reason why the performance impact of the Zipf exponent is less
significant on this system. Also, distributing the buckets across eight instead of two GPUs
results in fewer buckets per GPU. Thus, the number of buckets per GPU is less likely to
exceed MAX𝐵𝑅𝑆 . For RMG sort, scaling up 𝑔 reduces the negative performance impact of
data skew. Moreover, the accumulated execution times for all histogram computations and
key scattering steps are less than on the AC922 because 1) the NVIDIA A100 GPU has a
higher global memory bandwidth and faster atomic operations, and 2) each GPU processes
fewer keys. For skewed data on the eight GPUs of the DGX A100, RMG sort outperforms
P2P merge sort by at least 11% and up to 1.3×, and HET merge sort by 1.7-1.8×.

Sorting Different Data Types. We evaluate RMG sort’s performance for unsigned integer
and floating-point keys in their 32-bit and 64-bit variant. We sort unsigned key values,
i. e. unsigned integer types, and positive floating-point numbers. Extending the algorithm
to support negative value ranges is possible without sacrificing performance [Te00]. We
sort uniformly distributed integers, and floating-point keys whose values follow a Zipfian
distribution with an exponent of 1.0. In that way, the 𝑘 bits of the floating-point keys are
distributed similarly to the uniform integer distribution. When sorting 2 billion keys with
two GPUs on the IBM AC922, the sort duration of 32-bit integers is approximately the
same as for 32-bit floats. This is expected given that RMG sort’s time duration depends on
the number of bits per key. However, on the IBM AC922, the sort duration of 64-bit data
types is 2.2× higher than for the same number of 32-bit keys. This is the case for all three
multi-GPU sorting algorithms, and confirms the findings of Maltenberger et al. [Ma22]. For
the same experiment on the DGX A100, sorting 64-bit data types takes exactly 2× longer.

6 Related Work

Various single-GPU sorting algorithms have been proposed [Ba20, Ca17, DZ12, Go06,
KW05, LOS10, SHG09, Sa10, SA08]. Ha et al. propose an LSB radix sort algorithm that
considers two bits at a time and performs a block-local key shuffle in shared memory to
ensure coalesced writes [HKS09]. Merrill et al. design an LSB radix sort algorithm that
dynamically adjusts the number of keys a thread processes [MG11]. They also implement an
analytical performance model that determines the optimal number of bits per pass, reducing
the memory workload for any target architecture. Their approach has been integrated into
NVIDIA’s high-performance CUB library [NV21a, Ad20]. Stehle et al. publish an MSB
radix sort algorithm that increases the number of bits considered at a time to eight [SJ17].

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 323

20 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

They partition the keys into smaller and smaller buckets until a local sort algorithm sorts
the buckets in on-chip memory. These sorting algorithms are single-GPU approaches. We
publish a novel multi-GPU sorting algorithm. To the best of our knowledge, all previous
multi-GPU sorting algorithms are merge-based. Peters et al. propose a multi-GPU sorting
algorithm that sorts large-out-of-core data [PSHL10]. The authors use multiple GPUs
to sort chunks. After copying the sorted chunks back to main memory, the CPU finds
splitter elements to form disjoint data sets that individual GPUs can merge independently.
Gowanlock et al. publish a heterogeneous multi-GPU sorting algorithm for large data where
the CPU merges sorted chunks [GK18]. Both these algorithms sort large-out-of-core data,
but neither one utilizes inter-GPU communication. Tanasic et al. propose a multi-GPU
sorting algorithm for in-memory data that merges chunks using P2P transfers [Ta13].

7 Conclusion

In this paper, we design and evaluate the first radix-partitioning-based multi-GPU sorting
algorithm (RMG sort). It outperforms CPU-only algorithms by up to 20×. Our MSB
radix partitioning strategy exploits all-to-all P2P interconnects. As a result. RMG sort
scales linearly with the input size and reduces the inter-GPU communication as it requires
only one all-to-all P2P key swap, independent of 𝑔. Our evaluation shows that RMG sort
utilizes high-speed P2P interconnects more efficiently than prior work. Compared to two
state-of-the-art merge-based multi-GPU sorting algorithms, RMG sort scales best with
increasing numbers of GPUs. We outperform P2P merge sort up to 1.3× and HET merge
sort up to 1.8×. When we exclude the CPU-GPU copy times to directly compare the on-GPU
computation and P2P communication, RMG sort is 2.7× faster than P2P merge sort and
9.2× faster than HET merge sort. Thus, RMG sort benefits from future accelerator platforms
given that hardware vendors continue to increase the number of GPUs, and the P2P and
CPU-GPU interconnect bandwidth [NV22c, NV21c, NV22d].

RMG sort can improve the performance of an existing out-of-core sort-merge algorithm,
reducing the number of chunks that need to be merged. Alternatively, we suggest extending
RMG sort by a preliminary partitioning step on the CPU which divides the input into chunks
of distinct value ranges that fit into the combined GPU memory. Then, out-of-core data
sets are sorted in independent sorting rounds. In future work, we want to analyze RMG
sort’s performance as part of a real-world database use case. RMG sort can be extended to
support key-value pairs. For each key permutation, we use the block-local histograms to
rearrange the corresponding values equivalently in the key scattering step.

Acknowledgments
The authors would like to thank Elias Stehle for his input throughout the algorithm design.
This work was partially funded by the German Ministry for Education and Research (ref.
01IS18025A and ref. 01IS18037A), the German Research Foundation (ref. 414984028),
and the European Union’s Horizon 2020 research and innovation program (ref. 957407).

324 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 21

Bibliography
[Ad20] Adinets, A.: , A Faster Radix Sort Implementation. https://developer.download.

nvidia.com/video/gputechconf/gtc/2020/presentations/s21572-a-faster-
radix-sort-implementation.pdf, October 2020. Last accessed: 2022-04-26.

[Ag96] Agarwal, Ramesh C.: A Super Scalar Sort Algorithm for RISC Processors. In: Proceedings
of the 1996 ACM SIGMOD International Conference on Management of Data. Association
for Computing Machinery, p. 240–246, 1996.

[AM18] AMD: , AMD Radeon Instinct MI60: Unleash Discovery on the World’s Fastest Double
Precision PCIe Accelerator. https://www.amd.com/system/files/documents/radeon-
instinct-mi60-datasheet.pdf, November 2018. Last accessed: 2022-04-26.

[AM20] AMD: , Introducing AMD CDNA Architecture: The All-New AMD GPU Architecture
for the Modern Era of HPC and AI (Whitepaper). https://www.amd.com/system/files/
documents/amd-cdna-whitepaper.pdf, December 2020. Last accessed: 2022-04-26.

[Ba20] Baxter, Sean: , Modern GPU: Patterns and Behaviors for GPU Computing. https:
//github.com/moderngpu/moderngpu, January 2020. Last accessed: 2022-04-26.

[Ca17] Casanova, Henri; Iacono, John; Karsin, Ben; Sitchinava, Nodari; Weichert, Volker: An
Efficient Multiway Mergesort for GPU Architectures. Technical report, arXiv:cs.DS,
February 2017.

[Ch15] Cho, M.; Brand, D.; Bordawekar, R.; Finkler, U.; Kulandaisamy, V.; Puri, R.: PARADIS:
An Efficient Parallel Algorithm for In-Place Radix Sort. Proc. VLDB Endow., 8(12):1518–
1529, August 2015.

[CI18] Colgan, Maria; Insider, Oracle Database: , Does GPU Hardware Help Database
Workloads? https://blogs.oracle.com/database/post/does-gpu-hardware-help-
database-workloads, February 2018. Last accessed: 2022-04-26.

[DZ12] Dehne, Frank; Zaboli, Hamidreza: Deterministic Sample Sort for GPUs. Parallel Processing
Letters, 22(3):1–14, September 2012.

[FS21] FSF: , The GNU C++ Library Manual: Parallel Mode. https://gcc.gnu.org/onlinedocs/
gcc-11.2.0/libstdc++/manual/manual/parallel_mode.html, July 2021. Last accessed:
2022-04-26.

[Gi19] Gill, Sandeep Kaur; Singh, Virendra Pal; Sharma, Pankaj; Kumar, Durgesh: A Comparative
Study of Various Sorting Algorithms. International Journal of Advanced Studies of
Scientific Research, 4(1), February 2019.

[GK18] Gowanlock, Michael; Karsin, Ben: Sorting Large Datasets with Heterogeneous CPU/GPU
Architectures. In: 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). Institute of Electrical and Electronics Engineers, pp. 560–569,
2018.

[Go06] Govindaraju, Naga; Gray, Jim; Kumar, Ritesh; Manocha, Dinesh: GPUTeraSort: High
Performance Graphics Co-Processor Sorting for Large Database Management. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’06. Association for Computing Machinery, p. 325–336, 2006.

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 325

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21572-a-faster-radix-sort-implementation.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21572-a-faster-radix-sort-implementation.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21572-a-faster-radix-sort-implementation.pdf
https://www.amd.com/system/files/documents/radeon-instinct-mi60-datasheet.pdf
https://www.amd.com/system/files/documents/radeon-instinct-mi60-datasheet.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://github.com/moderngpu/moderngpu
https://github.com/moderngpu/moderngpu
https://blogs.oracle.com/database/post/does-gpu-hardware-help-database-workloads
https://blogs.oracle.com/database/post/does-gpu-hardware-help-database-workloads
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manual/manual/parallel_mode.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manual/manual/parallel_mode.html

22 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

[Gr06] Graefe, Goetz: Implementing Sorting in Database Systems. ACM Comput. Surv., 38(3):1–
37, September 2006.

[Gu15] Gupta, Anurag; Agarwal, Deepak; Tan, Derek; Kulesza, Jakub; Pathak, Rahul; Stefani,
Stefano; Srinivasan, Vidhya: Amazon Redshift and the Case for Simpler Data Warehouses.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. Association for Computing Machinery, p. 1917–1923, 2015.

[HKS09] Ha, Linh; Krueger, Jens; Silva, Claudio T.: Fast Four-Way Parallel Radix Sorting on GPUs.
Computer Graphics Forum, 2009.

[Ja14] Jagadish, H. V.; Gehrke, Johannes; Labrinidis, Alexandros; Papakonstantinou, Yannis;
Patel, Jignesh M.; Ramakrishnan, Raghu; Shahabi, Cyrus: Big Data and Its Technical
Challenges. Commun. ACM, 57(7):86–94, July 2014.

[KW05] Kipfer, Peter; Westermann, Rüdiger: , Chapter 46. Improved GPU Sort-
ing. https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-
numerical-algorithms/chapter-46-improved-gpu-sorting, April 2005. Last accessed:
2022-04-26.

[Li20] Li, Ang; Song, Shuaiwen Leon; Chen, Jieyang; Li, Jiajia; Liu, Xu; Tallent, Nathan R.;
Barker, Kevin J.: Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 31(1):94–110, January 2020.

[LOS10] Leischner, Nikolaj; Osipov, Vitaly; Sanders, Peter: GPU Sample Sort. In: 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS). pp. 1–10, 2010.

[Lu20] Lutz, Clemens; Breß, Sebastian; Zeuch, Steffen; Rabl, Tilmann; Markl, Volker: Pump Up
the Volume: Processing Large Data on GPUs with Fast Interconnects. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. Association
for Computing Machinery, pp. 1633–1649, 2020.

[Ma22] Maltenberger, Tobias; Ilic, Ivan; Tolovski, Ilin; Rabl, Tilmann: Evaluating Multi-GPU
Sorting with Modern Interconnects. In: 2022 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’22). Association for Computing Machinery, 2022.

[MG11] Merrill, Duane; Grimshaw, Andrew: High Performance and Scalable Radix Sorting:
A Case Study of Implementing Dynamic Parallelism for GPU Computing. Parallel
Processing Letters, 21(2):245–272, June 2011.

[MG16] Merrill, Duane; Garland, Michael: Single-Pass Parallel Prefix Scan with Decoupled Look-
Back. Technical report, NVIDIA, August 2016. https://research.nvidia.com/sites/
default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf.

[NSH18] Nohria, Ritesh; Santos, Gustavo; Haug, Volker: , IBM Power System AC922: Tech-
nical Overview and Introduction. https://www.redbooks.ibm.com/redpapers/pdfs/
redp5494.pdf, July 2018. Last accessed: 2022-04-26.

[NV17] NVIDIA: , NVIDIA Tesla V100 GPU Architecture. http://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf, August
2017. Last accessed: 2022-04-26.

326 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/chapter-46-improved-gpu-sorting
https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/chapter-46-improved-gpu-sorting
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 23

[NV18] NVIDIA: , Technical Overview NVIDIA NVSwitch: The World’s Highest-Bandwidth
On-Node Switch. http://images.nvidia.com/content/pdf/nvswitch-technical-
overview.pdf, April 2018. Last accessed: 2022-04-26.

[NV20] NVIDIA: , NVIDIA A100 Tensor Core GPU Architecture. https:
//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-
architecture-whitepaper.pdf, September 2020. Last accessed: 2022-04-26.

[NV21a] NVIDIA: , CUB: Cooperative Primitives for CUDA C++. https://github.com/NVIDIA/
cub, June 2021. Last accessed: 2022-04-26.

[NV21b] NVIDIA: , DGX A100 System User Guide. https://docs.nvidia.com/dgx/pdf/
dgxa100-user-guide.pdf, November 2021. Last accessed: 2022-04-26.

[NV21c] NVIDIA: , NVIDIA Grace CPU. https://www.nvidia.com/en-us/data-center/grace-
cpu/, April 2021. Last accessed: 2022-04-26.

[NV21d] NVIDIA: , Thrust: Code at the Speed of Light. https://github.com/NVIDIA/thrust,
June 2021. Last accessed: 2022-04-26.

[NV22a] NVIDIA: , CUDA C++ Best Practices Guide. https://docs.nvidia.com/cuda/pdf/
CUDA_C_Best_Practices_Guide.pdf, January 2022. Last accessed: 2022-04-26.

[NV22b] NVIDIA: , CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/pdf/
CUDA_C_Programming_Guide.pdf, January 2022. Last accessed: 2022-04-26.

[NV22c] NVIDIA: , NVIDIA DGX H100: The Gold Standard for AI Infrastruc-
ture. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-
dgx-h100-datasheet.pdf, March 2022. Last accessed: 2022-04-26.

[NV22d] NVIDIA: , NVIDIA HGX AI Supercomputer: The most powerful end-to-end AI super-
computing platform. https://www.nvidia.com/en-us/data-center/hgx/, January 2022.
Last accessed: 2022-04-26.

[Pa21] Paul, Johns; Lu, Shengliang; He, Bingsheng; Lau, Chiew Tong: MG-Join: A Scalable
Join for Massively Parallel Multi-GPU Architectures. In: Proceedings of the 2021 ACM
SIGMOD International Conference on Management of Data. Association for Computing
Machinery, pp. 1413–1425, 2021.

[Pe19] Pearson, C.; Dakkak, A.; Hashash, S.; Li, C.; Chung, I.-H.; Xiong, J.; Hwu, W.-M.:
Evaluating Characteristics of CUDA Communication Primitives on High-Bandwidth
Interconnects. In: Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering. ICPE ’19. Association for Computing Machinery, pp. 209–218,
2019.

[PSHL10] Peters, Hagen; Schulz-Hildebrandt, Ole; Luttenberger, Norbert: Parallel External Sorting
for CUDA-Enabled GPUs with Load Balancing and Low Transfer Overhead. In: 2010
IEEE International Symposium on Parallel Distributed Processing, Workshops and PhD
Forum (IPDPSW). Institute of Electrical and Electronics Engineers, pp. 1–8, 2010.

[Ra20] Raza, Aunn; Chrysogelos, Periklis; Sioulas, Panagiotis; Indjic, Vladimir; Anadiotis,
Angelos Christos; Ailamaki, Anastasia: GPU-Accelerated Data Management under the
Test of Time. Online proceedings of the 10th Conference on Innovative Data Systems
Research (CIDR), pp. 1–11, 2020.

RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting 327

http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://github.com/NVIDIA/thrust
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-h100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-h100-datasheet.pdf
https://www.nvidia.com/en-us/data-center/hgx/

24 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

[RLT20] Rui, Ran; Li, Hao; Tu, Yi-Cheng: Efficient Join Algorithms for Large Database Tables in
a Multi-GPU Environment. Proc. VLDB Endow., 14(4):708–720, December 2020.

[SA08] Sintorn, Erik; Assarsson, Ulf: Fast Parallel GPU-Sorting Using a Hybrid Algorithm.
Journal of Parallel and Distributed Computing, 68(10):1381–1388, October 2008.

[Sa10] Satish, Nadathur; Kim, Changkyu; Chhugani, Jatin; Nguyen, Anthony D.; Lee, Victor W.;
Kim, Daehyun; Dubey, Pradeep: Fast Sort on CPUs and GPUs: A Case for Bandwidth
Oblivious SIMD Sort. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data. Association for Computing Machinery, pp. 351–362,
2010.

[SHG09] Satish, Nadathur; Harris, Mark; Garland, Michael: Designing Efficient Sorting Algorithms
for Manycore GPUs. In: 2009 IEEE International Symposium on Parallel Distributed
Processing (IPDPS). Institute of Electrical and Electronics Engineers, pp. 1–10, 2009.

[SJ17] Stehle, Elias; Jacobsen, Hans-Arno: A Memory Bandwidth-Efficient Hybrid Radix Sort
on GPUs. In: Proceedings of the 2017 ACM SIGMOD International Conference on
Management of Data. Association for Computing Machinery, pp. 417–432, 2017.

[SMY20] Shanbhag, Anil; Madden, Samuel; Yu, Xiangyao: A Study of the Fundamental Performance
Characteristics of GPUs and CPUs for Database Analytics (Extended Version). Technical
report, Massachusetts Institute of Technology, March 2020.

[ST20] Sharma, Debendra Das; Tavallaei, Siamak: , Compute Express Link 2.0 White Pa-
per. https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_
14c5283e7f3e40f9b2955c7d0f60bebe.pdf, November 2020. Last accessed: 2022-04-26.

[Ta13] Tanasic, Ivan; Vilanova, Lluís; Jordà, Marc; Cabezas, Javier; Gelado, Isaac; Navarro,
Nacho; Hwu, Wen-mei: Comparison Based Sorting for Systems with Multiple GPUs.
In: Proceedings of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units. Association for Computing Machinery, pp. 1–11, 2013.

[Te00] Terdiman, Pierre: , Radix Sort Revisited. http://www.codercorner.com/
RadixSortRevisited.htm, January 2000. Last accessed: 2022-04-26.

[ZB91] Zagha, Marco; Blelloch, Guy E.: Radix Sort for Vector Multiprocessors. In: Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing. Supercomputing ’91. Association
for Computing Machinery, p. 712–721, 1991.

[ZW12] Zhang, Keliang; Wu, Baifeng: A Novel Parallel Approach of Radix Sort with Bucket
Partition Preprocess. In: 2012 IEEE 14th International Conference on High Performance
Computing and Communication, 2012 IEEE 9th International Conference on Embedded
Software and Systems. pp. 989–994, 2012.

328 Ivan Ilic, Ilin Tolovski, Tilmann Rabl

https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
http://www.codercorner.com/RadixSortRevisited.htm
http://www.codercorner.com/RadixSortRevisited.htm

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Approach to Synthetic Data Generation for Imbalanced
Multi-class Problems with Heterogeneous Groups

Dennis Treder-Tschechlov1, Peter Reimann2, Holger Schwarz1, Bernhard Mitschang1

Abstract: To benchmark novel classification algorithms, these algorithms should be evaluated on data
with characteristics that also appear in real-world use cases. Important data characteristics that often
lead to challenges for classification approaches are multi-class imbalance and heterogeneous groups.
Heterogeneous groups are sets of real-world entities, where the classification patterns may vary among
different groups and where the groups are typically imbalanced in the data. Real-world data that
comprise these characteristics are usually not publicly available, e. g., because they constitute sensitive
patient information or due to privacy concerns. Further, the manifestations of the characteristics cannot
be controlled specifically on real-world data. A more rigorous approach is to synthetically generate data
such that different manifestations of the characteristics can be controlled as well. However, existing
data generators are not able to generate data that feature both data characteristics, i. e., multi-class
imbalance and heterogeneous groups. In this paper, we propose an approach that fills this gap as it
allows to synthetically generate data that exhibit both characteristics. We make use of a taxonomy
model that organizes real-world entities in domain-specific heterogeneous groups to generate data
reflecting the characteristics of these groups. Further, we incorporate probability distributions to
reflect the imbalances of multiple classes and groups from real-world use cases. The evaluation shows
that our approach can generate data that feature the data characteristics multi-class imbalance and
heterogeneous groups and that it allows to control different manifestations of these characteristics.

Keywords: Machine Learning, Classification, Data Generation, Real-world Data Characteristics

1 Introduction

Data are the basis to evaluate and benchmark classification algorithms. For such benchmarks,
algorithms should be evaluated on data that reflect characteristics that also appear in real-
world use cases. Besides general characteristics, such as the number of data instances, features,
or classes, we focus on characteristics that lead to significant challenges for classification
algorithms and that are present in many real-world use cases. According to major literature in
this field, two of the most challenging data characteristics aremulti-class imbalance [HG09,
Ga12,WY12] and heterogeneous groups [SWK09,HRM19,Me21, SG21]. Multi-class
imbalance means that the data contains multiple classes that are unevenly distributed [HG09].
This leads to the challenge that less frequent classes are typically ignored by classification
algorithms [WY12]. We define groups as specific sets of real-world entities, e. g., genders,
ethnic groups [SG21], or product groups [HRM19]. These groups are usually heterogeneous
1 University of Stuttgart, IPVS, 70569 Stuttgart, Germany, {firstname.lastname}@ipvs.uni-stuttgart.de
2 University of Stuttgart, GSaME, 70569 Stuttgart, Germany, peter.reimann@gsame.uni-stuttgart.de

cba doi:10.18420/BTW2023-16

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 329

mailto:{firstname.lastname}@ipvs.uni-stuttgart.de
mailto:peter.reimann@gsame.uni-stuttgart. de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-16

2 Dennis Treder-Tschechlov et al.

in real-world data in the sense that classification patterns may vary among the groups and that
the groups are imbalanced in the data [HRM19,Me21,SG21]. This leads to very different
analysis results when performing the same analysis on the entire data or on each group
separately [Me21,SG21]. Both characteristics together are present in several use cases, e. g.,
in use cases across the industrial value chain [KBT11,Su14,Wu16,KM16,HRM19,Gr22]
or in medical use cases [KU15,SGG18,Ch20,MGTM20,SG21].

However, it is typically not possible to obtain representative benchmark data that contain
both a multi-class imbalance and heterogeneous groups. Real-world datasets are usually
not publicly available, e. g., because they constitute sensitive patient information or due to
privacy concerns. Obtaining data from publicly available repositories, e. g., OpenML [Va14],
is also not a feasible option, since they do not reflect both characteristics to the same extent as
they occur in data of real-world use cases. To make meaningful evaluations and benchmarks
of classification algorithms, it should furthermore be possible to control the manifestations
of both characteristics in the data, i. e., the degree of class imbalance or the heterogeneity
and imbalance of domain-specific groups. This is however neither possible with individual
real-world datasets nor with data from common repositories. Therefore, a more rigorous
approach is to generate synthetic data with both multi-class imbalance and heterogeneous
groups. Existing data generators (e. g., [SH05,Fr11,FS18, Ig19,Gu03]) are able to generate
data characteristics that are based on statistical properties. That is, they can generate data
with different degrees of multi-class imbalance. Yet, to generate data with heterogeneous
groups, domain knowledge about the groups from real-world application domains is required.
However, existing data generators do not use such domain knowledge and thus are not able
to generate data with heterogeneous groups. In addition, when the data to be generated has
to contain both a multi-class imbalance and heterogeneous groups, a data generator has to
ensure that all dependencies between both data characteristics are properly reflected within
the data. For instance, the class imbalance not only has to be reflected within the whole
dataset, but also within each subset of the respective groups.

In this paper, we propose an approach to generate data synthetically that mitigates the
drawbacks of existing data generators and publicly available data repositories. That is, our
approach is capable of generating numerical and categorical data with both multi-class
imbalance and heterogeneous groups. An important design guideline of our approach is the
applicability in many different domains. Our contributions include the following:

• Our approach is the first that is capable of generating numerical and categorical data
with domain-specific heterogeneous groups. To realize this, we use a taxonomy that
organizes such groups in a hierarchical structure. A taxonomy is the simplest form of
knowledge models and can thus be found in a wide range of domains. In consequence,
our approach can be used in a variety of domains as well.

• We use probability distributions to reflect the imbalances of real-world groups and
classes. To this end, we state requirements that such probability distributions have to
fulfill. In our approach, we use the Zipf distribution as it fulfills all requirements.

330 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 3

• We propose a two-step procedure to generate the data synthetically based on the
taxonomy and the probability distribution. First, we traverse the taxonomy top-down
to specify important data characteristics regarding the group distribution. Second, we
specify the class distributions among the groups and generate the data bottom-up.

• In our evaluation, we show that the data our approach may generate comprise both data
characteristics. To this end, we assess the characteristics with different metrics such
as classification complexity, statistics, or a detailed view on classification accuracy.
In addition, we show to which extent individual parameters of our approach influence
the characteristics and the aforementioned metrics.

The rest of this paper is structured as follows: In Section 2, we define the characteristics that
we generate with our proposed approach.We examine limitations of existing data repositories
and data generators in Section 3. In Section 4, we describe our method to generate data
synthetically and how this method may be parameterized to incorporate different degrees of
each characteristic. We discuss the results of evaluating our data generation approach with
different parameter configurations in Section 5. Section 6 finally concludes our work.

2 Data Characteristics

We assume a classification problem with 𝑐 > 2 class labels, i. e., a multi-class problem with
classes C = {𝐶1, ..., 𝐶𝑐}. This problem consists of a dataset X = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 with 𝑛 tuples,
where each tuple contains an instance 𝑥𝑖 of the data and a class label 𝑦𝑖 ∈ C. Here, 𝑥𝑖 is a
feature-vector from a 𝑓 -dimensional feature space F = {𝐹1, .., 𝐹 𝑓 }. Each feature 𝐹𝑖 either
has categorical or numerical values. The problem is then to generate data that comprise the
data characteristics multi-class imbalance (DC1) and heterogeneous groups (DC2).

2.1 Multi-Class Imbalance (DC1)

A prevalent challenge in literature and in many practical scenarios is multi-class imbal-
ance [HG09,WY12,Wu16]. Here, certain classes are represented more often inX than other
classes. The classes occurring more often C+ ⊂ C are called majority classes, while the less
frequent classes C− = C \ C+ are called minority classes. Machine learning algorithms aim
to optimize the overall accuracy of the predictions for the whole dataset X. Majority classes
have a big share of all instances in X so that the overall accuracy highly correlates with the
accuracy of predictions for these majority classes. Thus, machine learning algorithms tend
to ignore the instances X− of minority classes and are therefore biased towards majority
classes. However, making accurate predictions for minority classes is in many real-world use
cases even more important [Wu16]. In data-driven medical diagnoses, they may represent
rare, but dangerous or even lethal diseases that must be detected with the highest accuracy
possible [Ch20]. While literature comprises many approaches that may handle binary

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 331

4 Dennis Treder-Tschechlov et al.

class imbalance, e. g., approaches to over- or under-sampling, these approaches are not
able to deal with multi-class imbalance [WY12, Fe13]. Further, multi-class imbalance
often comprises accompanying symptoms that likewise lead to challenges for classification
algorithms [HG09,WY12]. For instance, this concerns overlapping classes, i. e., instances
from classes that are next to each other (a.k.a border points [HB02]).

2.2 Heterogeneous Groups (DC2)

Data in real-world scenarios often represent the observations for diverse groups of entities.
In industrial use cases, these groups of entities constitute the various product groups,
e. g., a vehicle engine can be differentiated by ’Diesel’ or ’Gasoline’ engines, which
each may be further divided into four- and six-cylinder engines [HRM20]. In medical
applications, different groups of patient populations exist, e. g., patients with different gender
types [ULP19,WLL21] or with different skin colors [Ch20]. Hence, data from real-world use
cases typically comprise 𝑘 domain-specific groups 𝐺1, ..., 𝐺𝑘 ⊂ X such that

⋃𝑘
𝑖=1𝐺𝑖 = X

and𝐺𝑖 ∩𝐺 𝑗 = ∅ for 𝑖 ≠ 𝑗 . Further, each group𝐺𝑖 can comprise multiple classes𝐶𝑖1, ..., 𝐶𝑖𝑐,
while each class may be included in multiple groups. These real-world groups and their
data are heterogeneous in the sense that they are distributed in an imbalanced way in the
dataset X (DC2a) and show heterogeneous class patterns (DC2b).

Imbalanced Groups (DC2a): Data from real-world use cases often comprise imbalanced
groups, i. e., some groups occurmore frequently than others. Inmedical applications, different
groups of patients are typically more frequent than others, e. g., patients with lighter skin
colors are typically more frequent than patients with darker skin colors [Ch20]. For industrial
use cases, certain product groups occur more often than others [Su14,Wu16,KM16,HRM20],
e. g., ’Gasoline’ engines are more frequent than ’Diesel’ engines. Thus, the dataset X
comprises majority groups 𝐺+ ⊂ X that appear more frequently than minority groups
𝐺− = X \ 𝐺+. Learning algorithms tend to favor the majority groups 𝐺+ as these comprise
much more instances of the data. Further, the data may comprise underrepresented minority
groups 𝐺− that occur very rarely and may thus be ignored by classification algorithms. This
is also known as representation bias in literature [Me21,SG21].

Heterogeneous Class Patterns (DC2b): Real-world use cases often exhibit a heterogeneity
of class patterns, i. e., a single class is described by different patterns in the data subsets of
different groups 𝐺𝑖 . An example in medical applications is that the symptoms for specific
types of skin cancer vary for different skin colors [Ch20], i. e., the different groups (skin
colors) exhibit different patterns (symptoms) for the same class (cancer type). In many
industrial use cases, the patterns for the same class likewise vary across different product
groups [Su14,KM16,Wu16,HRM20,Wi20]. In different groups, the same class may for
instance have different value ranges for the same feature [HRM20]. This heterogeneity
of class patterns usually leads to an aggregation bias [Me21,SG21]. That is, a particular
data analysis carried out on the entire dataset X yields different results than the very same
analysis performed on each group 𝐺𝑖 separately.

332 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 5

Tab. 1: Overview of related repositories and data generators regarding their data characteristics and
domain-independence. A ’✓’ means that the characteristic can be generated or that the criterion is
fulfilled, while a ’✗’ means the opposite.

Category Examples Domain-
Independent

DC1: Multi-class
Imbalance

DC2: Heterogeneous
Groups

Repositories UCI [DG17], OpenML [Va14],
KEEL [Al11], Kaggle, etc. ✗ ✓ ✗

Domain-specific
Data Generators

fraud detection [LKJ02],
health care [DC19],
production-oriented [Fe20], etc.

✗ ✓ ✗

Data Augmentation GANs [GBC16,RHW21],
SDV [PWV16], etc. ✗ ✓ ✗

Domain-agnostic
Data Generators

Clustering [SH05,Fr11,FS18, Ig19],
Classification [Gu03], Scikit-learn ✓ ✓ ✗

3 Related Work

Table 1 summarizes our key findings of related work, which we discuss in the following.

Machine Learning Repositories: Literature often makes use of data from publicly available
machine learning repositories to develop and evaluate novel machine learning algorithms.
Several machine learning repositories exist, e. g., OpenML [Va14], KEEL [Al11], Kaggle3,
and the UCI ML Repository [DG17]. These repositories include around 3500 datasets. The
above mentioned repositories together only offer 40 data sets with more than 10 classes
and with at least a moderate multi-class imbalance (DC1). Regarding heterogeneous groups
(DC2), some works in the area of fair machine learning consider the adult4 or COMPASS5
dataset, where different groups of gender or skin color are present, e. g., ’male’ and ’female’
or ’white’ and ’black’ [ULP19,WLL21]. Yet, these datasets typically contain only two or up
to four groups [ULP19,WLL21]. For industrial use cases, there may be thirty [HRM20] or
even thousands [Su14] of different groups in the data. Hence, data from publicly available
repositories do not have heterogeneous class patterns or imbalanced groups (DC2) to the
same extent as found in real-world use cases [Su14,HRM20,Ch20]. Further, each dataset is
specific for a certain domain and thus we evaluate the repositories as domain-dependent.

Domain-specific Data Generators: As common repositories do not offer data containing
both data characteristics, the next possibility is to generate data synthetically. Literature
comprises different synthetic data generators that focus on specific domains, e. g., fraud
detection [LKJ02], health care applications [DC19], or production-oriented data [Fe20].
These works are typically structured into two steps: First, they define a specific data model
for the domain at hand and second, generate the data according to this data model. Yet,

3 Kaggle datasets: https://www.kaggle.com/datasets
4 Adult dataset: https://archive.ics.uci.edu/ml/datasets/adult
5 Machine Bias article: https://www.propublica.org/article/machine-bias-risk-assessments-in-
criminal-sentencing

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 333

https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/datasets/adult
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

6 Dennis Treder-Tschechlov et al.

these data models are specific to the given domain. For instance, Fernandes et al. pre-define
15 production-oriented features for the data model such as customer demand, total parts,
or available time [Fe20]. Hence, these generators are only applicable to the domains for
which appropriate data models are available [SB21]. Further, none of them focus on DC2.
Although they use domain knowledge in terms of the data model, this data model usually
does not consider the domain-specific groups or their heterogeneity. Therefore, they are for
instance not able to generate different class patterns for these groups (see Table 1).

Data Augmentation from Real-World Data: The next group of synthetic data generators
requires existing real-world data and uses this data as basis for data augmentation [RHW21,
PWV16]. These approaches take a sample of the existing data, learn the distribution of the
data sample and then generate new data from the learned distributions [RHW21,PWV16].
They typically employ generative adversarial networks (GANs) [GBC16], which are based
on two networks: A generative network learns to map a latent space to a data distribution,
and a discriminative network then draws samples from the learned distribution. However,
these approaches require existing real-world data to model the distribution of DC1 and DC2.
Since available data only covers DC1 (see Table 1), approaches to data augmentation can
only generate new data that resembles an existing multi-class imbalance. Yet, they are not
able to generate heterogeneous groups (DC2).

Domain-Agnostic Data Generators: The last group of related work covers domain-agnostic
data generators [SB21], i. e., generators that are independent of specific domains and that
do not require real-world data as basis. Literature comprises domain-agnostic generators
for clustering [SH05,Fr11,FS18, Ig19] or for classification tasks [Gu03]. The approaches
can vary the number of instances 𝑛, the number of features 𝑓 , and the number of classes 𝑐.
Most of them are able to generate data with multi-class imbalance (DC1). For example,
scikit-learn6 offers a data generator for classification that is taken from Guyon [Gu03].
To generate multi-class imbalance, users can pass in weights 𝑤 = {𝑤1, ..., 𝑤𝑐} for each
class. These weights define the share of instances for each class, i. e., 𝑤𝑖 ∈ [0; 1] and∑𝑐

𝑖=1 𝑤𝑖 = 1. The approach then generates the instances of each class separately. To this end,
it generates for each class one or several clusters, where each class 𝑐𝑖 has 𝑛 · 𝑤𝑖 instances.
It can generate multiple clusters for each class, but each cluster has the same number of
instances. Hence, the domain-agnostic generators do not generate clusters (or groups) in
the data with varying cluster sizes, i. e., imbalanced groups (DC2a). Moreover, they do not
generate a heterogeneity of the class patterns among different clusters (DC2b). The reason
is that they do not use domain knowledge about the groups and their distributions.

Summarizing related work, none of the related approaches is able to generate datasets
that show both data characteristics (see Table 1), i. e., multi-class imbalance (DC1) and
heterogeneous groups (DC2). Nevertheless, our approach employs existing domain-agnostic
data generators to generate data with DC1 and extends them to also generate data with DC2,
as well as with different manifestations of both DC1 and DC2.
6 Scikit-learn data generator: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
classification

334 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification

Approach to Synthetic Data Generation 7

22.04.2022Universität Stuttgart 8

Series

Type

Model

Gasoline

Engine

Engine

Diesel

Engine

DE: Diesel Engine | GE: Gasoline Engine

Four-

cylinder
Six-cylinder

DE6103 DE6123

…

…

…

Product level

…

Fig. 1: Simplified excerpt of a taxonomy that defines hierarchical relationships of various engine types.

4 Approach to Synthetic Data Generation of DC1 and DC2

In this section, we describe our approach to generate data synthetically that comply with
both data characteristics DC1 and DC2. Our approach can vary the number of instances 𝑛,
features 𝑓 , and classes 𝑐. Furthermore, our approach has the following parameters that
influence the manifestations of DC1 and DC2:

• 𝑠𝐶 ∈ R≥0: Parameter to control the extent of imbalance for the classes in the generated
data (DC1).

• 𝑠𝐺 ∈ R≥0: Parameter to control the extent of imbalance for the groups (DC2a).

• 𝑐𝑜 ∈ R≥1: Controls the class overlap between the groups. For 𝑐𝑜 = 1, the classes are
distributed disjoint across the groups, i. e., each class occurs only in one group. The
higher the value, the more classes are in one group und thus finally also more classes
tend to overlap across the groups. Then, the classification task gets more difficult.

• 𝑔𝑠 ∈ R≥0: Parameter to control the group separation. It mainly influences the
heterogeneity of the groups (DC2b). A low value means that the groups highly overlap
with respect to the feature ranges of their instances. Higher values indicate more
clearly separable groups.

• 𝑐 𝑓 ∈ {1, 2, ..., 𝑓 }: Number of characteristic features for each group, i. e., the number
of features for which we separate the groups with 𝑔𝑠 (DC2b).

In the following sections, we first describe the domain knowledge model that we use to
generate data that comprise real-world groups (DC2b). Subsequently, we examine probability
distributions to generate data with imbalanced distributions for the classes (DC1) and for
groups (DC2a). Finally, we detail on our algorithms to generate the data synthetically.

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 335

8 Dennis Treder-Tschechlov et al.

4.1 Taxonomy

For the generation of data with the characteristic DC2, we use information and characteristics
regarding groups occurring in an application domain. Usual ways to model domain-specific
groups and their relationships are knowledge graphs [Ho21] and semantic nets, e. g.,
taxonomies, thesauruses, or ontologies [So91]. Such models commonly organize the entities
of a domain, amongst others, via hierarchical relationships of superordinate and subordinate
groups. Subordinate groups, i. e., child nodes in the hierarchy, are more specific than their
associated superordinate groups, i. e., the parent nodes [So91]. Hence, data related to any
subordinate child group is a subset of the data of its parent group.

Our approach to generate data solely builds on hierarchical relationships among domain-
specific groups. We do not need other more complex types of relationships as found in
thesauruses, ontologies, or knowledge graphs. Hence, it is sufficient to use taxonomies,
which already come with hierarchical relationships. As taxonomies are the simplest form of
a semantic net, the effort to create them is moderate. Hence, they are pre-defined in various
domains, e. g., for product families [AK04,Su14,HRM20] or skin colors of patients [Ja04].
Even if not present, literature comprises several ontology learning approaches to extract
hierarchies from data, e. g., hierarchical clustering or association rule discovery [Ci09].

We define the hierarchical tree structure of a taxonomy as 𝑇 = (𝑉, 𝐸) with nodes 𝑉 =

{𝑣1, ..., 𝑣𝑡 } and edges 𝐸 ⊆ 𝑉 × 𝑉 . 𝑇 is a directed, acyclic tree with exactly one root node
and where each child node has exactly one parent node. An edge 𝐸𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗) furthermore
represents the hierarchical relationship of nodes 𝑣𝑖 and 𝑣 𝑗 , i. e., 𝑣𝑖 is the parent node or the
superordinate concept of 𝑣 𝑗 . This taxonomy model is also often encoded in the data itself.
Therefore, the levels of 𝑇 are encoded by level-specific key features. A node 𝑣𝑖 on a level 𝑙
has a distinct value in the key feature specific to level 𝑙.

Example:Figure 1 shows an example of a taxonomy that defines the hierarchical relationships
of different engine types of motor vehicles. This taxonomy is adapted from a recent work
regarding the end-of-line testing of complex truck engines [HRM20]. In this example, an
engine is first distinguished between Diesel or Gasoline engines, and further divided by its
engine type and model. Thus, we have three level-specific key features series, type, and
model. The level-specific feature series may have one of the distinct values ’Diesel Engine’
or ’Gasoline Engine’. Furthermore, every model ’DE6123’ has also the type ’Six-cylinder’,
and is of series ’Diesel Engine’, i. e., the edges describe the hierarchical relationships.

4.2 Probability Distribution

In our data generation, we use probability distributions (𝑃𝐷) to reflect the imbalances of
the classes (DC1) and groups (DC2a). That is, we use 𝑃𝐷 in two ways: First, to assign
the number of instances for each class, and second, to assign the number of instances and
classes among the groups. Therefore, the probability distribution has to (i) sample univariate

336 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 9

1 2 3 4 5 6 7 8 9 10
Group Gi

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
to

 sa
m

pl
e

G
i

(a) 𝑠 = 1.

1 2 3 4 5 6 7 8 9 10
Group Gi

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
to

 sa
m

pl
e

 G
i

(b) 𝑠 = 1.5

1 2 3 4 5 6 7 8 9 10
Group Gi

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
to

 sa
m

pl
e

G
i

(c) 𝑠 = 0.5

Fig. 2: Probability distribution to sample a group from 10 possible groups with the Zipf distribution.
We vary the parameter 𝑠 with (a) default value 𝑠 = 1, (b) a more imbalanced setting with 𝑠 = 1.5, and
(c) a more balanced setting with 𝑠 = 0.5.

random variables, (ii) reflect imbalanced distributions of the groups or classes, (iii) be
discrete, as we sample integer values, i. e., the number of instances for the groups or classes,
(iv) allow for specifying the number of possible values to sample from, e. g., we want to
sample from 10 groups or 100 classes, and (v) allow to parameterize the distribution such
that we are able to generate different manifestations of DC1 and DC2a.

A distribution that fulfills these criteria is the Zipf distribution from the family of exponential
or power-law distributions [Sc12]. We examined several distributions that fulfill our criteria,
e. g., Boltzman and Poisson [Sc12], but Zipf obtained the most similar data distribution
compared to real-world data [HRM19,HRM20]. The first input is the number of classes 𝑐 to
generate. Furthermore, we have information about the groups from the taxonomy, i. e., we
assume we have 𝑘 groups 𝐺1, 𝐺2, ..., 𝐺𝑘 that are the leaf nodes of the taxonomy. We also
assume that a ranking exists that orders the groups by the number of samples |𝐺𝑖 | to generate
for each group 𝐺𝑖 , i. e., |𝐺1 | ≥ |𝐺2 | ≥ ... ≥ |𝐺𝑘 |. Hence, given the number of groups 𝑘 ,
the rank 𝑟𝑖 ∈ {1, 2, ..., 𝑘} of a group 𝐺𝑖 , and the exponent 𝑠 ∈ R≥0 that parameterizes the
Zipf distribution, the probability to sample an instance for group 𝐺𝑖 can be expressed as

𝑃𝑘;𝑠 (𝑟𝑖) =
1

𝑟𝑠
𝑖
𝐻𝑘,𝑠

, (1)

where 𝐻𝑘,𝑠 =
∑𝑘

𝑗=1
1
𝑗𝑠
is the 𝑘-th harmonic number [Sc12]. Thereby, we can control the

imbalance degree of the classes or groups using the parameter 𝑠 of the distribution. As we
use 𝑃𝐷 for two different purposes in our approach, we use the parameters 𝑠𝐶 and 𝑠𝐺 to
describe the imbalance degrees for the classes and groups, respectively.
Example: Figure 2 shows an example of the Zipf distribution and the influence of the
parameter 𝑠. We focus on the distribution of different groups, but it is analogous for the
distribution of the classes. In this example, we assign the number of instances to 𝑘 = 10
groups. We show the probability to sample an instance for the 𝑖-th group on the y-axis.
Figure 2a shows the probability to sample an instance for a group with the default setting
𝑠 = 1. The probability to sample the first group is around 35% and for the second group

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 337

10 Dennis Treder-Tschechlov et al.

Parameters:
𝑛, 𝑐, 𝑐𝑜, 𝑠𝐺

1. Assign # of Instances and
Classes for each Node
(DC2a)

2. Generate Class Distribution
(DC1) and Heterogeneous
Class Patterns (DC2b)

Synthetic Data with
DC1 and DC2

Taxonomy (T)
Top-
down

Leave Nodes

Bottom-
up

…

…

…

…

…

…

…

…

…

…

…

…

Probability
Distribution (PD)

Parameters:
𝑓, 𝑠𝐶 , 𝑔𝑠, 𝑐𝑓

PD to distribute instances or classes
from parent to child nodes

…
PD used for class distribution
for a single node

Data for node is
generated

Result

Fig. 3: General overview of the two main steps of our approach.

around 17.5%. Hence, if we sample 100 times on this distribution, we have one group that
gets around 35 instances, a second group with around 18 instances, and so on. In particular,
for 𝑠 = 1, the element that occurs most often occurs twice as often as the second-most
occurring element [Sc12]. Furthermore, we show the effect of varying the exponent 𝑠:
Figure 2b shows a more imbalanced setting with 𝑠 = 1.5 and Figure 2c a more balanced
setting with 𝑠 = 0.5. In general, a setting with 𝑠 < 1 leads to more balanced and 𝑠 > 1 to
more imbalanced distributions. A value 𝑠 = 0 describes an equal probability for each group.

4.3 Data Generation

Figure 3 gives a general overview of our two-step approach: First, we generate imbalanced
groups (DC2a). To this end, we assign the number of instances and classes for each group,
i. e., for each node in the taxonomy. Second, we generate an imbalanced class distribution
for each node (DC1) and ensure the heterogeneity of the class patterns among the groups
(DC2b). Note that due to DC2b, the heterogeneous class patterns are specific for each group.
Thus, we first have to generate the groups and subsequently the classes and patterns within
them so that we can directly ensure that the class patterns are different between the groups.

4.3.1 Assign Number of Instances and Classes

In the first step, we aim to generate imbalanced groups (DC2a), i. e., we assign the number
of instances and classes to all groups of the taxonomy. Algorithm 1 outlines the procedure
for this first step. The inputs are the number of instances (𝑛), number of classes (𝑐), the class
overlap across the groups (𝑐𝑜), the taxonomy (𝑇), the probability distribution (𝑃𝐷), and the

338 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 11

parameter for the group imbalance degree (𝑠𝐺). First, we initialize the root node in line 1.
Since the root node should comprise the entire dataset X, we assign the overall numbers of
instances 𝑛 and classes 𝑐 to the root node. Furthermore, we initialize the set of 𝑛𝑜𝑑𝑒𝑠 that
we traverse in the following with the root node (line 2). Hence, as long as we have nodes
to traverse (line 3), we pick and remove the next 𝑛𝑜𝑑𝑒 from the nodes set (line 4). If 𝑛𝑜𝑑𝑒
does not have any child nodes, i. e., 𝑛_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 0, we continue with the next iteration of
the while loop (lines 6 - 8).

If the current 𝑛𝑜𝑑𝑒 has children, we assign the number of instances and the number
of classes for all its child nodes. To this end, we use the 𝑃𝐷 by calling the function
Sample_PD(𝑃𝐷, 𝑛𝑜𝑑𝑒.𝑛, 𝑛_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑠𝐺) (line 9). We use this function to distribute the
number of instances of a parent node (𝑛𝑜𝑑𝑒.𝑛) among its child nodes (lines 16 - 23). For each
individual instance, we decide to which group it belongs using 𝑃𝐷. Thus, we sample 𝑛𝑜𝑑𝑒.𝑛
times from the 𝑃𝐷 and sample each time one of the child nodes 1, ..., 𝑛_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛. We
control the imbalance of sampling the groups with the parameter 𝑠𝐺 . In the Sample_PD()
function, we first initialize a 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 list that keeps track of the number of instances for each
group (line 17). Subsequently, we sample one of the groups from 𝑃𝐷 and update the count
for that group (lines 19 and 21). Finally, we return a list 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 that contains for each
group the number of instances according to the 𝑃𝐷. As this is an exponential distribution,
we get an imbalanced distribution of the number of instances across all nodes for 𝑠𝐺 > 0.

In line 10, we do the same procedure for the classes, i. e., we derive a list 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 that
specifies the number of classes for each group. However, as mentioned in Section 2.2,
classes typically occur in multiple groups. Thus, we add a factor of 𝑐𝑜 ≥ 1 to control the
number of classes among the groups. For 𝑐𝑜 = 1, the classes are disjoint among the groups.
For 𝑐𝑜 > 1, classes may occur in multiple groups. In line 11, we set the number of instances
and the number of classes as attributes of the child nodes. That is, we update the attribute
of the child nodes with the corresponding samples of the lists 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠
in the Update(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠) function (lines 24 - 30). In line 12, we
add the child nodes to the 𝑛𝑜𝑑𝑒𝑠 set to traverse them as well. Finally, we return the modified
taxonomy, where each node contains the number of instances and the number of classes.

4.3.2 Assign Class Distribution and Generate Data

In the second step, we assign the class distributions and generate the data in a bottom-up
manner. To this end, we use the information that we assigned in the previous step to each
node. We first generate the data on all leaf nodes and subsequently pass the data upwards to
the parent nodes.

Algorithm 2 outlines our procedure. First, we retrieve the leaf nodes from the taxonomy
(line 1). Further, we initialize a key-value map to store the current feature limits (line 2).
Then, we iterate over each leaf node (lines 3 - 17). We first retrieve the number of instances,
number of classes, and the actual class labels from each leaf node (line 4). In line 5, we

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 339

12 Dennis Treder-Tschechlov et al.

Algorithm 1 Algorithm to assign the number of instances and classes.
Input: T: Tree-structured taxonomy,

𝑛: Number of instances for the entire data,
𝑐: Number of classes for the entire data,
𝑐𝑜: Class overlap across groups,
𝑃𝐷: Probability distribution,
𝑠𝐺 : Value for the group imbalance degree used by 𝑃𝐷.

Output: T: Tree-structured taxonomy that has the number of instances and classes assigned as attributes on each
node.

⊲ Initialize root node and nodes set
1: 𝑟𝑜𝑜𝑡.𝑛← 𝑛; 𝑟𝑜𝑜𝑡.𝑐 ← 𝑐; 𝑟𝑜𝑜𝑡.𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ← {1, ..., 𝑐};
2: 𝑛𝑜𝑑𝑒𝑠 ← {𝑟𝑜𝑜𝑡 }

⊲ Iterate while we have nodes
3: while 𝑛𝑜𝑑𝑒𝑠 ≠ {} do

⊲ Get and remove node from nodes set
4: 𝑛𝑜𝑑𝑒← 𝑛𝑜𝑑𝑒𝑠.𝑝𝑜𝑝 ()
5: 𝑛_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← |𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 |
6: if 𝑛_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 == 0 then
7: continue ⊲ Leaf node, so continue with next node
8: end if

⊲ Draw the number of instances for each child node
9: 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← Sample_PD (𝑃𝐷, 𝑛𝑜𝑑𝑒.𝑛, 𝑛_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑠𝐺)

⊲ Draw the number of classes for each child node
10: 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ←Sample_PD(𝑃𝐷, 𝑛𝑜𝑑𝑒.𝑐 ∗ 𝑐𝑜, 𝑛_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑠𝐺)

⊲ Update 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 and 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 of child nodes
11: update (𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠)
12: 𝑛𝑜𝑑𝑒𝑠.append (𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
13: end while
14: return T
15: procedure Sample_PD(𝑃𝐷, 𝑘, 𝑛_𝑔𝑟𝑜𝑢𝑝𝑠, 𝑠)
16: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← [0, ..., 0] ⊲ Initialize counter of size 𝑛_𝑔𝑟𝑜𝑢𝑝𝑠
17: for 𝑖 = 1, ..., 𝑘 do
18: 𝑔𝑟𝑜𝑢𝑝 ← PD (𝑛_𝑔𝑟𝑜𝑢𝑝𝑠, 𝑠, 𝑖) ⊲ Sample group from 𝑃𝐷

19: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑔𝑟𝑜𝑢𝑝] ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑔𝑟𝑜𝑢𝑝] + 1
20: end for
21: return 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

22: end procedure
23: procedure Update(children, n_instances, n_classes)
24: for 𝑖 = 1, ..., |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | do
25: 𝑐ℎ𝑖𝑙𝑑 ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 [𝑖]
26: 𝑐ℎ𝑖𝑙𝑑.𝑛← 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑖]
27: 𝑐ℎ𝑖𝑙𝑑.𝑐 ← 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 [𝑖]
28: end for
29: end procedure

340 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 13

ensure the multi-class imbalance (DC1). Here, we assign the class occurrences, i. e., how
often a particular class occurs in the dataset. To this end, we use 𝑃𝐷 to decide for each
instance the associated class, similar as for the groups in Algorithm 1. Hence, we sample
𝑛 times one of the classes 1, ..., 𝑐 via the distribution 𝑃𝐷 and the function Sample_PD
(cf. lines 18 - 25 in Algorithm 1). In lines 6 and 7, we ensure the heterogeneity of the class
patterns (DC2b). First, we pick 𝑐 𝑓 characteristic features from the current group, i. e., the
features that separate the current group from all other groups. To separate the groups, we
ensure that the current group has different value ranges for the characteristic features than
the other groups. To this end, we increment the feature limits with the 𝑔𝑠 parameter to
control the differences in the value ranges between the groups.

In line 8, we generate the data using the input parameters 𝑛, 𝑐, the number of features 𝑓 ,
and the list 𝑐𝑙𝑎𝑠𝑠_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠. That is, we generate the feature values for all instances
with their associated class labels. To this end, we can use any multivariate probability
distribution to generate the data that supports these inputs as parameters. As existing
domain-agnostic data generators (cf. Section 3) already support generating data using
different probability distributions, we can use them for that purpose. For example, the
approach from Guyon [Gu03] may be used to generate the feature values and feature ranges
for specific class labels according to a Gaussian distribution. However, this multivariate
probability distribution can also be altered by the user to capture different feature correlations
of real-world applications.

To guarantee the heterogeneity of class patterns, we ensure that each class has different value
ranges in different groups for certain characteristic features. Such feature dependencies in
form of characteristic features also appear frequently in industrial application scenarios that
comprise heterogeneous groups [Wu16,HRM19,KRM19]. Therefore, we ensure in lines 9
and 10 that the groups have different value ranges according to the picked features for each
group and the current 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑙𝑖𝑚𝑖𝑡𝑠. To this end, we normalize the feature values of all
instances, i. e., we normalize the values of each feature inX into [0;1] (line 9). Subsequently,
we add the current limits of the features (line 10). In line 11, we store X in the current node.
In lines 12 - 15, we update the data and the class labels of the parent nodes. That means we
traverse the parent node and append the data X of the child node to the currently stored data
of the parent node. Finally, we return the taxonomy, where we set the data for each node.

5 Evaluation

In this section, we discuss the evaluation results for our approach, i. e., whether our approach
is able to generate data synthetically that comply with the data characteristics DC1 and DC2.
First, we describe the setup of our evaluation. Subsequently, we discuss to which extent our
data generator can generate different manifestations of the data characteristics DC1, DC2a,
and DC2b using different parameterizations.

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 341

14 Dennis Treder-Tschechlov et al.

Algorithm 2 Algorithm to generate the data bottom-up.
Input: 𝑓 : Number of features to generate,

𝑠𝐶 : Imbalance degree for the class distribution,
𝑔𝑠: Group separation,
𝑐 𝑓 : Number of characteristic features to use for each group,
𝑃𝐷: Probability distribution,
T: Tree-structured taxonomy, where the numbers of instances and classes as well as the class occurrences are
defined for each node with Algorithm 1.

Output: T: Tree-structured taxonomy, where we assigned for each leaf node how often each class occurs.

1: 𝑛𝑜𝑑𝑒𝑠 ← get_leaf_nodes (𝑇)
2: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑙𝑖𝑚𝑖𝑡𝑠 ← Init_Dictionary ({1, ..., 𝑓 }, 0, 1)
3: for 𝑛𝑜𝑑𝑒 ∈ 𝑛𝑜𝑑𝑒𝑠 do
4: 𝑛← 𝑛𝑜𝑑𝑒.𝑛; 𝑐 ← 𝑛𝑜𝑑𝑒.𝑐; 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ← 𝑛𝑜𝑑𝑒.𝑐𝑙𝑎𝑠𝑠𝑒𝑠;

⊲ Draw the number of instances for each class
5: 𝑐𝑙𝑎𝑠𝑠_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 ← Sample_PD (𝑃𝐷, 𝑛, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑠𝐶)

⊲ Pick characteristic features for this group
6: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← pick_random_features ({1, ..., 𝑓 }, 𝑐 𝑓)

⊲ Separate the groups
7: Increment (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑙𝑖𝑚𝑖𝑡𝑠, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑔𝑠)

⊲ Actual data generation for each leaf node
8: X ← generate_data (𝑛, 𝑐, 𝑓 , 𝑐𝑙𝑎𝑠𝑠_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠)
9: X ← Normalize 𝑋 into [0; 1]

⊲ Add for each feature its current limits
10: X ← X + 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑙𝑖𝑚𝑖𝑡𝑠

⊲ Store data in current node
11: 𝑛𝑜𝑑𝑒.𝑋 ← X;

⊲ add X to parent node
12: while Has_parent (𝑇, 𝑛𝑜𝑑𝑒) do
13: 𝑛𝑜𝑑𝑒← get_parent (𝑇, 𝑛𝑜𝑑𝑒)
14: 𝑛𝑜𝑑𝑒.𝑋 ← append (𝑛𝑜𝑑𝑒.𝑋, X)
15: end while
16: end for
17: return T

5.1 Evaluation Setup

Implementation. Our prototypical implementation is available on Github7. For the evalua-
tion, we use a taxonomy that we derived from a real-world use case regarding end-of-line
testing of complex truck engines [HRM20]. A simplified excerpt of this taxonomy is shown
in Figure 1. The taxonomy has three levels and 26 groups at the bottom level of the hierarchy.
For more details on the taxonomy, we refer to our repository.

Evaluation of the data characteristics. The goal of our evaluation is to show that the
generated data of our approach comply with the data characteristics DC1, DC2a, and DC2b.
We evaluate the presence of each data characteristic with different evaluation measures, i. e.,
class imbalance measures for DC1, group imbalance measures for DC2a, and complexity

7 Prototypical implementation: https://github.com/IPVS-AS/DataGenerator

342 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

https://github.com/IPVS-AS/DataGenerator

Approach to Synthetic Data Generation 15

Tab. 2: Overview of parameters that we discuss regarding their influence on the data characteristics.
The bold values indicate the parameters that we vary for the respective characteristics, while we use
default values for the other parameters.

Data Characteristics Parameter values

Class imbalance (𝑠𝐶) Group imbalance (𝑠𝐺) #charact. features (𝑐 𝑓) Group separation (𝑔𝑠)

Multi-Class Imbalance (DC1) {0, 1,2†, 3, 4, 5} 1 10 0.25
Group Imbalance (DC2a) 2 {0, 0.5, 1, 1.5†, 2} 10 0.25
Heterogeneity of Class Patterns (DC2b) 2 1 {1, 5, 10†, 15, 20, 25, 30} {0†, 0.05, 0.1, 0.25, 0.5, 0.75, 1}
† Parameter values that lead to similar statistics as the real-world data in the work of Hirsch et al. [HRM19,HRM20].

Tab. 3: Gini coefficient values for the generated datasets with varying 𝑠𝐶 parameter.

Class Imbalance (𝑠𝐶) 𝑠𝐶 = 0 𝑠𝐶 = 1 𝑠𝐶 = 2 𝑠𝐶 = 3 𝑠𝐶 = 4 𝑠𝐶 = 5

Gini Coefficient 28% 41% 60% 69% 72% 73%

measures for DC2b. To this end, we also vary the parameter values of our data generator
to show that it is capable of generating different manifestations of the data characteristics.
This is an essential requirement for generating data that may serve as basis for benchmarks
of classification algorithms. Furthermore, we also compare the statistics of the generated
data with the statistics of a real-world data set of Hirsch et al. [HRM19,HRM20].

Parameters. Our data generator has eight parameters in total. As our goal is to evaluate
which manifestations of the data characteristics it can generate, we only vary the parameters
that have a strong influence on these characteristics. Therefore, we generate data with fixed
parameters 𝑛 = 1000 instances, 𝑓 = 40 features, 𝑐 = 30 classes, and 𝑐𝑜 = 1.5. Table 2
shows the parameters that we vary to study the influence on individual data characteristics.
To evaluate the manifestation of a single data characteristic, we only vary and discuss the
results for the parameters that influence this particular characteristic, using default values
for the other parameters (cf. Table 2).

5.2 Evaluation of Multi-Class Imbalance (DC1)

We evaluate the presence of the data characteristic DC1 w.r.t. the class imbalance and the
accuracy for minority and majority classes of a classification model.

Class imbalance. There is no consensus on proper statistical metrics to determine the
degree of class imbalance within data [Fe13]. Yet, an often-used metric for inequality that
takes the value of 100% in case of total imbalance and 0% for total balance is the Gini
coefficient [Co00]. Thus, we use the Gini coefficient to measure the imbalance of the classes
for the generated datasets.

Table 3 shows the Gini coefficients for the generated datasets with different 𝑠𝐶 parameter
values. We observe that the Gini coefficient values for the generated data vary from 28% for

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 343

16 Dennis Treder-Tschechlov et al.

0 1 2 3 4 5
Class Imbalance (sC)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy Accuracy for ...

All Classes (a)
Minority Classes (a)
Majority Classes (a +)

Fig. 4: Overview of accuracy for all classes (𝑎X), and separately for minority (𝑎X−) and majority
classes (𝑎X+) for the different 𝑠𝐶 values.

𝑠𝐶 = 0 to 73% for 𝑠𝐶 = 5. Thus, the class imbalance is increasing with an increasing value
of the 𝑠𝐶 parameter. We also observe that the Gini coefficient is increasing faster for lower
𝑠𝐶 values, i. e., it is increasing by 19%-points from 𝑠𝐶 = 1 to 𝑠𝐶 = 2, but only by 2%-points
from 𝑠𝐶 = 4 to 𝑠𝐶 = 5. The reason why the coefficient does not increase as much for higher
𝑠𝐶 values is due to the calculation of the Gini coefficient. For example, to achieve a Gini
coefficient of 100%, the generated data would contain instances for solely one class [Co00].
So, for the generated data to have a higher Gini coefficient, some of the classes must not
appear in the data at all. However, in our implementation, we ensure that each class occurs
at least once. The real-world data in the work of Hirsch et al. [HRM19,HRM20] shows
a Gini coefficient of 55%. Thus, with 𝑠𝐶 = 2, we can generate data with a similar class
imbalance as real-world data that also comprise DC1 and DC2.

Accuracy of minority and majority classes. As described in Section 2.1, the accuracy
of a classifier typically correlates with the accuracy for the majority classes in multi-class
imbalance problems. In particular, the accuracy for minority classes usually decreases as
the degree of class imbalance increases [HG09,WY12]. Therefore, we examine whether
the generated data by our generator also exhibit this trend. To measure the accuracy, we
split each generated dataset into 70% training data X𝑡𝑟𝑎𝑖𝑛 and 30% test data X𝑡𝑒𝑠𝑡 . Thereby,
we preserve the same class distribution in both data subsets. Subsequently, we train a
classifier 𝑀X on X𝑡𝑟𝑎𝑖𝑛 and denote the accuracy of 𝑀X on X𝑡𝑒𝑠𝑡 as 𝑎X . We also denote
with 𝑎X+ the accuracy among only the instances of the majority classes and with 𝑎X− for the
minority classes. We declare a class as minority class if it has less instances than the median
number of instances of all classes and otherwise as majority class. We use Random Forest as
classification model due to its robustness regarding the characteristics [HRM19,HRM20].

Figure 4 shows the accuracy of the minority and the majority classes for each generated
dataset. We observe that the more imbalanced the data, the higher is the accuracy for the
whole dataset (𝑎X) and for the majority classes (𝑎X+). The reason for this high correlation
between 𝑎X and 𝑎X+ is that the majority classes have by far the biggest share of instances
of the data. So, they also contribute much more to the overall accuracy than the minority

344 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 17

0.0 0.5 1.0 1.5 2.0
Group Imbalance (sG)

0

100

200

300

400

500

#I
ns

ta
nc

es
 (n

) f
or

 g
ro

up
s

23 20 8 3 2

84

11
6 15

4

25
2

39
8Aggregation

Minimum
Maximum

0
10
20
30
40
50
60
70

Gi
ni

 C
oe

ffi
cie

nt
 (%

)

Gini (G)

Fig. 5: Overview of the number of instances per group as well as the Gini coefficient values for
different 𝑠𝐺 values.

classes. However, the accuracy of the minority classes decreases with an increasing class
imbalance. As mentioned above, this is the expected behavior for the accuracy in multi-class
imbalance problems. Hence, when we control the imbalance with the 𝑠𝐶 parameter, the
generated data has the expected accuracy curves regarding minority and majority classes.
Thus, we are able to generate various and proper manifestations of DC1.

5.3 Evaluation of Group Imbalance (DC2a)

To evaluate the presence of DC2a, we examine the imbalance of the generated groups and
measure the extent of representation bias in data, i. e., if certain groups are underrepresented.
To this end, we vary the 𝑠𝐺 parameter as it has the highest influence on DC2a. We use the
Gini coefficient to measure the degree of imbalance for the generated groups, i. e., we apply
the Gini coefficient to the group labels. Further, we report aggregated statistics about the
number of instances for all groups. Figure 5 shows the minimum and the maximum number
of instances of all groups as well as the Gini coefficient for the groups.

We observe an increase in the Gini coefficient for increasing 𝑠𝐺 values. For 𝑠𝐺 = 0, we have
a Gini coefficient of around 20%, while it is around 70% for 𝑠𝐺 = 2. Thus, we are able to
control the imbalance of the groups (DC2a). The maximum number of instances for each
group is also increasing for higher 𝑠𝐺 values. In particular, for 𝑠𝐺 = 0, we have a maximum
of 84 instances for a group, while it is 398 for 𝑠𝐺 = 2. On the other side, the minimum
number of instances for a group is decreasing from 21 to 2. For the lowest parameter value
𝑠𝐺 = 0, the Zipf distribution assigns the same probability to all groups. However, not
exactly the same number of instances are assigned to all groups because it is still a random
distribution. Therefore, slight deviations occur. In our approach, small deviations can occur
at each level of the taxonomy due to our top-down procedure (cf. Algorithm 1), resulting in
a Gini coefficient of 20% for 𝑠𝐺 = 0. For the highest parameter value 𝑠𝐺 = 2, some groups
are underrepresented as they solely occur 2 times in the generated dataset. This shows that
we can generate and control different manifestations of a representation bias in the data

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 345

18 Dennis Treder-Tschechlov et al.

1 5 10 15 20 25 30
#charact. Features (cf)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

e
of

 C
M

s

Complexity Measures (CMs)
Border Points () Border Points (G) Fishers DRv () Fishers DRv (G)

0.00 0.25 0.50 0.75 1.00
Group separation (GS)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

e
of

 C
M

s

Complexity Measures (CMs)
Border Points () Border Points (G) Fishers DRv () Fishers DRv (G)

(a) Group separation (𝑔𝑠)

1 5 10 15 20 25 30
#charact. Features (cf)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

e
of

 C
M

s

Complexity Measures (CMs)
Border Points () Border Points (G) Fishers DRv () Fishers DRv (G)

(b) #charact. Features (𝑐 𝑓)

Fig. 6: Values of complexity measures for the entire data X and averaged over the groups G regarding
(a) 𝑔𝑠 and (b) 𝑐 𝑓 .

with the 𝑠𝐺 parameter (DC2a). The real-world data from the use case of end-of-line testing
have a Gini coefficient of 54% regarding the group distribution, while the rarest group has 2
instances and the most frequent group has 300 instances [HRM19,HRM20]. Thus, we are
able to generate a similar group distribution with 𝑠𝐺 = 1.5.

5.4 Evaluation of Heterogeneous Class Patterns (DC2b)

To measure the manifestation of the characteristic DC2b, we measure the effects of the
aggregation bias in data (cf. Section 2). So, we focus on the difference in carrying out a data
analysis (1) for the whole data and (2) for each group separately. To this end, we examine (i)
the complexity of the classification problem in the generated data and (ii) the accuracy of a
classification model on the generated data.

Difference of complexity measures.Weuse commonly used complexitymeasures [HB02] to
assess the complexity of the classification problem independently of a specific classification
algorithm. For sake of clarity, we focus in our discussion on the results of two commonly
used complexity measures that are accompanying symptoms of the characteristics DC1
and DC2: i) The Directional-Vector Maximum Fishers Discriminant Ratio (Fishers DRv)
measures how well the classes can be separated by the feature values. ii) The fraction of
Border Points measures the fraction of all instances where the nearest instance belongs to a
different class. We note that for both complexity measures, lower values indicate simpler
classification problems, i. e., the classes are better separable or the data has less border points.
We compare the complexity measures on the entire data X and the average values over all
groups (DC2). More formally, for each of the complexity metrics 𝐶𝑀 , we denote the value
of the 𝐶𝑀 on X as 𝐶𝑀 (X). We calculate the average over the groups 𝐺 = {𝐺1, ..., 𝐺𝑘} as
𝐶𝑀 (𝐺) = 1

𝑘

∑𝑘
𝑖=1 𝐶𝑀 (𝐺𝑖).

346 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 19

0.00 0.25 0.50 0.75 1.00
Group separation (GS)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Accuracy for ...
Groups (aG) Entire Data (a) Diff. aG

0.00 0.25 0.50 0.75 1.00
Group separation (GS)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Accuracy for ...
Groups (aG) Entire Data (a) Diff. aG

(a) Group separation (𝑔𝑠)

101 5 15 20 25 30
#charact. Features (CF)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Accuracy for ...
Groups (aG) Entire Data (a) Diff. aG

(b) #charact. Features (𝑐 𝑓)

Fig. 7: Overview of accuracy results for the varying parameter configurations for our data generator.
The accuracy is shown for training the model on the whole data or solely on the groups, as well as the
difference in the accuracy of both.

Figure 6 shows the difference of the complexity measures averaged over all groups and on
the entire data. We observe in Figure 6a that for 𝑔𝑠 ≤ 1, the whole data X comprise more
border points compared to the average over all groups 𝐺. In particular, the highest absolute
difference is around 25%-points for 𝑔𝑠 = 0, while it is decreasing with higher 𝑔𝑠 values.
Thus, different classes are more often close to each other on the whole data compared to the
data subsets of all groups for 𝑔𝑠 = 0. Nevertheless, this difference decreases for higher 𝑔𝑠
values. The reason is that for 𝑔𝑠 = 0, the groups are not separated at all. As a result, classes
from different groups have the same feature ranges and are therefore more likely to border
on each other. For 𝑔𝑠 > 0, the groups have different value ranges for their characteristic
features and thus a slight increase of 𝑔𝑠 leads to a high decrease in the border points. Yet,
for higher 𝑔𝑠 values, the border points for X converge to around 45%.

We observe a similar trend for Fishers DRv, i. e., for 𝑔𝑠 = 0, the average value over the
groups is less compared to the entire data X. Thus, the classes are more easily separable,
when considering the individual data subsets of the groups. Yet, for higher 𝑔𝑠 values, Fishers
DRv is decreasing on X and is even less than the average over the groups for 𝑔𝑠 ≥ 0.5.
Hence, the classes are better separable on X for 𝑔𝑠 ≥ 0.5. This concludes that there is a
similar correlation for the Fishers DRv as for the border points regarding the 𝑔𝑠 value. For
the 𝑐 𝑓 parameter (cf. Figure 6b), we observe similar trends as for 𝑔𝑠. Thus, we do not
discuss these results in more detail.

Difference in accuracy. We also measure the difference in accuracy averaged over all
groups and on the entire data. To this end, similar as in Section 5.2, we train a Random Forest
classifier 𝑀X on X𝑡𝑟𝑎𝑖𝑛 and report the accuracy on the test set X𝑡𝑒𝑠𝑡 as 𝑎X . Further, we
train a set of classifiersM𝐺 = {𝑀1, ..., 𝑀𝑔}, where each 𝑀𝑖 is a Random Forest classifier
trained separately on a group 𝐺𝑖 ⊂ X𝑡𝑟𝑎𝑖𝑛. In this case, we predict the class label for each

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 347

20 Dennis Treder-Tschechlov et al.

test instance 𝑥𝑡𝑒𝑠𝑡 ∈ X𝑡𝑒𝑠𝑡 that belongs to group 𝐺 𝑗 with the model 𝑀 𝑗 . Thus, we denote
the accuracy ofM𝐺 for X𝑡𝑒𝑠𝑡 with 𝑎𝐺 . Further, we define the difference in accuracy as
Δ𝑎𝐺−X = 𝑎𝐺 − 𝑎X .

Figure 7 shows the accuracy results. For the 𝑔𝑠 parameter (cf. Figure 7a), we observe that
the highest difference in accuracy is obtained for 𝑔𝑠 = 0, which is more than 30%-points.
Thus, we have the strongest effect of an aggregation bias for 𝑔𝑠 = 0. Yet, the difference in
the accuracy is decreasing for higher 𝑔𝑠 values, i. e., for 𝑔𝑠 = 1 it is about 5%-points. The
reason can be seen in the previous results for the complexity measures: The data has less
border points and the classes are more separable on X for higher 𝑔𝑠 values. Thus, it is easier
for a classification model to predict the classes more accurately on X. Again, we observe
similar results for the 𝑐 𝑓 parameter in Figure 7b. We note that Random Forest achieves an
accuracy of 33% on real-world data that comprise both characteristics [HRM19,HRM20].
Thus, we can generate data with similar accuracy results using 𝑔𝑠 = 0.

Concluding, the results show that we are able to control the difference of the complexity
measures and the accuracy with the 𝑔𝑠 and the 𝑐 𝑓 parameters. In other words, our data
generator is able to control the heterogeneity of the class patterns, i. e., the aggregation bias
in the generated data (DC2b).

6 Conclusion

The contribution of this paper is an approach to generate synthetic data comprising two
data characteristics that often occur in real-world use cases: multi-class imbalance (DC1)
and heterogeneous groups (DC2). The actual manifestations of these data characteristics are
domain-specific, i. e., dependent on the actual real-world use case. Therefore, our approach
uses a taxonomy model and a two-step process to generate data that reflect the characteristics
of a given real-world use case. A taxonomy is the simplest form of knowledge model
to organize real-world entities in domain-specific groups and it can be found in various
domains. So, our approach is not limited to a specific domain. In our evaluation, we unveil
that the generated data comprises the characteristics DC1 and DC2 together. Moreover,
the parameters of our data generator may be steered to reflect different manifestations of
these characteristics. Our approach builds the fundamental basis for future work to create a
benchmark that evaluates machine learning and data engineering approaches systematically
on data with the characteristics DC1 and DC2. Thereby, correlations between different
manifestations of the characteristics and the performance of approaches can be examined.

Acknowledgements. This research was performed in the project ’VALID-PARTITION’ as
part of the Software Campus program, which is funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No.: 01IS17051. This work was also supported
by the Ministry of Science, Research, and the Arts of the State of Baden-Wurttemberg
within the sustainability support of the projects of the Excellence Initiative II.

348 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 21

Bibliography
[AK04] Agard, Bruno; Kusiak, A.: Data-Mining-based Methodology for the Design of Product

Families. International Journal of Production Research, 42(15):2955–2969, 2004.

[Al11] Alcalá-Fdez, Jesús et al.: KEEL Data-Mining Software Tool: Data Set Repository,
Integration of Algorithms and Experimental Analysis Framework. Multiple-Valued
Logic and Soft Computing, 2011.

[Ch20] Chan, Stephanie et al.: Machine Learning in Dermatology: Current Applications,
Opportunities, and Limitations. Dermatology and Therapy, 2020.

[Ci09] Cimiano, Philipp et al.: Ontology learning. In: Handbook on ontologies, pp. 245–267.
Springer, 2009.

[Co00] Cowell, Frank: Measuring Inequality. 3th edition, 2000.

[DC19] Dahmen, Jessamyn; Cook, Diane: SynSys: A synthetic data generation system for
healthcare applications. Sensors, 19(5):1181, 2019.

[DG17] Dua, Dheeru; Graff, Casey: , UCI Machine Learning Repository, 2017.

[Fe13] Fernández, Alberto et al.: Analysing the classification of imbalanced data-sets with
multiple classes: Binarization techniques and ad-hoc approaches. Knowledge-Based
Systems, 42:97–110, apr 2013.

[Fe20] Fernandes, Ederson Carvalhar et al.: Flexible Production Data Generator for Manufac-
turing Companies. Procedia Manufacturing, 2020.

[Fr11] Frasch, Janick V. et al.: A Bayes-true data generator for evaluation of supervised and
unsupervised learning methods. Pattern Recognition Letters, 32(11):1523–1531, 2011.

[FS18] Fränti, Pasi; Sieranoja, Sami: K-means properties on six clustering benchmark datasets.
Applied Intelligence, 48:4743–4759, 2018.

[Ga12] Galar, Mikel et al.: A Review on Ensembles for the Class Imbalance Problem: Bagging-,
Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(4):463–484, 2012.

[GBC16] Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron: Deep learning. MIT press, 2016.

[Gr22] Gröger, Christoph: Industrial Analytics — An Overview. it – Information Technology,
64(1–2):55–65, 2022.

[Gu03] Guyon, Isabelle: Design of experiments for the NIPS 2003 variable selection benchmark.
2003.

[HB02] Ho, Tin Kam; Basu, Mitra: Complexity measures of supervised classification problems.
IEEE TPAMI, 2002.

[HG09] He, Haibo; Garcia, E.A.: Learning from Imbalanced Data. IEEE TKDE, 21(9):1263–
1284, sep 2009.

[Ho21] Hogan, Aidan et al.: Knowledge graphs. Synthesis Lectures on Data, Semantics, and
Knowledge, 12(2):1–257, 2021.

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 349

22 Dennis Treder-Tschechlov et al.

[HRM19] Hirsch, Vitali; Reimann, Peter; Mitschang, Bernhard: Data-driven fault diagnosis in
end-of-line testing of complex products. In: IEEE DSAA. 2019.

[HRM20] Hirsch, Vitali; Reimann, Peter; Mitschang, Bernhard: Exploiting domain knowledge to
address multi-class imbalance and a heterogeneous feature space in classification tasks
for manufacturing data. VLDB, 2020.

[Ig19] Iglesias, Félix et al.: MDCGen: Multidimensional Dataset Generator for Clustering.
Journal of Classification, 2019.

[Ja04] Jablonski, Nina: The Evolution of Human Skin and Skin Color. Ann. Review of
Anthropology, 33:585–623, 2004.

[KBT11] Köksal, Gülser; Batmaz, İnci; Testik, Murat Caner: A review of data mining applications
for quality improvement in manufacturing industry. Expert Systems with Applications,
38(10):13448–13467, sep 2011.

[KM16] Kassner, Laura; Mitschang, B.: Exploring Text Classification for Messy Data: An
Industry Use Case for Domain-Specific Analytics. In: EDBT. 2016.

[KRM19] Kiefer, Cornelia; Reimann, Peter; Mitschang, Bernhard: AHybrid Information Extraction
Approach Exploiting Structured Data Within a Text Mining Process. In: BTW 2019.
Gesellschaft für Informatik, Bonn, pp. 149–168, 2019.

[KU15] Khan, Aunsia; Usman, Muhammad: Early Diagnosis of Alzheimer’s Disease Using
Machine Learning Techniques: A Review Paper. In: Proc. of the 7th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K). Lisbon, Portugal, pp. 380–387, 2015.

[LKJ02] Lundin, Emilie; Kvarnström, Håkan; Jonsson, Erland: A Synthetic FraudData Generation
Methodology. In: Information and Communications Security. 2002.

[Me21] Mehrabi, Ninareh et al.: A Survey on Bias and Fairness in Machine Learning. ACM
Comput. Surv., 54(6), jul 2021.

[MGTM20] Maitín, Ana María; García-Tejedor, Alvaro José; Muñoz, Juan Pablo Romero: Ma-
chine Learning Approaches for Detecting Parkinson’s Disease from EEG Analysis: A
Systematic Review. Applied Sciences, 10(23), 2020.

[PWV16] Patki, Neha; Wedge, Roy; Veeramachaneni, Kalyan: The Synthetic Data Vault. In: IEEE
DSAA. 2016.

[RHW21] Roh, Yuji; Heo, Geon; Whang, Steven Euijong: A Survey on Data Collection for Machine
Learning: A Big Data - AI Integration Perspective. IEEE TKDE, 33(4):1328–1347, apr
2021.

[SB21] Steinbuss, Georg; Böhm, Klemens: Benchmarking Unsupervised Outlier Detection with
Realistic Synthetic Data. ACM TKDD, 2021.

[Sc12] Schervish, Mark J: Theory of statistics. Springer Science & Business Media, 2012.

[SG21] Suresh, Harini; Guttag, John: A Framework for Understanding Sources of Harm
throughout the Machine Learning Life Cycle. In: Equity and Access in Algorithms,
Mechanisms, and Optimization. EAAMO ’21, 2021.

350 Dennis Treder-Tschechlov, Peter Reimann, Holger Schwarz, Bernhard Mitschang

Approach to Synthetic Data Generation 23

[SGG18] Suresh, Harini; Gong, Jen J.; Guttag, John V.: Learning Tasks for Multitask Learning:
Heterogenous Patient Populations in the ICU. In: SIGKDD. 2018.

[SH05] Steinley, Douglas; Henson, Robert: OCLUS: AnAnalyticMethod for Generating Clusters
with Known Overlap. Journal of Classification, 2005.

[So91] Sowa, John F.: Principles of Semantic Networks. Explorations in the Representation of
Knowledge. Morgan Kaufmann, 1991.

[Su14] Sun, Chong et al.: Chimera: Large-Scale Classification using Machine Learning, Rules,
and Crowdsourcing. VLDB, 2014.

[SWK09] Sun, Yanmin; Wong, Andrew; Kamel, Mohamed: Classification of Imbalanced Data:
A Review. International Journal of Pattern Recognition and Artificial Intelligence,
23(4):687–719, 2009.

[ULP19] Ustun, Berk; Liu, Yang; Parkes, David: Fairness without harm: Decoupled classifiers
with preference guarantees. In: ICML. 2019.

[Va14] Vanschoren, Joaquin et al.: OpenML: Networked Science inMachine Learning. SIGKDD
Explor. Newsl., 15(2):49–60, jun 2014.

[Wi20] Wilhelm, Yannick et al.: Data Science Approaches to Quality Control in Manufacturing:
A Review of Problems, Challenges and Architecture. In: Proc. of the 14th Symposium
on Service-Oriented Computing (SummerSOC). Communications in Computer and
Information Science (CCIS). Springer-Verlag, pp. 45–65, 2020.

[WLL21] Wang, Jialu; Liu, Yang; Levy, Caleb: Fair Classification with Group-Dependent Label
Noise. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency. FAccT ’21, Association for Computing Machinery, New York, NY, USA,
p. 526–536, 2021.

[Wu16] Wuest, Thorsten et al.: Machine learning in manufacturing: advantages, challenges, and
applications. Production & Manufacturing Research, 4(1):23–45, jan 2016.

[WY12] Wang, Shuo; Yao, Xin: Multiclass Imbalance Problems: Analysis and Potential Solutions.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(4):1119–
1130, 2012.

Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with
Heterogeneous Groups 351

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

No Mayfly: Detection and Analysis of Long-term Twitter
Trends

John Ziegler1, Michael Gertz1

Abstract: The focus of social media is characterized by stories about short-lived breaking news.
Often, such “mayflies” make it hard to keep track of more profound topics that are prevalent over a
long period of time. To provide such capabilities, we present a method to detect long-term trends
based on temporal networks and community evolution. Connecting those methods with trend analysis
approaches allows to study the temporal development of trends, their contextual information and how
they are interrelated over time, which is of great benefit compared to existing work. Results obtained
from a Twitter case study are discussed in detail and evaluated based on real-world event linkage,
which proves the good functionality of the proposed method.

Keywords: Social Media Analytics; Temporal Networks; Trend Analysis; Twitter Data

1 Introduction

In today’s social media landscape discussed topics and attention are rapidly changing. It is
hard to not get distracted by short-lived trends (“mayflies”) and instead keep focused on
more profound and steady topics. In this work, inspired by the slow journalism movement
[Le15], we do not analyze breaking news and trends of short attention but instead, focus
on long-term trends. For this, a framework to detect and analyze long-term social media
trends is outlined. It builds on existing work that is adopted and extended to fit the use
case requirements. These extensions include: 1. Leveraging a temporal network model to
study long-term trends, 2. Pruning of less prevalent nodes based on a power law degree
distribution model, 3. Temporal tracking of hashtag communities via a core of central
nodes, and 4. Appropriate visualizations to analyze the temporal development of found
trends. The proposed methodology is applied to the German political Twitter-sphere to
analyze long-term political trends. Thereby, the network-based approach allows to intuitively
represent detected trends within their semantic context. In contrast to related work, e.g.,
the work by Chae and Park [CP18], our analysis specifically investigates semantic shifts of
detected trends over time.

Regarding the used terminology, we do not refer to “trends” as they are often used in a
time series analysis setting, e.g., [CC08, pp. 27-54]. Instead, trends in our social media
analysis setting do come with a semantic meaning. Asur et al. describe trends as topics that
1 Heidelberg University, Institute of Computer Science, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany;

ziegler@informatik.uni-heidelberg.de, gertz@informatik.uni-heidelberg.de

cba doi:10.18420/BTW2023-17

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 353

mailto:ziegler@informatik.uni-heidelberg.de
mailto:gertz@informatik.uni-heidelberg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-17

12 John Ziegler, Michael Gertz

“[. . .] capture the attention of a large audience [. . .]” [As11]. We follow this definition and
start by taking Twitter hashtags as representatives of topics, which is in line with previous
work, e.g., [As11] [BAE11]. According to Bhulai et al. [Bh12], these hashtags might also
be clustered. As a result, we extend the previous definition of a “topic” and do not refer
to it as a single hashtag, but as a community of hashtags. Tracking those communities of
hashtags over time results in “temporal topics”. A topic can be said to make up a “trend”
if its popularity is large enough (cf. [As11]) and is further called a “long-term” trend if it
is prevalent over a sufficiently long time period. Together, we denote them as “long-term
topical trends”. Further, for differentiation between short- and long-term trends, we refer
to the concept of “news cycles” or rather “political information cycles” as described by
Chadwick [Ch11]. These cycles describe news production processes and typically cover a
time span of a few days. Topics that are discussed in the context of such short-lived media
attention cycles are defined as short-term trends. In contrast, long-term trends describe
topics that are prevalent in media for several weeks, months, or even years. This distinction
is in line with past work, e.g., [Ha16].

This paper is structured as follows: First, in Section 2 related work is described and
compared. Section 3 then covers the methodology concerning the detection of long-
term trends. The proposed method is applied to a collected political Twitter dataset,
and the according analysis is described and evaluated in Section 4. Finally, Section 5
gives a summary of the present framework and describes future work. Also, the source
code used for the analysis steps is publicly available at the following URL: https:
//github.com/jomazi/twitter-long-term-trends.

2 Background

Most studies related to social media trend analysis focus on short-lived and mostly event-
driven scenarios, e.g., [As11] and [BAE11]. Nevertheless, Chae and Park [CP18], as
an example, apply topic detection to a long-term Twitter dataset and investigate trends
within the corporate social responsibility domain. They study how the popularity of topics
changes over time and how topics are interrelated. In contrast to their work, we focus on
the political domain, specifically aiming to analyze topical shifts over time and follow a
temporal network-based approach. Also related to trend analysis, Annamoradnejad and
Habibi [AH19] study the trends published by Twitter itself. Thereby, they analyze the
trending time as well as the trend’s re-occurrence over time. Further, Majdabadi et al.
[Ma20] propose a graph-based Twitter trend extraction method and do not only take hashtags
but also terms into account. Still, they do not track those trends over long time periods.
Similarly, the work by Khan et al. [Kh21] is dealing with the detection as well as ranking of
trends based on Twitter data. Some existing work from the field of information retrieval
also approaches trend-related use cases. As an example, Hashvati et al. [Ha16] propose
an online method to detect trends in a user search context. Notably, they also use social
network communities as trend candidates and distinguish between short- and long-term

354 John Ziegler, Michael Gertz

https://github.com/jomazi/twitter-long-term-trends
https://github.com/jomazi/twitter-long-term-trends

No Mayfly 13

trends. Further, focused on classifying trends on Twitter, the work by Zubiaga et al. [Zu15]
outlines a classification system of Twitter trends, along with methods to correctly identify a
trend’s category at its initial stage. For trends, they rely on the official trends shown on the
Twitter platform. These trends are short-living [Tw] and, are either related to news, ongoing
events, memes or commemoratives [Zu15].

3 Methodology

In the following section, the methodology underlying the detection of long-term trends is
outlined. For this, we first introduce the leveraged dataset in Section 3.1, then continue
by describing the temporal network-based model formalism in Section 3.2 and outline the
processing of the used hashtag co-occurrence networks in Section 3.3. Finally, Sections 3.4
and 3.5 cover the detection of topics and their tracking over time, which also leads to the
extraction of topical long-term trends.

3.1 Dataset

The EPINetz Twitter Politicians Dataset 2021 provides “[. . .] Twitter accounts of German
parliamentarians, ministers, state secretaries, parties, and ministries on a state, federal, and
European Union level for the year 2021” [Kö22]. We rely on the Twitter search API v22

to gather the raw tweets based on those user accounts. We collect tweets posted by the
2,449 accounts for the time range from January 2021 until July 2022 without filtering. In
total, the dataset contains about 1.8 million tweets. Hashtags used in the tweets are taken
as representatives of topics, which corresponds to the procedure of other works [As11]
[BAE11]. We extract timestamped information about the (co-)occurrence of the hashtags
from the unprocessed tweets and use them as the basis for detecting long-term topical trends.

3.2 Temporal networks

Taking the timestamped information about hashtag (co-)occurrences as described above,
temporal networks are created as aggregations based on a given time window. To formally
describe the temporal snapshot networks we rely on the framework of multi-slice networks
as outlined by Bianconi [Bi18, pp. 106-110]. A multi-slice temporal network is a special
kind of multilayer network with each layer/slice representing a temporal snapshot of the
complete network. As in our case, no interactions across snapshots exist, we focus on the
intralink networks only, i.e., multi-slice networks without interlinks. Such a multilayer
network 𝑀 is defined as a tuple, 𝑀 = (𝐿,G). It consists of the network layers 𝐿 with |𝐿 | = 𝑙.

2 Twitter Developer Platform: https://developer.twitter.com/en/docs/twitter-api/tweets/search/introduction; Ac-
cessed 28-12-22

No Mayfly: Detection and Analysis of Long-term Twitter Trends 355

14 John Ziegler, Michael Gertz

A single layer is referred to as ℓ ∈ 𝐿. Additionally, G describes the time-ordered list of
networks that are made up of the interactions within each of those layers:

G = (𝐺1, 𝐺2, . . . , 𝐺ℓ , . . . , 𝐺𝑙) with 𝐺ℓ = (𝑉ℓ , 𝐸ℓ) (1)

Each network 𝐺ℓ consists of a set of nodes 𝑉ℓ , which are in our case hashtags and their
co-occurrences as edges 𝐸ℓ . Given that a multi-slice network 𝑀 covers the interactions
within a time period 𝑇 and the time-window Δ𝑡 is chosen as snapshot size, e.g., one month,
there are 𝑙 = 𝑇/Δ𝑡 layers. Thereby, layer ℓ captures the interactions that occur in the
timeframe [(ℓ − 1)Δ𝑡, ℓΔ𝑡). Within such a layer ℓ the degree of a node 𝑖 is denoted as 𝑘ℓ

𝑖
.

Further, for the aggregated network �̃� of the multi-slice network, the temporal nature of the
interactions is simply neglected and edges from all snapshots are taken into account.

3.3 Network processing

In contrast to mostly event- or breaking news-related short-term trends [Zu15], which are
often represented by a single hashtag, long-term trends deal with more complex topics and
can therefore be seen as communities of interrelated hashtags (see Section 1). To obtain
more meaningful community networks and to further save computational costs during the
community detection step (see Section 3.4), we focus on popular and highly connected
hashtags. For this, less connected hashtags, i.e., with a low co-occurrence degree, are
removed from the temporal networks. We take the median node degree per snapshot as a
reference and remove all hashtags with a degree below this threshold from the according
temporal network. An investigation of the degree distribution reveals its power law nature
(𝑘 ∝ 𝑘−𝛼). Therefore, we leverage the median as defined by Newman [Ne05]:

𝑘𝑚𝑒𝑑 = 21/𝛼−1𝑘𝑚𝑖𝑛 (2)

An exemplary degree distribution is shown in Figure 1. The fitting procedure, for which
the “powerlaw” package provided by Alstott et al. [ABP14] is used, reveals a power law
exponent of 1.42 and according to that a median 𝑘𝑚𝑒𝑑 of 5.31. In addition to the pruning
step, the temporal snapshot networks are weighted. Ideally, respective edge weights reflect
the semantic expressiveness of a hashtag and the strength of interrelations between hashtags.
For this, we refer to Pointwise Mutual Information (PMI) [RN11]. Given that 𝑓 ℓ

𝑖
describes

the frequency of occurrence of node 𝑖 during the timeframe covered by layer ℓ and 𝑓 ℓ
𝑖 𝑗

the
frequency of co-occurrence of nodes 𝑖 and 𝑗 , the according PMI value is defined as:

PMIℓ𝑖 𝑗 = ln
𝑓 ℓ
𝑖 𝑗

𝑓 ℓ
𝑖
· 𝑓 ℓ

𝑗

= 𝑤ℓ
𝑖 𝑗 (3)

356 John Ziegler, Michael Gertz

No Mayfly 15

As indicated in Equation 3, those PMI values are used as co-occurrence edge weights 𝑤ℓ
𝑖 𝑗

between hashtag 𝑖 and 𝑗 in layer ℓ of the temporal multi-slice network.

Fig. 1: Degree distribution of the January 2021 network snapshot

3.4 Detection of hashtag communities

Hashtags, i.e., the nodes of the temporal networks, are taken as representatives of topics
[As11] [BAE11]. Further, according to Bhulai et al. [Bh12] in a comprehensive trend
analysis framework related topics should be clustered. Therefore, we rely on methods
developed in the field of community detection to find groups of densely interrelated hashtags.
Those groups of hashtags then form a topic with all of its aspects as multiple hashtags might
describe different semantic dimensions of the topic. To be precise, we leverage the Leiden
community detection algorithm by Traag et al. [TWV19] and use the implementation as
provided by the igraph software package [CN+06]. The community detection is applied to
all layers of the temporal network described in Section 3.2.

3.5 Long-term trend detection

Of course, temporal communities of hashtags, i.e., temporal topics, as described in Section
3.4 do not yet make up a long-term topical trend. Asur et al. describe trends as topics that
“[. . .] capture the attention of a large audience [. . .]” [As11], which means that trends need
to reach a certain level of popularity. For this to measure, we take the accumulated count
of hashtag occurrences per community and time window as trend scores. A community
𝑖 in the network layer/slice ℓ is given as a subset of hashtag nodes: 𝐶ℓ

𝑖
⊆ 𝑉ℓ . Together

with a mapping of those nodes to their respective occurrence counts for the given layer ℓ,
𝑜ℓ : 𝑉ℓ → N, we define the trend scores 𝜏 as follows:

𝜏(𝐶ℓ
𝑖) =

∑︁
𝑣∈𝐶ℓ

𝑖

𝑜ℓ (𝑣) (4)

No Mayfly: Detection and Analysis of Long-term Twitter Trends 357

16 John Ziegler, Michael Gertz

Those scores allow to rank detected trends by their popularity and, as an example, only the
top-𝑛 trends can be investigated. Long-term trends, opposed to short-lived trends, need to be
prevalent over a sufficiently large time span. Therefore, detected hashtag communities need
to be tracked over time. In their work, Lorenz et al. [Lo17] specifically propose a method
to capture the dynamics of weighted hashtag co-occurrence networks. Not only does their
method allow to track communities of hashtags across subsequent time steps, but also across
further distant snapshots. Considering higher-order memory, i.e., taking the networks of
multiple previous snapshots into account, their approach allows to overcome issues related
to temporal fluctuations and instabilities of the single-layer (static) community detection
process. We built on this existing work and leverage their approach to track popular temporal
hashtag communities over time, which then form long-term topical trends.

4 Analysis and Evaluation

To illustrate the long-term trend detection method described in Section 3, it is applied to
the political Twitter dataset as outlined in Section 3.1. Extracted hashtag co-occurrences
are aggregated into monthly snapshots. For a global description of a trend, independent
of time, the aggregated network as described in Section 3.2 is leveraged. As described in
Section 3.4, the Leiden algorithm [TWV19] is used for the community detection step. We
use modularity as the objective function along with a resolution parameter of 1, 𝛽 = 0.01
and 1000 iterations. Edge weights as outlined in Section 3.3 are taken into account. The
algorithm is applied 10 times, and only the clustering that leads to the highest modularity
score is taken to define the communities of hashtags, i.e., topics. Of course, due to the
built-in randomness, repeated runs do not always lead to the exact same results but slight
variations might occur. Per community, the induced subgraph of the 10 nodes, i.e., hashtags,
with the highest PageRank scores [Pa99] is taken to represent a trend. Trend networks
consist of those hashtags as nodes and their weighted interactions. As many communities
contain hashtags that are either used for only a short time on social media or are very
specific, we focus on the set of the 25 most central nodes, according to their PageRank, and
link communities according to the similarity between those sets. For this, we leverage the
method proposed by Lorenz et al. [Lo17] as described in Section 3.5. Four months are used
as memory for the matching procedure to also link communities with temporal fluctuations
and focus on the long-term prevalence of a trend.

In the following Section 4.1, we present analysis results covering the prevalence of trends
over time, their evolution in Section 4.2, and temporal interactions in Section 4.3. Finally,
results are evaluated in Section 4.4.

4.1 Prevalence of trends

As topics are tracked over time, their prevalence and popularity can be investigated with a
focus on their temporal development. Not all topics might be equally prevalent at a given

358 John Ziegler, Michael Gertz

No Mayfly 17

point in time, nor might they be occurring across all time windows. Also, the popularity
of an individual topic might change significantly over time. Figure 2 shows a temporal
heatmap of the trend scores as outlined in Section 3.5. Trend scores are normalized on a
trend basis, meaning that a value of 1 indicates the maximum of reached popularity for an
individual trend. The heatmap shows the 10 trends with the overall highest trend scores and
visualizes their development over the 18 months of the entire dataset.

Fig. 2: Temporal heatmap of trend scores

First of all, it has to be noted that some trends, such as the one related to foreign policy and
the European Union, are present across the entire time span whereas, for others, gaps in their
prevalence over time become visible. That those gaps are occurring in the trend detection
results confirms that the used method is indeed capable of handling temporal fluctuations.
The topic is tracked over time even though it might not be detected in all intermediate
snapshots. In contrast, some trends do not show gaps but are only present for a limited time
span. As further described in Section 4.4, those trends are often related to some sort of event,
e.g., the flood in the Ahr region. During the occurrence of that event, the trend’s popularity
is often at its high. All trend developments show periods of higher and lower prevalence.
As an example, the COVID-19-related long-term trend is most prevalent during the spring
and winter of 2021, which might be due to a more tense pandemic situation during those
periods. Further, some trends do peak at approximately the same time. Of course, one cannot
conclude any causality or correlation from that but at least the heatmap makes such patterns
visible. Exemplary of this are the peaks of the trends related to the Russian invasion of
Ukraine, which also triggered an ongoing media discussion about public transportation
(“mobilität”, “verkehrswende”) and renewable energy (“klimaschutz”, “energiewende”).

No Mayfly: Detection and Analysis of Long-term Twitter Trends 359

18 John Ziegler, Michael Gertz

4.2 Temporal evolution

Topical trends do usually not consist of only a single keyword but are instead described by
multiple aspects. With the proposed trend networks those aspects, represented by hashtags,
and their interrelations are intuitively visualized. More interestingly, by tracking them
over time the temporal changes in the topical trends can be analyzed. As an example, see
Figure 3 that shows the trend networks related to the COVID-19 pandemic, as indicated by
the respective hashtags, for the two time periods of January and November 2021. For the
graph layout, the igraph [CN+06] implementation of the Fruchterman and Reingold [FR91]
algorithm is used. Even though some hashtags can be found in both networks, e.g., “corona”
and “pandemie”, other aspects and their importance change over time, e.g., “lockdown” and
“impfstoff” vs. “impfpflicht” and “2g”. Also, it seems as for this trend, hashtags are a lot
more interrelated during November 2021 as more edges in the network show. Represented
by their weighting, those edges also indicate relationships of different strengths.

(a) January 2021 (b) November 2021

Fig. 3: Trend networks related to the COVID-19 pandemic covering different time periods

4.3 Trend interrelation

Chae and Park [CP18] already highlight the importance of topic interrelations. We go in the
same direction and analyze temporal interrelations between topics. Topics do not co-exist
independently of each other, but might instead be merged over time or at least become more
or less interrelated.

Figure 4 visualizes the temporal interrelations between tracked trends for the time period of
February until March 2022. The veins of the alluvial diagram [RB10] represent the flow
of nodes between two communities and therefore, also the interrelation between topics
across time. For the most part, topics seem to be quite stable as the majority of nodes stays

360 John Ziegler, Michael Gertz

No Mayfly 19

Fig. 4: Alluvial diagram visualizing the temporal interrelation of trends

within the same community. Nevertheless, some topics, e.g., the one related to climate
protection, also influence multiple other ones, and nodes of these communities move to
other topics. Most notably, a large portion of the climate protection topic shifts to the public
transportation topic. To quantify these observations, 114 hashtags stay in the community,
whereas 81 shift to the public transportation-related topic. Additionally, 21 shift to the
foreign policy topic and 17 go to the one covering the Ahr flooding (see Section 4.4). Those
results indicate a context switch of certain topical aspects as they become relevant for other
trends as well.

4.4 Evaluation

To confirm that computed trends are actually meaningful, we leverage an event-based
evaluation and manually check if detected trends are related to real-world events. For the
top 10 most prevalent trends (see Figure 2), the time frame of their highest popularity is
taken as prediction and related events are checked for their temporal occurrence as kind
of ground truth. In a subsequent step, the trend peak and the temporal occurrence of the
related event are then compared and checked for accordance.

Table 1 shows that half of the top 10 long-term trends can be related to events, such as the
COVID-19 pandemic or the Russian invasion of Ukraine. Popularity peaks of these trends
are in close temporal proximity to the occurrence of the related events. We argue that for

No Mayfly: Detection and Analysis of Long-term Twitter Trends 361

20 John Ziegler, Michael Gertz

Tab. 1: Long-term trends and related events
Hashtags Peak Event Reference (accessed 28-12-22)

1 corona, covid19, pandemie, lock-
down, impfpflicht, impfung

January 2021 COVID-19 pandemic (17 November
2019 – present)

https://en.wikipedia.org/wiki/COVID-
19_pandemic

2 eu, ukraine, europa, russland,
deutschland, putin

February and
March 2022

2022 Russian invasion of Ukraine (24
February 2022 – present)

https://en.wikipedia.org/wiki/2022_
Russian_invasion_of_Ukraine

3 cdu, spd, laschet, csu, btw21, kli-
maschutz

September 2021 2021 German federal election (26
September 2021)

https://en.wikipedia.org/wiki/2021_
German_federal_election

4 klimaschutz, energiewende, klima,
landwirtschaft, klimakrise, nach-
haltigkeit

March 2021

5 afd, bundestag, thüringen, berlin,
deutschlandabernormal, brandner

May 2021

6 berlin, wohnen, mietendeckel, mi-
etenwahnsinn, ampel, r2g

September 2021

7 nrw, afd, landtagswahl, ltwnrw22,
teamkinderschutz, spd

May 2022 2022 North Rhine-Westphalia state elec-
tion (15 May 2022)

https://en.wikipedia.org/wiki/
2022_North_Rhine-Westphalia_state_
election

8 sachsen, antisemitismus, noafd,
polizei, dresden, rassismus

January 2022

9 rlp, hochwasser, bildung, flutkatas-
trophe, digitalisierung, ltrlp

July 2021 Flooding of Ahr and Eifel region in Ger-
many (15 July 2021)

https://www.dw.com/en/flooding-in-
germany-before-and-after-images-
from-the-ahr-and-eifel-regions/a-
58299008

10 mobilität, verkehrswende, bahn,
öpnv, mobilitätswende, verkehr

March 2022

the other trends as well meaningful descriptions can be found, like “climate protection” for
trend 4, “AfD party” for trend 5, “housing market” for trend 6, “discrimination” for trend 8
and “public transportation” for trend 10. Nevertheless, those trends are not directly linked to
real-world events. Together, the event-referenced and manually labelled trends prove good
functionality of our long-term trend detection method.

5 Conclusion and Future Work

This work tackles the issue of detecting long-term prevalent topics, hidden in the large
volume of short-lived news media. Based on methods known from the field of temporal
network analysis and community evolution, an approach to detect such long-term trends
is presented. A case study based on German political Twitter data proves that actually
meaningful trends are detected. For a lot of the top trends, related real-world events can
be identified, as shown in Section 4.4. Future work might target more extensive evaluation
procedures and additional quantitative metrics to describe the long-term evolution of trends.
Also, the current trend detection approach could be extended by a more sophisticated
semantic topic model.

Acknowledgements: We thank the Klaus Tschira Foundation for funding this research in
the framework of the EPINetz project: https://epinetz.de.

362 John Ziegler, Michael Gertz

https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/2022_Russian_invasion_of_Ukraine
https://en.wikipedia.org/wiki/2022_Russian_invasion_of_Ukraine
https://en.wikipedia.org/wiki/2021_German_federal_election
https://en.wikipedia.org/wiki/2021_German_federal_election
https://en.wikipedia.org/wiki/2022_North_Rhine-Westphalia_state_election
https://en.wikipedia.org/wiki/2022_North_Rhine-Westphalia_state_election
https://en.wikipedia.org/wiki/2022_North_Rhine-Westphalia_state_election
https://www.dw.com/en/flooding-in-germany-before-and-after-images-from-the-ahr-and-eifel-regions/a-58299008
https://www.dw.com/en/flooding-in-germany-before-and-after-images-from-the-ahr-and-eifel-regions/a-58299008
https://www.dw.com/en/flooding-in-germany-before-and-after-images-from-the-ahr-and-eifel-regions/a-58299008
https://www.dw.com/en/flooding-in-germany-before-and-after-images-from-the-ahr-and-eifel-regions/a-58299008
https://epinetz.de

No Mayfly 21

References

[ABP14] Alstott, J.; Bullmore, E.; Plenz, D.: powerlaw: a Python package for analysis of
heavy-tailed distributions. PloS one 9/1, e85777, 2014.

[AH19] Annamoradnejad, I.; Habibi, J.: A comprehensive analysis of twitter trending
topics. In: 2019 5th International Conference on Web Research (ICWR). IEEE,
pp. 22–27, 2019.

[As11] Asur, S.; Huberman, B. A.; Szabo, G.; Wang, C.: Trends in social media:
Persistence and decay. In: Proceedings of the International AAAI Conference
on Web and Social Media. Vol. 5. 1, pp. 434–437, 2011.

[BAE11] Budak, C.; Agrawal, D.; El Abbadi, A.: Structural trend analysis for online
social networks. Proceedings of the VLDB Endowment 4/10, pp. 646–656,
2011.

[Bh12] Bhulai, S.; Kampstra, P.; Kooiman, L.; Koole, G.; Deurloo, M.; Kok, B.:
Trend visualization on Twitter: what’s hot and what’s not? In: 1st International
Conference on Data Analytics. Pp. 43–48, 2012.

[Bi18] Bianconi, G.: Multilayer networks: structure and function. Oxford university
press, 2018.

[CC08] Cryer, J. D.; Chan, K.-S.: Time series analysis: with applications in R. Springer,
2008.

[Ch11] Chadwick, A.: The political information cycle in a hybrid news system: The
British prime minister and the “Bullygate” affair. The International Journal of
Press/Politics 16/1, pp. 3–29, 2011.

[CN+06] Csardi, G.; Nepusz, T., et al.: The igraph software package for complex network
research. InterJournal, complex systems 1695/5, pp. 1–9, 2006.

[CP18] Chae, B.; Park, E.: Corporate social responsibility (CSR): A survey of topics
and trends using Twitter data and topic modeling. Sustainability 10/7, p. 2231,
2018.

[FR91] Fruchterman, T. M.; Reingold, E. M.: Graph drawing by force-directed place-
ment. Software: Practice and experience 21/11, pp. 1129–1164, 1991.

[Ha16] Hashavit, A.; Levin, R.; Guy, I.; Kutiel, G.: Effective trend detection within
a dynamic search context. In: Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval.
Pp. 817–820, 2016.

[Kh21] Khan, H. U.; Nasir, S.; Nasim, K.; Shabbir, D.; Mahmood, A.: Twitter trends: A
ranking algorithm analysis on real time data. Expert Systems with Applications
164/, p. 113990, 2021.

No Mayfly: Detection and Analysis of Long-term Twitter Trends 363

22 John Ziegler, Michael Gertz

[Kö22] König, T.; Schünemann, W. J.; Brand, A.; Freyberg, J.; Gertz, M.: The EPINetz
Twitter Politicians Dataset 2021. A New Resource for the Study of the German
Twittersphere and Its Application for the 2021 Federal Elections. Politische
Vierteljahresschrift/, pp. 1–19, 2022.

[Le15] Le Masurier, M.: What is slow journalism? Journalism practice 9/2, pp. 138–
152, 2015.

[Lo17] Lorenz, P.; Wolf, F.; Braun, J.; Djurdjevac Conrad, N.; Hövel, P.: Capturing the
dynamics of hashtag-communities. In: International Conference on Complex
Networks and their Applications. Springer, pp. 401–413, 2017.

[Ma20] Majdabadi, Z.; Sabeti, B.; Golazizian, P.; Asli, S. A. A.; Momenzadeh, O.;
Fahmi, R.: Twitter Trend Extraction: A Graph-based Approach for Tweet and
Hashtag Ranking, Utilizing No-Hashtag Tweets. In: Proceedings of the 12th
Language Resources and Evaluation Conference. Pp. 6213–6219, 2020.

[Ne05] Newman, M. E.: Power laws, Pareto distributions and Zipf’s law. Contemporary
physics 46/5, pp. 323–351, 2005.

[Pa99] Page, L.; Brin, S.; Motwani, R.; Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Tech. rep., Stanford InfoLab, 1999.

[RB10] Rosvall, M.; Bergstrom, C. T.: Mapping change in large networks. PloS one
5/1, e8694, 2010.

[RN11] Role, F.; Nadif, M.: Handling the impact of low frequency events on co-
occurrence based measures of word similarity. In: Proceedings of the in-
ternational conference on Knowledge Discovery and Information Retrieval
(KDIR-2011). Scitepress. Pp. 218–223, 2011.

[Tw] Twitter, Inc.: Twitter Trends FAQ – trending hashtags and topics, https:
//help.twitter.com/en/using-twitter/twitter-trending-faqs, Accessed:
28-12-22.

[TWV19] Traag, V. A.; Waltman, L.; Van Eck, N. J.: From Louvain to Leiden: guaranteeing
well-connected communities. Scientific reports 9/1, pp. 1–12, 2019.

[Zu15] Zubiaga, A.; Spina, D.; Martínez, R.; Fresno, V.: Real-time classification
of twitter trends. Journal of the Association for Information Science and
Technology 66/3, pp. 462–473, 2015.

364 John Ziegler, Michael Gertz

https://help.twitter.com/en/using-twitter/twitter-trending-faqs
https://help.twitter.com/en/using-twitter/twitter-trending-faqs

Session 4

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Duplicate Table Detection with Xash

Maximilian Koch1, Mahdi Esmailoghli2, Sören Auer3, Ziawasch Abedjan4

Abstract: Data lakes are typically lightly curated and as such prone to data quality problems and
inconsistencies. In particular, duplicate tables are common in most repositories. The goal of duplicate
table detection is to identify those tables that display the same data. Comparing tables is generally
quite expensive as the order of rows and columns might differ for otherwise identical tables. In this
paper, we explore the application of Xash, a hash function previously proposed for the discovery of
multi-column join candidates, for the use case of duplicate table detection. With Xash, it is possible to
generate a so-called super key, which serves like a bloom filter and instantly identifies the existence of
particular cell values. We show that using Xash it is possible to speed up the duplicate table detection
process significantly. In comparison to SimHash and other competing hash functions, Xash results in
fewer false positive candidates.

Keywords: data discovery; data lakes; duplicate table detection

1 Introduction

The accelerating decentralized creation and publishing of data as well as the need for
integration of such sources has led to a new wave of research on data market places [FSF20]
and data lakes [Ar20]. Yet, these centralized data repositories have to deal with the
distributed nature of data acquisition and the resulting data quality problems, one of
which is duplicate data artifacts. An example of this is the Open Research Knowledge
Graph (ORKG) project [Au20; Ja19]. On the ORKG platform, users can categorize and
describe contributions from research papers and create additional properties to make them
comparable and searchable in a structured form. Out of 524 tabular comparisons in the
ORKG dataset, 48 are duplicates (9%). Figure 1 shows an example of two manually created
comparison tables from the ORKG sharing duplicate rows [Te22]. As shown in Figure 1,
two generated tables on a specific political science topic contain identical content derived
from different literature. The discovery of such identical artifacts is useful. However, the
attribute labels are rather misleading and the order of rows and columns is different. In
a different real-world dataset, the DWTC corpus, containing 174M tables, there are 49M
duplicates (28%) [Eb15a; Eb15b].
1 Leibniz Universität Hannover, Germany koch@dbs.uni-hannover.de
2 Leibniz Universität Hannover, L3S, Germany esmailoghli@dbs.uni-hannover.de
3 TIB, Germany auer@tib.eu
4 Leibniz Universität Hannover, L3S, Germany abedjan@dbs.uni-hannover.de
5 Screenshots taken from https://orkg.org/comparison/R110188/ and https://orkg.org/comparison/
R110245/

cba doi:10.18420/BTW2023-18

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 367

mailto:koch@dbs.uni-hannover.de
mailto:esmailoghli@dbs.uni-hannover.de
mailto:auer@tib.eu
mailto:abedjan@dbs.uni-hannover.de
https://orkg.org/comparison/R110188/
https://orkg.org/comparison/R110245/
https://orkg.org/comparison/R110245/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-18

2 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Fig. 1: Duplicate table example in the Open Research Knowledge Graph.5

Duplicate detection has been the focus of research for several decades. Most existing
work focuses on record linkage, i.e., finding records that represent the same real-world
entity [Ch12a; Ch12b; Li20; LSR21; Th20]. Another line of research has dealt with the
identification of (near-)duplicate documents [CGS03; Jo72]. In general, the fundamental
challenges in duplicate detection are that pairwise comparisons of all considered entities are
computationally expensive, i.e., 𝑂 (𝑛2) for 𝑛 entities, and that effective similarity metrics are
necessary to capture non-exact matches. To reduce the number of table-to-table comparisons
one has to resort to pre-filtering techniques that apriori discard non-matching pairs.

In this paper, we focus on the discovery of duplicate tables within a data lake. We consider
two modes of duplicate table detection:

368 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 3

1. Duplicate table retrieval: Given a user table, the goal is to identify the existence of
all tables that match or contain the given table.

2. Lake de-duplication: Given a repository of relational tables, the goal is to identify all
duplicate tables within a lake.

We consider two tables 𝑇1 and 𝑇2 to be duplicates if a permutation of columns in 𝑇1 exists 𝑇 𝑝

1
so that 𝑇 𝑝

1 and 𝑇2 contain the same set of tuples. While this definition simplifies the problem
of duplicate table detection by excluding fuzzy matches, there are still runtime bottlenecks.
In table retrieval, the initial identification of candidate tables requires the retrieval of tables
with matching rows. In lake de-duplication, we require a blocking technique similar to what
has been proposed in the duplicate detection literature [Ch12a; Fi15; Ga22]. After which
again table-to-table matches have to be considered. As we exclude fuzzy matches, blocking
can be as simple as grouping tables based on the number of rows and columns and then
hashing them via Simhash into smaller buckets.

The overarching challenge in both detection modes is that in order to verify the match of
two tables one has to compare the entire content of both tables after aligning the columns,
which is a computationally expensive process when carried out in a naïve manner. A naïve
approach to compare two such tables is to first sort the values inside each row alphabetically
(horizontally) and then hash the rows into matching buckets. Note that sorting based on
column labels might be misleading as duplicate tables might differ in the actual column
labels. To circumvent this, the column position is stored for each unsorted row. For 𝑚
columns and 𝑘 rows, this results in 𝑂 (2 · 𝑚 · log(𝑚) · 𝑘 + 3 · 𝑘), i.e., sortation of 𝑚 values
of all 𝑘 rows and the application of a collision-free hash function to match the sorted
rows into 𝑘 different buckets. A final pass is necessary to verify that the original column
order is consistent in all matched rows. For large number of tables, this approach will be
prohibitively expensive. Furthermore, in a retrieval scenario, where tables are retrieved via
an inverted index, one has to first retrieve a set of candidate tables that partially match on a
chosen query column.

In this work, we propose hash-based solutions for fast comparison of duplicate candidates as
well as fast discovery of candidates from a large data lake. Our proposed solution is inspired
by a previously introduced hash function framework Mate [EQA22], which was designed
for efficient discovery of multi-column join candidates. Mate leverages a hash function
Xash to mask the existence of each row value of a row within a unified bit string and
applies a bloom-filter-inspired approach with a so-called super key to discard non-joinable
candidates. Doing so speeds up the identification of joinable tables by orders of magnitude.

Inspired by the capabilities of Xash, we explored its application for the table de-duplication
case, which in a sense translates to joining two tables on all attributes of both tables. When
searching for duplicates, the bloom-filter-like structure can be used to rule out non-duplicate
rows without the need of reordering the columns and knowing the schema of the tables.

Duplicate Table Discovery with Xash 369

4 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

If the hash values of two rows are not equal, the rows are not equal and do not need to be
checked in more detail. Otherwise, it could be evidence of a duplicate table relationship.

In this paper, we explore the application of Xash and other similar hash functions for the
two detection modes described above: lake de-duplication and duplicate table retrieval. We
describe the workflow of each detection process and possible optimizations when dealing
with tables. We compare the pruning power to other hash functions and discuss situations
where the application of the filtering with Xash is beneficial over direct comparisons.

2 Related Work

Duplicate table detection is related to several lines of research, such as duplicate web page
detection, entity resolution, fuzzy joins, and data discovery.

2.1 Duplicate document detection

Duplicate document detection has been vastly studied to enhance the effectiveness of search
engines and diversify search results by finding duplicate web pages and dropping these
results from the search output [CGS03; He06]. Web pages are mainly comprised of HTML
content and are treated as text documents instead of structured data such as tables. Because
of this, the tables in web pages are also treated as pure text [CCB02]. These duplicate
detection approaches apply feature generation techniques, such as shingling [Br97], sentence
extraction [Ku17], and stop word removal, and tokenization [TSP08].

These techniques do not consider the highly structured nature of relational tables with
numerical and distinct columns [Br97; TSP08]. Generally, any approach based on the
approximation of table content through stop word removal and tokenization can serve the
table grouping step and is orthogonal to our proposed techniques. Once a group of candidate
tables is retrieved, the filtering with the super key can take place.

2.2 Entity resolution

In entity resolution, the goal is to discover data records that represent the same entity in
the real world [Ch12b; Ch21; KTR10; Si22]. Entity resolution methods leverage matching
functions that employ similarity metrics to create clusters of table rows that are candidates
to be duplicates [Si22]. To reduce the number of pairwise comparisons, entity resolution
typically applies blocking methods for fast discovery and exclusion of non-matching
pairs [Ch12a; Fi15].

The main difference between entity resolution and duplicate table detection is that the former
only focuses on the similarity of the rows [KPN20]. For two tables to be duplicates, all rows

370 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 5

of the two tables should find a pendant duplicate. Furthermore, the schema should be very
similar. Entity resolution, cannot directly apply to table-level discovery. It is challenging to
systematically decide on two tables being duplicates based on the similarity score of their
rows. Therefore, we focus on the case of exact table duplicates where only reordering of
rows and columns is allowed, which is already hard enough for a large set of tables.

2.3 Fuzzy Joins

Fuzzy joins, i.e., non-equi or similarity joins, aim to discover the joinable rows from
different tables, where the rows have similar keys [WLF11; Yu16]. Xiao et al. aim to
discover near-duplicate tables using join discovery, i.e., set similarity search [Xi11]. They
leverage the positioning filter to efficiently prune the search space and discover joinable
tables for a given table and a join column. However, they only consider single-attribute joins.
Thus, joinable tables are not necessarily duplicates. Because the similarity join discovery
algorithms only discover the similarity based on one key column per table, these approaches
can only serve at the initial candidate retrieval stage.

2.4 Data Discovery

Other data discovery approaches, such as union discovery [Na18] algorithms, also focus on
partial similarities. For instance, two tables with a very high unionability score might not
even have a single overlapping value, which means that they are not duplicates while they
might be unionable.

3 Fundamentals

The core component of our table duplication approach is the so-called super key, which is a
bit string aggregated from multiple applications of the hash function Xash developed for
multi-attribute join table discovery [EQA22]. In this section, we briefly review important
characteristics of Xash to motivate its suitability for duplicate table detection and describe
the inverted index structure that maintains the generated super keys.

3.1 Xash Design Goals

The design goal for Xash was to hash each row of a table in a way that within a constant
operation it is possible to identify whether the row contains a specific value combination
or not. Thus, it has the core properties of a bloom filter as it does not lead to any false
negatives and is highly effective in differentiating non-equal but similar rows, regardless of
the column order.

Duplicate Table Discovery with Xash 371

6 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Furthermore, Xash is designed in a way that the hash of any set of values is masked by the
hash of any of its potential supersets. That is why it can serve for arbitrary multi-attribute
join keys.

To differentiate row values that are non-identical, Xash captures differentiating features of
each value. For each row value, Xash encodes the least frequently occurring characters, the
location of these characters, and the length of the value. To further differentiate non-identical
rows that by accident end up with the same set of rare characters being encoded. Given a
value of length 𝑙, Xash shifts the resulting code 𝑙 bits to the left. Thus for two values to
have the same hash, length, rare character distribution and positions must match.

Given a hash string of 𝑛 bits, Xash divides the bit string into several segments, one segment
per eligible character and a remaining segment to encode the length. Typically the hash
size must be chosen in a way that each eligible character (space, 0-9, lower-case a-z) can
be covered by at least a 1-bit segment. In practice, with a hash size of 128 and larger,
the segments can be larger, which makes it possible to encode the relative location of the
occurrence of the encoded characters within the corresponding segment.

The remaining bits that equal to the remainder of the division of hash size and a number of
eligible characters are used to encode the length of each encoded row value. The encoding
of the length calculates the string length modulo the number of available bits for the length
segment. Thus only one bit needs to be set to encode the length.

3.2 Xash-Aggregation per row

After generating the Xash for each value of a row, all hash results are aggregated via a
bitwise OR operation. The result of this aggregation is a so-called super key.

The super key is generated while indexing the corpus and can now be probed like a
bloom-filter to check whether a value combination is included or not. Given the aggregated
hash value ℎ𝑐 of a candidate value combination 𝐶 and the super key ℎ𝑟 of a row 𝑟 , the
operation ℎ𝑐∨ℎ𝑟 should result in ℎ𝑟 if there is a chance that the candidate value combination
is contained. Similar to a bloom-filter, ℎ𝑐 ∨ ℎ𝑟 ≠ ℎ𝑟 will always correctly identify that the
𝐶 is not contained in 𝑟, however, might be inaccurate if ℎ𝑐 ∨ ℎ𝑟 = ℎ𝑟 . In the latter case,
additional verification is necessary. Experiments and proofs in prior work show that Xash
leads to significantly fewer false positives than the state-of-the-art [EQA22].

Example. To illustrate the hash generation using Xash, we use the following example
from the World Bank’s current GDP dataset [Wo22] as shown in Table 1.

Figure 2 visualizes the process of Xash generation and the merge into the super key. The
hash size is 128 bits. To select the least frequent characters, each row value is converted
to lower case and only the characters a-z, 0-9, and space are kept. For each row value, the

372 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 7

Tab. 1: Example data: entry from the World Bank’s current GDP dataset.

Country Name Country
Code 2020

Europe & Central Asia (excluding high income) ECA 3222403620453.33

three least frequent characters are selected (marked bold): europe central asia excluding
high income); eca; 322240362045333.

In the hash value, there are three bits available per character. If the average location of one
of the least frequent characters is in the first third of the row value, the first bit will be set to
1, the second bit if it is in the second third, and the third bit if it is in the third third. For
example, p in “europe central asia excluding high income” appears in the first third of the
entire value. Thus, the first bit of the p-segment is set to 1.

With 128 bits and 37 eligible characters, 128 − 37 ∗ 3 = 17 bits remain for the length
segment. To encode the length of the first row value, 41𝑚𝑜𝑑17 = 7 (41 is the length of the
row value, 17 the segment length) is calculated, which means that the seventh bit in the
length segment will be set to 1.

Lastly, all set bits are shifted left by 41 while the overflow is added from the right, ignoring
the length segment.

Country Name Country Code 2020

Europe & Central Asia
(excluding high income)

ECA 3222403620453.33

0 … 1 … 0 …
1 3 17

0 … 1 … 0 …
1 15 17

0 … 1 … 1 … 1 … 0 0 1 … 1 0 0 … 0 1 0 …

B
it-

w
is

e
O

R

 1 3 7 15 28 29 30 37 38 39 103 104 105 128

0 … 1 … 0 … 0 1 0 … 0 0 1 … 1 0 0

1 7 17

Length Segment

42 43 44

 ‘d’

78 79 80

 ‘p’

69 70 71

 ‘m’

41 Bits

0 … 1 … 0 … 0 0 1 … 1 0 0 … 0 1 0
28 29 30

 ‘m’

103 104 105

 ‘d’

37 38 39

 ‘p’

1 7 17

Super key

Fig. 2: Example of Xash super key generation

Duplicate Table Discovery with Xash 373

8 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

3.3 Xash for duplicate detection

While the probing operation of Xash for join discovery probes for containment, its
application for duplicate row detection can be more strict as the containment has to go both
ways. Thus, for two rows to be duplicates both hash values have to be exactly the same.

For two tables to be duplicates of each other there has to be a permutation of columns, so
that all tuples of one table are contained in the other and vice versa. For practical reasons
we relax this duplicate definition as follows:

• We ignore the duplication of rows within a single table and consider two tables to be
duplicates as long as each unique row exists in both tables.

• In our implementation, we also enable the discovery of tables that fully contain the
rows of another table, meaning that one table has more rows than the other. Note, that
the number of columns has to be equal. As we will see in Section 4, this decision
does not affect the way Xash is applied for filtering.

3.4 Inverted Index

To achieve fast query results when interacting with the lake, data discovery systems usually
leverage one form of an inverted index [Ab16; EQA22; Fe18; Zh19]. An inverted index is
well-known in the context of information retrieval and maps tokens to containers, such as
documents or tables [GF98]. In the context of data lakes, the containers are the corresponding
tables, rows, and columns. As we rely on the Mate framework, we use their inverted
index, where an entry inside the index consists of the mapping of the tokenized value to the
corresponding table, row, and column IDs [Ab16; EQA22].

In the example shown in Figure 1, the row values ’Turkey’, ’South Africa’, and ’Kenya’
appear in both tables whom for simplicity we assign the ids 1 and 2. With that the content
of the inverted index would be as follows:

Turkey → {1, 2}

South Africa → {1, 2}

Kenya → {1, 2}

The schema of the index includes one row of one table from Figure 1 and the super key
column is shown in Table 2.

In addition to the aforementioned mapping, the Mate framework also maps the super key
to each row value so that information about each row is readily available when probing for
one of the row values [EQA22]. Additionally, an index is created on the super key column,
to be able to retrieve results from the table when using the super key as a filtering criteria.

374 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 9

Tab. 2: Schema of the inverted index in the database

tokenized tableid colid rowid super_key
Turkey 1 0 0 ...
South Africa 1 1 0 ...
Kenya 1 2 0 ...

Algorithm 1: Duplicate table retrieval
1 Inputs: user_table
2 duplicate_tables = []
3 super_key_mapping = csvToSuperKeyRowIdMap(user_table) /* Map super key to row ids */
4 input_rows = super_key_mapping.values()
5 input_superkeys = super_key_mapping.keys()
6 rows = getDbRowsWithSameSuperKey(input_superkeys) /* Get all rows from the database, that have one of

the super keys from the input rows */
7 foreach row in rows do
8 input_rows_candidates = super_key_mapping.get(row.superkey) /* Get all rows from the input table, that

have the same super key as the current db row using hash join */
9 foreach input_candidate in input_rows_candidates do

10 /* check the correspondence of rows, yet make sure that column positions remain consistent across
matched rows */

11 if verifyRows(input_candidate, row) then
12 table_id_to_rows.add(retrieveTableId(row), retrieveRowId(row));
13 table_id_to_rows_input.add(retrieveTableId(row), retrieveInputId(row));
14 foreach (tableid,rowids) in table_id_to_rows do
15 /* It is checked if there are duplicate tables, based on the detected duplicate rows for each db table */

duplicate_tables.add(getDuplicateTables(tableid, rowids, table_id_to_rows_input[tableid],
table_id_to_rows[tableid]));

16 return duplicate_tables;

4 Duplicate Table Detection

In this section, we describe how a hash-based index can be used for duplicate table retrieval
as an online process for a given user table and as an offline process to de-duplicate a group
(a block) of tables. For both applications, we present algorithms that leverage the super keys
based on Xash.

4.1 Duplicate Table Retrieval

In the first scenario, the user provides a table and is searching for all possible duplicates or
subsuming tables inside the data lake at hand.

Given an inverted index as suggested in Section 3, the naïve approach would use the content
of one column to fetch all tables that contain all values of that particular column. Then all
remaining columns of the fetched tables would be loaded so that the remaining columns of
the input table can be verified against each candidate table.

Duplicate Table Discovery with Xash 375

10 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

To reduce the runtime of this step and the number of string comparisons, one can leverage
Xash as a filter. This requires us to hash all rows of the input table using Xash and to
retrieve the super keys of lake tables that were generated during the indexing phase.

Algorithm 1 depicts the process in more detail. Given the user table, the algorithm first
iterates through its rows to calculate the super key for each row and keeps them accessible
for later probing.

After processing the input table, the approach retrieves candidate rows from the lake. Using
the inverted index, a query is submitted to the data lake where to retrieve any row with a
super key that appears in the input table (line 6). Each retrieved row from the data lake is
compared with all rows from the input table having the same super key (line 11). This step
verifies for two rows with the same super key whether they indeed contain the same row
values, regardless of the order.

If an input row and a row from the lake match, the table ID and the row ID of the data lake table
as well as the row ID of the input table are temporarily stored in table_id_to_rows(line 12)
and table_id_to_rows_input (line 13).

After all of the rows passed the aforementioned checks, all tables that share any row with the
input table are verified (line 15). Using the aforementioned table-to-row maps, tables that
either contain all input table rows or are subsets of the input table are identified (line 15).
The getDuplicateTables function uses the table_id_to_rows_input map to check which of
the rows of the input table occur in the database table and the table_id_to_rows map, to
check which rows of the database table occur in the input table.

4.2 Lake De-Duplication

Finding duplicate tables in a data lake requires comparing all pairs of tables.

Typically, some sort of blocking has to be applied to reduce the number of pairwise table
comparisons. For the sake of context, Figure 3 shows a conceptual pipeline for Lake
De-Duplication including the blocking step. Generally, the blocking strategies have to be
tailored to the type of duplicates we are after. If only exact duplicates with arbitrary row
and column orders are considered, the blocking can already take the table dimensions into
consideration. If fuzzy duplicates are of interest hashing approaches based on Simhash
for near-duplicate document detection can be considered. In this paper, we consider the
former situation and apply a very simple blocking technique that sorts out tables with equal
dimensions. Our approach is orthogonal to blocking. Rather we show, that given a coherent
group of tables, i.e., all tables that are in the same block or have the same row and column
dimensions and share some general similarity, the existence of the super key significantly
improves the overall pairwise comparisons.

376 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 11

All pairs of tables contained in a block must undergo pairwise comparisons. To this end, we
join each pair of tables using hash join with Xash super keys and pass the joint table to the
validation step. In this step, the joinable rows are validated to discover and drop the false
positive rows, i.e., rows that have the same super keys but are not joinable. Ultimately, the
tables are duplicates if the number of duplicate rows equals to the number of rows in the
smallest table.

Blocking
Via Column

Dimensionality

Bl
oc

k
1

Size = 2 …

Bl
oc

k
n

…

Block b & Size s

Hash Inner Join

Hash

SuperKey Filter

Row Validation

Joint Table

Size()==Min(,)

Yes, Duplicate Detected

No, Tables Are Not Duplicate

Size = n+1 …

Fig. 3: Lake de-duplication pipeline.

Algorithm 2 shows the process of comparing two tables in detail. CompareTables receives
two tables as input and returns as the result whether the tables are duplicates, or strictly
contained in one direction. First, the smaller and the bigger tables are identified (Line 3).
This helps us to create the hash table effectively and to find the candidate subset table. In
the first loop, the algorithm (Lines 4-6) creates a hash table based on the super keys in the
bigger table. The hash table is created based on the bigger table because in the filtering
phase using the smaller table, we can also identify a one-directional subset relationship.
Creating the dictionary based on the bigger table allows us to make sure that if even one
super key in the smaller table does not exist in the dictionary, we can make sure that the
two tables at hand are neither duplicates nor subsets of each other (Lines 9, 10). On the
contrary, if a super key from the smaller table exists in the hash table (Line 13), we get the
corresponding candidate rows from the larger table (Line 14) and verify them (Line 15).
The verifyRows compares the actual cell values of rows with the same super key. For this
purpose, it sorts the cell values of each row and checks whether the two rows are equal. To
save runtime, each row is only sorted at most once and the sorted row is cached in case it
is needed for later comparisons. For each matched row the function records the resulting
column alignment. If two consecutive row matches result in different column alignments,
the tables are considered as non-duplicates. If the rows are duplicates, they will be stored in
the matched_rows list (Line 16). If the size of matched_rows equals the size of the smaller
table, it means that the bigger table contains all the rows in the smaller table and there is a
subset relationship (Line 17).

The proposed algorithm and pipeline lead to zero false negatives. Based on the definition
of duplicates in this paper, two duplicate tables must have the same number of columns.

Duplicate Table Discovery with Xash 377

12 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Algorithm 2: CompareTables
1 Inputs: =t1: table 1, t2: table 2,
2 matched_rows = []
3 smaller_table, bigger_table = getSmallerBiggerTable(t1,t2)
4 foreach row_t1 in bigger_table do
5 super_key_t1 = bigger_table[row_t1].get_super_key()
6 hashjoin_map[super_key_t1].append(row_t1)
7 foreach row_t2 in smaller_table do
8 super_key_t2 = smaller_table[row_t2].get_super_key()
9 if super_key_t2 not in hashjoin_map then

10 break
11 else
12 row_t2_values = smaller_table[row_t2]
13 foreach hit_row_t1 in hashjoin_map[super_key_t2] do
14 row_t1_values = bigger_table[hit_row_t1]
15 if verifyRows(row_t1_values, row_t2_values) then
16 matched_rows.append(hit_row_t1, row_t2)

17 return ∥matched_rows∥ == ∥smaller_table∥

As our blocking method groups the tables based on their column dimensionality, i.e., the
number of columns, there will be no misses in during blocking.

The bloom-filter-like property of Xash assures that any two rows that are duplicates will
have the same super key. Therefore, no duplicate rows will be missed if their super keys do
not match.

5 Experiments

We carried out a series of experiments to answer the following questions: (1) Can we
significantly improve the runtime of duplicate table detection using the Xash filter? (2)
How does modifying the Xash generation affect the number of false positives? (3) How do
other hash functions perform for the same purpose?

5.1 Experimental Setup

We conduct experiments for both setups: duplicate table discovery and table group de-
duplication.

378 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 13

5.1.1 Dataset for duplicate table discovery

To test the efficiency of our approach, we executed duplicate detection tasks on top of
the DWTC dataset [Eb15a]. The corpus consists of 145,533,822 tables and is indexed as
described in Section 3.

As the algorithm expects a table for input, we randomly selected 5 tables for each row and
column number dimensions of 1, 10, 100 and 5, 10, 50, respectively. In all our experiments,
we also retrieve tables with subset relationships (see Section 4). Turning this check to exact
duplicates does not change the performance.

5.1.2 Dataset for lake de-duplication

To evaluate the effectiveness of the super key filter in a lake de-duplication scenario, we
simulate the generation of groups where table-to-table comparisons have to take place at
the row level. We sampled coherent groups of tables, i.e., with equal table dimensions, from
the Wikipedia dataset6 [Au07].

The Wikipedia dataset consists of 7,684,431 different tables, with 380,475,701 total entries
in the inverted index described in Section 3. For the different test runs on this dataset, we
sampled real groups of 1,000-50,000 tables to represent duplicate blocks.

5.1.3 Competitors

For both scenarios, we are interested in the number of false positives and the runtime in
comparison to the naïve approach and other hash functions.

• Naïve approach: In this approach, duplicate rows are detected by checking if two
rows are equal through sortation and step-wise comparison of the aligned row values.

• Xash: Two rows are compared by checking if the super keys generated using
Xash are equal. The super keys consist of 128 bits, as proposed in the original
paper [EQA22]. If the super keys of two rows are equal, the row values need to be
checked the same way as described for the naïve approach, to rule out a false positive.

• SimHash: SimHash was developed for the purpose of finding similar content using
hash values [MJS07]. Its application is similar to using Xash, with the difference
that SimHash was used to generate the super keys.

• CityHash: CityHash was developed to generate hashes quickly, while still resulting in
mostly unique values [PA22]. The application is similar to using Xash or SimHash.

6 https://databus.dbpedia.org/dbpedia/text/raw-tables

Duplicate Table Discovery with Xash 379

14 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

• MD5: MD5 was chosen, as it is a broadly used hash function. Its application is similar
to using Xash, SimHash, or CityHash.

All experiments were executed on a server with an AMD EPYC 7702P CPU with 64
cores/128 threads, 528 GB RAM, and 10 TB storage space. All code is implemented in
Python 3.9.2.

We used PostgreSQL 13.7 to store the inverted index. The indexes map tokenized row values
of the dataset tables to the corresponding table, row, and column ids as well as the row super
keys. Further, there is an index on the tableids and a third one on the super keys. All code is
available on GitHub: https://github.com/LUH-DBS/XashDedup.

5.2 Response time in duplicate table discovery

Table 3 displays the results of our main experiments to assess the efficiency of duplicate table
retrieval under the presence of different hash functions for super keys. We report the runtime
average for five tests per input dimension, i.e., (X rows and Y columns). Furthermore, we
report the average percentage of false positives (FP %), which is calculated as FPs

FPs+TPs and
measures the ratio of non-duplicate rows that wrongly passed a hash-based filter. In essence,
a good filter has a low FP%.

The approach based on Xash has the lowest percentage of false positives across all input
table dimensions, except for 10 rows / 50 columns. Note that although for 50 columns the
FP rate is about the same rounded number of 100% for CityHash, SimHash and MD5 there
are significant differences in the absolute numbers. Using Xash, on average 148k false
positives passed the filter, while for other hash functions this number was 750k, 580k, and
632k, for CityHash, SimHash, and MD5 respectively. This difference is clearly reflected in
the runtime. Xash yields the lowest average runtime by at least one order of magnitude,
compared to the filters with the other hash functions. The experiment is repeated 5 times
and the runtime superiority of Xash compared to the other hash functions is statistically
significant within 99% confident interval. For 100 rows and 5 columns, the approach based
on Xash clearly shows an advantage in terms of false positives and runtime: with only
3.4% of the passed rows being false, the runtime of 688ms is at least 57x faster than the
competitors. For the (1,5) dimension SimHash has a slightly better average runtime despite
the higher FP rate because in some experiments high similarity of rows inside the input
table result in identical hash functions, which in turn reduces the retrieval effort for such
input tables.

We make several further observations with regard to the influence of the input dimensions
on the overall runtime and FP rate. First, the more columns the input table contains the
higher is the overall false positive rate. This is because the hash functions are aggregates of
row value hashes. Thus, the more values are hashed and ORed the higher will be the number
of 1-bits, i.e., bits that turned to 1, and the more likely it will be that by chance the same

380 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

https://github.com/LUH-DBS/XashDedup

Duplicate Table Discovery 15

Tab. 3: Runtime, result size, and false positives (FP) averaged over 5 experiments per input dimension

1 Row / 5 Cols 1 Row / 10 Cols 1 Row / 50 Cols
Average... Runtime (ms) FP % Runtime (ms) FP % Runtime (ms) FP %
Xash 1,023 1.1 320 2.3 713 74.6
CityHash 34,470 74.6 5,002 100.0 21,611 100.0
SimHash 963 1.1 19,977 99.9 9,754 100.0
MD5 16,038 50.0 58,353 100.0 21,856 100.0
No Hash 2,639,586 - 1,787,112 - 1,823,862 -

10 Rows / 5 Cols 10 Rows / 10 Cols 10 Rows / 50 Cols
Average... Runtime (ms) FP % Runtime (ms) FP % Runtime (ms) FP %
Xash 135 23.4 150 0.0 10,440 100
CityHash 41,428 99.8 23,420 100.0 36,927 100
SimHash 24,406 100 25,692 100.0 37,610 100
MD5 8,464 98.6 23,238 100.0 370,843 78.4
No Hash 403,565 - 2,767,554 - 1,495,390 -

100 Rows / 5 Cols 100 Rows / 10 Cols
Average... Runtime (ms) FP % Runtime (ms) FP %
Xash 688 3.4 397 10.5
CityHash 39,707 99.9 79,712 100.0
SimHash 445,152 99.5 71,710 100.0
MD5 280,832 100.0 80,524 100.0
No Hash 2,156,850 - 1,454,387 -

bits are turned to 1. There is an anomaly in the runtime with the (1,5) input datasets for
Xash as the runtime is higher than all other chosen dimensions except (10, 50). The reason
is that there are too many actual duplicates that need to be processed for (1,5). For larger
dimensions, the probability for duplicates and so true positives naturally decreases so that
the number of FPs and the rate becomes more relevant. As expected, the approach with no
hash function filter displays a significantly higher runtime than the hash-based approaches.
We enforced a limit of 1M cells for the number of retrieved rows so that the naïve approach
would be able to finish. Small deviations in the number of true positives are a result of a
hard limit of the enforced limit. The runtime might be higher in cases where the limit is
exceeded, i.e., the other hash functions.

5.3 Runtime Lake De-Duplication

As we make no claims on how to obtain the duplicate groups in lake de-duplication,
we only present experiments on the pairwise comparison approach in randomly selected
duplicate groups of 1,000 tables (7,284 rows; 54,434 row values, 96 duplicate tables tuples),
5,000 tables (33,937 rows; 233,807 row values, 2,528 duplicate tables tuples), and 10,000
tables (66,091 rows; 404,999 row values, 10,845 duplicate tables tuples). We repeat each
experiment five times and report the average.

Duplicate Table Discovery with Xash 381

16 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Fig. 4: Avg. false positive rates of table comparisons in duplicate groups

1,000 Tables 5,000 Tables 10,000 Tables
Avg. runtime in ms Avg. runtime in ms Avg. runtime in ms

Xash 401 9,229 48,601
SimHash 424 9,935 50,920
CityHash 457 10,417 52,610
MD5 458 10,509 52,738
No Hash 7,669 203,769 716,738

Tab. 4: Runtime of table comparisons in duplicate groups

Figure 4 shows the false positive rate and Table 4 contains the runtime for the different hash
functions and table groups.

Across all tested groups, Xash has the lowest percentage of false positives with a false
positive rate below 2.5%, followed by SimHash with a minimum of 58% false positives,
CityHash and MD5 with both around 74% false positives at minimum. Accordingly, Xash
application results in the lowest runtime.

The number of false positives increases with the size of the groups for all approaches.
Similarly, the runtime of each approach increases each time by an order of magnitude when
increasing the group size from 1,000 to 5,000 and then to 10,000.

For 1,000 tables, 2,509,878 row comparisons were performed on average for 5 runs with
the naïve comparison algorithm, which leads to a runtime of 7,669ms. Using the MD5 hash
function reduces the number of comparisons to 15,797 similar to CityHash with 15,681.
Despite the drastic reduction of comparisons by a factor of 160, the runtime is only reduced
by a factor of 16, to 458ms for MD5 and 457ms for CityHash. This is due to the fact, that
while using a super key eliminates some row comparisons, the super keys still need to
be compared with each other using a hash join approach. Furthermore, the overhead of

382 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 17

retrieving tables becomes a more noticeable process. Using Xash, there are on average only
67 false positives out of 1,734 rows, making its approach the fastest. Xash outperforms
SimHash significantly within the 99% confidence interval.

For groups of 5,000 and 10,000 tables, we see a similar relative performance relationship as
observed for the group of 1,000 tables. Using Xash results in the fastest execution time
of 48,601ms for 265,067 rows in 10,000 tables, while SimHash, CityHash, and MD5 are
slightly slower. Using SimHash leads to the second-best runtime with 50,920ms, but around
62x more false positives.

Using no hash functions and therefore comparing all rows with each other results in a
runtime of 716,738ms and 270,718,502 row comparisons in the largest group. Using any
hash function the runtime can be reduced by more than 93%, 92% with Xash.

5.3.1 Varying the Hash Size

The hash functions usually require size parameters that specify the number of bits the
returned hash value has. To examine the effect of the hash size, the compareTables algorithm
is executed with different hash sizes of 64, 128, and 256 for Xash and Cityhash. For
SimHash, 64 and 128 bits were used, as there was no implementation for 256 bits available.
The experiment was performed on the 10,000 tables group of the Wikipedia dataset.

Tab. 5: Runtime comparison: different hash sizes

Runtime in ms FP SUM (FP+TP)
Xash 64 32,051 5,725 70,562
Xash 128 31,537 5,535 70,354
Xash 256 31,809 4,455 69,266
SimHash 64 35,813 632,478 697,627
SimHash 128 35,058 277,666 342,792
CityHash 64 38,576 1,891,030 1,956,452
CityHash 128 36,653 1,021,649 1,087,033
CityHash 256 36,753 654,260 719,393

Table 5 shows that increasing the hash size reduces the number of false positives, thus
leading to a decreased runtime. For Xash, the number of false positives decreases when
using 128 instead of 64 bits, but increases slightly with 256 bits. This is because the FP
rate is already very low with 128 bits and increasing the hash size increases the runtime of
the hash value checks. When using a 128-bit super key, only 5,535 FPs passed the filter
compared to more than 275,000 with SimHash and more than 1,000,000 with CityHash. For
SimHash and CityHash, the effect is more significant. Increasing the bits from 64 to 128
nearly halves the number of false positives for SimHash and CityHash from around 630,000
to fewer than 275,000 for SimHash and from more than 1,900,000 to around 1,000,000 for
CityHash.

Duplicate Table Discovery with Xash 383

18 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

This experiment shows that a larger hash size generally leads to better pruning. Increasing
the number of bits for the hash value reduces the number of false positives as there are more
bits available to encode the row. However, as seen for Xash, there might be a cap on how
much pruning can be achieved. It is important to note that increasing the size requires more
disk space for storing the hashes. Increasing the hash size for CityHash from 64 bits to 256
bits quadruples the space required for storing the super keys. In particular, the super key
with 64-bit hash space requires 11.3 GB and 0.4 GB for DWTC webtables and Wikipedia,
respectively. This increases to 45.2 GB and 1.5 GB when using 256 bits. For large data
lakes, this increase could mean significant storage space that could be saved by using a
more effective hash function, such as Xash.

5.3.2 Modifying the Xash Generation

It is possible to modify the generation of Xash, either by altering the Xash function itself
or by changing the input value based on which the hash value gets generated.

Rotation Xash uses a bit rotation routine to differentiate strings with the same rare
characters but different lengths. With the rotation, it is expected that more unique hashes
will be generated and as such, the number of false positives will be reduced. We test this
assumption by comparing Xash with and without rotation on the different samples of the
DWTC dataset.

Table 6 shows the number of false positives with and without rotation. Generally, the runtime
differences are not statistically significant.

Tab. 6: Number of false positives with/without rotation

With rotation Without rotation
1,000 Tables 156 164
5,000 Tables 517 515
10,000 Tables 815 821

As the shifting of the hash values consumes additional resources, the higher resource
consumption makes the use of the rotation unjustifiable with the low number of additional
false positives when removing the rotation.

To further explore the influence of the rotation step, we also compared the FP-rate for different
table sizes. For this purpose, we sampled 383 tables with 20 columns and systematically
removed columns so that the actual duplicate tables remained duplicates with just fewer
columns. This experiment as well showed that turning off the rotation showed only a minor
improvement in the filtering ability.

384 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 19

Input String So far, the super key for each row is generated using Xash by generating the
hash value for each row value and then logically OR’ing all hash values of the row values.

A different approach for generating the super key is to concatenate all values of a row and
then generate a single hash value for the concatenated string.

This would have the advantage that fewer hashes need to be generated. If the number of
false positives using the concatenated input string for the hash generation is lower or equal
to when OR’ing the row value hashes, the concatenation method could be preferred as the
hash function will have a higher overhead.

To evaluate this theory, we obtained 1,000 tables having 20 columns from the Wikipedia
dataset. The row values of each row in all tables are then sorted. After finding duplicates
among the tables and recording the false positives, we remove the last column from all
tables. The tables that now contain 19 columns are tested for duplicates again and the false
positives are reported. This is repeated until the tables contain only 1 column each.

We ran each test twice, one time using the super keys generated by logically OR’ing the hash
of the row values of each row and one time using the super key generated by concatenating
the row values of each row and then generating the Xash value. The super keys were
generated using Xash with 64 bits.

Fig. 5: False positives of Xash with different input formats

Figure 5 shows the FP rate for each group of columns per table for both approaches. It can
be observed that generating the super key based on OR’ing has fewer false positives for <6
columns per table, while concatenation has fewer false positives for ≥6 columns per table

The false positive rate is increased when using OR’ing when there are more columns per
table. This is due to an increased number of 1-bits existing in the super key when more hash
values are combined using the bitwise OR. When using concatenation to generate the super
key, this problem does not occur.

This characteristic also explains the spike using concatenation on tables with fewer columns.

Duplicate Table Discovery with Xash 385

20 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

When using concatenation, there is still the same limited number of 1-bits is used as for
more columns, while OR’ing uses more 1-bits to encode the rows more uniquely.

5.4 Experimental Summary

The number of false positives has a direct influence on the runtime of the pairwise table
comparison and duplicate table discovery. The false positive ratio increases with the number
of columns as the same hash function has to represent more information. We also conducted
preliminary experiments on the effect of Null values on our hash functions. For input tables
that only contain null values in one or multiple rows, all hash functions have an equally high
percentage of false positives and therefore a high runtime. The same row values produce the
same hash value. When the hash values are logically OR’ed, the super key generated is the
same for the row, no matter whether the table consists of 1 or 10 columns.

Increasing the hash size decreased the number of false positives for all hash functions. This
however leads to more storage space required to store the hashes.

6 Conclusion

We explored the benefits of using hash-based filters in finding duplicate tables. We showcased
the duplicate table discovery use case as well as the pairwise comparison use case for lake
de-duplication.

The evaluation shows that using hash functions generally improves the overall runtime. In
particular, Xash shows the highest promise, followed by SimHash, CityHash, and MD5. In
comparison to the original use case of multi-column join discovery, one can say that it is
possible to further simplify Xash for efficiency reasons as rotation plays a minor role. The
duplicate detection setting is already stricter than join discovery as the probing requires the
equality of the hash functions and one-sided containment.

A challenge for all hash functions is when tables with many columns have to be encoded, as
the length of a row negatively impacts the pruning power of the hash function.

Future improvements for table de-duplication could be to consider hashing for the grouping
phase of large table corpora and to devise algorithms that are independent of lake indexes.
Furthermore, it would be interesting to research fuzzy table duplicates. Our current
approaches consider tables to be duplicates only when two tables contain the same set of
tuples regardless of row and column order.
Acknowledgements. This project has been supported by the German Research Foundation
(DFG) under grant agreement 387872445.

386 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

Duplicate Table Discovery 21

References

[Ab16] Abedjan, Z.; Morcos, J.; Ilyas, I. F.; Ouzzani, M.; Papotti, P.; Stonebraker, M.:
DataXFormer: A robust transformation discovery system. In: Proceedings of the
International Conference on Data Engineering (ICDE). IEEE Computer Society,
pp. 1134–1145, 2016, url: https://doi.org/10.1109/ICDE.2016.7498319.

[Ar20] Armbrust, M.; Das, T.; Paranjpye, S.; Xin, R.; Zhu, S.; Ghodsi, A.; Yavuz, B.;
Murthy, M.; Torres, J.; Sun, L.; Boncz, P. A.; Mokhtar, M.; Hovell, H. V.;
Ionescu, A.; Luszczak, A.; Switakowski, M.; Ueshin, T.; Li, X.; Szafranski, M.;
Senster, P.; Zaharia, M.: Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proceedings of the VLDB Endowment (PVLDB)/,
pp. 3411–3424, 2020.

[Au07] Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: The Semantic Web. Springer Berlin
Heidelberg, pp. 722–735, 2007.

[Au20] Auer, S.; Oelen, A.; Haris, M.; Stocker, M.; D’Souza, J.; Farfar, K. E.; Vogt, L.;
Prinz, M.; Wiens, V.; Jaradeh, M. Y. Bibliothek Forschung und Praxis 44/3,
pp. 516–529, 2020, url: https://doi.org/10.1515/bfp-2020-2042.

[Br97] Broder, A. Z.; Glassman, S. C.; Manasse, M. S.; Zweig, G.: Syntactic Clustering
of the Web. Comput. Networks 29/8-13, pp. 1157–1166, 1997, url: https:
//doi.org/10.1016/S0169-7552(97)00031-7.

[CCB02] Cooper, J. W.; Coden, A.; Brown, E. W.: Detecting similar documents using
salient terms. In: Proceedings of the International Conference on Information
and Knowledge Management (CIKM). ACM, pp. 245–251, 2002, url: https:
//doi.org/10.1145/584792.584835.

[CGS03] Conrad, J. G.; Guo, X. S.; Schriber, C. P.: Online duplicate document detection.
In: Proceedings of the International Conference on Information and Knowledge
Management (CIKM). ACM Press, 2003.

[Ch12a] Christen, P.: A Survey of Indexing Techniques for Scalable Record Linkage
and Deduplication. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 24/9, pp. 1537–1555, 2012.

[Ch12b] Christen, P.: Data Matching: Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer Publishing Company,
Incorporated, 2012, isbn: 3642311636.

[Ch21] Christophides, V.; Efthymiou, V.; Palpanas, T.; Papadakis, G.; Stefanidis, K.:
An Overview of End-to-End Entity Resolution for Big Data. ACM Comput.
Surv. 53/6, 127:1–127:42, 2021, url: https://doi.org/10.1145/3418896.

[Eb15a] Eberius, J.: The Dresden Web Table Corpus, 2015, url: https://wwwdb.inf.
tu-dresden.de/misc/dwtc/, visited on: 04/27/2022.

Duplicate Table Discovery with Xash 387

https://doi.org/10.1109/ICDE.2016.7498319
https://doi.org/10.1515/bfp-2020-2042
https://doi.org/10.1016/S0169-7552protect elax $97protect elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup endgroup 00031-7
https://doi.org/10.1016/S0169-7552protect elax $97protect elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup endgroup 00031-7
https://doi.org/10.1145/584792.584835
https://doi.org/10.1145/584792.584835
https://doi.org/10.1145/3418896
https://wwwdb.inf.tu-dresden.de/misc/dwtc/
https://wwwdb.inf.tu-dresden.de/misc/dwtc/

22 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

[Eb15b] Eberius, J.; Thiele, M.; Braunschweig, K.; Lehner, W.: Top-k Entity Augmen-
tation Using Consistent Set Covering. In: Proceedings of the International
Conference on Scientific and Statistical Database Management (SSDBM).
Association for Computing Machinery, 2015.

[EQA22] Esmailoghli, M.; Quiané-Ruiz, J.-A.; Abedjan, Z.: MATE: Multi-Attribute
Table Extraction. In: Proceedings of the VLDB Endowment (PVLDB). Apr.
2022.

[Fe18] Fernandez, R. C.; Abedjan, Z.; Koko, F.; Yuan, G.; Madden, S.; Stonebraker, M.:
Aurum: A Data Discovery System. In: Proceedings of the International Confer-
ence on Data Engineering (ICDE). IEEE Computer Society, pp. 1001–1012,
2018, url: https://doi.org/10.1109/ICDE.2018.00094.

[Fi15] Fisher, J.; Christen, P.; Wang, Q.; Rahm, E.: A Clustering-Based Framework
to Control Block Sizes for Entity Resolution. In. KDD ’15, Association for
Computing Machinery, Sydney, NSW, Australia, pp. 279–288, 2015, isbn:
9781450336642, url: https://doi.org/10.1145/2783258.2783396.

[FSF20] Fernandez, R. C.; Subramaniam, P.; Franklin, M. J.: Data Market Platforms:
Trading Data Assets to Solve Data Problems. Proceedings of the VLDB
Endowment (PVLDB)/, pp. 1933–1947, 2020.

[Ga22] Gagliardelli, L.; Papadakis, G.; Simonini, G.; Bergamaschi, S.; Palpanas, T.:
Generalized Supervised Meta-blocking. Proceedings of the VLDB Endowment
(PVLDB) 15/9, pp. 1902–1910, 2022, url: https://www.vldb.org/pvldb/
vol15/p1902-gagliardelli.pdf.

[GF98] Grossman, D. A.; Frieder, O. In: Information Retrieval: Algorithms and Heuris-
tics. Springer US, pp. 134–137, 1998.

[He06] Henzinger, M. R.: Finding near-duplicate web pages: a large-scale evaluation of
algorithms. In: Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR). ACM, pp. 284–
291, 2006, url: https://doi.org/10.1145/1148170.1148222.

[Ja19] Jaradeh, M. Y.; Oelen, A.; Farfar, K. E.; Prinz, M.; D’Souza, J.; Kismihók, G.;
Stocker, M.; Auer, S.: Open Research Knowledge Graph: Next Generation
Infrastructure for Semantic Scholarly Knowledge. In: Proceedings of the 10th
International Conference on Knowledge Capture. K-CAP ’19, Association for
Computing Machinery, Marina Del Rey, CA, USA, pp. 243–246, 2019, isbn:
9781450370080, url: https://doi.org/10.1145/3360901.3364435.

[Jo72] Jones, K. S.: A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation 28/1, pp. 11–21, Jan. 1972.

[KPN20] Koumarelas, I. K.; Papenbrock, T.; Naumann, F.: MDedup: Duplicate Detection
with Matching Dependencies. Proceedings of the VLDB Endowment (PVLDB)
13/5, pp. 712–725, 2020, url: http://www.vldb.org/pvldb/vol13/p712-
koumarelas.pdf.

388 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1145/2783258.2783396
https://www.vldb.org/pvldb/vol15/p1902-gagliardelli.pdf
https://www.vldb.org/pvldb/vol15/p1902-gagliardelli.pdf
https://doi.org/10.1145/1148170.1148222
https://doi.org/10.1145/3360901.3364435
http://www.vldb.org/pvldb/vol13/p712-koumarelas.pdf
http://www.vldb.org/pvldb/vol13/p712-koumarelas.pdf

Duplicate Table Discovery 23

[KTR10] Köpcke, H.; Thor, A.; Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. Proceedings of the VLDB Endowment (PVLDB)
3/1, pp. 484–493, 2010, url: http://www.vldb.org/pvldb/vldb2010/pvldb%
5C_vol3/E04.pdf.

[Ku17] Kumar, N.; Antwal, S.; Samarthyam, G.; Jain, S.: Genetic optimized data
deduplication for distributed big data storage systems. In: 2017 4th International
Conference on Signal Processing, Computing and Control (ISPCC). Sept. 2017.

[Li20] Li, Y.; Li, J.; Suhara, Y.; Doan, A.; Tan, W.: Deep Entity Matching with Pre-
Trained Language Models. Proceedings of the VLDB Endowment (PVLDB)
14/1, pp. 50–60, 2020, url: http://www.vldb.org/pvldb/vol14/p50-li.pdf.

[LSR21] Lerm, S.; Saeedi, A.; Rahm, E.: Extended Affinity Propagation Clustering for
Multi-source Entity Resolution. In: Datenbanksysteme für Business, Technolo-
gie und Web (BTW 2021), 19. Fachtagung des GI-Fachbereichs „Datenbanken
und Informationssysteme"(DBIS), 13.-17. September 2021, Dresden, Germany,
Proceedings. Vol. P-311. LNI, Gesellschaft für Informatik, Bonn, pp. 217–236,
2021, url: https://doi.org/10.18420/btw2021-11.

[MJS07] Manku, G. S.; Jain, A.; Sarma, A. D.: Detecting near-duplicates for web crawling.
In: Proceedings of the International World Wide Web Conference (WWW).
ACM Press, 2007.

[Na18] Nargesian, F.; Zhu, E.; Pu, K. Q.; Miller, R. J.: Table Union Search on Open
Data. Proceedings of the VLDB Endowment (PVLDB) 11/7, pp. 813–825,
2018, url: http://www.vldb.org/pvldb/vol11/p813-nargesian.pdf.

[PA22] Pike, G.; Alakuĳala, J.: Introducing CityHash | Google Open Source Blog,
2022, url: https://opensource.googleblog.com/2011/04/introducing-
cityhash.html, visited on: 08/25/2022.

[Si22] Simonini, G.; Zecchini, L.; Bergamaschi, S.; Naumann, F.: Entity Resolution
On-Demand. Proceedings of the VLDB Endowment (PVLDB) 15/7, pp. 1506–
1518, 2022, url: https://www.vldb.org/pvldb/vol15/p1506-simonini.pdf.

[Te22] Technische Informationsbibliothek: Comparisons - ORKG, 2022, url: https:
//orkg.org/about/15/Comparisons, visited on: 08/02/2022.

[Th20] Thirumuruganathan, S.; Tang, N.; Ouzzani, M.; Doan, A.: Data Curation with
Deep Learning. In: Proceedings of the International Conference on Extending
Database Technology (EDBT). OpenProceedings.org, pp. 277–286, 2020, url:
https://doi.org/10.5441/002/edbt.2020.25.

[TSP08] Theobald, M.; Siddharth, J.; Paepcke, A.: SpotSigs: robust and efficient near
duplicate detection in large web collections. In: Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). ACM, pp. 563–570, 2008, url: https://doi.org/10.1145/1390334.
1390431.

Duplicate Table Discovery with Xash 389

http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/E04.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/E04.pdf
http://www.vldb.org/pvldb/vol14/p50-li.pdf
https://doi.org/10.18420/btw2021-11
http://www.vldb.org/pvldb/vol11/p813-nargesian.pdf
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://www.vldb.org/pvldb/vol15/p1506-simonini.pdf
https://orkg.org/about/15/Comparisons
https://orkg.org/about/15/Comparisons
https://doi.org/10.5441/002/edbt.2020.25
https://doi.org/10.1145/1390334.1390431
https://doi.org/10.1145/1390334.1390431

24 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

[WLF11] Wang, J.; Li, G.; Feng, J.: Fast-join: An efficient method for fuzzy token matching
based string similarity join. In: Proceedings of the International Conference on
Data Engineering (ICDE). IEEE Computer Society, pp. 458–469, 2011, url:
https://doi.org/10.1109/ICDE.2011.5767865.

[Wo22] World Bank: GDP (current US$), Apr. 2022, url: https://data.worldbank.
org/indicator/NY.GDP.MKTP.CD, visited on: 04/27/2022.

[Xi11] Xiao, C.; Wang, W.; Lin, X.; Yu, J. X.; Wang, G.: Efficient similarity joins
for near-duplicate detection. ACM Transactions on Database Systems (TODS)
36/3, pp. 1–41, 2011.

[Yu16] Yu, M.; Li, G.; Deng, D.; Feng, J.: String similarity search and join: a survey.
Frontiers Comput. Sci. 10/3, pp. 399–417, 2016, url: https://doi.org/10.
1007/s11704-015-5900-5.

[Zh19] Zhu, E.; Deng, D.; Nargesian, F.; Miller, R. J.: JOSIE: Overlap Set Similarity
Search for Finding Joinable Tables in Data Lakes. In: Proceedings of the
International Conference on Management of Data (SIGMOD). ACM, pp. 847–
864, 2019, url: https://doi.org/10.1145/3299869.3300065.

390 Maximilian Koch, Mahdi Esmailoghli, Sören Auer, Ziawasch Abedjan

https://doi.org/10.1109/ICDE.2011.5767865
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://doi.org/10.1007/s11704-015-5900-5
https://doi.org/10.1007/s11704-015-5900-5
https://doi.org/10.1145/3299869.3300065

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

DPQL: The Data Profiling Query Language

Marcian Seeger1, Sebastian Schmidl2, Alexander Vielhauer3, Thorsten Papenbrock4

Abstract: Data profiling describes the activity of extracting implicit metadata, such as schema
descriptions, data types, and various kinds of data dependencies, from a given data set. The
considerable amount of research papers about novel metadata types and ever-faster data profiling
algorithms emphasize the importance of data profiling in practice. Unfortunately, though, the current
state of data profiling research fails to address practical application needs: Typical data profiling
algorithms (i. e., challenging to operate structures) discover all (i. e., too many) minimal (i. e., the
wrong) data dependencies within minutes to hours (i. e., too long). Consequently, if we look at the
practical success of our research, we find that data profiling targets data cleaning, but most cleaning
systems still use only hand-picked dependencies; data profiling targets query optimization, but hardly
any query optimizer uses modern discovery algorithms for dependency extraction; data profiling targets
data integration, but the application of automatically discovered dependencies for matching purposes
is yet to be shown - and the list goes on. We aim to solve the profiling-and-application-disconnect
with a novel data profiling engine that integrates modern profiling techniques for various types of data
dependencies and provides the applications with a versatile, intuitive, and declarative Data Profiling
Query Language (DPQL). The DPQL enables applications to specify precisely what dependencies are
needed, which not only refines the results and makes the data profiling process more accessible but
also enables much faster and (in terms of dependency types and selections) holistic profiling runs. We
expect that integrating modern data profiling techniques and the post-processing of their results under
a single application endpoint will result in a series of significant algorithmic advances, new pruning
concepts, and a profiling engine with innovative components for workload autoconfiguration, query
optimization, and parallelization. With this paper, we present the first version of the DPQL syntax and
its semantics, which introduces a fundamentally new line of research in data profiling.

Keywords: data profiling; query language; functional dependencies; unique column combinations;
inclusion dependencies

1 About Data Profiling and Application Requirements

Structural metadata is a set of rules that shape datasets, their formats, evolution, correctness,
and accessibility. For this reason, metadata is an essential input to many data management
processes ranging from data exploration [Fe18; Ro09] over data integration [DR02; Zh10]
1 Philipps-University of Marburg, Big Data Analytics, Hans-Meerwein-Str. 6, 35032 Marburg, Germany

seegerma@students.uni-marburg.de
2 Hasso Plattner Institute, University of Potsdam, Information Systems, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam,

Germany sebastian.schmidl@hpi.de
3 Philipps-University of Marburg, Big Data Analytics, Hans-Meerwein-Str. 6, 35032 Marburg, Germany

avielhauer@informatik.uni-marburg.de
4 Philipps-University of Marburg, Big Data Analytics, Hans-Meerwein-Str. 6, 35032 Marburg, Germany

papenbrock@informatik.uni-marburg.de

cba doi:10.18420/BTW2023-19

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 391

mailto:seegerma@students.uni-marburg.de
mailto:sebastian.schmidl@hpi.de
mailto:avielhauer@informatik.uni-marburg.de
mailto:papenbrock@informatik.uni-marburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-19

2 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

and data cleaning [IC15; VA18] to query optimization [KPN22; Pa00] and machine
learning [Ch19; KPN20] to name only a few. Due to the importance of metadata, most
database management systems store not only the data but also structural information, such as
data types, basic statistics, and constraints. This is only a fraction of the structural metadata
that characterizes a dataset, and actually having access to it is a lucky case because many
formats and systems for storing datasets do not even provide any metadata. For this reason,
data engineers (and scientists) conduct data profiling [Ab18] to extract metadata from
raw data. This first manual and meanwhile largely automated process has been improved
significantly over the past 30 years. To give a few examples, we can now automatically
mine unique column combinations [Bi20], functional dependencies [PN16], inclusion
dependencies [Dü19], order dependencies [SP22], matching dependencies [Sc20] and many
more in exact and various relaxed versions [CDP16]. In the quest to meet application needs
and user skills, the corresponding data profiling algorithms have been built into practical data
profiling tools, such as Metanome [Pa15a], Desbordante [De22], or Viadotto [Vi22]. Despite
these technological advances, data profiling still requires complicated and often manual
post-processing efforts to make use of the discovered metadata in different applications.

To illustrate the current limitations in data profiling, consider the following example: In a
data integration scenario, a data engineer is looking for possible foreign-key candidates
between two to-be-integrated datasets 𝑅 and 𝑆. A suitable foreign-key candidate is an
inclusion dependency (IND) 𝑋 ⊆ 𝑌 where the attributes 𝑋 and 𝑌 are from different datasets
and the target 𝑌 is a key candidate, i. e., a unique column combination (UCC). The standard
approach would be to, first, discover all INDs and UCCs and, then, filter the required
statements for the actual results. This process introduces the following major issues:

Discovery of too many results: Many data profiling algorithms are exponential in their
output complexity because the amount of syntactically valid and, hence, discoverable
metadata is huge. They usually restrict the outputs to only minimal (or maximal) metadata
statements, but the metadata result sets still often outgrow storage capacities and the
data itself [Dü19; Pa15b]. Any semantic metadata selection is usually conducted as a
post-processing step and deferred to the metadata application. If these applications could
formulate their metadata requirements as pruning rules for the profiling of the data, giant
result sets could be avoided. In our example, only very few INDs overlap with a UCC, such
that a clever profiling run would never need to enumerate all INDs and UCCs.

Discovery of the wrong results: To limit the size of metadata result sets, the profiling
algorithms restrict the enumeration to only minimal (or maximal) statements. It is possible
to derive any valid metadata statement from these collections, but the inference requires
complex post-processing procedures based on different axiomatizations [Ab18]. If the INDs
in our example are all maximal and the UCCs are all minimal, then the needed foreign-key
candidates might be formed by an IND-UCC-combination in which neither the IND is
maximal nor the UCC is minimal; and apart from linking the two dependency statements,
additional inference work based on IND- and UCC-axioms is needed. A sophisticated

392 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 3

profiling algorithm would do this already during metadata discovery, which requires a
standardized profiling language to configure the algorithm executions accordingly.

Discovery in the wrong way: All state-of-the-art data profiling tools operate on a one-type-
at-a-time basis, which means that they offer distinct discovery functionalities for every type
of metadata. To fulfill a certain metadata need, a user must first decompose the application
demands into these different metadata types. For each type, the best algorithm then
needs to be selected and parameterized. The latter involves specifying whether relaxation,
approximation, parallelization, disk-swapping, etc. is needed and if yes, to what degree. The
user must also configure algorithm-specific parameters, such as window sizes, search depths,
or filter sizes. This complexity prevents many users from applying modern data profiling
tools. For the foreign-key discovery example, the data engineer needs to parameterize
an IND and UCC algorithm and combine the results, which is something that a holistic,
application-driven data profiling tool with a simple, declarative query language should be
able to do automatically.

Discovery that takes too long: Data profiling algorithms are highly optimized, extremely
effective metadata discovery tools; they are still output bound, and the outputs grow
exponentially with the input sizes. For this reason, even the most effective algorithms
may take hours to days to enumerate complete metadata sets for certain inputs [Kr16].
The only way to achieve further significant performance improvements is to pull the
application-specific selection of the metadata statements from the preprocessing into the
profiling algorithms. This requires a generic language for pruning rules and holistic profiling
algorithms that discover multiple types of metadata simultaneously. In our example, we aim
to discover INDs and UCCs simultaneously and, for this, need to specify the relationship
between them. These relationships can be specified with a data profiling query language
and translate directly into pruning rules for the discovery.

A holistic data profiling engine with a standardized Data Profiling Query Language (DPQL)
would resolve all four mentioned issues: The declarative query language serves to formulate
exactly what metadata statements are needed, such that only truly required results (not too
many) and carefully linked results (not the wrong) are discovered. Based on the explicit
metadata queries, the data profiling engine can automate the parameterization (not in the
wrong way) and optimize the discovery strategy (not too long). In this paper, we introduce
the first version of such a data profiling query language and provide concrete examples of its
usage. DPQL is a generic, SQL-like language that serves to specify metadata requirements
across different metadata types. From a user perspective, DPQL is an intuitive interface to
filter and join metadata statements that are transparently discovered on demand.

Holistic data profiling via a standardized, declarative metadata query language is a fundamen-
tally new approach to data profiling and should have a major impact on how data profiling
algorithms and tools are developed in the future. The descriptions of the DPQL language in
this paper focus on the three most popular data dependencies, which are UCCs, FDs, and
INDs, but they generalize to all other types of dependencies and metadata statements.

DPQL: The Data Profiling Query Language 393

4 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

In the subsequent sections, we first introduce a small running example with a practical
DPQL query (Sect. 2). Then, we discuss related work on data profiling and profiling-related
query languages (Sect. 3) and recap the definitions of UCCs, FDs, and INDs (Sect. 4).
Afterward, we introduce DPQL’s SELECT-FROM-WHERE syntax and result format (Sect. 5). We
then present the novel functions that can be used within a DPQL query and explain their
purposes (Sect. 6). As an evaluation of DPQL, we consider different application areas of
data profiling and formulate their demands in DPQL (Sect. 7). In the end, we motivate novel
research challenges inspired by DPQL (Sect. 8) and summarize our proposal (Sect. 9).

2 A Running Example

ID Name Evolution Location Sex Weight Size Type Weak Strong
25 Pikachu Raichu Viridian Forest m/f 6.0 0.4 electric ground water
29 Nidoran Nidorino Safari Zone m 9.0 0.5 poison ground gras
32 Nidoran Nidorina Safari Zone f 7.0 0.4 poison ground gras
63 Abra Kadabra Cerulean Cave m/f 19.5 0.9 psychic ghost fighting
64 Kadabra Simsala Cerulean Cave m/f 56.5 1.3 psychic ghost fighting

(a) Pokemon
Title Biome Region

Viridian Forest gras Kanto
Safari Zone gras Kanto

Cerulean Cave rock Kanto
Fuchsia City fighting Kanto

Anemonia City water Jotho

(b) Locations

Firstname Rank Pokecount
Marcian 8 38
Sebastian 5 42
Alexander 2 19
Thorsten 1 2

Elisa 9 73

(c) Trainers

Trainer Pokemon
Marcian 64

Elisa 29
Elisa 32

Sebastian 25
Sebastian 64

(d) Teams

Tab. 1: A running example with a small excerpt of Pokémon data.

1 SELECT
2 X AS ForeignKey, Y AS Key
3 FROM
4 CC(Pokemon,Locations,Trainers,Teams) X,
5 CC(Pokemon,Locations,Trainers,Teams) Y
6 WHERE
7 IND(X,Y)
8 AND UCC(Y)
9 AND SPLIT(X,Y)

10 AND SIZE(Y) <= 2
11 AND CARDINALITY(X) >= 2

List. 1: Find all foreign-key candidates between the
tables Pokemon, Locations, Trainers, and Teams.

As an introduction to DPQL, let us ex-
amine a small example with the Poké-
mon data shown in Tab. 1. In this exam-
ple, we aim to discover all foreign-key
relationships between the tables in the
Pokémon dataset. A foreign-key is an
integrity constraint between two lists
of attributes that requires an inclusion
dependency between the attribute lists
and a unique column combination on
the referenced attribute list. In some
domain-specific settings, we might also
want these relationships to cover at
most two attributes, to link attributes
from different tables, and to have at

394 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 5

least two different values in the foreign-key columns. All these conditions can be formulated
in a single DPQL query, such as the one shown in List. 1. Following the SQL syntax, the
SELECT clause defines the output to be pairs of attribute lists X and Y, which represent the
needed ForeignKey and Key attributes, respectively. The FROM clause specifies the search
space for X and Y with the help of the CC() function that describes all possible column combi-
nations of its arguments; for this, DPQL needs to be able to fetch attribute information from
relations. The WHERE clause specifies the constraints on the metadata that we are looking for:
the IND X⊆Y and the UCC Y should be valid (IND(X,Y) and UCC(Y)), X and Y should be from
different relations (SPLIT(X,Y))), the size of the foreign-key should not be greater than two
(SIZE(Y) <= 2), and X should contain at least two different values (CARDINALITY(X) >= 2).
The answer to this query contains the tuples ([Trainer], [Firstname]), ([Pokemon], [ID]),
and ([Location], [Title]), which are precisely the foreign-keys of the Pokémon dataset.

To obtain the result of a DPQL query, a novel data profiling engine is needed that can parse
the filter criteria from the query and apply them effectively. Note that the query implies
many implicit profiling constraints, e. g., that X and Y need to be of the same size, both
column combinations need to be lists while column combinations that do not appear in
INDs can be interpreted as sets, and the results should be minimal/maximal according to
dependency axioms. These constraints do not need to be specified and can automatically be
derived by the profiling engine and algorithms. To the best of our knowledge, not a single
existing data profiling system can consider all such profiling constraints.

For demonstration purposes, we implemented a very early query processing prototype for
the DPQL language that can answer the queries shown in this paper. With the prototype, we
executed the foreign-key query of List. 1 on the TPC-H (425 MB, 7 Tables, and 56 Attributes)
and the MusicBrainz (104 GB, 232 Tables, and 1 562 Attributes) datasets: The foreign-key
query on the TPC-H dataset yields 19 foreign-key candidates containing all seven true
foreign-key constraints; in contrast, a full profiling run yields 52 maximal INDs and 408
minimal UCCs that still need to be combined. The foreign-key query on the MusicBrainz
dataset yields 7 625 foreign-key candidates; in contrast, a full profiling run yields 209 572
unary INDs and 496 minimal UCCs that still need to be combined. These experiments
demonstrate that DPQL queries can produce smaller and more specific results; it enables
holistic profiling and new pruning rules for faster executions.

We need to emphasize that most real-world datasets are much wider and longer than our tiny
Pokémon example dataset; additionally, they often lack descriptive labels, offer only cryptic
values, and are hard to parse. For this reason, automatic data profiling starting at the source
data and delivering suitable results directly to the applications – just as we did with the
foreign-key query – is highly needed. DPQL is a first and essential building block for this.

DPQL: The Data Profiling Query Language 395

6 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

3 Related Work

Most of the research on data profiling focuses primarily on improving existing data
profiling algorithms including aspects, such as their scalability [Sc20; SGI19; SP22],
relaxation [Ca21b; CDP16; Li20; WHL21], or dynamics [Ca21a; Xi22]. Consequently,
many very effective algorithms exist for the discovery of basic metadata [HN17; HPN21],
unique column combinations [Bi20; WLL19], functional dependencies [PN16; WLL19],
inclusion dependencies [Dü19; Pa15c], order dependencies [SP22; Sz17], matching depen-
dencies [Sc20; Wa17], denial constraints [BKN17; PAN21] and many further. All these
algorithms target only one type of dependency and try to enumerate complete result sets;
they are written in different languages and serve quite heterogeneous interfaces and result
formats, which makes them relatively difficult to apply in real-world settings.

So far, very little research has been done on holistic profiling techniques. Some works exist
that consider UCCs and FDs simultaneously [Eh16; Hu99] or reason about FDs and INDs
jointly [HL18]. These approaches demonstrate the potential of holistic data profiling w.r.t.
runtime improvements, but a query language is needed to cover more than two types of
dependencies and semantically combine and filter the results.

Data profiling tools aggregate profiling algorithms and present them as services to the user.
They make the algorithms easier to operate and store the results in some tool-specific but at
least type-unified format. The open-source research framework Metanome [Pa15a] was the
first data profiling tool to support the discovery of various types of metadata. Another very
recent profiling tool inspired by Metanome is Desbordante [De22]. Meanwhile, commercial
products, such as Viadotto [Vi22], developed the idea further and professionalized the
concepts. All these tools effectively ease the profiling for non-expert users, but since they
do not offer any metadata management features, they effectively shifted the problem from
complicated-to-operate data to complicated-to-operate metadata.

A promising approach to the metadata management concern is to store the discovered
metadata in the form of data profiles in a database. In this way, users can issue SQL
queries to find, join, and filter the metadata according to their specific application needs. A
practical implementation of this idea, which works nicely with Metanome, is the metadata
management system Metacrate [Kr17a]. Metacrate proposes effective, relational storage
formats for various types of metadata, and SQL as a flexible and generic query language.
Another metadata store that focuses on statistical metadata rather than structural metadata
is Splash [FL10]. Similar to Metacrate, Splash is based on SQL and tries to persist all
metadata. The general approach of persisting the metadata, though, comes with various
issues: Synchronization of data and metadata is expensive, metadata contains a lot of
redundancy, schemata with many types (UCCs, INDs, FDs, ODs, . . .) and relaxations
(partial, approximate, conditional, . . .) become incomprehensible, and, most importantly,
metadata sets are huge if they are stored in their entirety. Standard SQL also appears to be
an unfavorable match for working with metadata, which is why we propose a novel query
language and a profiling engine that collects the metadata at query time.

396 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 7

As part of our related work, we also consider the enormous space of business intelligence
systems with data profiling capabilities, including IBM InfoSphere, Talent Data Quality,
Informatica Data Explorer, Trillium Software Data Profiling, OpenRefine, SAP Business
Objects, and many, many more. Apart from the fact that many data profiling features of
these tools are still behind state-of-the-art in research, they suffer from the same metadata
management and accessibility issues as the whole field of data profiling.

Because metadata statements, and data dependencies in particular, are defined on schema
level, a data profiling query language needs to be able to access schema elements.
SchemaSQL [LSS96] is an SQL extension that already offers these capabilities: The
queries can access database-, relation-, and attribute-names, join values with labels, compare
schema elements, and alter them. The only schema operation needed for data profiling,
though, is referring to attribute lists. For this reason and because SchemaSQL also lacks
data profiling features, we create a new SQL-like dialect.

Defining SQL extensions or entirely new query languages to query derived information is
not a novelty. In the data mining area, which is closely related to data profiling, various
efforts have been made to extend SQL with data mining capabilities. For example, MINE
RULE is a keyword extension to discover rules [MPC+96; MPC98] and the profile function
is Splash’s extension to extract estimated joint probability density functions [FL10]. Data
mining algorithms have also been defined via user-defined functions [OP11] or virtual
views [Bl12]. Similar extensions would be possible also for data profiling algorithms, but a
query language specifically designed for data profiling is easier to understand, clearer in
semantics and result formats, and better to be parsed into data profiling pruning rules.

The SQL-like data mining language RQL [Ch17] is a query language for discovering exact,
extended and relaxed functional dependencies. It is the closest challenger of our proposal,
but it can discover only simple if-then-statements and no arbitrary complex metadata
constructs with different types of metadata. The extension of RQL to a more comprehensive
data profiling language would change not only the language, but also its execution engine
significantly. Therefore, we propose a novel, more intuitive query language.

4 Data Dependencies

Throughout the paper, we follow established notations for data profiling [Ab18]: Because
these notations consider schemata and data to be ordered (e. g. by their physical order on disk),
we use the terms attribute and column, as well as record, tuple, and row interchangeably.
We denote a relational schema as 𝑅 and instances of 𝑅 as 𝑟. Letters from the start of the
alphabet denote attributes (𝐴, 𝐵, 𝐶, 𝐷, . . . ∈ 𝑅) and letters from the end of the alphabet
denote attribute lists (. . . ,𝑊, 𝑋,𝑌, 𝑍 ⊆ 𝑅). Attributes in these lists can be accessed via
index, e. g., as 𝑋𝑖 . For some metadata statements, the order of the attributes in attribute lists
is important (e. g. INDs) and for others it is not (e. g. UCCs and FDs). We, therefore, name
these lists column combinations and let the profiling algorithm infer, based on the type of

DPQL: The Data Profiling Query Language 397

8 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

dependency, whether a combination needs to be interpreted as a list or a set. The notations
𝑅[𝑋] and 𝑡 [𝑋] denote projections of schema 𝑅 and tuple 𝑡 on the attributes 𝑋 , respectively.
With these notations, we define UCCs, FDs, and INDs as follows:

Definition 1 (Unique column combination (UCC)) Given a schema 𝑅 with instance 𝑟 , a
UCC 𝑋 with 𝑋 ⊆ 𝑅 is valid in 𝑟 , iff ∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑟, 𝑖 ≠ 𝑗 : 𝑡𝑖 [𝑋] ≠ 𝑡 𝑗 [𝑋].

Definition 2 (Functional dependency (FD)) Given a schema 𝑅 with instance 𝑟, the FD
𝑋 → 𝐴 with 𝑋 ⊆ 𝑅 and 𝐴 ∈ 𝑅 is valid in 𝑟 iff ∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑟 : 𝑡𝑖 [𝑋] = 𝑡 𝑗 [𝑋] ⇒ 𝑡𝑖 [𝐴] = 𝑡 𝑗 [𝐴].

Definition 3 (Inclusion dependency (IND)) Given the schemata 𝑅 and 𝑆 with instances
𝑟 and 𝑠, respectively, the IND 𝑅[𝑋] ⊆ 𝑆[𝑌] (abbreviated 𝑋 ⊆ 𝑌) with attribute lists 𝑋 ⊆ 𝑅

and 𝑌 ⊆ 𝑆, and cardinalities |𝑋 | = |𝑌 | is valid iff ∀𝑡𝑖 ∈ 𝑟, ∃𝑡 𝑗 ∈ 𝑠 : 𝑡𝑖 [𝑋] = 𝑡 𝑗 [𝑌].

Considering our running example in Tab. 1, we find that, for example, {Name, Sex} is
a UCC, {Type}→{Weak} is an FD, and {Location}⊆{Title} is an IND. Because UCCs
indicate keys, FDs indicate value associations, and INDs indicate referential integrity, these
three dependencies are among the most important metadata statements. For more details on
axiomatization, inference rules, and minimality/maximality properties, we refer to [Ab18].
In the context of this paper, it should be sufficient to understand that all profiling-related
aspects are pushed down to the profiling engine and/or algorithm(s).

5 Data Profiling Query Language

The Data Profiling Query Language (DPQL) is a variant of SQL that follows the popular
SELECT-FROM-WHERE syntax. A central element of this syntax is the column combination
function CC(). This function allows DPQL to access schema elements as values. In the
following, we first introduce the CC() function and, then, discuss the DPQL query syntax.

5.1 DPQL Column Combination Function

Data profiling is about discovering metadata statements on column combinations. With
the column combination function CC(), the user can refer to these groups of attributes
and, then, specify restrictions and connections for them. The parameter list of the CC()
function is a list of relational attributes from which the column combinations should be
drawn. For example, CC(Pokemon.ID, Pokemon.Size) describes the following list-based
column combinations: {∅, [Pokemon.ID], [Pokemon.Size], [Pokemon.ID, Pokemon.Size],
[Pokemon.Size, Pokemon.ID]}. We can enumerate these from the list of attributes when
considering the power set lattice of these attributes [Ab18]. While the CC() function defines

398 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 9

the origin of the columns, we later introduce further restrictions on column combinations
that filter concrete patterns of specific dependency types. Note that the CC() function in
DPQL is used as a declarative construct to define sets of column combinations, which can
be named in the queries. CC() provides the context for the data profiling and describes the
search space for the profiling algorithms, but it is not supposed to be fully materialized.

The attributes for a CC() call can be provided explicitly, collectively via their relations, or as
negations; we can also specify concrete column combination sets as literals. Tab. 2 provides
an overview of the specification options for column combinations:

Attributes: The most basic call of the CC() function lists all relational attributes that should
be considered for the generation of column combinations. If the parameter contains attributes
from different tables, these attributes will also form column combinations. For many types of
metadata, such as FDs, UCCs, and INDs, all attributes of a column combination must stem
from the same relation and the profiling algorithms will prune the search space accordingly;
for some types, such as MDs and DCs, mixed column combinations are needed, though.

Relations: By specifying relations in the CC() parameter lists, we denote all attributes of
the respective relations. This shortcut is well established in the data profiling community, as
most data profiling algorithms operate on this abstraction level.

Negations: With negations, the user can exclude certain attributes from relations in a CC()
call. In Tab. 2, we consider all attributes in the Pokemon relation and exclude only the
Pokemon.ID attribute from it. The negation is particularly useful to profile the majority of
attributes while excluding certain irrelevant attributes, such as empty, generated, or binary
attributes. Note that negative statements supersede positive statements, and a negative
statement without a positive relation is redundant.

Literal: Instead of modeling the search space with the CC() function, sets of column
combinations can also be specified explicitly with a literal statement. A literal groups one or
multiple column combinations, which are represented as attributes in square brackets, into a
set in curly brackets. A literal takes the place of any CC() call and can contain arbitrary many
column combinations, which the profiling uses exactly as specified. If the literal cannot be
parsed into a valid column combination, an error is thrown. The option to provide fixed
column combinations is important to ask specific profiling questions, such as "Where does
this foreign-key point to?" or "Which attributes functionally depend on this key candidate?".

Parameter Example Description: All CCs formable with . . .
Attributes CC(Pokemon.ID,Pokemon.Size) the provided attributes.
Relations CC(Pokemon,Teams) the attributes of the provided relations.
Negations CC(Pokemon,!Pokemon.ID) all attributes but the provided exceptions.
Literals {[Pokemon.ID,Pokemon.Size], exactly the two provided column combinations.

[Trainers.Rank]}

Tab. 2: Specification options for column combination sets.

DPQL: The Data Profiling Query Language 399

10 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

Because the order of column combinations matters for INDs (and some other dependencies),
column combinations in DPQL queries are always considered as lists, i. e., the order of
attributes in column combinations is meaningful. However, for set-based data dependencies,
such as UCCs and FDs, the profiling engine automatically prunes redundant results.

5.2 DPQL Query Syntax

We now introduce the SELECT-FROM-WHERE syntax of DPQL and provide further examples
of DPQL queries. The queries use the CC() function to reference column combinations
(short CCs) and the functions UCC(), FD(), and IND() to specify dependencies (and their
interactions); we provide more details on the metadata discovery functions later in Sect. 6.

1 SELECT
2 X AS Left, Y AS Right
3 FROM
4 CC(Pokemon,Trainers) X,
5 CC(Pokemon,Trainers) Y
6 WHERE
7 FD(X,Y)

List. 2: Find all functional dependencies in the
relations Pokemon and Trainers.

SELECT The SELECT clause defines the
column combinations that shall appear in
the query’s result. Each listed column com-
bination translates into a column in the
relational output, and every row in the re-
lational output is a set of column combina-
tions that answers the DPQL query. Column
combinations refer to the search spaces de-
fined by the CC() calls in the FROM clause,
and can be renamed with the AS keyword.
List. 2 shows a DPQL query with a sim-
ple SELECT clause that selects the left- and right-hand-sides of functional dependen-
cies within the relations Pokemon and Trainers. Result tuples of this query would be
([Pokemon.Type], [Pokemon.Weak]) or ([Trainer.Rank], [Trainer.Pokecount]), which rep-
resent the FDs Type→Weak and Rank→Pokecount. Note that SELECT describes a projection
on the column combinations defined in the FROM clause and, therefore, does not need to list
all CCs – if we require only left-hand-sides, we would project on X alone in List. 2.

1 SELECT
2 X AS Dependent, Y AS Referenced
3 FROM
4 CC(Pokemon) X,
5 CC(Locations,Teams) Y
6 WHERE
7 IND(X,Y)

List. 3: Find all inclusion dependencies from the
relation Pokemon to either Locations or Teams.

FROM The FROM clause uses the CC()
function (or literals) to specify the search
space of the profiling. Every CC()-defined
set of column combinations needs to be
named, such that it can be referenced in
the SELECT and/or WHERE clause. The DPQL
query in List. 3 demonstrates the discovery
of inclusion dependencies in the Pokémon
example with two different CC() sets. The
results of this query contain all X and Y
column combination pairs, for which the X
values link Pokemon to Y values in either Locations or Teams.

400 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 11

1 SELECT
2 X Determinant, Y AS Unique
3 FROM
4 CC(Teams,Trainers) X,
5 CC(Pokemon) Y
6 WHERE
7 UCC(Y)
8 AND (IND(X,Y) OR FD(X,Y))

List. 4: Find all unique column combinations that
are a target of a functional or inclusion dependency.

WHERE The WHERE clause is a logical
filter expression. It defines the metadata
patterns that serve a specific application
need and follows SQL operator precedence.
While the FROM clause restricts the data
profiling process to certain tables (and at-
tributes), the WHERE clause can be used to
formulate conditions and metadata patterns
that further prune the metadata search space.
Handed over to the actual data profiling,
these restrictions can greatly reduce runtime
and memory consumption. Expressions in
the WHERE clause are based on data profiling functions that cover different types of meta-
data statements, such as UCC(), FD(), and IND(), and additional restrictions on column
combinations, such as SIZE(), MIN(), and MAX() (more details in Sect. 6). Filter criteria
can be linked via AND and OR, and any valid answer to a DPQL query needs to fulfill
the entire WHERE clause. An example with a slightly larger WHERE clause than before is
shown in List. 4: The query asks for all inclusion and functional dependencies that point to
unique column combinations. Both ([Pokemon.Name,Pokemon.Sex], [Pokemon.ID]) and
([Teams.Pokemon], [Pokemon.ID]) are valid answers to the query, the former being the FD
{Name,Sex}→{ID} and the latter the IND {Pokemon}⊆{ID}; the result does not differentiate
FDs and INDs, but the way this query is issued (via OR) indicates that this information is
irrelevant for the application.

5.3 DPQL Result Format

In contrast to SQL, which queries database records, DPQL extracts statements about the
schemata, i. e., combinations of attributes and their interactions. These schema statements
are compositions of column combinations, which introduce special challenges for the output
format. To understand these challenges and our design decisions for overcoming them, we
first describe the straightforward case and address the complicated situations afterwards.

Basic DPQL Results

A DPQL query returns a result in relational format: The SELECT clause determines the
schema of the result table by turning every provided column combination variable, which
is a CC() call, into a relational attribute. The name of each result attribute is equal to the
column combination’s variable name or, if provided, its AS-alias. Each row in the result
relation is a valid response to the DPQL query; structurally, a response row is a set of
column combinations, which is a set of attribute lists. For example, Tab. 3 lists the results of

DPQL: The Data Profiling Query Language 401

12 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

our introductory foreign-key example (see List. 1). Each of the three result tuples describes
a valid foreign-key candidate according to the specified filter criteria.

ForeignKey Key

[Teams.Pokemon] [Pokemon.ID]
[Teams.Trainer] [Trainers.Name]
[Pokemon.Locations] [Location.Name]

Tab. 3: The result table for the DPQL query from List. 1 with column combinations X and Y.

Finding the most effective strategy for obtaining DPQL query results will be subject to
extensive future research, but a possible way of processing the foreign-key query with state-
of-the-art algorithms is as follows: We first discover all INDs, which are {Pokemon}⊆{ID},
{Trainer}⊆{Firstname}, {Location}⊆{Title}, and {Strong}⊆{Biome}; then we discover
all UCCs, which are {ID}, {Weight}, {Name, Sex}, {Name, Size}, {Title}, {Firstname},
{Rank}, {Pokecount}; after obtaining both type-specific profiling results, we intersect the
IND right-hand-sides and the UCCs with a subset-aware comparison (i. e., if any subset
of a right-hand-side is a UCC, the IND-UCC-pair is valid); this leaves us with the INDs
shown in Tab. 3; finally, we apply the size and origin filters, which do not change the
results. This process demonstrates that DPQL queries can be answered automatically with
state-of-the-art profiling technology, although this way of processing is terribly expensive.

Normalization

While the foreign-key example is an ideal case of a result table, the relational result structure
for data profiling statements has a major size issue when it comes to more complex result
sets: Because every row in the table represents a unique valid result, DPQL queries with
more than one dependency in the output column combinations generate a lot of redundancy.
For illustration purposes, consider the DPQL query in List. 5 that aims to profile all unique
column combinations in the relations Pokemon and Trainers. Because these UCCs are
associated with two independent CC() calls, every combination of a Pokemon UCC and
a Trainers UCC is a valid answer to the query. We show the list of results in Tab. 4.

1 SELECT
2 X AS PokemonUCCs,
3 Y AS TrainersUCCs
4 FROM
5 CC(Pokemon) X,
6 CC(Trainers) Y
7 WHERE
8 UCC(X)
9 AND UCC(Y)

List. 5: Find all UCCs in Pokemon and Trainers.

PokemonUCCs TrainersUCCs

{𝐼𝐷} {𝐹𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒}
{𝐼𝐷} {𝑅𝑎𝑛𝑘}
{𝐼𝐷} {𝑃𝑜𝑘𝑒𝑐𝑜𝑢𝑛𝑡}
{Name, Sex} {𝐹𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒}
{Name, Sex} {𝑅𝑎𝑛𝑘}
{Name, Sex} {𝑃𝑜𝑘𝑒𝑐𝑜𝑢𝑛𝑡}
.

Tab. 4: UCCs of List. 5 in one result.

402 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 13

1 SELECT
2 X, Y, Z

3 FROM
4 CC(Pokemon,Trainers,Teams) X,
5 CC(Pokemon,Trainers,Teams) Y,
6 CC(Pokemon,Trainers,Teams) Z
7 WHERE
8 IND(X,Y)
9 AND FD(Y,Z)

List. 6: Find all INDs that point to FDs.

The redundancy that we find in this result
table can be described as a join or multival-
ued dependency [Ab18]. The redundancy
introduced with such dependencies grows
quadratically with increasing data volume,
which is problematic considering that data
profiling result sets grow exponentially with
the input schema sizes – even the increased
pruning capabilities of DPQL cannot re-
solve this general issue.

In a first solution attempt, we might reject
DPQL queries with non-correlated column
combinations, but the redundancy issue also exists for properly correlated column com-
binations: The DPQL query in List. 6 asks for all inclusion dependencies that point to
functional dependencies; the result should list both the INDs and FDs. Now, if an IND
points to multiple FDs or an FD is the target of multiple INDs, we generate duplicate, i. e.,
redundant IND and FD outputs, respectively. So, we again observe redundancy from join or
multivalued dependencies in the results. To resolve these dependency-caused redundancies,
relational database theory suggests schema normalization. For this reason, we propose
normalized outputs for DPQL queries and, hence, potentially multiple result tables. The
algorithm for creating these tables is shown in Algorithm 1. It creates a table for every pair
of column combinations that appears together in at least one binary dependency, such as an
IND or FD (Lines 3-6); then, it creates separate tables for individual column combinations
that are not linked to other column combinations (Lines 7-10). In this way, DPQL results
can be represented without their inherent redundancy.

Algorithm 1 Creation of the normalized DPQL result schema
1: procedure createResultSchema(𝑑𝑝𝑞𝑙𝑄𝑢𝑒𝑟𝑦)
2: resultSchema← ∅
3: for every binary dependency 𝐷 (𝑋,𝑌) in the WHERE clause of the 𝑑𝑝𝑞𝑙𝑄𝑢𝑒𝑟𝑦 do
4: if there is no table 𝑇 (𝑋,𝑌) or 𝑇 (𝑌, 𝑋) with 𝐷’s two CCs 𝑋 and 𝑌 in resultSchema then
5: if both 𝑋 and 𝑌 are selected in the SELECT clause then
6: create the table 𝑇 (𝑋,𝑌) and store it in resultSchema
7: for every CC 𝑍 in the SELECT clause of the 𝑑𝑝𝑞𝑙𝑄𝑢𝑒𝑟𝑦 do
8: if there is no table 𝑇 (𝑍), 𝑇 (𝑋, 𝑍) or 𝑇 (𝑍, 𝑋) with this CC in resultSchema then
9: if 𝑍 is selected in the SELECT clause then

10: create the table 𝑇 (𝑍) and store it in resultSchema
return 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑐ℎ𝑒𝑚𝑎

With normalization, the output of the DPQL query in List. 1 remains one table with
schema {[ForeignKey, Key]}. The output of the DPQL query in List. 5, though, becomes
{[PokemonUCCs], [TrainerUCCs]} and the output of the DPQL query in List. 6 becomes
{[X, Y], [Y, Z]}. To reconstruct the single, not-normalized result table or to read a full result

DPQL: The Data Profiling Query Language 403

14 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

row, we simply join the individual result tables on common column combinations (e. g. Y
for the query in List. 6); the reconstruction of unrelated result tables requires a cross join.

In summary, we recommend normalizing DPQL query results for result compaction. The
non-normalized, single relation results can always be obtained by joining the result tables,
which is useful, for instance, if a DPQL query is embedded into an SQL query.

Extension Columns

Many data profiling results, such as functional and inclusion dependencies, simply mark a
special relation between column combinations. These relations can be expressed with the
(normalized) relational result format on column combinations. However, the data profiling
toolbox offers a plethora of metadata statements, relaxations, and conditions that provide
additional information about the properties of a column combination or column combination
relationship. Therefore, we propose to extend DPQL result schemata dynamically with
additional columns that store well-defined, metadata-dependent information. The rationale
here is simple: If a DPQL function, such as UCC(), FD(), or IND(), extracts more than a
relationship of column combinations, the DPQL engine adds a DPQL function-specific,
additional column to the output schema. In theory, we can assume that the union of all
possible extension columns is implicitly present in all DPQL query results and the fields
are NULL by default, but in practice, these columns should be hidden if they are empty. We
now briefly introduce some basic extension columns for popular data profiling metrics
(see Tab. 5). It is worth noting that the table is incomplete and needs to be extended in the
development process of the data profiling engine:

Name Property Type Values
Approximate Relaxation boolean true if validity is not certain
Partial Relaxation float Fraction of records that fulfill the statement
Conditional Relaxation string Condition for defining the statement’s scope
Minimum Statistic <target type> Minimum value of the target CC
Maximum Statistic <target type> Maximum value of the target CC
Histogram Statistic string Value distribution in the target CC
Denial Special string Denial constraint expression on the target CC
Matching Special string Matching dependency expression on the target CC
Order Special string Order dependency expression on the target CC

Tab. 5: Extension columns that relax metadata statements or belong to special metadata statements.

Relaxation: Any relational metadata statement can be relaxed in different ways [CDP16]:
We can, i. a., make the statement approximate signaling that the statement’s validity is not
guaranteed, partial to restrict the statement’s validity to a certain percentage of records, or
conditional to tie the statement’s validity to specific constraints. Such relaxations have been
implemented for many data profiling algorithms and are required by many data profiling
applications. With the extension columns, we can also return them in DPQL results.

404 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 15

Statistic: Data profiling often targets basic statistics, such as a column combination’s
min-, max-, avg-, or median-values, NULL-counts, data types, histograms, lengths- and
size-measurements, or frequent item sets. The results of such profiling tasks can easily be
stored in extension columns.

Special: Some special data dependencies, which are frequently extensions of functional
dependencies, can describe more complex relationships between column combinations.
This includes, for example, matching dependencies (MDs) [Fa08], order dependencies
(ODs) [GH83], and denial constraints (DCs) [Be11]. The extra information hidden in these
relationships can be similarity functions and thresholds (see MDs), order directions (see
ODs), or entire first-order logic statements (see DCs). While the column combinations of
these dependencies are stored in the normal CC-columns of the relational DPQL result sets,
the engine adds extension columns for the dependency-specific details.

As shown in Tab. 5, extension columns can be typed to improve their accessibility for
applications. The standard for basically all existing data profiling tools and algorithms is to
provide all results as strings; therefore, typed extension columns can add some additional
information. The concept of extension columns adapts well to the dynamic nature of data
profiling, as it allows a flexible combination of properties. For example, Tab. 6 shows the
result of a DPQL query that discovered all partial, conditional matching dependencies.
Although no existing data profiling algorithm can actually discover such dependencies,
there is certainly a practical use for them in, for instance, data integration. The result table
lists the two column combinations of this dependency (Pokemon and PoMos), the matching
dependency condition (Matching), and the two relaxations (Partial and Conditional) in
one relational table. Each entry in this result relation – in this case, only one entry – is an
answer to the discovery query. The shown example describes the matching dependency
{Pokemon[Name] ≈Jac,0.92 PoMos[ID]} → {Pokemon[Sex] ≈Lev,1.0 PoMos[Gender]},
which is true for 97% of the tuples under the condition {Weight > 0 ∧ Name ≠ ’Mewtwo’}.

Pokemon PoMos Partial Conditional Matching
[Pokemon.Name, [PoMos.ID, 0.97 {Weight > 0∧ [(Jaccard, 0.92),
Pokemon.Sex] PoMos.Gender] Name ≠ ’Mewtwo’} (Levenstein, 1.0)]

Tab. 6: Result of a DPQL query that discovered all partial, conditional matching dependencies.

6 DPQL Functions

The purpose of DPQL is to restrict data profiling activities and their results in such a way
that only truly needed metadata is delivered to the application. To filter and combine the
column combinations purposively, DPQL offers a variety of functions that are applied in
the WHERE clause. This section introduces the most important DPQL functions.

DPQL: The Data Profiling Query Language 405

16 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

Metadata Discovery Functions

Metadata discovery functions are the core of DPQL. These functions represent the data pro-
filing services that were traditionally implemented as separate algorithms. In this paper, we
already used three metadata discovery functions in the various examples, namely UCC(<CC>),
FD(<CC>,<CC>), and IND(<CC>,<CC>) for unique column combinations, functional dependen-
cies, and inclusion dependencies, respectively. The reading order of column combinations
in dependency functions is from left to right: First, the dependent/cause/included part,
then the referenced/effect/containing part. Throughout this paper, we showed example
queries with UCCs, FDs, and INDs, but thanks to extension columns (see Sect. 5.3), the
functional concept extends seamlessly to all other types of metadata, such as order depen-
dencies (OD(<CC>,<CC>)), matching dependencies (MD(<CC>,<CC>)), or denial constraints
(DC(<CC>,<CC>)). Short DPQL queries with a single metadata function call can be used
as an interface for existing data profiling algorithms, but the strength of DPQL lies in the
combination of metadata functions. With a good understanding of the discovery functions, a
query engine can combine multiple functions into a single, holistic profiling task and, then,
optimize execution orders, share intermediate results for additional search space pruning,
and re-use temporary data structures.

To support possibly all variations of data profiling, we need a standard to pass optional
configuration parameters to metadata functions. For example, suppose we want to relax a
dependency as discussed in Sect. 5.3 or force the declarative query into a certain execution
strategy, which is to bypass the automatic query optimizer. In such cases, we can specify
these objectives as parameters in the metadata functions. Passing parameters to DPQL
functions is done via named parameters with the <parameter>=<value> syntax. This syntax
ensures that parameter specifications are order-invariant and differ from column combination
specifications. To enforce, for instance, a partial functional dependency that has at least a
coverage of 95% of the tuples, we could write FD(X, Y, partial=0.95) or to force the
engine to discover approximate INDs with the FAIDA method [Kr17b], we write IND(X, Y,
approximate=true, method=’FAIDA’). We acknowledge that this is not the most idiomatic
approach for a declarative query, but it addresses the variety of data profiling demands and
the fact that data profiling is still a quickly evolving discipline.

Result Restriction Functions

CARDINALITY: The CARDINALITY(<CC>) function counts the number of distinct values in a
column combination. It can be used together with numeric comparators (i. e., <,<=,=,>=,>)
in filter statements to restrict valid column combinations to those that have a certain
(minimum or maximum) cardinality. We have seen this function already in the query of
Tab. 1, where we demanded foreign-keys to hold at least two different values.

406 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 17

1 SELECT
2 X, Y

3 FROM
4 CC(Pokemon) X,
5 CC(Pokemon) Y,
6 CC(Teams) Z
7 WHERE
8 FD(X,Y) AND SIZE(X) < 3
9 AND IND(Y,Z) AND SIZE(Y) = SIZE(X)

List. 7: Find FDs with less than three attributes
in Pokemon that functionally determine an IND of
same size into the Teams relation.

SIZE: The SIZE(<CC>) function can be
used to restrict the number of attributes
in a column combination to a fixed, min-
imum or maximum size. Recall that the
CC() function creates a (virtual) power-set-
shaped lattice of column combinations of
various sizes. With the SIZE() function and
a numeric comparator (i. e., <,<=,=,>=,>),
we can bind the sizes of certain column
combinations to numeric values or the sizes
of other column combinations (see List. 7).
In this way, SIZE() effectively prunes the
search space with a simple criterion that
many profiling algorithms can already pro-
cess.

1 SELECT
2 X AS ForeignKey, Y AS Key
3 FROM
4 CC(Pokemon,Teams,Trainers) X,
5 CC(Pokemon,Teams,Trainers) Y
6 WHERE
7 UCC(Y) AND IND(X,Y) AND MIN(X)

List. 8: Find foreign-key candidates with attribute
sets of minimal size – effectively unary INDs.

MIN and MAX: To keep metadata re-
sults concise, data profiling algorithms dis-
cover only result sets of minimal (UCCs,
FDs, MDs, . . .) or maximal (INDs) de-
pendencies; via dependency axioms, all
non-enumerated dependencies can be de-
rived from these sets. Now that we combine
dependencies into patterns via DPQL, min-
imality/maximality properties are less clear.
Consider, for example, the query in List. 8.
The answer to this query might be an (X,Y)-
tuple, where neither Y is a minimal UCC
nor X⊆Y is a maximal IND – this is what makes the traditional application of data profiling
results such a hard task. To lead the results in a useful and clear direction, we can define
specific CCs to be MIN(<CC>) or MAX(<CC>). Minimizing means that we cannot remove a
single attribute from the CC without violating the entire query result; maximizing means
that we cannot add any further attribute. By default, all profiling functions but IND() produce
minimal results; IND() and combinations with this function produce maximal results.

CONTAINS: The DPQL function CONTAINS(<CC>,<CC>) specifies that in every valid result,
the first column combination contains all attributes of the second column combination. To
understand the usefulness of this function, again consider the example query in List. 8.
Assume we want, as an output of this query, not the actual IND-UCC-pair that answers the
query but instead the maximal IND and minimal UCC that frame these solutions. Hence, we
specify three outputs X, Y, and Z constrained to UCC(X), IND(Y,Z), and CONTAINS(Y,X), then
X⊆Y (referring to attributes here; not INDs!) with minimal X and maximal Y and Z column
combinations.

DPQL: The Data Profiling Query Language 407

18 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

1 SELECT
2 X, Y

3 FROM
4 CC(Pokemon,Teams,Trainers) X,
5 CC(Pokemon,Teams,Trainers) Y
6 WHERE
7 UCC(X) AND UCC(Y) AND PAIR(X,Y)

List. 9: Find redundant keys in multiple relations.

SPLIT and PAIR: Column combinations
in DPQL query results are, by default,
unrelated unless some metadata function
connects them. Occasionally, however, we
want to filter results such that certain col-
umn combinations in a result (= a row in
the result table) are either paired (= po-
tentially different attribute lists but from
the same relation) or split (= different at-
tribute lists from different relations). The
PAIR(<CC>,<CC>) and SPLIT(<CC>,<CC>)
functions allow the user to specify these requirements in a DPQL query. We recall that
in our introductory example on foreign-key discovery (see List. 1) the source and target
columns should stem from different relations; this was ensured with the SPLIT() function.
If we would like to discover, for example, redundant keys (= more than one UCC in the
same table) in multiple relations (see List. 9), we need the PAIR() function to co-locate X
and Y. Note that PAIR() and SPLIT() are commutative operations, so that e. g. PAIR(X,Y) =
PAIR(Y,X).

7 DPQL in Practical Applications

Data profiling has many applications in data management and data analytics. To evaluate
our data profiling query language, we selected a few representative scenarios from different
applications to showcase the implementation of their profiling activities in our novel dialect.

Data linkage: Our foreign-key discovery example from List. 1 has been drawn from a data
engineering task that aims to connect previously unconnected datasets or datasets for which
the foreign-key relationships have been lost. The discovered combinations of INDs and
UCCs present an application with structurally valid constraint candidates.

1 SELECT
2 W, X, Y, Z

3 FROM
4 CC(Pokemon) V, CC(Pokemon) W,
5 CC(Pokemon) X, CC(Pokemon) Y,
6 CC(Locations) Z
7 WHERE
8 IND(V,Z,partial=0.8)
9 AND UCC(W,partial=0.95)

10 AND FD(X,Y,partial=0.90)

List. 10: Find partial dependencies in the Pokemon
relation for error detection.

Data cleaning: Metadata is an important
asset for error detection and correction. A
cleaning system could, for instance, issue
the DPQL query in List. 10 to discover par-
tial INDs, UCCs, and FDs in the Pokemon re-
lation. The system would then check the re-
sults for meaningful but not 100% correct re-
sults. We should, for example, find the IND
Location ⊆ Title, the UCC {Name, Sex},
and the FD Type→ Weak. If one of these is
indeed partial and not exact, we can use the
dependency to identify and possibly correct
the erroneous records [MA20].

408 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 19

Q 1 SELECT
2 UCC_C, IND_L, IND_R

3 FROM
4 CC(Pokemon.Name,Pokemon.Sex) UCC_C,
5 {[Pokemon.Location]} AS IND_L,
6 {[Locations.Title]} AS IND_R
7 WHERE
8 UCC(UCC_C) AND IND(IND_L,IND_R)

List. 11: Find a specific UCC and IND.

Query optimization: Research on op-
timizing SQL queries with profile-
able metadata has generated many ap-
proaches, ranging from various query
rewriting strategies over physical exe-
cution optimization techniques to cost-
based query plan rewriting rules [Ko22].
For illustration purposes, consider an
example of a distinct semi-join fil-
ter, which is an SQL query of the
form SELECT DISTINCT Name, Sex FROM
Pokemon WHERE Location IN {SELECT Title FROM Locations}; The DPQL query in
List. 11 checks if {Name, Sex} is unique to remove the DISTINCT operator and if
Location ⊆ Title is an IND to remove the entire WHERE clause.

1 SELECT
2 X, Y

3 FROM
4 CC(Pokemon,PoMos) X,
5 CC(Pokemon,PoMos) Y
6 WHERE
7 MD(X,Y,partial=0.95,
8 conditional=true)

9 AND SPLIT(X,Y)

List. 12: Find partial conditional MDs.

Data integration: Schema matching is an
integral part of data integration. One flavor
of schema matching are structure-based
approaches [RB01]. The partial conditional
matching dependency that we discussed in
Sect. 5.3 is such a structure that describes
matching attributes (the MD) with some
failure tolerance and context information
(the conditional properties). To discover
the partial conditional MDs between the
Pokemon and PoMos relations, we can use
the DPQL query in List. 12.

1 SELECT
2 UCC_C, FD_L, FD_R, IND_L, IND_R

3 FROM
4 CC(P,L,T,T) UCC_C,
5 CC(P,L,T,T) FD_L, CC(P,L,T,T) FD_R,
6 CC(P,L,T,T) IND_L, CC(P,L,T,T) IND_R
7 WHERE
8 UCC(UCC_C) AND FD(FD_L,FD_R)
9 AND IND(IND_L,IND_R)

List. 13: Find UCCs, FDs and INDs in all tables;
table names in CC() calls were shortened for brevity.

Data exploration: A look at the metadata
of a relational dataset often helps to under-
stand its structure and implicit logic better.
Because data often comes without metadata,
data profiling is conducted to gather pos-
sibly many insights from a given instance.
The DPQL query in List. 13 does exactly
this: It collects all UCCs, FDs, and INDs
that are true in our Pokémon example. The
normalized output presents the results in
three tables – one for each dependency.

Q

DPQL: The Data Profiling Query Language 409

20 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

8 Future Work

The data profiling query language (DPQL) that we introduced in this paper is an essential
building block for a new generation of data profiling systems. For its practical implementation,
we envision a database-like system that covers all standard query processing components.
The setup of this system, however, is more like a virtually integrated database [DHI12] or,
in modern terms, a DataLakehouse [Ar21], because the system answers metadata questions
in a virtual fashion, across potentially multiple datasets, and without manipulating the
data itself. Due to the size and complexity of this system, we expect that DPQL will spark
innovative research on at least the following components:

Query parser: The DPQL queries require a parsing component that translates them into
logical (and physical) execution plans. We assume that DPQL can be combined with SQL,
but this imposes interesting parsing challenges. Another challenge for the parser (and all
other components) is that further iterations of DPQL must be able to introduce new features,
such as additional metadata types, metadata properties, or filter functions, because data
profiling – in contrast to relational query processing – is a still evolving area.

Query optimizer: Despite their similarities with SQL queries, DPQL queries translate
into quite different execution plans, for which other optimization rules apply. For query
optimization, novel approaches for indexing, caching, query rewriting, operator ordering etc.
need to be found. Effective approaches for selecting the most efficient execution strategy
(e. g. UCCs first, INDs first, or both at the same time?) and automatically inferring empty
results (e. g. from CC(Pokemon,!Pokemon) or SIZE(CC(Team))>3) are crucial for the system.

Query execution engine: The actual data profiling might change significantly given the new
application-specific pruning rules and the potential of holistically combining profiling runs.
Given the many existing profiling algorithms (and new techniques of the future), research
will need to investigate which algorithms to combine, how to combine algorithms, and how
to integrate them into one system. Considering the comprehensive amount of metadata types
and discovery flavors, we expect a lot of future research on the actual query processing.

9 Summary

In this paper, we proposed DPQL, a declarative query language for the discovery of data
dependencies and other metadata statements. DPQL is the first uniform data profiling
language and an essential building block for a new generation of data profiling systems. The
SQL-like language relieves data scientists from deploying complex profiling algorithms,
and it renders most of the expensive and difficult post-processing efforts obsolete. Due
to the increased filter- and pruning-capabilities, we expect significant efficiency gains for
DPQL-based data profiling activities. With DPQL, we started to close the gap between
data profiling results and actual applications needs; now, much research is needed for the
technical design of the language and its profiling capabilities.

410 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 21

References

[Ab18] Abedjan, Z.; Golab, L.; Naumann, F.; Papenbrock, T.: Data Profiling: Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2018.

[Ar21] Armbrust, M.; Ghodsi, A.; Xin, R.; Zaharia, M.: Lakehouse: a new generation
of open platforms that unify data warehousing and advanced analytics. In:
Proceedings of the Conference on Innovative Data Systems Research (CIDR).
2021.

[Be11] Bertossi, L. E.: Database Repairing and Consistent Query Answering. Morgan
& Claypool Publishers, 2011.

[Bi20] Birnick, J.; Bläsius, T.; Friedrich, T.; Naumann, F.; Papenbrock, T.; Schir-
neck, M.: Hitting Set Enumeration with Partial Information for Unique
Column Combination Discovery. Proceedings of the VLDB Endowment 13/
12, pp. 2270–2283, 2020.

[BKN17] Bleifuß, T.; Kruse, S.; Naumann, F.: Efficient Denial Constraint Discovery
with Hydra. Proceedings of the VLDB Endowment 11/3, pp. 311–323, 2017.

[Bl12] Blockeel, H.; Calders, T.; Fromont, É.; Goethals, B.; Prado, A.; Robardet, C.:
An inductive database system based on virtual mining views. Data Mining
and Knowledge Discovery 24/1, pp. 247–287, 2012.

[Ca21a] Caruccio, L.; Cirillo, S.; Deufemia, V.; Polese, G.: Efficient Discovery of Func-
tional Dependencies from Incremental Databases. In: International Conference
on Information Integration and Web Intelligence. Pp. 400–409, 2021.

[Ca21b] Caruccio, L.; Deufemia, V.; Naumann, F.; Polese, G.: Discovering Relaxed
Functional Dependencies Based on Multi-Attribute Dominance. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE) 33/9, pp. 3212–3228,
2021.

[CDP16] Caruccio, L.; Deufemia, V.; Polese, G.: Relaxed Functional Dependencies - A
Survey of Approaches. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 28/1, pp. 147–165, 2016.

[Ch17] Chardin, B.; Coquery, E.; Pailloux, M.; Petit, J.-M.: RQL: a query language for
rule discovery in databases. Theoretical Computer Science 658/, pp. 357–374,
2017.

[Ch19] Chen, H.; Jajodia, S.; Liu, J.; Park, N.; Sokolov, V.; Subrahmanian, V. S.:
FakeTables: Using GANs to Generate Functional Dependency Preserving
Tables with Bounded Real Data. In: Proceedings of the International Joint
Conference on Artificial Intelligence (ĲCAI). International Joint Conferences
on Artificial Intelligence Organization, pp. 2074–2080, 2019.

[De22] Desbordante: Open-source data profiling tool, 2022, url: https : / /
desbordante.unidata-platform.ru/, visited on: 09/19/2022.

DPQL: The Data Profiling Query Language 411

https://desbordante.unidata-platform.ru/
https://desbordante.unidata-platform.ru/

22 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

[DHI12] Doan, A.; Halevy, A.; Ives, Z.: Principles of data integration. Elsevier, 2012.
[DR02] Do, H.-H.; Rahm, E.: COMA – A System for flexible combination of schema

matching approaches. In: Proceedings of the International Conference on Very
Large Databases (VLDB). Pp. 610–621, 2002.

[Dü19] Dürsch, F.; Stebner, A.; Windheuser, F.; Fischer, M.; Friedrich, T.; Strelow, N.;
Bleifuß, T.; Harmouch, H.; Jiang, L.; Papenbrock, T.; Naumann, F.: Inclusion
Dependency Discovery: An Experimental Evaluation of Thirteen Algorithms.
In: Proceedings of the International Conference on Information and Knowledge
Management (CIKM). Pp. 219–228, 2019.

[Eh16] Ehrlich, J.; Roick, M.; Schulze, L.; Zwiener, J.; Papenbrock, T.; Naumann, F.:
Holistic Data Profiling: Simultaneous Discovery of Various Metadata. In: Pro-
ceedings of the International Conference on Extending Database Technology
(EDBT). Pp. 305–316, 2016.

[Fa08] Fan, W.: Dependencies Revisited for Improving Data Quality. In: Proceedings
of the Symposium on Principles of Database Systems (PODS). Pp. 159–170,
2008.

[Fe18] Fernandez, R. C.; Abedjan, Z.; Koko, F.; andSamuel Madden, G. Y.; Stone-
braker, M.: AURUM: A data discovery system. In: Proceedings of the Interna-
tional Conference on Data Engineering (ICDE). 2018.

[FL10] Fang, L.; LeFevre, K.: Splash: ad-hoc querying of data and statistical models.
In: Proceedings of the International Conference on Extending Database
Technology (EDBT). Pp. 275–286, 2010.

[GH83] Ginsburg, S.; Hull, R.: Order dependency in the relational model. Theoretical
Computer Science 26/1–2, pp. 149–195, 1983.

[HL18] Hannula, M.; Link, S.: On the interaction of functional and inclusion depen-
dencies with independence atoms. In: International Conference on Database
Systems for Advanced Applications. Pp. 353–369, 2018.

[HN17] Harmouch, H.; Naumann, F.: Cardinality Estimation: An Experimental Survey.
Proceedings of the VLDB Endowment 11/4, pp. 499–512, 2017.

[HPN21] Harmouch, H.; Papenbrock, T.; Naumann, F.: Relational Header Discovery
using Similarity Search in a Table Corpus. In: Proceedings of the International
Conference on Data Engineering (ICDE). Pp. 444–455, 2021.

[Hu99] Huhtala, Y.; Kärkkäinen, J.; Porkka, P.; Toivonen, H.: TANE: An efficient
algorithm for discovering functional and approximate dependencies. The
Computer Journal 42/2, pp. 100–111, 1999.

[IC15] Ilyas, I. F.; Chu, X.: Trends in Cleaning Relational Data: Consistency and
Deduplication. Foundations and Trends in Databases 5/4, pp. 281–393, 2015.

[Ko22] Kossmann, J.; Lindner, D.; Naumann, F.; Papenbrock, T.: Workload-driven,
lazy discovery of data dependencies for query optimization. In: Proceedings
of the Conference on Innovative Data Systems Research (CIDR). 2022.

412 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

DPQL: The Data Profiling Query Language 23

[KPN20] Koumarelas, l.; Papenbrock, T.; Naumann, F.: MDedup: Duplicate Detection
with Matching Dependencies. 13/5, pp. 712–725, 2020.

[KPN22] Kossmann, J.; Papenbrock, T.; Naumann, F.: Data dependencies for query
optimization: a survey. The VLDB Journal 31/1, pp. 1–22, 2022.

[Kr16] Kruse, S.; Papenbrock, T.; Harmouch, H.; Naumann, F.: Data Anamnesis:
Admitting Raw Data into an Organization. IEEE Data Engineering Bulletin
39/2, pp. 8–20, 2016.

[Kr17a] Kruse, S.; Hahn, D.; Walter, M.; Naumann, F.: Metacrate: Organize and analyze
millions of data profiles. In: Proceedings of the International Conference on
Information and Knowledge Management (CIKM). Pp. 2483–2486, 2017.

[Kr17b] Kruse, S.; Papenbrock, T.; Dullweber, C.; Finke, M.; Hegner, M.; Zabel, M.;
Zoellner, C.; Naumann, F.: Fast Approximate Discovery of Inclusion De-
pendencies. In: Proceedings of the Conference Datenbanksysteme in Büro,
Technik und Wissenschaft (BTW). Pp. 207–226, 2017.

[Li20] Livshits, E.; Heidari, A.; Ilyas, I. F.; Kimelfeld, B.: Approximate Denial
Constraints. Proceedings of the VLDB Endowment 13/10, pp. 1682–1695,
2020.

[LSS96] Lakshmanan, L. V. S.; Sadri, F.; Subramanian, I. N.: SchemaSQL - A Language
for Interoperability in Relational Multi-Database Systems. In: Proceedings of
the VLDB Endowment. Pp. 239–250, 1996.

[MA20] Mahdavi, M.; Abedjan, Z.: Baran: Effective Error Correction via a Unified
Context Representation and Transfer Learning. Proceedings of the VLDB
Endowment 13/12, pp. 1948–1961, 2020.

[MPC+96] Meo, R.; Psaila, G.; Ceri, S., et al.: A new SQL-like operator for mining
association rules. In: Proceedings of the International Conference on Very
Large Databases (VLDB). Vol. 96, pp. 122–133, 1996.

[MPC98] Meo, R.; Psaila, G.; Ceri, S.: An extension to SQL for mining association
rules. Data Mining and Knowledge Discovery 2/2, pp. 195–224, 1998.

[OP11] Ordonez, C.; Pitchaimalai, S. K.: One-pass data mining algorithms in a DBMS
with UDFs. In: Proceedings of the International Conference on Management
of Data (SIGMOD). Pp. 1217–1220, 2011.

[Pa00] Paulley, G. N.: Exploiting Functional Dependence in Query Optimization,
tech. rep., University of Waterloo, 2000.

[Pa15a] Papenbrock, T.; Bergmann, T.; Finke, M.; Zwiener, J.; Naumann, F.: Data Pro-
filing with Metanome. Proceedings of the VLDB Endowment 8/12, pp. 1860–
1863, 2015.

[Pa15b] Papenbrock, T.; Ehrlich, J.; Marten, J.; Neubert, T.; Rudolph, J.-P.; Schön-
berg, M.; Zwiener, J.; Naumann, F.: Functional Dependency Discovery: An
Experimental Evaluation of Seven Algorithms. Proceedings of the VLDB
Endowment 8/10, pp. 1082–1093, 2015.

DPQL: The Data Profiling Query Language 413

24 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

[Pa15c] Papenbrock, T.; Kruse, S.; Quiané-Ruiz, J.-A.; Naumann, F.: Divide & Conquer-
based Inclusion Dependency Discovery. Proceedings of the VLDB Endowment
8/7, pp. 774–785, 2015.

[PAN21] Pena, E. H. M.; de Almeida, E. C.; Naumann, F.: Fast Detection of Denial
Constraint Violations. Proceedings of the VLDB Endowment 15/4, pp. 859–
871, 2021.

[PN16] Papenbrock, T.; Naumann, F.: A Hybrid Approach to Functional Dependency
Discovery. In: Proceedings of the International Conference on Management
of Data (SIGMOD). Pp. 821–833, 2016.

[RB01] Rahm, E.; Bernstein, P. A.: A survey of approaches to automatic schema
matching. Proceedings of the VLDB Endowment 10/4, pp. 334–350, 2001.

[Ro09] Rostin, A.; Albrecht, O.; Bauckmann, J.; Naumann, F.; Leser, U.: A Machine
Learning Approach to Foreign Key Discovery. In: Proceedings of the ACM
Workshop on the Web and Databases (WebDB). 2009.

[Sc20] Schirmer, P.; Papenbrock, T.; Koumarelas, I.; Naumann, F.: Efficient Discovery
of Matching Dependencies. ACM Transactions on Database Systems (TODS)
45/3, pp. 1–33, 2020.

[SGI19] Saxena, H.; Golab, L.; Ilyas, I. F.: Distributed Implementations of Dependency
Discovery Algorithms. Proceedings of the VLDB Endowment 12/11, pp. 1624–
1636, 2019.

[SP22] Schmidl, S.; Papenbrock, T.: Efficient Distributed Discovery of Bidirectional
Order Dependencies. VLDB Journal 31/1, pp. 49–74, 2022.

[Sz17] Szlichta, J.; Godfrey, P.; Golab, L.; Kargar, M.; Srivastava, D.: Effective and
Complete Discovery of Order Dependencies via Set-based Axiomatization.
Proceedings of the VLDB Endowment/, 2017.

[VA18] Visengeriyeva, L.; Abedjan, Z.: Metadata-Driven Error Detection. In: Pro-
ceedings of the International Conference on Scientific and Statistical Database
Management (SSDBM). 2018.

[Vi22] Viadotto: Make your data profitable with our next-gen data profiling tools,
2022, url: https://www.viadotto.tech/, visited on: 09/19/2022.

[Wa17] Wang, Y.; Song, S.; Chen, L.; Yu, J. X.; Cheng, H.: Discovering conditional
matching rules. ACM Transactions on Knowledge Discovery from Data 11/4,
pp. 1–38, 2017.

[WHL21] Wei, Z.; Hartmann, S.; Link, S.: Algorithms for the discovery of embedded
functional dependencies. VLDB Journal 30/6, pp. 1069–1093, 2021.

[WLL19] Wei, Z.; Leck, U.; Link, S.: Discovery and Ranking of Embedded Uniqueness
Constraints. Proceedings of the VLDB Endowment 12/13, pp. 2339–2352,
2019.

414 Marcian Seeger, Sebastian Schmidl, Alexander Vielhauer, Thorsten Papenbrock

https://www.viadotto.tech/

DPQL: The Data Profiling Query Language 25

[Xi22] Xiao, R.; Yuan, Y.; Tan, Z.; Ma, S.; Wang, W.: Dynamic Functional Dependency
Discovery with Dynamic Hitting Set Enumeration. In: Proceedings of the
International Conference on Data Engineering (ICDE). Vol. 1. 1, pp. 286–298,
2022.

[Zh10] Zhang, M.; Hadjieleftheriou, M.; Ooi, B. C.; Procopiuc, C. M.; Srivastava, D.:
On Multi-column Foreign Key Discovery. Proceedings of the VLDB Endow-
ment 3/1-2, pp. 805–814, 2010.

DPQL: The Data Profiling Query Language 415

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

ExtracTable: Extracting Tables from Raw Data Files

Leonardo Hübscher1, Lan Jiang2, Felix Naumann3

Abstract: Raw data, especially in text-files, comes in many shapes and forms, often tailored toward
human readability. They include preambles and footnotes, are formatted visually, and in general do
not follow csv-guidelines. The ability to easily ingest such files into data systems opens up many
opportunities for data analysis and processing. With ExtracTable, we present a system that can
automatically ingest a large variety of raw data files, including text files and poorly structured csv-files
by detecting row patterns and thus separating their values into coherent columns. We manually
annotated 957 files of a wide variety containing 1 208 tables. We show experimentally that ExtracTable
can correctly parse 90% of all lines in structured files and 76% of all lines in files with a visual layout
only, significantly outperforming state-of-the-art.

1 Table Extraction

As more and more data is created and made accessible, the ability to automatically ingest
and analyze them becomes increasingly desirable. Various open data portals are a means
for governments, companies, and individuals to make data publicly available. However, to
support data creators to easily share their data, these platforms do not enforce specific data
formats, and we observe very many home-grown formats that are not amenable to easy
parsing and ingesting into a data system.

Data wrangling summarizes the process of transforming raw data into a well-defined format.
According to multiple studies from Kaggle, Anaconda, IBM, and Forbes, data scientists
spend 26% to 80% of their time on data wrangling, distracting them from tackling the original
data processing task [An20; Ch14; Mo18; Pr16]. This effort is not only time-consuming,
but also tedious and error-prone. Still, data preparation is necessary, as data quality issues
otherwise prevent subsequent algorithms from working well.

Data is often displayed and stored in a tabular format that is suitable for both humans and
machines. However, tables may appear quite different when persisted as files. Plain-text files,
for instance, lack proper instructions on how to interpret tables therein. Our work regards two
table formats: csv tables and ascii tables. The widely used csv (character-separated-values)
format was first used by IBM to store tabular data in 1972. However, a formally specified
csv format, which is now known as the rfc 4180 standard, had not been formalized until
33 years later [IB72]. Meanwhile, companies and data practitioners have developed their
1 Hasso Plattner Institute, University of Potsdam, Germany leonardo.huebscher@student.hpi.de
2 Hasso Plattner Institute, University of Potsdam, Germany lan.jiang@hpi.de
3 Hasso Plattner Institute, University of Potsdam, Germany felix.naumann@hpi.de

cba doi:10.18420/BTW2023-20

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 417

mailto:leonardo.huebscher@student.hpi.de
mailto:lan.jiang@hpi.de
mailto:felix.naumann@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-20

2 Leonardo Hübscher, Lan Jiang, Felix Naumann

OBIA4RTM config file for setting up Prospect4SAIL

Typical values (taken from J Gomez-Dans on https://pypi.org/project/prosail/)

===
| Parameter | Description of parameter | Units |Typical min | Typical max |
|-------------|---------------------------------|--------------|------------|-------------|
| N | Leaf structure parameter | N/A | 0.8 | 2.5 |
| cab | Chlorophyll a+b concentration | ug/cm2 | 0 | 80 |
| caw | Equivalent water thickiness | cm | 0 | 200 |
| car | Carotenoid concentration | ug/cm2 | 0 | 20 |
| cbrown | Brown pigment | NA | 0 | 1 |
| cm | Dry matter content | g/cm2 | 0 | 200 |
| lai | Leaf Area Index | N/A | 0 | 10 |
| lidfa | Leaf angle distribution | N/A | - | - |
| lidfb | Leaf angle distribution | N/A | - | - |
| psoil | Dry/Wet soil factor | N/A | 0 | 1 |
| rsoil | Soil brigthness factor | N/A | - | - |
| hspot | Hotspot parameter | N/A | - | - |
| tts | Solar zenith angle | deg | 0 | 90 |
| tto | Observer zenith angle | deg | 0 | 90 |
| phi | Relative azimuth angle | deg | 0 | 360 |
| typelidf | Leaf angle distribution type | Integer | - | - |
===

You can enter your values below -> make sure not to alter the overall structure of this
template -> otherwise bad things might happen

Further Explainations:

min: Minimum Value of Parameter
max: Maximum Value of Parameter (in case min=max, the parameter will not be retrieved)
num: in case min!=max, the number of samples to be drawn for the specific parameter
dist: which statistical distribution of values should be used for drawing the samples (ignored if min=max)
1: truncated Gaussian (between min and max)
2: uniform distribution (between min and max)
0: non-applicable
mean: mean in case of truncated Gaussian distribution
std: in case of truncated Gaussian standard deviation of parameter for drawing the samples

min max num dist mean std comment
min max num dist mean std comment
1.8 1.8 1 0 1.5 0 N
20 60 40 1 40 15 cab
 0 0 1 0 0 0 car
 0 1 10 2 0 0 cbrown
 0.01 0.01 1 0 0 0 cw
 0.009 0.009 1 0 0 0 cm
 0.2 7 40 1 4 2.5 lai
-0.35 -0.35 1 2 0 0 lidfa
-0.15 -0.15 1 0 0 0 lidfb
 0.5 0.5 1 0 0 0 rsoil
 0.2 0.2 1 0 0 0 psoil
 0.01 0.01 1 0 0 0 hspot
27.947 27.947 1 0 0 0 tts
7.04345 7.04345 1 0 0 0 tto
146.691 146.691 1 0 0 0 psi
1 1 1 0 0 0 typelidf

Fig. 1: A real-world plain-text file including two tables in different formats (framed in blue) taken
from the Mendeley data portal (doi: 10.17632/vs55cwssyh.2#file-54e4f7c2-0156-4be8-9960-d95b0ba0f940)

418 Leonardo Hübscher, Lan Jiang, Felix Naumann

https://data.mendeley.com/datasets/vs55cwssyh/2/files/54e4f7c2-0156-4be8-9960-d95b0ba0f940

ExtracTable: Extracting Tables from Raw Data Files 3

own formats that use different utility characters, such as “|” as delimiters, which deviate from
the specification. Unfortunately, the rfc formalization does not account for such variations.
Our previous work recognizes table regions in csv files with visual features based on
different cell data types [VJN21]. To use this approach, however, one must first identify
cells. ascii tables are another type of plain-text data format used to deposit data. Unlike
csv tables that structure data with particular utility characters, ascii tables merely store
characters, leaving the interpretation of file structures to users. The existence of customized
file structures forces data scientists to take care of each file individually.

Figure 1 shows the content of a single real-world file with two tables. While the first table
uses special characters, such as “|”, “=”, and “-” to frame the header row and different
columns, the second table uses whitespace regions to separate columns. To facilitate human
readability, columns in the two tables visually align their values by using different numbers
of utility characters as field separators. There are also texts before or after tables that typically
deliver contextual information, such as experimental setups or sensor information. Texts
might be misinterpreted as structured data when they contain table-like elements. Due to
the ad-hoc shapes of tables, common commercial tools fail to load them correctly [HN20].

We propose the ExtracTable algorithm for automatic table extraction from plain-text
files, which takes all the aforementioned file varieties into consideration. Given a file,
ExtracTable first detects its structure interpretation and uses it to interpret structures of its
lines. Then, the algorithm extracts value patterns of the interpreted lines and builds table
candidates with the optimal pattern consistency. Finally, a subset of table candidates are
selected as the output tables. Our approach makes the following contributions:

1. A set of 957 annotated raw data files selected from a variety of sources, totaling 1 208
tables across all files.

2. The ExtracTable approach, which detects column and row patterns in data, and
ultimately extracts table elements from raw data files.

3. A detailed experimental evaluation, also comparing to multiple csv parsing tools
and the Pytheas system [Ch20]

To encourage further research on this topic, we have published all annotated data and the
code4. We organize the rest of this paper as follows: Section 2 summarizes related work.
We formalize the terms used in this work and the table extraction problem in Section 3. We
elaborate on the proposed ExtracTable algorithm in Section 4, and present the results of a
series of experiments in Section 5. Finally, we conclude the paper and point out future work
in Section 6.
4 https://github.com/HPI-Information-Systems/ExtracTable

ExtracTable: Extracting Tables from Raw Data Files 419

https://github.com/HPI-Information-Systems/ExtracTable

4 Leonardo Hübscher, Lan Jiang, Felix Naumann

2 Related Work

The Pytheas system addresses the problem of table discovery in csv files using a set of
weighted fuzzy rules that exploit column patterns [Ch20]. The weights were trained on a
dataset collected from open data portals containing governmental data. The paper focuses
on table discovery and row classification While the authors optimized their approach for
csv tables, Pytheas could also be applied to tables in ascii files if adapted accordingly. A
limitation of this approach is that input files must have been parsed properly, which the
authors conduct with the standard Sniffer module of Pythons csv library in a pre-processing
step. In comparison, our approach can parse raw files automatically before detecting tables
and classifying rows. We use Pytheas as a baseline for table range detection.

Pyreddy and Croft propose an approach to detect text lines containing tabular structures
represented in ascii [PC97]. A followup work improves the line classification step [Pi03].
From their work, we learn that whitespace alignments in continuous lines are important for
ascii tables. This observation is confirmed by additional related work, such as [SJT03]
and [Hu99]. Thus, our approach also makes uses of whitespace alignments. However, we
note that line classification is only one aspect toward actually extracting tabular data. The
original approach relies solely on the structural features of tables and does not take cell
content into account, which we consider in our approach.

Döhmen et al. noted that existing csv parsers make decisions during the file parsing process
sequentially, which they suspect to negatively impact the overall quality [DMB17]. They
propose a solution that makes decisions about sub-criteria as late as possible, trading run
time for parsing quality. Besides csv parsing, their heuristics cover file encoding detection,
table normalization, and table area detection. While the approach includes a stage dealing
with table area detection, it does not handle multi-table files that account for about 7% of
the cases in our dataset. Additionally, the authors tested only a limited set of csv variants.
We include their published implementation as a baseline when comparing parsing accuracy.

In [BNS19] the authors introduce a novel data consistency measure to correctly parse csv
files. The consistency measure consists of a row pattern score and a data type score. The row
pattern represents the column count per row, depending on the detected csv dialect. The type
score uses regular expressions to detect known data types within cell values and represents
the ratio of known cells compared to the total number of cells. Both scores contribute
equally to the consistency measure, favoring the pattern score on ties. The pattern-based
approach seems to work well according to the provided evaluation. Yet, this solution also
does not work with files containing multiple tables that our approach is able to handle. As
the authors noted, it can become problematic if many of the cell data types are unknown.
We use the publicly available implementation in our experiments.

Ill-formed csv and ascii files are not the only opportunity to extract relations from content
that is designed to be human-readable. For instance, Chu et al. suggest the Tegra approach to
recognize relational tables that appear as lists on web pages with the global record alignment

420 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 5

technique [Ch15]. As our approach is not designed to handle web tables, we do not compare
to this approach.

Overall, existing works lack at least one of the aforementioned features: 1) parse input files
automatically; 2) take content into account; 3) handle multi-table files. Our approach can
handle all these limitations.

3 Table Formats

We recognize two table formats used for persisting data tables in raw plain-text files:
character-separated-values tables (csv) and other (ascii) formats. We first introduce these
two table formats in detail, and then state the table extraction problem.

3.1 CSV and ASCII tables

According to rfc 4180, a csv file is a line-wise plain-text file that stores a table: each line
represents a data record, and the first line optionally represents the table header [Sh05]. The
cells of each line are separated by a special character, the delimiter. If a cell value includes
the delimiter character itself, the value must be put into quotes using quotation characters.
An escape character is used to escape a quote character or the escape character itself, if they
appear within quoted field values. A file’s dialect specifies the used delimiter 3, quotation @,
and escape characters 4, denoted as 〈3, @, 4〉 [Sh05]. Although the rfc document specifies
comma as delimiter and double quote as quotation and escape, it acknowledges the usage of
a wide variety of characters for each dialect component in real-world data [Sh05]. Because
csv files do not carry metadata, the presence of different dialects within and across files
acts as a barrier to the automatic table interpretation and extraction.

A W3C working group for “CSV on the Web” proposes the delivery of an additional json
file, which contains information about the used dialect and the schema [BTH16]. CSVY is a
similar development, which stores such information as a yaml meta block at the beginning
of the file (www.csvy.org). However, neither standard has been widely adopted.

An ascii table separates columns with white space. To visually align values within each
column, ascii tables fill the column gap between fields with one or more space or tab
characters. With their visual alignment, ascii tables are more suitable for human readability.
Fields are separated by white space so that values from different columns do not horizontally
interfere each other. Two columns must be separated by at least one whitespace character.
Because the characters and their number may vary between different pairs of neighboring
fields, we cannot simply delimit lines by using a fixed number of whitespace characters. It
is also not possible to accept an arbitrary number of space characters as delimiter, as empty
fields would not be recognized properly and field values themselves might include spaces.
Instead, a set of column boundaries is required: each boundary defines the inclusive start and

ExtracTable: Extracting Tables from Raw Data Files 421

www.csvy.org

6 Leonardo Hübscher, Lan Jiang, Felix Naumann

exclusive end of a column as the interval [start, end), based on the character index. Figure 2
shows an ascii table using [0, 5), [7, 23), [26, 31), and [32, 35) as column boundaries.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

P a r a m D e s c r i p t i o n U n i t s M i n
- -
l a i L e a f a r e a i n d e x N / A 0
l i d f a L e a f a n g l e d i s t . N / A -

Fig. 2: Exemplary ascii table – columns aligned by layout

ascii tables can include style information, such as borders, which canmake the table structure
clearer to human readers. In particular, horizontal lines are often used for underlining
headers or separating tables. We therefore distinguish two line types. We refer to a line as a
helper line if its content includes only non-alphanumeric characters or whitespace. All lines
with at least one alphanumeric character are content lines.

3.2 The Table Extraction Problem

Before we can extract tables from plain-text files, we must understand the structures of these
files by identifying the dialects and the column boundaries of tables stored in these two
respective file formats. We refer to dialects and column boundaries as parsing instructions
for the two types of files. Here, we highlight the difficulty resulting from the lack of parsing
instructions due to multiple valid ways of interpreting lines.

Figure 3 shows a file excerpt allowing for multiple ascii interpretations. When regarding
the first two lines only, we might split each line into five fields, namely Leaf, angle,
distribution, N/A, and -. However, the introduction of the third line yields multiple
interpretation possibilities.

Leaf angle distribution N/A -
Leaf angle distribution N/A -
Dry/Wet soil factor 0

Fig. 3: ascii table adapted from Figure 1 emphasizing the ambiguity of some ascii records

Similar effects can be observed for tables stored in the csv format. Even if we consider only
dialects using single non-alphanumeric characters, we can generate seven valid delimiter
candidates for a line with the text "N, \"Leaf\"structure";N/A;"0.8". A simple approach
may select the delimiter character based on the candidate frequency across lines. However,
this method is sensitive to the content. For example, cells including delimiter-characters
could easily fail this approach.

We state the table extraction problem from plain-text files as follows: Given a plain-text
file containing one or more vertically stacked tables, determine the line structure and the
range (the beginning and the end row indexes) of each table and transform every table to

422 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 7

the rfc 4180 standard. For simplicity, we assume that individual cells do not contain line
breaks. Moreover, we exclude the detection of the file encoding from our problem and
assume utf-8 as specified in rfc 4180.

4 The ExtracTable algorithm

We propose ExtracTable, an algorithm that exploits data type consistency within columns
to tackle the table extraction problem. To interpret fields in a file, ExtracTable first detects
per-line valid dialects for csv tables and possible column boundaries for ascii tables
(Section 4.1). After applying the detected parsing instructions, the resulting interpretations
divide each line into several fields, which are passed to the next step to identify data type
patterns (Section 4.2). Then our approach generates table candidates with the compatibility
score (Section 4.3). Finally, the algorithm selects a subset of the table candidates (Section 4.4).

4.1 Parsing instruction detection

Detecting parsing instructions is modeled as dialect detection for csv tables and column
boundary detection for ascii tables, respectively. ExtracTable first pre-processes a file by
classifying each line as either a helper line or a content line. It prunes all helper lines, as
they neither deliver content nor help detect correct column boundaries of ascii tables, and
may be incorrectly treated as part of the header or the data region of a table.

Dialect detection for csv tables. To recognize a csv table’s dialect, we propose a two-step
approach that first detects all delimiter candidates, and then quotation and escape characters
for each delimiter candidate. First, ExtracTable replaces consecutive alphanumeric
characters and excluded characters within a line ; with a placeholder character. It then splits
the resulting string by the placeholder character, yielding a list of delimiter sequences and
empty values. All substring combinations of each delimiter sequence are appended to the
list. Values that are empty or longer than the maximum length are removed.

For each detected delimiter, ExtracTable tries to recognize the quotation and escape
characters using a depth-first search method, shown in Algorithm 1. The algorithm receives
the line content ; and a delimiter sequence 3 as input. It tries to parse the line using the
dialect dialect0 = 〈3, Y, Y〉 (see line 16). The parse method iterates over the character
positions of the trimmed line content. For each iteration, get_dialect_component returns the
component matching the dialect specified in the method parameters following the rfc 4180
grammar. The component can be one of content, delimiter, quotation, escape, or error (see
line 5). In cases where the character at the current position cursor violates the rfc 4180
grammar, the get_dialect_component method returns an error and disregards the dialect
(line 7). The state machine for parsing the dialect specified in the ?0AB4 method parameters

ExtracTable: Extracting Tables from Raw Data Files 423

8 Leonardo Hübscher, Lan Jiang, Felix Naumann

is updated in update_parser_state (line 12) based on the returned component. Additionally,
the algorithm checks whether the remaining line starts a new component from the given
dialect. If the current position was classified as content and is not alphanumeric, we could
interpret the content as a quotation or escape. Line 9 starts a new branch of the DFS using the
remaining line content and the updated dialect dialect1 = 〈3, @, Y〉, where @ is the character
sequence at the current position. The same logic is applied to the escape character, as shown
in line 11. If the parser can process the whole line without errors, it found a legitimate
dialect. Finally, the parser returns all valid dialects.

Algorithm 1: Quotation @ and escape 4 character detection
Input: Line content ; and delimiter 3
Output: A set of dialects

1 Def parse(;, 3, @, 4, cursor):
2 cursor=0
3 tl=trim(;)
4 while cursor < |tl| do
5 〈component, length〉 = get_dialect_component(tl, cursor, 3, @, 4)
6 if component=“error” then
7 return Y
8 if @ = Y ∧ component = ”content” ∧ ¬isalnum(tlcursor) then
9 parse(tl, 3, tlcursor, Y, cursor)

10 if @ ≠ Y ∧ 4 = Y ∧ component = ”content” ∧ ¬isalnum(tlcursor) then
11 parse(tl, 3, @, tlcursor, cursor)
12 update_parser_state(component)
13 cursor = cursor + length
14 dialects = dialects ∪ 〈3, @, 4〉
15 dialects = [] // square brackets denote list
16 parse(;, 3, Y, Y, 0) // start DS using delimiter 3, empty quotation and escape
17
18 return dialects \ {Y}

Column boundary detection for ascii tables. Per our definition of ascii tables, two
columns must be separated by a vertical line that has at least one space character. A vertical
line is a consecutive set of character positions, where all characters in lines are whitespace.
To infer the boundaries for all columns, ExtracTable detects vertical lines in-between
columns. Algorithm 2 shows the proposed approach to detect vertical lines in an ascii table.
We explain the algorithm using the example depicted in Figure 4. The variable : depicts the
line index. The file width is the length of the longest line within a file. The set of whitespace
characters is represented by the variable WS.

Transform line content into bitmap with transform(;,width): The algorithm first
transforms the line content ; into a bitmap. As lines may contain a combination of tabs and
spaces for aligning columns, all tab characters are expanded with the corresponding number
of space characters first. We use a tab size of eight, which is the default number in Python’s
expandtabs function. All whitespace characters are then replaced with 1 (True) and any

424 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

𝑘 = 0 N a m e M i n u t e Q u o t e

𝑘 = 1 = = = = = = = = = = = = = = =

𝑘 = 2 V i c t o r i a N / A

𝑘 = 3 H a r r y 4 0 I l i k e c o m p l e x .

(a) An example file with four lines where characters are displayed in monospaced font.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

𝑘 = 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

𝑘 = 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

𝑘 = 2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 = 3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

(b) A bitmap representation where green and orange shaded areas show vertical lines and
the ending of them, respectively. Spacers of two table candidates (shown in red and blue
frames) are detected.

Fig. 4: Example for the column boundary detection algorithm.

other character with 0 (False). Lines are padded using multiple 1s to the width of a file.
Figure 4b shows the bitmap representation for the lines in Figure 4a.

After transforming the line content into a bitmap, the algorithm searches for vertical lines.
Subsequent text lines, where bitmapF = 1 for the same character position F, form a vertical
line at F. Consecutive vertical lines are grouped into spacers, which are represented as
a set of consecutive indexes. Each index represents the character positions of a vertical
line. Spacers are significant, if they contain more than one vertical line (|indexes| > 1)
and are not leading (0 ∈ indexes) or trailing (width − 1 ∈ indexes). Significant spacers are
mandatory for tables. For the first and the second lines, there are three spacers: columns 4-9,
16-18, and 24-33.

Append discovered tables with start_table(counter,;): The algorithm identifies a new
table if there is at least one vertical line spanning %mrc (min row count) text lines. The new
table is defined by its starting line index and a set of spacers. For our example, we choose
%mrc = 2. Thus, there was no table discovered after processing the first line. However, after
proceeding with the second line of the example, multiple vertical lines span the minimum
required number of text lines. The first two lines in Figure 4b show a table C0 that has three
spacers shaded in green.

Update existing tables with update_table(C,bitmap): While processing subsequent lines,
the existing tables are updated based on the continuation of vertical lines. If a subset of
vertical lines belonging to a significant spacer is discontinued, the spacer shrinks or is
split into smaller ones so that the continued lines are represented. If the vertical line of an
insignificant spacer was discontinued, the algorithm removes it from the set of table spacers.
The interruption of all indexes of any significant spacer marks the end of the table.

ExtracTable: Extracting Tables from Raw Data Files 425

10 Leonardo Hübscher, Lan Jiang, Felix Naumann

Algorithm 2: Column boundaries detection
Input: File content !, file width, white space charactersWS
Output: Row range of C01;4B, table 1>D=30A84B

1 counter = {F → 0|0 ≤ F < width} // number of consecutive lines for each vertical
index

2 tables = [] // stores tables (indexed by C) with their starting/ending line indexes
3 boundaries = [] // stores boundaries of tables C
4 for : ← 0 to |! | do
5 closed = []
6 bitmap = transform(;: , width)
7 if ∃char ∈ ;: : char ∉ WS then
8 for F ← 0 to width do
9 if bitmapF = 1 then

10 counterF = counterF + 1
11 else
12 counterF = 0
13 for C ← 0 to |tables| do
14 〈closedC , boundariesC 〉 = update_table(C, bitmap) // closedC ∈ {0, 1}
15 if ∃F ∈ 0, . . . ,width : counterF = %mrc ∨ closed |tables |−1 = 1 then
16 tables = tables ∪ start_table(counter, ;:)
17 for C ← 0 to |tables| do
18 boundaries = close_table(C)
19 return tables, boundaries

Close tables with close_table(C): If a closed table covers less than %msr (min significant
rows) rows, insignificant spacers are omitted from the final set, which the algorithm uses to
compute the column boundaries. If the number of resulting column boundaries exceeds
%mcc (min column count), they are stored along the table lines in boundaries. The table
is finally closed by removing it from the set of running tables. However, if there are still
spacers of that table left, the algorithm creates a duplicate of the table. The clone uses the
same set of spacers, but without the discontinued ones. The line index : − 1 is used as the
start for the cloned table.

After processing the third line in the example, all spacers of C0 still exist, whereas the first
one shrinks, because the values included in the indexes 4-7 in the third line are zero (shaded
orange). The algorithm does not find new tables. When reaching the last line, it updates the
last spacer of table C0 by shrinking it into a smaller, insignificant one. Additionally, vertical
lines spanning %mrc rows were found. A new table C1 is created using the spacers [8, 13],
[16, 18], and 25. The last spacer is insignificant as it contains only one index.

In our example, only the table C0 is left. The set of column boundaries is the complement of
the spacer indexes indicated by the red frames, in all indexes. When using %msr = 5, the
insignificant spacer at index 25 is dropped, as the table has only four rows. The remaining
two spacers cover the indexes 8-9 and 16-18. Therefore, the column boundaries for C0 are:
[0, 8), [10, 16), and [19, 34). They are assigned to all four table lines.

426 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 11

The algorithm applies the detected parsing instructions to obtain the resulting interpretations
and the values of every field for each line. Leading and trailing whitespace are trimmed
from all fields.

4.2 Field pattern extraction

In the previous steps, ExtracTable collected all valid parsing instructions for each line
and returned the resulting interpretations for them. The algorithm generates data types
for the values in each interpreted line and uses them in the next step to select the optimal
interpretation for the line based on the data type consistency of the field values. Here, we
explain how the algorithm determines the data type for a given value.

ExtracTable uses a set of 15 domain-agnostic regular expressions to detect known data
types, covering all types mentioned in [BNS19]. Additionally, we include regular expressions
for Boolean values, file paths, expressions in brackets, and hash-like values. The algorithm
assigns the index of the first matching expression to the known data type (K). If no data type
matches the value, the algorithm falls back to detect the atomic data type for the value. If a
field value cannot be covered by any known data type, we use a sequence of atomic type
components to describe the type of this value. We support three atomic types: number (N),
string (S), and other (O). The remaining class other matches everything that is neither a
number nor a string.

Empty values (E) are ignored when calculating the consistency of tables. Therefore, the
appearance of missing values in combination with another data type in a column has no
negative impact on the overall consistency. We use a list of values to represent various forms
of empty values, including empty string Y, N/A, NA, NaN, Null, Unknown, and a sequence
of more than one question mark, dash, star, or number sign, respectively.

Finally, we define a pattern as a vector of pattern components. A pattern component can be
one of String, Number, Known, Empty, or Other. For the input file, ExtracTable detects
several valid interpretations, each of which is applied to obtain a set of fields for each line.
The field pattern extraction step assigns a pattern for the value of every field.

4.3 Table candidate generation

With the value pattern for each field, we calculate a consistency score for a set of lines
over corresponding fields across these lines. We introduce a score-based approach that
exploits this consistency score to build table candidates. Similar to the detection of column
boundaries, ExtracTable iterates over all lines and builds table candidates on the fly. It
groups line interpretations by two criteria: The primary information is the column count
= and the secondary is the parsing instruction instr. The algorithm compares the list of
represented groups with the set of existing table candidates TC. A new table candidate C

ExtracTable: Extracting Tables from Raw Data Files 427

12 Leonardo Hübscher, Lan Jiang, Felix Naumann

is started upon the discovery of an unrepresented group. Table candidates are terminated,
if they are no longer represented or if the file end has been reached. Terminated table
candidates are passed to the final step of ExtracTable.

The algorithm then adds the corresponding interpretations to the table candidates. Before
doing so, it checks whether the current line and the lines in a table candidate are compatible
with regard to the consistency score of corresponding fields across the lines. If the data
types are consistent, the interpretations are appended to the table candidate. If the lines are
incompatible, the algorithm starts a new table candidate. Based on our observation, we can
assume transitivity: If ;: is consistent with both ;:−1 and ;:+1, then ;:−1 and ;:+1 are also
consistent. Therefore, we compare the current line with only the most recent row of the table
candidate. The new table candidate might be created twice: once with and once without
using the previous block of compatible lines as a header. The row count of potential headers
must not exceed %mhr (max header rows) and the headers should not include any floats.

Given two rows, our data type-based consistency score returns a number between 0
(completely inconsistent) and 1 (perfectly consistent). We consider two interpretations to be
compatible if the consistency score exceeds the threshold %mbc (min block compatibility).
We use the pattern consistency as the primary measure for the consistency score. The value
uniformity within columns is calculated to compare consistent tables:

score : � →

−1, if |rich| = 0
0, if |cons| < blog2 (|rich|)c
|cons |
|rich | ∗

1
|rich |

rich∑
col

u(col) otherwise
(1)

where rich is the non-empty subset of columns in �, and cons is the homogeneous subset of
rich. A column is homogeneous if its homogeneity score exceeds one of the thresholds %mbs
(min block score) or %mcs (min column score). We calculate the score using the homogeneity
metric proposed in [Gu11], which considers the distribution of different data types within
one column. Based on our experiments, we require at least blog2 (|rich|)c pattern-consistent
columns to compute the table’s consistency with the third case of Formula (1). Otherwise,
the score for that table is 0. The function u returns the value uniformity of a column col.

To calculate the uniformity of a column, we first generate the patterns for all values
therein and group them by pattern. For each group, we calculate the uniformity using
the homogeneity metric for each component in the pattern. For example, “ABC1” and
“XYZ0.8” are both mapped to the pattern “SN”. Therefore, the uniformity for both “S” and
“N” are calculated. For number components, we compute the homogeneity of both integers
and floats based on their respective counts. A similar calculation is performed for other
components, where the homogeneity of the values is used. For known components of the
same type and string components, we simply assume that all values are homogeneous and
return 1. The value uniformity of empty values is undefined. Therefore, the score for the
“S” and “N” classes in the above example are 1.0 and 0.5, respectively. Then we denote the

428 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 13

uniformity for this pattern by the maximum uniformity score across all components. Finally,
the uniformity of the whole column is the weighted average of the pattern uniformity scores,
where the weights are the occurrences of the patterns. The final score of a table is the
average uniformity of all rich columns.

4.4 Table selection

In the final step, ExtracTable selects a subset of table candidates whose line ranges do
not overlap. We model the table candidate selection problem as a shortest path problem.
We first transform the set of table candidates to a multi-edged directed acyclic graph. The
set of vertexes + represents the line indexes of a file. Each table candidate represents one
edge, using the first and last line index for the source node src and the destination node
dst, respectively. The distance for a given table candidate is calculated using the following
formula. Lower distances represent larger and more consistent tables.

dist : C→− score(data(C)) · (<C − ℎC)2

− score(header(C)) · (<2C − (<C − ℎC)2) − 0.0001 · sgn(ℎC)

where<C is the number of lines in the table and ℎC is the number of header rows therein. The
function calculates the consistency scores score(header(C)) and score(data(C)) for the
header and data parts, respectively. When comparing tables of the same size and consistency,
we favor tables with a header by subtracting a small constant from the consistency score if a
header exists. Before mapping table candidates to edges, the algorithm prunes the ones that
have fewer than %mrc rows and %mcc columns, or have a consistency score of the data part
lower than %mts (min table score).

After the dag has been filled, adjacent vertexes are linked. We connect each vertex pair
〈E, E + 1〉 by an edge with a distance of dis = 0. Figure 5 shows the graph for the seven table
candidates shown in Table 1. The numbers at the edges represent the distances, and the
squared boxes are the table candidate indexes.
Tab. 1: Example table candidates. ‘From’ and ‘To’ fields indicate the beginning and the end indexes
of a table candidate. SH and SD stand for score(header(C)) and score(data(C)), respectively.

From To ℎC <C − ℎC SH SD

1 5 35 0 31 n/a 1.0
2 5 35 0 31 n/a 0.8
3 38 45 0 8 n/a 1.0
4 38 55 0 18 n/a 1.0
5 46 55 0 10 n/a 1.0
6 58 75 0 18 n/a 0.9
7 58 75 2 16 1.0 0.9

ExtracTable: Extracting Tables from Raw Data Files 429

14 Leonardo Hübscher, Lan Jiang, Felix Naumann

5

45 46

5535 38 58 75

2 -768.8

1 -961

4 -324

3 -
64

5 -100

7 -294.4001

6 -291
0 0

Fig. 5: Table selection graph for example of Table 1

We apply the Bellman-Ford algorithm [Be58] to find the shortest path. In case of a tie, we
pick the candidate that has (i) a higher ratio of recognized fields to total fields; (ii) a higher
number of rich columns; (iii) a lower pattern length; (iv) a lower column count. The best
table candidates are found by sorting the edge candidates by their weight and by the criteria
above. In the unlikely event that multiple candidates still qualify, we choose the first one.

5 Experimental Evaluation

We evaluated ExtracTable on large sets of files taken from open data portals, and compared
it with existing solutions regarding accuracy and runtime. The experiments were executed
in Python 3.8.5 on a Linux machine. The test system was equipped with an AMD EPYC
7702P CPU with 64 cores, operating at 2GHz with 512GB memory.

5.1 Datasets

The basis of our ground truth are two existing corpora from related work using plain-text files
taken from Mendeley Data, GitHub, and UKdata5. The Mendeley data corpus was crawled
in August 2020 to study line and cell classification tasks on verbose csv files [JVN21]. This
first corpus includes all projects that contain at least one plain-text file and were hosted on
Mendeley’s servers. It consists of 235 471 files distributed over 1 554 projects. Within the
corpus, we found files of 1 040 different extensions. We kept all files with extensions .txt,
.dat, .csv, .md, and .out, resulting in 94 474 files.

The second corpus was provided as part of [BNS19]. It consists mainly of csv files taken
from GitHub and UKdata. A repository hosted on GitHub typically contains a diversity
of files required for the development of software. The British government uses UKdata to
publish datasets from different departments, such as education, economy, or health. The
dataset consists of 5 000 files each from GitHub and UKdata. Using the authors’ script for
downloading the corpus6 from the original sources, some files were no longer available,
leaving us with 2 577 and 2 539 files from GitHub and UKdata, respectively.

5 https://data.mendeley.com/, https://github.com/, https://data.gov.uk/
6 https://github.com/alan-turing-institute/CSV_Wrangling/

430 Leonardo Hübscher, Lan Jiang, Felix Naumann

https://data.mendeley.com/
https://github.com/
https://data.gov.uk/
https://github.com/alan-turing-institute/CSV_Wrangling/

ExtracTable: Extracting Tables from Raw Data Files 15

Annotating all almost 100 000 would be too time-consuming, so we selected a subset. We
noticed that the Mendeley data source provides a larger variety of files and decided to
grant it a larger share in our final dataset. Ultimately, we randomly selected 598 files from
Mendeley Data, 176 files from GitHub, and 183 files from UKdata, resulting in 957 files.
All files and annotations are publicly available7.

We annotated all tables containing at least two columns and two rows. All rows belonging
to the same table must have the same column count. Our definition of data tables includes
tables with multiple header rows. In our 957 files, we annotated 1 208 tables and obtained
first insights into the dataset. A regular table of our ground truth is quite small, with fewer
than 1 000 rows and between two and ten columns. Approximately 75% of the 190 ascii
tables have fewer than 100 rows. While files containing a single table are represented using
csv in nine out of ten cases, ascii tables are used for more than a third of all tables contained
in multi-table files. Confirming the general observation of [DMB17], we found that 47% of
the csv tables follow rfc 4180. Also, 1% of the files contained at least one csv table using
a multi-character delimiter, e.g., an arrow (->), multiple slashes (//), or multiple tab or space
characters. The majority of fields represent numbers (84%) and only a small portion of cells
did not match any of our data types (4%).

5.2 Comparison targets

Our comparative analysis regards a simple baseline and four solutions from related work,
which we used to evaluate table range selection and parsing accuracy. The simple baseline
approach always returns the dialect specified in rfc 4180. By including this baseline when
evaluating the parsing results, we were able to gain insights into the complexity of files and
the dialect distribution. The Sniffer class is part of the csv package8 of Python. Sniffer
infers the delimiter by character frequencies across lines. Hypoparsr covers multiple parsing
steps, such as file encoding detection, dialect detection, and table area detection [DMB17].
While the R package was removed from the Comprehensive R Archive Network by the
authors, we used the archived version 0.1.0 from GitHub9. Finally, the authors of CleverCSV
propose a pattern-based approach to infer the dialect of a file [BNS19]. It is capable of
handling surrounding text, but does not return the table ranges explicitly. Its command-line
tool (version 0.6.7) is available via the Python Package Index10.

To evaluate the quality of our table range selection, we used the Python implementation
of Pytheas [Ch20] published by the authors11 using the weights that the authors suggest.
In addition, we use a naive approach for this particular evaluation, which simulates the
missing baselines by classifying the complete file content as belonging to a single table.

7 https://owncloud.hpi.de/s/uhHJFzC9mNcdF4i

8 https://docs.python.org/3/library/csv.html (we used Python 3.8.5)
9 https://github.com/tdoehmen/hypoparsr

10 https://pypi.org/project/clevercsv/

11 https://github.com/cchristodoulaki/Pytheas/tree/d77b82a

ExtracTable: Extracting Tables from Raw Data Files 431

https://owncloud.hpi.de/s/uhHJFzC9mNcdF4i
https://docs.python.org/3/library/csv.html
https://github.com/tdoehmen/hypoparsr
https://pypi.org/project/clevercsv/
https://github.com/cchristodoulaki/Pytheas/tree/d77b82a

16 Leonardo Hübscher, Lan Jiang, Felix Naumann

Other solutions mentioned in related work could not be applied to the table range selection
problem. The authors either assumed only a single table to be present within a file, or their
implementations did not return the explicit table ranges.

5.3 Table range selection

ExtracTable can be configured by a set of ten parameters. Half of the parameters, such
as the minimum table dimensions, are subjective and depend on specific tasks. For our
datasets, we require tables to have at least two columns and two rows. Based on a related
work [Em16], we allow tables to have up to four header rows. The length of a dialect
component must not exceed four characters, and all bracket characters are not allowed to
appear within the delimiters. To find the optimal values for the remaining five parameters,
we ran a grid search on a subset of our ground truth. We found the following settings to be
optimal: %msr = 4; %mbc = 0.71; %mbs = 0.31; %mcs = 0.51; and %mts = 0.51.

We measure the quality of the table range selection by calculating the Intersection over
Union (iou) for each pair of detected and annotated tables [Re19]. In [Do19] the authors
use the iou metric for evaluating the performance of the table detection in spreadsheets.
Since we need to compare only the vertical table boundaries, we use the Jaccard index for
the iou. It returns a number between 0 (no match) and 1 (perfect match).

After calculating the Jaccard index for each table pair, we used the maximum Jaccard index
to determine one of four match types: Annotated tables that returned a Jaccard index of 1
for some returned table are a perfect match. In contrast, if the maximum Jaccard index of
an annotated table is 0, no match was found. All remaining annotated tables fall into the
category of partial matches. We refer to returned tables that have no matching annotated
table as eager match. Figure 6 shows the match type counts for the naive approach and
for Pytheas and ExtracTable (ignoring eager matches). For each individual solution, we
excluded those files that were not processed successfully within three minutes. Pytheas
finished around 79% of all files, whereas ExtracTable processed around 87% successfully.
The naive approach worked on all files due to its nature.

The naive approach returned the correct range for precisely 50% of the tables. The remaining
half was classified as a partial match, as every file contains at least one table. Pytheas
was able to detect 59% of the table ranges correctly, yet the approach missed every eighth
annotated table. The tables that were not recognized are of different sizes and are equally
balanced regarding their formats. 6% of all tables returned by Pytheas were not present in
the ground truth.

ExtracTable identified the correct table ranges in more than 70% of all tables and missed
seven tables (1%). A limitation is the high number of eager matches that are not depicted in
the chart. Nearly one out of every six tables returned by ExtracTable is not present in our
ground truth, and therefore are false positives. After manually examining a sample of these

432 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 17

0% 20% 40% 60% 80% 100%

% of tables

ExtracTable

Pytheas

Naive

71

59

50

28

29

50

1

12

Perfect match Partial match No match

Fig. 6: Table range selection performance (higher number of perfect matches is better).

eagerly matched tables, we realized that it found consistent data tables within unlabeled
tabular structures, such as dictionary fragments and single column tables. Pytheas returned
fewer false positive tables than ExtracTable. However, we believe that for users, finding
missing tables is more difficult than identifying incorrectly recognized tables in ascii files,
which appear in various shapes and forms. Therefore, the number of eagerly matched tables
is a secondary metric compared to the number of correctly matched ones.

5.4 Line parsing

To evaluate parsing accuracy, we compared the returned lines of the comparison targets
and ExtracTable line-wise with our annotations. A line was parsed correctly if the
returned fields corresponded to the values in the ground truth, taking into account the
order. We compared ExtracTable to four other solutions: rfc 4180, Hypoparsr, Sniffer,
and CleverCSV. Some aspects of csv parsing, such as the handling of space characters
in-between fields, are implementation-specific. Therefore, we first extracted the dialects
returned by the candidates. We then interpreted lines by feeding the dialect to the same parser.
By doing this, we ensured a fair comparison, independent of the parser implementations.

The first experiment examines parsing correctness per table format. Figure 7 shows the ratio
of fields that have been correctly parsed for both table formats. For csv tables, we note that
Sniffer, CleverCSV, and ExtracTable performed similarly well and detected the correct
parsing instructions in about 90% of the cases. ExtracTable achieved slightly lower results
than CleverCSV, as it interpreted some tables as ascii instead of csv. When disabling the
ascii support, ExtracTable parsed 94% of all table lines correctly: a higher generality
(the ability to also parse ascii tables) can be a cause for misinterpretations.

ExtracTable is the only solution optimized for ascii tables: The remaining solutions
recognized merely a small subset of lines correctly. Nevertheless, it is interesting to see
that they returned a few correct interpretations. We identified three reasons that led to the

ExtracTable: Extracting Tables from Raw Data Files 433

18 Leonardo Hübscher, Lan Jiang, Felix Naumann

CSV ASCII

Table format

0%

20%

40%

60%

80%

100%
%

of
co

rr
ec

tly
pa

rs
ed

lin
es

48

0

73

11

90

10

93

13

90
76

RFC 4180
Hypoparsr

Sni�er
CleverCSV

ExtracTable

Fig. 7: Parsing accuracy (higher is better).

proper representation of single lines. First, empty lines occurring for a small subset of tables
between the header and data part of a table are correct, independent of the used parsing
instruction. Second, the nature of ascii tables lets them use a different number of spaces to
separate columns. Solutions besides ExtracTable sometimes chose the single space as the
delimiter for interpreting these lines. While this does not result in the correct representation
of the whole table, it sometimes yields the proper interpretations for a subset of lines, which
is likely to happen for tables with few columns. Third, some tables can be interpreted using
both ascii and csv. Such a situation may occur if the same number of spaces is used to
separate all columns. Independent of these corner cases, we note that ExtracTable could
correctly interpret 76% of the lines appearing in ascii tables.

In general, the errors made by ExtracTable were independent of the table format but were
caused by the table selection, which favors bigger tables. Lines were interpreted incorrectly
for three main reasons: (i) over-segmented and under-segmented tables; (ii) short texts
surrounding tables; (iii) misinterpretation of tables using tab characters. An annotated table
was represented by multiple returned tables that contained partially sorted or similar values
(over-segmented). ExtracTable under-segmented annotated tables if it found a parsing
instruction that could be applied to neighboring tables of the same schema. As the table
selection prefers tables with higher row counts, it merges both tables in such cases. Short
texts surrounding the tables, such as table titles, causes ascii tables to merge the first
columns as the algorithm tried to include the header row. ExtracTable misinterprets csv
tables when it finds a dialect applicable to both the table and the surrounding text. We traced
both reasons to our design decision to prefer tables having a higher row count. Finally, csv
tables delimited by the tab character were sometimes misinterpreted as ascii tables.

To summarize the results, ExtracTable performed similarly to CleverCSV and Sniffer on
parsing accuracy for csv tables. Hypoparsr did not perform well, yet it outperformed the
rfc 4180 baseline. For ascii files, only ExtracTable could correctly parse a reasonable

434 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 19

number of lines: our approach is more general across the two file types. We assume that the
parsing accuracy could be enhanced by pruning non-table lines – a main source of errors.

5.5 Runtime

We measured the runtime using Linux’s internal system call getrusage. We compared the
runtime of our approach to the ones of rfc 4180, sniffer, hypoparsr, clevercsv,
and pytheas. To reduce the overall runtime of our experiments, we used a timeout of
three minutes, which allowed the slowest approach, Pytheas, to finish for more than 70%
of the files, covering the majority of the dataset. Only one file fails all approaches with
this timeout, which consists of 450 lines, each having 17 365 characters. For each file, we
recorded whether the approach was able to process the files within the processing time and
returned some result. To make the runtime comparable, we kept only files completed by all
parsers within the limit. While this could add a bias towards simpler files, it ensures a fair
comparison. Figure 8 shows the resulting runtimes per line in milliseconds on a logarithmic
scale, based on 551 files.

CleverCSV ExtracTableHypoparsr PytheasSni�er

100

101

102

103

104

Ru
n

tim
e

pe
rl

in
e

(m
s)

Fig. 8: Runtime comparison using logarithmic scale.

The solution that always returns the configuration of rfc 4180 does not read the file contents
and always had a runtime of zero milliseconds. Sniffer and CleverCSV are both very fast,
needing less than 10ms per line on average. Hypoparsr, Pytheas, and ExtracTable were
slower and took 190ms, 217ms, and 90ms, respectively. We acknowledge that all solutions
cover a different feature set: While Sniffer is a heuristic approach, CleverCSV uses a more
advanced, pattern-based dialect detection. Hypoparsr includes multiple stages, such as
encoding detection and normalization. Pytheas uses a large set of fuzzy rules to detect table
ranges. Our approach includes aspects from different solutions as it covers a wider range of
csv dialects, handles ascii tables, and is capable of detecting multiple tables within files.

ExtracTable: Extracting Tables from Raw Data Files 435

20 Leonardo Hübscher, Lan Jiang, Felix Naumann

One driver for the longer runtimes is the number of interpretations. This number depends
on the chosen configuration, line count, and the actual file content. Lines that are very long
or contain many space characters or non-alphanumerical characters take longer to process.
The second driver is the number of table candidates. How many table candidates are found
depends on the actual content and data type compatibility across lines.

6 Summary and Outlook

Tables are stored in arbitrary shapes and forms in plain-text files. To enable automatic
information extraction from these types of files, we must first detect the positions of tables
and their structures. We proposed the ExtracTable algorithm, which tackles the table
extraction problem. For a given file, the algorithm first detects and tests possible parsing
instructions: dialects and column boundaries for csv and ascii tables, respectively. After
applying the parsing instructions to the line content, ExtracTable infers the data type of
each field. It then builds table candidates based on the consistency of data type patterns,
field count, and parsing instruction. Finally, the algorithm models the optimal table selection
problem as the shortest path problem, and outputs a set of tables for the given file.

To evaluate our algorithm, we annotated a dataset consisting of nearly 1 000 files taken from
Mendeley Data, GitHub, and UKdata. We analyzed two aspects of our algorithm: (i) the
table range selection; (ii) the parsing accuracy. Our evaluation showed that ExtracTable
outperforms the other approaches in determining the table ranges, detecting the correct
range for more than 70% of the tables. Comparing the parsing results between ExtracTable
and the related approaches, we found that CleverCSV performs best on csv tables, parsing
93% of the lines correctly. Yet, ExtracTable performs similarly well, yielding correct
parsing results for 90% of the lines. Our solution was the only one capable of parsing a
significant number of ascii tables and achieved an accuracy of 76%.

While ExtracTable supports more complex files, we still had to make a few assumptions,
whose relaxation could be interesting future work. This includes the support for cells
containing line breaks, as well as spanning rows and spanning columns. The main challenge
lies in the scoring of different table candidates. Future work may investigate to what extent
the algorithm benefits from learning the structure and content of typical tables [VHN22].
We hope that by inferring that knowledge during table selection, wrong interpretations
yielding high consistencies can be pruned. Additionally, we identified table selection to be
misled by text lines preceding or succeeding a table, because we favor tables with higher
row counts. This effect could be reduced by filtering non-table lines as a pre-processing
step.

By using the ExtracTable algorithm, data scientists can extract tables from a wider variety
of plain-text files. Therefore, they spend less time dealing with data wrangling and instead
focus on their actual data-driven tasks. While the evaluation returned good results already,
we are still far away from handling files fully automatically.

436 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 21

References

[An20] Anaconda: 2020 State of Data Science, tech. rep., 2020, url: https://know.
anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-

Final.pdf.
[Be58] Bellman, R.: On a routing problem. Quart. Appl. Math. 16/, pp. 87–90, 1958.
[BNS19] van den Burg, G. J.; Nazábal, A.; Sutton, C.: Wrangling messy CSV files by

detecting row and type patterns. Data Mining and Knowledge Discovery 33/6,
pp. 1799–1820, 2019.

[BTH16] Brickley, D.; Tennison, J.; Herman, I.: CSV on the Web Working Group
@ www.w3.org, tech. rep., 2016, url: http://www.w3.org/, visited on:
04/23/2021.

[Ch14] Chessell, M.; Scheepers, F.; Nguyen, N.; van Kessel, R.; van der Starre, R.:
Governing and Managing Big Data for Analytics and Decision Makers. IBM
Redguides for Business Leaders/, p. 28, 2014, issn: 0306-0012.

[Ch15] Chu, X.; He, Y.; Chakrabarti, K.; Ganjam, K.: Tegra: Table extraction by
global record alignment. In: Proceedings of the International Conference on
Management of Data (SIGMOD). Pp. 1713–1728, 2015.

[Ch20] Christodoulakis, C.; Munson, E. B.; Gabel, M.; Brown, A.D.; Miller, R. J.:
Pytheas: Pattern-Based Table Discovery in CSV Files. PVLDB 13/12, pp. 2075–
2089, 2020, issn: 2150-8097, url: https://doi.org/10.14778/3407790.
3407810.

[DMB17] Döhmen, T.; Mühleisen, H.; Boncz, P.: Multi-Hypothesis CSV Parsing. In:
Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM). New York, NY, USA, pp. 1–12, 2017.

[Do19] Dong, H.; Liu, S.; Han, S.; Fu, Z.; Zhang, D.: TableSense: Spreadsheet table
detection with convolutional neural networks. In: Proceedings of the Conference
on Artificial Intelligence (AAAI). Pp. 69–76, 2019.

[Em16] Embley, D.W.; Krishnamoorthy, M. S.; Nagy, G.; Seth, S.: Converting het-
erogeneous statistical tables on the web to searchable databases. International
Journal on Document Analysis and Recognition (ĲDAR) 19/2, pp. 119–138,
2016.

[Gu11] Guo, P. J.; Kandel, S.; Hellerstein, J.M.; Heer, J.: Proactive Wrangling: Mixed-
Initiative End-User Programming of Data Transformation Scripts. In: Pro-
ceedings of the Annual ACM Symposium on User Interface Software and
Technology (UIST). Pp. 65–74, 2011.

[HN20] Hameed, M.; Naumann, F.: Data Preparation: A Survey of Commercial Tools.
SIGMOD Record 49/3, pp. 18–29, 2020.

ExtracTable: Extracting Tables from Raw Data Files 437

https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
http://www.w3.org/
https://doi.org/10.14778/3407790.3407810
https://doi.org/10.14778/3407790.3407810

22 Leonardo Hübscher, Lan Jiang, Felix Naumann

[Hu99] Hu, J.; Kashi, R. S.; Lopresti, D. P.; Wilfong, G.: Medium-independent table
detection. In: Document Recognition and Retrieval VII. Vol. 3967, International
Society for Optics and Photonics, pp. 291–302, 1999.

[IB72] IBM Corporation: IBM FORTRAN Program Products for OS and the CMS
Component of VM/370 General Information./, p. 17, 1972.

[JVN21] Jiang, L.; Vitagliano, G.; Naumann, F.: Structure Detection in Verbose CSV
Files. In: Proceedings of the International Conference on Extending Database
Technology (EDBT). Pp. 193–204, 2021, isbn: 9783893180844.

[Mo18] Mooney, P.: Kaggle Machine Learning & Data Science Survey, 2018, url:
https://www.kaggle.com/paultimothymooney/2018-kaggle-machine-

learning-data-science-survey, visited on:
[PC97] Pyreddy, P.; Croft, W.B.: TINTIN: a system for retrieval in text tables. In:

Proceedings of the ACM International Conference on Digital Libraries (DL).
Pp. 193–200, 1997.

[Pi03] Pinto, D.; McCallum, A.; Wei, X.; Croft, W.B.: Table extraction using con-
ditional random fields. In: Proceedings of the International Conference on
Information retrieval (SIGIR). Pp. 235–242, 2003.

[Pr16] Press, G.: Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data
Science Task, Survey Says. Forbes Tech/, pp. 4–5, 2016, url: https://www.
forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-

consuming-least-enjoyable-data-science-task-survey-says/.
[Re19] Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S.:

Generalized intersection over union: A metric and a loss for bounding box
regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Pp. 658–666, 2019.

[Sh05] Shafranovich, Y.: Common Format and MIME Type for Comma-Separated
Values (CSV) Files, RFC 4180, RFC Editor, Aug. 2005, url: https://www.
rfc-editor.org/rfc/rfc4180.txt.

[SJT03] e Silva, A. C.; Jorge, A.; Torgo, L.: Automatic Selection of Table Areas in
Documents for Information Extraction. In: Progress in Artificial Intelligence.
Berlin, Heidelberg, pp. 460–465, 2003.

[VHN22] Vitagliano, G.; Hameed, M.; Naumann, F.: Structural Embedding of Data
Files with MAGRITTE. In: NeurIPS Table Representation Learning workshop
(TRL). 2022.

[VJN21] Vitagliano, G.; Jiang, L.; Naumann, F.: Detecting Layout Templates in Complex
Multiregion Files. PVLDB 15/3, pp. 646–658, 2021.

438 Leonardo Hübscher, Lan Jiang, Felix Naumann

https://www.kaggle.com/paultimothymooney/2018-kaggle-machine-learning-data-science-survey
https://www.kaggle.com/paultimothymooney/2018-kaggle-machine-learning-data-science-survey
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.rfc-editor.org/rfc/rfc4180.txt
https://www.rfc-editor.org/rfc/rfc4180.txt

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Value-specific Weighting for Record-level Encodings in
Privacy-Preserving Record Linkage

Florens Rohde1, Martin Franke1, Victor Christen1, Erhard Rahm1

Abstract: Privacy-preserving record linkage (PPRL) determines records representing the same entity
while guaranteeing the privacy of individuals. A common approach is to encode plaintext data of
records into Bloom filters that enable efficient calculation of similarities. A crucial step of PPRL is
the classification of Bloom filter pairs as match or non-match based on computed similarities. In the
context of record linkage, several weighting schemes and classification methods are available. The
majority of weighting methods determine and adapt weights by applying the Fellegi&Sunter model
for each attribute. In the PPRL domain, the attributes of a record are encoded in a joint record-level
Bloom filter to impede cryptanalysis attacks so that the application of existing attribute-wise weighting
approaches is not feasible. We study methods that use attribute-specific weights in record-level
encodings and integrate weight adaptation approaches based on individual value frequencies. The
experiments on real-world datasets show that frequency-dependent weighting schemes improve the
linkage quality as well as the robustness with regard to threshold selection.

Keywords: Privacy-preserving record linkage; Bloom filter; Weighting; Value-specific

1 Introduction

Record linkage is an essential component in many data integration tasks with multiple
data sources. It aims to detect records that belong to the same real-world entity such as a
person. Typically, unique record identifiers are not available which would enable a join-like
operation [Ch12]. Therefore, records are compared pairwise based on their attributes, such as
first name, last name, date of birth and gender. The attribute similarities are used to classify
pairs as match or non-match. Often weights are involved in this step to take the different
discriminatory power and error rates of attributes into account [WT91]. For example, an
equal date of birth is a stronger indicator for a match than an equal gender as there are much
more values (and thus each value occurs less often) for date of birth than for gender.

Simple weight-based classification approaches only use attribute-specific weights that are
equal for all values of a certain attribute. Thus, the very common last name Smith would
result in the same weight as the rarer last name Voigt. Therefore, the use of value-specific
weights based on the frequency of a specific attribute value can increase the linkage
quality [WT91]. For uncertain duplicate candidates, e. g., due to a different address as in the
following example (see Tab. 1 and 2), the likelihood of a match is higher if the agreeing
1 University of Leipzig & ScaDS.AI Dresden/Leipzig {rohde,franke,christen,rahm}@informatik.uni-leipzig.de

cba doi:10.18420/BTW2023-21

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 439

mailto:{rohde,franke,christen,rahm}@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-21

2 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

attributes – here first and last name – are rare. This is reflected in a higher record similarity
score (weighted average) due to increased weights of those attributes.
Tab. 1: Example of a similarity computation of two records with common first and last name.

First name Last name Date of birth ZIP code City Total
Record a LISA SMITH 23.09.1973 28451 LELAND
Record b LISA SMITH 23.09.1973 28075 HARRISBURG
Similarity 1.0 1.0 1.0 0.4 0.0 0.79
Weight 12 13 15 7 7

Tab. 2: Example of a similarity computation of two records with rare first and last name.

First name Last name Date of birth ZIP code City Total
Record a WYNONA VOIGT 23.09.1973 28451 LELAND
Record b WYNONA VOIGT 23.09.1973 28075 HARRISBURG
Similarity 1.0 1.0 1.0 0.4 0.0 0.85
Weight 20 25 15 7 7

To enable the assignment of globally unique record identifiers multiple data owners share
their respective datasets with a trusted institution, called linkage unit, which is responsible
for the actual linkage and determines pairs of records considered as a match. Using these
identifiers the data owners can combine their respective data on matching entities. The
exchange of sensitive data, such as identifying personal information, between the data
owners or with the linkage unit is, however, restricted by law [CRS20]. Privacy-preserving
record linkage (PPRL) addresses this challenge. It has been an active research subject for
the last decades [VCV13]. To protect the sensitive data, it is encoded before being sent to
the linkage unit which performs the linkage on the encoded data only. A variety of encoding
techniques have been proposed, but the most popular and quasi-standard is based on Bloom
filters [Gk21]. However, the initially proposed attribute-level encoding [SBR09], where
each attribute is encoded in a separate Bloom filter, has been shown to be susceptible to
frequency and pattern mining attacks [Vi22]. Therefore, state-of-the-art techniques combine
multiple or all attributes into a joint record-level encoding to impede those attacks.

In general, Bloom filter based encodings (both attribute-level and record-level) allow for
weighting attributes. Attribute-level encodings are very similar to traditional (plaintext)
record linkage with regard to weighting. The attribute similarities can be aggregated to a
record similarity, for example, by using a weighted average. The only difference effectively
is the use of a similarity function that is suited for the encoded data structure. When using
record-level encodings, the data owners can use different parameters per attribute to change
the attributes’ relative weight in the joint Bloom filter. However, weight adaptation and
application in the PPRL context with record-level encodings differ from traditional record
linkage as they must be applied by the data owners.

440 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 3

Specifically, we make the following contributions:

• We study the challenges that arise when applying value-specific weighting in the
PPRL context to record-level encodings, e. g., the handling of name variations and
missing values during the encoding phase.

• We modify record-level encoding techniques for PPRL to allow for frequency-
dependent weight adaptation.

• We thoroughly evaluate these techniques and compare them to existing weighting
approaches on attribute-level and record-level encodings. Moreover, we analyze the
effects of using limited information on value frequencies as the complete information
is considered sensitive in the PPRL context.

The paper is structured as follows. In the next section, we discuss Related Work. In Sect. 3
we describe the PPRL encoding and matching process. Then, we discuss weighting-based
classification approaches in the PPRL context (Sect. 4) and present an extensive comparative
evaluation of the different approaches using a real-world dataset (Sect. 5). Finally, we
conclude our work in Sect. 6.

2 Related Work

The idea of assigning weights to different attributes when used for calculating similarities
between records is part of the probabilistic record linkage approach proposed by Fellegi
and Sunter in [FS69]. The weighting of attributes addresses the fact that each attribute
has a different number of (possible) values and these values follow a certain distribution.
Attributes can also be erroneous or out of date, with some attributes being affected more
often than others. Consequently, for each attribute 𝑖 two probabilities, namely the 𝑚- and
𝑢-probability, are determined as

𝑚𝑖 = 𝑃(𝑎𝑖 = 𝑏𝑖 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 |𝑎 ≡ 𝑏)
𝑢𝑖 = 𝑃(𝑎𝑖 = 𝑏𝑖 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 |𝑎 . 𝑏)

where 𝑎 is a record from database 𝐴, 𝑏 is a record from database 𝐵 and 𝑎𝑖 and 𝑏𝑖 are the
values of attribute 𝑖 of record 𝑎 and 𝑏, respectively. With ≡ we denote the equivalence
relation, i. e., both records refer to the same entity. The𝑚-probability specifies the probability
that two records have the same value for attribute 𝑖, given the records refer to the same
entity. Ideally, 𝑚𝑖 = 1 if all true matches agree on attribute 𝑖. This is exactly the case
if attribute 𝑖 does not contain any errors. If, for example, 20% of the duplicates have a
non-equal value, for instance due to a typographical error, then 𝑚 = 0.8. In contrast, the
𝑢-probability specifies the probability that two records have the same value for attribute 𝑖
given the records refer to different entities. The 𝑢-probability is low if the attribute has a

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 441

4 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

wide range of possible values. In contrast, if, for example, an attribute has only two possible
and equally likely values, then 𝑢 = 0.5 as the chance that the attribute agrees for two random
records is 50%. 𝑢 is typically frequency-dependent as a random agreement is more likely
for common than for rare values.

Using the 𝑚- and 𝑢-probabilities the weight 𝑤𝑖 for attribute 𝑖 is calculated as

𝑤𝑖 =

𝑤𝑚 = log2

(
𝑚𝑖

𝑢𝑖

)
if 𝑎𝑖 = 𝑏𝑖

𝑤𝑢 = log2
(
1−𝑚𝑖

1−𝑢𝑖

)
if 𝑎𝑖 ≠ 𝑏𝑖

(1)

The probabilistic record linkage approach by Fellegi and Sunter is the basis for many record
linkage approaches and is still frequently used and adapted [Ch12; HSW07].

Herzog et al. [HSW07] propose a method to adjust match and non-match weights also
based on the frequency of individual attribute values. Consequently, an attribute-specific
and a value-specific weight is used. The authors provide a detailed discussion about the
calculation of these weights. Similarly, Zhu et al. [Zh09] propose a scaling factor that is
applied directly to the attribute weights of the Fellegi-Sunter approach. The scaling factor is
calculated based on the present dataset without an external source of (name) frequencies.

Attribute weighting has been used in the PPRL domain as well. The record linkage and
pseudonymization service Mainzelliste, which supports Bloom filter based matching, only
uses the agreement weights to combine attribute similarity scores to a record similarity using
the weighted average [Ro21]. In [Br17], weights are estimated based on partial agreement
models for each individual attribute of a sensitive dataset. However, this approach can
only be utilized for attribute-level encodings. Ranbaduge et al. proposed decay weights
for record-level encodings based on time distances [RC18]. Value-specific weighting
approaches, however, have received limited attention so far in PPRL. Giersiepen et al.
apply the Fellegi-Sunter approach with frequency-dependent 𝑢-probabilities to encrypted
attribute-level hashes [Gi10]. This approach is the standard procedure used by German
cancer registries. To the best of our knowledge, no prior work has studied value-specific
weight adaptation based on individual value frequencies for record-level encodings so far.

3 Background

The general privacy-preserving record linkage process is shown in Fig. 1. We follow a
three-party protocol that uses a semi-trusted third party, called linkage unit (LU), to conduct
the linkage [CRS20]. The protocol is based on an Honest-But-Curious adversary model
which means that all parties follow the protocol but try to learn as much as possible about
the sensitive data of others. To protect the privacy of individuals, the quasi-identifying
attributes, such as names, dates of birth or addresses, are encoded by the data owners (DO).
Often, a preprocessing step is performed before to reduce data quality problems and to

442 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 5

convert the data into a standardized format. Only the encoded quasi-identifiers are then
shared with the LU. The LU compares records pairwise and classifies them as Match or
Non-Match. The following subsections explain the matching and encoding phases in more
detail.

Plain dataset A

Preprocessing

Encoding

Encoded dataset A

Data Owner A

Plain dataset B

Preprocessing

Encoding

Encoded dataset B

Data Owner B
Parameters

Comparison

Classification

Matching record IDs

Linkage Unit

Blocking / Filtering

Fig. 1: Privacy-preserving record linkage protocol with two data owners and a semi-trusted third party
as the linkage unit.

3.1 Encoding

In the encoding phase the plaintext is transformed into an encoded representation that
cannot be reverted to its original form. An obvious solution is the use of cryptographic
hash functions. However, simple hashes are only suitable for exact matching, as even small
differences in the input result in very distinct hash values. Therefore, similarity-preserving
encodings have been developed to enable approximate matching of records containing errors
or inconsistencies, such as typos or outdated values.

The use of Bloom filters for PPRL has been proposed by Schnell and colleagues [SBR09].
It became the most popular encoding scheme for PPRL in research as well as in real
applications [CRS20]. In general, quasi-identifying attributes are split into 𝑛 substrings of
length 𝑞 (𝑞-grams) to build a set of record features 𝐹 = {𝑒1, . . . , 𝑒𝑛} being represented
in a Bloom filter. The original strings can be surrounded by leading and trailing padding
characters to ensure that all characters are included in the same number of 𝑞-grams, which
has been shown to lead to a higher linkage quality [Fr21]. At first, a bit vector of size 𝑙 is
initialized with each bit set to zero. Moreover, 𝑘 hash functions ℎ1, . . . , ℎ𝑘 are defined and
used to hash (map) the elements of 𝐹 into the bit vector. Therefore, each hash function
is applied on each element of 𝐹 and produces a position in the range [0, 𝑙 − 1] as output.
Finally, the bits at the resulting positions are set to one. Given that identical q-grams are
mapped to the same bit positions, a high overlap of q-grams leads to similar Bloom filters
making them suitable for determining the record similarity.

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 443

6 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

However, due to the deterministic encoding, frequent patterns in the plaintext values will
lead to frequently set bit positions in the encoded data and thus enabling frequency attacks.
This is true in particular for attribute-level Bloom filter (ABF) where a separate Bloom filter
is used for each attribute. Consequently, frequently occurring plaintext attribute values can
be aligned with frequently occurring Bloom filters. To hamper such attacks, state-of-the-art
encodings combine multiple or all attributes into a joint Record-level encoding [Vi22]. The
encoding procedure must not be known to the Linkage Unit because otherwise it could
conduct dictionary attacks by encoding possible records, e.g., from a similar public dataset,
in the same way and infer the membership of a possible record in the dataset. Therefore the
encoding output must depend on secrets that are private to the data owners, e.g., by using
keyed hash functions.

3.2 Matching

In the matching phase records are compared pairwise and classified as match or non-match.
To reduce the quadratic complexity of comparing each record of one source with each record
of the other source, blocking or filtering techniques can be used [Ch12]. Records that do
not meet specific pre-defined blocking or filtering criteria are considered a non-match and
thus, are not further compared. Possible blocking keys on plaintext are, for example, year
of birth, geographical data items or phonetic encodings of the name. Blocking techniques
for Bloom filter based PPRL using Locality-sensitive hashing have been proposed and
evaluated [FSR18].

Similarities of Bloom filter encodings can be computed with set similarity measures. In this
work we use the Dice coefficient [Di45] which is defined as 𝐷 (𝑎, 𝑏) = (2 · |𝑎∩𝑏 |)/(|𝑎 | + |𝑏 |)
for Bloom filters 𝑎 and 𝑏 where ∩ denotes the intersection (logical AND) operation and | · |
the hamming weight of a Bloom filter (number of 1-bits). The resulting similarity score is
normalized in the range [0, 1]. When using ABF encodings, the attribute similarity scores
have to be aggregated to a record similarity score, for instance, by computing a weighted
average (see Sec. 4.1). If the record similarity score is above a predefined threshold 𝑡, the
record pair is classified as a match, otherwise as a non-match.

4 Methods

In this section we describe how attribute weights can be applied in the PPRL context,
followed by a discussion of methods to adapt the weights depending on the attribute values
and their frequencies. Furthermore, we describe approaches to estimate weights and the
limitations that arise when transferred to the PPRL domain using record-level encodings.

444 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 7

4.1 Weight application

Attribute weights can be applied in different ways in the PPRL process depending on
the encoding strategy. If attribute-level Bloom filter (ABF) are used, the linkage unit can
compare record pairs attribute-wise. In the probabilistic record linkage theory of Fellegi
and Sunter [FS69] (positive) agreement and (negative) disagreement weights are assigned
to each attribute depending on whether they are equal or not (see Equation (1)) The total
weight is calculated by adding up the respective weights of all attribute pairs. However, this
approach does not make use of approximate similarity functions.

Another approach is based on normalized attribute similarity scores in the range [0, 1] [Ro21].
Those are aggregated into a single record similarity with a weighted average as follows

sim𝑟𝑒𝑐𝑜𝑟𝑑 =

∑𝑁−1
𝑖=0 𝑤𝑖 · 𝑠𝑖𝑚𝑖∑𝑁−1

𝑖=0 𝑤𝑖

(2)

where 𝑁 is the number of attributes and the index 𝑖 represents attribute 𝑖.

These techniques are equivalent to the application of weights on plaintext data in conventional
record linkage as they can make use of attribute-level comparisons. Weights can be
determined and applied at the linkage unit during the matching phase. When using record-
level encodings, however, attribute weights must be incorporated in the encoding phase at
the data owners.

Record-level Bloom filter (RBF) encodings, proposed by Durham et al. [Du14], use a
sampling based approach. Initially, separate (attribute-level) Bloom filters are generated for
each attribute. Based on the respective weights a proportional number of bits is sampled
from each attribute-level Bloom filter to construct a record-level Bloom filter. Finally, the
bits in the RBF are permuted to ensure that an attacker cannot easily reassign bits of the
Bloom filters to specific attributes.

Following the CLK-RBF approach by Vatsalan et al. [Va14], weights can be reflected in the
number of hash functions 𝑘𝑖 that are used for each attribute 𝑖. The more hash functions are
used for an attribute, the more bits in the final Bloom filter are set based on that attribute.
Consequently, the influence of that attribute on the Bloom filter similarity is stronger. The
number of set bit positions related to a certain attribute also depends on the (average)
attribute length. Shorter values consist of fewer record features and thereby fewer bits are
set. We compute 𝑘𝑖 with the following equation to ensure that the average number of hash
functions of each attribute with respect to the total number of hash functions is proportional
to the relative weight of this attribute.

𝑘𝑖 · 𝑛𝑖
𝑘 ·∑𝑁−1

𝑖=0 𝑛𝑖
=

𝑤𝑖∑𝑁−1
𝑖=0 𝑤𝑖

→ 𝑘𝑖 =
𝑤𝑖 · 𝑘 ·

∑𝑁−1
𝑖=0 𝑛𝑖

𝑛𝑖 ·
∑𝑁−1

𝑖=0 𝑤𝑖

(3)

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 445

8 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

where 𝑤𝑖 is the weight, 𝑛𝑖 the average number of features, and 𝑘𝑖 the number of hash
functions for attribute 𝑖. 𝑘 is the reference number of hash functions and determines the
average fill rate (amount of 1-bits relative to the length 𝑙) of the Bloom filters.

#L LI IS SA A# DO

Permutation

RBF

#D NOON VAOV N#AN #5 6#56

1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0

#L LI IS SA A# DO#D NOON VAOV N#AN #5 6#56

0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1

1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0

ABF

CLK-RBF

k=1 k=1 k=3

k=2 k=1 k=3

1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0

Sampling based on weights

Fig. 2: Encoding of an example record using the weighted record-level techniques RBF and CLK-RBF.

4.2 Frequency-depending weight adaptation

In this section we describe methods to determine value-specific weights that reflect the
relative significance of the respective attribute value based on its frequency.

Value frequencies can be incorporated in the Fellegi-Sunter approach by computing a
value-dependent 𝑢-probability with 𝑢𝑖 = 𝑓𝑖/𝑇, where 𝑓𝑖 is the absolute frequency of value 𝑖
and 𝑇 is the total number of values. Consider, for example, an attribute with three possible
values ’A’, ’B’ and ’C’ and their respective frequencies in the dataset are 100, 50 and 2 then
𝑢𝐴 = 100/152 ≈ 0.66 and 𝑢𝐶 = 2/152 ≈ 0.01. The likelihood that two random records agree
on this attribute is much larger for the most frequent value ’A’ than for the rarest value ’C’.
Hence, the weights 𝑤𝑚 and 𝑤𝑢 are 0.45 and −1.77 for value ’A’ and 6.10 and −3.30 for
value ’C’ (see Equation (1), assuming a constant 𝑚 = 0.9).

Another approach to modify attribute-level weights is a value-dependent scaling factor 𝑆,
so that 𝑤′ = 𝑆 · 𝑤. This approach is independent of the method used to determine default
weights. Furthermore, it is applicable to other parameters such as the number of hash
functions 𝑘 in CLK-RBF encodings. We therefore focus on this weight adaptation method.

Zhu et al. [Zh09] proposed a scaling factor defined as

𝑆Zhu,𝑖 =

√︄
𝑇

𝑄 · 𝑓𝑖
(4)

446 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 9

where 𝑇 is the total number of values, 𝑄 is the number of unique values and 𝑓𝑖 is the
absolute frequency of the value 𝑖. For values that are more common than the average, 𝑆Zhu
is in [0, 1) and for rare values the factor is larger than 1. In our previous example we
would compute 𝑆𝐴 =

√︁
152/(3·100) ≈ 0.71 and 𝑆𝐶 =

√︁
152/(3·2) ≈ 5.03. Zhu’s scaling factor

has, however, two unfavorable properties: (1) The reference for 𝑆 = 1 is fixed to the mean
frequency. Since value frequency distributions, e. g., of names, typically have few very
common values and many rare values, this reference can be quite low leading to 𝑆 < 1 for
many mid-common values. (2) The values of the scale factor are biased towards the lower
bound. As a consequence, the scale factors are low for values that are not very common.

To address these issues, we propose an alternative scaling factor based on the inverse
document frequency (idf) which is defined as idf = log2 (𝑇/ 𝑓𝑖). To achieve 𝑆 = 1 for a
desired reference frequency 𝑓ref, we define the scaling factor as

𝑆idf = 1 + idf(𝑓𝑖) − idf(𝑓ref) (5)

Moreover, we define 𝑓ref as the frequency of the median attribute value, which is the value in
the middle of the ordered list of values with repetition according to the respective frequency.
For example, if we have a frequency distribution [{𝐴, 4}, {𝐵, 3}, {𝐶, 1}, {𝐷, 1}, {𝐸, 1}],
then the (lower) middle of the list [𝐴, 𝐴, 𝐴, 𝐴,B, 𝐵, 𝐵, 𝐶, 𝐷, 𝐸] is position 5 or value 𝐵.
This results in 𝑆idf < 1 for values that are more frequent than 3. For 𝑆Zhu the reference
(mean) frequency is (4 + 3 + 1 + 1 + 1)/5 = 2. The median-based approach results in half of
the values having a scale factor of below 1 and half above 1.

In practice, the scaling factor 𝑆Zhu can be unreasonably low or high. For instance, in one of
the datasets used in our evaluation, we have 𝑇 = 200 000 records with 𝑄 = 20 060 unique
first names. For the most common name ’James’ (𝑓𝑖 = 3401 (1.7%)) we get 𝑆Zhu = 0.05
and for the rarest names with 𝑓𝑖 = 1 we get 𝑆Zhu = 3.2. This very large weight reduction
for the name ’James’ would result in an almost complete disregard of this attribute in the
classification which is not desirable. 𝑆idf can even be negative for common values which
makes normalization inevitable. Therefore, we normalize and restrict the scales as follows:
(1) The scaling factor is normalized to the interval [0, 2]. We use a separate min-max
normalization for scaling factors below and above 1 to ensure that this value is not modified.
(2) 𝑆 is restricted to a more narrow interval [𝑆min, 𝑆max], e. g., [0.75, 1.5], to constrain the
effect of the weight adaptation.

𝑆lowest = min(𝑆𝑖) (6)
𝑆highest = max(𝑆𝑖) (7)

𝑆norm,𝑖 =

{
𝑆𝑖−𝑆lowest
1−𝑆lowest for 𝑆𝑖 < 1
1 + 𝑆𝑖−1

𝑆highest−1 for 𝑆𝑖 ≥ 1
(8)

𝑆restricted,𝑖 =

{
𝑆min + 𝑆norm,𝑖 · (1 − 𝑆min) for 𝑆norm,𝑖 < 1
1 + (𝑆norm,𝑖 − 1) · (𝑆max − 1) for 𝑆norm,𝑖 ≥ 1

(9)

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 447

10 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

ALGORITHM 1: Computation of value-specific scale factors
Input: AF: Lookup table for attribute value frequencies

𝐴𝑖 : Attribute value i
Output: scale𝑖 : Scale factor for value i

1 if 𝐴𝑖 is in AF then
2 freq𝑖 ← GetFrequency(AF, 𝐴𝑖);
3 scale𝑖 ← ComputeScale(freq𝑖); /* Eq. (4) (Zhu) or Eq. (5) (idf) */

4 scale𝑖 ← MinMaxNormalize(scale𝑖); /* Equation (8) */

5 scale𝑖 ← RescaleToBoundaries(scale𝑖); /* Equation (9) */

6 else
7 scale𝑖 ← 1.0;

The scale factor is applied to weights at the linkage unit for ABF (see Algorithm 2) and at
the data owner for RBF (see Algorithm 3) whereas in CLK-RBF the scale factor is applied
to the number of hash functions 𝑘 (see Algorithm 4). The weight adaptation technique based
on a scaling factor requires only a few simple computations as can be seen in Algorithm
1. Therefore, it can be easily integrated into existing frameworks that already support
(attribute-level) weighted Bloom filter encodings.

4.3 Weight estimation

In this section we describe how weights can be estimated and the issues that arise when
applying these methods in the PPRL domain. As described in Sect. 2, a popular method
to determine weights is based on the probabilistic approach of Fellegi and Sunter. The
computation of the weights requires estimates of the 𝑚- and 𝑢-probabilities for the attributes.
Given ground truth data, we can calculate 𝑚 = 1 − 𝑒 where 𝑒 is the error rate, i. e., the
share of true duplicates with a different value for that attribute. In real-world use cases the
error rate must be estimated based on expert and domain knowledge or be determined in a
pre-study with a clerical review.

A naive approach to estimate attribute-specific 𝑢-probabilities is 𝑢 = 1/#uniqueValues, which
means that the probability that two attribute values agree by chance is equal to the
average relative frequency. We use a different approach which is sensitive to the frequency
distribution by setting 𝑢 =

∑𝑄−1
𝑖=0 𝑝2

𝑖
, where 𝑄 is the number of distinct values and 𝑝𝑖 the

relative frequency of the 𝑖-th value. As an example, consider the attribute gender that can
take the values ’female’, ’male’ and ’undesignated’. The first two values are nearly equally
frequent (𝑝 = 0.48), the last value, however, is far less common (𝑝 = 0.04). The estimated
probability that the values of two random records agree is 1/3 in the naive approach, but
46% when considering the frequency distribution.

448 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 11

ALGORITHM 2: Linkage with attribute-level similarities and value-specific weighting
Input: R: Dataset with attribute-level encoded records

wdefault: Default attribute-specific weights
t: threshold

Output: M: Matching record pairs
1 Candidates← GenerateRecordPairsWithStandardBlocking(R);
2 M← [];
3 for Candidate ∈ Candidates do
4 AP← GenerateAttributePairs(Candidate);
5 AS← ComputeAttributeSimilarities(AP);
6 w← wdefault;
7 for sim𝑖 ∈ AS do
8 if sim𝑖 = 1 then /* Adapt only if attributes are equal */

9 scale← GetScale(AP𝑖); /* Algorithm 1 */

10 𝑤𝑖 ← 𝑤default,𝑖 · scale;

11 RS← ComputeWeightedRecordSimilarity(w, AS); /* Equation (2) */

12 if RS > t then M.append (Candidate) ;

ALGORITHM 3: Record-level Bloom filter (RBF) encoding with value-specific weighting
Input: 𝑅: Plaintext record

wdefault: Default attribute-specific weights
𝑙RBF , 𝑙ABF : Length of the record-level / attribute-level Bloom filter
kABF : Attribute-level number of hash functions

Output: RBF: Encoded Bloom filter record
1 B← []; w← wdefault;
2 for 𝐴𝑖 ∈ 𝑅 do
3 ABF𝑖 ← GenerateBloomFilter (𝐴𝑖 , 𝑙ABF , 𝑘ABF,𝑖);
4 scale← GetScale(𝐴𝑖); /* Algorithm 1 */

5 𝑤𝑖 ← 𝑤default,𝑖 · scale;

6 share← ComputeProportionalNumbersOfBits(w, 𝑙RBF);
7 for ABF𝑖 ∈ ABF do B.append (SampleBits(ABF𝑖 , sharei) ;
8 RBF ← Permute(B);

ALGORITHM 4: CLK-RBF encoding with value-specific weighting
Input: 𝑅: Plaintext record

kdefault: Default attribute-specific number of hash functions
𝑙: Length of the record-level Bloom filter

Output: RBF: Encoded Bloom filter record
1 RBF = InitializeEmptyBloomFilter (𝑙);
2 for 𝐴𝑖 ∈ 𝑅 do
3 scale← GetScale(A𝑖); /* Algorithm 1 */

4 𝑘𝑖 ← 𝑘default,𝑖 · scale;
5 BFi ← GenerateBloomFilter (𝐴𝑖 , 𝑙, 𝑘𝑖);
6 RBF ← RBF ∪ BFi;

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 449

12 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

The application of this approach in the PPRL domain comes with additional challenges,
for attribute-specific weights as well as for frequency-dependent value-specific weights.
The estimation of 𝑢-probabilities and the computation of weight scale factors are based on
frequency distributions which are not readily available for the datasets to be linked as this
information is considered sensitive. We discuss this restriction in Sect. 4.4.

Furthermore, in PPRL with record-level encodings, weights cannot be chosen depending on
the agreement/disagreement of attributes. This is because weights must be applied at the
data owners where the comparison result is not known yet. Therefore, the two weights of
the Fellegi-Sunter model have to be combined into a single weight. Durham et al. [Du14]
proposed the range 𝑤 = 𝑤𝑚 − 𝑤𝑢. The combined weight, however, can be dominated by
𝑤𝑚 if the attributes have a large variety of values which is typically the case for names. As
a consequence, we normalize 𝑤𝑚 and 𝑤𝑢 with respect to the maximum/minimum value
across all attributes.

𝑤𝑚𝑖,𝑛𝑜𝑟𝑚 =
𝑤𝑚𝑖

𝑚𝑎𝑥(𝑤𝑚)
(10)

𝑤𝑢𝑖,𝑛𝑜𝑟𝑚 =
𝑤𝑢𝑖

𝑚𝑖𝑛(𝑤𝑢)
(11)

𝑤𝑖,𝑛𝑜𝑟𝑚 = 𝑚𝑎𝑥(𝑤) · (𝑤𝑚𝑖,𝑛𝑜𝑟𝑚 − 𝑤𝑢𝑖,𝑛𝑜𝑟𝑚) (12)

4.4 Limited frequency information

Accurate global frequency distributions of attributes across all linked datasets are not readily
available in the PPRL context. This information is considered sensitive as it could be used to
perform frequency attacks on Bloom filter encodings. In the following, we discuss possible
solutions to deal with this limitation.

Frequency distributions can be gathered from an external source on similar datasets, e. g.,
statistical data from a census of the same geographical region or be computed for the data
to be linked. While the first approach is especially useful for smaller datasets where the
calculated value counts may not represent the real-world frequency distribution well, the
latter ensures that the used frequencies correspond to the actual properties of the dataset.

Each data owner could determine its own source-specific frequency distribution and compute
weights based on it. This will result in different weights for identical values. We discuss
these effects in Sect. 4.5.

Data owners cannot exchange the complete frequency information as this would leak
information on rare values. However, the data owners might be willing and allowed to
exchange and combine the relative frequencies of their most common values. While this can
increase the linkage quality, it does not affect the privacy as the linkage unit does not learn
this information. For 𝑆idf a different reference frequency must be used as the median cannot
be determined for an incomplete frequency distribution. We therefore propose using the

450 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 13

least frequent value in the list of most common attribute values as the reference. The scaling
factor for this value as well as values not in the list is 1. For values on the list, it is below 1.

The limitation of frequency-dependent weight adjustments to common values will likely
lead to smaller effects on the linkage result. Additionally, the weight application can be
restricted to certain attributes, e. g. first and last name, because frequency information on
other attributes is missing. However, it still could be beneficial with respect to the precision.
We experimentally evaluate this effect in Sect. 5.

4.5 Effects of attribute differences in duplicates

Real-world data often contains typographical errors. Besides, names can have natural
variations, for instance, the German last name ’Schmidt’ with its variants ’Schmid’ or
’Schmitt’. These varying values occur with different frequencies which leads to different
frequency-dependent weights. The consequences of varying weights depend on the weight
application technique that is used.

For the RBF approach a single different attribute weight changes the proportions of the
weights and hence the sampling rates for all other attribute-level Bloom filters. If these
Bloom filters have equal fill rates, the fill rate of the RBF does not change for different
weights.

Using CLK-RBF with weight adaption, as described in Algorithm 4, the scaling factor of an
attribute 𝑖 is applied by changing the number of hash functions 𝑘𝑖 for that attribute only.
This does not affect the number of hash functions for the other attributes. Nevertheless, the
fill rate of the final Bloom filter is changed as the total number of hash functions is modified.

In Tab. 3, we illustrate the effect of changing a single weight using the two encoding methods.
Based on the default weights and the average number of features per attribute, we compute
the sampling rates for RBF and the number of hash functions 𝑘 for the CLK-RBF approach
for an example record 𝑎, that has 𝑆 = 1 for all attributes. Record 𝑏 has the same last name
and year of birth, but a different and very common first name. Therefore, we set the scaling
factor 𝑆𝑏 (FN) = 0.5. The sampling rates for all attributes of record 𝑏 are changed due to
the decreased sum of all weights. For CLK-RBF, however, only 𝑘𝑏 (FN) is adapted. As a
consequence, the generated Bloom filter encodings based on the RBF method are more
affected by weight variations compared to the CLK-RBF approach.

The same applies if we compute a different scaling factor 𝑆′
𝑏
(FN) = 0.67 based on a

different frequency information, e. g., when using source-specific frequency distributions
(as described in the previous section) where in each distribution the name ’Lisa’ occurs
often, but with different relative frequencies. If two sources encode the same record 𝑏 based
on their respective scaling factors 𝑆𝑏 and 𝑆′𝑏, the resulting Bloom filters are different. In
contrast, using the CLK-RBF approach, this affects only a few hash functions and thus the
difference between the Bloom filters is lower.

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 451

14 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Tab. 3: Example of a variation of a single weight on record-level encodings (𝑙 = 1024) based on RBF
(𝑙𝐴𝐵𝐹 = 256) and CLK-RBF (𝑘 = 20).

First name Last name Year of birth
Record a LISE DONOVAN 1956
Record b LISA DONOVAN 1956
n (avg. #features) 7 8 5
wdefault 12 11 14
Sb 0.5 1 1
S′b 0.67 1 1

RBF
wa (= wdefault) 12 11 14
wb 6 11 14
w′b 8 11 14
% of sampling for a (wa) 12/37 = 32% 11/37 = 30% 14/37 = 38%
% of sampling for b (wb) 6/31 = 19% 11/31 = 36% 14/31 = 45%
% of sampling for b (w′b) 8/33 = 24% 11/33 = 33% 14/33 = 43%

CLK-RBF
ka (for S = 1) 18 15 30
kb (for Sb) 9 15 30
k′b (for S′b) 12 15 30

To avoid different weights for attribute variations, such as ’Lisa’ and ’Lise’, we consider the
use of frequency distributions based on generalizations of the plaintext values, e. g., using
the Soundex phonetic encoding function [OR18]. Consequently, the weight for each value is
computed based on the frequency of its generalized value (Soundex code). For example, the
Soundex code for both ’Lisa’ and ’Lise’ is ’L200’, and thus, the same weights are computed,
although the values might have different frequencies.

4.6 Handling missing values

Apart from erroneous attributes, missing values often occur in real-world datasets and a
strategy is needed to handle them. When working with plaintext or attribute-level encodings,
the linkage unit can detect missing values. Multiple strategies can be used, e. g., ignoring
the attribute in the similarity score aggregation or setting its similarity score to 0. When
working with record-level encodings the linkage unit cannot detect missing values. If a
data owner detects a missing value during the encoding phase the respective weight could
be redistributed to the other attributes. However, as the missingness is source-specific, a
true match with that value set would be encoded with different weights for all attributes.
This would in turn lead to differences in the resulting Bloom filters and thus likely to
misclassifications. We therefore do not adapt weights of missing values and simply treat
them as empty attributes.

452 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 15

5 Evaluation

We evaluate the methods described in the previous section with respect to the linkage quality,
while focusing on the following aspects: (1) Quantification of the effects of frequency-
dependent weight adaptation. (2) Comparison of weight application approaches in PPRL.
(3) Investigation of the effects of limited information on frequency distributions.

5.1 Datasets

To study the effects on real-world data, we use a dataset based on the North Carolina Voter
Registration (NCVR) database (https://www.ncsbe.gov/) provided by Panse et al. [Pa21].
This dataset contains over 120 million historic voter records with person-related attributes
such as first name (FN), middle name (MN), last name (LN), year of birth (YOB), place of
birth (POB), city, ZIP code and sex. From that dataset we extracted a subset, tagged F, by

(1) Sampling 80 000 individual records (singletons) contained in the snapshot from ’2021-
01-01’ into set 𝐴𝑆 and 𝐵𝑆 each, ensuring that 𝐴𝑆 ∩ 𝐵𝑆 = ∅.

(2) Sampling 20 000 pairs of records 𝑎, 𝑏 (duplicates) into sets 𝐴𝐷 and 𝐵𝐷 respectively,
where 𝑎 is from any snapshot between ’2008-01-01’ (inclusive) and ’2021-01-01’
(exclusive), and 𝑏 is from snapshot ’2021-01-01’. Moreover, ∀𝑎, 𝑏 : (YOB(𝑎) =

YOB(𝑏)) ∧ ∃attr ∈ {FN,MN,LN, POB, SEX} : attr(𝑎) ≠ attr(𝑏).

(3) Constructing the final subsets as F𝐴 = 𝐴𝑆 ∪ 𝐴𝐷 and F𝐵 = 𝐵𝑆 ∪ 𝐵𝐷 respectively.

Based on F (‘Full‘) we derive another dataset, tagged R (‘Reduced‘), where we removed
the attributes middle name and place of birth, thus, making the dataset more challenging to
match, see also Tab. 4.

Tab. 4: Description of used datasets.

Name |A | |B | |A ∩ B | Attributes
F 100k 100k 20k FN, MN, LN, YOB, POB, CITY, ZIP
R 100k 100k 20k FN, LN, YOB, CITY, ZIP

For our evaluations with external statistical information we use frequencies of first and last
names from the 1990 US Census.2

5.2 Encoding

We set a fixed length of 𝑙 = 256 for the attribute-level Bloom filter. The plaintext attributes
are preprocessed by removing leading and trailing whitespace, conversion to lowercase

2 https://www.census.gov/topics/population/genealogy/data/1990_census.html

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 453

https://www.ncsbe.gov/
https://www.census.gov/topics/population/genealogy/data/1990_census.html

16 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

and removal of diacritics before being split into overlapping bigrams using padding. The
number of hash functions 𝑘𝑖 is selected based on the average length of each attribute to
achieve a unified average fill rate of the respective Bloom filter of approximately 40%. RBF
encodings are based on the same ABF parameters. We set the length of the record-level
Bloom filter to 𝑙 = 1024. For the computation of attribute-specific 𝑘𝑖 in the CLK-RBF
encoding we use the reference number of hash function 𝑘 = 12 (F) and 𝑘 = 15 (R) which
results in an average Bloom filter fill rate of approximately 40%.
Tab. 5: Attribute properties (availability, average length ∅𝑙, 𝑚- and 𝑢-probability, normalized weight)
and derived encoding parameters for Attribute-level Bloom filter (number of of hash functions 𝑘),
Record-Level Bloom filter (share of each attribute) and CLK-RBF (number of hash functions 𝑘 .)

Attr. Properties ABF RBF CLK-RBF
Avail. ∅l m-prob u-prob wnorm k %(F) %(R) k(F) k(R)

FN 99.99% 6 0.9300 0.0027 12.83 18 19.95 24.07 15 18
MN 92.16% 5.1 0.4380 0.0037 7.43 21 11.55 – 12 –
LN 100% 6.4 0.7187 0.0010 11.14 17 17.32 20.90 11 15
YOB 100% 4 0.9900 0.0135 14.44 26 22.45 27.09 24 29
CITY 99.97% 8.9 0.6507 0.0193 6.63 13 10.31 12.44 6 7
ZIP 99.89% 5 0.5318 0.0031 8.27 21 12.86 15.51 11 14
POB 79.13% 2 0.6436 0.1513 3.57 43 5.55 – 10 –

5.3 Matching

In this work, we focus on the evaluation of comparison and classification rather than
techniques to improve scalability. However, to run the experiments in a reasonable time, we
use standard blocking to reduce the number of comparisons that need to be computed. To
ensure the comparability of the results, we use the same blocking keys independent of the
encoding method. For each record we generate blocking keys at the data owners based on
the plaintext attribute combinations FN+YOB, LN+YOB and Soundex(FN)+Soundex(LN)
and encode them using a cryptographic one-way hash function. These hashed blocking keys
are transmitted together with the encoded records to enable blocking at the linkage unit.
Additionally, we add a blocking key of the global record id that is unique for each duplicate
pair based on the ground truth. This blocking key is used to ensure that no true duplicates
are excluded from the comparison.

For attribute-level encodings, attribute pairs with one or both values missing in essential
attributes (first name, last name and year of birth) are assigned a similarity score of 0. Other
missing attributes are ignored in the weighted average aggregation.

We conduct additional experiments where a post-processing routine on the set of matches
is applied, using a symmetric best match strategy (Max1-both) to restrict the result to 1:1
links. In many practical use cases this is reasonable when the sources can be considered
duplicate-free and therefore each record of a database has at most one duplicate in the other
database [Fr18].

454 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 17

5.4 Evaluation measures

We use the standard measures recall, precision and F1-score to evaluate linkage quality.
Recall measures the proportion of found true matches from all true matches. Precision
measures the proportion of found true matches from all found matches. The F1-score is the
harmonic mean of these two measures.

Rec. =
#TruePos.

#TruePos. + #FalseNeg. , Prec. =
#TruePos.

#TruePos. + #FalsePos. , F1 =
2 · Rec. · Prec.
Rec. + Prec.

We evaluate these measures for similarity thresholds 𝑡 in the range of [0.7, 1.0] in steps
of 0.01. In practical record linkage, however, ground truth data is not available and the
used thresholds are rarely optimal. For a high linkage quality in real-world applications the
results should be stable for a broader range of thresholds. We therefore introduce a loss
measure 𝐿𝑑

𝑀
for the linkage quality that describes the maximal loss of measure 𝑀 in the

threshold range [𝑡opt − 𝑑, 𝑡opt + 𝑑]. Furthermore, we report the area under the curve (AUC)
of precision-over-recall as a threshold-independent measure.

5.5 Results

The threshold-dependent quality measures are reported for the classification thresholds 𝑡opt
that are optimal for this linkage configuration and used dataset with respect to the F1-score.
First, we evaluate different weight adaptation methods based on the scaling factors 𝑆Zhu and
𝑆idf (see Tab. 6). We use ABF encodings as described in Algorithm 2 and the full frequency
distribution computed for the respective datasets and test multiple scale factor intervals.

Tab. 6: Comparison of weight adaptation methods on Attribute-level Bloom filter.

DS S Smin Smax AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R

– – – 0.841 0.85 0.786 0.787 0.787 0.029 0.089 0.180

Zhu
0.5 2.0 0.869 0.82 0.813 0.813 0.813 0.032 0.094 0.189
0.5 1.5 0.867 0.82 0.810 0.812 0.811 0.031 0.093 0.188
0.75 1.5 0.856 0.84 0.786 0.817 0.801 0.022 0.080 0.160

idf
0.5 2.0 0.884 0.84 0.830 0.839 0.835 0.030 0.091 0.184
0.5 1.5 0.877 0.84 0.817 0.839 0.828 0.024 0.083 0.174
0.75 1.5 0.866 0.85 0.795 0.837 0.815 0.019 0.087 0.156

F

– – – 0.918 0.83 0.809 0.914 0.859 0.008 0.050 0.151

Zhu
0.5 2.0 0.933 0.79 0.853 0.904 0.878 0.019 0.080 0.210
0.5 1.5 0.932 0.79 0.849 0.904 0.875 0.017 0.078 0.208
0.75 1.5 0.927 0.81 0.834 0.906 0.868 0.014 0.066 0.185

idf
0.5 2.0 0.940 0.81 0.863 0.913 0.887 0.017 0.072 0.191
0.5 1.5 0.937 0.81 0.851 0.916 0.882 0.014 0.064 0.180
0.75 1.5 0.931 0.82 0.838 0.914 0.875 0.012 0.058 0.167

All weight adaption configurations improve the linkage quality compared to static weights.
However, the 𝑆idf-based approaches generally show a higher rise of the AUC than the
𝑆Zhu-based with a maximum improvement by 0.043 (R) and 0.022 (F) each with a constraint

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 455

18 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Tab. 7: Comparison of averaging, attribute-specific and value-specific weighting (𝑆idf [0.5,2]) for
different encoding methods.

DS Enc. Weighting AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R

ABF
– 0.777 0.86 0.609 0.803 0.693 0.015 0.045 0.052
Attribute-specific 0.841 0.85 0.786 0.787 0.787 0.029 0.089 0.180
Value-specific 0.884 0.84 0.830 0.839 0.835 0.030 0.091 0.184

CLK-
RBF

– 0.749 0.85 0.580 0.806 0.674 0.014 0.047 0.078
Attribute-specific 0.837 0.83 0.782 0.767 0.775 0.028 0.093 0.221
Value-specific 0.875 0.81 0.804 0.849 0.826 0.015 0.070 0.189

RBF
– 0.787 0.86 0.605 0.828 0.699 0.007 0.024 0.043
Attribute-specific 0.845 0.85 0.770 0.806 0.788 0.015 0.074 0.179
Value-specific 0.675 0.76 0.373 0.973 0.539 0.001 0.001 0.001

F

ABF
– 0.900 0.80 0.808 0.857 0.832 0.009 0.046 0.134
Attribute-specific 0.918 0.83 0.809 0.914 0.859 0.008 0.050 0.151
Value-specific 0.940 0.81 0.863 0.913 0.887 0.017 0.072 0.191

CLK-
RBF

– 0.845 0.77 0.714 0.804 0.756 0.009 0.034 0.067
Attribute-specific 0.917 0.80 0.824 0.903 0.861 0.019 0.079 0.192
Value-specific 0.938 0.77 0.866 0.917 0.891 0.019 0.072 0.185

RBF
– 0.874 0.77 0.793 0.815 0.804 0.020 0.120 0.291
Attribute-specific 0.920 0.81 0.834 0.905 0.868 0.024 0.099 0.248
Value-specific 0.801 0.77 0.677 0.958 0.793 0.005 0.023 0.054

interval of [0.5, 2.0]. The optimal F1-scores show similar increases by 0.048 (R) and
0.028 (F). Therefore, we use that weight adaption strategy for the following experiments.

We compare the results of the value-specific weight adaptation strategy for the encoding
techniques ABF, CLK-RBF and RBF (see Tab. 7). We report two baselines, with and
without attribute-specific weights. The latter is implemented by using the arithmetic mean
of the attribute similarity scores (ABF), equal number of hash functions 𝑘 for all attributes
(CLK-RBF) and by sampling equal shares from each attribute (RBF). The value-specific
weighting scheme achieves AUC improvements for CLK-RBF comparable to those of the
attribute-level application despite the missing restriction of weight adjustments to equal
attributes: +0.038 (R) and +0.021 (F) with respect to the attribute-specific weight baseline
and +0.126 (R) and +0.093 (F) to the averaging baseline. However, with the sampling-based
approach (RBF) AUC decreases for value-specific weighting. As we discussed in Sect. 4.5,
this is because even a single different weight, e. g., due to a typo, leads to considerably
dissimilar Bloom filters. Even with a low threshold of 0.76 the recall is as low as 0.373 (for
R). Thus, we subsequently focus on the CLK-RBF encoding.

In general, we observe that weight adaptation methods lead to lowered optimal thresholds
with increases in recall as well as in precision. While the first is expected when lowering
the threshold, the rise of precision suggests that non-match candidates with comparatively
high similarity due to common values are less often wrongly classified as matches as these
attributes are weighted lower. Moreover, we note that the improved results are also equally
or more stable regarding the threshold selection. For R with an increase of the F1-score by
0.051, 𝐿𝑑

𝐹1 is reduced from 0.028 to 0.015 in 𝑑 = 0.01 and decreases by 0.023 in 𝑑 = 0.03,

456 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 19

0.75 0.80 0.85 0.90
Threshold

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Qu
al
ity

Measure
Recall
Precision
F1-Score

Weighting
Value-spec.
Attr.-spec.

Fig. 3: Comparison of quality measures for
attribute- and value-specific weighting on CLK-
RBF for R.

which indicates that a higher linkage quality can
be achieved in real-world applications with non-
optimal threshold selection (see also Fig. 3).

As explained above, the restriction of the link-
age result to 1:1 links is reasonable in some ap-
plications and enhances the linkage quality. In
order to study whether weight adaption further
improves the results, we evaluate the weighting
methods for CLK-RBF where the links have
been post-processed before the linkage quality
assessment (see Tab. 8). The results show in-
creases of AUC, +0.026 (R) and +0.011 (F),
indicating that the weight adjustment technique
is beneficial under these conditions as well.

Tab. 8: Comparison of attribute-specific and value-specific weighting (𝑆idf [0.5,2]) for CLK-RBF
where the found matches have been restricted to 1:1 links in a postprocessing step (PP).

DS PP Weighting AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R
yes

Attribute-specific 0.867 0.81 0.833 0.799 0.816 0.016 0.058 0.117
Value-specific 0.893 0.80 0.820 0.876 0.847 0.007 0.038 0.093

F Attribute-specific 0.936 0.79 0.848 0.915 0.880 0.007 0.032 0.077
Value-specific 0.947 0.76 0.881 0.927 0.904 0.012 0.045 0.101

Finally, we study how variations of available frequency information affect the results
(see Tab. 9). Again, we report two baselines, with and without value-specific weight
adaption, to allow for a comparison with the current state-of-the-art of attribute-specific
weights and with value-specific weights under ideal conditions. The results with frequency
distributions based on Soundex encodings instead of plaintext values show lower linkage
quality, because weights of rare values can be decreased in this setting if these values
share the encoding with a common value. Using source-specific frequency distributions
the results are almost equal to those with access to the overall frequency information as
the distributions are similar. When linking smaller datasets, the distributions will have
larger differences, in particular for rare values. We therefore conduct additional experiments
where we limit the available frequency information to the most frequent values, as described
in Sect. 4.4. The results show that even with a limitation on the 20 most frequent values
AUC increases by 0.027 (R) and 0.014 (F) compared to attribute-specific weights. However,
when using external statistical data on the 100 most frequent first and last names only, the
linkage quality improvements are comparatively low. The inclusion of information on the
frequencies of additional (geographical) attributes could potentially improve the results.

Generally, we see that the quality improvements for F are lower than for R because the
inclusion of information on value frequencies is more relevant in linkage scenarios where
fewer attributes are available.

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 457

20 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Tab. 9: Comparison of weighting methods with limited frequency information based on CLK-RBF.

DS Weighting limitation AUC topt Rec. Pre. F1 L0.01
F1 L0.03

F1 L0.05
F1

R

Attribute-specific 0.837 0.83 0.782 0.767 0.775 0.028 0.093 0.221
Value-specific 0.875 0.81 0.804 0.849 0.826 0.015 0.070 0.189
⊢ Soundex-based 0.858 0.82 0.788 0.832 0.809 0.016 0.075 0.207
⊢ Source-specific 0.875 0.81 0.791 0.864 0.826 0.009 0.058 0.171
⊢ Top 10 0.858 0.83 0.789 0.836 0.811 0.014 0.077 0.218
⊢ Top 20 0.864 0.82 0.825 0.813 0.819 0.032 0.117 0.286
⌞ Top 100 Names (Census) 0.851 0.82 0.802 0.769 0.785 0.025 0.082 0.195

F

Attribute-specific 0.917 0.80 0.824 0.903 0.861 0.019 0.079 0.192
Value-specific 0.938 0.77 0.866 0.917 0.891 0.019 0.072 0.185
⊢ Soundex-based 0.930 0.78 0.852 0.915 0.882 0.016 0.073 0.197
⊢ Source-specific 0.938 0.77 0.858 0.924 0.890 0.013 0.062 0.168
⊢ Top 10 0.928 0.79 0.845 0.913 0.877 0.018 0.080 0.212
⊢ Top 20 0.931 0.79 0.844 0.924 0.882 0.013 0.065 0.183
⌞ Top 100 Names (Census) 0.929 0.79 0.841 0.906 0.872 0.016 0.067 0.168

6 Conclusion

Privacy-preserving record linkage enables the integration of sensitive data and thus, its
comprehensive analysis. A main challenge is the classification of record pairs as match or
non-match based on computed similarities between quasi-identifying attributes of these
records. Several studies focus on attribute- and value-specific weightingmethods for plaintext
data. Nevertheless, only few works adapt these methods in the context of PPRL.

In this work, we apply existing record-level Bloom filter encodings and combine them
with frequency-dependent weight adaptation approaches. We extensively evaluate our
adapted encoding schemes and compare them with attribute- and record-level Bloom filter
encodings. The results show that the modified CLK-RBF encoding outperforms the existing
(record-level) methods and achieves comparable results to attribute-level weight application
techniques regarding linkage quality and robustness. However, the latter require attribute-
level encodings, which are susceptible to cryptanalysis and thus not secure in practical
applications. While the weight adaptation disturbs certain frequent bit patterns in the
record-level Bloom filters due to the reduced number of hash functions for frequent values,
it introduces other frequent patterns in the encoded data as lower weights systematically
result in lower fill rates.

In future work, we therefore plan to integrate Bloom filter hardening techniques in our
approach to further improve the resistance against cryptanalysis. Furthermore, we will study
approaches to estimate attribute-specific weights with limited information on frequency
distributions and error rates.

Acknowledgements. The authors acknowledge the financial support by the Federal Ministry
of Education and Research of Germany (BMBF) and by the Sächsische Staatsministerium
für Wissenschaft, Kultur und Tourismus for ScaDS.AI and by the BMBF for the SMITH
consortium, grant number 01ZZ1803A.

458 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

Value-specific Weighting for Record-level Encodings in PPRL 21

References

[Br17] Brown, A. P.; Randall, S.M.; Ferrante, A.M.; Semmens, J. B.; Boyd, J. H.:
Estimating parameters for probabilistic linkage of privacy-preserved datasets.
BMC Medical Research Methodology 17/95, pp. 1–10, 2017, doi: 10.1186/
s12874-017-0370-0.

[Ch12] Christen, P.: Data Matching, Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer, 2012.

[CRS20] Christen, P.; Ranbaduge, T.; Schnell, R.: Linking Sensitive Data, Methods and
Techniques for Practical Privacy-Preserving Information Sharing. Springer,
2020.

[Di45] Dice, L. R.: Measures of the Amount of Ecologic Association Between Species.
Ecology 26/3, pp. 297–302, 1945, issn: 00129658, doi: 10.2307/1932409.

[Du14] Durham, E.A.; Kantarcioglu, M.; Xue, Y.; Toth, C.; Kuzu, M.; Malin, B.:
Composite Bloom Filters for Secure Record Linkage. IEEE Transactions on
Knowledge and Data Engineering 26/12, pp. 2956–2968, Dec. 2014, doi:
10.1109/TKDE.2013.91.

[Fr18] Franke, M.; Sehili, Z.; Gladbach, M.; Rahm, E.: Post-processing Methods for
HighQuality Privacy-PreservingRecordLinkage. In:Data PrivacyManagement,
Cryptocurrencies and Blockchain Technology 2018. 2018, doi: 10.1007/978-
3-030-00305-0_19.

[Fr21] Franke,M.; Sehili, Z.; Rohde, F.; Rahm, E.: Evaluation of Hardening Techniques
for Privacy-Preserving Record Linkage. In: 24th International Conference on
Extending Database Technology (EDBT). Pp. 289–300, 2021, doi: 10.5441/
002/edbt.2021.26.

[FS69] Fellegi, I. P.; Sunter, A. B.: A Theory for Record Linkage. Journal of the
American Statistical Association 64/328, pp. 1183–1210, 1969, doi: 10.1080/
01621459.1969.10501049.

[FSR18] Franke, M.; Sehili, Z.; Rahm, E.: Parallel Privacy-Preserving Record Linkage
using LSH-based blocking. International Conference on Internet of Things, Big
Data and Security (IoTBDS)/, 2018, doi: 10.1007/978-3-030-00305-0_19.

[Gi10] Giersiepen, K.; Bachteler, T.; Gramlich, T.; Reiher, J.; Schubert, B.;
Novopashenny, I.; Schnell, R.: Performance of record linkage for cancer
registry data linked with mammography screening data. Bundesgesundheits-
blatt, Gesundheitsforschung, Gesundheitsschutz 53/7, pp. 740–747, 2010, issn:
1436-9990, doi: 10.1007/s00103-010-1084-1.

[Gk21] Gkoulalas-Divanis, A.; Vatsalan, D.; Karapiperis, D.; Kantarcioglu, M.: Modern
Privacy-Preserving Record Linkage Techniques: An Overview. IEEE Transac-
tions on Information Forensics and Security 16/, pp. 4966–4987, 2021, doi:
10.1109/TIFS.2021.3114026.

Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage 459

https://doi.org/10.1186/s12874-017-0370-0
https://doi.org/10.1186/s12874-017-0370-0
https://doi.org/10.2307/1932409
https://doi.org/10.1109/TKDE.2013.91
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.5441/002/edbt.2021.26
https://doi.org/10.5441/002/edbt.2021.26
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1007/s00103-010-1084-1
https://doi.org/10.1109/TIFS.2021.3114026

22 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

[HSW07] Herzog, T. N.; Scheuren, F. J.; Winkler, W. E.: Data Quality and Record Linkage
Techniques. Springer, 2007.

[OR18] Odell, M.; Russell, R.: The soundex coding system. US Patents 1261167/, 1918.
[Pa21] Panse, F.; Düjon, A.; Wingerath, W.; Wollmer, B.: Generating Realistic Test

Datasets for Duplicate Detection at Scale Using Historical Voter Data. In:
EDBT. 2021, doi: 10.5441/002/edbt.2021.67.

[RC18] Ranbaduge, T.; Christen, P.: Privacy-Preserving Temporal Record Linkage. In:
IEEE International Conference on Data Mining (ICDM). Pp. 377–386, 2018,
doi: 10.1109/ICDM.2018.00053.

[Ro21] Rohde, F.; Franke, M.; Sehili, Z.; Lablans, M.; Rahm, E.: Optimization of the
Mainzelliste software for fast privacy-preserving record linkage. Journal of
Translational Medicine 19/33, 2021, doi: 10.1186/s12967-020-02678-1.

[SBR09] Schnell, R.; Bachteler, T.; Reiher, J.: Privacy-preserving record linkage using
Bloom filters. BMC Med. Inf. & Decision Making 9/41, 2009, doi: 10.1186/
1472-6947-9-41.

[Va14] Vatsalan, D.; Christen, P.; O’Keefe, C.M.; Verykios, V. S.: An Evaluation
Framework for Privacy-Preserving Record Linkage. Journal of Privacy and
Confidentiality 6/1, pp. 35–75, 2014, doi: 10.1016/j.chemosphere.2016.07.
068.

[VCV13] Vatsalan, D.; Christen, P.; Verykios, V. S.: A Taxonomy of Privacy-Preserving
Record Linkage Techniques. Information Systems 38/6, pp. 946–969, 2013,
doi: 10.1016/j.is.2012.11.005.

[Vi22] Vidanage, A.; Ranbaduge, T.; Christen, P.; Schnell, R.: A Taxonomy of Attacks
on Privacy-Preserving Record Linkage. Journal of Privacy and Confidentiality
12/1, 2022, doi: 10.29012/jpc.764.

[WT91] Winkler, W. E.; Thibaudeau, Y.: An application of the Fellegi-Sunter model
of Record Linkage to the 1990 U.S. decennial census, Tech. Rep. RR1991/09,
Washington, DC: US Bureau of the Census, 1991.

[Zh09] Zhu, V. J.; Overhage, M. J.; Egg, J.; Downs, S.M.; Grannis, S. J.: An Empiric
Modification to the Probabilistic Record Linkage Algorithm Using Frequency-
BasedWeight Scaling. Journal of theAmericanMedical InformaticsAssociation
16/5, pp. 738–745, 2009, doi: 10.1197/jamia.M3186.

460 Florens Rohde, Martin Franke, Victor Christen, Erhard Rahm

https://doi.org/10.5441/002/edbt.2021.67
https://doi.org/10.1109/ICDM.2018.00053
https://doi.org/10.1186/s12967-020-02678-1
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1016/j.chemosphere.2016.07.068
https://doi.org/10.1016/j.chemosphere.2016.07.068
https://doi.org/10.1016/j.is.2012.11.005
https://doi.org/10.29012/jpc.764
https://doi.org/10.1197/jamia.M3186

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

HYPEX: Hyperparameter Optimization in Time Series
Anomaly Detection

Sebastian Schmidl1, Phillip Wenig2, Thorsten Papenbrock3

Abstract:

Anomaly detection is a popular activity in time series analytics and covers various techniques for the
identification of rare data patterns. These techniques are often presented in the form of automatic
anomaly detection algorithms, whose performance depends significantly on the configuration of
hyperparameters. Frequently, specifying the hyperparameters of an anomaly detection algorithm
manually is particularly difficult because it requires an in-depth understanding of the data and the
algorithms’ internal behavior. While automatic methods for hyperparameter optimization exist, they
require labeled training data and many trials to assess a system’s performance before the system can
be applied to production data. Hence, existing methods basically shift the efforts from parameter
optimization to the labelling of datasets, which is – due to a general lack of high-quality, domain-
specific labeled training data – a complex and time-consuming task in time series analytics.
In this paper, we propose a novel hyperparameter optimization framework called HYPEX that learns
a parameterization model for anomaly detection algorithms from synthetically generated training data.
Based on a (user provided or automatically measured) description of a few time series characteristics,
HYPEX quickly suggests effective settings for unseen datasets. The suggestions are based on (i)
explainable hyperparameter rules and (ii) learned default parameters, and require no labels for the
to-be-analyzed target time series. Our evaluation shows that HYPEX’ suggestions significantly improve
an algorithm’s performance compared to the algorithms’ default values and handcrafted heuristics;
they often even compete well with the optimal performance achieved with full Bayesian optimization.

Keywords: Time Series Anomaly Detection; Bayesian Optimization; Causal Discovery

1 The Curse of Hyperparameters

Anomaly detection algorithms for time series data analyze sequences of real-valued, usually
time-dependent data for rare subsequence patterns, called anomalies. To obtain good
results with these algorithms, various hyperparameters need to be specified. Many of these
hyperparameters are algorithm-specific and cover properties, such as learning rates, window
sizes, maximum cardinalities, move distances, node degrees, and neighbor counts, some of
which hidden behind cryptic names, such as k, phi, or delta. What makes the specification
of these hyperparameters hard is that (i) their implications are often hard to guess even by
technical experts, (ii) the algorithmic performance is often highly sensitive to the chosen
1 Hasso Plattner Institute, University of Potsdam, Germany, sebastian.schmidl@hpi.de
2 Hasso Plattner Institute, University of Potsdam, Germany, phillip.wenig@hpi.de
3 Philipps-Universität Marburg, Germany, papenbrock@informatik.uni-marburg.de

cba doi:10.18420/BTW2023-22

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 461

mailto:sebastian.schmidl@hpi.de
mailto:phillip.wenig@hpi.de
mailto:papenbrock@informatik.uni-marburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-22

2 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

settings, (iii) most hyperparameters are numeric with an infinite parameter space, and (iv) the
optimal values often depend on certain characteristics of the input data. For example, many
time series anomaly detection algorithms take a window size as input. The optimal value for
this hyperparameter then correlates, i. a., with the time series’ base oscillation frequency,
the expected anomaly length, or the time series’ extreme values. Most anomaly detection
algorithms, therefore, do not perform well with their default parameterization [SWP22].

Hyperparameter optimization is the process of tuning the hyperparameters of an algorithm to
a well performing setting [FH19]. This process can be conducted manually or automatically.
While the manual search is largely based on domain knowledge, automated approaches
find optimal values via, e. g., systematic Bayesian Optimization [DC21; DMC16; PGC+99;
Sh15] or comprehensive Grid Search [Hi12; Le12]. To make any of these approaches work,
labeled training data is required to measure the quality of specific hyperparameter settings.
Following established machine learning practice, we would collect possibly many labeled
time series, and use classical hyperparameter optimization to find optimal settings for some
anomaly detection algorithm. The default values found with this global optimization will
likely perform poorly on a given target dataset because they cannot consider that some
hyperparameter values, which are often the most important ones w. r. t. detection accuracy,
depend on time series characteristics. Furthermore, real-world data is regularly poorly
labeled and, hence, hardly usable for machine learning [SWP22]. For this reason, we would
require high-quality training data for every input dataset to effectively optimize an anomaly
detection algorithm. However, most practical use cases for time series anomaly detection do
not offer any labeled training data, and labeling a sufficient amount of training data is hard.

To ease the hyperparameter optimization process and improve upon globally defined
default values, we propose a novel approach: Given a to-be-analyzed target dataset and a
to-be-optimized anomaly detection algorithm, we ask the user to specify a set of dataset
characteristics, such as variance, min and max values, oscillation frequencies, and expected
anomaly lengths. These characteristics can mostly be profiled automatically from the input
data; if profiling is not possible, they are still easier to guess than hyperparameter values
and easier to provide than a sufficient amount of labeled training data. Our novel system,
then, generates training data based on the provided data characteristics and optimizes the
algorithm on this data. The optimization of the hyperparameters is an effective but also
expensive process. It, therefore, yields not only a set of possibly robust default parameters,
but also a generalizable parameterization model. Because the model learned the relationship
between data characteristics and optimal hyperparameter settings, it can quickly optimize
the algorithm for different target datasets with different characteristics.

More specifically, we propose Hyper Parameter Explanation (HYPEX), a hyperparameter
optimization framework that provides hyperparameter optimization models consisting of
explainable parameter rules. Assuming that data scientists can specify discrete hyperparam-
eters, such as preprocessors, CPU/GPU switches, or ML model types, easily (or at least
intuitively), HYPEX focuses on the optimization of continuous, numerical hyperparameters.
For this, HYPEX uses synthetically generated datasets to determine optimal hyperparam-

462 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 3

Algorithm Family [SWP22] Float Integer Total

STOMP [Zh16] distance 1 2 3
DWT-MLEAD [TKB17] distribution 1 2 3
Series2Graph [BP20] encoding - 4 4
Sub-LOF [Br00] distance - 5 5
Donut [Xu18] reconstruction 1 5 6
Sub-IF [LTZ08] trees 2 3 5

Tab. 1: Selection of anomaly detection approaches and their hyperparameters by category.

eter values and to identify relationships between (a) different hyperparameters and (b)
hyperparameters and dataset characteristics. To learn a reliable hyperparameter model,
HYPEX takes as input (i) a time series anomaly detection algorithm, (ii) a hyperparameter
configuration that defines the to-be-optimized algorithm parameters, and (iii) a dataset
generation configuration that describes possible dataset characteristics. Both configurations
require the user to specify value ranges for the hyperparameters and data characteristics,
respectively. These ranges should cover the expected use cases and define the scope of the
optimization – the larger the ranges, the more general the trained model and the longer the
training time. The dataset generation configuration, for example, might specify an oscillation
frequency between 1Hz and 2Hz, a maximum value between 0.8 and 1.0, and anomaly
lengths between 5s and 30s. Any target dataset in this scope can later be parameterized.
Because HYPEX optimizes only numerical hyperparameters, the configurations need to
provide settings for all discrete hyperparameters. Once started, HYPEX uses the configura-
tions for automatic training data generation with the GutenTAG [WSP22] dataset generator
and for specifying the trials in a systematic Bayesian Optimization [PGC+99]. From the
many optimal configurations on different datasets, the system then distills all dependencies
between hyperparameters and data characteristics into a causal parameter model. With the
learned model, we can use HYPEX on any dataset with characteristics in the before specified
ranges to propose optimal settings. For this, the user provides the (profiled or estimated)
dataset characteristics of a concrete input dataset such that HYPEX can apply them to the
parameter rules. Note that all discrete settings, such as type of input data or learning strategy,
need to match the settings of the training. With the learned default values and parameter
dependencies, HYPEX finally derives well-performing hyperparameter values.

We evaluate HYPEX on the six algorithms shown in Tab. 1 using synthetic datasets in
Sect. 4.2. In Sect. 4.4, we exemplarily solve the hyperparameter optimization task for the al-
gorithm Sub-LOF [Br00] on five real-world time series. The algorithms are well-performing
representatives from five anomaly detection families that we introduced in a larger evaluative
study [SWP22]; they contain between three and six hard-to-optimize numerical hyperpa-
rameters of type float or integer. Our evaluation shows that the automatically suggested
hyperparameters improve the anomaly detection quality of the algorithms significantly com-
pared to their default parameters and a manual, heuristics-driven parameterization approach
from related work [SWP22]. In summary, HYPEX makes the following contributions:

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 463

4 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

(i) Training data generation: We extend the GutenTAG data generator with mutation
rules to explore numeric dataset characteristics (Sect. 3.1).

(ii) Workload distribution: We design a distributed system for the scalable execution of
very many Bayesian optimization tasks (Sect. 3.2).

(iii) Causal structure learning: We propose an algorithm for the identification of
dependencies between numeric dataset characteristics and hyperparameters (Sect. 3.3).

(iv) Parameter inference: We discuss the automatic inference of hyperparameters from
Baysian optimization runs on generated data (Sect. 3.4).

2 Related Work

Optimizing hyperparameters is a well-known task in many research areas. The three most
common approaches for this task are (i) Random Search [BB12], (ii) Grid Search [Hi12;
Le12], and (iii) Bayesian Optimization [DMC16; PGC+99; Sh15]. All three algorithms
optimize hyperparameters in a way that a user-defined optimization criterion, such as F1
score, AUC-ROC score, or accuracy score, is maximized on a given dataset. While Random
Search uniformly samples from a given parameter distribution until its time constraint is
met, Grid Search tests all parameter combinations given by a user-defined parameter grid.
Bayesian Optimization uses a feedback loop to learn from previous parameter evaluations
and improve its parameter suggestions over time. All three algorithms require large amounts
of labelled data to evaluate the algorithm or machine learning (ML) model, which is subject
to optimization. Our approach overcomes this limitation by generating synthetic, labelled
datasets and then transferring learned parameter dependencies. The research community has
also come up with systems specifically designed to optimize hyperparameters in the context
of anomaly detection. We now discuss two such systems, namely Opprentice and Isudra.

Opprentice Opprentice [Li15] is an interesting approach that uses supervised machine
learning to improve the quality of anomaly detection in practice. The proposed algorithm
focuses on removing the manual work required to adjust parameters and thresholds to
reliably detect anomalies. Opprentice applies multiple existing anomaly detectors to the
incoming data (in parallel) while collecting all detector’s outputs, i. e. anomaly scores.
Moreover, domain experts are required to label anomalies in the incoming real-world data.
The combination of the detectors’ outputs and the manually generated labels are used to
train a random forest classifier to find reliable detector parameters and thresholds. The
authors show that their system removes the manual iterative parameter and threshold tuning.
However, domain experts are still required for data labelling purposes.

Isudra Isudra [DC21] was developed in the context of detecting anomalous data points
in clinical health data. The indirect supervision approach for anomaly detection methods

464 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 5

serves to optimize existing unsupervised anomaly detectors and to tune them to concrete
application settings. The approach requires clinicians to label sensor time series data with
health events. The labelled data gets decomposed into smaller sub-sequences using the
sliding window approach with window size ws. From each of the resulting windows w,
Isudra extracts descriptive features fs(w) and, then, applies an anomaly detector 𝐷 with
a specific set of detector hyperparameters to these features. Once the anomaly detector
terminates, the Isudra supervisor calculates a score by comparing the detected anomalies
with the ground truth data. Subsequently, Bayesian optimization is used to identify the most
effective configuration of window size ws, feature set fs, unsupervised anomaly detector 𝐷,
and detector hyperparametersH . The authors show that the indirect supervision approach
delivers significantly better performance than the alternative methods iForest and One-Class
SVM in detecting six out of seven health events. While Isudra automatically optimizes
detector parameters, it still requires domain experts, i. e., clinicians, to label a significant
amount of anomalous events and, in this way, generate ground truth data.

Our approach also uses the automated hyperparameter optimization technique Bayesian
optimization. However, we overcome the requirement of domain experts providing anomaly
labels by using a data generator that generates synthetic ground truth data with anomaly
labels. Moreover, our work returns a set of parameter-rules, which can be used to adjust a
detector’s parameters to new, yet unseen datasets.

3 Finding Hyperparameter Explanations

In this section, we propose HYPEX, a framework to automatically optimize time series
anomaly detector hyperparameters and extract parameter rules without requiring access to
manually labelled ground truth data. We use a fully controlled data environment to gain
insights on causal dependencies between numerical data characteristics and well-performing
parameter sets, as well as relationships between hyperparameters themselves. Because we
demonstrate HYPEX in the domain of time series anomaly detection, we first introduce the
data (time series) and algorithms (anomaly detection algorithms), we work with.

A time series is an ordered sequence 𝑇 = {𝑇0, 𝑇1, ..., 𝑇𝑛−1, 𝑇𝑛} of real-valued data points
𝑇𝑖 ∈ R𝑚. An anomaly in such a time series is a subsequence of data points that deviates
w. r. t. some measure or model from the frequent patterns in the time series. In our work, we
consider w.l.o.g. only univariate time series with a single attribute per data point (𝑚 = 1). An
anomaly detector takes a time series 𝑇 as input and computes an anomaly score 𝑠𝑖 ∈ {0, 1}
for each data point 𝑇𝑖 ∈ 𝑇 . The anomaly score 𝑠 indicates the detector’s confidence that a
data instance𝑇𝑖 is anomalous. The anomaly scores cannot be compared to the anomaly labels
unless they are turned into binary labels using a threshold. Hence, the choice of threshold
significantly impacts the anomaly detector’s performance and to eliminate it as another
tuning parameter, we use the AUC-PR score [Br97; DG06] as a performance measure for
the anomaly detectors’ outputs. This measure is especially popular in applications dealing
with learning on imbalanced data, which is the case for anomaly detection.

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 465

6 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

Worker #nWorker #1 Legend

Task Group

Result

Data Generation

Hyperparameter Optimization

Parameter-Rule-
Discovery

Parameter Model Validation

Fixed Parameter Identification

Best Parameter Model

Best Fixed Parameters

Data Shuffling
Idle time

Fig. 1: Control flow of a distributed HYPEX execution consisting of five major steps: (i) data generation
(Sect. 3.1), (ii) hyperparameter optimization (Sect. 3.2), (iii) parameter-rule-discovery (Sect. 3.3),
(iv) parameter model validation (Sect. 3.3.5), and (v) fixed parameter identification (Sect. 3.4).

HYPEX consists of five consecutive steps that are explained in the following sections: (i) The
data generation step creates time series, injects anomalies, and labels them (Sect. 3.1),
(ii) the hyperparameter optimization step uses Bayesian Optimization to find optimal
parameters on the generated datasets (Sect. 3.2), (iii) the parameter-rule-discovery step finds
causal dependencies between data characteristics and the detector’s hyperparameters, which
creates a set of parameter model candidates (Sect. 3.3.1 to 3.3.4), (iv) the parameter model
selection step validates the parameter model candidates to produce the final parameter model
that incorporates all significant parameter rules (Sect. 3.3.5), and (v) the fixed parameter
identification step finds data-independent, fixed parameter values for those parameters that
are not covered by the parameter model (Sect. 3.4). The resulting final parameter model and
the fixed parameters can be used to calculate future hyperparameters on yet unseen time
series based on that time series’ characteristics. It is worth noting that training the parameter
model, including data generation, Baysian optimization and causal inference, is a costly
process. For this reason, we propose to parallelize and distribute the efforts. But the training
enables HYPEX to afterwards parameterize an algorithm for different input datasets in
constant time. Fig. 1 provides a high-level architecture overview of our HYPEX approach.
All time-intensive tasks, namely steps (i), (ii), (iv) and (v), are executed on a distributed
Dask [Ro15] cluster utilizing multiple parallel worker nodes to speed up the overall runtime.

3.1 Data Generation

We use the time series anomaly data generator GutenTAG [WSP22] to generate the synthetic
datasets used to optimize the anomaly detector’s parameters. Each generated time series has
a base oscillation behavior and potentially multiple injected anomalies of different types.
GutenTAG pre-defines six base oscillations and nine anomaly types. When generating a

466 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 7

time series datasets, GutenTAG provides access to the time series, the anomaly labels,
and the generation metadata. This information is used to extract and control the dataset
characteristics. Fig. 2 shows a generated, univariate, real-valued time series, where the
underlying base oscillation simulates electrocardiogram (ECG) data. Two anomalies were
added, both indicated by the red background color: the first at position 140 of type frequency
and length 12, the second at position 240 of type extremum and length 1.

0 50 100 150 200 250 300 350 400
timestamp

0

10

va
lu

e

Fig. 2: Exemplary time series generated with GutenTag [WSP22]

To test how an anomaly detector’s parameters need to adapt w. r. t. a change in a specific
data characteristic, we introduce time series mutations. We define a time series mutation as
an attribute change in the GutenTAG configuration used to generate the synthetic time series
data. A generated dataset may contain multiple time series mutations, so-called mutation
sets, which means that two datasets can differ in multiple characteristics. HYPEX uses
user-defined mutation sets to generate synthetic datasets that vary in an arbitrary but fixed
set of data characteristics, such as anomaly lengths, oscillation frequencies, variances etc.
Fig. 3 shows an example of a mutation set that contains a single time series mutation of the
attribute base-oscillation.frequency applied to the predefined time series ecg-data. In this
case, HYPEX uniformly samples values for the attribute base-oscillation.frequency of the
user-provided time series ecg-data from the provided range [10, 50]. The sampling creates a
total of n_samples = 50 mutated GutenTAG configurations. Subsequently, those 50 different
GutenTAG configurations are used to generate the actual 50 datasets. More datasets improve
the training quality, but also increase the training time; our experiments use a generously
high value of 50 because we focus on quality. By randomly selecting dataset characteristics
from the specified ranges, the generated data has all the important characteristics of real
data, but with a certain variety and controlled anomalies – for this reason, the learnings on
the generated data translate well to real data. To conclude the data generation, HYPEX splits
the set of generated time series datasets 60:20:20 into distinct train, validation, and test sets.
All physical nodes in the Dask cluster perform the data generation task concurrently.

3.2 Hyperparameter Optimization

Once the data generation completes, HYPEX enters the distributed hyperparameter opti-
mization. For each time series dataset in the training split that GutenTAG generated, we
independently optimize the given anomaly detector’s parameters such that the algorithm
performs well on the selected dataset. Each step, i. e., a particular hyperparameter configu-
ration, of the optimization process is called trial and HYPEX keeps track of the dataset,

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 467

8 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

1 name: ecg-data # The time series to mutate
2 n_samples: 50 # The number of mutation sets to generate
3 mutations:
4 - paths: ["base-oscillation.frequency"] # The attribute to mutate
5 dtype: int
6 min: 10
7 max: 50

Fig. 3: Exemplary mutation of the data characteristic base-oscillation.frequency of a user-defined
time series called ecg-data.

its characteristics, the tested hyperparameters, and the resulting performance scores for all
performed trials over all datasets. The number of required trials to achieve reliable results
strongly depends on the number and data types of the hyperparameters to optimize.

Optimization Procedure HYPEX uses Bayesian Optimization for the optimization
procedure. While Random Search and Grid Search simply return the best performing
hyperparameters after testing several parameter configurations, Bayesian Optimization bases
hyperparameter guesses on past parameter evaluations, leading to a faster convergence.
Bayesian optimization is commonly used to optimize an objective function 𝑓 [Fr18]
that is expensive to evaluate, such as tuning an ML model’s architecture, or finding
the best hyperparameters for an anomaly detection algorithm. The most widely adopted
Bayesian optimization method is Sequential Model-Based Optimization (SMBO). Instead of
optimizing the objective function 𝑓 directly, SMBO uses a probabilistic model 𝑃(𝑓 (H) | H)
as a surrogate for 𝑓 [DMC16]. Until a time constraint C is met, SMBO keeps repeating
the following four steps: (i) update the probabilistic model based on previously collected
benchmark results, (ii) select the next best guess parametersH based on the probabilistic
model, (iii) evaluate the objective function 𝑓 with the parameters H , which is the most
expensive step, and (iv) collect and save the benchmark results (H , 𝑓 (H)) for the upcoming
optimization steps. The research community came up with several samplers to generate the
next best parameter guess based on the previous evaluated parameters [Be11]. Our approach
uses the Tree-structured Parzen Estimator (TPE) algorithm. In each iteration, it fits two
Gaussian Mixture Models (GMMs) per hyperparameter [∈ H , the first GMM 𝑙 ([) on the
set of well performing hyperparameters 𝑓 ([) > 𝑦∗ and the second 𝑔([) on the remaining
ones 𝑓 ([) ≤ 𝑦∗. The split value 𝑦∗ is automatically chosen by the TPE algorithm to match
some quantile 𝛾 of the observed values for the optimization criterion. In each iteration, for
each hyperparameter, TPE chooses the value [that maximizes the ratio 𝑙 ([)/𝑔([). Finally,
of all the evaluated parameter guessesH , the one with the best performance score 𝑓 (H)) is
returned. Our work builds upon the open-source SMBO framework Optuna [Ak19], which
implements the TPE algorithm with its TPESampler, and we use the AUC-PR score [Br97;
DG06] as the optimization criterion.

468 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 9

Task Distribution HYPEX speeds up the optimization procedure using distributed
computing techniques: It splits the workload into smaller sub-tasks, which can be computed
independently and in parallel on potentially different physical nodes. For the implementation
of this distribution, we have chosen the framework Dask [Ro15]. Dask provides dynamic
task scheduling as well as a data collection library - both accessible through a convenient
Python API. We wrap each optimization trial into a Dask task such that we can submit the
entire set of tasks to the Dask scheduler at once. Dask then controls and schedules the tasks
on the cluster’s worker nodes. This procedure requires us to ensure that each trial can run on
each included physical node, i. e., the synthetic data must be present on all nodes. HYPEX,
therefore, seeds the random number generator in GutenTAG such that all physical nodes
generate all and the exactly same input datasets. To ensure the Bayesian optimizer bases its
parameter suggestion on previous parameter evaluation runs, each trial requires access to not
only the trial runs on the same physical cluster node, but to all trials from all cluster nodes.
Optuna achieves this trial synchronization by storing trial results in a MySQL database,
which HYPEX launches on the Dask scheduler on start up. Each trial first connects to the
database to fetch previous trials’ results, then suggests a new set of hyperparameters, runs
the desired algorithm with the suggested hyperparameters, computes the AUC-PR score
from the algorithm’s anomaly scores, and finally persists the tested parameters and AUC-PR
score in the MySQL database.

3.3 Parameter Rule Discovery

We use the optimized hyperparameters found by Optuna (Sect. 3.2) to discover parameter
rules that specify (a) how hyperparameters depend on other hyperparameters and (b) how
hyperparameters depend on specific data characteristics. These data characteristics are
represented by the applied time series mutations in our optimization process. To discover
the parameter rules, we first present a de-noising step for the trial results, which is the
basis of HYPEX’s rule discovery (Sect. 3.3.1). Then, we guide through the estimation of
an undirected causal graph, the so-called causal skeleton (Sect. 3.3.2). Because the causal
skeleton is undirected, we then need to orientate the edges into determinant and dependent
hyperparameters/characteristics (Sect. 3.3.3). Once the dependence graph is completed,
we discuss how HYPEX compiles the identified parameter rules into a parameter model,
which is used later in the process to predict hyperparameters on new, unseen time series
dataset based on specific data characteristics (Sect. 3.3.4). Finally, we present an approach
to validate discovered parameter rules (Sect. 3.3.5).

3.3.1 Noise Reduction

The set of collected Optuna trials consists of hyperparameter configurations with different
performance AUC-PR scores. To find parameter rules, HYPEX should, however, consider
only such trails that performed well, because configurations that led to poor trail results

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 469

10 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

with low AUC-PR scores are not indicative for hyperparameter/characteristic correlations
and must, therefore, be considered as noise. To remove a large portion of that noise, we filter
out all trials with AUC-PR scores lower than a dynamic threshold 𝛾, which we calculate for
each time series in the training split: We define the threshold 𝛾 as the top 10% AUC-PR
score quantile, which has shown to be a robust selection strategy in all our experiments.

To further improve the explainability of the discovered parameter rules, we also prune
parameter rules for hyperparameters with low impact on an anomaly detector’s performance.
For this, HYPEX uses the parameter importance evaluator fANOVA [HHL14] to identify
important hyperparameters. fANOVA trains a random forest regressor to predict the AUC-PR
scores based on a given parameter configuration. The random forest regression’s feature
importance is used to assign importance scores to the anomaly detector’s hyperparameters.
Then, we prune all hyperparameters with an importance of less than 1% – these parameters,
which are usually runtime performance related parameters, do not require optimization.

After noise reduction, HYPEX combines the noise-reduced trials and the information on
hyperparameter importance into a matrix 𝑀 of dimensionality 𝐶 × 𝑁 . 𝑁 defines the number
of trials left after reducing the noise and 𝐶 = 𝑝 + 𝑑 + 1 defines the number 𝑝 of anomaly
detector hyperparameters with an importance score ≥ 0.01 plus the number 𝑑 of applied
time series mutations and an extra column for each trial’s achieved AUC-PR score. Consider
an anomaly detector taking two parameters window size with an importance score of 99.5%
and random state with an importance score of 0.5% as input. Moreover, let the datasets
contain the single applied time series mutation base-oscillation frequency. The resulting
matrix 𝑀 would consist of three columns, namely window size, base-oscillation frequency,
and the AUC-PR score; random state was removed due to its low importance score of 0.5%.
The number of rows in 𝑀 depends on the performed trials’ AUC-PR score distribution.
With the assumption of a uniform AUC-PR score distribution and 300 trial runs, we expect
𝑀 to have 0.1 · 300 = 30 rows.

3.3.2 Skeleton Estimation

To identify causal dependencies between columns of the noise-reduced data matrix 𝑀

(Sect. 3.3.1), HYPEX performs linear and non-linear independence tests. For these tests,
we found that most existing approaches for the detection of non-linear dependencies are
too sensitive on our data, given the potentially still tiny signal-to-noise ratio. This is why
we use a fairly simple, still powerful, regression-based non-linear independence test with
the PC algorithm [Sp00]. The PC algorithm is one of the oldest methods to discover
causal dependency graphs [GZS19; Sp00]. It supports plugging in many statistical tests
for checking independence and Conditional Independence (CI), which makes it usable in
a variety of settings. In HYPEX, we integrate an open-source implementation of the PC
algorithm in Python4 and extend it with own regression-based independence and CI tests

4 Code available at https://github.com/keiichishima/pcalg

470 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

https://github.com/keiichishima/pcalg

HYPEX 11

called Non-Linear Regression by Transformation (NLRegT) independence test and NLRegT
CI test. Note that they are applicable and perform well only on parameters of the numerical
data types integer and float. The PC algorithm uses the following five steps to estimate an
undirected version of the true causal graph, which we call the causal graph skeleton:

(i) Create a fully connected graph 𝐺 where each column in the data matrix, i. e.,
hyperparameter and dataset characteristic, is represented by a node in 𝐺.

(ii) For each edge (𝐴, 𝐵) ∈ 𝐺, run the (in-)dependency test and remove it from 𝐺 if the
variables 𝐴 and 𝐵 are (unconditionally) independent. We use dynamic confidence
thresholds 𝛼 (for more details, see Sect. 3.3.5).

(iii) For each of the remaining edges (𝐴, 𝐵) ∈ 𝐺 and each set of nodes 𝑍 = {𝑍1, ..., 𝑍𝑛}
with 𝑛 ∈ N+ that are all either connected to 𝐴 or 𝐵, remove the edge (𝐴, 𝐵) if 𝐴 and
𝐵 are conditionally dependent under 𝑍 . Start with 𝑛 = 1 and repeat this step with
increasing set sizes 𝑛. Consider a true causal graph 𝐴 → 𝐵 → 𝐶. Step (ii) finds
(unconditional) dependencies between {𝐴, 𝐵}, {𝐵,𝐶}, and {𝐴,𝐶}. However, the
dependency {𝐴,𝐶} only gets identified because there exists a path (𝐴, 𝐵, 𝐶) between
𝐴 and 𝐶. The PC algorithm uses the conditional independence test to identify such
dependencies {𝐴,𝐶} and remove them from the estimated causal graph. Note, that it
is possible to additionally have an edge 𝐴→ 𝐶 in the true causal graph. In this case,
{𝐴,𝐶} is not tested conditional dependent and their edge is therefore not removed
from the estimated causal graph.

In the following, we explain our NLRegT independence and CI tests, which HYPEX uses
with the PC algorithm to estimate the causal graph.

NLRegT Independence Test Our NLRegT test is a very robust and powerful independence
test for our application scenario. It runs the least squares optimization on pre-transformed
data and comes with two transformations by default: linear and hyperbola. The linear
transformation in front of the least squares optimization allows testing for relationships
between a predicting variable 𝑢 and a predicted variable 𝑣 of the form 𝑣 = 𝛽 ·𝑢+𝑐. 𝛽 being the
linear regression’s coefficient, and 𝑐 being its intercept. The hyperbola transformation, on the
other hand, enables us to detect causal dependencies between 𝑢 and 𝑣 of the form 𝑣 = 𝛽 · 1

𝑢
+𝑐.

This set of transformations is easily extendable, but our experiments strongly suggested
that (at least in the domain of anomaly detection on time series data) linear and hyperbola
dependencies are most common and, hence, sufficient. To fit the non-linear regression with
these transformations, our approach takes the following inputs: the slices X of the data
matrix 𝑀 containing the predicting variable and Y containing the predicted variable, a data
seriesW containing the achieved AUC-PR scores, and a set of transformation functions T .
For each of the provided transformation functions in T , the algorithm transforms the input
data of the predicting variable X and fits a linear regression on the transformed data X𝑇 :

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 471

12 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

𝑚𝑜𝑑𝑒𝑙 ← 𝑓 𝑖𝑡𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(X𝑇 ,Y,W2). Then, the linear regression of Y onto the
transformed data X𝑇 gets fit by using the trials’ squared AUC-PR scoresW2 as sample
weights. We thereby increase the weight of trials with higher AUC-PR scores and decrease
the weight of those with smaller score values. Afterwards, the fitted regression model itself
is scored using the 𝑅2-Score. Finally, the model with the highest 𝑅2-Score and the 𝑅2-Score
itself are returned. To test for independence between X and Y, HYPEX checks whether the
calculated 𝑅2-Score is smaller than a provided threshold 𝛼. Hence, the quality of the causal
discovery output strongly depends on the chosen value for 𝛼. We provide more detailed
information on how we use 𝛼 to generate different model candidates in Sect. 3.3.5.

NLRegT CI Test While the provided (unconditional) independence test is generally
applicable, our conditional independence test performing X ⊥ Y | Z assumes the data to
be generated under the Additive Noise Model (ANM). For this case, Peters et al. [Pe14]
showed that the conditional independence test can be mapped to an unconditional one.
The ANM assumes that there is a functional relationship between Z and X such that
X = 𝑓 (Z) +N𝑥 withN𝑥 being a zero-mean noise independent ofZ. The same assumption
applies to Y = 𝑔(Z) + N𝑦 . These assumptions allow the redefinition of X ⊥ Y | Z to
N𝑥 ⊥ N𝑦 [Zh17]. Algorithm 1 shows the application of this redefinition: The CI test uses
two steps, which are (i) the estimation of the noise terms N𝑥 and N𝑦 , and (ii) the test for
independence between the two estimated noise termsN𝑥 andN𝑦 . To estimate the two noise
terms, we fit the non-linear regression of Z onto X (Line 2) and Y (Line 5); we then
calculate the regressions’ residuals 𝜖𝑋 (Line 3) and 𝜖𝑌 (Line 6). To test for independence
between the residuals 𝜖𝑋 and 𝜖𝑌 , we once again fit a non-linear regression (Line 8) to
check whether the 𝑅2-Score is larger than a threshold 𝛽. HYPEX evaluates the different 𝛽
threshold values 0.2, 0.4, 0.6, and 0.8. The best performing among these gets selected (for
more details, see Sect. 3.3.5).

Algorithm 1 NLRegT CI Test
1: procedure NLRegTCI(X,Y,Z,W, 𝛽)
2: 𝑚𝑜𝑑𝑒𝑙𝑋 ← 𝑓 𝑖𝑡𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(Z,X,W)
3: 𝜖𝑋 ← X − 𝑚𝑜𝑑𝑒𝑙𝑋 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (Z)
4:
5: 𝑚𝑜𝑑𝑒𝑙𝑌 ← 𝑓 𝑖𝑡𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(Z,Y,W)
6: 𝜖𝑌 ← Y − 𝑚𝑜𝑑𝑒𝑙𝑌 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (Z)
7:
8: 𝑠𝑐𝑜𝑟𝑒 ← 𝑓 𝑖𝑡𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝜖𝑋 , 𝜖𝑌)
9: return 𝑠𝑐𝑜𝑟𝑒 > 𝛽

3.3.3 Edge Orientation

Until now, we found correlated hyperparameter-hyperparameter and hyperparameter-
characteristic edges as undirected relationships. To derive hyperparameters from other
hyperparameters or dataset characteristics, these relationships need to be oriented, which is

472 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 13

done in three steps: (i) incorporation of prior knowledge on dataset characteristics, (ii) esti-
mation of the Completed Partially Directed Acyclic Graph (CPDAG), and (iii) conversion
of the CPDAG to a Directed Acyclic Graph (DAG).

In step (i), we incorporate a task-specific constraint: Because we aim to find good hyperpa-
rameters given certain dataset characteristics, edges need to point from characteristics to
parameters. Hence, given the edge (𝐴, 𝐵) with orientation 𝐴 → 𝐵, HYPEX removes all
edges (𝐴, 𝐵) from the graph skeleton where the node 𝐵 is a dataset characteristic. Step (ii)
then executes the PC algorithm’s CPDAG estimation. The PC algorithm is guaranteed to
converge to the Markov Equivalence Class (MEC) under the causal Markov condition and
faithfulness assumption and when there is no undiscovered confounder [GZS19]. Consider,
for example, a true causal graph 𝐺 containing only two nodes 𝐴 and 𝐵 with a single
undirected edge {𝐴, 𝐵} ∈ 𝐺. Here, the PC algorithm identifies 𝐴 and 𝐵 as dependent on
one another, but it cannot decide the dependency direction. Therefore, the resulting graph
contains an undirected edge between the nodes 𝐴 and 𝐵. Such a graph that represents the
MEC and possibly contains a mixture of directed and undirected edges is called a CPDAG.
To estimate the CPDAG, the PC algorithm executes the following two steps [GZS19]:

(i) Search for v-structures and orient edges accordingly. A v-structure is a triple of nodes
(𝐴, 𝐵, 𝐶) such that there exist the undirected edges {𝐴, 𝐵} ∈ 𝐺 and {𝐵,𝐶} ∈ 𝐺, but
{𝐴,𝐶} ∉ 𝐺 and the node 𝐵 is not contained in the set 𝑍 = {𝑍0, ..., 𝑍𝑛} under which
𝐴 and 𝐶 were tested conditionally independent. The edges in such a v-structure are
oriented 𝐴→ 𝐵 and 𝐶 → 𝐵.

(ii) Use orientation propagation to orient possibly many of the remaining edges. To
do so, search for a triple of nodes (𝐴, 𝐵, 𝐶) such that there exists a directed edge
(𝐴, 𝐵) ∈ 𝐺, an undirected edge {𝐵,𝐶} ∈ 𝐺, but no edge between 𝐴 and 𝐶. In each
of the found triples, the undirected edge {𝐵,𝐶} gets oriented 𝐵→ 𝐶.

The resulting CPDAG might still contain undirected edges, but our final parameter model
requires all discovered parameter rules to have a clear orientation. To ensure this requirement,
step (iii) of the edge orientation converts the estimated CPDAG to a DAG with a colored
depth-first search [Su17; ZG07]. The search removes back edges in the graph, thus breaking
existing cycles and creating a DAG with no undirected edges or cyclic dependencies.

3.3.4 Parameter Model

Given the dependency DAG, HYPEX now trains a set of parameter models that predict
optimal values for dependent anomaly detector hyperparameters from the set of data
characteristics and other hyperparameters: For each node in the DAG, HYPEX identifies all
predecessor nodes and fits the NLRegT model once again using the trials’ squared AUC-PR
score as the sample weight. While the NLRegT model previously contained just a single

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 473

14 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

feature, which was used to predict the target variable, the number of features here depends on
the number of predecessors in the graph. The parameter model stores at most one NLRegT
model for each anomaly detector hyperparameter. Once the parameter models are trained
on generated data, HYPEX can use them to predict hyperparameter values on unseen data.
For this, the algorithm iterates over the estimated DAG in topological order. In each step, it
uses the stored NLRegT model to predict the respective parameter based on all previously
estimated parameters and data characteristics. In Sect. 3.4, we discuss how HYPEX assigns
fixed values to the hyperparameters that are not covered by the parameter model.

3.3.5 Parameter Model Selection

Our experiments show that the optimal 𝛼 and 𝛽 thresholds to choose for the parameter-
rule-discovery (Sect. 3.3.2) are algorithm- and base oscillation-specific. Therefore, we
run the parameter-rule-discovery for different 𝛼 and 𝛽 thresholds, leaving us with a set
of parameter model candidates. The set of 𝛼 thresholds to test is determined by fitting a
non-linear regression on each pair of variables in the data matrix 𝑀 , rounding the regressions’
𝑅2-scores to two decimal places and considering only 𝑅2-scores ≥ 5% as significant; the
set of 𝛽 thresholds is fixed and set to {0.2, 0.4, 0.6, 0.8}. These settings have been found
via systematic ablation tests and showed to be dataset and algorithm independent; hence,
we propose them as default settings for HYPEX. For each unique combination of 𝛼 and 𝛽

thresholds, we create a parameter model candidate by running our parameter-rule-discovery
using the respective threshold values. Subsequently, we measure the parameter model
candidates’ performances on the validation data split, which contains 20% of the generated
time series datasets. To test a candidate’s performance, we use the parameter model to
predict the anomaly detector’s parameters based on data characteristics. All parameters that
are not covered by the parameter model candidate are filled up with uniformly sampled
random values. For each pair of model candidate and time series dataset, we independently
sample non-covered parameters 10 times and, finally, choose the parameter model with the
highest mean AUC-PR score across all conducted tests.

3.4 Fixed Parameters

Our parameter models are expected to cover only such anomaly detector hyperparameters
that depend on either a data characteristic or another hyperparameter. For the remaining,
data-independent anomaly detector hyperparameters, we identify generally well-performing,
fixed values. To find these values, HYPEX again uses the Bayesian optimizer to optimize
the mean AUC-PR score across all generated validation time series datasets. For each time
series, we utilize the parameter model to predict the data-dependent hyperparameters based
on the contained time series anomalies. Only the data-independent parameters are subject to
optimization in this final step. Eventually, the hyperparameter values of the best performing
trial are selected as generally applicable, fixed parameters for the tested anomaly detector.

474 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 15

The final parameter model holds a combination of NLRegT models and fixed parameters,
thus being able to predict all anomaly detector parameters on unseen time series data.

4 Evaluation

In this section, we evaluate HYPEX on a variety of anomaly detection algorithms and
time series datasets. We start with the explanation of the experimental setup (Sect. 4.1),
then compare the performance scores achieved by our parameter suggestions with relevant
alternative approaches (Sect. 4.2), review HYPEX’s sensitivity to automatically chosen
thresholds (Sect. 4.3), and show the application of HYPEX to real-world data (Sect. 4.4).

4.1 Experimental Setup

We evaluate our approach5 on six anomaly detection algorithms and four time series dataset
groups containing different base oscillations and anomaly types. The included base oscillation
behaviors are (i) sine, (ii) ECG, (iii) random walk, and (iv) cylinder bell funnel [WSP22].
Each base oscillation is considered separately, as we find this to have a large impact on
possible parameter rules and algorithm behaviors. All generated time series datasets consist
of 10, 000 individual data points and contain 3, 6, or 9 same-length anomalies at different
positions of types (i) variance, (ii) frequency, or (iii) pattern [WSP22]. We apply time series
mutations to (a) the base oscillation frequency (only applicable for sine and ECG), (b) the base
oscillation variance, (c) the length of anomalies, and (d) the number of anomalies. For each
of the four dataset groups characterized by the four base oscillation behaviors, we incorporate
50 time series mutations. We recall that 20% of the generated datasets are reserved for
evaluation purposes only (Sect. 3.1). We evaluate our approach on algorithms from five
out of six anomaly detector families defined by Schmidl et al. [SWP22]. The algorithms
stem from the areas (i) distance (STOMP [Zh16] and Sub-LOF [Br00]), (ii) distribution
(DWT-MLEAD [TKB17]), (iii) encoding (Series2Graph [BP20]), (iv) reconstruction
(Donut [Xu18]), and (v) trees (Sub-IF [LTZ08]). Each algorithm has between 3 and 6
hyperparameters that are subject to optimization. For the evaluation, we use the AUC-PR
score to measure the algorithms’ detection quality.

We do not have any information on the true relationships between data characteristics and
hyperparameters for any of the anomaly detectors, on which we evaluate our framework
HYPEX. Therefore, we measure the quality of our parameter model and fixed parameter
suggestions by comparing them to (a) the algorithms’ default parameters, (b) the manually
tuned parameter recommendations of TimeEval [SWP22], and (c) the optimization results
achieved by the Bayesian Optimizer Optuna (full optimization). While each detector’s
default hyperparameter configuration stays constant, regardless of which time series it runs

5 Code and evaluation scripts: https://github.com/HPI-Information-Systems/hypex

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 475

https://github.com/HPI-Information-Systems/hypex

16 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

0.2

0.4

0.6

0.8

1.0

A
U

C
-P

R
 S

co
re

mutation = (1) mutation = (2) mutation = (3) mutation = (4) mutation = (5)

0 100 200 300
Step

0.2

0.4

0.6

0.8

1.0

A
U

C
-P

R
 S

co
re

mutation = (6)

0 100 200 300
Step

mutation = (7)

0 100 200 300
Step

mutation = (8)

0 100 200 300
Step

mutation = (9)

0 100 200 300
Step

mutation = (10)

Fig. 4: Evaluation of Donut [Xu18] on 10 sine time series comparing our Parameter Model with
Donut’s Default Parameters, the Timeeval Heuristics, and a Full Optimization run.

on, HYPEX’s parameter model as well as TimeEval’s parameter suggestions use specific
data characteristics to adapt a selected subset of the hyperparameters to the time series input
while keeping others constant. The full optimization, however, tunes every single parameter
to the specific input time series. Thus, the best scores of the full optimization represent an
upper bound for any optimization effort (which is achievable only with suitable training data)
while the algorithm’s default parameters represent a lower bound for HYPEX’s performance;
the TimeEval results show what results can be expected with significant manual effort.

4.2 Parameter Model Performance

In this section, we first show a single anomaly detector’s performance using HYPEX’s
suggested hyperparameters. Then, we present a general overview of the performance
achieved on the tested algorithms and base oscillations.

Fig. 4 visualizes our evaluation results on the anomaly detector Donut [Xu18] and 10 time
series datasets with base oscillation sine that cover various time series mutations with
different dataset characteristics and, in particular, different types and numbers of anomalies
in each time series. It compares the performance of HYPEX’s parameter model with
the performance achieved by (i) the detector’s default parameters, (ii) TimeEval’s
manually found default parameters and heuristics, and (iii) a full Bayesian optimization
run (full optimization). While the default parameters, the TimeEval heuristics, and our
parameter model recommend a single hyperparameter configuration per input dataset, the
full optimization is granted 300 trials to optimize Donut’s hyperparameters for each of
the 10 time series. Our first insight is that especially Donut’s default parameters perform
poorly, which clearly emphasizes the need for hyperparameter tuning. In comparison to
the algorithms’ default values, both the TimeEval approach and HYPEX’s parameter

476 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 17

0.0

0.5

1.0

A
U

C
-P

R
 S

co
re

Base Oscillation = sine

0.0

0.5

1.0

A
U

C
-P

R
 S

co
re

Base Oscillation = ecg

0.0

0.5

1.0

A
U

C
-P

R
 S

co
re

Base Oscillation = random-walk

Donut DWT-MLEAD Series2Graph Sub-IF Sub-LOF STOMP
Algorithm

0.0

0.5

1.0

A
U

C
-P

R
 S

co
re

Base Oscillation = cylinder-bell-funnel

Fig. 5: Distribution of maximum AUC-PR scores achieved by Default Parameters, Timeeval
Heuristics, our Parameter Model, and Full Optimization per base oscillation and algorithm.
† Empty parameter model for base oscillations random walk and cylinder-bell-funnel.

model achieve high AUC-PR scores; the difference is that no manual work was needed
to find the parameter model. Furthermore, HYPEX’s performance scores get even close
to the maximum scores achieved via Bayesian optimization (consider the highest point
for comparison); as an unsupervised parametrization approach, though, HYPEX does not
require labels for the input time series to optimize it, but instead generates training data
automatically.

We summarize our evaluation results across all six tested algorithms on four base oscillations
in Fig. 5. A single box plot shows the distribution of 10 AUC-PR scores. Each score represents
the evaluation result on a single evaluation time series dataset. To represent the Bayesian
full optimization trials, we pick the maximum AUC-PR scores per time series dataset
obtained in each of the 300 trial runs. As expected and confirmed in this experiment, a full
optimization for a target dataset with training data performs best on all dataset types, i.e.,
base oscillations. Again, the algorithms’ default parameters achieve the worst performance

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 477

18 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

scores in the majority of the conducted experiments. The manual hyperparameter settings
and heuristics of TimeEval mostly deliver higher performance scores than the algorithms’
default parameters. In some cases, such as Donut on random walk, Series2Graph on ECG
and random walk, and Sub-IF on ECG, however, the TimeEval efforts could not predict
better-performing hyperparameters than the default parameters. With no human effort and no
pre-labeled training data, our parameter models’ hyperparameter suggestions surpass both
default parameterization and TimeEval performances in most experiments. Even in cases
where HYPEX did not discover any parameter rules for an anomaly detector and simply
suggested fixed values, these values still outperformed the detector’s default parameters
(see DWT-MLEAD on base oscillations sine, random walk, and cylinder bell funnel).

In terms of absolute performance, we see that all evaluated anomaly detectors tend to perform
best on cyclical base oscillations, such as sine and ECG, and struggle with non-cyclical
ones, such as random walk and cylinder bell funnel.

4.3 Sensitivity to Thresholds

(0.46, 0.2)

(0.24, 0.2)

(0.17, 0.2)

(0.15, 0.2)

(0.08, 0.2)

(0.06, 0.2)

Thresholds (,)

0.5

0.6

0.7

0.8

A
U

C
-P

R
 S

co
re

Fig. 6: Comparison of AUC-PR score distribu-
tions by selected 𝛼 and 𝛽 threshold values on 10
evaluation datasets for algorithm STOMP [Zh16]
and base oscillation sine. Each named threshold
tuple represents a set of tuples that all result in the
identification of identical parameter-rules.
† The threshold value HYPEX automatically se-
lected (see Sect. 3.3.5).

HYPEX uses two thresholds, namely 𝛼

and 𝛽, to adjust the minimum confidence
scores of the (in-)dependence and CI tests.
In Sect. 3.3.5, we discussed how the algo-
rithm automatically determines the optimal
values for 𝛼 and 𝛽 during the parameter
model selection. Fig. 6 shows the parame-
ter model results on the evaluation datasets
when HYPEX performs the optimal thresh-
old determination on the validation datasets.
We optimized each parameter model’s fixed
parameters independently for each of the
threshold tuples. Many experiments indi-
cate that the full optimization trial runs have
only low variances in optimal parameter
values across different evaluation datasets.
Thus, parameter rules do not showcase their
full potential, as optimized fixed parameters
achieve similar high-performance scores. However, the full optimization’s best parameter
value suggestions for the algorithm STOMP on the base oscillation sine showed high
variances across the different datasets. The (𝛼, 𝛽) threshold tuple (0.46, 0.2) resulted in an
empty causal graph, thus the suggested parameters on the evaluation datasets are based on
fixed values only. However, it achieves the second-best detection results on average among
the compared parameter models. We also see that using fixed values only comes at the cost
of increased variance across the evaluation datasets. Hence, HYPEX automatically chooses

478 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

HYPEX 19

the threshold values (0.24, 0.2). Across all experiments, the resulting parameter models
contain a mixture of parameter rules and fixed hyperparameter values, which is a result that
performs best on the evaluation datasets and shows to have a lower variance than using only
fixed parameter values.

4.4 Application on real-world data

In this section, we evaluate how HYPEX’ hyperparameter suggestions perform on five
real-world datasets taken from the KDD-TSAD benchmark collection [Ke21]. All five
time series represent ECG signals with varying properties, and contain different anomalies.
Due to the space limitation and because Sub-LOF performed consistently well in all our
previous evaluations, we restrict our experiment to the Sub-LOF algorithm. We configured
HYPEX to optimize all four hyperparameters of Sub-LOF, which are window size, number
of neighbors, leaf size, and random state, and to create datasets with similar data
characteristics to the target datasets, i. e., ECG shaped data. We allow HYPEX to mutate
base oscillation frequency, noise level, amplitude, mean, and anomaly details, such
as position, length, and anomaly shift size. For both the generated training datasets
and the real-world datasets, HYPEX uses tsfresh [Ch18] to extract 12 time series features as
the dataset characteristics.

variance standard deviation maximum

window size

number of neighbors

constant

random state leaf size

dataset characteristic hyperparameter

(a) HYPEX parameter model learned for the Sub-LOF
algorithm on the synthetically generated training data.

DI
ST

OR
TE

DE
CG

4
NO

ISE
EC

G4

EC
G1

se
l84

0m
EC

G1
mit1

41
34

lon
gt

er
mec

g

0.00

0.25

0.50

0.75

1.00

AU
C-

PR
 S

co
re

Full Optimization
Default Parameters

TimeEval Heuristics
Our Model

(b) AUC-PR score of Sub-LOF on real datasets. HYPEX
was trained only on synthetic data.

Fig. 7: HYPEX’ parameter model and AUC-PR scores for Sub-LOF on real ECG datasets.

Fig. 7a shows HYPEX’ final parameter model for Sub-LOF. The optimization on the
synthetic training datasets identified dependencies for the hyperparameters window size
and number of neighbors: While window size depends solely on the dataset characteristic
maximum, number of neighbors dependents not only on dataset characteristics, but also
on the hyperparameter window size. HYPEX assigned constant values to the parameters

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 479

20 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

random state and leaf size because they had no significant influence on the algorithm’s
performance on the training datasets.

In Fig. 7b, we show the AUC-PR scores of Sub-LOF on the five real-world datasets using
(a) HYPEX’ parameter model, (b) the algorithms’ default parameters, (c) the parameter
recommendations of TimeEval, and (d) the maximum of a full optimization run with
300 trials. The full optimization run indicates the optimal performance that Sub-LOF
could achieve on each dataset when taking the ground truth into account. Both the
default hyperparameters and the TimeEval hyperparameters perform poorly for the datasets
sel840mECG1 and mit14134longtermecg. For the dataset ECG1, the AUC-PR scores using
the default values (1.00) and the hyperparameter values from TimeEval (1.00) are marginally
higher than HYPEX’ score (0.98). HYPEX’ hyperparameter values, however, can achieve
an AUC-PR score close to the full optimization run for all datasets. This demonstrates
HYPEX’s capability to learn a parameter model on synthetic training datasets that can
significantly outperform alternative parametrization strategies, and that routinely approaches
the maximum achievable score.

5 Conclusion

In this paper, we addressed the time-consuming process of tuning hyperparameters. Our
proposed system HYPEX extracts parameter rules that can be used to transfer knowledge
about the relationship (a) between parameters and data characteristics, and (b) between two
parameters to yet unseen application data. While previous work included manually crafted
heuristics [SWP22] or long-running optimization tasks [DC21; Le12; PGC+99; Sh15],
which both require labels on large test datasets, our work proposes an automated approach
using synthetic datasets to derive parameter calculation rules based on identified causal
relationships. In our evaluation, HYPEX’s parameter suggestions outperformed the anomaly
detectors’ default parameters as well as hand-crafted heuristics across different anomaly
detection methods and base oscillations. We showed that identified fixed parameters perform
well on a variety of different datasets at the cost of higher variance. HYPEX’s approach,
using a mixture of parameter rules and fixed hyperparameter values with the automatic
parameter model selection, predicts well-performing, reliable hyperparameter values on
different datasets. Future work includes the extension of HYPEX to categorical data types
and its application and evaluation in other domains, such as data cleaning or pattern mining.

Acknowledgements
This paper is based on the excellent work of Mats Pörschke, whose career prevented him
from officially co-authoring this publication. His master thesis6 explains HYPEX in more
detail. We thank Mats for his effort and permitting the presentation of the results.

6 https://github.com/HPI-Information-Systems/hypex/raw/main/masterthesis_hypex.pdf

480 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

https://github.com/HPI-Information-Systems/hypex/raw/main/masterthesis_hypex.pdf

HYPEX 21

References

[Ak19] Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M.: Optuna: A next-
generation hyperparameter optimization framework. In: Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(SIGKDD). 2019.

[BB12] Bergstra, J.; Bengio, Y.: Random search for hyper-parameter optimization.
Journal of Machine Learning Research (JMLR) 13/1, 2012.

[Be11] Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems (NIPS).
2011.

[BP20] Boniol, P.; Palpanas, T.: Series2Graph: Graph-Based Subsequence Anomaly
Detection for Time Series. Proceedings of the VLDB Endowment 13/12, 2020.

[Br00] Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander, J.: LOF: identifying density-
based local outliers. In: Proceedings of the International Conference on
Management of Data (SIGMOD). 2000.

[Br97] Bradley, A. P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition 30/7, 1997.

[Ch18] Christ, M.; Braun, N.; Neuffer, J.; A.W., K.-L.: Time Series FeatuRe Ex-
traction on basis of Scalable Hypothesis tests (tsfresh – A Python package).
Neurocomputing 307/1, 2018.

[DC21] Dahmen, J.; Cook, D. J.: Indirectly Supervised Anomaly Detection of Clinically
Meaningful Health Events from Smart Home Data. ACM Transactions on
Intelligent Systems and Technology (TIST) 12/2, 2021.

[DG06] Davis, J.; Goadrich, M.: The relationship between Precision-Recall and ROC
curves. In: Proceedings of the International Conference on Machine Learning
(ICML). 2006.

[DMC16] Dewancker, I.; McCourt, M.; Clark, S.: Bayesian Optimization for Machine
Learning: A Practical Guidebook, 2016, arXiv: cs/1612.04858.

[FH19] Feurer, M.; Hutter, F.: Hyperparameter Optimization. In: Automatic Machine
Learning: Methods, Systems, Challenges. Springer Berlin Heidelberg, 2019.

[Fr18] Frazier, P. I.: A Tutorial on Bayesian Optimization, 2018, arXiv: stat.ML/
1807.02811.

[GZS19] Glymour, C.; Zhang, K.; Spirtes, P.: Review of causal discovery methods based
on graphical models. Frontiers in Genetics 10/1, 2019.

[HHL14] Hutter, F.; Hoos, H.; Leyton-Brown, K.: An Efficient Approach for Assessing
Hyperparameter Importance. In: Proceedings of the International Conference
on Machine Learning (ICML). 2014.

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 481

22 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

[Hi12] Hinton, G. E.: A practical guide to training restricted Boltzmann machines. In:
Neural networks: Tricks of the trade. Springer Berlin Heidelberg, 2012.

[Ke21] Keogh, E.; Dutta Roy, T.; Naik, U.; Agrawal, A.: Multi-dataset Time-Series
Anomaly Detection Competition, 2021, url: https://compete.hexagon-
ml.com/practice/competition/39/, visited on: 11/09/2021.

[Le12] LeCun, Y. A.; Bottou, L.; Orr, G. B.; Müller, K.-R.: Efficient backprop. In:
Neural networks: Tricks of the trade. Springer Berlin Heidelberg, 2012.

[Li15] Liu, D.; Zhao, Y.; Xu, H.; Sun, Y.; Pei, D.; Luo, J.; Jing, X.; Feng, M.:
Opprentice: Towards practical and automatic anomaly detection through
machine learning. In: Proceedings of the Internet Measurement Conference
(IMC). 2015.

[LTZ08] Liu, F. T.; Ting, K. M.; Zhou, Z.-H.: Isolation forest. In: IEEE International
Conference on Data Mining (ICDM). 2008.

[Pe14] Peters, J.; Mooĳ, J. M.; Janzing, D.; Schölkopf, B.: Causal discovery with
continuous additive noise models. Journal of Machine Learning Research
(JMLR) 15/1, 2014.

[PGC+99] Pelikan, M.; Goldberg, D. E.; Cantú-Paz, E., et al.: BOA: The Bayesian opti-
mization algorithm. In: Proceedings the Genetic and Evolutionary Computation
Conference (GECCO). 1999.

[Ro15] Rocklin, M.: Dask: Parallel computation with blocked algorithms and task
scheduling. In: Proceedings of the Python in Science Conference (SciPy).
2015.

[Sh15] Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; De Freitas, N.: Taking the
human out of the loop: A review of Bayesian optimization. In: Proceedings of
the IEEE. 2015.

[Sp00] Spirtes, P.; Glymour, C. N.; Scheines, R.; Heckerman, D.: Causation, prediction,
and search. MIT press, 2000.

[Su17] Sun, J.; Ajwani, D.; Nicholson, P. K.; Sala, A.; Parthasarathy, S.: Breaking
Cycles In Noisy Hierarchies. In: Proceedings of the ACM Web Science
Conference (WebSci). 2017.

[SWP22] Schmidl, S.; Wenig, P.; Papenbrock, T.: Anomaly Detection in Time Series: A
Comprehensive Evaluation. Proceedings of the VLDB Endowment 15/9, 2022.

[TKB17] Thill, M.; Konen, W.; Bäck, T.: Time series anomaly detection with discrete
wavelet transforms and maximum likelihood estimation. In: International
Conference on Time Series (ITISE). 2017.

[WSP22] Wenig, P.; Schmidl, S.; Papenbrock, T.: TimeEval: A Benchmarking Toolkit
for Time Series Anomaly Detection Algorithms. Proceedings of the VLDB
Endowment 15/12, 2022.

482 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

https://compete.hexagon-ml.com/practice/competition/39/
https://compete.hexagon-ml.com/practice/competition/39/

HYPEX 23

[Xu18] Xu, H.; Chen, W.; Zhao, N.; Li, Z.; Bu, J.; Li, Z.; Liu, Y.; Zhao, Y.; Pei, D.;
Feng, Y., et al.: Unsupervised anomaly detection via variational auto-encoder
for seasonal kpis in web applications. In: Proceedings of the International
World Wide Web Conference (WWW). 2018.

[ZG07] Zesch, T.; Gurevych, I.: Analysis of the Wikipedia category graph for NLP
applications. In: Proceedings of the Second Workshop on TextGraphs: Graph-
Based Algorithms for Natural Language Processing. 2007.

[Zh16] Zhu, Y.; Zimmerman, Z.; Senobari, N. S.; Yeh, C.-C. M.; Funning, G.;
Mueen, A.; Brisk, P.; Keogh, E.: Matrix Profile II: Exploiting a Novel Algo-
rithm and GPUs to Break the One Hundred Million Barrier for Time Series
Motifs and Joins. In: IEEE International Conference on Data Mining (ICDM).
2016.

[Zh17] Zhang, Q.; Filippi, S.; Flaxman, S.; Sejdinovic, D.: Feature-to-feature regression
for a two-step conditional independence test. In: Proceedings of the Conference
on Uncertainty in Artificial Intelligence (UAI). 2017.

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 483

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Evolution of Degree Metrics in Large Temporal Graphs

Christopher Rost1, Kevin Gomez1, Peter Christen2, Erhard Rahm1

Abstract: Graph metrics, such as the simple but popular vertex degree and others based on it, are
well defined for static graphs. However, adapting static metrics for temporal graphs is still part of
current research. In this paper, we propose a set of temporal extensions of four degree-dependent
metrics, as well as aggregations like minimum, maximum, and average degree of (i) a vertex over a
time interval and (ii) a graph at a specific point in time. We show why using the static degree can lead
to wrong assumptions about the relevance of a vertex in a temporal graph and highlight the need to
include time as a dimension in the metric. We propose a baseline algorithm to calculate the degree
evolution of all vertices in a temporal graph and show its implementation in a distributed in-memory
dataflow system. Using real-world and synthetic datasets containing up to 462 million vertices and 1.7
billion edges, we show the scalability of our algorithm on a distributed cluster achieving a speedup of
around 12 on 16 machines.

Keywords: Temporal Property Graph; Temporal Degree; Degree Evolution; Temporal Graph Metric

1 Introduction

Temporal graphs are graphs that change in structure and content over time, where changes
are captured and maintained as part of the graph data model. Many approaches exist to
formally define a temporal graph [Iy21, Ko09, Ro22, HR21]. A graph’s evolution is either
represented as a series of snapshots, or by vertex and edge annotations for timestamps
or time intervals describing their validity. These extended graph models allow analyzing
the current or a past state of a graph as well as the evolution of the graph. Examples
for temporal graph analysis are the exploration of human contact networks to detect the
transmission of a disease [SK05, RKC01] or analyzing the change in the utilization of bike
rental stations [Li15, Tl20]. In such graphs, the concepts of graph metrics also change
because time is added as a new dimension. Metrics used for the characterization of static
graphs need to be redefined or extended to take temporal evolution into account [Ni13].

One simple yet important metric of a vertex is the vertex degree [GY03]. It is determined by
the number of incoming and outgoing edges (which is, except for multigraphs, equal to the
number of neighbors) and thus a simple indicator for the relevance or importance of a vertex
in a static graph. A vertex with a high degree can be seen as a strongly connected vertex,
whereas a vertex with a degree of zero is an isolated vertex or singleton. The vertex degree
is also known as the centrality measure degree centrality [Fr78], that can be used to find,
1 University of Leipzig & ScaDS.AI Dresden/Leipzig, Germany. {rost,gomez,rahm}@informatik.uni-leipzig.de
2 Australian National University, Canberra, Australia. peter.christen@anu.edu.au

cba doi:10.18420/BTW2023-23

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 485

mailto:{rost,gomez,rahm}@informatik.uni-leipzig.de
mailto:peter.christen@anu.edu.au
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-23

2 Rost et al.

A A

B

B
C

A
verage vertex degree per year

Fig. 1: Degree evolution of selected rental stations in NYC for 2018. For each day, the average degree
is plotted. A indicates peaks on weekends, B a construction embargo event and C a Halloween parade.

for example, popular people according to their number of friendships in a social network, or
the stations with the highest throughput of bike rentals in a bike-sharing network.

The minimum and maximum degrees are metrics that describe the vertices with the
smallest and largest numbers of connections, respectively. The degree range [LJ21], degree
variance [LJ21, Sn81, SE20] and the average nearest neighbor degree (ANND) [LJ21,
YvdHL17], are aggregate metrics that can reveal important graph and vertex characteristics.
The degree range of a graph (the difference between the maximum and minimum degree)
describes the connectivity gap between the best and least connected vertices. For a bike-
sharing network, a small degree range indicates a good distribution of rental stations without
any hardly visited stations, whereas a high degree range indicates irregular usage. Another
extended measure of a graph’s heterogeneity is the degree variance, where a high variance
shows a high inequality in the connectivity of the vertices. The ANND, on the other hand,
reveals if a vertex is connected to others with a high connectivity, e.g., a social network user
who is mainly friend with other users who are strongly connected.

Using only the static vertex degree is of limited value in an evolving graph as it cannot
reflect the impact of topology changes. The same restriction applies for static aggregated
metrics such as the average degree value [KA12] or the sum of all degrees [TBF17]. There
is no information about when a vertex has what degree, how long this degree is valid, and
when it increases or decreases. This is important, for example, in a bike-sharing network
where vertices represent stations and directed edges connect the start and return stations of
bike rentals.

Fig. 1 shows the time series representing the evolution of the vertex degree of three selected
bike rental stations in NYC for 2018, calculated from the publicly available dataset also used

486 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 3

val: [6,10)

val: [3,4)

val: [2,6)

val: [1,5)

va
l:
[4
,8
)val: [8,10)

val: [8,11)

val: [3,6)

val: [0,11)

val: [- ,)val: [0,)
1

2

3

4
6

7 8

5

1 2

3

Fig. 2: An example temporal graph.

in our evaluations (see Sect. 6). For example, one can see the popularity of the station at
Centre St & Chambers St on weekends by periodic peaks (marked with A) or the significantly
higher rental rate of two stations during the Summer Streets Construction Embargo3 in
August (marked with B). Further, the impact of a Halloween parade4 on Cherry St. (marked
by C) is visible in these time-series. This shows that there are stations that are generally
popular, such as in a city center or near train stations, as well as stations that are only popular
at certain times, e.g., on weekends or during events. Further, comparing stations using the
static or aggregated metrics, which are shown in Fig. 1 as dotted lines, may lead to the
assumption that they seem equal by sharing a similar degree value, which in fact is not true
over time which can be revealed by temporal metrics.

Fig. 2 shows a toy example of a temporal graph, which we use to illustrate the problem further.
Each vertex and directed edge has a unique numeric identifier and a left-close right-open
time interval [𝜔𝑎, 𝜔𝑏) 5 assigned. For example, the edge with identifier 5 (hereinafter
referred to as 𝑒5) is valid from time point 3 (in the following denoted as 𝜔3) to 𝜔6, whereas
the vertex 𝑣1 is valid from 𝜔0 to the maximum upper bound, denoted by the infinity symbol
∞ (𝜔𝑚𝑎𝑥).

From a static perspective, if we disregard the graph’s evolution, we can see that the vertex
degrees are 𝑑𝑒𝑔(𝑣1) = 6, 𝑑𝑒𝑔(𝑣2) = 7, and 𝑑𝑒𝑔(𝑣3) = 3. However, if time is considered,
then the degree values change continuously so that the evolution of the degree value forms a
time series. For example, at time 𝜔1, the degree of 𝑣1 is 1, and the same at time 𝜔5. Further,
since 𝑣1 is valid until forever and the last validity of its edges end at time 𝜔11 (exclusive),
the degree from 𝜔11 to forever (𝜔𝑚𝑎𝑥) is 0. Fig. 3 exemplifies the evolution of the degrees
of 𝑣1, 𝑣2 and 𝑣3, inclusive in- and outdegree of 𝑣1 (𝑑𝑒𝑔− (𝑣1) and 𝑑𝑒𝑔+ (𝑣1)).

It can be seen that the maximum degree of vertex 𝑣1 is only 3 over its entire period of
validity. From the vertex lower bound 𝜔0 to time 𝜔1, the degree is 0 – the same from 𝜔11

3https://www.milrose.com/insights/2018-summer-streets-construction-embargo (visited 2022-11-01)
4https://patch.com/new-york/east-village/halloween-dog-parade-2018-what-you-need-know (visited

2022-11-01)
5For simplicity we use integer interval bounds. It holds [𝜔𝑎 , 𝜔𝑏) := {𝜔 ∈ N : 𝜔𝑎 ≤ 𝜔 < 𝜔𝑏 }.

Evolution of Degree Metrics in Large Temporal Graphs 487

https://www.milrose.com/insights/2018-summer-streets-construction-embargo
https://patch.com/new-york/east-village/halloween-dog-parade-2018-what-you-need-know

4 Rost et al.

 0

 1

 2

 3

 4

 5

0 1 2 3 4 5 6 7 8 9 10 11 12

D
e

g
re

e

Time

deg
-
(v1)

deg
+
(v1)

deg(v1)
deg(v2)
deg(v3)

Fig. 3: Degree evolution of vertex 𝑣1, 𝑣2 and 𝑣3 from 𝜔0 to 𝜔12. In addition, the indegree 𝑑𝑒𝑔− (𝑣1)
and outdegree 𝑑𝑒𝑔+ (𝑣1) are given for 𝑣1.

onwards. Compared to the static point of view, where the degree is 6 for 𝑣1, we can see
that during the evolution of the graph the vertex never reaches this value. The same holds
for the bike rental example of Fig. 1. For example, the static degree of the station “Cherry
St.” is 50, whereas the maximum value over the year is just 20 for a single day. This shows
the importance of considering the changes of the degree metric over time. The use of the
static degree metric for assessing the importance of a vertex can lead to misinterpretations,
whereas using the degree evolution provides the exact degree for any time in the lifetime of
the graph.

Contributions: In this work we focus on four time-sensitive degree-dependent graph
measures: the vertex degree itself and its aggregations, the degree range, the degree variance,
and the average nearest neighbor degree. We extend these well known static metrics with a
time dimension and establish two new formal definitions per metric: (i) a temporal version
which defines the metric at a specific point in time, and (ii) an evolutionary version which
defines the change of the metric within a time interval as a time series. We then present a
baseline algorithm that can calculate the degree evolution for all vertices of a given temporal
graph. Using a binary search tree called degree tree, the algorithm efficiently maintains the
degree changes of each vertex. We show how our algorithm can be adapted to a distributed
processing model, which is further illustrated by the implementation as a graph analysis
operator using a distributed in-memory dataflow system. In our experiments, we evaluate the
scalability of our implementation which shows a sublinear growth of runtime by increasing
dataset size as well as a speedup of up to 12 on a cluster with 16 physical machines.

488 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 5

2 Related work

Some works have defined a degree metric for vertices in a temporal graph, mainly by
expanding the static version for temporal graphs. Thompson et al. [TBF17] introduce a
temporal degree centrality metric for the domain of network neuroscience. They show that
a node’s influence in a temporal network can be represented by the centrality metric, which
is the sum of the number of edges across a series of time points. If an edge is valid for
multiple time points, it will be counted multiple times. However, this approach does not
quantify the temporal order of edges so that different vertices with identical metrics cannot
be distinguished.

A similar definition of temporal degree centrality is given by Long et al. [Lo20] and Wu
et al. [Wu14]. Both calculate the sum of degrees over a time interval, which provides an
estimate of a node’s centrality in a temporal network. Wang et al. [Wa17] propose the
temporal degree deviation centrality metric that can be calculated from a temporal network
using graph snapshots. A similar approach defines the temporal degree as the number of
nodes to which a vertex is linked in all timestamps of an interval without interruption [Ci20].

The time-ordered graph model by Kim et al. [KA12] can represent a dynamic network
with a fixed vertex set and interval edges. For graphs of this model, several centrality
metrics were introduced (including degree) to include the graph’s temporal characteristic.
Temporal degree is defined as the degree 𝐷𝑖, 𝑗 (𝑣) for a vertex 𝑣 ∈ 𝑉 in a time interval [𝑖, 𝑗].
Tlebaldinova et al. [Tl20] use the degree as a temporal measure of centrality for bike-sharing
stations. They show that the changing degree determines the time-distributed intensity of
incoming and outgoing bike flows at a station.

In all these related works, the temporal degree is mostly seen as a scalar, aggregated
(summed) value over a certain time interval, that is used as a centrality measure. In our
approach, described next, we define both a temporal degree at a specific point in time as
well as degree evolution for a time interval as a time series. This allows exact statements
when a metric has what value for how long. In addition, our data model allows both changes
in vertices and edges, as we describe in Sect. 3.1.

3 Degree-dependent metric evolution

We first define the temporal graph data model we use as a basis for our work, and then
introduce new temporal notations of degree-dependent metrics for vertices in Sect. 3.2, and
metrics for a whole temporal graph in Sect. 3.3.

Evolution of Degree Metrics in Large Temporal Graphs 489

6 Rost et al.

3.1 Temporal graph model

We use a simplified version of the Temporal Property Graph Model (TPGM) data
model [Ro22]6. Although the model supports bitemporal versioning, for simplicity we limit
ourselves to one time dimension. Thus, vertices and edges are assigned with a left-closed
right-open time interval to represent the element’s validity according to application-specific
valid-time. Unlike most temporal graph models [Ca21], not only the edge set is dynamic,
but the vertex set can also change over time. Contact sequence graphs [Ho18] can also be
modeled by representing the time 𝜔𝑖 of the contact as time interval [𝜔𝑖 ,∞), [𝜔𝑖 , 𝜔𝑖+1)
or [𝜔𝑖 , 𝜔 𝑗) (depending on the use-case), where 𝜔 𝑗 is the time of a subsequent contact. A
TPGM graph is formally defined as follows:

Definition 1 (TPGM graph [Ro22, GS20]) A TPGM graph is a directed multigraph G =

(𝑉, 𝐸,Ω) with the following specifications:

𝑉 is a finite set of vertices. Each vertex 𝑣 ∈ 𝑉 is a tuple ⟨𝑣𝑖𝑑 , 𝜏⟩, where 𝑣𝑖𝑑 is a unique vertex
identifier, 𝜏 is a time-interval of the form [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) for which the vertex is valid with
respect to Ω (defined below). We constrain that each 𝑣 ∈ 𝑉 has at least one edge throughout
the graph history, i.e., vertices that were isolated over the entire graph lifetime are not part
of 𝑉 .

𝐸 is a finite set of edges. Each edge 𝑒 ∈ 𝐸 is a tuple ⟨𝑒𝑖𝑑 , 𝑠𝑖𝑑 , 𝑡𝑖𝑑 , 𝜏⟩, where 𝑒𝑖𝑑 is a unique
edge identifier that allows multiple edges between the same nodes, 𝑠𝑖𝑑 and 𝑡𝑖𝑑 are the source
and target vertex identifier, 𝜏 is the time-interval of the form [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) for which the
edge is valid with respect to Ω.

Ω represents the valid-time domain where an instant in time is a time point 𝜔𝑖 with limited
precision, e.g., milliseconds. A time interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) with 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑 ∈ Ω

starts at 𝜔𝑠𝑡𝑎𝑟𝑡 and ends at 𝜔𝑒𝑛𝑑 . Since it is a left-close right-open interval, it includes
𝜔𝑠𝑡𝑎𝑟𝑡 but excludes 𝜔𝑒𝑛𝑑 .

We refer to our previous work [Ro22], in which several constraints are defined to ensure
a consistent TPGM graph. Since the set of nodes 𝑉 and edges 𝐸 changes over time, we
introduce two time-dependent sets of nodes and edges that we use later in the formal
definitions in Sect. 3.2 and Sect. 3.3:

• 𝑉 (𝜔𝑖) ⊆ 𝑉 is a finite subset of vertices, where each vertex is valid at the given
time point 𝜔𝑖 , i. e., for all 𝑣 = ⟨𝑣𝑖𝑑 , 𝜏⟩ ∈ 𝑉 (𝜔𝑖) with 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) it holds:
𝜔𝑠𝑡𝑎𝑟𝑡 ≤ 𝜔𝑖 < 𝜔𝑒𝑛𝑑 .

6A TPGM graph, in addition, formally defines the concept of so-called logical graphs and assigns type labels
and properties (key-value pairs) to nodes, edges, and logical graphs. Since neither is relevant for this work, we
excluded it for the sake of simplicity.

490 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 7

• 𝐸 (𝜔𝑖) ⊆ 𝐸 is a finite subset of edges, where each edge is valid at the given time
point 𝜔𝑖 , i. e., for all 𝑒 = ⟨𝑒𝑖𝑑 , 𝑠𝑖𝑑 , 𝑡𝑖𝑑 , 𝜏⟩ ∈ 𝐸 (𝜔𝑖) with 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) it holds:
𝜔𝑠𝑡𝑎𝑟𝑡 ≤ 𝜔𝑖 < 𝜔𝑒𝑛𝑑 .

• 𝐺 (𝜔) = (𝑉 (𝜔), 𝐸 (𝜔)) is a graph snapshot (or state) of a temporal graph 𝐺 at a
specific point in time 𝜔.

3.2 Vertex-centric temporal degree metrics

For each of the following degree-based metrics, we first refer to the static version and then
introduce our temporal and evolutionary version of the respective metric.

Vertex degree and aggregations. According to graph theory [GY03, Di10], the static
(non-temporal) vertex degree 𝑑𝑒𝑔(𝑣) is formally defined as follows:

Definition 2 (Vertex degree [GY03, Di10]) The degree (or valence) of a vertex 𝑣 in a
static graph 𝐺 = (𝑉, 𝐸), denoted 𝑑𝑒𝑔(𝑣), is the number of proper edges incident to 𝑣 plus
twice the number of self-loops. Simplified, the degree of a vertex is the number of its edges.
The indegree of a vertex 𝑣, denoted as 𝑑𝑒𝑔− (𝑣), is the number of edges directed to 𝑣 whereas
the outdegree of vertex 𝑣, denoted as 𝑑𝑒𝑔+ (𝑣), is the number of edges directed from 𝑣. Each
self-loop at 𝑣 counts one toward the indegree of 𝑣 and one toward the outdegree.

Having a static view on the graph of Fig. 2, example vertex degrees are 𝑑𝑒𝑔(𝑣1) = 6,
𝑑𝑒𝑔(𝑣2) = 7, 𝑑𝑒𝑔+ (𝑣2) = 3, and 𝑑𝑒𝑔− (𝑣3) = 1.

For temporal graphs, we now define the temporal degree as the degree of a vertex at a
specific point in time.

Definition 3 (Temporal degree) The temporal degree of a vertex 𝑣 in a temporal graph
𝐺 = (𝑉, 𝐸), denoted as 𝑑𝑒𝑔𝑡 (𝑣, 𝜔), is the degree of that vertex at time 𝜔 in the graph
snapshot 𝐺 (𝜔). It is defined as:

𝑑𝑒𝑔𝑡 (𝑣, 𝜔)
{
𝑑𝑒𝑔(𝑣), if 𝑣 ∈ 𝑉 (𝜔),
𝑛𝑜𝑡 𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑, otherwise.

(1)

If 𝑣 ∉ 𝑉 (𝜔), the degree is not defined. Analogous to the static degree, the temporal indegree
𝑑𝑒𝑔𝑡− (𝑣, 𝜔) is the number of edges directed to 𝑣, and temporal outdegree 𝑑𝑒𝑔𝑡+ (𝑣, 𝜔) is
the number of edges directed from 𝑣, at time 𝜔.

For example, in the graph of Fig. 2, the temporal degree of vertex 𝑣1 at time 𝜔4 is
𝑑𝑒𝑔𝑡 (𝑣1, 𝜔4) = 2, whereas the temporal indegree of vertex 𝑣1 at time 𝜔8 is 𝑑𝑒𝑔𝑡− (𝑣1, 𝜔8) =
3. There are clear differences between the static compared to the temporal metrics.

Evolution of Degree Metrics in Large Temporal Graphs 491

8 Rost et al.

From the perspective of a vertex 𝑣, the degree of that vertex changes according to the
existence of neighbours of 𝑣. For a given time interval 𝜏, we thus define the degree
evolution as a time series of temporal degrees, which contains all degree values with their
corresponding time in the given interval.

Definition 4 (Degree evolution) The degree evolution 𝑑𝑒𝑔𝑒𝑣(𝑣, 𝜏) := {𝑥1, 𝑥2, ..., 𝑥𝑚} of a
vertex 𝑣 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡 (𝑣, 𝜔), with 1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑−𝜔𝑠𝑡𝑎𝑟𝑡 .
Each 𝑥𝑖 represents a temporal degree at time 𝜔 𝑗 , i.e., 𝑥1 at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at
𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑). Further, the temporal degree is a special case
of the degree evolution: 𝑑𝑒𝑔𝑒𝑣(𝑣, 𝜏) = {𝑑𝑒𝑔𝑡 (𝑣, 𝜔𝑖)} with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as an interval with
a single time point. Furthermore, 𝑑𝑒𝑔𝑒𝑣+ (𝑣, 𝜏) denotes the outdegree evolution whereas
𝑑𝑒𝑔𝑒𝑣− (𝑣, 𝜏) denotes the indegree evolution.

For our example graph of Fig. 2, the degree evolution of vertex 𝑣1 in the interval 𝜏 = [𝜔0, 𝜔11)
is 𝑑𝑒𝑔𝑒𝑣(𝑣1, 𝜏) = {0, 1, 2, 3, 2, 1, 1, 1, 3, 3, 1}.

The degree evolution defines the development of a vertex degree over a given time interval.
This can now be used to determine the minimum, maximum and average degree of a vertex
over a time interval, i.e., a vertex-centric aggregation.

Definition 5 (Vertex-centric min/max/avg degree) The vertex-centric minimum degree
of a vertex 𝑣 within a time interval 𝜏 is the smallest value of all temporal degrees of 𝑣 in
this interval. Similarly, the vertex-centric maximum degree is the largest value and the
vertex-centric average degree is the average value over all time points 𝜔 ∈ 𝜏. With |𝜏 | as
the number of all time points in the interval 𝜏 holds:

𝑑𝑒𝑔𝑚𝑖𝑛 (𝑣, 𝜏) := 𝑚𝑖𝑛{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |∀𝜔 ∈ 𝜏}, (2)

𝑑𝑒𝑔𝑚𝑎𝑥 (𝑣, 𝜏) := 𝑚𝑎𝑥{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |∀𝜔 ∈ 𝜏}, (3)

𝑑𝑒𝑔𝑎𝑣𝑔 (𝑣, 𝜏) :=
1
|𝜏 |

∑︁
𝜔∈𝜏

𝑑𝑒𝑔𝑡 (𝑣, 𝜔). (4)

Average Nearest Neighbor Degree. An analyst may be interested in whether entities in a
graph tend to connect to others with a high connectivity, or, the opposite case, connections
occur randomly and irrespective of the degree [LJ21]. The former situation is referred to
as preferential attachment in network science [JNB03] and applies to many real-world
networks [Ne01, Ca06], including evolving networks [JNB03]. A metric to measure this
tendency is the average nearest neighbor degree (ANND) 𝑑𝑒𝑔𝑛𝑛 (𝑣). For a vertex 𝑣, the
ANND is the sum of the direct neighbor degrees divided by the degree of 𝑣.

492 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 9

Definition 6 (Average nearest neighbor degree [LJ21]) The average nearest neighbor
degree 𝑑𝑒𝑔𝑛𝑛 (𝑣𝑖) of a vertex 𝑣𝑖 of a static graph 𝐺 is defined as the sum of the degrees of
each of the vertex’ neighbor 𝑣 𝑗 divided by the degree of 𝑣𝑖:

𝑑𝑒𝑔𝑛𝑛 (𝑣𝑖) :=
1

𝑑𝑒𝑔(𝑣𝑖)
∑︁

𝑣 𝑗 ∈𝑁 (𝑣𝑖)
𝑑𝑒𝑔(𝑣 𝑗). (5)

The set 𝑁 (𝑣𝑖) ⊂ 𝑉 is defined as the set of vertices incident to a vertex 𝑣𝑖 (its neighbors).

From a static perspective of the example graph of Fig. 2, the ANNDs are 𝑑𝑒𝑔𝑛𝑛 (𝑣1) =
𝑑𝑒𝑔 (𝑣2)+𝑑𝑒𝑔 (𝑣3)

𝑑𝑒𝑔 (𝑣1) = 1.67, 𝑑𝑒𝑔𝑛𝑛 (𝑣2) = 1.43 and 𝑑𝑒𝑔𝑛𝑛 (𝑣3) = 4.34. These results suggest
that vertex 𝑣3 seems to have the strongest tendencies to connect to others who are also
popular, while 𝑣1 and 𝑣2 display weaker tendencies. The average degree of the graph (here
𝑑𝑒𝑔𝑎𝑣𝑔 = 5.34) can be used to interpret an ANND value. The larger the value compared to
the average degree of the graph, the more likely we can assume that its neighbors are more
popular than average. As the other degree-dependent metrics, the ANND will change over
time if a graph evolves. To calculate the ANND of a vertex at a specific point in time, we
now define the temporal average nearest neighbour degree:

Definition 7 (Temporal ANND) The temporal average nearest neighbor degree (TANND)
𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣𝑖 , 𝜔) of a vertex 𝑣𝑖 is defined as the sum of the temporal degrees of each of the
vertex’ neighbor (at time 𝜔) divided by the temporal degree of 𝑣𝑖 . Furthermore, the set
𝑁 (𝑣𝑖 , 𝜔) ⊂ 𝑉 (𝜔) is defined as the set of neighbors of vertex 𝑣𝑖 at time 𝜔. It then holds:

𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣𝑖 , 𝜔) :=
1

𝑑𝑒𝑔𝑡 (𝑣𝑖 , 𝜔)
∑︁

𝑣 𝑗 ∈𝑁 (𝑣𝑖 ,𝜔)
𝑑𝑒𝑔𝑡 (𝑣 𝑗 , 𝜔). (6)

For the example in Fig. 2, the TANND for 𝑣1 at time 𝜔4 is 𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣1, 𝜔4) = 2.5, while at
time 𝜔9 it is 𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣1, 𝜔9) = 1.

An analyst may be also interested in the evolution of the ANND over a time interval, like
how people’s propensity to rent a bike from one popular location and ride to another popular
location is changing within a month. We introduce the average nearest neighbor degree
evolution to define a series of TANND values within a time interval.

Definition 8 (ANND evolution) The average nearest neighbor degree evolution (ANNDE)
𝑑𝑒𝑔𝑒𝑣𝑛𝑛 (𝑣, 𝜏) := {𝑥1, 𝑥2, ..., 𝑥𝑚} of a vertex 𝑣 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣, 𝜔),
with 1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑 − 𝜔𝑠𝑡𝑎𝑟𝑡 . Each 𝑥𝑖 represents the TANND at time 𝜔 𝑗 , i.e., 𝑥1
at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at 𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑). The TANND
is a special case of the ANNDE: 𝑑𝑒𝑔𝑒𝑣𝑛𝑛 (𝑣, 𝜏) = {𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣, 𝜔)}, with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as
an interval with a single time point.

Evolution of Degree Metrics in Large Temporal Graphs 493

10 Rost et al.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 90 181 273 365

V
a
lu

e

Day of year 2018

degevnn
degevr

(a) ANNDE and degree range evolution.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 90 181 273 365

V
a
lu

e

Day of year 2018

degevv

(b) Degree variance evolution.

Fig. 4: Resulting time-series of selected degree evolution metrics of dataset citibike for year 2018.

For example, the ANNDE of 𝑣1 in the interval 𝜏 = [𝜔1, 𝜔5) is 𝑑𝑒𝑔𝑒𝑣𝑛𝑛 (𝑣1, 𝜏) =

{1, 1, 2.67, 2}. For our small example graph, the ANND remains quite small in this
interval, which means that the popularity of the neighbours of 𝑣1 does not increase much.
Fig. 4a shows the resulting ANNDE time series of a selected rental station for the real world
bike-sharing graph we are using in our evaluation in Sect. 6. One can see that the tendency
that rentals happen between popular stations are high during the summer months.

3.3 Graph-centric temporal degree metrics

After looking at metrics for individual vertices of a graph, we now develop metrics that
concern an entire graph. Several metrics have already been defined for aggregating all
vertices of a static graph, such as the minimum, maximum, and average degree.

Definition 9 (Min/max/avg degree of a graph [LJ21]) The minimum, maximum, and
average degree of a static graph 𝐺 are defined as the minimum, maximum, and average
value of all vertex degrees 𝑑𝑒𝑔(𝑣) for all 𝑣 ∈ 𝑉 . It holds:

𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺) := 𝑚𝑖𝑛{𝑑𝑒𝑔(𝑣) |𝑣 ∈ 𝑉}, (7)

𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺) := 𝑚𝑎𝑥{𝑑𝑒𝑔(𝑣) |𝑣 ∈ 𝑉}, (8)

𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺) :=
1
|𝑉 |

∑︁
𝑣∈𝑉

𝑑𝑒𝑔(𝑣), (9)

with 𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺) ≤ 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺) ≤ 𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺).

For the example graph in Fig. 2, the minimum, maximum, and average degrees are
𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺) = 3, 𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺) = 7 and 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺) = 5.34.

With the evolution of a graph, any aggregated graph metric can change over time. We
therefore define the minimum, maximum, and average temporal degree as an aggregated
value of all vertices 𝑉 (𝜔) in a temporal graph at time 𝜔.

494 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 11

Definition 10 (Min/max/avg temporal degree) The minimum, maximum and average
temporal degree of a temporal graph 𝐺 are the minimum, maximum and average values of
all temporal vertex degrees at time 𝜔. With 𝑉 (𝜔) as the set of vertices at time 𝜔 it holds:

𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔) := 𝑚𝑖𝑛{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |𝑣 ∈ 𝑉 (𝜔)}, (10)

𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔) := 𝑚𝑎𝑥{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |𝑣 ∈ 𝑉 (𝜔)}, (11)

𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔) :=
1

|𝑉 (𝜔) |
∑︁

𝑣∈𝑉 (𝜔)
𝑑𝑒𝑔𝑡 (𝑣, 𝜔), (12)

with 𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔) ≤ 𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔) ≤ 𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔).

For the example graph in Fig. 2, at time 𝜔4, the aggregated degrees are 𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔4) = 1,
𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔4) = 5 and 𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔4) = 2.67.

Degree range. The minimum degree reveals the smallest set of connections of a graph’s
vertices, whereas the maximum degree gives a measure of the most connections an vertex
has in the graph. The difference between the minimum and maximum degree of any vertex
in a graph is called the degree range [LJ21]. It provides a measure of the heterogeneity (or
gap) between the connectivity of the most and the least connected vertices in a graph [LJ21].

Definition 11 (Degree range [LJ21]) The degree range of a static graph 𝐺 = (𝑉, 𝐸),
denoted as 𝑑𝑒𝑔𝑟 (𝐺), is the difference between the maximum and minimum degree:

𝑑𝑒𝑔𝑟 (𝐺) = 𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺) − 𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺). (13)

From a static view on the example graph of Fig. 2, the degree range is 𝑑𝑒𝑔𝑟 (𝐺) = 7− 3 = 4,
which suggests that it has a high inequality related to connectivity. Now considering a
temporal graph, the temporal degree range provides information about the degree range of
a graph at a specific point in time.

Definition 12 (Temporal degree range) The temporal degree range 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔) of a
temporal graph 𝐺 at time 𝜔 is defined as the difference between the maximum and minimum
temporal degree:

𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔) = 𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔) − 𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔). (14)

With respect to the example graph from Fig. 2, the temporal degree range at time 𝜔4 is
𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔4) = 5−1 = 4, which is equal to the static metric, while at times 𝜔1, 𝜔6 and 𝜔10,
the temporal degree range is 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔1) = 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔6) = 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔10) = 1. Thus, as
the graph evolves, the degree range changes as well.

To obtain any changes of the degree range over a defined time interval, we introduce the
degree range evolution that defines a series of temporal degree range values for all time
points in a given interval.

Evolution of Degree Metrics in Large Temporal Graphs 495

12 Rost et al.

Definition 13 (Degree range evolution) The degree range evolution 𝑑𝑒𝑔𝑒𝑣𝑟 (𝐺, 𝜏) :=
{𝑥1, 𝑥2, ..., 𝑥𝑚} of a temporal graph 𝐺 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔), with
1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑 − 𝜔𝑠𝑡𝑎𝑟𝑡 . Each 𝑥𝑖 represents the temporal degree range at time
𝜔 𝑗 , i.e., 𝑥1 at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at 𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑).
The temporal degree range is a special case of the degree range evolution: 𝑑𝑒𝑔𝑒𝑣𝑟 (𝐺, 𝜏) :=
{𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔)}, with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as an interval with a single time point.

For the example graph of Fig. 2, the degree range evolution for 𝜏 = [𝜔0, 𝜔7) is
𝑑𝑒𝑔𝑒𝑣𝑟 (𝐺, 𝜏) = {0, 1, 2, 5, 4, 3, 1}, which shows a changing gap of connectivity in this
interval. Fig. 4a shows the time series of the degree range evolution for the real world bike
sharing graph we are using in our evaluations. One can see that the value is below 2 over
the whole year which indicates a low inequality of rentals between all rental stations.

Degree variance. Besides the simple metric of range, Snĳders introduced the more complex
metric called degree variance of a graph [Sn81], which involves its average degree to
characterize the heterogeneity in connectivity across nodes. This metric reveals information
about the spread of both well-connected and not so well-connected vertices in a graph. It is
formally defined as follows:

Definition 14 (Degree variance [LJ21]) The degree variance 𝑑𝑒𝑔𝑣 (𝐺) of a graph 𝐺 is
defined as the sum of the square of the difference between each vertex degree 𝑑𝑒𝑔(𝑣) and
the average degree of the graph 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺), divided by the total number of vertices |𝑉 |:

𝑑𝑒𝑔𝑣 (𝐺) :=
∑

𝑖 (𝑑𝑒𝑔(𝑣) − 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺))2

|𝑉 | . (15)

This metric quantifies the extent to which there are differences in the connectivity of the
vertices in a graph. High differences in connectivity mean high variance; if all node degrees
are the same then the degree variance is zero. If the example graph in Fig. 2 is considered
static it has a degree variance of 𝑑𝑒𝑔𝑣 (𝐺) = 2.89.

For temporal graphs, the degree of vertices can change over time, and so can the average
degree as well as the number of vertices. Therefore, we formally define the temporal degree
variance as follows:

Definition 15 (Temporal degree variance) The temporal degree variance, 𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔),
of a temporal graph 𝐺 is defined as the sum of the square of the difference between
each temporal vertex degree 𝑑𝑒𝑔𝑡 (𝑣, 𝜔) and the temporal average degree of the graph
𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔) at time 𝜔, divided by the total number of vertices |𝑉 (𝜔) | at that time:

𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔) :=
∑

𝑖 (𝑑𝑒𝑔𝑡 (𝑣, 𝜔) − 𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔))2

|𝑉 (𝜔) | . (16)

496 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 13

Considering the example graph in Fig. 2 at 𝜔4, the temporal degree variance is
𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔4) = 2.89, which is equal to the static value since the inequality of con-
nectivity is the same for this small example. In contrast, at time 𝜔1, the temporal degree
variance is 𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔1) = 0.22 since there is a quite high equality of connectivity at this
time. To evaluate whether and how the degree variance changes in a given time interval,
i.e., if the inequality of degrees in a graph decreases or increases over time, or if it retains a
similar value, we define the degree variance evolution.

Definition 16 (Degree variance evolution) The degree variance evolution 𝑑𝑒𝑔𝑒𝑣𝑣 (𝐺, 𝜏)
:= {𝑥1, 𝑥2, ..., 𝑥𝑚} of a temporal graph 𝐺 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔),
with 1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑 −𝜔𝑠𝑡𝑎𝑟𝑡 . Each 𝑥𝑖 represents the temporal degree variance at
time 𝜔 𝑗 , i.e., 𝑥1 at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at 𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑).
Further, the temporal degree variance is a special case of the degree variance evolution:
𝑑𝑒𝑔𝑒𝑣𝑣 (𝐺, 𝜏) = {𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔𝑖)} with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as an interval with a single time point.

The degree variance evolution of vertex 𝑣1 in the example graph of Fig. 2, for time interval
𝜏 = [𝜔0, 𝜔5), is the series: 𝑑𝑒𝑔𝑒𝑣𝑣 (𝐺, 𝜏) = {0, 0.22, 0.89, 2.89, 2.89}. The degree variance
increases over time in this example, which indicates a growth of the inequality of the vertex’
connectivity. With regard to the real world bike sharing graph, Fig. 4b shows the degree
variance evolution of the temporal graph. The inequality of the rental stations’ utilization is
low over the whole year but reaches its lowest values in the winter months.

4 Degree evolution algorithm

We now describe a baseline algorithm that calculates the degree evolution (see Definition 4)
for all vertices in a temporal graph.

We assume that the input is a temporal graph 𝐺 = (𝑉, 𝐸) including a set of temporal
vertices 𝑉 and temporal edges 𝐸 according to the TPGM model described in Sect. 3.1,
where the degree type Ψ = {𝑖𝑛, 𝑜𝑢𝑡, 𝑏𝑜𝑡ℎ} is given as configuration parameter. The output
of the algorithm is a time series representing the degree evolution for each vertex, where we
reduce the size of the result by merging succeeding time points without a degree change into
intervals. These intervals are tuples ⟨𝑣𝑖𝑑 , 𝜏𝑖 , 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔 𝑗)⟩, where 𝑣𝑖𝑑 is a vertex identifier,
𝜏𝑖 is the interval in which the degree is valid without interruption, and 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔𝑖) the
constant temporal degree of 𝑣𝑖𝑑 for any time point 𝜔 𝑗 of the interval 𝜏𝑖 . We split the
algorithm into five steps which we described next.

(1) Vertex mapping. For each vertex 𝑣 ∈ 𝑉 we extract the vertex identifier and its time
interval into a tuple ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩. This tuple is later used as input of step (5). This
step can be skipped if the vertex times are not of relevance. Considering our example graph

Evolution of Degree Metrics in Large Temporal Graphs 497

14 Rost et al.

1 1

5 -1

1 1

5 -1

2 1 6 -1

1 1

5 -1

2 1 6 -1

3 1

4 -1

insert [1,5) insert [2,6) insert [3,4)

ω ρ

value | payload

Legend

Fig. 5: Degree tree building for vertex 𝑣1 and Ψ = 𝑜𝑢𝑡.

in Fig. 2, each of the graph’s vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3} is mapped to a tuple, resulting in a
set of three tuples ⟨𝑣1, 0,∞⟩, ⟨𝑣2,−∞,∞⟩ and ⟨𝑣3, 0, 11⟩7.

(2) Edge mapping. For each edge 𝑒 ∈ 𝐸 we extract the required vertex identifiers and the
edge’s time interval into one or two tuples ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ depending on the degree type
Ψ. For Ψ = 𝑖𝑛, one tuple is created with 𝑣𝑖𝑑 ← 𝑡𝑖𝑑 (the target vertex identifier), for Ψ = 𝑜𝑢𝑡

one tuple is created with 𝑣𝑖𝑑 ← 𝑠𝑖𝑑 (the source vertex identifier), and for Ψ = 𝑏𝑜𝑡ℎ both of
these tuples are created. Considering the example graph in Fig. 2 and Ψ = 𝑜𝑢𝑡, each of the
graphs edges 𝐸 = {𝑒1, 𝑒2, ..., 𝑒8} is mapped to one tuple as described above. For example,
edge 𝑒4 is mapped to ⟨𝑣2, 6, 10⟩, whereas 𝑒5 is mapped to ⟨𝑣2, 3, 6⟩.

(3) Interval collection. We group the set of tuples ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ from step (2) by
vertex identifier and create a mapping 𝑣𝑖𝑑 → 𝐼𝑣𝑖𝑑 = {𝜏0, 𝜏1, ..., 𝜏𝑛} which assigns a
unsorted set of edge intervals 𝐼𝑣𝑖𝑑 to the corresponding vertex identifier. For vertex 𝑣1 and
Ψ = 𝑜𝑢𝑡 of our example, the mapping to the collection of all incident edge intervals is
𝑣1 → 𝐼𝑣1 = {[1, 5), [2, 6), [3, 4)}.

(4) Capture degree evolution. For each vertex 𝑣 and its corresponding unsorted set of
(incoming, outgoing, or both) edge intervals created in step (3), a data structure maintaining
the rise or fall of the metric at all respective points in time, i.e., when the degree of the
vertex changes, is needed. A baseline approach is the maintenance of a typed list holding
two types of points in time: the lower interval bounds which indicate a degree rise of 1,
and the upper interval bounds which indicate a fall of 1. The space complexity is always
𝑂 (𝑛) with 𝑛 = 2 · |𝐼𝑣𝑖𝑑 |, i.e., the number of all time points including duplicates. All points
in time can be inserted with a time complexity 𝑂 (𝑛) (𝑂 (1) each), and the list has to be
sorted before the iteration which costs 𝑂 (𝑛 · 𝑙𝑜𝑔(𝑛)). The degree evolution for this vertex
can be created by iterating the list (with 𝑂 (𝑛)) and adding 1 to a aggregate value for all
lower interval bounds and -1 for all upper bounds.

An alternative is a Binary Search Tree (BST) [Be75] 𝑇𝑣 . Each node of the tree has a value
𝜔 ∈ Ω and a payload 𝜌 ∈ Z. 𝜔 represents a point in time, whereas 𝜌 (initialized with 0)
stores an aggregated value indicating the quantity of change (positive or negative) of the

7Note that we use integers for time points to improve readability.

498 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 15

degree at this specific time 𝜔 compared to the aggregated value of the evolution until this
point in time. For a left-close right-open interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑), the payload 𝜌 of
node 𝜔𝑠𝑡𝑎𝑟𝑡 is increased by 1, whereas 𝜌 of 𝜔𝑒𝑛𝑑 is decreased by 1. Further, the left child
node 𝜔𝑙 of a parent node 𝜔𝑝 has a value 𝜔𝑙 < 𝜔𝑝 and the right child node 𝜔𝑟 has a value
𝜔𝑟 > 𝜔𝑝 , respectively. The worst case space complexity is 𝑂 (𝑛), too, but having 𝑛 without
duplicate time points. The time complexity of inserting a node in this tree is 𝑂 (𝑙𝑜𝑔(𝑛))
on average (𝑂 (𝑛) if all time points are different). The random insertion of points in time,
while keeping the tree sorted, and the lower memory requirements by avoiding duplicated
points in time, is our reason for choosing the BST, which will be called degree tree in the
following. Thus, the output of this step (4) is a mapping 𝑣𝑖𝑑 → 𝑇𝑣 that assigns a degree tree
to its corresponding vertex identifier.

If we again consider 𝑣1 in our example, the building of the degree tree 𝑇𝑣1 assuming Ψ = 𝑜𝑢𝑡

is shown in Fig. 5. Inserting the interval [1, 5) first inserts a node with value 𝜔 = 1 and
payload 𝜌 = 1, and then a node with 𝜔 = 5 and payload 𝜌 = −1. For the subsequent two
intervals, four additional nodes are added. A degree tree with six nodes is the result, as
shown on the right side.

(5) Tree traversal and result collection For each vertex, we now have a degree tree 𝑇𝑣 that
represents the degree evolution of this vertex for the degree type Ψ, and the lower and upper
bounds of the vertex’ validity interval, 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝜔𝑒𝑛𝑑 . If the validity of the vertices can be
neglected, a default minimum and maximum time point can be used as initial values. Each
degree tree is now traversed using Depth First Search (DFS) [Ta72] and in-order traversal
(LNR) starting at the root node to obtain an ascending order of points in time. Algorithm 1
outlines this step.

The algorithm starts by traversing the tree 𝑇𝑣 in line 5 with the recursive function In-
OrderDFS (lines 8 to 11). Function ProcessNode describes the logic of a node visit,
where we first handle the special case of an vertex lower interval bound that is equal to the
value of first visited node of the tree (lines 13 to 15). For every following visited node, the
resulting temporal degree tuple is collected in line 17 if payload 𝜌 ≠ 0.

Next, to get the degree for the subsequent interval, the payload 𝜌 is first added to 𝑑 (line 18),
and second the time point 𝜔 is remembered as lower interval bound for the next interval
(line 19). After all nodes of the tree are visited, we check for a remaining time interval
from the last time point 𝜔𝑙𝑎𝑠𝑡 to the vertex upper interval bound 𝜔𝑚𝑎𝑥 and collect a last
tuple with 𝑑 = 0 accordingly (line 7). The final algorithm output is a series of tuples
⟨𝑣𝑖𝑑 , 𝜏, 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔)⟩, with 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔) as constant temporal degree for all time points
𝜔 ∈ 𝜏, that were collected by both collect() calls (lines 7 and 17).

For a better understanding, we exemplary go through Algorithm 1 by using the degree
tree 𝑇𝑣1 of vertex 𝑣1, shown on the right side in Figure 5, as input. Remember this is
the representation of the outdegree of 𝑣1. In addition, from step (1), the algorithm gets
the lower bound 𝜔𝑠𝑡𝑎𝑟𝑡 = 0 and upper bound 𝜔𝑒𝑛𝑑 = ∞ of the vertex interval as input

Evolution of Degree Metrics in Large Temporal Graphs 499

16 Rost et al.

Algorithm 1: Tree traversal and result collection
Data: 𝑇𝑣 , 𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑 ; /* Input data */

1 𝜔𝑙𝑎𝑠𝑡 ← 𝜔𝑠𝑡𝑎𝑟𝑡 ; /* 𝜔𝑠𝑡𝑎𝑟𝑡 = −∞ if not given */
2 𝜔𝑚𝑎𝑥 ← 𝜔𝑒𝑛𝑑 ; /* 𝜔𝑒𝑛𝑑 = ∞ if not given */
3 𝑑 ← 0 ; /* Initialize degree with 0 */
4 Function Main():
5 InOrderDFS(𝑇𝑣); /* Traverse the tree with in-order DFS */
6 if 𝜔𝑙𝑎𝑠𝑡 < 𝜔𝑚𝑎𝑥 then /* Check for last remaining interval */
7 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (⟨𝑣𝑖𝑑 , [𝜔𝑙𝑎𝑠𝑡 , 𝜔𝑚𝑎𝑥), 𝑑⟩); /* Collect tuple for last interval */

8 Function InOrderDFS(𝑡𝑟𝑒𝑒):
9 if 𝑡𝑟𝑒𝑒.𝑙𝑒 𝑓 𝑡 ≠ 𝑛𝑢𝑙𝑙 then InOrderDFS(𝑡𝑟𝑒𝑒.𝑙𝑒 𝑓 𝑡);

10 ProcessNode(𝑡𝑟𝑒𝑒.𝑣𝑎𝑙𝑢𝑒,𝑡𝑟𝑒𝑒.𝑝𝑎𝑦𝑙𝑜𝑎𝑑);
11 if 𝑡𝑟𝑒𝑒.𝑟𝑖𝑔ℎ𝑡 ≠ 𝑛𝑢𝑙𝑙 then InOrderDFS(𝑡𝑟𝑒𝑒.𝑟𝑖𝑔ℎ𝑡);
12 Function ProcessNode(𝜔, 𝜌):
13 if 𝜔𝑙𝑎𝑠𝑡 == 𝜔 then /* Check first node visit */
14 𝑑 ← 𝑑 + 𝜌; /* Add payload to degree */
15 return ; /* Leave function */

16 if 𝜌 ≠ 0 then /* Check if the degree changes */
17 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (⟨𝑣𝑖𝑑 , [𝜔𝑙𝑎𝑠𝑡 , 𝜔), 𝑑⟩) ; /* Collect tuple */
18 𝑑 ← 𝑑 + 𝜌 ; /* Add degree change to degree */
19 𝜔𝑙𝑎𝑠𝑡 ← 𝜔; /* Remember 𝜔 for next call */

parameters to initialize 𝜔𝑙𝑎𝑠𝑡 and 𝜔𝑚𝑎𝑥 . During the in-order traversal of the DFS, function
ProcessNode(𝜔, 𝜌) is called first with the arguments (1, 1) (value,payload), followed by
(2, 1), (3, 1), (4,−1), (5,−1) and (6,−1).

According to the first tuple, the interval [0, 1) is defined and collected as part of the
first resulting temporal degree tuple ⟨𝑣1, [0, 1), 0⟩ afterwards (line 17). Then, the payload
1 is added to the degree value 𝑑 (line 18) and the timestamp value 1 is remembered
in variable 𝜔𝑙𝑎𝑠𝑡 (line 19). In the next function call with input tuple (2, 1), an interval
𝜏 ← [1, 2) is defined and collected together with the current degree value of 𝑑 which is
1. The collected result tuple is thus ⟨𝑣1, [1, 2), 1⟩. Again, the degree value is updated by
the payload and the timestamp is remembered. For the remaining four input tuples (3, 1),
(4,−1), (5,−1) and (6,−1) will be the following result tuples collected: ⟨𝑣1, [2, 3), 2⟩,
⟨𝑣1, [3, 4), 3⟩, ⟨𝑣1, [4, 5), 2⟩ and ⟨𝑣1, [5, 6), 1⟩.

To collect also the remaining interval from 6 to∞, the condition (line 7) checks whether the
largest timestamp in the tree (𝜔𝑙𝑎𝑠𝑡) is smaller than the maximum timestamp (𝜔𝑚𝑎𝑥 = ∞).
Since this is true in our case, we define the remaining interval 𝜏 = [6,∞) and collect the
output tuple ⟨𝑣1, [6,∞), 0⟩ which states that the degree of 𝑣1 is 0 for the interval [6,∞). The
result of this final step is a compact representation of the degree evolution of the outdegree
of vertex 𝑣1 as defined by Definition 4: 𝑑𝑒𝑔𝑒𝑣+ (𝑣1, [0,∞)) = {⟨0, [0, 1)⟩, ⟨1, [1, 2)⟩,
⟨2, [2, 3)⟩, ⟨3, [3, 4)⟩, ⟨2, [4, 5)⟩ ⟨1, [5, 6)⟩ ⟨0, [6,∞)⟩}.

500 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 17

Output
result
tuples

Input
TPGM
Graph

V

E

V1
Map
v→(vid,𝜏)

E1
FlatMap
e→(sid,𝜏)
 (tid,𝜏)

Group
by sid/tid E2

GroupReduce
build (vid,Tv) E3

FlatMap
(vid,Tv)→

{(vid,𝜏,deg(vid,ω)),...}

E4

Ѱ

Join
on vid

(vid,[𝜏1,𝜏2,...])

(2) (3) (4) (5)

(1)

Fig. 6: Implementation details of the Degree Evolution-Operator.

5 Distributed implementation

The ability to process very large graphs efficiently is often a limitation of existing graph
processing systems [Sa20], requiring partitioning of large graphs and distributed processing
for example of analytical tasks. There are distributed graph processing systems, such as
Tegra [Iy21] based on Apache Spark [Za16], or Gradoop [Ro22, Ro21] which uses
Apache Flink [Ca15]. An analytical operator in Gradoop is a smart combination of Flink
transformations. A Flink transformation, e.g., map, flatMap and join, is a processing unit that
can be applied in parallel on a distributed Flink DataSet. A DataSet represents a distributed
collection of elements of the same type in Apache Flink. Its tuples are distributed among all
nodes of a cluster according to a partitioning strategy. We use this operator concept for our
distributed implementation of the algorithm described in Sect. 4.

Fig. 6 shows an architectural sketch of a Degree Evolution-Operator8 as a Directed Acyclic
Graph (DAG) representing multiple Flink transformations that are applied on the input
graph DataSets: 𝑉 with 𝑣𝑖 = ⟨𝑣𝑖𝑑 , 𝜏⟩ and 𝐸 with 𝑒𝑖 = ⟨𝑒𝑖𝑑 , 𝑠𝑖𝑑 , 𝑡𝑖𝑑 , 𝜏⟩. The enumeration of
the data flow follows the algorithm steps given in Sect. 4.

First, in step (1), each vertex of the input vertex DataSet 𝑉 , is mapped to a minimal
representation holding the vertex identifier and the bounds of the vertex’ time interval. The
resulting DataSet is named 𝑉1 in the figure. If the temporal information of the vertices
can be neglected, this step can be skipped and default min/max timestamps can be used
as input to step (5), which avoids the later described distributed join. Then, we apply a
FlatMap transformation, step (2), to the edge DataSet 𝐸 that is configured by the degree
type (Ψ ∈ {𝑖𝑛, 𝑜𝑢𝑡, 𝑏𝑜𝑡ℎ}) as selected by the user. According to the degree type, one or two
tuples of the format ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ are extracted from an input edge tuple (step (2) in
Sect. 4). The resulting DataSet is denoted as 𝐸1.

On 𝐸1, we apply a Group transformation which groups all entities by the vertex identifier,
and creates a set of tuples ⟨𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ for each group. In the figure, this step is marked
by (3), whereas the resulting grouped DataSet is denoted as 𝐸2. Due to the grouping, 𝐸2 is
partitioned by the vertex identifier. For each group, we apply a GroupReduce transformation

8The operator code is open-source: https://github.com/dbs-leipzig/gradoop/tree/develop/gradoop-
temporal/src/main/java/org/gradoop/temporal/model/impl/operators/metric.

Evolution of Degree Metrics in Large Temporal Graphs 501

https://github.com/dbs-leipzig/gradoop/tree/develop/gradoop-temporal/src/main/java/org/gradoop/temporal/model/impl/operators/metric
https://github.com/dbs-leipzig/gradoop/tree/develop/gradoop-temporal/src/main/java/org/gradoop/temporal/model/impl/operators/metric

18 Rost et al.

|𝑉 | |𝐸 | Size (GB)
∑ |𝑑𝑒𝑔𝑒𝑣() |

LDBC SF1 3.2 M 17.3 M 4.2 30.6 M
LDBC SF10 30.0 M 176.6 M 42.3 319.6 M
LDBC SF100 282.6 M 1.77 B 421.9 3.18 B
Citi Bike 1174 97.5 M 22.6 381.0 M
Stackoverflow 462.9 M 664.8 M 199.0 1.3 B

Tab. 1: Dataset statistics, including their sizes on HDFS and number of result set tuples for Ψ = 𝑏𝑜𝑡ℎ,
i. e.,

∑ |𝑉 |
𝑖=1 |𝑑𝑒𝑔𝑒𝑣(𝑣𝑖) |. For example, 3.18B tuples result for the LDBC dataset with SF 100.

in step (4) which calls a user-defined function for each group. This function receives the
whole group at once and produces a mapping 𝑣𝑖𝑑 → 𝑇𝑣 assigning a degree tree to its
corresponding vertex identifier, represented as a tuple ⟨𝑣𝑖𝑑 , 𝑇𝑣⟩. The resulting tuples are
part of DataSet 𝐸3, which is partitioned by the vertex identifier.

Now, each tuple of 𝑉1 needs to be joined by the vertex identifier to it’s corresponding degree
tree tuple of DataSet 𝐸3 to extend it with the interval bounds of the vertex. As said before,
this step can be optionally skipped. As a result of the join, the DataSet 𝐸3 consists of tuples
⟨𝑣𝑖𝑑 , 𝑇𝑣 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩. As a last step, annotated with a (5), a FlatMap transformation is
applied on DataSet 𝐸3 where its internal logic implements the tree traversal and result
collection process defined in Algorithm 1. For each input tuple, the transformation produces
multiple (at least one) result tuples in the form ⟨𝑣𝑖𝑑 , 𝜏, 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔)⟩, describing the constant
temporal degree (see Definition 3) of vertex 𝑣 ∈ 𝑉 (identified by 𝑣𝑖𝑑) for the whole interval
𝜏. The resulting DataSet is named 𝐸4.

6 Experimental Evaluation

We now evaluate the runtime and scalability of the temporal degree operator we discussed
in Sect. 5 with respect to increasing data set and cluster sizes. We ran all experiments on a
cluster with 16 worker nodes connected via 1 GBit Ethernet, where each worker consists of
a E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM, two 4 TB SATA disks, and running openSuse
13.2, Hadoop 2.7.3 and Flink 1.9.0. On a worker node, a Flink Task Manager [Ca15] is
configured with 6 task slots and 40GB memory.

We use three datasets for the evaluation, referred to as LDBC [Io16] (a synthetic social
network in three scale factors), citibike9 and stackoverflow10 (both real-world data). In Fig. 4
we show example time series of four evolution metrics for the citibike dataset. Each graph
is stored distributed using the Hadoop Distributed File System (HDFS) by hash partitioning
as two datasets 𝑉 and 𝐸 . Table 1 shows statistics of the three datasets with the different
scaling factors (SF) for LDBC. Each experiment includes reading the graph dataset from

9https://www.citibikenyc.com/system-data/ (visited 2022-10-01).
10https://archive.org/details/stackexchange (visited 2022-10-01).

502 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

https://www.citibikenyc.com/system-data/
https://archive.org/details/stackexchange

Evolution of Degree Metrics in Large Temporal Graphs 19

 1

 10

 100

 1000

LDBC.1 LDBC.10 LDBC.100

R
u
n
ti
m

e
 [
s
]

Dataset

both
in

out

Fig. 7: Runtimes for linearly growing dataset sizes.

 2x

 6x

 20x

 60x

 1x

 10x

100x

 1 10 100

R
u
n
ti
m

e
 i
n
c
re

a
s
e

LDBC Scale Factor

Linear

both

in

out

Fig. 8: Factor of runtime increase for linearly
growing dataset sizes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 4 8 16

R
u
n
ti
m

e
 [
s
]

Number of Workers

cb−base−out
cb−ext−out

ldbc−base−out
ldbc−ext−out
so−base−out

so−ext−out

Fig. 9: Runtimes for #workers with Ψ = 𝑜𝑢𝑡.

 1

 2

 4

 6

 8

 10
 12

 1 2 4 8 16

S
p
e
e
d
u
p

Number of Workers

Linear
cb−base−out
cb−ext−out
ldbc−base−out
ldbc−ext−out
so−base−out
so−ext−out

Fig. 10: Speedup of algorithm for Ψ = 𝑜𝑢𝑡.

the HDFS, executing the specific workflow, and finally writing all results back to the HDFS.
We ran each experiment five times and report average runtimes.

Impact of dataset size. Fig. 7 and 8 show the impact of the dataset size to the operator runtime
with full parallelism of 16 workers with respect to different degree types Ψ ∈ {𝑖𝑛, 𝑜𝑢𝑡, 𝑏𝑜𝑡ℎ}.
While Fig. 7 shows the actual runtime in seconds for all three dataset sizes, Fig. 8 visualizes
the factor by which the runtime has increased compared to the runtime of the LDBC SF1
dataset. For example, the runtime for the LDBC SF1 dataset for Ψ = 𝑏𝑜𝑡ℎ is only 23.3
seconds, for LDBC SF10 164.6 seconds (factor 7 higher compared to LDBC SF1) and for
LDBC SF100 1433.6 seconds (factor 61). The best result is given by degree type Ψ = 𝑖𝑛,
where the runtimes of LDBC SF100 are only 35.4 times larger compared to LDBC SF1,
although the dataset is 100 times larger. From LDBC SF10 to LDBC SF100 the runtimes of
all three degree types rise equally.

The results, specifically Fig. 8, show that a linear increase of the dataset size leads to only a
sublinear increase in the running time for a constant graph structure. Further, the runtimes

Evolution of Degree Metrics in Large Temporal Graphs 503

20 Rost et al.

of Ψ = 𝑏𝑜𝑡ℎ are always higher compared to the others which is due to the double amount
of collected tuples in step (2), as we discussed in Sect. 5.

Impact of worker count. We next examine the runtime and scalability of the algorithm for
all datasets. In addition, the effect of excluding the vertex time information as described in
Sect. 4 is evaluated. Without using the vertex time, the complete step (1) and the expensive
join after step (4) can be avoided (see Sect. 5). In the following, we refer to an execution
without vertex time as base and extended for the full algorithm. The results in Fig. 9 show
that the mentioned higher complexity has a significant impact on the running time. For
example, the runtime on a single machine for the citibike dataset is 397.6 seconds (base)
and 533.6 seconds (extended), which means an increase of 34.2%. For the stackoverflow
dataset, the execution takes 2,536 seconds (base) and 5,216 seconds (extended), which
means almost doubling the runtime on a single machine.

The more workers are added, the smaller the runtime and the difference between the two
algorithm variants, which can be seen in Fig. 10. With the citibike dataset, we can see that
the runtimes on a single machine are already low and that only a moderate improvement can
be achieved through horizontal scaling of resources. For this dataset, we reach a speedup
of about 6.7 for 16 machines using the extended variant, while for the LDBC SF100 and
stackoverflow datasets we achieve a speedup of up-to 11.1 and 12.07, respectively.

7 Conclusion

Most graphs that model real-world entities and their relationships are dynamic, where edges
and vertices can be valid for only a certain period of time. One simple but often used
centrality measure is the degree centrality using a vertex’ degree to judge it’s popularity
in a network. We show in this work that it is necessary to determine a vertex degree over
time, to know exactly when a node has which degree and how long this value is valid and
in which quantity it does change over time. We therefore provide temporal extensions to
the vertex degree metric itself, its aggregations and others based on it, namely the degree
range, the degree variance and the ANND, and define them formally. We further describe an
algorithm to calculate the newly introduced degree evolution for all vertices of a temporal
graph. We implemented the algorithm as a graph analysis operator in Gradoop [Ro22], an
open-source distributed graph analysis system.

We evaluated runtimes and scalability of the operator on a cluster with 16 machines to
determine the impact of different datasets and sizes. In summary, we have shown that a linear
increase in the dataset size leads to only a sublinear increase in runtime of our algorithm. We
also showed that the operator scales well by increasing the number of machines. Speedup
values between 10 and 12 were achieved on 16 machines using the two largest datasets.

Acknowledgement. The authors acknowledge the financial support by the Federal Ministry
of Education and Research of Germany and by the Sächsische Staatsministerium für
Wissenschaft, Kultur und Tourismus for ScaDS.AI.

504 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

Evolution of Degree Metrics in Large Temporal Graphs 21

Bibliography
[Be75] Bentley, Jon Louis: Multidimensional Binary Search Trees Used for Associative Searching.

Commun. ACM, 18(9):509–517, sep 1975.

[Ca06] Capocci, Andrea et al.: Preferential attachment in the growth of social networks: The
internet encyclopedia Wikipedia. Physical review E, 74(3):036116, 2006.

[Ca15] Carbone, Paris et al.: Apache Flink: Stream and Batch Processing in a Single Engine.
IEEE Data Eng. Bull., 38(4):28–38, 2015.

[Ca21] Casteigts, Arnaud; Meeks, Kitty; Mertzios, George B.; Niedermeier, Rolf: Temporal
Graphs: Structure, Algorithms, Applications (Dagstuhl Seminar 21171). Dagstuhl
Reports, 11(3):16–46, 2021.

[Ci20] Ciaperoni, Martino; Galimberti, Edoardo; Bonchi, Francesco; Cattuto, Ciro; Gullo,
Francesco; Barrat, Alain: Relevance of temporal cores for epidemic spread in temporal
networks. Scientific reports, 10(1):1–15, 2020.

[Di10] Diestel, Reinhard: Graph Theory, 4th Edition. Springer, 2010.

[Fr78] Freeman, Linton C: Centrality in social networks conceptual clarification. Social
Networks, 1(3):215–239, 1978.

[GS20] Gandhi, Swapnil; Simmhan, Yogesh: An interval-centric model for distributed computing
over temporal graphs. In: IEEE 36th International Conference on Data Engineering
(ICDE). pp. 1129–1140, 2020.

[GY03] Gross, Jonathan L; Yellen, Jay: Handbook of graph theory. CRC press, 2003.

[Ho18] Holme, Petter: Temporal Networks. In: Encyclopedia of Social Network Analysis and
Mining. 2nd Ed. Springer, 2018.

[HR21] Halawa, Hassan; Ripeanu, Matei: Position paper: bitemporal dynamic graph analytics.
In: GRADES NDA. pp. 1–12, 2021.

[Io16] Iosup, Alexandru et al.: LDBC Graphalytics: A benchmark for large-scale graph analysis
on parallel and distributed platforms. Proc. of the VLDB Endow., 9(13):1317–1328,
2016.

[Iy21] Iyer, Anand Padmanabha; Pu, Qifan; Patel, Kishan; Gonzalez, Joseph E; Stoica, Ion:
TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In: NSDI. pp. 337–355, 2021.

[JNB03] Jeong, Hawoong; Néda, Zoltan; Barabási, Albert-László: Measuring preferential attach-
ment in evolving networks. EPL (Europhysics Letters), 61(4):567, 2003.

[KA12] Kim, Hyoungshick; Anderson, Ross: Temporal node centrality in complex networks.
Physical Review E, 85(2):026107, 2012.

[Ko09] Kostakos, Vassilis: Temporal graphs. Physica A: Statistical Mechanics and its Applica-
tions, 388(6):1007–1023, 2009.

[Li15] Li, Yexin; Zheng, Yu; Zhang, Huichu; Chen, Lei: Traffic prediction in a bike-sharing
system. In: Proc. of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems. pp. 1–10, 2015.

Evolution of Degree Metrics in Large Temporal Graphs 505

22 Rost et al.

[LJ21] Lizardo, Omar; Jilbert, Isaac: , Graph Metrics. http://olizardo.bol.ucla.edu/
classes/soc-111/lessons-winter-2022/4-lesson-graph-metrics.html, 2021. [On-
line; accessed 2022-10-01].

[Lo20] Long, Li; Abbas*, Khushnood; Ling*, Niu; Jafar Abbas, Syed: Ranking Nodes in
Temporal Networks: Eigen Value and Node Degree Growth based. In: 2nd International
Conference on Image Processing and Machine Vision. pp. 146–153, 2020.

[Ne01] Newman, Mark EJ: Clustering and preferential attachment in growing networks. Physical
review E, 64(2):025102, 2001.

[Ni13] Nicosia, Vincenzo; Tang, John; Mascolo, Cecilia; Musolesi, Mirco; Russo, Giovanni;
Latora, Vito: Graph metrics for temporal networks. In: Temporal Networks, pp. 15–40.
Springer, 2013.

[RKC01] Riolo, Christopher S; Koopman, James S; Chick, Stephen E: Methods and measures
for the description of epidemiologic contact networks. J Urban Health, 78(3):446–457,
2001.

[Ro21] Rost, Christopher; Gómez, Kevin; Fritzsche, Philip; Thor, Andreas; Rahm, Erhard:
Exploration and Analysis of Temporal Property Graphs. In: EDBT. pp. 682–685, 2021.

[Ro22] Rost, Christopher; Gomez, Kevin; Täschner, Matthias; Fritzsche, Philip; Schons, Lucas;
Christ, Lukas; Adameit, Timo; Junghanns, Martin; Rahm, Erhard: Distributed temporal
graph analytics with GRADOOP. The VLDB Journal, 31:1–27, 2022.

[Sa20] Sahu, Siddhartha; Mhedhbi, Amine; Salihoglu, Semih; Lin, Jimmy; Özsu, M Tamer: The
ubiquity of large graphs and surprising challenges of graph processing: extended survey.
The VLDB Journal, 29(2):595–618, 2020.

[SE20] Smith, Keith M; Escudero, Javier: Normalised degree variance. Applied Network
Science, 5(1):1–22, 2020.

[SK05] Saramäki, Jari; Kaski, Kimmo: Modelling development of epidemics with dynamic
small-world networks. Journal of Theoretical Biology, 234(3):413–421, 2005.

[Sn81] Snĳders, Tom AB: The degree variance: an index of graph heterogeneity. Social networks,
3(3):163–174, 1981.

[Ta72] Tarjan, Robert: Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[TBF17] Thompson, William Hedley; Brantefors, Per; Fransson, Peter: From static to temporal
network theory: Applications to functional brain connectivity. Network Neuroscience,
1(2):69–99, 2017.

[Tl20] Tlebaldinova, Aizhan; Nugumanova, Aliya; Baiburin, Yerzhan; Zhantassova, Zheniskul;
Karmenova, Markhaba; Ivanov, Andrey: Temporal Network Approach to Explore Bike
Sharing Usage Patterns. In: VEHITS. pp. 129–136, 2020.

[Wa17] Wang, Zhiqiang; Pei, Xubin; Wang, Yanbo; Yao, Yiyang: Ranking the key nodes with
temporal degree deviation centrality on complex networks. In: 2017 29th Chinese
Control And Decision Conference (CCDC). IEEE, pp. 1484–1489, 2017.

506 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm

http://olizardo.bol.ucla.edu/classes/soc-111/lessons-winter-2022/4-lesson-graph-metrics.html
http://olizardo.bol.ucla.edu/classes/soc-111/lessons-winter-2022/4-lesson-graph-metrics.html

Evolution of Degree Metrics in Large Temporal Graphs 23

[Wu14] Wu, Huanhuan; Cheng, James; Huang, Silu; Ke, Yiping; Lu, Yi; Xu, Yanyan: Path
problems in temporal graphs. Proc. of the VLDB Endowment, 7(9):721–732, 2014.

[YvdHL17] Yao, Dong; van der Hoorn, Pim; Litvak, Nelly: Average nearest neighbor degrees in
scale-free networks. arXiv preprint arXiv:1704.05707, 2017.

[Za16] Zaharia, Matei et al.: Apache Spark: A Unified Engine for Big Data Processing.
Communications of the ACM, 59(11):56–65, 2016.

Evolution of Degree Metrics in Large Temporal Graphs 507

Session 5

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Discovering Multi-Dimensional Subsequence Queries from
Traces – From Theory to Practice

Sarah Kleest-Meißner1, Rebecca Sattler2, Markus L. Schmid3, Nicole Schweikardt4,
Matthias Weidlich5

Abstract: Subsequence-queries with wildcards and gap-size constraints (swg-queries, for short) are
an expressive model for sequence data, in which queries are described by patterns over an alphabet of
variables and types, along with a global window size and a number of gap-size constraints. They are
evaluated over a trace, i.e., a sequence of types, by replacing variables by single types, while satisfying
the window and the gap-size constraints. Kleest-Meißner et al. (Proc. ICDT 2022) formalised the task
of discovering an swg-query that describes best a given sample consisting of a finite number of traces,
and developed a discovery algorithm solving this task. However, in practical application scenarios,
traces are often multi-dimensional, i.e., a trace corresponds to a sequence of tuples of types, which
renders the existing technique inapplicable.
In this paper, we lift the notion of swg-queries to such a multi-dimensional setting, thereby enlarging
the applicability of the query model and the techniques for query discovery. We introduce a mapping
between one-dimensional and multi-dimensional sequence data, such that a multi-dimensional trace
matches a multi-dimensional query if and only if the corresponding one-dimensional trace matches
the corresponding one-dimensional query. We complement our formal results with a description of
our prototypical implementation of query discovery for multi-dimensional sequence data. Results
from evaluation experiments with real-world data indicate the feasibility of our approach.

Keywords: multi-dimensional subsequence queries on traces, detecting descriptive multi-dimensional
queries, subsequences, embeddings

1 Introduction

Models for sequence data define an order for a set of data items [Bab+02], which typically
follows from the order in which these items have been created, observed, or received. They
1 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, kleemeis@informatik.hu-berlin.

de. Supported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foundation of Workflows for
Large-Scale Scientific Data Analysis”

2 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, rebecca.sattler@informatik.
hu-berlin.de. Supported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foundation of
Workflows for Large-Scale Scientific Data Analysis”

3 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, MLSchmid@MLSchmid.de.
Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) – project number
416776735 (gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 416776735)

4 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, schweikn@informatik.hu-
berlin.de

5 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, matthias.weidlich@hu-berlin.de

cba doi:10.18420/BTW2023-24

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 511

mailto:kleemeis@informatik.hu-berlin.de
mailto:kleemeis@informatik.hu-berlin.de
mailto:rebecca.sattler@informatik.hu-berlin.de
mailto:rebecca.sattler@informatik.hu-berlin.de
mailto:MLSchmid@MLSchmid.de
mailto:schweikn@informatik.hu-berlin.de
mailto:schweikn@informatik.hu-berlin.de
mailto:matthias.weidlich@hu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-24

2 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

facilitate the analysis of the evolution of some system over time and have been adopted in
various domains. For instance, in cluster monitoring, sequence data describes the process of
executing tasks on machines [Ver+15]; in urban transportation, sequence data captures the
routes taken by vehicles [Art+14]; and in finance, sequence data represents a transaction
history [TRP12].

Sequence data may be queried for relevant patterns by specifying which data items, in which
order, and in which temporal context are of interest for a specific analysis question [Gia+20;
CM12]. This way, situations of interest that happened in the past and materialized in historic
data can be detected by evaluating a suitable subsequence query. Employing such a query
over a stream of data items also enables the detection of such a situation immediately upon
its occurrence, thereby enabling reactive and even pro-active applications.

As an example, consider a cluster monitoring scenario as illustrated in Figure 1. Here, data
items indicate transitions in the lifecycle of a task, see Figure 1a. A query may then specify
a subsequence of abnormal task execution in the cluster, e.g., as a sequence of data items
that indicate that a task was scheduled, killed, and, after being treated in the same way twice
(e.g., being updated twice), scheduled again for execution. Here, the respective subsequence
is not necessarily continuous and certain lifecycle transitions that are not indicative may
occur between the relevant ones. Figure 1b shows how such a query would be written
following common languages for complex event recognition [Gia+20].

In practice, finding a suitable query that detects a particular situation is far from trivial,
though. Users often know the time at which a situation occurred in the past, but lack insights
into the exact materialization of the situation in the sequence data. To provide guidance
in the formulation of an adequate query, it was therefore suggested to discover queries
that describe patterns linked to the situation of interest [GCW16; MCT14]. These queries
may then be interpreted and validated by a user in order to provide traceability and avoid
overfitting.

Previously, we proposed a query language for describing subsequence queries with wildcards,
a window size, and gap-size constraints [Kle+22], referred to as swg-queries. In essence, an
swg-query defines a pattern over an alphabet of variables and types, a global window size,
and gap-size constraints that bound the number of items that may occur between the queried
types and variables. Taking up the query from Figure 1b, the respective swg-query includes:
(i) a pattern SCH KIL 𝑥 𝑥 SCH with 𝑥 denoting a variable; (ii) a global window size of at
most 15 items; and (iii) gap-size constraints, e.g., (0, 10) to define that between zero and
ten data items may occur between the type KIL and the first occurrence of variable 𝑥.

The general concept of subsequences has extensively been studied both in a purely
combinatorial sense (in formal language theory, logic and combinatorics on words) and
algorithmically (in string algorithms and bioinformatics); see the introductions of the recent
papers [Gaw+21; Day+21] for a comprehensive list of relevant pointers. The problem of
matching subsequences with gap-constraints (and analysis problems with respect to the set

512 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 3

⟨SUB, SCH, EVI, SCH, KIL, UPD, CHE, UPD, SCH, FIN⟩

(a) Sequence of data items recorded for a task and indicating the task’s lifecycle: Submitted (SUB), scheduled
(SCH), evicted (EVI), killed (KIL), updated (UPD), checked (CHE), finished (FIN).

PATTERN SEQ(Item a, Item b, Item c, Item d, Item e)

WHERE a.status = e.status = SCH AND b.status = KIL AND c.status = d.status

WITHIN 15 data items

(b) A query over sequences of data items following common languages for complex event recognition [Gia+20].
It detects if a task was scheduled, killed, and, after treated in the same way twice (e.g. being updated twice),
scheduled again for execution. It matches the sequence in Figure 1a.

Fig. 1: Illustration of a query over sequence data in the domain of cluster monitoring.

of all gap-constrained subsequences of given strings) has been investigated in the recent
papers [Day+22; Kos+22a] (see also [Kos+22b] for a survey).

Patterns with variables were introduced by Angluin [Ang80]; they play a central role for
inductive inference, in formal language theory and combinatorics on words (see [SA95;
MS19; RS97]). Syntactically, our swg-queries are Angluin-style patterns, but adapted in a
way that variables refer solely to single types (whereas in Angluin’s semantics they refer to
finite sequences of types) and matches are further constrained by a global window size and
a number of gap-size constraints (such constraints are not available in Angluin’s pattern
queries).

Despite the fundamental semantic differences between swg-queries and Angluin-style
patterns, it is possible to adapt concepts and algorithms from inductive inference of the so-
called pattern languages that can be described by Angluin-style patterns. Most importantly,
the classical concept of descriptive patterns (already introduced in [Ang80], see also [FR10;
FR13]), can be adapted to swg-queries [Kle+22]: a query 𝑞 is called descriptive for a given
sample S (i.e., a finite set of sequences of data items) and a given support threshold sp if it
matches in at least a fraction of sp sequences of S and there is no strictly more restrictive
query 𝑞′ that also matches in a fraction of at least sp sequences of S.

For classical Angluin-style semantics, Shinohara’s algorithm [Shi82] computes a descriptive
pattern query upon input of a sample S and the support threshold sp = 1 (see also [Fer+18]
for a thorough analysis and extensions of Shinohara’s algorithm). In [Kle+22] we presented
an adaptation and extension of Shinohara’s algorithm that is capable of discovering, upon
input of a sample S and a support threshold sp ⩽ 1, a descriptive swg-query — and different
executions of this algorithm may be used to compute a number of different descriptive
swg-queries.

However, a major drawback of swg-queries as well as related models of Angluin-style
patterns is that they are based on a one-dimensional model of sequence data, i.e., data items
refer to atomic types. As a consequence, they are not applicable in many practical scenarios
in which sequence data comprise items that are instances of a multi-dimensional schema.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 513

4 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

(job=1, task=2, machine=5, status=SCH, priority=low)
(job=4, task=3, machine=5, status=SCH, priority=high)
(job=2, task=1, machine=1, status=UPD, priority=high)
(job=1, task=2, machine=5, status=EVI, priority=low)
(job=1, task=2, machine=3, status=SCH, priority=low)

(a) A sequence of multi-dimensional data items. Each data item has five attributes that characterise the job to
which a task belongs (job), the identifier of the task (task), the machine to which the task is assigned (machine),
the task’s lifecycle transition (status), and the execution priority of the task (priority).

PATTERN SEQ(Item a, Item b, Item c)

WHERE a.status = b.status = SCH AND c.status = EVI

AND a.job = c.job AND a.task = c.task AND

AND a.machine = b.machine AND b.priority = high

WITHIN 10 data items

(b) A query over sequences of multi-dimensional data items (again, following common languages for complex
event recognition [Gia+20]). The query is matched in the sequence depicted in Figure 2a by associating a, b, and c
with the first, second, and fourth tuple of the sequence.

Fig. 2: Illustration of a query over multi-dimensional sequence data.

Considering the application domain of cluster monitoring, data items may capture not only
the lifecycle transitions related to a task, but also the job to which the task belongs, the
assigned machine, and the priority of task execution, see Figure 2a. These attributes enable
the definition of more elaborate subsequence queries that incorporate predicates over the
respective values of data items. For instance, the query depicted in Figure 2b detects the
situation that a task is scheduled on a machine for which, subsequently, the scheduling of a
task of a high-priority job on the same machine leads to the eviction of the first task.

In this paper, we address the above limitation by lifting swg-queries to multi-dimensional
sequence data. This way, we extend the applicability of the query model and also enable the
discovery of descriptive queries from a sample database of multi-dimensional sequences.
Our approach is to formulate a suitable mapping between one-dimensional and multi-
dimensional sequence data that facilitates query evaluation: A multi-dimensional sequence
matches a multi-dimensional query if, and only if, the corresponding one-dimensional
sequence matches the corresponding one-dimensional query. We complement these formal
contributions with a description of our prototypical implementation of query discovery
for multi-dimensional sequence data. We further report on experiments on applying this
prototype to a real-world dataset in the domain of cluster monitoring, i.e., the Google Cluster
Traces [RWH11]. Our results indicate the general feasibility of discovering swg-queries
from multi-dimensional sequence data and also shed light on the sensitivity of the runtime
of the approach with respect to structural characteristics of the sequence database.

The rest of this paper is structured as follows. Section 2 introduces the multi-dimensional
query model and relates it to the previously studied one-dimensional case. Section 3 provides
a solution for the query discovery problem and briefly describes our implementation.
Section 4 presents our experimental evaluation. Section 5 concludes the paper.

514 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 5

2 Multi-Dimensional Subsequence-Queries

This section introduces the syntax and semantics of multi-dimensional subsequence-queries
with wildcards and gap-size constraints, for short: mswg-queries (Section 2.1). After briefly
discussing their relation to the (one-dimensional) swg-queries introduced in [Kle+22]
(Section 2.2) we present a way to encode mswg-queries as swg-queries (Section 2.3). Prior
to this, we fix some basic notation.

Let N and N⩾1 be the set of non-negative integers and positive integers, respectively. For
ℓ ∈ N we let [ℓ] = {𝑖 ∈ N : 1 ⩽ 𝑖 ⩽ ℓ}.

Let 𝐴 be a non-empty set. We write 𝐴∗ (and 𝐴+) for the set of all strings (and the set of
all non-empty strings) over 𝐴. We denote the length of a string 𝑠 by |𝑠 |. For a position
𝑖 ∈ [|𝑠 |] we write 𝑠[𝑖] to denote the letter at position 𝑖 in 𝑠. A factor of a string 𝑠 ∈ 𝐴∗ is a
string 𝑣 ∈ 𝐴∗ such that 𝑠 = 𝑢𝑣𝑢′ for 𝑢, 𝑢′ ∈ 𝐴∗. A subsequence of a string 𝑡 = 𝑡1𝑡2 · · · 𝑡𝑛,
where 𝑡𝑖 ∈ 𝐴 for all 𝑖 ∈ [𝑛], is a string 𝑠 = 𝑠1 · · · 𝑠𝑚 where 𝑚 ⩽ 𝑛 and there exist integers
1 ⩽ 𝑖1 < · · · < 𝑖𝑚 ⩽ 𝑛 such that 𝑠 𝑗 = 𝑡𝑖 𝑗 for all 𝑗 ∈ [𝑚]; the mapping 𝑒 : [𝑚] → [𝑛] with
𝑒(𝑗) = 𝑖 𝑗 for all 𝑗 ∈ [𝑚] is called an embedding of 𝑠 in 𝑡. For example, the string a c c is a
subsequence of the string a b a c c b with embedding 𝑒 where 𝑒(1) ∈ {1, 3}, 𝑒(2) = 4 and
𝑒(3) = 5. We write 𝑠 ≼𝑒 𝑡 to indicate that 𝑠 is a subsequence of 𝑡 with embedding 𝑒, and we
suppress the subscript 𝑒 if we only want to indicate that 𝑠 is a subsequence of 𝑡.

For the rest of this paper we define Γ to be a (finite or infinite) alphabet with |Γ | ⩾ 2. The
elements in Γ will be called types. Furthermore, we fix a countably infinite set Vars of
variables, which is disjoint with the set Γ of types.

2.1 Syntax and Semantics of mswg-queries

We fix a number 𝑘 ∈ N⩾1 which we will henceforth call the dimension. We model a data
item 𝑑 with 𝑘 attributes as an ordered 𝑘-tuple over Γ, i.e., an element in Σ := (Γ𝑘).6 A
𝑘-dimensional trace over Γ (for short: 𝑘-trace) is an element in Σ+, i.e., a finite non-empty
sequence of 𝑘-tuples over Γ. The length |𝑡 | of a 𝑘-trace 𝑡 is the number of 𝑘-tuples it
comprises — i.e., |𝑡 | is 𝑡’s length as a string over alphabet Σ. We write types(𝑡) for the set
of types in Γ that occur in 𝑡.

Example 1. We consider 5-dimensional data items with attributes job, task, machine,
status and priority (which, for a unique tuple representation, are ordered as indicated
above), and let Γ := {SCH, UPD, KIL} ∪ {0, 1, . . . , 10}. For example, (1, 2, 5, SCH, 0) and

6 When considering (Γ𝑘) as an alphabet, i.e., each 𝑘-tuple is viewed as a single letter of this alphabet, we use
brackets to visualize this.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 515

6 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

(1, 1, 5, KIL, 0) are two 5-dimensional data items (i.e., 5-tuples).
The following are two examples of 5-dimensional traces over Γ:

𝑠 := (1, 2, 5, SCH, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1)

𝑡 := (1, 2, 5, SCH, 0) (1, 2, 4, UPD, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1) (2, 3, 2, UPD, 1)

These traces have length |𝑠 | = 3 and |𝑡 | = 5. The mapping 𝑒 : [3] → [5] with 𝑒(1) = 1,
𝑒(2) = 3, and 𝑒(3) = 4 is an embedding of 𝑠 in 𝑡 and hence witnesses that 𝑠 is a subsequence
of 𝑡. From now on, we will illustrate such an embedding in the following way:

𝑠 = (1, 2, 5, SCH, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1)

𝑡 = (1, 2, 5, SCH, 0) (1, 2, 4, UPD, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1) (2, 3, 2, UPD, 1)

Definition 2. A 𝑘-dimensional subsequence-query with wildcards and gap-size constraints
(𝑘-swg-query, for short) 𝑞 = (𝑠, 𝑤, 𝑐) (over Vars and Γ), consists of a query string
𝑠 ∈ ((Vars ∪ Γ)𝑘)+ (i.e., 𝑠 is a non-empty string of 𝑘-tuples built from variables and types),
a global window size 𝑤 ∈ N⩾1 ∪ {∞} with 𝑤 ⩾ |𝑠 |, and a tuple of local gap-size constraints
𝑐 = (𝑐1, 𝑐2, . . . , 𝑐 |𝑠 |−1), where 𝑐𝑖 = (𝑐−

𝑖
, 𝑐+

𝑖
) ∈ N × (N∪ {∞}), such that 𝑐−

𝑖
⩽ 𝑐+

𝑖
for every

𝑖 ∈ [|𝑠 |−1] and |𝑠 |+∑ |𝑠 |−1
𝑖=1 𝑐−

𝑖
⩽ 𝑤.

We speak of multi-dimensional subsequence-queries (for short: mswg-queries) to refer to
𝑘-swg-queries for arbitrary dimension 𝑘 ∈ N⩾1. For an mswg-query 𝑞 = (𝑠, 𝑤, 𝑐) we write
types(𝑞) (or types(𝑠)) and vars(𝑞) (or vars(𝑠)) to denote the set of types (from Γ) and the
set of variables (from Vars), respectively, that occur in 𝑞’s query string 𝑠. Such a query 𝑞 is
called an (ℓ, 𝑤, 𝑐)-query for ℓ := |𝑠 |. We will refer to (ℓ, 𝑤, 𝑐) as query parameters.

The semantics of mswg-queries is defined as follows: Each variable in a query string 𝑠

serves as a wildcard representing an arbitrary type from Γ. A 𝑘-swg-query 𝑞 = (𝑠, 𝑤, 𝑐)
matches in a 𝑘-trace 𝑡 (in symbols: 𝑡 |= 𝑞), if the wildcards in 𝑠 can be replaced by types in
Γ in such a way that the resulting 𝑘-trace 𝑠′ satisfies the following: 𝑡 contains a factor 𝑡′ of
length at most 𝑤 such that 𝑠′ occurs as a subsequence in 𝑡′ and for each 𝑖 < ℓ := |𝑠 | the gap
between 𝑠′ [𝑖] and 𝑠′ [𝑖+1] in 𝑡′ has length at least 𝑐−

𝑖
and at most 𝑐+

𝑖
. I.e., 𝑡′ is of the form

𝑠′ [1] 𝑔1 𝑠
′ [2] 𝑔2 · · · 𝑔ℓ−1 𝑠

′ [ℓ] and 𝑐−
𝑖
⩽ |𝑔𝑖 | ⩽ 𝑐+

𝑖
for all 𝑖 ∈ [ℓ−1].

An alternative, more formal description of these semantics relies on the following additional
notation: An embedding 𝑒 : [ℓ] → [𝑛] is said to satisfy a global window size 𝑤, if
𝑒(ℓ) − 𝑒(1) + 1 ⩽ 𝑤; and we say 𝑒 satisfies a tuple 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐ℓ−1) of local gap-size
constraints (for ℓ and 𝑤), if 𝑐−

𝑖
⩽ 𝑒(𝑖+1)−1− 𝑒(𝑖) ⩽ 𝑐+

𝑖
for all 𝑖 < ℓ. Consider a mapping

` : (Vars ∪ Γ) → Γ with `(𝑎) = 𝑎 for all types 𝑎 ∈ Γ (such mappings will henceforth
be called substitutions). We lift ` to a mapping from (Vars ∪ Γ)𝑘 to Σ := (Γ𝑘) by letting
`((𝑎1, . . . , 𝑎𝑘)) := (`(𝑎1), . . . , `(𝑎𝑘)) for all (𝑎1, . . . , 𝑎𝑘) ∈ (Vars ∪ Γ)𝑘 ; and we further
lift ` to a mapping from query strings 𝑠 ∈ ((Vars ∪ Γ)𝑘)+ to 𝑘-traces of length ℓ := |𝑠 | by
letting `(𝑠) = `(𝑠[1]) · · · `(𝑠[ℓ]).

516 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 7

Using these notions, we obtain that a 𝑘-trace 𝑡 matches a 𝑘-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) if, and
only if, there exist a substitution ` : (Vars ∪ Γ) → Γ and an embedding 𝑒 : [|𝑠 |] → [|𝑡 |]
such that `(𝑠) ≼𝑒 𝑡 and 𝑒 satisfies 𝑤 and 𝑐. We call (`, 𝑒) a witness for 𝑡 |= 𝑞.

Example 3. We consider 5-dimensional data items with attributes job, task, machine, status,
and priority (in this order) and types in Γ = {SCH, EVI, UPD, KIL} ∪ {0, 1, . . . , 10} ∪ {ℎ, 𝑙} (with
ℎ, 𝑙 being abbreviations for high and low). Consider the query from Figure 2b. This query
searches for a subsequence of three 5-dimensional data items, the first two of which have
status SCH (schedule) and the third of which has status EVI (evict) such that the following is
true: the first and third data items are related to the same job and to the same task, the first
and second data items are related to the same machine, and the second data item has a high
priority; all within at most 10 data items.
This can be expressed as a 5-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) as follows: The query string length is
ℓ := 3. The window size is 𝑤 := 10. As there are no particular constraints on the gap sizes
between the data items, the gap size constraints 𝑐 are chosen to be 𝑐 = ((0,∞), (0,∞))
(meaning that each gap can be of arbitrary length). The query string 𝑠 is

𝑠 := (𝑥j, 𝑥t, 𝑥m, SCH, 𝑦1) (𝑦2, 𝑦3, 𝑥m, SCH, h) (𝑥j, 𝑥t, 𝑦4, EVI, 𝑦5)

where 𝑥j, 𝑥t, 𝑥m, 𝑦1, . . . , 𝑦5 are pairwise distinct variables in Vars. The sequence of 5-
dimensional data items depicted in Figure 2a corresponds to the 5-trace

𝑡 := (1, 2, 5, SCH, l) (4, 3, 5, SCH, h) (2, 1, 1, UPD, h) (1, 2, 5, EVI, l) (1, 2, 3, SCH, l).

Observe that 𝑡 |= 𝑞, and a witness substitution ` and embedding 𝑒 can be illustrated as:

𝑠 = (𝑥j, 𝑥t, 𝑥m, SCH, 𝑦1) (𝑦2, 𝑦3, 𝑥m, SCH, h) (𝑥j, 𝑥t, 𝑦4, EVI, 𝑦5)
𝑡 = (1, 2, 5, SCH, l) (4, 3, 5, SCH, h) (2, 1, 1, UPD, h) (1, 2, 5, EVI, l) (1, 2, 3, SCH, l)

2.2 One-dimensional swg-queries

For the special case of dimension 𝑘 = 1 we identify 𝑘-tuples of elements in Vars ∪ Γ with
plain elements in Vars ∪ Γ; i.e., we simply write 𝑎 instead of (𝑎) for (𝑎) ∈ (Vars ∪ Γ)1.
Using this identification, a 1-dimensional trace over Γ precisely corresponds to the notion
of trace over Γ used in [Kle+22]; and the syntax and semantics of 1-swg-queries precisely
coincides with the syntax and semantics of the swg-queries over Vars and Γ introduced and
studied in [Kle+22]. Hence, the notions introduced in Section 2.1 are a natural generalisation
of the notions of [Kle+22] from dimension 1 to arbitrary dimension 𝑘 ∈ N⩾1. Furthermore,
all results achieved in [Kle+22] for swg-queries over Vars and Γ immediately carry over
to the 1-swg-queries over Vars and Γ considered in the current paper. A brief survey of
[Kle+22] can be found in [Sch22].

The following example illustrates the correspondence between the swg-queries of [Kle+22]
and 1-swg-queries.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 517

8 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

Example 4. The sequence of data items depicted in Figure 1a corresponds the the 1-trace

𝑡 := (SUB) (SCH) (EVI) (SCH) (KIL) (UPD) (CHE) (UPD) (SCH) (FIN)

which, by omitting brackets around 1-tuples, we shortly write as

SUB SCH EVI SCH KIL UPD CHE UPD SCH FIN

and this is a trace in the sense of [Kle+22]. The query depicted in Figure 1b searches for
a subsequence of data items that indicates that a task was scheduled, killed, and, after
treated in the same way twice, scheduled again; all within a global window size of at
most 15 data items. This can be expressed as a 1-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) as follows: The
query string length is ℓ := 5. The window size is 𝑤 := 15. As there are no particular
constraints on the gap sizes between the data items, the gap size constraints are chosen as
𝑐 := ((0,∞), (0,∞), (0,∞), (0,∞)) (meaning that each gap can be of arbitrary length).
The query string is 𝑠 := (SCH) (KIL) (𝑥) (𝑥) (SCH) , which, by omitting brackets around
1-tuples, is identified with SCH KIL 𝑥 𝑥 SCH , and this exactly yields a swg-query as considered
in [Kle+22]. We observe that 𝑡 |= 𝑞, and a witness substitution ` and embedding 𝑒 can be
illustrated as follows:

𝑠 = SCH KIL 𝑥 𝑥 SCH

𝑡 = SUB SCH EVI SCH KIL UPD CHE UPD SCH FIN

2.3 A one-dimensional representation of multi-dimensional traces and queries

This subsection fixes an encoding that allows to represent 𝑘-dimensional traces and
𝑘-swg-queries over Vars and Γ by corresponding 1-dimensional traces and 1-swg-queries
over Vars and a slightly extended type set Γ̃. This will allow us to transfer the results
obtained in [Kle+22] for the 1-dimensional case to the multi-dimensional setting.

We let Γ̃ := Γ ∪ {#} where # is a new symbol that belongs neither to Γ nor to Vars. We
will use # as a separator to mark the beginning of the encoding of every 𝑘-dimensional
data item. For each 𝑘-dimensional data item 𝑑 = (𝑎1, . . . , 𝑎𝑘) ∈ Γ𝑘 we let 𝑒𝑛𝑐(𝑑) be
the 1-dimensional trace over Γ̃ of length 𝑘+1 defined as 𝑒𝑛𝑐(𝑑) := # 𝑎1 · · · 𝑎𝑘 (recall
from Section 2.2 that we omit brackets around 1-dimensional data items, i.e., 𝑒𝑛𝑐(𝑑) is
(#) (𝑎1) · · · (𝑎𝑘)).
We lift 𝑒𝑛𝑐 to be a mapping from 𝑘-traces over Γ to 1-traces over Γ̃ in the canonical way: for a
𝑘-trace 𝑡 = 𝑡1𝑡2 · · · 𝑡𝑛 with 𝑡𝑖 ∈ Γ𝑘 for all 𝑖 ∈ [𝑛] we let 𝑒𝑛𝑐(𝑡) := 𝑒𝑛𝑐(𝑡1)𝑒𝑛𝑐(𝑡2) · · · 𝑒𝑛𝑐(𝑡𝑛).
Note that the 1-trace 𝑒𝑛𝑐(𝑡) has length (𝑘+1)·|𝑡 |.

The following example illustrates how an embedding 𝑒 of a 𝑘-trace 𝑠 in a 𝑘-trace 𝑡 (witnessing
that 𝑠 ≼ 𝑡) can be transferred into an embedding 𝑒 of the 1-trace 𝑒𝑛𝑐(𝑠) in the 1-trace
𝑒𝑛𝑐(𝑡).

518 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 9

Example 5. Let 𝑘 = 2 and Γ = {a, b, c}. Consider the following 2-traces 𝑠 and 𝑡:

𝑠 = (a, b) (a, b) (b, c) (a, c)
𝑡 = (a, b) (a, b) (a, c) (a, b) (b, c) (a, b) (a, c)

Note that 𝑠 ≼𝑒 𝑡, witnessed by the embedding 𝑒 illustrated above. I.e., 𝑒 : [4] → [7] with
𝑒(1) = 2, 𝑒(2) = 4, 𝑒(3) = 5, and 𝑒(4) = 7. The 1-traces 𝑠 := 𝑒𝑛𝑐(𝑠) and 𝑡 := 𝑒𝑛𝑐(𝑡) are

𝑠 = # a b # a b # b c # a c
𝑡 = # a b # a b # a c # a b # b c # a b # a c

Observe that 𝑠 ≼�̃� 𝑡 by the embedding 𝑒 illustrated above. This embedding is obtained from
𝑒 by translating each position of a 𝑘-tuple in the 𝑘-trace into a block of 𝑘+1 consecutive
positions in the corresponding 1-trace.

Note that there also exist other embeddings of 𝑠 in 𝑡 that do not correspond to embeddings
of 𝑠 in 𝑡; an example is the embedding 𝑒 illustrated as follows:

𝑠 = # a b # a b # b c # a c
𝑡 = # a b # a b # a c # a b # b c # a b # a c

The following notion is a straightforward generalization of the way the embedding 𝑒 was
obtained from 𝑒 in Example 5.

Let 𝑚, 𝑛 ∈ N⩾1 and let 𝑒 : [𝑚] → [𝑛] such that 𝑒(𝑖) < 𝑒(𝑗) for all 𝑖, 𝑗 ∈ [𝑚] with 𝑖 < 𝑗 .
Recall that 𝑘 ∈ N⩾1 is the fixed dimension. We let rep𝑘 (𝑒) be the mapping from [(𝑘+1)𝑚]
to [(𝑘+1)𝑛] defined as follows. We subdivide [(𝑘+1)𝑚] into 𝑚 consecutive blocks of length
(𝑘+1) each — the 𝑖-th block starting at position (𝑖−1) (𝑘+1) + 1 and ending at position
𝑖(𝑘+1), for every 𝑖 ∈ [𝑚]. The 𝑖-th block of [(𝑘+1)𝑚] is mapped by rep𝑘 (𝑒) onto the 𝑒(𝑖)-th
block of [(𝑘+1)𝑛]. I.e., for all 𝑖 ∈ [𝑚] and all 𝑝 ∈ {1, . . . , 𝑘+1} we let

rep𝑘 (𝑒) ((𝑖−1) (𝑘+1) + 𝑝) := (𝑒(𝑖)−1) (𝑘+1) + 𝑝.

The following lemma provides the property intended by the choice of the definition of
rep𝑘 (𝑒); the proof is straightforward and therefore omitted in this paper.

Lemma 6. Let 𝑠 and 𝑡 be two 𝑘-traces over Γ and let 𝑠 := 𝑒𝑛𝑐(𝑠) and 𝑡 := 𝑒𝑛𝑐(𝑡) be the
corresponding 1-traces over Γ̃. If 𝑒 is an embedding of 𝑠 in 𝑡 (witnessing that 𝑠 ≼𝑒 𝑡), then
𝑒 := rep𝑘 (𝑒) is an embedding of 𝑠 in 𝑡 (witnessing that 𝑠 ≼�̃� 𝑡).

Next, we focus on how to translate a 𝑘-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) (over Vars and Γ) into a
1-swg-query 𝑒𝑛𝑐(𝑞) = (𝑠, �̃�, 𝑐) over Vars and Γ̃ in such a way that for all 𝑘-traces 𝑡 we
have: 𝑡 |= 𝑞 ⇐⇒ 𝑒𝑛𝑐(𝑡) |= 𝑒𝑛𝑐(𝑞).

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 519

10 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

The choices of �̃� and 𝑠 are obvious: We let

�̃� := rep𝑘 (𝑤) :=
{
∞ if 𝑤 = ∞
(𝑘+1)𝑤 otherwise.

The query string 𝑠 is obtained from 𝑠 in the analogous way as 𝑒𝑛𝑐(𝑡) is obtained from
𝑡. I.e., every 𝑘-tuple 𝑑 = (𝑎1, . . . , 𝑎𝑘) ∈ (Vars ∪ Γ)𝑘 is mapped to 𝑒𝑛𝑐(𝑑) = #𝑎1 · · · 𝑎𝑘 ,
and 𝑠 = 𝑠1 · · · 𝑠ℓ with 𝑠𝑖 ∈ (Vars ∪ Γ)𝑘 for all 𝑖 ∈ [ℓ] is mapped to 𝑠 := 𝑒𝑛𝑐(𝑠) :=
𝑒𝑛𝑐(𝑠1) · · · 𝑒𝑛𝑐(𝑠ℓ).

Note that each position 𝑖 of 𝑠 now corresponds to 𝑘+1 consecutive positions in 𝑠. The
gap-size constraints in 𝑐 are chosen in such a way that they ensure that the 𝑘 gaps between
these positions are of size exactly 0. Consequently, we let

𝑐 := rep𝑘 (𝑐) =
(
(0, 0), . . . , (0, 0)︸ ︷︷ ︸

𝑘 times (0,0)

, 𝑐1, (0, 0), . . . , (0, 0)︸ ︷︷ ︸
𝑘 times (0,0)

, 𝑐2, . . . , 𝑐ℓ−1, (0, 0), . . . , (0, 0)︸ ︷︷ ︸
𝑘 times (0,0)

)
where for each 𝑖 ∈ [ℓ−1] the component 𝑐

𝑖
= (𝑐−

𝑖
, 𝑐+

𝑖
) is obtained from the 𝑖-th component

𝑐𝑖 = (𝑐−
𝑖
, 𝑐+

𝑖
) of 𝑐 by letting

𝑐−𝑖 := (𝑘+1)𝑐−𝑖 and 𝑐+𝑖 :=
{
∞ if 𝑐+

𝑖
= ∞

(𝑘+1)𝑐+
𝑖

otherwise.

The following theorem states that the above definitions indeed have the intended functionality.

Theorem 7. For every 𝑘-swg-query 𝑞 over Vars and Γ and every 𝑘-trace 𝑡 over Γ we have:
𝑡 |= 𝑞 ⇐⇒ 𝑒𝑛𝑐(𝑡) |= 𝑒𝑛𝑐(𝑞).

Proof. We prove the direction “=⇒” (the proof of the opposite direction is analogous).
Let 𝑞 = (𝑠, 𝑤, 𝑐) be a 𝑘-swg-query over Vars and Γ and let 𝑡 be a 𝑘-trace over Γ. Let
𝑞 := 𝑒𝑛𝑐(𝑞) = (𝑠, �̃�, 𝑐) and 𝑡 := 𝑒𝑛𝑐(𝑡) be the corresponding 1-swg-query and 1-trace. Let
ℓ := |𝑠 | and 𝑛 := |𝑡 |. Assume that 𝑡 |= 𝑞. I.e., there exists a substitution ` : (Vars ∪ Γ) → Γ

and an embedding 𝑒 : [ℓ] → [𝑛] that satisfies 𝑤 and 𝑐, such that `(𝑠) ≼𝑒 𝑡. In other words:
(`, 𝑒) is a witness for 𝑡 |= 𝑞.
We let 𝑒 := rep𝑘 (𝑒). And we define ˜̀ : (Vars ∪ Γ̃) → Γ̃ with ˜̀(𝑥) := `(𝑥) for all 𝑥 ∈ Vars
and ˜̀(𝑎) := 𝑎 for all 𝑎 ∈ Γ̃ = Γ ∪ {#}. We claim that (˜̀, 𝑒) is a witness for 𝑡 |= 𝑞. To prove
this, we have to show that ˜̀(𝑠) ≼�̃� 𝑡 and that 𝑒 satisfies �̃� and 𝑐 .
Let us start with the first task. By assumption we know that `(𝑠) ≼𝑒 𝑡. From Lemma 6 we
obtain that 𝑒𝑛𝑐(`(𝑠)) ≼�̃� 𝑡. Therefore, we are done by noting that 𝑒𝑛𝑐(`(𝑠)) = ˜̀(𝑠).
Let ℓ̃ := |𝑠 |. Let us now verify that 𝑒 satisfies �̃�. In case that 𝑤 = ∞, this is obvious. Let us
focus on the case where 𝑤 ≠ ∞. By assumption we know that 𝑒 satisfies 𝑤. We have:

𝑒(ℓ̃) − 𝑒(1) + 1 = 𝑒(ℓ) (𝑘+1) − ((𝑒(1)−1) (𝑘+1) + 1) + 1
= (𝑘 + 1) ·

(
𝑒(ℓ) − 𝑒(1) + 1

)
⩽(𝑘 + 1) · 𝑤 = �̃�.

520 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 11

Finally, let us verify that 𝑒 satisfies 𝑐. Note that 𝑐 contains ℓ−1+ℓ ·𝑘 = (𝑘+1) ·ℓ−1 = ℓ̃−1 gap-
size constraints, where ℓ−1 constraints correspond to the constraints 𝑐𝑖 in 𝑐 = (𝑐1, . . . , 𝑐ℓ−1),
which got multiplied by (𝑘+1). The remaining ℓ·𝑘 constraints in 𝑐 are equal to (0, 0). Our
definition of 𝑒 ensures that the (0, 0)-constraints are satisfied.
By assumption we know that 𝑒 satisfies 𝑐. Hence, for each 𝑖 ∈ [ℓ−1] we have: 𝑐−

𝑖
⩽ 𝑔𝑖 ⩽ 𝑐+

𝑖

for the actual size of the 𝑖-th gap 𝑔𝑖 := 𝑒(𝑖+1) − 1 − 𝑒(𝑖). Note that the size of the
corresponding gap in the 1-dimensional representation is (𝑘+1)𝑔𝑖 . This implies that the
corresponding gap-size constraints in 𝑐 are satisfied.
This completes the proof of the “=⇒”-direction of Theorem 7.

Theorem 7 serves as a tool to lift results known for the 1-dimensional case to the multi-
dimensional setting. In the next section, we implement this for the results on the query
discovery problem obtained in [Kle+22].

3 Query Discovery and Implementation

The following notions were introduced in [Kle+22] for the 1-dimensional case and straight-
forwardly carry over to the multi-dimensional setting.

The model set of a 𝑘-swg-query 𝑞 over Vars and Γ is ModΓ (𝑞) := { 𝑡 ∈ (Γ𝑘)+ : 𝑡 |= 𝑞 }.
A query 𝑞′ is said to be strictly more restrictive than 𝑞 if ModΓ (𝑞′) & ModΓ (𝑞).
A 𝑘-dimensional sample (over Γ) is a finite, non-empty set S of 𝑘-traces (over Γ). The
support supp(𝑞,S) of a 𝑘-swg-query query 𝑞 in a sample S is defined as the fraction of
𝑘-traces in S that match 𝑞, i.e., supp(𝑞,S) := | {𝑡∈S : 𝑡 |=𝑞} |

|S | .
A support threshold is a rational number sp with 0 < sp ⩽ 1. A query 𝑞 is said to cover a
sample S with support sp if supp(𝑞,S) ⩾ sp.

Let us fix the query parameters (ℓ, 𝑤, 𝑐) and a support threshold sp. Let S be a sample. A
𝑘-swg-query 𝑞 with parameters (ℓ, 𝑤, 𝑐) is said to be descriptive for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)) if
𝑞 covers S with support sp, and there is no 𝑘-swg-query 𝑞′ with parameters (ℓ, 𝑤, 𝑐) that is
strictly more restrictive than 𝑞 and that still covers S with support sp. I.e., supp(𝑞,S) ⩾ sp
and there is no (ℓ, 𝑤, 𝑐)-query 𝑞′ such that supp(𝑞′,S) ⩾ sp and ModΓ (𝑞′) & ModΓ (𝑞).

The remainder of this section as well as the subsequent Section 4 are devoted to the
following query discovery problem for arbitrary dimension 𝑘 ∈ N⩾1: The input consists
of a support threshold sp, a 𝑘-dimensional sample S, and query parameters (ℓ, 𝑤, 𝑐). The
goal is to compute a 𝑘-swg-query 𝑞 with parameters (ℓ, 𝑤, 𝑐) that is descriptive for S w.r.t.
(sp, (ℓ, 𝑤, 𝑐)). An algorithm solving this discovery problem for the 1-dimensional case
(i.e., where 𝑘 = 1) was presented in [Kle+22]. In Section 3.1 we utilize Theorem 7 to lift
this algorithm to arbitrary dimension 𝑘 ⩾ 1; Section 3.2 gives a brief description of our
implementation of this algorithm.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 521

12 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

3.1 An algorithm solving the query discovery problem for arbitrary dimension 𝑘

Let 𝑘 ∈ N⩾1 be the given dimension and let (ℓ, 𝑤, 𝑐) be the given query parameters. Note
that the most general 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) is the query 𝑞mg = (𝑠mg, 𝑤, 𝑐)
whose query string 𝑠mg is of the form ((𝑥1,1, . . . , 𝑥1,𝑘) (𝑥2,1, . . . , 𝑥2,𝑘) · · · (𝑥ℓ,1, . . . , 𝑥ℓ,𝑘))
where the 𝑥𝑖, 𝑗 for 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑘] are ℓ·𝑘 pairwise distinct variables in Vars. It
is straightforward to see that ModΓ (𝑞′) ⊆ ModΓ (𝑞mg) for every 𝑘-swg-query 𝑞′ with
parameters (ℓ, 𝑤, 𝑐).

The discovery algorithm takes as input a 𝑘-dimensional sample S, a support threshold sp,
and the query parameters (ℓ, 𝑤, 𝑐).
If supp(𝑞mg,S) < sp, then there does not exist any 𝑘-swg-query 𝑞 with parameters (ℓ, 𝑤, 𝑐)
with supp(𝑞,S) ⩾ sp, let alone a query that is descriptive for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)).
Therefore, the algorithm can safely abort with an error message indicating that the desired
query does not exist.
If, on the other hand, supp(𝑞mg,S) ⩾ sp, then the algorithm searches for an admissible
replacement operation for each variable 𝑥 ∈ vars(𝑞mg). Such an operation replaces 𝑥 by a
symbol 𝑦 (which can be a type or an available variable). It is admissible if the resulting
query 𝑞′ satisfies supp(𝑞′,S) ⩾ sp. If no replacement operation is possible, we keep 𝑥, i.e.,
the current query string remains unchanged, and 𝑥 becomes available. After each variable
𝑥 ∈ vars(𝑞mg) has been considered, the algorithm terminates and produces the current
query as output.

Pseudocode implementing this is provided in Algorithm 1. We start by letting 𝑞 be the
most general 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) and we let 𝑠 be the query string of 𝑞.
If 𝑞 does not cover S with support sp, we abort and return the message ⊥, indicating that
there does not exist any 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) that is descriptive for S
w.r.t. (sp, (ℓ, 𝑤, 𝑐)). Otherwise, we proceed by letting Δ be the set of types that satisfy the
support threshold (these will be the types available for replacement operations), and we
initialise the set 𝑈 of unvisited variables to be the set of all variables occurring in 𝑞. The set
𝑉 of available variables is initialized to be the empty set. During the main loop in line 5,
each variable 𝑥 ∈ 𝑈 is considered exactly once, and for each such variable, the algorithm
tests whether there exists a type or variable 𝑦 from Ω := (Δ ∪ 𝑉) such that replacing all
occurrences of variable 𝑥 by 𝑦 is an admissible replacement operation.7 If such an 𝑦 ∈ Ω

exists, we perform the actual replacement in line 12. Otherwise, no replacement operation is
possible, hence we do not change the current query string but add 𝑥 to the set 𝑉 of available
variables (line 16).
For dimension 𝑘 = 1, this algorithm was presented in [Kle+22].

Note that the lines 6 and 9 of Algorithm 1 allow to make an arbitrary choice. Different
choices lead to different “runs” of the algorithm, and different runs might produce different
output queries.

7 We write 𝑠⟨𝑥 ↦→ 𝑦⟩ to denote the query string obtained from 𝑠 by replacing every occurrence of the variable 𝑥

by the symbol 𝑦.

522 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 13

ALGORITHM 1: ComputeDescriptiveQuery(S,sp, (ℓ, 𝑤, 𝑐))
Input :𝑘-dim. sample S; support threshold sp with 0 < sp ⩽ 1; query parameters (ℓ, 𝑤, 𝑐)
Returns :descriptive 𝑘-swg-query 𝑞 for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)) or error message ⊥

1 𝑠 := 𝑠mg; 𝑞 := (𝑠, 𝑤, 𝑐) // query string and query; start with the most general query
2 if supp(𝑞,S) < sp then stop and return ⊥
3 Δ := {𝛾 ∈ Γ : | {𝑡∈S : 𝛾∈types(𝑡) } |

|S | ⩾ sp} // types to be considered

4 𝑈 := vars(𝑞); 𝑉 := ∅ // unvisited variables and available variables
5 while 𝑈 ≠ ∅ do
6 select an arbitrary 𝑥 ∈ 𝑈 and let 𝑈 := 𝑈 \ {𝑥}
7 Ω := (Δ ∪𝑉); replace := False // available symbols
8 while Ω ≠ ∅ do
9 select an arbitrary 𝑦 ∈ Ω and let Ω := Ω \ {𝑦}

10 𝑞′ := (𝑠⟨𝑥 ↦→ 𝑦⟩, 𝑤, 𝑐)
11 if supp(𝑞′,S) ⩾ sp then
12 𝑠 := 𝑠⟨𝑥 ↦→ 𝑦⟩ // ReplaceOp
13 replace := True
14 break inner loop
15 if replace is False then
16 𝑉 := 𝑉 ∪ {𝑥} // NoChangeOp

17 stop and return 𝑞 := (𝑠, 𝑤, 𝑐)

Theorem 8. Let 𝑘 ∈ N⩾1, let S be a 𝑘-dimensional sample, let sp be a support threshold
with 0 < sp ⩽ 1, and let (ℓ, 𝑤, 𝑐) be query parameters.

(a) If there does not exist any 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) that is descriptive forS
w.r.t. (sp, (ℓ, 𝑤, 𝑐)), then there is only one run of Algorithm 1 upon input S, sp, (ℓ, 𝑤, 𝑐),
and this run stops in line 2 with output ⊥.

(b) Otherwise, every run of Algorithm 1 upon input S, sp, (ℓ, 𝑤, 𝑐) terminates and outputs
a query that is descriptive for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)).

Proof sketch. For the special case where 𝑘 = 1, the theorem was proved in [Kle+22].
Moreover, [Kle+22] provided the following slightly stronger result — again, for the 1-
dimensional case: The algorithm obtained from Algorithm 1 by omitting line 1 and, instead,
starting with an arbitrary input query 𝑞, outputs either a query 𝑞′ that is descriptive for S
w.r.t. (sp, (ℓ, 𝑤, 𝑐)) and satisfies ModΓ (𝑞′) ⊆ ModΓ (𝑞) or, in case that no such 𝑞′ exists, the
message ⊥. We use this for the particular 1-dimensional input query 𝑞 := 𝑒𝑛𝑐(𝑞mg), where
𝑞mg is the most general 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) for an arbitrary dimension
𝑘 ⩾ 2. Utilizing the one-dimensional representation of 𝑘-dimensional traces and queries
presented in Section 2.3 and, in particular, Theorem 7, this yields the theorem’s statement
for arbitrary dimension 𝑘 ⩾ 2.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 523

14 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

The above theorem guarantees that the output produced by Algorithm 1 is correct in the
sense that it is either a query that is descriptive for its input or the message ⊥ indicating
that no such query exists. Different runs of the algorithm may produce different queries
(each with the guarantee that the delivered query is descriptive for its input). Let us mention,
however, that (as shown in [Kle+22]) there exist inputs for which there exist some queries
that cannot be delivered by any run of Algorithm 1 but that are descriptive for the input.

We close this subsection with two example runs of Algorithm 1.

Example 9. For simplicity, the example deals with dimension 𝑘 = 1. Let Γ = {a, b, c},
S = {a b b, a c c}, sp = 1, ℓ = 𝑤 = 3, and 𝑐 = ((0, 0), (0, 0)). Upon this input, each run of
Algorithm 1 lets 𝑠 := 𝑠mg = 𝑥1𝑥2𝑥3, where 𝑥1, 𝑥2, 𝑥3 are three pairwise distinct variables
in Vars. Since supp(𝑞,S) = 1, the algorithm proceeds by computing Δ = {a} and letting
𝑈 = {𝑥1, 𝑥2, 𝑥3} and 𝑉 = ∅.
Let us assume that in the first transition through the outer loop the algorithm selects 𝑥 := 𝑥3.
Due to Ω = {a}, the only possible replacement is 𝑠⟨𝑥3 ↦→ 𝑎⟩ — but it turns out that this
replacement is not admissible as its support on S is < 1. Hence, 𝑥3 remains unchanged in
the query string and is inserted in the set 𝑉 of available variables, i.e., 𝑉 = {𝑥3}.
Let us assume that in the second transition through the outer loop the algorithm selects
𝑥 := 𝑥1, and in the inner loop it selects 𝑦 := a. It turns out that the replacement of 𝑥1 by a is
admissible (as it has support 1 on S). Hence, 𝑠 is replaced by the new query string a 𝑥2𝑥3
and 𝑉 remains unchanged.
In its last iteration through the outer loop, it turns out that 𝑠⟨𝑥2 ↦→ 𝑥3⟩ is the only admissible
replacement operation. The algorithm’s run terminates after this iteration and outputs the
query 𝑞 = (𝑠, 𝑤, 𝑐) with 𝑠 = a 𝑥3𝑥3.
We illustrate this entire run as follows:

𝑥1 𝑥2 𝑥3
Δ={a}, 𝑉=∅
⇝ 𝑥1 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥3 }
⇝ a 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥3 }
⇝ a 𝑥3 𝑥3

Another run (that outputs a very similar query) is:

𝑥1 𝑥2 𝑥3
Δ={a}, 𝑉=∅
⇝ 𝑥1 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥2 }
⇝ a 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥2 }
⇝ a 𝑥2 𝑥2

3.2 Implementation

In this section, we describe a prototypical implementation of our approach as a stand-alone
Python tool, which is publicly available.8 We explain how we express multi-dimensional
samples and queries. We also briefly discuss how to decide whether supp(𝑞,S) ⩾ sp for
given S, sp and 𝑞 in Algorithm 1. Our implementation is designed for 1-dimensional as
well as multi-dimensional queries and samples; in the context of this paper we focus on the
multi-dimensional setting.

8 https://gitlab.com/kleemeis95/sfb-1404-fonda-querydiscovery-prototype

524 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

https://gitlab.com/kleemeis95/sfb-1404-fonda-querydiscovery-prototype

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 15

Samples. We model traces as Python strings and use dedicated characters to separate data
items as well as data item attributes. Moreover, a (multi-dimensional) sample S is described
by an instance of a specific class (MultidimSample). It combines a list of traces (the actual
sample) with meta information, e.g., the sample size (i.e., the number of traces), the data
item dimension, and the set of all types occurring in S (optionally partitioned by the data
item attributes and filtered by a given support threshold).

Queries. A query 𝑞 = (𝑠, 𝑤, 𝑐) is implemented as an instance of a respective class
(MultidimQuery). It encapsulates the query string (a Python string, using different separator
symbols), the global window size (an integer), the local gap-size constraints (a list of tuples),
and meta information, e.g. the set of types which occur within 𝑠, and the set of variables
that occur more than once in 𝑠.

Matching. The matching routine is implemented as part of the class MultidimQuery. Here,
a function match_sample takes as input a MultidimSample-instance S and a support
threshold sp, and outputs true, if supp(𝑞,S) ⩾ sp, whereby 𝑞 denotes the query which
is represented by the current class instance. During a run of match_sample, we start by
transforming the query string into a regular expression according to the Python re module,
which takes into account the gap-size constraints 𝑐. We then test whether 𝑡 |= 𝑞, for each
𝑡 ∈ S, by using the function search provided by Python for regular expressions.

Discovery Algorithm. Algorithm 1 is implemented according to the pseudocode presented
in Section 3.1. However, we allow the user to influence the arbitrary choices in lines 6 and 9
of the algorithm: one may choose the next, not yet visited variable in the query string either
(i) arbitrarily (as described in Section 3.1) or (ii) by scanning the query string from left to
right, or vice versa. Furthermore, types (available variables) may be preferred over available
variables (types), instead of making an arbitrary choice.

4 Experimental Evaluation

Using the prototype introduced above, we applied our approach to real-world data in the
domain of cluster monitoring, a scenario that we already used as a running example. Our
goal has been to assess the general feasibility of our approach to the discovery of descriptive
queries for multi-dimensional sequence data. We summarize our results as follows:

• We have been able to discover queries from the real-world data, thereby providing
evidence that query discovery is indeed feasible. We note though, that the number
of discovered queries that cannot immediately be linked to situations of interest is
very large, since the given traces consist of many regularities that materialize in the
discovered queries.

• Comparing the runtime of our approach for different data samples, it turned out that,
in addition to the dataset size, the traversal of the query string and the need to assess
variable operations have a major impact.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 525

16 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

Below, we first describe our experimental setup in Section 4.1, before we discuss the
obtained results in Section 4.2.

4.1 Experimental Setup

Datasets. Our experiments used the Google Cluster Traces [RWH11], a dataset that
contains cell information over multiple days. Cells are sets of machines that share a cluster-
management system. The machines handle incoming jobs, which consist of at least one task.
The dataset contains six types of tables, capturing information about machines, jobs, tasks,
constraints, and resources. For a detailed description of the dataset, we refer the reader
to [RWH11].

For our experiments, we considered the information on task executions. Specifically, each
data item includes the following attributes:

(1) job: The job to which the task belongs. Each job is assigned a unique 64-bit identifier.
(2) task: The task index within a job, given as an integer value.
(3) machine: The machine on which the task shall run. Each machine is assigned a unique

64-bit identifier.
(4) status: The task’s status in terms of its lifecycle. It is encoded an integer 𝑖 ∈ {0, . . . , 8}

that corresponds to one of the following states: SUBMIT (0), SCHEDULE (1), EVICT (2), FAIL
(3), FINISH (4), KILL (5), LOST (6), UPDATE_PENDING (7), or UPDATE_RUNNING (8).

(5) priority: The execution priority of the task, modelled as an integer. The larger the
number, the higher the priority.

To achieve a controlled setup for query discovery, we employed a setup that is based on
three pre-defined queries 𝑞𝑖 for 𝑖 ∈ [3]. The idea being that based on the matches of such a
query 𝑞𝑖 , we derive a sample of traces S𝑖 , so that our discovery algorithm can be expected
to discover query 𝑞′

𝑖
, with Mod (𝑞′

𝑖
) ⊆ Mod (𝑞𝑖), when using a support value of sp = 1.0.

We realised this approach with the following three queries:
q1: PATTERN SEQ(Task a, Task b, Task c)

WHERE a.status = c.status = 1 AND b.status = 5

AND a.job = b.job = c.job AND a.machine = b.machine = c.machine

WITHIN 1000 data items

q2: PATTERN SEQ(Task a, Task b, Task c, Task d)

WHERE a.status = b.status = c.status = d.status = 4

AND a.machine = b.machine = c.machine = d.machine

WITHIN 100 data items

q3: PATTERN SEQ(Task a, Task b, Task c)

WHERE a.machine = b.machine AND a.job=c.job

AND a.status = b.status = 1 AND c.status=2

WITHIN 100 data items

Based on the matches of these queries, we constructed the samples S𝑖 , 𝑖 ∈ [3], as follows:
For samples S1 and S2, the end of a trace was determined by the last item of a match. The

526 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 17

start of a trace was defined as the item following the last item of the previous match (or the
first item of the whole dataset, respectively), so that traces are non-overlapping, i.e., any
data item appears in at most one of the traces of a sample. Moreover, the traces for samples
S1 and S2 were partitioned by the machine attribute, as the respective queries refer solely to
items within such a partition. Finally, all traces with at most 100 items were included in
the sample, which selected more than 98% (S1) or 91% (S2) of the constructed traces. For
sample S3, again, the end of a trace was determined by the last item of a match. The start of
a trace, however, was defined to be the first item of a match. The constructed samples had
the following characteristics:

Sample Size Min. trace length Max. trace length

S1 558 3 96
S2 679 22 99
S3 84 4 197

Experimental Procedure and Measures. For each sample, Algorithm 1 was executed
using the most general query, setting its parameters (ℓ, 𝑤, 𝑐) as follows. For the length of
the query string, we set ℓ = 3 for S1 and S3, and ℓ = 4 for S2. The global window size was
set to 𝑤 = 100 for S1 and S2, and to 𝑤 = 200 for S3, as derived from the sample generation
procedure. We defined the local gap-size constraints to be least restrictive by setting them
to 𝑐 = ((0, 100), (0, 100)) for ℓ = 3, and to 𝑐 = ((0, 200), (0, 200), (0, 200)) for ℓ = 4,
respectively. We considered several support thresholds (namely, 0.6, 0.8, and 1.0).

Concerning the choices in Algorithm 1 on the next unvisited variable and replacement
preference, we consider all options outlined in Section 3.2: the next variable is derived
left-to-right (l2r), right-to-left (r2l), or arbitrarily (a). This choice is combined with no
preference (a), or preference given to types (t) or variables (v).

In addition to illustrating some of the discovered queries, we measure the runtime of our
approach for different instantiations. We further break down the runtime by profiling the
our implementation with Python’s cProfile to shed light on the contribution of the various
algorithmic steps.

Experimental Environment. All experiments have been executed on a 64 Bit Manjaro
system with an AMD Ryzen 5 Pro 5650U processor running at 4.1 GHz and 16GB RAM.

4.2 Evaluation

Discovered queries. Applying our approach for each sample S𝑖 , 𝑖 ∈ [3], we successfully
discovered multi-dimensional swg-queries. Moreover, the discovered queries turned out to

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 527

18 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

be more specific than the queries used to create the samples (see Section 4.1). For instance,
we discovered the following query strings for sp = 1.0 for the three samples:

S1 : 𝑠1 = (𝑥 𝑗 , 𝑥𝑡 , 𝑥𝑚, 1, 𝑥𝑝) (𝑥 𝑗 , 𝑥𝑡 , 𝑥𝑚, 5, 𝑥𝑝) (𝑥 𝑗 , 𝑦1, 𝑥𝑚, 1, 𝑦2)
S2 : 𝑠2 = (𝑦1, 𝑦2, 𝑥𝑚, 4, 𝑥𝑝) (𝑦3, 𝑦4, 𝑥𝑚, 4, 𝑥𝑝) (𝑦5, 𝑦6, 𝑥𝑚, 4, 𝑥𝑝) (𝑦7, 𝑦8, 𝑥𝑚, 4, 𝑥𝑝)
S3 : 𝑠3 = (𝑥 𝑗 , 𝑦1, 𝑥𝑚, 1, 𝑥𝑝) (𝑦2, 𝑦3, 𝑥𝑚, 1, 𝑦4) (𝑥 𝑗 , 𝑦5, 𝑦6, 2, 𝑥𝑝)

whereby 𝑥 𝑗 , 𝑥𝑡 , 𝑥𝑚, 𝑥𝑝 , 𝑦1, . . . , 𝑦8 are pairwise distinct variables in Vars. We note that
these query strings can be used to derive queries in common languages for complex event
recognition. Taking 𝑠1 as an example, we derive the following query 𝑞′1:
q1': PATTERN SEQ(Task a, Task b, Task c)

WHERE a.status = c.status = 1 AND b.status = 5

AND a.job = b.job = c.job AND a.machine = b.machine = c.machine

AND a.task = b.task AND a.priority = b.priority

WITHIN 1000 data items

Comparing query 𝑞′1 with query 𝑞1 from Section 4.1, we observe that the last line of the
WHERE-clause renders the discovered query more specific. Similar observations are done
for the descriptive queries discovered for the other samples. For instance, the above query
strings 𝑠2 and 𝑠3 enforce conditions on the priority attribute that have not been part of the
queries used to generate the samples.

Our results indicate that it is feasible to discover multi-dimensional swg-queries from
real-world data. However, we also note that we discovered descriptive queries that would
not match the last item of a trace, i.e., the supposed situation of interest. This highlights that
the discovered queries will still have to be assessed by domain experts.

Runtime. Figure 3-5 provide the results for our runtime measurements in seconds, when
varying the support threshold and the configuration of Algorithm 1 for selecting the next
unvisited variable and the replacement preference. Overall, a higher support threshold
yields smaller runtimes. This is due to a smaller number of supported types that have to
be tested as well as the fact that the match test stops as soon as the support threshold
cannot be satisfied any more. Moreover, the fastest runs have in common that the algorithm
goes through the query string from left to right (l2r), while there is no clear trend for the
replacement preference. However, this result highlights the potential for improvements
based on heuristics to guide the exploration of the search space.

Performance profiling. We illustrate the results of the performance profile for S3 in
Figure 6, using a SnakeViz’ icicle plot [sna]. Here, each rectangle represents a function,
while the layering of rectangles captures the call hierarchy between functions (the top
function is called first). Moreover, each function is annotated with its overall runtime, which
is visualized by the width of the rectangle.
We observe that the runtime of the main function of our experiments is dominated by

the function compute_descr_swgquery, which implements Algorithm 1. It has to decide
whether supp(𝑞,S) ⩾ sp multiple times, i.e., for each unvisited variable 𝑥 the algorithm

528 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 19

Fig. 3: Runtime measurements for sample S1.

Fig. 4: Runtime measurements for sample S2.

Fig. 5: Runtime measurements for sample S3.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 529

20 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

Fig. 6: Icicle visualisation of sample S3’s profile.

tests, whether there exists a type or variable so that the replacement yields a query satisfying
the support threshold. This check is realised by function _check_next_type_or_variable.
After building the regular expression corresponding to the current query, the matching
problem is solved. Figure 6 illustrates that this function search of re.Pattern dominates
the overall runtime. We conclude that performance improvements for query discovery may
be achieved through optimizations of the function to decide whether a trace matches a
query. In future work, we strive for algorithmic optimizations that exploit the fact that many
subsequent match tests are conducted over the same set of traces with only slightly changed
queries.

5 Concluding Remarks

Motivated by sequence data over a multi-dimensional schema, we defined an encoding to lift
swg-queries and corresponding concepts as described in [Kle+22] to a multi-dimensional
setting (Section 2). Furthermore we described our prototypical implementation of query
discovery for multi-dimensional data (Section 3) and discussed experiments and their results
on a real-world dataset (Section 4).
Our experiments’ main result can be summarised as general feasibility of discovering
swg-queries from multi-dimensional data: for each data set and configuration of Algorithm 1
we discovered a bunch of descriptive queries. This query set includes queries which are
more specific than the queries we used for the data set generation.
Furthermore, our experiments suggest that structural characteristics of the sequence data
plays an important role regarding the runtime of our discovery algorithm at various levels.
Firstly, we observed notable differences in runtime regarding the way we select the next
unvisited variable and its possible replacement. Hence we are interested in finding heuristics
to predict which combination is most promising. Besides, we might be able to exploit the
facts that 𝑞′ does not change while testing supp(𝑞′,S) ⩾ sp once and that S does not
change during the entire run of the discovery algorithm.

530 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 21

References

[Ang80] Dana Angluin. “Inductive Inference of Formal Languages from Positive
Data”. In: Inf. Control. 45.2 (1980), pp. 117–135. doi: 10.1016/S0019-
9958(80)90285-5.

[Art+14] Alexander Artikis et al. “Heterogeneous Stream Processing and Crowdsourcing
for Urban Traffic Management”. In: Proceedings of the 17th International
Conference on Extending Database Technology, EDBT 2014, Athens, Greece,
March 24-28, 2014. OpenProceedings.org, 2014, pp. 712–723. doi: 10.5441/
002/edbt.2014.77.

[Bab+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. “Models and Issues in Data Stream Systems”. In: Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA. ACM, 2002, pp. 1–16.
doi: 10.1145/543613.543615.

[CM12] Gianpaolo Cugola and Alessandro Margara. “Processing flows of information:
From data stream to complex event processing”. In: ACM Comput. Surv. 44.3
(2012), 15:1–15:62. doi: 10.1145/2187671.2187677.

[Day+21] Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and
Stefan Siemer. “The Edit Distance to k-Subsequence Universality”. In: 38th
International Symposium on Theoretical Aspects of Computer Science, STACS
2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference). 2021,
25:1–25:19. doi: 10.4230/LIPIcs.STACS.2021.25.

[Day+22] Joel D. Day, Maria Kosche, Florin Manea, and Markus L. Schmid. “Subse-
quences With Gap Constraints: Complexity Bounds for Matching and Analysis
Problems”. In: vol. abs/2206.13896. 2022. doi: 10.48550/arXiv.2206.13896.
arXiv: 2206.13896.

[Fer+18] Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid.
“Revisiting Shinohara’s algorithm for computing descriptive patterns”. In:
Theor. Comput. Sci. 733 (2018), pp. 44–54. doi: 10.1016/j.tcs.2018.04.035.

[FR10] Dominik D. Freydenberger and Daniel Reidenbach. “Existence and nonex-
istence of descriptive patterns”. In: Theor. Comput. Sci. 411.34-36 (2010),
pp. 3274–3286. doi: 10.1016/j.tcs.2010.05.033.

[FR13] Dominik D. Freydenberger and Daniel Reidenbach. “Inferring descriptive
generalisations of formal languages”. In: J. Comput. Syst. Sci. 79.5 (2013),
pp. 622–639. doi: 10.1016/j.jcss.2012.10.001.

[Gaw+21] Pawel Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan
Siemer. “Efficiently Testing Simon’s Congruence”. In: 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021, March
16-19, 2021, Saarbrücken, Germany (Virtual Conference). 2021, 34:1–34:18.
doi: 10.4230/LIPIcs.STACS.2021.34.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 531

https://doi.org/10.1016/S0019-9958protect elax $80protect elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup endgroup 90285-5
https://doi.org/10.1016/S0019-9958protect elax $80protect elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup endgroup 90285-5
https://doi.org/10.5441/002/edbt.2014.77
https://doi.org/10.5441/002/edbt.2014.77
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://doi.org/10.48550/arXiv.2206.13896
https://arxiv.org/abs/2206.13896
https://doi.org/10.1016/j.tcs.2018.04.035
https://doi.org/10.1016/j.tcs.2010.05.033
https://doi.org/10.1016/j.jcss.2012.10.001
https://doi.org/10.4230/LIPIcs.STACS.2021.34

22 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

[GCW16] Lars George, Bruno Cadonna, and Matthias Weidlich. “IL-Miner: Instance-
Level Discovery of Complex Event Patterns”. In: Proc. VLDB Endow. 10.1
(2016), pp. 25–36. doi: 10.14778/3015270.3015273.

[Gia+20] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis,
and Minos N. Garofalakis. “Complex event recognition in the Big Data era: a
survey”. In: VLDB J. 29.1 (2020), pp. 313–352. doi: 10.1007/s00778-019-
00557-w.

[Kle+22] Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
and Matthias Weidlich. “Discovering Event Queries from Traces: Laying Foun-
dations for Subsequence-Queries with Wildcards and Gap-Size Constraints”.
In: 25th International Conference on Database Theory, ICDT 2022. Vol. 220.
LIPIcs. 2022, 18:1–18:21. doi: 10.4230/LIPIcs.ICDT.2022.18.

[Kos+22a] Maria Kosche, Tore Koß, Florin Manea, and Viktoriya Pak. “Subsequences in
Bounded Ranges: Matching and Analysis Problems”. In: CoRR abs/2207.09201
(2022). doi: 10.48550/arXiv.2207.09201. arXiv: 2207.09201.

[Kos+22b] Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. “Combinatorial
Algorithms for Subsequence Matching: A Survey”. In: CoRR abs/2208.14722
(2022). doi: 10.48550/arXiv.2208.14722. arXiv: 2208.14722.

[MCT14] Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli. “Learning
from the past: automated rule generation for complex event processing”. In:
The 8th ACM International Conference on Distributed Event-Based Systems,
DEBS ’14, Mumbai, India, May 26-29, 2014. ACM, 2014, pp. 47–58. doi:
10.1145/2611286.2611289.

[MS19] Florin Manea and Markus L. Schmid. “Matching Patterns with Variables”.
In: Combinatorics on Words - 12th International Conference, WORDS 2019,
Loughborough, UK, September 9-13, 2019, Proceedings. 2019, pp. 1–27. doi:
10.1007/978-3-030-28796-2_1.

[RS97] Grzegorz Rozenberg and Arto Salomaa. “Patterns”. In: Handbook of Formal
Languages. Vol. 1. Springer, 1997, pp. 230–242.

[RWH11] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. “Google cluster-usage
traces: format+ schema”. In: Google Inc., White Paper (2011), pp. 1–14.

[SA95] Takeshi Shinohara and Setsuo Arikawa. “Pattern Inference”. In: Algorithmic
Learning for Knowledge-Based Systems, GOSLER Final Report. 1995, pp. 259–
291. doi: 10.1007/3-540-60217-8_13.

[Sch22] Markus L. Schmid. “Extending Shinohara’s Algorithm for Computing De-
scriptive (Angluin-Style) Patterns to Subsequence Patterns”. In: CoRR
abs/2206.13918 (2022). doi: 10.48550/arXiv.2206.13918. arXiv: 2206.
13918.

532 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

https://doi.org/10.14778/3015270.3015273
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.48550/arXiv.2207.09201
https://arxiv.org/abs/2207.09201
https://doi.org/10.48550/arXiv.2208.14722
https://arxiv.org/abs/2208.14722
https://doi.org/10.1145/2611286.2611289
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1007/3-540-60217-8_13
https://doi.org/10.48550/arXiv.2206.13918
https://arxiv.org/abs/2206.13918
https://arxiv.org/abs/2206.13918

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 23

[Shi82] Takeshi Shinohara. “Polynomial Time Inference of Pattern Languages and Its
Application”. In: Proceedings of the 7th IBM Symposium on Mathematical
Foundations of Computer Science, MFCS. 1982, pp. 191–209.

[sna] snakeviz. SnakeViz documentation. url: https://jiffyclub.github.io/
snakeviz/.

[TRP12] Kia Teymourian, Malte Rohde, and Adrian Paschke. “Knowledge-based
processing of complex stock market events”. In: 15th International Conference
on Extending Database Technology, EDBT ’12, Berlin, Germany, March
27-30, 2012, Proceedings. ACM, 2012, pp. 594–597. doi: 10.1145/2247596.
2247674.

[Ver+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. “Large-scale cluster management at Google
with Borg”. In: Proceedings of the Tenth European Conference on Computer
Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015. ACM, 2015,
18:1–18:17. doi: 10.1145/2741948.2741964.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 533

https://jiffyclub.github.io/snakeviz/
https://jiffyclub.github.io/snakeviz/
https://doi.org/10.1145/2247596.2247674
https://doi.org/10.1145/2247596.2247674
https://doi.org/10.1145/2741948.2741964

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

Learn What Really Matters: A Learning-to-Rank Approach
for ML-based Query Optimization

Henriette Behr1, Volker Markl2, Zoi Kaoudi3

Abstract: Query optimization is crucial for any data management system to achieve good performance.
Recent advancements in Machine Learning (ML) have led to several efforts in the database research
community that aim at improving query optimization with the help of ML. In particular, many works
propose replacing the cost model used during plan enumeration with an ML model. The goal of
these works is to learn a regression model from previously executed query plans that estimates the
runtime of a given plan. Interestingly, it is well-known that what really matters in query optimization
is the relative order of the query plan alternatives and not their actual cost or runtime. We thus take a
learning-to-rank approach and propose a novel neural network model architecture that can predict the
rank of a plan. It considers a plan in comparison with alternative plans of the same query and together
with a loss function that incorporates ranking metrics into the learning process we highlight the
learning-to-rank objective.To enable training, we first extract features from query plans by adapting a
state-of-the-art deep learning approach so that all features are independent of the input dataset schema.
Second, we devise two score functions that map the runtime of plans to scores which are then used as
labels during training. We integrate the trained model into an adapted bottom-up plan enumeration
algorithm that finds the best possible execution plan for a given query. We evaluate our approach
against two state-of-the-art ML models and the highly tuned cost model of a commercial database and
measure the runtime of the plans chosen in each case when executed in the database. We show that our
approach achieves up to an order of magnitude better query performance than the comparison models
and is able to either match (for short and medium-running queries) or outperform the commercial
database (up to 5× for long-running queries).

Keywords: query optimization; learning-to-rank; cost model

1 Introduction

Recent advancements in machine/deep learning (ML)§ have shed light to many open data
management problems, ranging from indexing and query optimization to database tuning. As
query optimization is at the core of any database system, there are several efforts towards using
ML in various (or all) steps of the process, e.g., for cardinality estimation [Ya19, Ne21, Ki19],
join ordering [Yu20, MP18], and cost modeling [Ma19, Ma21, MP19]. In particular for
cost modeling, the main idea is to completely replace the cost model and statistics used in a
query optimizer with an ML model. Following the term cost-based query optimization, we
1 TU Berlin, Germany, henriette.behr.1@gmail.com. Work done while conducting master thesis in TU Berlin.
2 TU Berlin, Germany, volker.markl@tu-berlin.de
3 IT University of Copenhagen, Copenhagen, Denmark, zoka@itu.dk. Work done while at TU Berlin.

§We use the term ML to also refer to deep learning.

cba doi:10.18420/BTW2023-25

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 535

mailto:henriette.behr.1@gmail.com
mailto:volker.markl@tu-berlin.de
mailto:zoka@itu.dk
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-25

12 Henriette Behr, Volker Markl, Zoi Kaoudi

call such an optimization learning-based or ML-based query optimization. The benefit of
ML-based query optimization compared to cost-based is twofold. First, the optimizer can
learn more complex models that are not necessarily linear functions and can thus better
depict the database’s performance. Second, it mitigates the tedious and time-consuming
task of manually tuning the cost model.

Recent works that follow the learning-based paradigm, such as [Ma19, Ma21, Ka20], build
a regression model based on previously executed query plans (training data). Such models
provide an estimation of a plan’s runtime which is then used for plan enumeration and
pruning. Even though current approaches focus on estimating the real cost of query plans,
in the end what really matters for the query optimizer is their relative order: Is plan A
faster than plan B? By considering just the order of the plans the optimizer can still prune
inefficient ones, keep more promising ones, and select one that performs well. Based on
this observation, we argue that it suffices to learn the order (rank) of query plans instead of
estimating their runtimes. We, thus, devise an ML-based learning-to-rank (LTR) approach
that ranks execution plans without estimating their execution time. Our approach scores
execution plans of a given query and ranks them based on their scores. Although researchers
have extensively used LTR models for information retrieval or recommendation [Li11], to
our knowledge, an LTR approach has not been used for query optimization yet.

To reach this goal, we have to overcome some challenges. First, there is a wide spectrum
of LTR approaches (pointwise, pairwise or listwise), loss functions, and neural network
architectures that one has to choose from. We, thus, need to make design decisions in all
these directions so that our solution performs at least as good as a highly-tuned cost-based
optimizer, if not better. Second, although one could use the estimated runtimes to get a
ranking over the plans, these are not only hard to estimate but also do not always preserve
the ordering of the plans. To train an ML model that can rank execution plans, we need to
devise a score function that uniformly ranks the different execution plans. Third, we need to
study whether and how existing enumeration algorithms can be used with LTR models.

We tackle these challenges and make the following main contributions:
(1) We devise a listwise LTR approach that is more suitable for ML-based query optimization.
We consider several loss functions and a neural network architecture tailored to the query
optimization problem (Section 3.1).
(2) We propose two score functions, one local, which assigns scores to plans per query,
and one global, which assigns scores across the plans of all training queries (Section 3.2).
(3) We describe our featurization scheme and adapt a well-known bottom up plan enumera-
tion algorithm to work with our listwise LTR model (Sections 3.3 and 3.4).
(4) We extensively evaluate our LTR approach against other ML models as well as SQL
server which includes a well-tuned cost model. Our results show that our LTR approach
matches the performance of a commercial database’s optimizer for short-running queries
and even outperforms it (up to 5×) for long-running queries. Our approach consistently

536 Henriette Behr, Volker Markl, Zoi Kaoudi

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 13

outperforms state-of-the-art ML-based baselines: it chooses plans with up to an order of
magnitude better runtime performance.

We conclude the paper with related work and a discussion on future directions.

2 Preliminaries

Learning-to-rank (LTR) algorithms are a special type of supervised machine learning – the
task of ranking is neither a classification nor a regression task. Instead, the goal of LTR
algorithms is to predict a score for a set of items with the goal of sorting them by their
predicted score such that a ranking can be given as a result [Li11]. An LTR algorithm
considers an item with a high score to be more relevant to a given query than an item
with a low score. Consequently, the goal of LTR tasks is different from classification or
regression tasks and the algorithm itself does not regard the predicted score but the correct
order of the input items for calculating the loss and improving the model. Similarly, the
metrics for measuring predictive performance also differ from the “standard” metrics used
for classification or regression tasks.

Generally, there are three main approaches for LTR algorithms: pointwise, pairwise, and
listwise [Li11]. Pointwise algorithms handle each item separately as input and calculate its
relevance score, which in turn is used to sort all items and get the final ranking. However,
these algorithms do not consider the inter-dependency between items as the loss is calculated
separately for each item. Unlike pointwise approaches, in a pairwise approach two items
serve as input for one prediction which is given by three distinct values {−1,0,1}. The model
outputs −1 when it predicts that the first input sample has a lower rank than the second input
sample; otherwise, it outputs 1. The result is 0 if the two inputs are the same or if the model
considers them to have the same relevance. In the listwise algorithms, the entire list of items
belonging to the same query is used as input and the output is a corresponding sorted list.
Both pairwise and listwise algorithms belonging can often be further categorized based
on their underlying ML algorithms, such as Support Vector Machines (SVM) or Neural
Networks (NN). As we will detail in the next section, we chose a listwise approach, and in
particular the LambdaLoss [Wa18], which uses the idea that the scores define a distribution:

L(y, s) = −
∑
yi>yj

log2

∑
π

(
1

1 + e−σ(sj−si)
)δi j |Gi−G j |H(π |s) (1)

where si is the true score for item i, and yi describes the weight, i.e., the relevance grade the
model predicts, H(π |s) is a “hard assignment distribution” [Wa18] with H(π̂ |s) = 1 and
H(π |s) = 0 for all permutations of the items with π , π̂. Thereby, π̂ is the permutation in
which all documents are sorted correctly. δi j a tunable parameter and G is the gain function
2y − 1. Furthermore, the researchers extended this loss function to a top-k approach, similar
to ListNet, with k being a tunable parameter. The authors define this extended loss such that

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 537

14 Henriette Behr, Volker Markl, Zoi Kaoudi

SQL query

Parser

A

Query optimizer

 logical  
plan

Plan enumeration

Search space

Physical
operators

LTR Model

 execution
plan

Query results
Previously executed plans + runtimes

LTR NN
Training

Section 3.1

Featurization
Section 3.3

Scoring
Section 3.2

Section 3.4

LTR model

Execution engine

 data points

 data points + labels

Abb. 1: Overview of proposed approach and contributions (in blue).

only those elements with i ≤ k or j ≤ k regarded, i.e., if one of the elements belongs to the
true top-k elements.

3 Learning-to-rank for Query Optimization

Our goal is to alleviate database administrators from the burden of tuning the cost model
of a database and potentially improve query performance by replacing the cost model
and statistics of a query optimizer with an LTR model. Figure 1 shows an overview of
our proposed ML-based query optimization process that uses an LTR model. The LTR
model is crucial for evaluating and ranking the execution plans enumerated during the plan
enumeration phase. To train the LTR model we first need to determine the LTR approach we
will use (point-wise, pairwise, or list-wise) and a neural network architecture (Section 3.1).
Then, to train the model, we need to determine our training data (data points and labels).
Given a dataset composed of previously executed plans and their runtimes, we first need to
determine how to featurize (i.e., extract a numeric vector) the execution plans to construct
the data points (Section 3.3) and how to extract relevance scores based on the provided
runtimes to construct the labels for our training data (Section 3.2). Once the LTR model is
built, the plan enumeration uses it to prune the search space and determine the (near-)optimal
execution plan. In Section 3.4, we elaborate on how we adapted an existing bottom-up plan
enumeration to be able to use the LTR model.

3.1 LTR model architecture

First, we need to decide on the LTR approach we will use. As discussed in Section 2,
most LTR algorithms can be categorized into one of the three following groups: pointwise

538 Henriette Behr, Volker Markl, Zoi Kaoudi

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 15

Abb. 2: Neural network architecture of our LTR model.

approaches, pairwise approaches, and listwise approaches [Li11]. Pointwise algorithms do
“not consider the inter-dependency between items” [Li11] as the loss is calculated separately
for each item. In our case, this means that the rank of an execution plan would be solely
based on its (estimated) runtime and would not consider any comparison metric among
equivalent plans. This would defeat the purpose of using an LTR model in the first place.
For this reason, we discard a pointwise approach. Because traditional plan enumeration
algorithms prune the search space by comparing two subplans at a time, it is intuitive to use
a pairwise approach for our LTR model. However, such an approach (i) uses an objective
loss for minimizing errors in classification of pairs rather than minimizing errors in ranking
of items, (ii) requires a large number of pairs to train on, which can be computationally
costly to generate, and, (iii) assumes that the pairs are generated i.i.d. which is not true in the
case of equivalent execution plans. We, thus, aim for a listwise approach. Our experimental
results shown in Section 4.3 demonstrate how our proposed listwise solution outperforms a
pairwise approach.

Once we settle for the LTR approach, the next problem that we need to tackle deals with the
neural network architecture that we shall use to build an LTR model. We get inspired by a
popular listwise LTR architecture called FATE [PGH18], and the architecture of [Ma19]
that uses a neural network for estimating the runtime of execution plans. Figure 2 depicts

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 539

16 Henriette Behr, Volker Markl, Zoi Kaoudi

the neural network architecture of our LTR model. Similarly to FATE, our model uses
equivalent execution plans as additional information to the current plan, for which the model
has to predict a relevance score. Consequently, the model expects multiple equivalent plans
as input and estimates the relevance score for each one of them. The model considers every
plan of the inserted list individually as the current plan and utilizes every other plan in the
list as a comparison plan.

For a given query (either during prediction or training), we first calculate the query encoding
and plan encoding, both depicted with violet color in Figure 2. The query encoding forms
a vector while the plan encoding is tree-shaped (see Section 3.3). Then, a first sub-model
(Sub-Model 1), consisting of several fully-connected layers, takes the query encoding as
input and outputs a vector of length 16. Subsequently, the model concatenates the output of
Sub-Model 1 with the plan encodings of all plans, i.e., the current plan and the comparison
plans. The extended plan encoding of the current plan serves as input for a second sub-model
(Sub-Model 2) while all extended comparison plans are inserted into a third sub-model
(Sub-Model 3) separately. Both mentioned sub-models have a similar architecture consisting
of multiple tree convolution layers, a dynamic pooling layer, and several fully-connected
layers. The difference between the two sub-models is the number of layers as (Sub-Model 2)
consists of more layers. The reason for this is that we want to put more focus on the current
plan than on the comparison plans. Sub-Model 3 consists of a final layer that calculates
the mean of the outputs of the comparison plans. Before the model transfers this vector to
the last sub-model (Sub-Model 4), it concatenates this resulting mean vector and the vector
produced by (Sub-Model 2) so that the final model considers each plan in comparison with
the rest. Finally, it inserts the result into (Sub-Model 4), consisting of five fully-connected
layers. The last fully-connected layer outputs the relevance score.

Note that the model architecture itself already implies a listwise comparison strategy
regardless of the loss functions used. To further enforce the listwise approach we use
the LambdaLoss [Wa18] function, which incorporates a ranking metric, as described in
Section 2. Note that our main focus is not the implementation of a new loss function, which
is why we choose to use an existing one.

3.2 Scoring of execution plans

The required training data to build an LTR model include execution plans (data points after
featurization) and their rank (label). Yet, the data we usually have available from execution
logs is execution plans and their runtimes.¶. One may think that it suffices to simply sort the
plans and based on their runtime and convert it to a rank. However, this is not ideal because
we lose information on how the runtimes differ among the plans. For example, in the case
of OLAP queries, if plan A has a runtime of 200ms and plan B has a runtime of 205ms,

¶The way to acquire such data is orthogonal to our approach and we thus, do not discuss it in the paper. For
our implementation we have used DataFarm [Ve21].

540 Henriette Behr, Volker Markl, Zoi Kaoudi

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 17

we would like to give them the same score as their difference in runtime is insignificant.
Conversely, in the case of OLTP workloads we would like to assign a different score to the
above two plans. In few words, the goal of using a score function is is to take into account
the relative performance among the plans.

To enable the model to learn relevance scores to rank different plans, we need to devise a
score function for scoring the training plans. The intuition behind devising such a score
function is that, based on the runtimes of the plans, we want to teach the model which
plans are good and bad, but also which plans have a similar performance. The best plan for
a specific query should receive the highest relevance score, while the worst plan should
receive a low score. Additionally, we want to be able to map plans with a similar runtime
to the same score. However, the definition of “plans with a similar performance” can vary
from query to query when looking only at execution times. Depending on the query, similar
plans can differ, for example, in their run time by only 1ms or by 2000ms. Utilizing a score
function ensures that the plans follow a uniform scoring scheme. We devise two different
score functions: a linear score function and an advanced global score function utilizing
agglomerative clustering. For both functions, we use a hyperparameter smax that determines
the maximum score of an execution plan. Thus, by tuning smax we can adjust the granularity
of the score assignment, depending on our scenario (i.e., OLAP vs OLTP cases).

3.2.1 Linear score function

Our first proposed score function is the linear score function, which is a straightforward
approach for transforming the increasing run times into decreasing relevance scores. The
function uses a decreasing linear function f : N→ R for calculating the scores such that
the larger the execution time for a specific plan, the smaller the relevance score becomes. To
calculate a score, the function maps an execution time in ms to a real-valued score [0, smax]

with respect to other equivalent plans for the same query and the hyper-parameter smax

defining the maximum score. The parameter smax influences the upper bound beyond which
the values are receiving a score of 0, which we explain in the following.

Considering one query at a time, the linear score function calculates a linear function
between the minimum run time tmin of a set of equivalent plans and smax × tmin. This
minimum value tmin receives a score of smax , and the value smax × tmin gets mapped to a
value of 0. Between those two values, the score decreases linearly. Additionally, the function
sets every execution time higher than smax × tmin to 0. Equation 2 expresses this formula.

fsmax (xi) =

smax, if xi = tmin
−smax

(smax−1) (
xi

tmin
− smax), if tmin ≤ xi ≤ tmin × smax

0, if xi ≥ tmin × smax

(2)

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 541

18 Henriette Behr, Volker Markl, Zoi Kaoudi

Abb. 3: Features used in the plan encoding.

To clarify this score function, we consider the following example for the linear score
function with smax = 5. For a query, the best plan of all possible plans, i.e., the plan with
the shortest run time, needs 10s for its execution. Therefore, the function sets tmin = 10
and maps this plan to a score of 5. Every plan with a run time higher than or equal to
50 s (smax × tmin = 5 × 10) receives a score of 0. Between these two runtimes, the score
decreases linearly, e.g., a query with a run time of 25s receives a score of 2.5 and a run time
of 20s receives a score of 3.75.

3.2.2 Global agglomerative score function

Besides the linear score function, we devise a second score function, the global agglomerative
score function. This function utilizes the unsupervised clustering algorithm agglomerative
clustering [SB13]. Unlike the linear score function, it considers all available plans with their
execution time at once, independently of the query they belong to. To make a global scoring
feasible, the score function scales the query plans at first. For each query separately, it takes
the minimum execution time and divides every equivalent plan for this respective query by
the minimum execution time of this query. This results in factors in [1,+∞) describing how
many times slower the execution of this plan is w.r.t. the minimum execution time for this
query. During calculation, all factors for all queries of the training set are stored in an array,
and on this array, we apply agglomerative clustering. However, before the clustering step, we
need to remove outliers. This is because a huge outlier, i.e., a plan with long execution time,
could be clustered as its own cluster while plans with small values can be all assigned into
one cluster due to the nature of the agglomerative clustering algorithm. To achieve this, the
function calculates the border-th percentile of factors, where border is a hyperparameter.
The algorithm sets every factor below a percentile border to the value of border .

After execution of the agglomerative clustering, we sort the resulting clusters by the
minimum value for each cluster. Finally, all query plans within the cluster with the smallest
value receive a value of smax , and for every next cluster in the sorted version, the scores
attached decrements by 1. We show the explained procedure in Algorithm 1.

3.3 Featurization of execution plans

As described in the previous subsection, our model architecture requires two different
inputs: the query encoding and the plan encoding. The query encoding is a simple vector

542 Henriette Behr, Volker Markl, Zoi Kaoudi

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 19

Input: smax ∈ N, border ∈ (0,1] and execution times T = {T11, . . .Tnq} with q being the query
number and n being its index inside query q

Output: Scores S = {S11, . . . Snq}
Create empty array f actors
for i ∈ [1,q] do

minimum = min({T1i, . . . ,Tni})
for t in {T1i, . . . ,Tni} do

Append t
minimum to factors

end
end
percentile = get borderth-percentile of factors
for f in factors where f ≥percentile do

f = percentile
end
AgglomerativeClustering(factors, numberClusters=smax)
Sort clusters by their minimum value
Give first cluster a score of smax and decrement smax for succeeding clusters

Algorithm 1: Calculation of the global agglomerative score

Abb. 4: Example featurization of an execution plan (plan encoding). For the sake of simplicity, we
omit the last feature, which is the estimated intermediate cardinalities.

describing several different query features, such as whether a GroupBy exists or how many
joins the query contains. The plan encoding consists of multiple vectors arranged in a tree
shape describing the utilized operators of the execution plan at each position by using a
one-hot-encoding strategy. The features of the plan encoding are similar to the features used
in [Ma21]; we encode every operator to a one-hot-encoded vector for every important node
in the plan. Thereby, we consider the different join and aggregate physical operators as well
as two scan operators – index scan and table scan – and the sort operator. Figure 3 shows
the features we use for the one-hot-encoding of each operator in the plan encoding.

The tree-shaped plan encoding considers binary trees which is the most popular type of
query plans. As the tree convolution layer requires each inner node of the tree to have two
children, we need to “fill” the children of unary operators, such as sort or aggregate. For
this, we use a feature vector “Null” to indicate “null-children” and add a second “null-child”

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 543

20 Henriette Behr, Volker Markl, Zoi Kaoudi

Abb. 5: Example featurization of an execution plan (plan encoding).

to unary operators. In addition to the one-hot-encoding of the operator, we extract the
estimated resulting rows from the database optimizer and append this estimation to our
feature vector. Figure 4 illustrates an example featurization of an execution plan. The plan
in this example consists of two joins, three scans, a sort, and an aggregate. Moreover, we
can see the use of null-children, which are inserted as the right child for the sort and the
aggregate node. In the figure, we omit the estimated rows feature for simplicity.

In addition to the plan encoding, we have to encode the query into a feature vector as
illustrated in Figure 5. In contrast to [Ma21], we keep this vector simple and independent of
the relations used, i.e., there is no one-hot-encoded information about the utilized columns
or relations. This allows our featurization to be used out of the box for any dataset. Instead,
it includes information about whether the query utilizes a GroupBy and an OrderBy as
well as the number of joins and the result size of the query estimated by the database.
Furthermore, we append information about the maximum and the minimum number of
rows of the relations used.

Before training, we normalize all features of the plan and query encoding. Therefore, for
every feature used, we extract its maximum and minimum value and normalize all the
features using the formula: norm(x) = (x−min)

(min−max) .

3.4 LTR-based Plan Enumeration

Bottom-up enumeration algorithms are very popular with existing database systems. In a
learning-based query optimizer, these algorithms are responsible for calling the model and
receiving its cost estimations (see Figure 1). However, they utilize a pairwise comparison
of plans during the enumeration. This can work out of the box with an ML model that
simply outputs the estimated runtime of a plan or with a pairwise LTR model. However,
our model is listwise, i.e., it ouputs a ranked list of plans. One could use it with the default
plan enumeration if the list consists of only two plans. However, this would be inefficient.
For this reason we need to adapt the state-of-the-art enumeration algorithms to work with
ranked lists of plans and not with the cost of pairs of plans.

After considering different bottom-up enumeration algorithms, we decide to use the DPccp
algorithm by Moerkotte and Neumann [MN06]. This algorithm has the benefit of using
graph algorithms, making it a better fit to transform the graph into the tree-structured
plan-level encoding, which is needed for the LTR model to estimate the relevance score. To
make DPccp work with our model we need to adjust the part of the algorithm that compares
two plans at a time w.r.t. their cost. As a result, the decision for the best sub-plan in a set of

544 Henriette Behr, Volker Markl, Zoi Kaoudi

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 21

equivalent sub-plans is made shortly before the sub-plan is needed for joining purposes.
Furthermore, we extended the algorithm to get a third input, parameter k, next to the query
graph G and model model. Parameter k is tunable and decides to how many execution
plans the model reduces the list of possible plans during its prediction. For example, for
k = 10, at every prediction of the model, the model returns the top k = 10 plans with the
highest predicted relevance score. Consequently, the enumeration algorithm calls the model
whenever the number of possible equivalent plans exceeds k.

Input: A connected query graph G with relations R = {R0, . . . ,Rn−1}, LTR model model and
parameter k

Output: an optimal bushy join tree
for all Ri ∈ R do

PossiblePlans({Ri}) = getScan(Ri);
end
for every S1 in EnumerateCsg(G) do do

for every S2 in EnumerateCmp(G,S1) with S = S1 ∪ S2 do
if length of PossiblePlans(S1) > k then

p1 = model.predictBestK(PossiblePlans(S1), k=k)
end
else

p1 = PossiblePlans(S1)
end
if length of PossiblePlans(S2) > k then

p2 = model.predictBestK(PossiblePlans(S2), k=k)
end
else

p2 = PossiblePlans(S2)
end
Append plans from CreateJoinTrees(p1,p2) to PossiblePlans(S)

end
end
return model.predictBestK(PossiblePlans(R), k=1)

Algorithm 2: Adjusted DPccp algorithm based on [MN06]

Algorithm 2 shows the pseudocode of our adapted enumeration algorithm. In the beginning,
the algorithm starts a for-loop for receiving all possible scans for each node in G, similar to
the first loop in the original DPccp. After it has calculated every possible scan and saved
it in a data structure PossiblePlans, it starts a second and third for-loop for calling the
sub-graphs with two functions – EnumerateCsg and EnumerateCmp – that we extracted
from the original DPccp algorithm and left unchanged. Inside the inner for-loop, for both
sub-graphs S1 and S2, the algorithm tests if the number of possible plans for calculating
the respective subgraph exceeds k. If it does, the algorithm calls the LTR model, reducing
the number of possible plans to k plans for which it predicts the highest relevance scores.
Afterward, it stores the remaining k plans in variable p1 or p2. If the number of possible
plans is already smaller or equal to k, the algorithm directly stores all plans in p1 or p2
without further reduction. After p1 and p2 are created, the function CreateJoinTrees
calculates all possible joins for each pair in p1 and p2, i.e., it considers every join operation.
The algorithm stores the resulting sub-execution plans for S with S = S1 ∪ S2 in our data

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 545

22 Henriette Behr, Volker Markl, Zoi Kaoudi

structure PossiblePlans(S). Eventually, when both for-loops have finished, the model
predicts the best plan from PossiblePlans(R), i.e., for the entire graph, with k = 1.

4 Experimental Evaluation

We evaluate our proposed solution against the cost-based query optimizer of a commercial
database system and two state-of-the-art learning-based query optimizers. Specifically, we
evaluate whether the query performance for a well-known query workload improves with
our learning-to-rank approach compared to other baselines for both seen and unseen data.

4.1 Setup

We first describe our experimental setup, which includes our utilized hardware/software,
baselines, and characterization of the utilized training and test data.

Hardware and Software Specification. We used a computer with an AMD Ryzen 7 1700X
Eight-Core processor at 3.77 GHz with 32 GB main memory. We implemented all our
components in Python version 3.9.7 and used PyTorch 1.10.0 for building both ours and the
comparison ML models. For fair comparison, we use a commercial database to execute the
plans chosen in of the cases we study. To automate the execution of our execution plans in
the database system, we used the Python library pyodbc version 4.0.32.

Baselines. We use a commercial database (denoted as DB X) and three different comparison
models as baselines. The latter are plugged in our implementation that uses the adapted
enumeration algorithm as described in Section 3.4. We compare against two state-of-the-art
models of learning-based optimizers – Bao [Ma21] and Neo [Ma19]‖ – as well as a simple
baseline comparison model. This baseline model is a pairwise LTR approach and has
a similar architecture to Bao’s model. It uses the linear score function with smax = 50
and RankNet [Bu10] as a loss function for training. For enumerating through the plans,
we use our adapted DPccp enumeration algorithm for every case and set k = 10. For
our approach (denoted as LTR model), we have ran extensive experiments to find the best
combination of score functions and hyperparameters as well as loss functions. However,
due to space limitations, we report the performance of our best model which uses the
global agglomerative score function with smax = 50 and border = 97 and the LambdaLoss
function with the top-k extension (see Section 2).

Training Data. For training, testing and evaluating our solution, we decide to mainly use the
database schema from the TPC-H benchmark∗∗. Due to the lack of already labeled training
data fitting TPC-H’s database scheme, we generate and label appropriate training data

‖In the future, we plan to experiment with zero-shot cost models [HB22] as well.
∗∗See: https://www.tpc.org/tpch/

546 Henriette Behr, Volker Markl, Zoi Kaoudi

https://www.tpc.org/tpch/

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 23

Tab. 1: Number of generated testing queries based on their number of joins and runtime on 1GB data.

Query Length 1 Join 2 Joins 3 Joins 4 Joins 5 Joins 6 Joins 7 Joins
Short Queries (< 2sec) 8 8 8 8 8 8 8

Medium Queries (≥ 2sec & < 30sec) 2 8 8 8 8 8 8
Long Queries ≥ 30sec 0 2 4 7 8 8 5

using DataFarm [Ve21], a training data generation tool for ML-based query optimization.
DataFarm uses as input a small amount of SQL queries and information about the different
tables to create further similar queries. The initial version of the tool was implemented
for Flink and, thus, we had to adapt some parts for our purpose. Specifically, we use six
different TPC-H queries serve as input (namely, Q1, Q3, Q11, Q13, Q17, and Q21). These
queries contain operators that our featurization process supports. Based on these six queries,
we let DataFarm generate 2,000 SQL queries with maximum seven joins and five variations
each. However, to get our training data we need runtimes for specific execution plans and
not only for SQL queries. Thus, we insert each query into the plan enumeration algorithm
and receive different valid execution plans. Because the amount of possible plans increases
exponentially with the amount of relations in the query, we decided to implement a limit
of 100 different execution plans per query. Thereby, the enumeration algorithm prunes
the sub-plans randomly such that the resulting execution plans differ for different queries.
Lastly, we need the runtime of these execution plans. Therefore, we let DB X run the different
execution plans on 1GB TPC-H, forcing the usage of a specific plan. Due to time limits, we
are not able to label all generated plans, resulting in a training set consisting of 25,067 plans.
Furthermore, we set the timeout for all queries to six hours, which results in the problem
that not all execution plans have an execution time in the end. For our LTR model, this does
not pose a problem, as plans with a bad execution time are always assigned a relevance
score of 0. However, for the two comparison models, Bao and Neo, this circumstance is a
problem, as these models need the execution time of the plans for their estimations. To solve
this problem, we set these estimations to 6 hours.

Testing Data. For evaluating the results of the different models, we decide to use several
different queries. The first set of testing queries consists of 136 queries which we generated
during the training data generation process but did not use for training purposes. We
distinguish these queries based on their runtime: short queries with a run time of less than
2sec, medium queries with a run time of less than 30sec but more than 2sec, and long
queries needing more than 30sec. For every model tested, we let it predict the best execution
plan for each query with the help of our plan enumeration algorithm. Afterward, we insert
this plan into the commercial database to measure its real execution time. In Table 1, we
show the exact number of queries split by their number of joins for each category.

To test whether the performance of our model’s suggested execution plan remains similar
when increasing the size of the database, we increase the size of the data to 5GB and let
our model predict the same test queries but using the larger dataset. However, due to time
limitations, we had to reduce the number of queries from 136 to 95. As many queries have
longer execution times on the larger dataset, we do not use the same definition of short,

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 547

24 Henriette Behr, Volker Markl, Zoi Kaoudi

Tab. 2: Number of generated testing queries based on their number of joins and runtime on 5GB data.

Query Length 1 Join 2 Joins 3 Joins 4 Joins 5 Joins 6 Joins 7 Joins
Short Queries 8 8 7 7 6 2 0

Medium Queries 2 5 4 7 4 2 3
Long Queries 0 5 6 4 9 3 3

medium and long queries. Every query with a runtime with 15 seconds or less is regarded
as short query. Medium queries have an execution time between 15 and 60 seconds, and we
consider every query with more than a minute execution time as long query. Table 2 shows
the corresponding queries distribution.

Lastly, to evaluate the performance of our models on unseen data, we use the IMDB dataset
in combination with queries from the Join Order Benchmark (JOB)††. Out of these queries,
we use 26 different queries all of them having between 3 and 11 joins for our experiments.
Note that the TPC-H data we use for training has a maximum of 7 joins, and, using this
dataset, we can test our model’s performance for queries with a larger number of joins.

Evaluation Metrics. For each query q we measure the execution time of the models’ best
predicted plan when inserted in DB X. Furthermore, we record the time the commercial
database, DB X, needs for running q. To ensure a fair comparison, we let DB X at first ouput
the execution plan for q and then insert it again into DB X as we do for the other models
and measure its runtime. For our evaluation, DB X’s time serves as a baseline as it contains
a highly tuned cost-based optimizer. We, thus, use not only the exact execution times but
also the ratio of the execution time of the models’ predicted plans to DB X baseline, i.e., we
divide for every query the time of our models’ plans by the time that DB X needs.

4.2 Performance against State-of-the-Art

We first evaluate how the models perform on our generated test queries.

4.2.1 Absolute performance

For a first overview of the model’s performance, we plot the median execution time for the
predicted plans categorized by the query type in Figure 6a. Note that the y − axis is in
logarithmic scale. While our LTR model seems to have a good performance which is able
to match DB X’s performance, the plans of the comparison models have an extremely poor
performance. To investigate the reasons for their bad performance, we analyze some of their
predicted execution plans. In examining some of the plans, we note that Neo often predicts
merge and nested loop joins for queries where the other models predict mainly hash joins.

††https://github.com/gregrahn/join-order-benchmark

548 Henriette Behr, Volker Markl, Zoi Kaoudi

https://github.com/gregrahn/join-order-benchmark

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 25

short medium long

1

10

100

1000

LTR model baseline model Bao Neo DB X

Query Length

M
ed

ia
n

R
un

 T
im

e
[s

]

(a) 1GB data – used in training data generation–

short medium long

1

10

100

1000

LTR model baseline model Bao Neo DB X

Query Length

M
ed

ia
n

R
un

 T
im

e
[s

]

(b) 5GB data – not used in training data generation–

Abb. 6: Median runtime of our LTR model, the three comparison models, and DB X. Our LTR model
matches the performance of DB X and exceeds it for long-running queries while it always outperforms
Neo, Bao, and the baseline model.

Most of these predicted merge joins require a preceding sort. We hypothesize that this is the
reason why the plans predicted by Neo often throw a timeout. When analyzing the plans of
the baseline model and Bao, we observe that also these models often predict merge joins
with a preceding sort even though not as often as Neo does. Similar to Neo, we assume that
these join operators in combination with sorts result in worse plans.

Note that we trained our model on execution plans with runtimes retrieved over a database
with size of 1GB. Therefore, it is possible that our model has a different performance on
queries for larger datasets. To test this, we run another set of experiments on 5GB of data for
our model, the three comparison models and DB X. Here, we again use the same generated
queries as before even though we had to reduce the number of test queries to 95 queries (see
Table 2). We show the median runtimes of the different query types in Figure 6b. Similar to
the prediction on the smaller dataset, our model significantly outperforms the comparison
models. For short and medium queries, it matches SQL Server’s performance, and it is also
able to outperform SQL Server for long queries.

4.2.2 Relative performance

To gain more insights on the results of the predicted plans, we plot the relative performance
of the models’ chosen plans in relation to DB X. Here, we divide for every predicted plan its
time by the time DB X needed. Figure 7 shows the resulting boxplots when the 1GB TPC-H
dataset is loaded in DB X. A value below the red line signals that the corresponding model
predicted a plan with a runtime lower than the DB X suggestion. In the boxplots, we can see
clearly that our model has the best performance of all four models. Furthermore, except
for some outliers, it is often able to match or outperform DB X, especially for medium and
long queries. For short queries, it is worse than DB X. However, since short queries need
only 2sec for execution on DB X, we can see that for most queries our model’s plan is only

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 549

26 Henriette Behr, Volker Markl, Zoi Kaoudi

1 2 3 4 5 6 7

5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

1 2 3 4 5 6 7

5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

2 3 4 5 6 7

5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

LTR model baseline model Bao Neo DB X Baseline

Number of Joins Number of Joins Number of Joins

R
el

at
iv

e
P

er
fo

rm
an

ce

Short Queries Medium Queries Long Queries

Abb. 7: Relative performance of our LTR model and the comparison models in relation to DB X. Values
> 1 denote worse performance compared to DB X while values < 1 denote better performance.

slightly slower, i.e., the time difference lays within a second, while for the long queries our
model can be 5 hours faster (4,015sec for LTR model compared to 22,292sec for DB X).

Similarly, Figure 8 shows the boxplots for 5GB of TPC-H data, while using 1GB for training.
These plots emphasize that for most long-running queries and for many medium ones,
our model is able to outperform DB X. The two queries for which our model’s plans are
significantly faster than DB X’s plans are a query with performance difference of 4,857sec
and 1,467sec, respectively. For most queries where our model’s plan is faster, DB X utilizes
a stream aggregate with a pre-appended sort which slow down the query runtime.

4.3 Performance on Unseen Data

The goal of our solution is also to work with unseen data. To validate this, we load the IMDB
dataset into DB X and execute 26 different queries, extracted from the same dataset. Again,
we evaluate our model against Bao, the baseline model and DB X. Due to the fact that Neo’s
query featurization is tailored to the TPC-H dataset, we cannot use it for comparison. For
the other models and DB X, we measure the plans runtime shown in Figure 9.

We observe that our LTR model and DB X have very similar performance for most queries,
such as 14a or 3a. This is an astonishing result per se as our LTR model requires no manual
tuning compared to the hours of human-engineered cost model of DB X. For some queries,
such as 17a and 31a, our LTR model even manages to outperform DB X and achieve up to
5× better query performance. When analyzing our model’s predicted plans, we observed

550 Henriette Behr, Volker Markl, Zoi Kaoudi

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 27

1 2 3 4 5 6 7

5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

1 2 3 4 5 6 7

5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

2 3 4 5 6 7

5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

LTR model baseline model Bao Neo DB X Baseline

Number of Joins Number of Joins Number of Joins

R
el

at
iv

e
P

er
fo

rm
an

ce

Short Queries Medium Queries Long Queries

Abb. 8: Relative performance of queries on 5GB of data for our model and the comparison models to
DB X. Our LTR model performs the best among all four models.

that our model predicts only hash joins. We assume that this might result from the nature of
the IMDB data. In contrast to the data from the TPC-H benchmark, this dataset does not
contain any indexes referencing to other tables which can be used to sort the table while
scanning. Therefore, a merge join would always require at least one sort. We hypothesize
that these sorts let the model predict a worse relevance score for queries with a merge join.
Nevertheless, it seems that our model overfits slightly in favor of hash joins because it
also does not predict any nested loop joins. However, in some cases DB X outperforms our
model, e.g., for queries 20a and 26a. An analysis of the corresponding plans shows that DB
X utilizes adaptive joins for these queries, a join algorithm we did not use while training
because we were not able to produce valid plans with this join type. We, thus, consider
the integration of adaptive joins future work. In addition, we observe that LTR performed
slightly better than the baseline for most queries and for some of them (e.g., queries 17a, 5a,
6a) it was significantly better. Interestingly, we also observed that Bao predicts plans with
a bad performance for almost every query. Looking into its predicted execution plans for
queries where Bao timeouts, we realized that it always predicts bushy join trees with nested
loop joins as well as many merge joins with preceding sorts for both relations. For most
queries, this seems to be a bad combination.

In conclusion, our model’s performance on unseen data is good even though it only predicts
hash joins. We assume that including data of queries for other datasets as well as adaptive
joins might solve its overfitting issue. Nevertheless, our model is able to predict proper
execution plans on unknown data, and it predicts some better plans than DB X resulting to a
performance increase up to 5×, while it does not require manual tuning.

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 551

28 Henriette Behr, Volker Markl, Zoi Kaoudi

10a
11a

12a
13a

14a
15a

16a
17a

18a
19a

1a 20a
22a

23a
24a

25a
26a

27a
2a 30a

31a
32a

3a 4a 5a 6a
0

10

20

30

40

50

60

70

80

90

100

LTR model baseline model Bao DB X timeout

Query

R
un

 T
im

e
[s

]

Abb. 9: Rutimes of chosen plans using the unseen IMDB dataset and JOB query benchmar.

5 Related Work

To our knowledge there is no work that leverages an LTR approach for query optimization.
Works aiming at replacing a cost model with an ML model focus on estimating the execution
time of plans, typically using regression models. Similarly, there are several efforts using
ML for query performance prediction.

Early works that incorporated the use of ML for query performance prediction, mainly
use a set of models, e.g., one for each operator, and aggregate them into a single cost.
For example, [Ak12] uses different granularities for encoding and estimating plans, such
as on plan-level, operator-level, and a hybrid approach. Compared to our solution, they
not only use a different encoding strategy, but also different models for the plan-level and
operator-level and not one model for the whole process.

A more recent work [MP19] for predicting query performance proposes the use of a modular
principle to combine NNs with two hidden layers. Depending on the operator, the model
utilizes a different neural network unit, whereas every unit produces an output with a similar
structure to ensure consistency. The resulting deep NN represents the tree structure of the
plan. The main difference to our solution is that the tree structure lies inside the model
while we use it in the feature vector. Furthermore, the model building requires the execution
time of every operator on its own, which leads to a more elaborated training data collection.

Neo [Ma19], a learned query optimizer, includes a model architecture for estimating the
execution time of plans with NNs and uses a reinforcement approach for the join ordering.
Their NN also uses tree convolution layers combined with a query vector, similar to our
model approach, even though they do not use equivalent execution plans for their estimation.
Another difference to our approach is that they do not inspect other important operators like

552 Henriette Behr, Volker Markl, Zoi Kaoudi

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization 29

aggregation or sort, only joins and scans and their featurization scheme is tight to the input
dataset schema. Bao [Ma21], another learned query optimizer, uses a NN combined with
reinforcement learning to predict the cost of an execution plan. However, the estimated cost
is not used for selecting the best plan but for providing query hints to the database. While
the NN layers are similar to our neural network, the featurization and the architecture of the
model are different. In their features, they use no query encoding, which is also depicted in
the architecture. Importantly, they do not use comparison queries during prediction.

[Ka20] proposes the use of ML, in particular a regression model, in the plan enumeration
for predicting plan performance for the cross-platform system, Apache Wayang (incubating)
(former Rheem) This work differs from ours not only because they use a vector representation
and not a tree-based representation for the featurization but also because their focus is on
performing the plan enumeration using entirely vectors.

6 Conclusions

We presented a learning-to-rank (LTR) approach for ML-based query optimization. Our
proposal consists of (i) a novel listwise neural network architecture that considers not only
one plan at a time but also its equivalent plans and a ranking-based loss function, (ii) two
score functions that transform the runtime of the execution plans to a ranking score used as
label, (iii) a featurization scheme for the execution plans that covers a wide range of operators
and is oblivious to the dataset, and (iv) an adaptation of a bottom-up enumeration algorithm
to work with our listwise LTR model. We evaluated our approach with a commercial
database that includes a cost-based optimizer and two state-of-the-art regression-based ML
approaches. Our results show that our LTR approach was able to match the performance
of the commercial database for short and medium queries, while it outperformed it for
long-running queries (up to 5×, leading to a runtime decrease of up to 5h). In addition, our
approach systematically chooses better plans than state-of-the-art learning-based approaches,
resulting in a performance speedup of over an order of magnitude.

Acknowledgments
This work was funded by the German Ministry for Education and Research as BIFOLD
- Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A and ref.
01IS18037A).

Literaturverzeichnis
[Ak12] Akdere, Mert; Çetintemel, Ugur; Riondato, Matteo; Upfal, Eli; Zdonik, Stanley B.: Learning-

based Query Performance Modeling and Prediction. In: ICDE. S. 390–401, 2012.

[Bu10] Burges, Christopher J.C.: From RankNet to LambdaRank toLambdaMART: An Overview.
Learning, 2010.

Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query
Optimization 553

30 Henriette Behr, Volker Markl, Zoi Kaoudi

[HB22] Hilprecht, Benjamin; Binnig, Carsten: Zero-Shot Cost Models for Out-of-the-box Learned
Cost Prediction. Proc. VLDB Endow., 15(11):2361–2374, 2022.

[Ka20] Kaoudi, Zoi; Quiané-Ruiz, Jorge-Arnulfo; Contreras-Rojas, Bertty; Pardo-Meza, Rodrigo;
Troudi, Anis; Chawla, Sanjay: ML-based Cross-Plattform Query Optimization. S. 1489–
1500, 2020.

[Ki19] Kipf, Andreas; Kipf, Thomas; Radke, Bernhard; Leis, Viktor; Boncz, Peter; Kemper,
Alfons: Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In: CIDR.
2019.

[Li11] Liu, Tie-Yan: Learning to Rank for Information Retrieval. Springer-Verlag, 2011.

[Ma19] Marcus, Ryan; Negi, Parimarjan; Mao, Hongzi; Zhang, Chi; andTim Kraska, Moham-
mad Alizadeh; Papaemmanouil, Olga; Tatbu, Nesime: Neo: A Learned Query Optimizer.
In: PVLDB. Jgg. 12, S. 1705–1718, 2019.

[Ma21] Marcus, Ryan; Negi, Parimarjan; Mao, Hongzi; Tatbul, Nesime; Alizadeh, Mohammad;
Kraska, Tim: Bao: Making Learned Query Optimization Practical. In: SIGMOD. S.
1275–1288, 2021.

[MN06] Moerkotte, Guido; Neumann, Thomas: Analysis of two existing and one new dynamic
programming algorithm for the generation of optimal bushy join trees without cross
products. In: VLDB. S. 930–941, 2006.

[MP18] Marcus, Ryan; Papaemmanouil, Olga: Deep Reinforcement Learning for Join Order
Enumeration. In: Proceedings of the First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. S. 1–4, 2018.

[MP19] Marcus, Ryan; Papaemmanouil, Olga: Plan-Structured Deep Learning Models for Query
Performance Prediction. PVLDB, 12(11):1733–1746, 2019.

[Ne21] Negi, Parimarjan; Marcus, Ryan; Kipf, Andreas; Mao, Hongzi; Tatbul, Nesime; Kraska,
Tim; Alizadeh, Mohammad: Flow-Loss: Learning Cardinality Estimates That Matter.
PVLDB, 14(11):2019–2032, 2021.

[PGH18] Pfannschmidt, Karlson; Gupta, Pritha; Hüllermeier, Eyke: Deep Architectures for Learning
Context-dependent Ranking Functions. arXiv preprint arXiv:1803.05796, 2018.

[SB13] Sasirekha, K.; Baby, P.: Agglomerative Hierarchical Clustering Algorithm - A Review.
International Journal of Scientific and Research Publications, 3(3), 2013.

[Ve21] Ventura, Francesco; Kaoudi, Zoi; Quiané-Ruiz, Jorge-Arnulfo; Markl, Volker: Expand your
Training Limits! Generating Training Data for ML-based Data Management. In: SIGMOD.
S. 1865–1878, 2021.

[Wa18] Wang, Xuanhui; Li, Cheng; Golbandi, Nadav; Bendersky, Michael; Najork, Marc: The
LambdaLoss Framework for Ranking Metric Optimization. In: Proceedings of the 27th
ACM international conference on information and knowledge management. 2018.

[Ya19] Yang, Zongheng; Liang, Eric; Kamsetty, Amog; Wu, Chenggang; Duan, Yan; Chen, Xi;
Abbeel, Pieter; Hellerstein, Joseph M.; Krishnan, Sanjay; Stoica, Ion: Deep Unsupervised
Cardinality Estimation. 13(3):279–292, 2019.

[Yu20] Yu, Xiang; Li, Guoliang; Chai, Chengliang; Tang, Nan: Reinforcement Learning with
Tree-LSTM for Join Order Selection. In: ICDE. S. 1297–1308, 2020.

554 Henriette Behr, Volker Markl, Zoi Kaoudi

cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Pairwise Learning to Rank for Hit Song Prediction

Maximilian Mayerl1, Michael Vötter2, Günther Specht3, Eva Zangerle4

Abstract: Predicting the popularity of songs in advance is of great interest to the music industry,
possible applications include assessing the potential of a new song, automated songwriting assistants,
or song recommender systems. This task was traditionally solved by using pointwise models focused
on single songs, either using classification to categorize songs into classes like hit and non-hit, or
regression to predict popularity metrics like play count. In this work, we draw inspiration from
research on learning to rank and instead use a pairwise model. Our model takes a pair of songs
𝐴 and 𝐵 and predicts whether song 𝐴 is more popular than song 𝐵. We present a neural network
model that is trained in a pairwise fashion, as well as two data augmentation strategies for improving
its performance. We also compare our model to one trained in a traditional pointwise manner. Our
experiments show that the pairwise model using our proposed augmentation strategies outperforms
the pointwise model.

Keywords: Learning to Rank; Hit Song Prediction; Pairwise Ranking

1 Introduction

Hit song prediction, also called song popularity prediction, is a common task in music
information retrieval. Its goal is to predict how popular a particular song is going to be,
where popularity is usually defined in terms of sales, streaming counts, or a proxy like chart
positions. Solving this task is of high interest to members of the music industry. A record
label could use it to screen potential new releases, decide whether to release a record or to
determine how much to invest in a particular record’s promotion. Musicians could use it
to get automated feedback while writing songs. Music retailers or streaming sites could
employ it to augment their recommender systems.

In general, hit song prediction is often framed as a classification or regression problem.
In the classification case, models are trained to divide songs into classes like popular and
unpopular, while in the regression case, models predict popularity measures such as a song’s
top chart position or listening counts. As their input, hit song prediction models typically
use intrinsic features of the song’s audio signal, ranging from low-level features like Mel
spectrograms to high-level features like danceability. Some models also incorporate song
lyrics.
1 Universität Innsbruck maximilian.mayerl@uibk.ac.at
2 Universität Innsbruck michael.voetter@uibk.ac.at
3 Universität Innsbruck guenther.specht@uibk.ac.at
4 Universität Innsbruck eva.zangerle@uibk.ac.at

cba doi:10.18420/BTW2023-26

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 555

mailto:maximilian.mayerl@uibk.ac.at
mailto:michael.voetter@uibk.ac.at
mailto:guenther.specht@uibk.ac.at
mailto:eva.zangerle@uibk.ac.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-26

2 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

At its core, hit song prediction can also be viewed as a ranking problem—ordering songs by
their popularity provides an implicit ranking of songs by popularity. This is also reflected
in how song popularity is often communicated in the form of charts. To model hit song
prediction for our approach, we borrow from a related field in information retrieval—learning
to rank [Li11]. Most existing approaches to hit song prediction have one thing in common:
they seek to predict the popularity—either in the form of a class label or a continuous
popularity measure—of a single song; they are pointwise ranking models. In learning to
rank (LTR), pointwise models have historically been superseded by pairwise and listwise
models, which show better results than pointwise approaches. We, therefore, propose to
tackle hit song prediction using a pairwise approach, solving the following task: Given a
pair of songs 𝐴 and 𝐵, predict whether song 𝐴 is more popular than song 𝐵.

The core contributions of this paper are: (1) We propose a neural network model that takes
the audio features of two songs as its input and outputs a label 𝑦 ∈ {0, 1}, indicating whether
the first song is more popular than the second song. (2) We propose two approaches to
augment the data used for training this model, and show that both of these approaches
improve the performance of the resulting model. (3) We compare the performance of our
model against a model that is trained in the traditional, pointwise way—i.e., as a regressor
predicting a popularity score for a single song—and show that the pairwise model performs
better for ranking songs by popularity than the pointwise model. (4) For our experiments,
we construct a dataset based on data from MusicBrainz5, AcousticBrainz6, and Last.fm7,
which we make publicly available.

2 Related Work

Given its big potential impact on the music industry, a body of research has investigated
possible solutions, with mixed results. Originally, there was doubt whether predicting song
popularity based on audio features of a song was even possible. To that end, Pachet and
Roy [PR08] performed a classification experiments using audio features, and concluded
that “hit song science is not yet a science”. Later approaches were more successful, and
used either classification or regression models. The machine learning models employed for
this include support vector machines [LL18, DL05], boosting classifiers [DL05], shifting
perceptrons [Ni11], and more complex neural network architectures [Za19, Ya17, Yu17].
What most of those approaches have in common is that they only consider single songs at
a time; their models take individual songs, and seek to predict their popularity. However,
song popularity does not exist in isolation. Songs are competing with each other for the
attention and time of music listeners.

Therefore, our approach aims to take this competitive context into account by looking at
pairs of songs. To the best of our knowledge, there exists only one similar approach. Yu et

5 https://musicbrainz.org

6 https://acousticbrainz.org

7 https://www.last.fm

556 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

https://musicbrainz.org
https://acousticbrainz.org
https://www.last.fm

3

al. [Yu17] use a pair of CNNs with shared parameters, which they then train using a loss
function incorporating a ranking loss. This makes their CNNs predict popularity scores that
reflect the relative popularity ranking of the songs. However, different from our approach,
their model still produces a scalar popularity score for every song, whereas our approach
aims to directly answer whether one song is more popular than another.

3 Dataset

To conduct our experiments, we require a dataset of songs with both audio features as well
as popularity information. Such a dataset needs to have the following properties: (1) It
has to be large enough to make training of a neural network model with a large number
of parameters feasible. (2) The songs have to follow a realistic distribution of popularity,
to avoid introducing biases into models trained on the dataset. (3) The dataset needs to
feature a popularity measure that can be used equally well for popular and unpopular songs.
(4) Ideally, it should be publicly available or consist only of data that is publicly available,
to make our research reproducible. To our knowledge, no such dataset is currently publicly
available. Therefore, we propose a new dataset, which we also make available publicly for
other researchers via Zenodo8. Datasets that were previously used for hit song prediction
are either too small (with only a few thousand songs), have a biased (unrealistic) distribution
of popularity (e.g., are balanced in hits and non-hits), use popularity measures that are
not suitable for unpopular songs (e.g., chart positions only being available for popular
songs), or are not publicly available. A comparison of our dataset to the ones used in prior
research is given in Table 1. For the construction of our dataset, we used three sources of
data: MusicBrainz9 for song metadata, AcousticBrainz10 for acoustic features, and Last.fm11

for play counts as popularity measure. As can be seen from Table 1, our dataset is the
largest, features a realistic popularity distribution, and uses a popularity measure that equally
addresses popular and unpopular songs. In the following, we describe the creation of the
dataset.

3.1 Song Metadata

MusicBrainz is an openly available database of music metadata. It provides information
about artists, recordings, releases, etc., and gets its data via crowd-sourcing. We use this
database as our ground set of songs. Since MusicBrainz contains information about a large
number of songs, both popular and unpopular, we reason that a random sample of songs
drawn from its database should give us a set of songs that is reasonably representative in
terms of the distribution of their popularity. We do note, however, that songs only known to

8 https://zenodo.org/record/7525833#.Y77d-7XMJaY

9 https://musicbrainz.org

10 https://acousticbrainz.org

11 https://www.last.fm

Pairwise Learning to Rank for Hit Song Prediction 557

https://zenodo.org/record/7525833##.Y77d-7XMJaY
https://musicbrainz.org
https://acousticbrainz.org
https://www.last.fm

4 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

Used By Size PD PM PA

Pachet and Roy [PR08] 32,000 no yes no
Dhanaraj and Logan [DL05] 1,700 no no no
Lee and Lee [LL18] 16,686 no no no
Lee and Lee [LL18] 1,264 no no no
Ni et al. [Ni11] 5,947 no no no
Zangerle et al. [Za19] 11,646 no no yes
Yang et al. [Ya17] ~125,000 no yes no

Our Dataset 142,963 yes yes yes

Tab. 1: A comparison of datasets used in prior research and our dataset. Size is given in number
of songs. PD: Is the popularity distribution of songs in the dataset realistic? PM: Is the popularity
measure used in the dataset suitable for popular as well as unpopular songs? PA: Is the dataset publicly
available?

very few people are unlikely to have an entry in MusicBrainz, which could introduce a slight
bias towards more popular music. For our dataset, we used a dump of the MusicBrainz
database obtained at the beginning of 2020. From the songs in the database, we drew a
random sample of approximately 20%, providing us with 3,407,667 songs.

3.2 Acoustic Features

After obtaining our ground set of songs, the next step was to gather audio data for these
songs. For this, we used AcousticBrainz, a project in the same vein as MusicBrainz to
collect a set of rich audio features for as many songs as possible. These audio features are
obtained by contributors of AcousticBrainz running a client application, which performs
feature extraction using the open-source Essentia library [Bo13b, Bo13a] and then uploads
the results to the AcousticBrainz platform. We chose to use AcousticBrainz because (1) its
data is indexed by MusicBrainz IDs, making it easy to merge the audio data with our set of
songs, (2) it provides audio features for a large collection of songs, and (3) Essentia is a
well-known feature extractor which is frequently used in music information retrieval.

For our dataset, we used the newest AcousticBrainz data dump, released in January 2015.
This limits our dataset to songs that were released before that date. This way, we were
able to obtain audio data for 201,047 of the 3,407,667 songs in our ground dataset. Via
AcousticBrainz, we added the following audio features to our dataset, which are a subset of
the features provided by AcousticBrainz12 (we mainly retained features describing the whole
song, as opposed to individual time slices of a song): 71 high-level audio features (mood
and genre descriptors, gender of the singer, etc.), 236 low-level audio features (loudness,
dissonance, spectral features like MFCCs, etc.), 57 rhythmic features (beats per minute,
onset rate, etc.), and 45 tonal features (the key of the song, the tuning frequency, etc.).

12 https://essentia.upf.edu/streaming_extractor_music.html#music-descriptors

558 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

https://essentia.upf.edu/streaming_extractor_music.html##music-descriptors

5

Property Count Mean Std. Dev. Min Max Median

Number of Songs 142,963 - - - - -
Number of Artists 25,667 - - - - -
Number of Features 409 - - - - -

Songs per Artist - 5.57 14.25 1.00 588.00 2.00
Play Count - 100,046.28 464,534.19 0.00 16,668,020.0 4,325.0

Tab. 2: Summary of the properties of our dataset.

3.3 Popularity Measure

The last step for constructing our dataset was adding a suitable popularity measure. Along
the lines of Schedl [Sc16], we used the play counts provided by Last.fm for this. Last.fm is
a popular music listening platform that can be queried using MusicBrainz IDs, making it
easy to crawl the play counts for the songs in our dataset. Using play counts as a popularity
measure has the benefit of providing a natural measure for the popularity of all songs, as
opposed to only for popular songs like chart position or similar measures. Of the 201,047
songs with audio features, we were able to obtain a play count for 146,075 songs. Finally,
we removed songs for which audio features were missing (i.e., had no value), resulting in a
total of 142,963 songs for our final dataset. Those songs were performed by 25,667 distinct
artists. Table 2 features an overview of the dataset.

4 Methods

Our approach to hit song prediction relies on a pairwise model which, given a pair of songs
𝐴 and 𝐵, attempts to predict whether song 𝐴 is more popular than song 𝐵. This approach is
grounded in research on learning to rank [Li11], where pairwise models have superseded
pointwise approaches. We propose a neural network model that takes the audio features
(cf. Section 3.2) of two songs as its input and produces a binary label answering the above
question as output. Further, we present two techniques for augmenting the training data to
further improve the model’s performance. In the following, we present the model, followed
by our approaches toward training data augmentation.

4.1 Pairwise LTR Model

The model we propose is a quite straightforward neural network architecture. We employ
a feed-forward network with six hidden layers of sizes between 256 and 64 neurons, and
an output layer with a single neuron. A schematic depiction of our network architecture is
given in Figure 1. The hidden layers all use SELU activation, as proposed by Klambauer
et al. [Kl17]. We chose SELU units because they showed the best results in preliminary
experiments, where we tested them against ELU, ReLU and tanh activations.

Pairwise Learning to Rank for Hit Song Prediction 559

6 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

Fig. 1: A schematic depiction of our model.

As described by Klambauer et al. [Kl17], we initialized the weights of the network with
values drawn from a normal distribution with zero mean and unit variance, as is necessary
to obtain the self-normalizing property of SELU units. We also use the modified dropout
variant proposed by Klambauer et al., with a dropout factor of 10%. For the output layer, we
use a single neuron with sigmoid activation. The output is a value 𝑦′ ∈ [0, 1], which is then
mapped to a label 𝑦 ∈ {0, 1}, where 𝑦 = 1 signifies that song 𝐴 is more popular than song
𝐵, and 𝑦 = 0 signifies that the opposite is the case. The mapping is done via

𝑦 =

{
0 if 𝑦′ < 0.5
1 otherwise.

(1)

4.2 Training Data Augmentation

To improve the classification performance of our model, we propose two augmentation
strategies for the training data that aim to force the model to focus on those aspects that
potentially make a song more popular than another. Note that these augmentation strategies
are only possible due to the model being trained in a pairwise fashion—they could not be
applied to a pointwise model. In the following, we explain those strategies and our reasoning
behind them. Note that these augmentation strategies work independently of each other and
always operate on the base dataset. In other words, samples generated by one augmentation
step are not used as the input to another step.

560 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

7

4.2.1 Mirrored Training

The first augmentation strategy we propose is mirrored training. It works as follows: If our
training dataset contains a pair of songs 𝑥 = (𝐴, 𝐵) with label 𝑦, we add the pair 𝑥′ = (𝐵, 𝐴)
with label 𝑦′ as defined in the following equation to the training set:

𝑦′ =

0 if 𝑦 = 1
0 if 𝑦 = 0 and A and B have same play count
1 otherwise

(2)

In other words, we mirror the pair of songs and invert the label (or leave it as 0, if both
songs have the same play count, meaning that none is more popular than the other). We
expect this augmentation strategy to help the model with learning to work independently of
the order of the two input songs.

4.2.2 Reflexive Training

The second augmentation strategy we propose is reflexive training. It works as follows: If
our training dataset contains a pair of songs 𝑥 = (𝐴, 𝐵), regardless of the label, we add the
following two instances to the training data:

• (𝐴, 𝐴), with label 𝑦 = 0
• (𝐵, 𝐵), with label 𝑦 = 0

In other words, we add pairs for both songs compared with themselves. The label is 0 in
both cases since no song can be more popular than itself. Our reasoning for this strategy is
that it should force the model to focus on comparing the two songs to determine which one
is the more popular one, instead of focusing on the features of one of the songs. Without
this augmentation, we expect that the model could, for example, simply learn to classify
whether the first song in a pair is popular, essentially ignoring the second song.

5 Experiments

Given our model and dataset, we performed the following experiments to evaluate the
performance of our pairwise model and the effectiveness of our augmentation strategies
against a traditional pointwise model.

5.1 Generating Pairs of Songs

To obtain training and testing data for our pairwise model, we have to draw random pairs of
songs from our dataset that we described in Section 3. For this, we first split our dataset

Pairwise Learning to Rank for Hit Song Prediction 561

8 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

into training (64,175 songs), test (47,178 songs), and validation set 31,610 songs). The
validation set was only used for preliminary experiments. For training and testing, we took
the training and test sets, respectively, and then generated pairs of songs from each set
as follows. Suppose we want to draw 𝑛 pairs. We then generate two lists of length 𝑛 of
random integers in the range [1, 𝑚] with 𝑚 = 142, 963 being the number of songs in the
set. Those two lists are then used as the indices of the first and second song in the pairs,
respectively. This means that if, for example, the two lists were [1212, 2342, 1, 42, ...] and
[96, 232, 3636, 5, ...], the first pair would consist of songs number 1212 and 96, the second
pair of songs 2342 and 232, etc. For the labels, we use the Last.fm play count of song 𝑋 ,
pc(𝑋), and for pair (𝐴, 𝐵) set 𝑦 as follows:

𝑦 =

{
1 if pc(𝐴) > pc(𝐵)
0 otherwise

(3)

5.2 Experiments for the Pairwise Model

To verify the performance of our pairwise model and the effectiveness of our augmentation
strategies, we performed a set of four experiments:

• pairwise: An experiment with our model as described in Section 4, without using
any of our augmentation strategies.

• pairwise-mirror: An experiment with the proposed model, but using the mirrored
training augmentation strategy.

• pairwise-reflexive: An experiment with the same model, but using the reflexive
training augmentation strategy.

• pairwise-full: An experiment with the same model, and using both the mirrored
training and reflexive training augmentation strategies.

For our experiments, we drew 300,000 pairs of random songs for the training and 100,000
pairs for the test set. The random seed was fixed, so that all experiments were performed
with the same base set of song pairs. For testing, we also performed mirroring augmentation
if the model was trained with mirroring. We never performed reflexive augmentation for
the test set, as in a practical application the model would never be used to predict if a
song is more popular than itself. For all experiments, our model was trained using binary
cross-entropy loss using the Adam optimizer [KB14]; we trained for 100 epochs.

5.3 Comparison: Pointwise Model

To judge how well our pairwise model performs compared to traditionally trained pointwise
models for hit song prediction, we also performed experiments with a model trained in a

562 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

9

Model Mirrored Training Reflexive Training F1 Precision Recall

pairwise-full yes yes 0.670 0.622 0.726
pairwise-mirror yes no 0.640 0.637 0.642
pairwise-reflexive no yes 0.626 0.653 0.602
pairwise no no 0.617 0.633 0.602

pointwise n/a n/a 0.629 0.627 0.631

Tab. 3: The results of our experiments.

traditional way—i.e., as a pointwise regression model predicting the play count of a given
song. For this, we used the same general model architecture as for our pairwise model, to
make results as comparable as possible, but reduced the input layer to only contain the
features for a single song, as opposed to a pair of songs. For this experiment, the output layer
activation function was removed, since we need the network to be able to output arbitrary
values for predicting the play count of a given song. For training and testing, we used the
same training and test set splits as outlined in Section 5.1. The training was done over 100
epochs, using mean squared error loss. For the evaluation, we randomly drew 100,000 pairs
of songs from the testing set, using the same procedure as described in Section 5.1, and then
used the model to predict the play counts for both songs in the pair. If the predicted play
count of the first song was higher than that of the second song, we set the predicted label to
1, meaning that the model predicted the first song to be more popular, and otherwise we set
it to 0. This procedure allows us to evaluate how well a pointwise model performs relative
ranking—i.e., detecting which of two songs should be the higher ranked one—and makes it
possible to compare the results of the pointwise and the pairwise model.

6 Results and Discussion

For the evaluation, we use the F1 score, precision and recall metrics, since those metrics
are widely used to measure the performance of classification models and provide a fair
evaluation even if a dataset is not balanced, which should make our results more easily
comparable to others. The results of the evaluation are given in Table 3. Looking at the
pairwise models, a clear difference can be seen between the models using augmentation
and the one which does not. The model without any form of data augmentation achieves an
F1 score of 0.617, which is outperformed by all models using augmentation. The models
using only a single augmentation strategy show slight to moderate improvements, with an
F1 score of 0.626 for the model using reflexive training, and 0.640 for the model using
mirrored training. Notably, mirrored training seems to primarily boost recall, improving
from 0.602 for the model without augmentation to 0.642, while reflexive training seems
to primarily boost precision, improving from 0.633 for the model without augmentation
to 0.653. Combining both augmentation strategies leads to the best performance, with an
F1 score of 0.670. This shows that the proposed augmentation methods are individually
effective and complement each other well.

Pairwise Learning to Rank for Hit Song Prediction 563

10 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

The pointwise model achieves an F1 score of 0.629. Comparing to the pairwise models,
we see that while the pointwise model perform better than the pairwise model trained
without any augmentation, the models using a single augmentation strategy perform about
as good as the regression models. The model combining both augmentation strategies
clearly outperforms the regression models, with an F1 score of 0.670 compared to 0.629.
This shows that training a model in a pairwise fashion and leveraging suitable augmentation
strategies—which only becomes possible due to the model being a pairwise model—leads
to a model that is better at predicting the relative popularity of two songs, at least in our
setup.

We do note, however, that there are limitations to our results. First, while we tried to keep
the bias towards more popular songs in our dataset as low as possible, we acknowledge that
our data sources most probably still exhibit such a bias. Nonetheless, the popularity in our
dataset shows a characteristic long tail distribution, implying that this bias is small. Second,
our dataset is also biased towards slightly older songs, containing no songs released after
January 2015. We note that, in the context of using play counts as a popularity measure,
this, in fact, helps reduce a popularity bias in the data, as older songs naturally had more
time to accrue plays, which would unfairly disadvantage newer songs.

7 Conclusion

In this paper, we proposed a pairwise approach for hit song prediction. We created a model
which, given a pair of songs 𝐴 and 𝐵, predicts whether song 𝐴 is more popular than
song 𝐵. For this, we proposed a neural network architecture which takes as its input audio
features of two songs and thus can be trained to directly answer that question, as opposed
to traditional pointwise approaches for popularity prediction. Furthermore, we proposed
two data augmentation strategies to improve the performance of our model. Our results
showed that both augmentation strategies are effective in improving the performance of our
pairwise model, and that using both together leads to the best results. We also performed
a comparison with a model trained in a traditional way—i.e., as a pointwise model—and
showed that our pairwise model trained using both of our augmentation strategies clearly
outperforms it.

Future work includes analyzing the importance of individual features, to determine which
features allow a pairwise model to determine which song is more popular. Another possible
direction for future work is to investigate whether other popularity measures (distinct listener
count, chart positions, etc.) can also effectively be used with a pairwise model. As our
results suggest that approaches from learning to rank seem to be transferable to hit song
prediction, a natural next step would also be to use more sophisticated pairwise learning to
rank models to predict the popularity of songs.

564 Maximilian Mayerl, Michael Vötter, Günther Specht, Eva Zangerle

11

Bibliography
[Bo13a] Bogdanov, Dmitry; Wack, Nicolas; Gómez, Emilia; Gulati, Sankalp; Herrera, Perfecto;

Mayor, Oscar; Roma, Gerard; Salamon, Justin; Zapata, José; Serra, Xavier: ESSENTIA: An
Open-Source Library for Sound and Music Analysis. In: Proc. of the 21st ACM International
Conference on Multimedia. pp. 855–858, 2013.

[Bo13b] Bogdanov, Dmitry; Wack, Nicolas; Gómez Gutiérrez, Emilia; Gulati, Sankalp; Herrera Boyer,
Perfecto; Mayor, Oscar; Roma Trepat, Gerard; Salamon, Justin; Zapata González, José Ri-
cardo; Serra, Xavier: Essentia: An Audio Analysis Library for Music Information Retrieval.
In: Proc. of the International Society for Music Information Retrieval Conference. pp.
493–498, 2013.

[DL05] Dhanaraj, Ruth; Logan, Beth: Automatic Prediction of Hit Songs. In: Proc. of the International
Society for Music Information Retrieval Conference. pp. 488–491, 2005.

[KB14] Kingma, Diederik P; Ba, Jimmy: Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kl17] Klambauer, Günter; Unterthiner, Thomas; Mayr, Andreas; Hochreiter, Sepp: Self-
normalizing neural networks. In: Proc. of the 31st International Conference on Neural
Information Processing Systems. pp. 972–981, 2017.

[Li11] Liu, Tie-Yan: Learning to Rank for Information Retrieval. Springer Science & Business
Media, 2011.

[LL18] Lee, Junghyuk; Lee, Jong-Seok: Music Popularity: Metrics, Characteristics, and Audio-
Based Prediction. IEEE Transactions on Multimedia, 20(11):3173–3182, 2018.

[Ni11] Ni, Yizhao; Santos-Rodriguez, Raul; Mcvicar, Matt; De Bie, Tĳl: Hit Song Science Once
Again a Science. In: 4th International Workshop on Machine Learning and Music. 2011.

[PR08] Pachet, François; Roy, Pierre: Hit Song Science Is Not Yet a Science. In: Proc. of the
International Society for Music Information Retrieval Conference. pp. 355–360, 2008.

[Sc16] Schedl, Markus: The lfm-1b dataset for music retrieval and recommendation. In: Proc. of
the 2016 ACM on International Conference on Multimedia Retrieval. pp. 103–110, 2016.

[Ya17] Yang, Li-Chia; Chou, Szu-Yu; Liu, Jen-Yu; Yang, Yi-Hsuan; Chen, Yi-An: Revisiting the
Problem of Audio-based Hit Song Prediction Using Convolutional Neural Networks. In:
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp. 621–625, 2017.

[Yu17] Yu, Lang-Chi; Yang, Yi-Hsuan; Hung, Yun-Ning; Chen, Yi-An: Hit song prediction for pop
music by siamese CNN with ranking loss. arXiv preprint arXiv:1710.10814, 2017.

[Za19] Zangerle, Eva; Vötter, Michael; Huber, Ramona; Yang, Yi-Hsuan: Hit Song Prediction:
Leveraging Low- and High-Level Audio Features. In: Proc. of the International Society for
Music Information Retrieval Conference. 2019.

Pairwise Learning to Rank for Hit Song Prediction 565

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

Communication-Optimal Parallel Reservoir Sampling

Christian Winter1, Moritz Sichert2, Altan Birler3, Thomas Neumann4, Alfons Kemper5

Abstract: When evaluating complex analytical queries on high-velocity data streams, many systems
cannot run those queries on all elements of a stream. Sampling is a widely used method to reduce
the system load by replacing the input with a representative yet manageable subset. For unbounded
data, reservoir sampling generates a fixed-size uniform sample independent of the input cardinality.
However, the collection of reservoir samples itself can already be a bottleneck for high-velocity data.

In this paper, we introduce a technique that allows fully parallelizing reservoir sampling for many-core
architectures. Our approach relies on the efficient combination of thread-local samples taken over
chunks of the input without necessitating communication during the sampling phase and with minimal
communication when merging. We show how our efficient merge guarantees uniform random samples
while allowing data to be distributed over worker threads arbitrarily. Our analysis of this approach
within the Umbra database system demonstrates linear scaling along the available threads and the
ability to sustain high-velocity workloads.

Keywords: Reservoir Sampling; Parallel Sampling; Stream Processing

1 Introduction

With the widespread deployment of cheap connected sensors and the increased use of
off-premise systems, there is an ever-growing need to analyze the log and data streams
generated by these sensors and systems remotely. Due to this data’s high volume and
high velocity, analyzing all generated entries and values is often infeasible. Therefore,
many analyses are performed on a reduced version of the data. Some applications rely
on aggregates over windows or subsets of the data, e.g., monitoring average temperature
readings in a given area. Others, e.g., for analyzing log streams, apply highly selective filters
to reduce the input cardinality, showing only relevant error messages and surrounding entries.
However, for some applications, representative and unfiltered data points are desirable.
Sampling is employed to reduce the data stream to a manageable size for analytics systems.

By drawing a uniform sample from a stream of data points, each point of the stream has an
equal probability of being part of the resulting sample, and thus the result is representative
of the entire stream. Sampling is utilized in a wide range of applications, e.g., for workload
1 Technische Universität München winterch@in.tum.de
2 Technische Universität München moritz.sichert@tum.de
3 Technische Universität München altan.birler@tum.de
4 Technische Universität München neumann@in.tum.de
5 Technische Universität München kemper@in.tum.de

cba doi:10.18420/BTW2023-27

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 567

mailto:winterch@in.tum.de
mailto:moritz.sichert@tum.de
mailto:altan.birler@tum.de
mailto:neumann@in.tum.de
mailto:kemper@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-27

12 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

statistics [BRN20, LN90], machine learning [Sc22, Sc21, Sc15], and big data [Ma20].
While some sampling algorithms take a variable-sized subset of the input, e.g., selecting
𝑥% of the arriving tuples at random, their resulting sample size can still be infeasible
for analyzing high-velocity unbounded data streams. Therefore, we will focus on those
algorithms that produce a fixed-sized sample independent of the input size, i.e., reservoir
sampling.

While reservoir sampling produces a uniform random sample in a single pass over the input
in O(𝑛(1 + log(𝑁/𝑛))) [Li94], the sheer volume of data can lead to bottlenecks during the
sampling phase. In the past, the growth in data could be compensated by the performance
improvements of new hardware. However, with Moore’s law coming to its end, a single
core can often no longer keep up. Therefore, many solutions for stream processing and
analysis, such as dedicated stream processing engines [Za16, Ze20, Ca15] and in-database
stream-processing approaches [Wi20], have focused on processing incoming streams in a
parallel and distributed manner.

In this paper, we describe a mechanism allowing fully parallel reservoir sampling without
communication between sampling threads. By keeping thread-local samples over chunks
of the input, we can construct a complete sample of size 𝑛 in parallel from 𝑝 worker
samples using only 2𝑝 + 𝑛 messages in an efficient k-way merge. The low message
overhead is especially beneficial in distributed environments, where communication takes
place using comparably slow and expensive network connections. Further, we describe
an O(𝑝 + 𝑛 log(𝑝)) merge strategy optimized for small sample sizes and show that it
can guarantee uniform random samples, independent of how input elements are assigned
to workers. By constraining all communication to our merge stage, our approach can
scale almost linearly in many-core machines. Implementing our approach within the code-
generating Umbra database system [NF20], we demonstrate that our approach is applicable
in real-world systems. Using this implementation, we evaluate our novel merge strategy
against a merge strategy based on a hypergeometric distribution in many-core applications
for different sample sizes, showing that our proposed merge is beneficial for small sample
sizes. Overall, our communication optimal reservoir sampling can scale linearly along the
number of available workers and sustain a sampling throughput of more than 300 million
tuples per second per thread, independent of the distribution used in the merge.

The remainder of the paper is structured as follows: We introduce relevant concepts and
algorithms to our approach in Sect. 2 and discuss related work. In Sect. 3, we present the
design and implementation of both of our contributions and prove the correctness of our
novel merge strategy. To demonstrate our approach’s applicability and performance, we
evaluate its scalability and throughput in Sect. 4 before concluding in Sect. 5.

568 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

Communication-Optimal Parallel Reservoir Sampling 13

2 Background and Related Work

Approximate results are often deemed acceptable to gain instant query response times for
analytics over large volumes of data. Simple random samples of fixed size are a reliable tool
to reduce the costs of computing approximate statistics [SA22]. We will argue why this tool
is particularly interesting and discuss related work in constructing such samples.

When using a random sample, a small random subset of the data is picked and processed
instead of the entire data, significantly improving query response times. Other statistical
tools, such as histograms [Co12] and distinct count sketches [FN19], are useful for
approximate statistics. However, they are inflexible as the filters that they can evaluate are
limited. A histogram can only evaluate simple predicates, such as one (or few) dimensional
ranges. Samples, on the other hand, can evaluate arbitrary predicates, as they are smaller
representatives of the entire data set. In the absence of complex filters, histograms can
provide useful upper bounds, while samples can only provide probabilistic estimates.
However, with large enough samples, the variance of the estimates a sample provides is
relatively low and can be relied upon. Additionally, with complex filters, a histogram’s
upper bounds can be too high to be useful, as it can only consider simple range predicates.

There are many ways to pick a random sample. For computing unbiased statistics, simple
random samples without replacement are a good fit as every subset of the data is selected
with equal probability. Tillé [Ti11] describes the theoretical background of simple random
sampling and computation of statistics from a simple random sample. Ting [Ti21] provides
efficient implementations for a range of algorithms for sampling without replacement. We
focus on samples of fixed size. In contrast to Bernoulli sampling, where every tuple is
picked with independent probability \, fixed-size samples do not grow alongside the input
data size. One might assume a larger sample would be a better fit for a larger data set. This
is true for predicates whose selectivity decrease with increasing data set size, such as filters
for fixed timespan on a data set that grows over time. However, for predicates of constant
selectivity, the size of the data set has little to no effect on the quality of the sample. We will
try to build a simplified intuition as to why and refer the reader to the detailed theoretical
analysis by Moerkotte and Hertzschuch [MH20] for further details.

Given a sample of size 𝑛, a data set of size 𝑁 = 𝜌𝑛, and a predicate of constant selectivity 𝜎,
we want to estimate the number of matches 𝐾 = 𝜎𝑁 = 𝜎𝑛𝜌 where 𝜌 is the ratio of the size
of the data set to the size of the sample. This task is common in cardinality estimation within
database systems [He21]. As a strategy, we evaluate the predicate on the sample and count
the number of matches 𝑘 , which is a random variable from the hypergeometric distribution
𝐻𝐺 (𝜌𝑛, 𝜎𝜌𝑛, 𝑛). We use the simple estimator �̂� = 𝑘𝜌 as our estimate of 𝐾 = 𝜎𝑛𝜌. As a
simple cost metric, we define the expected relative mean squared error of our estimate as:

rMSE = E

[(
�̂� − 𝐾
𝐾

)2]
= E

[(
𝑘𝜌 − 𝜎𝑛𝜌
𝜎𝑛𝜌

)2
]
=

1
𝜎𝑛

Var [𝑘] = 1 − 𝜎
𝜎

𝜌 − 1
𝜌𝑛 − 1

≈ 1 − 𝜎
𝜎

1
𝑛

(1)

Communication-Optimal Parallel Reservoir Sampling 569

14 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

Assuming 𝜌 is relatively large, it disappears from our error estimate, implying that the
relative size of the sample has little to no effect on the accuracy of this estimate. On the
contrary, the predicate’s selectivity and the sample’s absolute size directly influence the error.
An intuitive explanation of this result is that we can assume that the data set from which
we are sampling is itself a random sample drawn from an infinite distribution. Resampling
from this intermediate sample simply means that we construct a smaller sample of the
original data set. The size of the intermediate sample has only a small effect on the final
sample’s contents. So, given requirements on the error and information on the selectivity of
predicates, it makes sense to pick a fixed sample size rather than having sample sizes adapt
to the data set size as adapting the size of a sample is a costly operation requiring that the
sample be rebuilt.

The optimal way to compute a simple random sample depends on various factors. Our
proposed approach focuses on concurrently sampling from many parallel data streams
in environments where communication costs are high (we are optimal in the number of
communications), and memory usage is not a limiting factor. Due to these assumptions,
our approach is flexible and an excellent fit for distributed environments. There are simpler
algorithms for when the size of the data set is known beforehand: The draw-by-draw procedure
iterates over the sample and picks tuples one by one with potentially high costs from random
accesses into the data [Ti11]. The sequential selection-rejection method described by Fan
et al. [FMR62] instead iterates over the data to produce the sample. Vitter [Vi84, Vi87]
further improves the selection rejection method by computing skip lengths; rather than
iterating over the data one tuple at a time, one can probabilistically generate the number of
tuples to skip before the next tuple is selected, significantly reducing the number of random
number generations. This approach is parallelized by Sanders et al. [Sa16] by distributing
the task of random sampling among different workers. Chickering et al. [CRM07] describe
merging parallel reservoir samples using a hypergeometric distribution, which we utilize
for larger sample sizes, and offer proof that the resulting sample is still uniformly random.
However, they send all local samples to a centralized coordinator for the merge, leading to
communication overhead.

To maintain a sample of size 𝑛 in a single pass over a data stream, a set of more than 𝑛
values, the so-called reservoir, needs to be processed to guarantee a simple random sample
at any point during processing. All procedures maintaining a simple random sample in
a single pass over a data stream are variants of the reservoir sampling algorithm defined
by Vitter [Vi85]. Reservoir sampling iterates over input tuples and selects them for the
sample with a probability proportional to the number of tuples seen so far. Vitter [Vi85]
improves on this by probabilistically generating skips, a contiguous amount of tuples not
contained in the sample, thus reducing the costs for generating random numbers from O(𝑁)
to O(𝑛(1+ log(𝑁/𝑛))). Li [Li94] improves on the approach by Vitter by proposing a simpler
distribution to generate skips. These sequential approaches only support sampling data from
a single stream. Hübschle-Schneider and Sanders [HS20] also parallelize reservoir sampling
by independently collecting multiple reservoirs and merging them afterward. However,

570 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

Communication-Optimal Parallel Reservoir Sampling 15

their approach needs to maintain a distributed priority queue, which incurs additional
communication costs but potentially reduces the sizes of their independent samples. For
situations where memory is scarce, Tirthapura and Woodruff [TW11] maintain a single
sample at a central coordinator. Their approach has optimal communication complexity for
the centralized sample setting. Birler et al. [BRN20] reduce the communication costs of
Tirthapura and Woodruff’s approach by accepting temporary imperfections in the central
sample that are eventually corrected. Our approach, in contrast, is communication optimal
among all possible distributed reservoir sampling algorithms. For this property, we accept
a slight increase in per-stream memory consumption, which is acceptable in analytical
workloads as our local samples are fixed-sized and small compared to all the other data the
streams need to maintain.

The performance characteristics of the various approaches can be analyzed by looking at
communication costs, total processing costs, and total memory use. These three metrics are
influenced by the utilized sampling approach, the sample size, the data size, and the number
of workers. Shared-sample-based approaches [BRN20, TW11] benefit from low memory
use and total processing costs. Thus, they are well applicable to low communication cost
environments, such as a single machine with a single CPU socket. However, in settings with
high communication costs, such as manycore machines with multiple sockets or distributed
networks, distributed sampling approaches [HS20] are beneficial as they sacrifice memory
and some computation to cut down on inter-worker communication. These trade-offs are
necessary as Tirthapura and Woodruff [TW11] prove that communication costs may not be
optimal when only one shared sample exists. In our approach, where we focus on minimizing
communication costs, we must maintain a full sample per worker. Otherwise, we must
incur additional communication or provide weaker guarantees, such as a probability of
failure [Sa16].

3 Approach

Having outlined the background in sampling, we can describe our merge-based parallel
reservoir sampling technique and the novel post-sampling merge strategy optimized for
small sample sizes. Our approach aims to draw a sample of 𝑛 tuples uniformly random
in parallel from an input of 𝑁 tuples using 𝑝 workers. Each worker 𝑖 draws a thread-local
reservoir sample of size 𝑛 out of the 𝑁𝑖 tuples assigned to it, denoted as 𝑠𝑖,1 . . . 𝑠𝑖,𝑛, using
algorithm 𝐿 [Li94]. This sample is merged into a global sample on demand. We assume
no prior knowledge about the workload, only the reservoir size 𝑛 has to be known, and
we materialize only tuples selected for a local reservoir. Throughout this section, we will
assume a work-stealing, morsel-based [Le14] distribution of input chunks to workers,
as this is the parallelization strategy of our system Umbra. However, our approach is
applicable to any input distribution strategy. Our contributions are twofold. First, we detail
the communication-optimal merge process, which improves upon prior work independent
of the reservoir size and merge strategy used. Subsequently, we discuss our novel merge
strategy optimized for small reservoir sizes.

Communication-Optimal Parallel Reservoir Sampling 571

16 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

vn

vn+1

vn+2

vn+3

vn+4

vn+5

vn+6

vn+7

s3;1s1;2 s1;4 s3;2

In
pu

t S
tr

ea
m

s1;1 s1;2 s1;3 s1;4 N1

T
hr

ea
d

1

N2s2;1 s2;2 s2;3 s2;4

T
hr

ea
d

2

N3s3;1 s3;2 s3;3 s3;4

T
hr

ea
d

3

Tuples for
global sample

Tuples seen

1

2

3

4

Shared Data
Adapting

Categorical
 Distribution

Hypergeometric
 Distribution

Fig. 1: Overview of the sampling process with three workers consisting of 1 thread-local sampling,
2 the transfer of local cardinalities, 3 determining thread shares in the global sample, and 4 the

transfer of the resulting sample tuples.

3.1 Communication-Optimal Process

Our approach consists of two phases, the sampling and the merge phase, as shown in Fig. 1.
In the sampling phase 1 , all threads create local reservoirs of size 𝑛 over chunks of the input.
While sampling, workers fetch arriving chunks independently from one another, ensuring
that each chunk is assigned to exactly one worker. Reservoir sampling guarantees that all
local samples are uniformly random at any point, with each tuple having a probability of 𝑛

𝑁𝑖

to be contained in the corresponding thread-local sample. To generate the whole sample,
each worker first reports the cardinality of all chunks it processed, 𝑁𝑖 , to a coordinator 2 .

This coordinator can be an external worker or one of the sampling workers. First, the
coordinator determines the share in tuples that each thread-local sample has in the global
sample using either the hypergeometric distribution, or the proposed merge strategy outlined
in detail below. Then, the coordinator notifies each thread of the number of tuples it has
to choose for the global sample 3 , which in turn selects the desired amount uniformly
at random from their sample and reports it to the global sample 4 . In contrast to prior
work [CRM07] sharing all local samples with the coordinator in 𝑝𝑛 messages, our approach
needs at most 2𝑝 + 𝑛 messages: 2 per worker to communicate the local cardinality and the
number of tuples to contribute to the global sample, and 𝑛 to send the selected tuples.

3.2 Merge Strategy for Small Reservoirs

Conceptually, our approach for small reservoirs relies on iteratively evaluating and updating
a categorical distribution over all threads for each position of the final sample to determine
which thread to select for this reservoir slot. In contrast to strategies based on the hyperge-
ometric distribution, the categorical distribution has to be evaluated per sample slot and

572 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

Communication-Optimal Parallel Reservoir Sampling 17

Algorithm 1 Calculating per-thread share of global sample
1: function calculateThreadShare(localCardinalities[])
2: globalCardinality← sum(localCardinalities)
3: fenwickTree← FenwickTree::build(localCardinalities)
4: samplesPerThread← []
5: slot← 0
6: while slot < sampleSize and globalCardinality > 0 do
7: selectedTuple← pickRandom(0, globalCardinality − 1))
8: selectedThread← fenwickTree.rank(selectedTuple)
9: samplesPerThread[selectedThread] ← samplesPerThread[selectedThread] + 1

10: fenwickTree.add(selectedTuple, −1)
11: globalCardinality← globalCardinality − 1
12: slot← slot + 1
13: return samplesPerThread

not per thread. While this is too costly for large sample sizes, it avoids the computationally
expensive hypergeometric distribution. Each thread 𝑖 is selected with a probability of 𝑁𝑖

𝑁
for

the first slot. As we sample without replacement, we decrease the cardinality of the selected
thread 𝑁𝑖 and the global cardinality 𝑁 by 1 for the next draw. All threads 𝑗 with 𝑗 ≠ 𝑖 have
the probability 𝑁 𝑗

𝑁−1 of being selected for the next reservoir slot, the selected thread has a
probability of 𝑁𝑖−1

𝑁−1 . We repeat this until we have selected the source for all 𝑛 spaces in the
sample, decreasing 𝑁 and 𝑁𝑖 for the selected 𝑖 at every draw. Note that while conceptually
drawing slot by slot, we do not care about the order of the sample or the actual slot to select
from. This allows us to only track the number of tuples per thread.

Algorithm 1 shows our implementation. In the first step, we calculate the global cardinality
from the thread-local information and build a Fenwick tree over the local cardinalities
(Line 3). Fenwick trees, as described in [Fe94], allow efficient operations over prefix sums
while requiring only linear space. Building a Fenwick tree is possible in linear time, whereas
rank and update operations have logarithmic runtime. Following the setup, we can pick
the shares for each thread. For this, we first generate a random number 𝑟 in the range of 0
to 𝑁 (Line 7). For this, we first generate a random integer 𝑟 ∈ [0, 𝑁) (Line 7). From this
value, we pick the corresponding thread by using the prefix-sums stored in the Fenwick
tree. For 𝑟 ∈ [0, 𝑁1), we pick thread 1, for 𝑟 ∈ [𝑁1, 𝑁2), thread 2, and so forth. Mapping 𝑟
to a thread this way is possible in O(log(𝑝)) using the rank operation of the Fenwick tree
(Line 8). Then, we update the cardinality of the selected thread and the global cardinality
(Lines 10 and 11) for the next draw from the updated categorical distribution. We repeat the
draw and distribution update until we have either selected every tuple or filled every slot in
the final sample.

Our algorithm does not require floating point arithmetic, allowing a fast and exact evaluation.
The Fenwick tree construction dominates the setup step with a runtime of O(𝑝). The loop
of Line 6 is evaluated 𝑛 times, requiring O(log(𝑝)) to update the Fenwick tree, resulting in
an overall runtime complexity of O(𝑝 + 𝑛 log(𝑝)).

Communication-Optimal Parallel Reservoir Sampling 573

18 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

3.3 Proof

To show that the merge strategy outlined above does not change the resulting samples’
probability, we show that it selects tuples from local reservoirs equal to the hypergeometric
distribution. For this, we will use the probability mass function 𝑃(𝑋 = 𝑘) where 𝑋 denotes
the number of tuples selected from thread 𝑖. For our proof, we use the fact that the positions
for which 𝑖 is selected are irrelevant. Consider first the case where all 𝑘 selections of 𝑖
happen in the first 𝑘 draws, followed by 𝑛 − 𝑘 draws of 𝑗 ≠ 𝑖. This results in the probability

𝑃 (first 𝑘 from 𝑖) = 𝑁𝑖

𝑁
× 𝑁𝑖 − 1

𝑁 − 1
× · · · × 𝑁𝑖 − 𝑘 + 1

𝑁 − 𝑘 + 1
× 𝑁 − 𝑁𝑖

𝑁 − 𝑘
× 𝑁 − 𝑁𝑖 − 1

𝑁 − 𝑘 − 1
× · · · × 𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1

𝑁 − 𝑛 + 1
(2)

=
𝑁𝑖 × (𝑁𝑖 − 1) × · · · × (𝑁𝑖 − 𝑘 + 1) × (𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × · · · × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1)

𝑁 × (𝑁 − 1) × · · · × (𝑁 − 𝑛 + 1) . (3)

It is clear that, through the commutative property of the product, the draws for 𝑖, 𝑁𝑖 to
𝑁𝑖 − 𝑘 + 1, can be moved to any of the draws 𝑁 to 𝑁 − 𝑛 + 1 without changing the resulting
probability. For the full 𝑃(𝑋 = 𝑘), we additionally need to select the 𝑘 positions for our 𝑖
draws, resulting in the probability

𝑃 (𝑋 = 𝑘) = 𝑁𝑖 × (𝑁𝑖 − 1) × · · · × (𝑁𝑖 − 𝑘 + 1) × (𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × · · · × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1)
𝑁 × (𝑁 − 1) × · · · × (𝑁 − 𝑛 + 1) ×

(
𝑛

𝑘

)
. (4)

Using
(𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘)! and 𝑥 × (𝑥 − 1) × · · · × (𝑥 − 𝑚 + 1) = 𝑥!
(𝑥−𝑚)! we get

𝑃 (𝑋 = 𝑘) = (𝑁𝑖 × (𝑁𝑖 − 1) × · · · × (𝑁𝑖 − 𝑘 + 1)) × ((𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × · · · × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1))
𝑁 × (𝑁 − 1) × · · · × (𝑁 − 𝑛 + 1) ×

(
𝑛

𝑘

)
(5)

=
𝑁𝑖 !

(𝑁𝑖 − 𝑘)! ×
(𝑁 − 𝑁𝑖) × (𝑁 − 𝑁𝑖 − 1) × · · · × (𝑁 − 𝑁𝑖 − 𝑛 + 𝑘 + 1)

𝑁 × (𝑁 − 1) × · · · × (𝑁 − 𝑛 + 1) ×
(
𝑛

𝑘

)
(6)

=
𝑁𝑖 !

(𝑁𝑖 − 𝑘)! ×
(𝑁 − 𝑁𝑖)!

(𝑁 − 𝑁𝑖 − 𝑛 + 𝑘)! ×
1

𝑁 × (𝑁 − 1) × · · · × (𝑁 − 𝑛 + 1) ×
(
𝑛

𝑘

)
(7)

=
𝑁𝑖 !

(𝑁𝑖 − 𝑘)! ×
(𝑁 − 𝑁𝑖)!

(𝑁 − 𝑁𝑖 − 𝑛 + 𝑘)! ×
(𝑁 − 𝑛)!

𝑁 !
× 𝑛!

𝑘!(𝑛 − 𝑘)! (8)
=

𝑁𝑖 !
𝑘!(𝑁𝑖 − 𝑘)! ×

(𝑁 − 𝑁𝑖)!
(𝑁 − 𝑁𝑖 − (𝑛 − 𝑘))! × (𝑛 − 𝑘)! ×

(𝑁 − 𝑛)!𝑛!
𝑁 !

(9)

=

(𝑁𝑖
𝑘

)
×
(𝑁−𝑁𝑖
𝑛−𝑘

)(𝑁
𝑛

) (10)

which is the probability mass function of the hypergeometric distribution.

4 Evaluation

Having outlined the implementation of our fully parallel communication-optimal reservoir
sampling approach, we demonstrate its performance, focussing on scalability and the impact
of our proposed merge strategy for small sample sizes. The experiments are conducted using
an implementation within Umbra on a server equipped with 2 AMD EPYC™ 7713 CPUs
with 64 cores each and 1 TiB of main memory. To reduce the impact of IO bottlenecks, we
generate all data using the PostgreSQL-derived generate_series6 command. All results
reported are based on averages over 9 runs, each sampling 𝑁 = 100 billion records.

6 https://www.postgresql.org/docs/current/functions-srf.html

574 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

https://www.postgresql.org/docs/current/functions-srf.html

Communication-Optimal Parallel Reservoir Sampling 19

SMT

0

10

20

30

24 8 16 32 64 128 256

Threads

B
ill

io
n

tp
s

Reservoir Size
1
10
100
1000
10000

Fig. 2: Total sampling throughput with an increasing number of threads: Our communication-optimal
sampling approach scales nearly linearly to more than 30 billion tuples per second.

4.1 Scalability and Performance

In the first experiment, we investigate the scalability of our approach. As we require no
communication between threads during the sampling phase, we expect the sampling phase
to scale perfectly along the thread count. Additionally, the runtime of the merge phase is
independent of the input size, so we expect it to amortize for large data sets. We measure
the total throughput of our implementation with different reservoir sizes and an increasing
number of threads and report the results in Fig. 2. As expected, the throughput of processed
tuples scales nearly linearly with the number of threads. For a reservoir size of 1, our
implementation can process up to 35 billion tuples per second when using all 128 physical
cores. The experiment samples 8 B integers, so in total, our system processes up to 280 GB
of data per second.

Our approach requires each thread to collect a full-size local sample. For this reason, the
memory usage of sampling increases linearly with the number of threads. Therefore, we
expect higher sampling overhead and lower throughput for increasing sample sizes. However,
the results show that the overhead is manageable even for larger sample sizes. For example,
even when collecting a sample of size 10000, our implementation can still process over
30 billion tuples per second.

4.2 Merge Strategy Comparison

Our approach requires communication between threads only in the merge phase. We want
to show that our merge strategy, which employs a categorical distribution, can be more
efficient than a hypergeometric distribution while producing equivalent results. To evaluate
our strategy, we compare the runtime of the merge phase for both distributions. Fig. 3 shows
the relative speedup of our merge strategy with varying numbers of threads and sample
sizes. Note that the merge phase itself always runs single-threaded on a coordinator node.

Communication-Optimal Parallel Reservoir Sampling 575

20 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

47% 48% 50% 33% 48% 45% 57% 41%

83% 80% 83% 84% 84% 84% 80% 84%

89% 90% 91% 90% 91% 90% 89% 91%

83% 84% 84% 84% 80% 86% 79% 83%

42% 38% 39% 40% 38% 30% 39% 44%

8% 10% 11% 9% 6% 12% 14% 8%

-31% -28% -31% -33% -29% -27% -33% -25%

-1239% -1119% -1224% -1199% -1245% -1184% -1172% -1170%

1

10

50

100

500

750

1000

10000

1 2 4 16 64 256 512 1024

Threads

Re
se

rv
oi

rS
iz

e

-100%

-50%

0%

50%

100%
Speedup

Fig. 3: Speedup of our merge strategy based on a categorical distribution over using a hypergeometric
distribution: For sample sizes below 1000, our approach achieves up to 91% speedup independent of
the number of threads.

The number of threads in the figure refers to the number of locally collected samples to be
merged.

For sample sizes up to 750, our approach consistently outperforms using the hypergeometric-
distribution-based merge. The main reason for the efficiency of our merge strategy is that
it uses no floating-point operations. However, we need to perform two operations on the
Fenwick tree for every element in the sample, while the merge phase using a hypergeometric
distribution only generates one value from the distribution for every thread, independent
of the sample size. Therefore, our merge strategy is inefficient for larger sample sizes.
The experiment further shows that our approach’s speedup is generally independent of the
number of threads: Our strategy consistently achieves similar speedup across all sample
sizes, even for several hundred threads.

5 Conclusion

In this paper, we introduced a new communication-optimal parallel reservoir sampling
technique, requiring only 2𝑝 + 𝑛 messages for environments with 𝑝 workers and a sample
size of 𝑛. Our technique relies on an efficient merge of thread-local reservoir samples, each
taken over arbitrarily distributed chunks of the input. In addition, we described a novel merge
strategy optimized for small sample sizes and provide proof that this strategy is statistically
equal to the hypergeometric distribution. With our implementation of communication-
optimal parallel reservoir sampling in the Umbra database system, we evaluated its overall
performance, and both merge strategies. Achieving more than 370 million samples per
thread, we showed near-linear scale up to 128 workers and a clear advantage of our optimized
merge for samples smaller than 1000 tuples.

576 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

Communication-Optimal Parallel Reservoir Sampling 21

Bibliography
[BRN20] Birler, Altan; Radke, Bernhard; Neumann, Thomas: Concurrent online sampling for all,

for free. In: DaMoN. ACM, pp. 5:1–5:8, 2020.

[Ca15] Carbone, Paris; Katsifodimos, Asterios; Ewen, Stephan; Markl, Volker; Haridi, Seif;
Tzoumas, Kostas: Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE
Data Eng. Bull., 38(4):28–38, 2015.

[Co12] Cormode, Graham; Garofalakis, Minos N.; Haas, Peter J.; Jermaine, Chris: Synopses
for Massive Data: Samples, Histograms, Wavelets, Sketches. Found. Trends Databases,
4(1-3):1–294, 2012.

[CRM07] Chickering, David M; Roy, Ashis K; Meek, Christopher A: , Distributed reservoir sampling
for web applications, December 11 2007. US Patent 7,308,447.

[Fe94] Fenwick, Peter M.: A New Data Structure for Cumulative Frequency Tables. Softw. Pract.
Exp., 24(3):327–336, 1994.

[FMR62] Fan, C. T.; Muller, Mervin E.; Rezucha, Ivan: Development of Sampling Plans by Using
Sequential (Item by Item) Selection Techniques and Digital Computers. Journal of the
American Statistical Association, 57(298):387–402, 1962.

[FN19] Freitag, Michael J.; Neumann, Thomas: Every Row Counts: Combining Sketches and
Sampling for Accurate Group-By Result Estimates. In: CIDR. www.cidrdb.org, 2019.

[He21] Hertzschuch, Axel; Moerkotte, Guido; Lehner, Wolfgang; May, Norman; Wolf, Florian;
Fricke, Lars: Small Selectivities Matter: Lifting the Burden of Empty Samples. In:
SIGMOD Conference. ACM, pp. 697–709, 2021.

[HS20] Hübschle-Schneider, Lorenz; Sanders, Peter: Communication-Efficient Weighted Reservoir
Sampling from Fully Distributed Data Streams. In: SPAA. ACM, pp. 543–545, 2020.

[Le14] Leis, Viktor; Boncz, Peter A.; Kemper, Alfons; Neumann, Thomas: Morsel-driven paral-
lelism: a NUMA-aware query evaluation framework for the many-core age. In: SIGMOD
Conference. ACM, pp. 743–754, 2014.

[Li94] Li, Kim-Hung: Reservoir-Sampling Algorithms of Time Complexity O(n(1 + log(N/n))).
ACM Trans. Math. Softw., 20(4):481–493, 1994.

[LN90] Lipton, Richard J.; Naughton, Jeffrey F.: Query Size Estimation by Adaptive Sampling. In:
PODS. ACM Press, pp. 40–46, 1990.

[Ma20] Mahmud, Mohammad Sultan; Huang, Joshua Zhexue; Salloum, Salman; Emara, Tamer Z.;
Sadatdiynov, Kuanishbay: A survey of data partitioning and sampling methods to support
big data analysis. Big Data Min. Anal., 3(2):85–101, 2020.

[MH20] Moerkotte, Guido; Hertzschuch, Axel: alpha to omega: the G(r)eek Alphabet of Sampling.
In: CIDR. www.cidrdb.org, 2020.

[NF20] Neumann, Thomas; Freitag, Michael J.: Umbra: A Disk-Based System with In-Memory
Performance. In: CIDR. www.cidrdb.org, 2020.

[Sa16] Sanders, Peter; Lamm, Sebastian; Hübschle-Schneider, Lorenz; Schrade, Emanuel; Dachs-
bacher, Carsten: Efficient Random Sampling - Parallel, Vectorized, Cache-Efficient, and
Online. CoRR, abs/1610.05141, 2016.

Communication-Optimal Parallel Reservoir Sampling 577

22 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

[SA22] Sanca, Viktor; Ailamaki, Anastasia: Sampling-Based AQP in Modern Analytical Engines.
In: DaMoN. ACM, pp. 4:1–4:8, 2022.

[Sc15] Schelter, Sebastian; Soto, Juan; Markl, Volker; Burdick, Douglas; Reinwald, Berthold;
Evfimievski, Alexandre V.: Efficient sample generation for scalable meta learning. In:
ICDE. IEEE Computer Society, pp. 1191–1202, 2015.

[Sc21] Schüle, Maximilian E.; Lang, Harald; Springer, Maximilian; Kemper, Alfons; Neumann,
Thomas; Günnemann, Stephan: In-Database Machine Learning with SQL on GPUs. In:
SSDBM. ACM, pp. 25–36, 2021.

[Sc22] Schüle, Maximilian E.; Lang, Harald; Springer, Maximilian; Kemper, Alfons; Neumann,
Thomas; Günnemann, Stephan: Recursive SQL and GPU-support for in-database machine
learning. Distributed Parallel Databases, 40(2):205–259, 2022.

[Ti11] Tillé, Yves: Sampling Algorithms. In: International Encyclopedia of Statistical Science,
pp. 1273–1274. Springer, 2011.

[Ti21] Ting, Daniel: Simple, Optimal Algorithms for Random Sampling Without Replacement.
CoRR, abs/2104.05091, 2021.

[TW11] Tirthapura, Srikanta; Woodruff, David P.: Optimal Random Sampling from Distributed
Streams Revisited. In: DISC. volume 6950 of Lecture Notes in Computer Science. Springer,
pp. 283–297, 2011.

[Vi84] Vitter, Jeffrey Scott: Faster Methods for Random Sampling. Commun. ACM, 27(7):703–
718, 1984.

[Vi85] Vitter, Jeffrey Scott: Random Sampling with a Reservoir. ACM Trans. Math. Softw.,
11(1):37–57, 1985.

[Vi87] Vitter, Jeffrey Scott: An efficient algorithm for sequential random sampling. ACM Trans.
Math. Softw., 13(1):58–67, 1987.

[Wi20] Winter, Christian; Schmidt, Tobias; Neumann, Thomas; Kemper, Alfons: Meet Me Halfway:
Split Maintenance of Continuous Views. Proc. VLDB Endow., 13(11):2620–2633, 2020.

[Za16] Zaharia, Matei; Xin, Reynold S.; Wendell, Patrick; Das, Tathagata; Armbrust, Michael;
Dave, Ankur; Meng, Xiangrui; Rosen, Josh; Venkataraman, Shivaram; Franklin, Michael J.;
Ghodsi, Ali; Gonzalez, Joseph; Shenker, Scott; Stoica, Ion: Apache Spark: a unified engine
for big data processing. Commun. ACM, 59(11):56–65, 2016.

[Ze20] Zeuch, Steffen; Chaudhary, Ankit; Monte, Bonaventura Del; Gavriilidis, Haralampos;
Giouroukis, Dimitrios; Grulich, Philipp M.; Breß, Sebastian; Traub, Jonas; Markl, Volker:
The NebulaStream Platform for Data and Application Management in the Internet of
Things. In: CIDR. www.cidrdb.org, 2020.

578 Christian Winter, Moritz Sichert, Altan Birler, Thomas Neumann, Alfons Kemper

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge
Bases

Philipp Christmann1, Rishiraj Saha Roy2, Gerhard Weikum3

Abstract: Curated knowledge bases (KBs) store vast amounts of factual world knowledge, and
are therefore ubiquitous in many information retrieval (IR) and natural language processing (NLP)
applications like question answering, named entity disambiguation, or knowledge exploration. Despite
that, accessing information from complete knowledge bases is often a daunting task. Researchers and
practitioners typically have crisp use cases in mind, for which standard querying interfaces can be
overly complex and inefficient. We aim to bridge this gap, and release a public toolkit that provides
functionalities for common KB access use cases, and make it available via a public API. Experiments
show efficiency improvements over existing KB interfaces for various important functionalities.

Keywords: Knowledge Base; Knowledge Graph; RDF; Efficiency

1 Introduction

Large curated knowledge bases (KBs), also known as knowledge graphs (KGs), like
Wikidata [VK14], DBpedia [Au07], YAGO [SKW07], Freebase [Bo08], and industrial
counterparts (e.g. at Amazon, Apple, Google, or Microsoft), store factual world knowledge
in compact RDF (Resource Description Framework) triples.

Such knowledge bases empower question answering (QA) systems [BH15, Be13, Ch19,
SRA22], that offer natural interfaces for accessing information. Most digital personal
assistants like Alexa, Siri, Google Assistant, or Cortana are essentially QA systems accessing
a variety of information at their backends, including curated KBs. There is a wide range of
research on QA, ranging from methods that target simple single-shot questions [Ab18, Be13],
spanning methods dedicated for complex multi-hop questions [Su18], to algorithms that
keep track of an ongoing conversational context [CSRW22b, KSRW21, LJ21, Sa18].

For implementing QA systems, one can identify a common set of basic KB functionalities
that are very often necessary. For example, retrieving all KB facts with a specific entity, or
computing the shortest KG path between two entities, are two such frequent needs.

Apart from QA, there is a range of other tasks/applications that benefit from quick and
easy access to large KBs. Named entity recognition and detection (NERD) systems can be
1 Max-Planck-Institut für Informatik & Saarland University, Saarbrücken, Deutschland, pchristm@mpi-inf.mpg.de
2 Max-Planck-Institut für Informatik & Saarland University, Saarbrücken, Deutschland, rishiraj@mpi-inf.mpg.de
3 Max-Planck-Institut für Informatik & Saarland University, Saarbrücken, Deutschland, weikum@mpi-inf.mpg.de

cba doi:10.18420/BTW2023-28

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 579

mailto:pchristm@mpi-inf.mpg.de
mailto:rishiraj@mpi-inf.mpg.de
mailto:weikum@mpi-inf.mpg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-28

2 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

used for mapping entities in text to canonicalized objects, which can give insights about
a text at hand [FS10, Ho11, Li20]. Another example use case is entity ranking [CD22],
which features in search engines to show entity-centric information for queries like “Angela
Merkel”. Further, information or statistics extracted from the KB can be leveraged for
improving performance on downstream tasks: the distance between entities can serve as
a proxy for their semantic similarity [ZI16], the frequency of an entity in the KB can be
used for understanding how popular an entity is [Ch19], and the KB ontology can help in
relation extraction [Ko14] or answer verification [BH15].

For implementing such methods, several shared KB functionalities are required: identifying
the distance between two entities, retrieving the frequency of a KB item, retrieving the type
of an entity, or computing the shortest path between two KB items.

Available interfaces to large KBs, with multiple terabytes of data, are often based on
query languages like SPARQL. Such interfaces allow for a very general access to the
KB with arbitrary complexity, and are heavily optimized for different query patterns and
workloads [Fe13, Ur16]. However, implementing some of the basic operations mentioned
above can lead to a high degree of query complexity, manual effort and efficiency overhead.

One key problem is that using existing interfaces for accessing KBs requires deep knowledge
and understanding of the respective KB schema, which is different for every KB. Another
problem that we identify is that the whole KB storage and the corresponding query languages
are optimized for the native RDF triple structure. However, modern KBs store n-ary facts,
using reification (e.g. via qualifier statements in Wikidata, or Compound Value Types
(CVTs) in Freebase), going beyond the self-contained triples [HHK15]. In fact, one fourth of
the facts in Wikidata provide additional information via such qualifier statements. Consider
the real-life fact that Angela Merkel was chancellor of Germany, in triple structure:

⟨Angela Merkel, position held, Federal Chancellor of Germany⟩

From this fact, important contextual information is missing: she was chancellor in the past,
from 2005 to 2021, she was the 8th German chancellor, she replaced Gerhard Schröder,
etc. In triple structure, this additional context is represented by reification of the basic fact,
and adding more triples that refer to the basic fact’s identifier and express the contextual
information. The single n-ary (compound) fact discussed above would be represented as:

⟨Angela Merkel, position held, fact-id⟩
⟨fact-id, position held, Federal Chancellor of Germany⟩

⟨fact-id, start time, 2005⟩
⟨fact-id, end time, 2021⟩

⟨fact-id, series ordinal, 8⟩
⟨fact-id, replaces, Gerhard Schröder⟩

Using traditional query interfaces, retrieving all facts with Angela Merkel from the knowledge
base can be cumbersome and inefficient: queries with the entity as subject, object, and

580 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 3

qualifier-object of the fact are required. An example SPARQL query for detecting all facts
with Angela Merkel as subject from Wikidata is shown below:
SELECT DISTINCT ?fact_id ?subject ?predicate ?object ?qual_pred ?qual_obj {

VALUES (?subject) {(Angela Merkel)}

?subject ?p ?fact_id .

?fact_id ?ps ?object .

?predicate wikibase:claim ?p .

?predicate wikibase:statementProperty ?ps .

OPTIONAL{

?fact_id ?pq ?qual_obj .

?qual_pred wikibase:qualifier ?pq

}

}

Similar queries need to be run binding Angela Merkel to the object and qualifier-object
position. Afterwards, the results need to be post-processed, joining all constituents for one
fact-id. Overall, this causes quite a few KB interactions and processing overhead.

Further, certain KB concepts are not well-defined for such scenarios. How should this fact
be represented in graphical form, where graphs of all facts would be overlaid to obtain a
knowledge graph? Would 2009 belong to the 1-hop neighborhood of Barack Obama? What
would be the KB distance between Barack Obama and George W. Bush? Should the shortest
path include non-content like fact-ids?

We present a fact-centric definition of the KB, which represents KB facts as arbitrary-length
lists, considering context information in qualifiers to be of comparable importance as that in
the main triple4. This allows us to establish intuitive definitions for KB neighborhood, KB
distance, and shortest paths between entities. Based on these definitions, we implement a fact-
centric KB index, ClocqKB, that allows efficient KB access to perform the functionalities
described above. The resulting KB interface is made available to the community for accessing
KBs more conveniently, both as a public API and open-source code repository.

Contributions. Our contributions in this work are as follows:

• Identifying and outline key problems with existing interfaces for common KB access
needs in many NLP and IR use cases;

• Proposing an efficient solution to the problems with existing triple-centric interfaces,
based on a fact-centric view of the KB;

• Proposing concise and unambiguous definitions for basic KB concepts;
• Making our code available, and release a public API that allows people to conveniently

access Wikidata, without having to deal with multiple terabytes of data5.

4 This implements and extends our work in WSDM 2022 [CSRW22a].
5 https://clocq.mpi-inf.mpg.de

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 581

https://clocq.mpi-inf.mpg.de

4 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

Federal Chancellor
of Germany

position heldstart time2005

replacesGerhard
Schröder

end time2021

series
ordinal

8

RelationEntity Literal

country

country league

1. FC Kaiserslautern

start time

end time

1963

1996
Angela
Merkel

Germany Bundesliga

Fact 𝑓! Fact 𝑓" Fact 𝑓# Fact 𝑓$

Fig. 1: Graph representation of a KB fact.

2 KB Index

Our primary design choice is to take a fact-centric view of the KB. Therefore, we treat
the KB as a set of facts, instead of a set of triples. As a result, we also directly store and
index the facts as a whole. With that, we avoid any complex query structures or post-hoc
joining of separate fact constituents at runtime. This helps us to significantly improve the
runtime efficiency of several important KB functionalities, like retrieving all KB facts with
a specific KB item, or computing the distance between two KB items.

2.1 Concepts and definitions

Based on a fact-centric view of the KB, we establish the following definitions, answering
the questions posed in Sec. 1.

Knowledge base. A knowledge base K is a set of KB facts.

KB fact. A KB fact f is a list of KB items, and expresses objective information or knowledge.
It consists of the main triple, which has a subject, predicate, and object, and an optional set
of qualifiers represented as ⟨qualifier-predicate, qualifier-object⟩ pairs. The subject is an
entity, the predicate and qualifier-predicate are relations. The object is an entity, type or
literal (date or string), and the qualifier-object can be an entity or literal. An example fact
is ⟨Angela Merkel, position held, Federal Chancellor of Germany; start time, 2005; end
time, 2021; series ordinal, 8; replaces, Gerhard Schröder⟩, which represents the same
information as the compound fact in Sec. 1. A set of facts can be represented in a graph as
illustrated in Fig. 1. In this representation, the qualifiers are connected to the predicate of a
fact, describing the relation between the subject and object in more detail. Note also, that
each instance of a relation becomes an individual node. If, for example, the two country
nodes were merged, information would be lost: ⟨Bundesliga, country, Angela Merkel⟩ could
be inferred as a fact then.

KB item. A KB item x is either an entity (Angela Merkel), relation (position held), type
(human), or literal (2021).

582 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 5

Neighborhood. The 1-hop neighborhood 𝑁 𝑓 of an item 𝑥 is the set of all facts in 𝐾 with
𝑥: 𝑁 𝑓 (𝑥) = { 𝑓 |𝑥 ∈ 𝑓 ∧ 𝑓 ∈ 𝐾}. To generalize, the ℎ-hop neighborhood 𝑁ℎ

𝑓
(𝑥) is then the

union of all facts with any of the items in the (ℎ-1)-hop neighborhood.

Neighbors. The 1-hop neighbors 𝑁𝑖 of 𝑥 are all KB items in the 1-hop neighborhood of 𝑥:
𝑁𝑖 (𝑥) = {𝑥′ |𝑥′ ∈ 𝑓 ∧ 𝑓 ∈ 𝑁 𝑓 (𝑥)}. Analogously, the set of ℎ-hop neighbors 𝑁ℎ

𝑖
(𝑥) is given

by all KB items in the ℎ-hop neighborhood.

Frequency. The frequency of a KB item is given by the size of its 1-hop neighborhood
|𝑁 𝑓 (𝑥) |, i.e. the number of facts 𝑥 appears in. Without loss of generality, the frequency can
be measured w.r.t. a specific position in the fact (e.g. frequency in subject-position).

KB distance. The KB distance between two KB items 𝑥 and 𝑦 is ℎ, if the items are ℎ
hops away from each other, i.e. ℎ = minℎ′ 𝑥 ∈ 𝑁ℎ′

𝑖
(𝑦). For example, the distance of Angela

Merkel and Gerhard Schröder is 1, since they appear in the same fact. The distance between
Angela Merkel and Bundesliga is 2.

Shortest path. The shortest path between two KB items is given by the (set of) fact(s) in
between. This ensures that important contextual information is not skipped, considering
the facts as a whole. For example, if we used only the direct connection between Angela
Merkel and Federal Chancellor of Germany in the graph, incorrect inferences could be made.
Instead, the whole fact 𝑓1 is the shortest path. The shortest path between Angela Merkel and
Bundesliga would be 𝑓2 ◦ 𝑓3, where ◦ denotes concatenation.

2.2 Implementation

For improving space efficiency, each KB item 𝑥 is first integer-encoded as 𝑖𝑛𝑡 (𝑥) [Fe13, Ur16],
and we create mappings from 𝑥 → 𝑖𝑛𝑡 (𝑥) and 𝑖𝑛𝑡 (𝑥) → 𝑥. Each fact 𝑓 = ⟨𝑥0, 𝑥1, ...⟩ is
then stored as 𝑖𝑛𝑡 (𝑓) = ⟨𝑖𝑛𝑡 (𝑥0), 𝑖𝑛𝑡 (𝑥1), ...⟩. For facilitating our computations, we index
the following information for each item in the KB: the 1-hop neighborhood 𝑁 𝑓 (𝑥) and
the set of 1-hop neighbors 𝑁𝑖 (𝑥), both in an integer-encoded manner. This allows us to
compute the most important functionalities via simple lookups or set operations at runtime,
improving efficiency. Details on the specific implementations of individual functionalities
can be found in Sec. 3.

The neighborhoods for each item 𝑥 are stored in two lists, holding pointers to the individual
facts: one list for facts with 𝑥 in subject-position, and one for all other facts with 𝑥. This will
be useful later, for retrieving only salient facts with a KB item. The neighborhood lists of 𝑥
are then stored in position 𝑖𝑛𝑡 (𝑥) in the index, which is implemented by another list.

The neighbors of an item 𝑥 are stored as a set, which is again stored in position 𝑖𝑛𝑡 (𝑥) in the
corresponding index list. Another possibility would be to extract the set of neighbors from
the 1-hop neighborhood at runtime. This reduces the memory footprint, but increases the
costs for computing KB distances.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 583

6 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

3 Functionalities

In this section, we will describe the functionalities provided with our KB interface in more
detail, elaborating some of the implementation details. All functions are implemented for
Wikidata, the largest public KB that is actively maintained. However, the principles would
still hold for other large curated KBs like DBpedia as well.

3.1 Direct lookups

Label. To avoid collisions due to duplicate labels, KBs typically use identifiers for
representing KB items. For example, Angela Merkel is stored as Q567 in Wikidata, and
position held as P39 (for simplicity, we use labels to refer to items in this paper). We provide
a simple function to look up the (English) label for a provided Wikidata ID.

Aliases. Another useful information on a KB item are aliases. These are alternative labels
that one can use for the same KB item. For example, “CR7” is an alias of Cristiano Ronaldo,
and “office held” is an alias of position held. Such aliases can be used for improving
relation extraction [Ba21, Va18] or NERD systems [BOM15]. Relation aliases can also be
used for training crisp paraphrase models.

Description. Further, Wikidata stores a crisp description for each KB item, which can e.g.
be helpful for deriving latent representations of an item [GSR17].

Types. Another important information on an entity are the KB types. Typical use cases
are entity linking [GSR17], answer verification [BH15] in QA systems, or enhanced
efficiency [Zi17] of QA systems. For example, Angela Merkel is a human, and Germany
is associated with the types sovereign state, republic, and country. To enhance the
expressiveness of the types, we add the occupations of a human, which are not stored as
types in Wikidata. E.g. Angela Merkel would also be associated with politician or physicist.

Most frequent type. In some use cases, having exactly one type for an entity is desir-
able [CSRW22b]. Unlike the deprecated KB Freebase, Wikidata does not indicate the most
notable type of an entity. As a proxy, we use the most frequent type of an entity in the KB.

3.2 More complex functionalities

1-hop neighborhood. This function is used for retrieving the 1-hop neighborhood of an
item, which is a frequent use case in QA [Ch19, SRA22, Su18], but can also be useful for
other applications like KB completion [Ba19] or entity alignment [Su20]. For implementing
this function, we can simply look up the neighborhood in our fact-centric KB index. We
further implement a mechanism to retrieve the more salient facts for a specific KB item:
frequent KB items like Germany can easily have millions of facts in their neighborhood.
However, retrieving all these facts is often not desired in IR or NLP applications [SRA22].

584 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 7

A parameter 𝑝 is used to control the amount of facts returned as follows: if there are more
than 𝑝 facts with 𝑥 in the object or qualifier-object position, then these facts are dropped, i.e.
only facts with 𝑥 in the subject-position are kept. This can also help improve the efficiency
of downstream applications: the I/O time can be drastically reduced, and only a subset of
more salient facts needs to be processed. The output of this function is a set of KB facts.

Frequency. For computing the frequency, we count the number of facts with 𝑥 as subject,
and the number of facts with 𝑥 not in subject position, using the neighborhood index. The
output of this function are the two resulting counts.

Connectivity. We can also compute a connectivity score for two KB items. Note that when
retrieving the 3 or 4-hop neighborhood of an item, this will give almost the entire KB.
Therefore, we define a connectivity score of two KB items, which we found more useful
than a standard distance function in practice [CSRW22a]. The connectivity is 1 if the items
have a KB distance of 1, 0.5 if they have a distance of 2, and 0 if they are not connected
within 2 hops. The function can be efficiently implemented using basic set operations:

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥, 𝑦) =

1 if 𝑥 ∈ 𝑁𝑖 (𝑦) ∨ 𝑦 ∈ 𝑁𝑖 (𝑥)
0.5 if 𝑁𝑖 (𝑥) ∩ 𝑁𝑖 (𝑦) ≠ ∅
0 otherwise

(1)

Note that the 1-hop neighbors 𝑁𝑖 (𝑥) and 𝑁𝑖 (𝑦) are simply looked up in the index.

Shortest path. Another often-needed KB functionality is obtaining the shortest path between
two items, which can be used to analyze their semantic relationship [JJ19], obtaining training
data for QA [Su18], or for connecting multiple subgraphs [Pr21]. The implementation
makes use of the connectivity function outlined above: if two items 𝑥, 𝑦 have a connectivity
of 1, we search the smaller of the two 1-hop neighborhoods for a fact with both items. For a
connectivity of 0.5, we identify the “items in the middle” {𝑚𝑖}, i.e. the set of items that are
connected with 𝑥 in 1 hop and with 𝑦 in 1 hop. For these items {𝑚𝑖}, we search for the joint
facts with 𝑥 and 𝑦, respectively. The output of this function is a set of facts (connectivity =
0.5), or a set of 2-hop paths, one for each 𝑚𝑖 , where each such path is given by a set of facts
connecting 𝑥 and 𝑚𝑖 , and a set of facts connecting 𝑚𝑖 and 𝑦 (connectivity = 1).

3.3 Search Space Reduction

Finally, we briefly introduce the key algorithm introduced in our recent work [CSRW22a],
which retrieves a set of relevant KB facts for a given question. This is typically the first
step in QA systems [CSRW22b, SRA22, Su18] for reducing the search space. Consider
an input like “Who scored the final goal for Germany in 2014?”. For a human interested
in football it is obvious that “Germany” refers to the German national football team, and
that the question is on the 2014 FIFA World Cup. However, this only becomes clear when
considering the question as a whole, taking the respective context into account. Therefore,
mapping the question words to KB items is a non-trivial task.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 585

8 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

We propose a method that first retrieves a set of candidate disambiguations for each question
word. These candidate disambiguations are then scored based on four different signals.
We use the word-level scores for term matching and question relatedness. Further, to
understand the text as a whole, we also consider the connectivity and coherence among
disambiguations. Note that certain question words may be more ambiguous than others,
and providing additional candidate disambiguations for such question words could alleviate
potential errors. Therefore, we dynamically adjust the number of disambiguations 𝑘 for
each individual question word. The algorithm provides the disambiguations, and facts with
the disambiguated items, as the output.

Entity and relation linking. Based on this algorithm, we also make functionalities for
entity linking and relation linking available. The idea is to prune less relevant entities or
relations from the disambiguations provided by the search space reduction method outlined
above. These functions have been developed using data from the SMART 2022 Task6.

4 Experiments

In this section, we conduct experiments to compare the efficiency of our fact-centric KB
interface with existing triple-centric ones on a set of important KB functionalities.

4.1 Experimental Setup

The ClocqKB is initiated with a Wikidata dump from 31 January 2022, that has been
cleaned for removing information irrelevant for most common tasks7. We show runtimes of
a locally running version of ClocqKB, a version without the neighbors’ index (ClocqKB
w/o 𝑁𝑖), and the publicly available ClocqKB-API8.

We compare our fact-centric KB inferface with two triple-centric ones: Hdt [Fe13] which
implements fast triple lookups based on efficient bitmap encodings, and the publicly
available QueryService9 provided by Wikidata. For Hdt, we used the latest dump made
available (3 March 2021)10, and run it on our local machine. Note that it is highly non-trivial
to perform the cleaning steps (mentioned above) for the HDT dump, since it comes in a
highly compressed form. While function results may therefore not be exactly the same, the
runtimes are still comparable. All experiments with the QueryService are conducted in
September 2022. Note that we measure all network latencies (if any), and subtract these
from the measured timings for fair comparisons. The local experiments are run on an AMD
EPYC 7702 Processor, and the public API is running on an AMD EPYC 7302P Processor.

6 https://smart-task.github.io/2022/

7 https://github.com/PhilippChr/wikidata-core-for-QA

8 https://clocq.mpi-inf.mpg.de

9 https://query.wikidata.org

10 https://www.rdfhdt.org/datasets/

586 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

https://smart-task.github.io/2022/
https://github.com/PhilippChr/wikidata-core-for-QA
https://clocq.mpi-inf.mpg.de
https://query.wikidata.org
https://www.rdfhdt.org/datasets/

CLOCQ 9

KB interface Hdt [Fe13] ClocqKB ClocqKB w/o 𝑁𝑖 QueryService ClocqKB-API
RAM consumed 150 GB 470 GB 360 GB − −

Neighborhood 1.21 s 5.99 × 10−5 s 6.01 × 10−5 s 0.561 s 4.36 × 10−3 s
Frequency 3.12 × 10−2 s 1.02 × 10−5 s 1.15 × 10−5 s 0.122 s 4.24 × 10−3 s
Connectivity 0.802 s 1.83 × 10−5 s 5.02 × 10−5 s 1.11 s 4.22 × 10−3 s
Shortest path 3, 046 s 0.553 s 15.8 s 1.18 s 0.591 s

Tab. 1: Large-scale runtime efficiency analysis of KB interfaces.

4.2 Large-scale efficiency analysis

We first compare the efficiency of the KB interfaces for the following four functionalities:
i) retrieving the 1-hop neighborhood, ii) computing the frequency, iii) computing the
connectivity, and iv) identifying the shortest path. We restrict our experiments on the
more complex functionalities (Sec. 3.2) here. However, even for accessing the simpler
functionalities (Sec. 3.1), deep knowledge of the KB schema is required for the baselines.

As input, we use 10, 000 random item (pairs when applicable) for each functionality, using
the same random seed for all interfaces. We only used 100 random pairs for shortest path,
due to substantially higher runtimes. In case an error is thrown for a function call, which
might sometimes occur for the QueryService, the corresponding instance is dropped
from the analysis for all methods. The results are shown in Table 1.

The key observations are as follows. Due to its smart KB indices, ClocqKB can achieve
extremely low runtimes for retrieving 1-hop neighborhoods, frequencies, or performing
connectivity checks. Removing the neighbors’ index only has a minor effect on the
connectivity check, while the effect on the shortest path functionality is notable. The runtime
of the triple-centric baselines is higher by a factor of 103 to 105 than that of ClocqKB in
most scenarios, indicating the runtime benefits of a fact-centric approach for such use cases.
The public ClocqKB-API has higher runtimes than the version running locally, due to a
different processor and some I/O overhead, but is still substantially faster than the baselines.

Note that ClocqKB consumes quite some RAM. One could store the indexes in a dedicated
database to save memory. However, in an industrial use case, ∼500 GB RAM is not a major
concern, and for scientific use cases the ClocqKB-API can be used.

4.3 Anecdotal examples

Results in Table 1 are for a random sample, and can show trends among the different KB
interfaces. We also conducted experiments on a set of popular items that may often appear in
a real application. We chose the following KB items: Angela Merkel, Germany, Bundesliga,
and run the same functionalities on these items. Results can be seen in Table 2. Time-outs
are indicated by "n/a".

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 587

10 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

KB interface Hdt [Fe13] ClocqKB QueryService ClocqKB-API
Neighborhood(Angela Merkel) 20.8 s 2.55 × 10−3 s 2.12 s 1.07 × 10−2 s
Neighborhood(Germany) 2, 990 s 2.73 s "n/a" 15.6 s
Neighborhood(Bundesliga) 15.2 s 1.10 × 10−2 s "n/a" 3.56 × 10−2 s

Frequency(Angela Merkel) 2.85 × 10−2 s 2.55 × 10−5 s 0.186 s 5.34 × 10−3 s
Frequency(Germany) 5.20 × 10−5 s 2.56 × 10−5 s 0.280 s 5.39 × 10−3 s
Frequency(Bundesliga) 5.20 × 10−5 s 2.47 × 10−5 s 8.33 × 10−2 s 5.44 × 10−3 s

Connectivity(Angela Merkel, Germany) 61.3 s 3.48 × 10−5 s "n/a" 5.37 × 10−3 s
Connectivity(Germany, Bundesliga) 60.3 s 3.27 × 10−5 s "n/a" 5.21 × 10−3 s
Connectivity(Angela Merkel, Bundesliga) 0.328 s 8.28 × 10−4 s "n/a" 5.10 × 10−3 s

Shortest path(Angela Merkel, Germany) 118 s 7.80 × 10−2 s "n/a" 8.42 × 10−2 s
Shortest path(Germany, Bundesliga) 120 s 8.10 × 10−2 s "n/a" 8.89 × 10−2 s
Shortest path(Angela Merkel, Bundesliga) 5, 260 s 0.156 s "n/a" 0.178 s

Tab. 2: Runtime efficiency analysis on manually chosen function calls for popular entities.

The results reveal that the public QueryService cannot cope with use cases in which
larger intermediate results are obtained (like for Germany or even Bundesliga). Most such
runs faced server-side time-outs. Hdt obtains results for all experiments, but can take
quite some time to do so: runtimes > 1 s are rarely acceptable in IR or NLP applications.
While runtimes for ClocqKB can get higher in extreme cases, like for retrieving the 1-hop
neighborhood of Germany with more than 1.4 million facts, the runtimes remain tractable,
indicating runtime benefits of 103 to 105 of our fact-centric approach in most cases.

5 Related Work

There has been substantial work on optimizing query performance on KBs [EM10, NW08,
Ur16]. Jacobs [UJ20] proposed Trident, for enabling different kinds of workloads (e.g.
SPARQL, graph analytics) on large KBs. Hdt [Fe13] is an efficient representation of
RDF data, that is both space and runtime efficient. The individual triples of the KB are
encoded using bitmaps. Two integer-streams holding all predicates and objects for a fixed
subject are established. The relations between these predicates and objects are encoded
using bit-streams. Using several indexes, Hdt can search for triple pattern very efficiently.
However, there is no dedicated mechanism for querying n-ary facts.

While the proposed approaches show high performance on traditional SPARQL(-like)
queries, we showed through comparison that important KB functionalities can be more
efficiently implemented taking a fact-centric view of the KB.

6 Conclusion

We present a fact-centric view of the KB, and based on this, provide simple and efficient
implementations of several important KB functionalities. These are either not available
in existing implementations, or would be quite complex to use, especially for new users.
Experiments show that we outperform existing KB interfaces w.r.t. runtime efficiency. We
make our code available, and provide a public API to enhance KB applications and research.

588 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 11

Bibliography
[Ab18] Abujabal, Abdalghani; Saha Roy, Rishiraj; Yahya, Mohamed; Weikum, Gerhard: Never-

ending learning for open-domain question answering over knowledge bases. In: WWW.
pp. 1053–1062, 2018.

[Au07] Auer, Sören; Bizer, Christian; Kobilarov, Georgi; Lehmann, Jens; Cyganiak, Richard;
Ives, Zachary: DBpedia: A nucleus for a Web of open data. In: The Semantic Web. pp.
722–735, 2007.

[Ba19] Bansal, Trapit; Juan, Da-Cheng; Ravi, Sujith; McCallum, Andrew: A2N: Attending to
neighbors for knowledge graph inference. In: ACL. pp. 4387–4392, 2019.

[Ba21] Bastos, Anson; Nadgeri, Abhishek; Singh, Kuldeep; Mulang, Isaiah Onando; Shekar-
pour, Saeedeh; Hoffart, Johannes; Kaul, Manohar: RECON: relation extraction using
knowledge graph context in a graph neural network. In: WWW. pp. 1673–1685, 2021.

[Be13] Berant, Jonathan; Chou, Andrew; Frostig, Roy; Liang, Percy: Semantic parsing on
freebase from question-answer pairs. In: EMNLP. pp. 1533–1544, 2013.

[BH15] Bast, Hannah; Haussmann, Elmar: More accurate question answering on freebase. In:
CIKM. pp. 1431–1440, 2015.

[Bo08] Bollacker, Kurt; Evans, Colin; Paritosh, Praveen; Sturge, Tim; Taylor, Jamie: Freebase: A
collaboratively created graph database for structuring human knowledge. In: SIGMOD.
pp. 1247–1250, 2008.

[BOM15] Blanco, Roi; Ottaviano, Giuseppe; Meĳ, Edgar: Fast and space-efficient entity linking
for queries. In: WSDM. pp. 179–188, 2015.

[CD22] Chatterjee, Shubham; Dietz, Laura: BERT-ER: Query-specific BERT Entity Represen-
tations for Entity Ranking. In: SIGIR. pp. 1466–1477, 2022.

[Ch19] Christmann, Philipp; Saha Roy, Rishiraj; Abujabal, Abdalghani; Singh, Jyotsna; Weikum,
Gerhard: Look before you hop: Conversational question answering over knowledge
graphs using judicious context expansion. In: CIKM. pp. 729–738, 2019.

[CSRW22a] Christmann, Philipp; Saha Roy, Rishiraj; Weikum, Gerhard: Beyond NED: Fast and
Effective Search Space Reduction for Complex Question Answering over Knowledge
Bases. In: WSDM. pp. 172–180, 2022.

[CSRW22b] Christmann, Philipp; Saha Roy, Rishiraj; Weikum, Gerhard: Conversational Question
Answering on Heterogeneous Sources. In: SIGIR. pp. 144–154, 2022.

[EM10] Erling, Orri; Mikhailov, Ivan: Virtuoso: RDF support in a native RDBMS. In: Semantic
Web Information Management. pp. 501–519, 2010.

[Fe13] Fernández, Javier D; Martínez-Prieto, Miguel A; Gutiérrez, Claudio; Polleres, Axel;
Arias, Mario: Binary RDF representation for publication and exchange (HDT). In:
Journal of Web Semantics. pp. 22–41, 2013.

[FS10] Ferragina, Paolo; Scaiella, Ugo: TAGME: On-the-fly annotation of short text fragments
(by Wikipedia entities). In: CIKM. pp. 1625–1628, 2010.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 589

12 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

[GSR17] Gupta, Nitish; Singh, Sameer; Roth, Dan: Entity linking via joint encoding of types,
descriptions, and context. In: EMNLP. pp. 2681–2690, 2017.

[HHK15] Hernández, Daniel; Hogan, Aidan; Krötzsch, Markus: Reifying RDF: What Works Well
With Wikidata? In: SSWS. p. 32, 2015.

[Ho11] Hoffart, Johannes; Yosef, Mohamed Amir; Bordino, Ilaria; Fürstenau, Hagen; Pinkal,
Manfred; Spaniol, Marc; Taneva, Bilyana; Thater, Stefan; Weikum, Gerhard: Robust
Disambiguation of Named Entities in Text. In: EMNLP. pp. 782–792, 2011.

[JJ19] Joseph, Kevin; Jiang, Hui: Content based news recommendation via shortest entity
distance over knowledge graphs. In: WWW. pp. 690–699, 2019.

[Ko14] Koch, Mitchell; Gilmer, John; Soderland, Stephen; Weld, Daniel S: Type-aware distantly
supervised relation extraction with linked arguments. In: EMNLP. pp. 1891–1901,
2014.

[KSRW21] Kaiser, Magdalena; Saha Roy, Rishiraj; Weikum, Gerhard: Reinforcement Learning
from Reformulations in Conversational Question Answering over Knowledge Graphs.
In: SIGIR. pp. 459–469, 2021.

[Li20] Li, Belinda Z.; Min, Sewon; Iyer, Srinivasan; Mehdad, Yashar; Yih, Wen-tau: Efficient
One-Pass End-to-End Entity Linking for Questions. In: EMNLP. pp. 6433–6441, 2020.

[LJ21] Lan, Yunshi; Jiang, Jing: Modeling transitions of focal entities for conversational
knowledge base question answering. In: ACL-ĲCNLP. pp. 3288–3297, 2021.

[NW08] Neumann, Thomas; Weikum, Gerhard: RDF-3X: a RISC-style engine for RDF. Pro-
ceedings of the VLDB Endowment, pp. 647–659, 2008.

[Pr21] Pramanik, Soumajit; Alabi, Jesujoba; Saha Roy, Rishiraj; Weikum, Gerhard: UNIQORN:
unified question answering over RDF knowledge graphs and natural language text. In:
arXiv. 2021.

[Sa18] Saha, Amrita; Pahuja, Vardaan; Khapra, Mitesh; Sankaranarayanan, Karthik; Chandar,
Sarath: Complex sequential question answering: Towards learning to converse over
linked question answer pairs with a knowledge graph. In: AAAI. pp. 705–713, 2018.

[SKW07] Suchanek, Fabian M; Kasneci, Gjergji; Weikum, Gerhard: YAGO: A core of semantic
knowledge. In: WWW. pp. 697–706, 2007.

[SRA22] Saha Roy, Rishiraj; Anand, Avishek: Question Answering for the Curated Web: Tasks
and Methods in QA over Knowledge Bases and Text Collections. Springer, 2022.

[Su18] Sun, Haitian; Dhingra, Bhuwan; Zaheer, Manzil; Mazaitis, Kathryn; Salakhutdinov,
Ruslan; Cohen, William: Open Domain Question Answering Using Early Fusion of
Knowledge Bases and Text. In: EMNLP. pp. 4231–4242, 2018.

[Su20] Sun, Zequn; Wang, Chengming; Hu, Wei; Chen, Muhao; Dai, Jian; Zhang, Wei; Qu,
Yuzhong: Knowledge graph alignment network with gated multi-hop neighborhood
aggregation. In: AAAI. pp. 222–229, 2020.

[UJ20] Urbani, Jacopo; Jacobs, Ceriel: Adaptive Low-level Storage of Very Large Knowledge
Graphs. In: WWW. pp. 1761–1772, 2020.

590 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 13

[Ur16] Urbani, Jacopo; Dutta, Sourav; Gurajada, Sairam; Weikum, Gerhard: KOGNAC: Efficient
encoding of large knowledge graphs. In: ĲCAI. pp. 3896–3902, 2016.

[Va18] Vashishth, Shikhar; Joshi, Rishabh; Prayaga, Sai Suman; Bhattacharyya, Chiranjib;
Talukdar, Partha: Reside: Improving distantly-supervised neural relation extraction using
side information. In: EMNLP. pp. 1257–1266, 2018.

[VK14] Vrandečić, Denny; Krötzsch, Markus: Wikidata: A free collaborative knowledgebase.
In: CACM. pp. 78–85, 2014.

[ZI16] Zhu, Ganggao; Iglesias, Carlos A: Computing semantic similarity of concepts in
knowledge graphs. In: IEEE TKDE. pp. 72–85, 2016.

[Zi17] Ziegler, David; Abujabal, Abdalghani; Roy, Rishiraj Saha; Weikum, Gerhard: Efficiency-
aware Answering of Compositional Questions using Answer Type Prediction. In:
ĲCNLP. pp. 222–227, 2017.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 591

Session 6

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

RAPP: A Responsible Academic Performance Prediction
Tool for Decision-Making in Educational Institutes

Manh Khoi Duong1, Jannik Dunkelau2, José Andrés Cordova3, Stefan Conrad4

Abstract: Due to the increasing importance of educational data mining for the early intervention of
at-risk students and the growth of performance data collected in educational institutes, it becomes
natural to employ machine learning models to predict student’s performances based off prior data.
Although machine learning pipelines are often similar, developing one for a specific target prediction
of academic success can become a daunting task. In this work, we present a graphical user interface
which implements a customizable machine learning pipeline which allows the training and evaluation
of machine learning models for different definitions of academic success, e. g., collected credits,
average grade, number of passed exams, etc. The evaluation is exported in PDF format after finishing
training. As this tool serves as a decision support system for socially responsible AI systems, fairness
notions were included in the evaluation to detect potential discrimination in the data and prediction
space.

Keywords: educational data mining; fairness; decision making; machine learning; academic
performance prediction

1 Introduction

Academic performance prediction (APP) systems can be used to identify at-risk students in
higher education early on, allowing the university to use resources in a targeted manner to
prevent them from achieving poor academic performances. The definition of at-risk students
varies as it depends on the context and the purpose of prevention. It can comprise of, e.g.,
higher chances of dropping out, longer study durations, and worse graduation grades. In
this case, the APP system acts as a supporting artificial intelligence (AI) system for the
university at the institutional level. However, given the impact of such systems onto the
student body, social challenges arise. Marcinkowski et al. [Ma20] surveyed the perception
of a student body of the use of such AI-based systems and show that APP is viewed as
problematic by students as far as their own data and planning are concerned. Furthermore,
1 Heinrich Heine University, Department of Computer Science, Universitätsstraße 1, 40225 Düsseldorf, Germany

manh.khoi.duong@hhu.de
2 Heinrich Heine University, Department of Computer Science, Universitätsstraße 1, 40225 Düsseldorf, Germany

jannik.dunkelau@hhu.de
3 Heinrich Heine University, Department of Computer Science, Universitätsstraße 1, 40225 Düsseldorf, Germany

jose.cordova@hhu.de
4 Heinrich Heine University, Department of Computer Science, Universitätsstraße 1, 40225 Düsseldorf, Germany

stefan.conrad@hhu.de

cba doi:10.18420/BTW2023-29

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 595

mailto:manh.khoi.duong@hhu.de
mailto:jannik.dunkelau@hhu.de
mailto:jose.cordova@hhu.de
mailto:stefan.conrad@hhu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-29

2 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

the notion of fairness-aware machine learning (FairML) [DL19, Fr19, PS20] becomes an
increasingly important topic and also found its way into educational data mining systems
[LMZ19, KLM22, HR20, KL20, LQN21, AC19].

Acknowledging these issues, we developed a tool for responsible academic performance
prediction (RAPP) which tackles two main tasks: it is a tool for (1) academic performance
prediction and acts as a (2) decision support system for the social responsibility when
employing AI in tertiary education. The first task deals with generating multiple prediction
targets and datasets for the prediction of academic performances. The goal of the second
task is to find socially acceptable machine learning (ML) models and justify their use from
the extensive fairness and interpretability evaluation in the tool. For the full deployment of
an AI system to identify at-risk students, ethical aspects and the perception by those affected
have to be researched. The fairness and interpretability evaluation plays a supportive role
to disregard or regard certain ML models by, e. g., checking whether they comply with
student’s perception of discrimination or do not discriminate through socio-demographic
features.

The source code of the RAPP tool is published under the MIT License and available online
at https://github.com/hhu-rapp/rapp-tool.

2 Related Systems

Our proposed tool combines functionalities from two different research communities:
(educational) data mining and fairness assessment. In this section, we will briefly present
selected tools already available from either community.

RapidMiner [HK16], Orange [De13], and WEKA [Ha09]—to name a few—are data mining
tools with a graphical user interface (GUI) just as the proposed tool in this paper. The
aforementioned tools mostly include data visualization, pre-processing, feature selection,
clustering, classification, regression, and evaluation metrics. The tools are modular, meaning
the pipeline and its specific configurations are highly modifiable. Their aim is to enable
data mining practitioners the comparison of machine learning models on custom datasets
without having to write code themselves.

Although not as comprehensive and powerful, tools that were explicitly developed for
educational data exist as well. They predominantly focus on a specific dataset that was
provided by a particular educational institute. Especially, they analyze and predict several
students’ data such as programming grades [Ba16], examinations of the final school
year [LMP16], students’ contributions in group programming [SA20], or students’ written
feedback [Gr20].

Fairness and transparency in machine learning have become more important in recent
years due to the awareness of potential mistreatment of AI over different demographic
groups [DL19, Fr19, PS20]. As a response, authors began developing tools to audit the

596 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

https://github.com/hhu-rapp/rapp-tool

RAPP: A Responsible APP Tool for Decision-Making in Educational Institutes 3

fairness of an ML system and to produce bias reports, to guide the selection process of a
fitting fairness metric, or to apply intervening methods to reduce exhibited bias. Examples
for such tools are Aequitas [Sa18], FairSight [AL19], Fairlearn [Bi20], or Fairness Compass
and Fairness Library [RD22]. These topics have also been recognized by the educational data
mining (EDM) community lately. To name some, Hu and Rangwala [HR20] and Kizilcec
and Lee [KL20] consider prejudice and unfairness where Le Quy and Ntoutsi [LQN21] and
Alonso and Casalino [AC19] acknowledge the explainability of the used models in EDM.

For the proposal, the RAPP tool aims to take on the preliminary works and combine
functionalities from both communities: It is a data mining tool for educational data that
includes fairness examinations and interventions to address responsibility when employing
AI in educational institutes.

3 RAPP Tool

Making it possible to easily create various datasets from a single database with desired
features and labels to train, save, and evaluate machine learning algorithms is the aim of
the developed tool. For this, the GUI provides an intuitive way to load a particular SQLite
database or a CSV file5 and specify the initial settings for the machine learning pipeline.
The demanded features and target labels can be derived by querying the database. Several
settings are detected automatically such as the prediction type (classification, regression), the
target variable (last column by default), and categorical features. The supported estimators
for classification are decision trees, random forest, support vector machine, naive bayes, and
logistic regression and for regression linear regression, elastic net, bayesian ridge, decision
tree regressor, and kernel ridge. An artificial neural network with two hidden layers is also
available for both of these task types. Experienced users can modify the configuration for
their needs. Fig. 1 displays the user interface for the settings.

In the following, we will outline the two main uses and functionalities of the RAPP tool:
APP and supporting the decision-making process whilst designing a responsible APP.

3.1 Academic Performance Prediction

3.1.1 Pipeline

At the front of the RAPP tool lies the ability to setup and train APP models over the
implemented ML pipeline. The pipeline is outlined in Fig. 2. First, the pipeline’s settings
have to be specified. This includes the selection of a dataset to use for training as well as
picking the ML algorithms to train.

5 The CSV file is treated as a database.

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
Educational Institutes 597

4 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

Fig. 1: RAPP’s Pipeline Settings Interface, 2022.

The data are queried over an SQLite database. While advanced users can enter custom
queries on the database for feature engineering and feature selection, predefined feature and
label sets were added for the given academic database to comfortably reuse and combine
them in any desired pairing. The user can select, for instance, features such as credit points,
grades, or number of passed exams, and target labels such as final GPA, achieved credits
until semester 𝑥, or study duration. To ease working with different sets of features and labels
we implemented an SQL templating engine which produces the final query based on the
user’s selections for a feature and a label set. This avoids combinatoric explosion which
would arise if each feature-label pair’s SQL query had to be implemented manually. The
queried database then acts as a dataset for the machine learning pipeline.

Once the dataset is obtained, the features go through the pre-processing step of one-hot
encoding any categorical features. After this, the data is split into training (80 %) and test
(20 %) data.

Each of the user’s selected models are trained on the training data. We also evaluate
the performance over the training data via 5-fold cross-validation to capture how robust
the models behave during training. The training concludes in an evaluation over various
performance metrics as well as fairness metrics. Fairness is also audited directly over the
dataset as well. The evaluation results are saved into a detailed PDF report file containing
information over the demographics of the dataset as well as the performance and fairness
results of each trained estimator.

598 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

RAPP: A Responsible APP Tool for Decision-Making in Educational Institutes 5

Performance
Evaluation

Training

Pre-Processing

Data Source

Features

Target

settings

Pipeline

Fairness
Evaluation

Features

Labels

SQL templates

features_id

labels_id

Features and labels
Database

model.joblib

report.pdf

Prediction

Fig. 2: RAPP’s Machine Learning Pipeline, 2022.

After the trained models are evaluated, the users can decide which models they want to save
in order to use them later to predict on new data.

3.1.2 Prediction

To tackle the task of identifying at-risk students early, this tool includes a prediction interface
as shown in Fig. 3. This interface enables the user to make predictions based on individual
student’s academic data. The user can then identify students who are more likely to benefit
from the institution’s support programs.

In order to predict the students’ performances, new data from students as well as compatible
models, i. e., models that have been trained with the same features, are required in the
prediction interface. It is possible for the user to load various models trained for different
target variables to predict several targets from the same features simultaneously. Once new
data and selected models are loaded into the GUI, the features go through a pre-processing
step and are then fed into the loaded models for the prediction. Fig. 3 shows an example of
multiple targets being predicted with the data of a single student.

After the prediction has been run, the interface updates and displays the predictions of the
models for each of the selected targets. It is also possible to load multiple models for one
specific target to employ ensemble learning. In case of classification, we apply majority
voting whereas in regression tasks the mean of the predicted values is used.

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
Educational Institutes 599

6 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

Fig. 3: RAPP’s Prediction Interface, 2022.

3.2 Decision Support System

The tool acts as a decision support system by providing the user statistical insights of the
dataset as well as an extensive evaluation of the models’ performance and fairness. The
models are automatically evaluated on the training and test data as they progress through
the pipeline. The evaluation is displayed in the GUI, part of it is shown in Fig. 4, and is also
generated as a LATEX report, that is automatically compiled as a PDF file.

Dataset. The dataset tab contains a contingency table that displays the label 𝑦 ∈ {0, 1}
and the sensitive attribute. This allows the user to comprehend the relationship between the
sensitive attributes and the students’ performances.

Performance Metrics. As for stability reasons, the evaluation for the training data is
always done with 5-fold cross-validation. The type of task that was selected beforehand
determines the suitable metrics. Classification metrics included in the tool are accuracy,
balanced accuracy, 𝐹1, recall, precision, and area under ROC. As for regression metrics,
the tool implements mean absolute error, mean squared error, max error, and 𝑅2.

600 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

RAPP: A Responsible APP Tool for Decision-Making in Educational Institutes 7

Fig. 4: RAPP’s Decision Support System Interface, 2022.

Fairness Notions. The fairness of the models’ predictions is assessed with regard to the
sensitive attributes in order to detect potential discrimination. Similarly to the performance
metrics, the notions are determined by the task type. Classification tasks implement statistical
parity, predictive equality, and equality of opportunity [DL19, BHN19]. While statistical
parity is one of the most commonly used fairness notions, recent work suggests a focus on
equalized odds (requires predictive equality as well as equality of opportunity) as the go-to
notion for APP systems [DD22]. Accordingly, the tool integrates average odds error [Be18]
which quantifies equalized odds. For regression tasks we use the individual fairness and
group fairness notion as introduced by Berk et al. [Be17].

To measure fairness criteria in classification, we use the absolute difference of the outcomes
between two groups. Generally, a lower value describes less discrimination. Because group
sizes greater than two (non-binary genders, multiple nationalities) might occur in the dataset,
we use the maximum value of the absolute differences between all group pairs [Ž17]. This
measures the maximal discrimination a classifier has achieved between two groups.

Pareto Front: Performance and Fairness Trade-Off. Due to the existence of a
performance and fairness trade-off [BFT12], the trade-off can be visually examined in
order to select the best trained models to use for predictions. The Pareto-efficient models,
i. e., models that optimize both a particular performance metric and fairness measure, can
then be identified. The fairness tab includes scatter points of the selected models in a

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
Educational Institutes 601

8 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

Fig. 5: RAPP’s Pareto Front Evaluation, 2022.

performance-fairness plot (see Fig. 5). The Pareto front, i. e., the set of all Pareto-efficient
models [JS08], is shown in a different color to differentiate them from Pareto-dominated
points. Pareto-efficient models are displayed in red whereas Pareto-dominated models are
displayed in lightblue. This visualization limits the decision-making space for the user
as only Pareto-efficient models are of interest. Because Pareto optimal solutions are first
shown and the decision-maker selects her/his preferred model afterwards, this is a posteriori
method in decision-making.

In classification we aim to maximize the performance metric whereas a maximization of the
performance in regression corresponds to minimizing the error. For contextual conveniences,
we maximize the negative error in regression to yield for the same plot.

4 Case Study

The RAPP tool is developed as part of a research project concerning itself with designing a
socially responsible framework on how to approach APP in higher education. For this, we
conducted a case study over data given to us by the Heinrich Heine University Düsseldorf.
The case study was concerned mostly with probing of which prediction tasks show most-
promising performances and to estimate possible algorithmic fairness problems. Hereby, the
prediction tasks differed in their combination of input features as well as at-risk definition
for prediction.

602 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

RAPP: A Responsible APP Tool for Decision-Making in Educational Institutes 9

Prediction

Input Dropout MA Adm. SDS

ECTP + Exam stats 0.65 0.63 0.67
Grades + Exam stats 0.68 0.67 0.61
Specific modules 0.74 0.62 0.63

Tab. 1: Overview of exemplary training results over CS students in their first semester. Displaying
the best performing balanced accuracy achieved by any trained model over combinations of selected
feature sets and the prediction of student dropouts, master program admission (MA Adm.), and
finishing in standard duration of study (SDS).

As we were interested in any combination of these predefined features and prediction goals,
the RAPP tool was a great help in leveraging the combinatorial explosion problem into
a manageable set of selectable templates, allowing us to quickly train and store models
for each combination. Fig. 4 displays one such training result as reported within the tool,
allowing comparison of the trained models over various performance and fairness measures.
Tab. 1 shows exemplary results conducted with the RAPP tool over computer science (CS)
students after their first semester.

5 Limitations and Future Work

Since the tool is still in development, new opportunities for future improvements present
themselves constantly. These enhancements include changes to the tool’s architecture, as
well as making the prediction process more transparent to the user.

The tool as it currently is comes with SQL templates designed for our database in use.
However, in order to allow other educational institutions to target at-risk students, the tool
allows to write a different set of SQL templates and to load any SQLite database, making the
tool essentially database agnostic. Still, this requires proficiency with writing SQL queries
and modulating them into the templating engine, a skill that end users might not have. Here,
the ease of use could be enhanced.

While allowing to inspect potentially exhibited discrimination by the trained models, it is
not yet possible to train models with fairness-interventions in mind. In the future we would
like to incorporate ways to train models with fairness-accounting measures such as pre-, in-,
and postprocessing [DL19, Fr19, PS20]

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
Educational Institutes 603

10 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

6 Discussion

The tool helps in investigating which fairness constraints are met by any trained model and
thus guides the user in their decision making of which model to employ, but by no means
does the tool alone help achieving the overall goal.

Approaching RAPP includes to find a suitable definition for algorithmic fairness by involving
both, the institute’s stakeholders as well as the affected student body [KLM22]. While the
notion of equalized odds seems to be a desirable fairness constraint [DD22], the student
body appears to favor demographic parity [Ma20]. Further, the potential damage caused by
misclassifications needs to be carefully considered. All these above points are not meant
to be resolved by the RAPP tool but rather need to be part of the conceptualization when
planning to employ such a system before actual employment of the system takes place.
However, the RAPP tool helps to investigate whether potential concerns are dealt with
appropriately by the trained models or not.

7 Conclusion

In this paper, we presented the RAPP tool for developing responsible academic performance
prediction systems. The tool tackles two main tasks: designing, training, and analyzing
different APP tasks, and acting as a decision support system for selecting the best suited
models in a fairness-sensitive and socially responsible context.

For the setup of APP tasks, the concurrent design and direct comparison of different tasks,
i. e., different input features and target labels, was a main objective as the definition of
academic performances differ depending on the viewpoints of users, the student body, or the
application context. In order to assist the user which model or models are socially responsible
when being employed to target interventions at at-risk students, extensive performance
and fairness metrics are included. The metrics are viewable in the GUI itself but are also
automatically exported to a PDF file. Assessing fairness metrics and highlighting the Pareto
front of classical performance metrics and achieved fairness parities guides the user in the
decision-making process of finding the most suitable model for their desired task.

Overall, the tool provides an interface to non–machine learning engineers to train, evaluate,
and employ models in the APP domain by providing a simplified ML pipeline configuration
and highlighting crucial trade-offs of the model accuracy vs. fairness, rendering responsible
APP systems a step more accessible and approachable to everyone.

Acknowledgments

This work was supported by the Federal Ministry of Education and Research (BMBF) under
Grand No. 16DHB4020.

604 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

RAPP: A Responsible APP Tool for Decision-Making in Educational Institutes 11

Bibliography
[AC19] Alonso, José M; Casalino, Gabriella: Explainable artificial intelligence for human-centric

data analysis in virtual learning environments. In: International workshop on higher
education learning methodologies and technologies online. Springer, pp. 125–138, 2019.

[AL19] Ahn, Yongsu; Lin, Yu-Ru: FairSight: Visual analytics for fairness in decision making.
IEEE transactions on visualization and computer graphics, 26(1):1086–1095, 2019.

[Ba16] Badr, Ghada; Algobail, Afnan; Almutairi, Hanadi; Almutery, Manal: Predicting students’
performance in university courses: a case study and tool in KSU mathematics department.
Procedia Computer Science, 82:80–89, 2016.

[Be17] Berk, Richard; Heidari, Hoda; Jabbari, Shahin; Joseph, Matthew; Kearns, Michael;
Morgenstern, Jamie; Neel, Seth; Roth, Aaron: A convex framework for fair regression.
arXiv preprint arXiv:1706.02409, 2017.

[Be18] Bellamy, Rachel K. E.; Dey, Kuntal; Hind, Michael; Hoffman, Samuel C.; Houde, Stephanie;
Kannan, Kalapriya; Lohia, Pranay; Martino, Jacquelyn; Mehta, Sameep; Mojsilovic,
Aleksandra; Nagar, Seema; Ramamurthy, Karthikeyan Natesan; Richards, John T.; Saha,
Diptikalyan; Sattigeri, Prasanna; Singh, Moninder; Varshney, Kush R.; Zhang, Yunfeng:
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating
Unwanted Algorithmic Bias. CoRR, abs/1810.01943, 2018.

[BFT12] Bertsimas, Dimitris; Farias, Vivek F; Trichakis, Nikolaos: On the efficiency-fairness
trade-off. Management Science, 58(12):2234–2250, 2012.

[BHN19] Barocas, Solon; Hardt, Moritz; Narayanan, Arvind: Fairness and Machine Learning.
fairmlbook.org, 2019. http://www.fairmlbook.org.

[Bi20] Bird, Sarah; Dudík, Miro; Edgar, Richard; Horn, Brandon; Lutz, Roman; Milan, Vanessa;
Sameki, Mehrnoosh; Wallach, Hanna; Walker, Kathleen: Fairlearn: A toolkit for assessing
and improving fairness in AI. Microsoft, Tech. Rep. MSR-TR-2020-32, 2020.

[DD22] Dunkelau, Jannik; Duong, Manh Khoi: Towards Equalised Odds as Fairness Metric in
Academic Performance Prediction. In: 2nd Workshop on Fairness, Accountability, and
Transparency in Educational Data. July 2022.

[De13] Demšar, Janez; Curk, Tomaž; Erjavec, Aleš; Črt Gorup; Hočevar, Tomaž; Milutinovič,
Mitar; Možina, Martin; Polajnar, Matĳa; Toplak, Marko; Starič, Anže; Štajdohar, Miha;
Umek, Lan; Žagar, Lan; Žbontar, Jure; Žitnik, Marinka; Zupan, Blaž: Orange: Data Mining
Toolbox in Python. Journal of Machine Learning Research, 14:2349–2353, 2013.

[DL19] Dunkelau, Jannik; Leuschel, Michael: Fairness-Aware Machine Learning: An Extensive
Overview. Working paper, available at https://www3.hhu.de/stups/downloads/pdf/
fairness-survey.pdf, October 2019.

[Fr19] Friedler, Sorelle A.; Scheidegger, Carlos; Venkatasubramanian, Suresh; Choudhary, Sonam;
Hamilton, Evan P.; Roth, Derek: A comparative study of fairness-enhancing interventions
in machine learning. In: Proceedings of the Conference on Fairness, Accountability, and
Transparency. ACM, jan 2019.

[Gr20] Grönberg, Niku; Knutas, Antti; Hynninen, Timo; Hujala, Maĳa: An online tool for
analyzing written student feedback. In: Koli Calling’20: Proceedings of the 20th Koli
Calling International Conference on Computing Education Research. pp. 1–2, 2020.

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
Educational Institutes 605

http://www.fairmlbook.org
https://www3.hhu.de/stups/downloads/pdf/fairness-survey.pdf
https://www3.hhu.de/stups/downloads/pdf/fairness-survey.pdf

12 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

[Ha09] Hall, Mark; Frank, Eibe; Holmes, Geoffrey; Pfahringer, Bernhard; Reutemann, Peter;
Witten, Ian H: The WEKA data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[HK16] Hofmann, Markus; Klinkenberg, Ralf: RapidMiner: Data mining use cases and business
analytics applications. CRC Press, 2016.

[HR20] Hu, Qian; Rangwala, Huzefa: Towards Fair Educational Data Mining: A Case Study on
Detecting At-Risk Students. International Educational Data Mining Society, 2020.

[JS08] Jin, Yaochu; Sendhoff, Bernhard: Pareto-Based Multiobjective Machine Learning: An
Overview and Case Studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(3):397–415, 2008.

[KL20] Kizilcec, René F.; Lee, Hansol: Algorithmic Fairness in Education. arXiv, 2020.

[KLM22] Keller, Birte; Lünich, Marco; Marcinkowski, Frank: How Is Socially Responsible Academic
Performance Prediction Possible? In: Strategy, Policy, Practice, and Governance for AI in
Higher Education Institutions, pp. 126–155. IGI Global, may 2022.

[LMP16] Livieris, Ioannis; Mikropoulos, Tassos; Pintelas, Panagiotis: A decision support system
for predicting students’ performance. Themes in Science and Technology Education,
9(1):43–57, 2016.

[LMZ19] Loukina, Anastassia; Madnani, Nitin; Zechner, Klaus: The many dimensions of algorithmic
fairness in educational applications. In: Proceedings of the Fourteenth Workshop
on Innovative Use of NLP for Building Educational Applications. Association for
Computational Linguistics, pp. 1–10, August 2019.

[LQN21] Le Quy, Tai; Ntoutsi, Eirini: Towards fair, explainable and actionable clustering for learning
analytics. In: EDM. 2021.

[Ma20] Marcinkowski, Frank; Kieslich, Kimon; Starke, Christopher; Lünich, Marco: Implications
of AI (un-)fairness in higher education admissions. In: Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency. ACM, jan 2020.

[PS20] Pessach, Dana; Shmueli, Erez: Algorithmic Fairness. volume abs/2001.09784, 2020.

[RD22] Ruf, Boris; Detyniecki, Marcin: A Tool Bundle for AI Fairness in Practice. In: CHI
Conference on Human Factors in Computing Systems Extended Abstracts. pp. 1–3, 2022.

[Sa18] Saleiro, Pedro; Kuester, Benedict; Stevens, Abby; Anisfeld, Ari; Hinkson, Loren; London,
Jesse; Ghani, Rayid: Aequitas: A Bias and Fairness Audit Toolkit. arXiv preprint
arXiv:1811.05577, 2018.

[SA20] Sandee, Jan Jaap; Aivaloglou, Efthimia: Gitcanary: A tool for analyzing student
contributions in group programming assignments. In: Koli Calling’20: Proceedings
of the 20th Koli Calling International Conference on Computing Education Research. pp.
1–2, 2020.

[Ž17] Žliobaitė, Indrė: Measuring discrimination in algorithmic decision making. Data Mining
and Knowledge Discovery, 31:1060–1089, 2017.

606 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Semantic Watermarks for Detecting Cheating in Online
Database Exams

Stefan Brass1, Alexander Hinneburg2

Abstract:

Due to the COVID-19 pandemic, we were forced to conduct two exams for a database course as
online exams. An essential part of the exams was to write non-trivial SQL queries for given tasks.
In order to ensure that cheating has a certain risk, we used several techniques to detect cases of
plagiarism. One technique was to use a kind of “watermarks” in variants of the exercises that are
randomly assigned to the students. Each variant is marked by small discrimination points that need
to be included in submitted solutions. Those markers might go through undetected when a student
decides to copy a solution from someone else. In this case, the student would reveal to know a “secret”
that he cannot know without the forbidden communication with another student. This can be used as
a proof for plagiarism instead of just a subjective feeling about the likelihood of similar solutions
without communication. We also used a log of SQL queries that were tried during the exam.

Keywords: SQL; Plagiarism; Online Exams; Cheating; Academic Integrity

1 Introduction

The COVID-19 pandemic made classical, proctored exams for large classes impossible.
Therefore online exams suddenly became interesting in spite of doubts that students might
cheat. We limit our discussion to the case when only the communication between students
during the exam must be prevented. Otherwise the exam is “open book”.

It is often argued that the grade distribution of the online exam results is not very different
from normal exams. Therefore, the percentage of good marks achieved by cheating cannot
be very large. However, this argument disregards the possibility that students participate
in the exams who are not well prepared. Maybe, they would have learnt more, or taken a
later exam, if they had not relied on the possibility of cheating. Conversely, the first online
exams were prepared without much experience, and the exam setting was also new for the
students. It cannot be excluded that some good students got not so good grades. Whoever is
responsible for an exam has the obligation to create a setting in which the honest students
are not the fools.

The paper [Ja21] reports the results of an online questionaire answered by 1608 German
students. 45.9% of the participants admitted „Exchanging ideas with others about possible
1 Martin-Luther-University, Computer Science, Germany brass@informatik.uni-halle.de
2 Martin-Luther-University, Computer Science, Germany hinneburg@informatik.uni-halle.de

cba doi:10.18420/BTW2023-30

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 607

mailto:brass@informatik.uni-halle.de
mailto:hinneburg@informatik.uni-halle.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-30

2 Stefan Brass, Alexander Hinneburg

answers during an examination“ at least once in an online exam. The studies cited in [Di03]
are in the same range or higher (but may include homework assignments). The paper [DS17]
proposes statistical tests to check whether cheating occurred in an exam based on the grade
distribution, and also using the normal dependency of the grade on attendance of classes
and the number of completed homework assignments. The results showed that cheating
did occur in most of the investigated online exams. In [Eh21], conversely bad exam results
of some students with good performance in the developed RA/SQL tutoring system were
noticed, leading to the question of plagiarism in the homeworks. [Cl20] mentions exam
questions appearing on commercial websites and being rapidly answered by tutors of these
services (still during the exam). See also [LC15]. In our online exam in February 2022, we
detected 14 students who participated in the exchange of solutions (out of 114, i.e. 12%).

Approaches that have been used to prevent cheating in online exams include software
solutions like exam browsers and video supervision [FMG19, Ba17]. Since the student is
at home and can prepare the setup, software solutions and video supervision do not really
prevent cheating [Bi15]. Other counter measures against cheating include the preparation of
large question pools from which questions are randomly assigned to individual exams. This
prevents cheating between particular pairs of students who agreed to close collaboration
during online exams. However, question pools have limited effects in larger collaborative
groups of students. Furthermore, building such a question pool is a lot of work. Since
questions of an online exam can easily be copied by the students, they also cannot be reused
in the near future.

It is important that there is at least a certain risk involved in cheating to counter the negative
consequences for academic integrity. Discussions among students in anonymous online
forums show that most students thought that the risk is near zero and it would be stupid
not to use the chances offered by online exams [An22]. A good method against cheating in
online exams should fulfill the following criteria: (a) the method should increase the risk
of being caught for the involved students, (b) it should increase the time needed for the
students to cheat in an undetected way, (c) it should be easily applicable and the lecturer,
who designs the exams, should not need to spend much additional time for creating and
checking the exercises.

We propose a method called semantic watermarks that fulfills the above mentioned criteria.
The method works for all types of tasks, where a written answer is required that must include
specific semantic pieces from the task description, e.g. programming and design tasks.

The remainder of the paper is structured as follows: In Section 2, we discuss related work
about cheating in online exams. Section 3 introduces the semantic watermark method
in a formal way, discusses practical issues and ways to strengthen semantic watermarks.
Section 4 describes applications of the method in real exams. The results on SQL queries are
compared with those from a log-file analysis in Section 5. Section 6 gives some additional
practical advice on what to do before and after the exam. Section 7 concludes the paper.

608 Stefan Brass, Alexander Hinneburg

Semantic Watermarks for Detecting Cheating in Online Database Exams 3

2 Related Work

So far, there has not been a lot of research specifically on SQL plagiarism detection (e.g.,
the literature overview [NJK19] contains no entry for SQL). The paper [RC05] suggests
some methods for detecting “similar” queries, like comparing the queries with ignoring
case and non-essential white space, and a “histogram” method that looks at specific seldom
characteristics of the query, such as trailing (invisible) whitespace in the lines, or inconsistent
case in keywords. The paper contains important ideas, but unfortunately, as also [KS19]
notices, not enough details are given so that one can exactly reproduce the method. [KS19]
have implemented the first two methods of [RC05], and tested them for a coursework dataset
(with lots of plagiarism) and an exam dataset (with basically no plagiarism). It turned
out that even in the exam dataset, many queries were classified as being plagiarized (and
are therefore “false positives”). As [KS19] noted, this might be due to the relative short
length of queries in both datasets. They suggest that for queries of over 200 characters, the
algorithms might work, but they have not enough data to reach a definite conclusion. The
queries in our exam have an average length of 250 characters, and 62% of the queries are at
least 200 characters. Nevertheless, in our tests with such similary-based methods, either
only very few of the actual cheaters are found, or so many quries are detected as similar that
the actual cheaters are like a needle in a haystack (assuming that the methods presented in
this paper give a good approximation of the “actual cheaters”).

The teaching situation in [SSS18] is special, because he students have to develop also a
database schema, which gives a much larger space of possible solutions. The methods
of [MJ08, Si13] are applicable only for Microsoft Access (at least, students need to submit
binary database files). The method of [DH05] also uses a “watermark” for detecting
plagiarized Java programs, but needs to be able to change files on the computer of the
student. A well-known plagiarism checker for Java programs is JPlag [PMP02]. A general
literature overview on cheating in online exams is [NMA22]. Watermarks for relational data
were studied, e.g., in [AHK03, La08, GA11]. During manual grading, copied solutions are
often detected because of the same strange mistakes. For classifications of SQL mistakes
and style/preformance problems, we refer to [BG06, TSV18, MAF21].

Different versions of exercises have been used for a long time, and there are also techniques
where randomly chosen numbers are inserted into the task description of an exercise. Our
“watermark method” works with parameterized task descriptions, too. However, we use this
for detecting cheating attempts. Before, the main goal was that students get no points for an
exercise if they copy a solution, because ideally, every student has a different exercise. One
often cannot distinguish whether the student copied a solution or whether he simply made a
mistake. In our case, the idea is that the watermarks appear in the submitted solution and
can be used as a proof for cheating. Of course, if it was visible that a submitted solution
was for a different exercise variant, a cheating attempt was detected even without having a
fancy name for this method. However, our contribution still is to systematically define this
method, give suggestions for not eye-catching differences, test the method in several exams,
and compare it with other methods for detecting plagiarized SQL-queries.

Semantic Watermarks for Detecting Cheating in Online Database Exams 609

4 Stefan Brass, Alexander Hinneburg

Design Process

Create Task
Choose
Discrimination
Points

Generate
Variant
Pool

Generate ExamsStudents work on ExamsCheck for Cheating

/

/

/

Task 1 Task 2 Task 3Exam

1

2

3

...

...

...

...

...

...

...

...

...

Task 1 Task 2Exam

1

2

3

...

...

...

...

...

Solution 1Student

A

B

C

...

Task 1Exam

1

2

3

...

Solution 1Student

A

B

C

...

Exam Process

Fig. 1: Overview of the semantic watermark method

3 Semantic Watermarks

The method of semantic watermarks is sketched in Figure 1. At the beginning, the lecturer
designs a specific task, e.g. the creation of an SQL query to retrieve specific data that is
described in the task’s text. In a next step, one or more discrimination points are chosen,
which are short pieces in the task text that can be replaced by different values to generate
other but sematically similar variants of the task. In Figure 1, the discrimination points are
represented by different icon shapes and the different values for the discrimination points
are represented by different colors. A discrimination point could be a constant that needs to
be used in the WHERE clause. We discuss several criteria how to choose good discrimination
points and the corresponding values. The discrimination points allow the generation of
a pool of variants of the task that differ only at those points. Most online exam software
packages like ILIAS or MOODLE allow to use such questions pools to randomly generate
exams. A particular student sees only one of the variants of the task in the exam and submits
a solution based on that particular textual task description. The discrimination points are
designed in such a way that a complete solution needs to include values for all discrimination
points mentioned in the task. Therefore, a student could be identified to cheat, when the
solution does not match in the values of all discrimination points with the corresponding
task description. In this case, the student would reveal to know information that he or she
cannot know without the forbidden communication with another student (because the value
was not contained in his/her exam version). In Figure 1, student B cheated in the submitted
solution, because the yellow dot did not appear in corresponding task description.

610 Stefan Brass, Alexander Hinneburg

Semantic Watermarks for Detecting Cheating in Online Database Exams 5

3.1 Definition and Preconditions

The formal definition of the semantic watermarks method starts with a given task t that is
described by a text or a picture. Given a task t, a number of n discrimination points needs to
be chosen.

Each discrimination point is associated with a set of several values that are called the
domain Di for the respective point, 1 ≤ i ≤ n. Each domain needs to have at least two
different values: |Di | ≥ 2 for 1 ≤ i ≤ n. The values in a particular domain should identify
the corresponding discrimination point. However, NULL values are not allowed in those
domains. The choice of discrimination points for the task t defines a mapping τ(d1, . . . , dn)
that is called the parameterized task. A parameterized task is a mapping that takes a vector
®d = (d1, . . . , dn) from the cross product of the respective domains D1 × . . . × Dn of the
discrimination points. Such a vector ®d is called a discrimination vector. A parameterized
task outputs a task description, which can be a text or a picture. Usually, the original task
t equals the output of τ for some discrimination vector ®d. The pool of variants of the
parameterized task τ is generated by choosing a set of discrimination vectors and mapping
them to texts or images via τ.

Each student sees the output t ′ of the parameterized task τ based on a particular discrimination
vector. Based on this description she or he develops a solution s for t ′. The solution s needs
to include values for the discrimination points that forms another discrimination vector
that is from the cross product of extended domains D̂1 × . . . × D̂n with D̂i = Di ∪ {NULL}

for 1 ≤ i ≤ n. The original domains are extended by NULL values because a student
may not submit a complete solution. Thus, certain aspects including some values for
discrimination points might be missing. Given the discrimination vector ®vt responsible
for the task description shown to the student and the discrimination vector ®vs included in
his/her solution, a cheating attempt is detected if and only if there is a discrimination point i,
1 ≤ i ≤ n, such that vti , vsi and vsi , NULL (i.e. the values are both defined and different).

The definition of semantic watermarks requires at least one discrimination point. However,
semantic watermarks with only a single discrimination point are not very useful, even when
the number of values for this point is large. It is likely that students, who want to cheat,
would spot this single point by chance and use the correct value for their variant of the task.
Therefore, multiple discrimination points are preferable and would lower this chance. The
number of values per discrimination point does not need to be large. In fact two different
values would suffice, which would create binary discrimination points.

When a pool of variants of a task is generated, the discrimination vectors of the semantic
watermark should be chosen from the cross product of the domains D1 × . . . × Dn in such
a way that the discrimination vectors have pairwise Hamming distances equal or larger
than two. If the value for more than one discrimination point is wrong, the evidence is very
strong. Furthermore, the larger the minimal pairwise Hamming distance, the lower the risk
that cheating students find all discrimination points.

Semantic Watermarks for Detecting Cheating in Online Database Exams 611

6 Stefan Brass, Alexander Hinneburg

3.2 Practical Issues

The design of effective discrimination points requires to balance two conflicting goals: (i)
the discrimination points need to have distinct and clearly different values that could not be
mixed by chance and (ii) the discrimination points should not be striking and eye-catching
to a casual observer. Furthermore, since students were shown the expected result of the
query with respect to a given database state and could try every query, we choose the
discrimination point values in such a way that they do not influence the query result for this
particular state (at least not in an eye-catching way).

A simple case of a discrimination point is a condition of the form A > c. Then we could
choose several constants c1 < c2 < · · · cm as differentiating values, such that the example
table contains no data values between c1 and cm. The constant ci of a different exercise
variant could be a good indicator of cheating if: (1) The constants are sufficiently different,
i.e. differening characters should not be adjacent on the keyboard, and ideally the constants
should differ in more than one character. (2) They should also not appear in the given
database state, so that the student cannot know them. The differences are not so easy to spot
if first and last character are the same. Also many-to-many relationships offer possibilities
for differences in the query without differences in the result. E.g., if the query asks for the
courses taken by a particular student, it might be that two students took the same courses.

“Redundant conditions” are another possibility to design discrimination points. Suppose
the main query condition is C. Now variant j of the exercise (1 ≤ j ≤ m) could require in
addition that the data satisfies C ′j . Therefore, the correct query condition is C ∧ C ′j . But if
the given database state does not contain data satisfying C ∧ ¬C ′j , this condition does not
change the answer in the test state. However, there is a tradeoff: This also means that the
given example state does not test for the missing condition C ′j .

Another option to construct discrimination points are “ORDER BY” specifications, where
two different result columns happen to give the same sequence of table rows. For instance,
in one variant we could ask the students to order employees by HIREDATE and in another
variant by EMPNO, when both cases lead to the same order of employees.

Result column names could be used as discrimination points (we used this a lot). In a similar
way, the task might ask for string constants as part of the SELECT-clause that can be used as
discrimination points. For instance, the students might have to construct a string with some
fixed part and a data value with the string concatenation operator ||. Or the query might
require the UNION operator, and a discrimination point uses a fixed value for a result column
(e.g., some kind of summary row). However, the differences between the different values of
such a discrimination point should not be to small.

We checked for cheating attempts first with grep, then with SQL scripts using LIKE and
SIMILAR TO. In both cases, the values for the discrimination points must be quite specific. Of
course, with a full SQL parser (or manual checking), the range of possible values increases.

612 Stefan Brass, Alexander Hinneburg

Semantic Watermarks for Detecting Cheating in Online Database Exams 7

3.3 Risks, Costs, and Countermeasures

Even when a student is able to spot all discrimination points, this operation consumes some
amount of time. Thus, cheating still comes at a certain cost. This cost might be larger than
expected because students, who did not explicitly prepare for this method, will probably
exchange only solutions to the exercises. Checking the solution of another person for small
differences to the assigned task is much harder than comparing the task descriptions.

If the students know in advance that this method will be applied, they will also exchange the
task descriptions and use programs like diff to spot the discrimination points. An effective
counter measure for this behavior would be to render the task descriptions as non-textual
images that could not be automatically compared by diff programs. Alternatively, one
could add many unessential differences, such as doubling some spaces between words.

4 Applications in Online-Exams

We applied semantic watermarks in three exams for an introductory database course — two
online exams with over a hundred participants each (in March 2021 and February 2022)
and one smaller proctored exam (repetion exam in July 2022).

Besides the watermarks, there were two obviously different versions of each SQL exercise
in both online exams. Probably, students expected different exercise versions, and maybe,
after having detected the obvious differences, some did not search for additional, much
smaller differences.

For space reasons, we show only the results of the exam in February 2022 (114 participants).
We detected 7 cheating attempts of 6 students using the watermarks method:

Student Task DPs Hamming DPs DPs DPs Group
Distance wrong adapted omitted Size

A SQL (NOT EXISTS) 3 2 3 0 0 15
B SQL (GROUP BY) 2 2 2 0 0 16
C Logical Design 4 2 1 1 0 7
D Rel. Algebra 4 2 1 0 1 6
E Rel. Algebra 4 2 1 1 0 5
F Rel. Algebra 4 2 1 0 1 5
F BCNF 3 2 2 0 0 15

The columns show the following data: “DPs” is the number of discrimination points used in
the particular task, “Hamming Distance” is the minimal Hamming distance between two
versions of the same task with respect the number of discrimination points, “DPs wrong”
is the number of discrimination points in the student’s answer that do not match the task
description, “DPs adapted” is the minimal number of discrimination points that the student

Semantic Watermarks for Detecting Cheating in Online Database Exams 613

8 Stefan Brass, Alexander Hinneburg

found and adapted to match his/her assigned task description, “DPs omitted” is the number
of discrimination points that were omitted in the student’s answer and last the “Group Size”
column shows the number of students who worked on the same variant as the student with
the cheating attempt but included discriminations points in the correct way.

Thus, six students were caught because they submitted solutions with wrong watermarks.
Manual analysis revealed the original authors of the two SQL queries. One further student
had a very similar solution to one that was known to be passed between students (he got the
same exercise variant as the original author, therefore, one cannot say whether he would have
detected the watermark). We did not try to search for the original authors of the non-SQL
exercises. In these exercise types, there was less space for “personal style”. If we had used
more values for the discrimination points, so that each discrimination vector is used only
very few times (ideally once), that would have helped to identify the original authors. Five
more students were caught with the log file analysis explained in Section 5. In total, 14
students were detected as cheating (out of 114, i.e. 12%).

As a test for false alarms, we applied semantic watermarks in the SQL tasks of a proctored
exam (repetition exam with 19 participants in July 2022). Due to proctoring in a single
room, cheating was quite unlikely. There were actually two queries with wrong watermarks,
however, in each case, only one out of two discrimination points was wrong. In the first case,
the student wrote “Informatik” instead of “Bioinformatik”. Since both are programs of study
in our department, the discrimination point values were no secret in this case. In the second
case, the student sorted by course title instead of the ID. Again, the columns are known to
the student, and they might be intermixed. If a student might use a wrong discrimination
value simply by mistake (without communication), the evidential value is small. However,
two or more such wrong discrimination values would again be a strong evidence.

5 Verification by Log-File-Analysis

In the February 2022 exam, we worried that the students might already know the watermark
method, because we applied it already in the exam of March 2021. Therefore, we added a
different method: In all our exams, the students have the opportunity to test their queries with
a given example database using a web-interface (Adminer). The same setup with a single
“read only” database account for all students was used for the lab sessions and homeworks
before. We told the students very clearly that (1) all accesses to our server during the exam
are logged, and (2) the data will be analyzed for cheating attempts. However, it seems that
many students did not forsee what actually can be done with the data. We matched the
tried queries with the queries that were actually submitted in the exam. This gives the IP
addresses used by many (not all) students. It might be that students share an IP address (e.g.,
if they live in the same student residence). However, if the same query Q (submitted by
student S1) is tried from two different IP addresses I1 and I2, and I1 is used for other queries
submitted by S1, and I2 is used for other queries submitted by S2, it seems that S1 passed his
query Q to S2, and S2 tried it unchanged, and later modified it or decided to develop his/her

614 Stefan Brass, Alexander Hinneburg

Semantic Watermarks for Detecting Cheating in Online Database Exams 9

own solution. Of course, the query Q must be sufficiently complex so that it is extremely
unlikely that the two students developed it independently.

We have no space to explain this method in detail, but it gives us a chance to verify the
quality of the watermark method: (1) Are innocent students wrongly accused of cheating?
(2) How many cheating students were not caught by the watermark method? The log analysis
detected three clusters of students who exchanged SQL queries:

Cluster
ID

Number of
Students

Students with
wrong Watermark

Students

1 3 1 B, G, H
2 3 1 D, I, J
3 5 1 A, K, L, M, N

In some cases, one can see in the log of an IP address, how the complex query Q suddenly
appears and then is modified by changing the names of tuple variables, the case of SQL
keywords, and so on. Even though it might be conceivable that S1 and S2 independently
developed the same query Q, this process of obfuscation is a clear sign of guilt. In summary,
the log analysis has hardened the case against the students who had the wrong watermark in
their SQL queries, and made clearer who contributed to the cheating attempt by passing a
solution.

6 Practical Advice

A common advice is “An ounce of prevention is worth a pound of cure” [Di03]. One
certainly should make very clear before the exam that checks for cheating attempts will be
done, and the consequences of being caught will be unpleasant. One must assume that more
than a few students base the decision to cheat on a risk-benefit analysis. Everybody should
understand that the risk is definitely not zero. It would also be unfair to set up a kind of
“trap” for cheating students without informing them about such dangers. The goal must be
that the students are more likely to overestimate the actual risks than to underestimate them.

In particular, it must clear that the professor really cares about academic integrity. The
students must ask themselves whether they are able to outsmart the professor. If this paper
is read by all of our students, they might be able to avoid being detected by these methods
(although it would cost them at least some time). However, if a professor has once done
things like the log analysis, there is the risk that other unforseen methods are used next time.

Of course, one must respect data privacy laws and should contact the legal department of
the university to be safe. One cannot tell the students the exact methods that will be used for
detecting cheating attempts in their exam. Probably any algorithm for plagiarism detection
can be avoided by the students as soon as they know it. It can be considered ethically

Semantic Watermarks for Detecting Cheating in Online Database Exams 615

10 Stefan Brass, Alexander Hinneburg

questionable when the used methods are not completely transparent. But situations, in
which somebody decides to break the rules just because he can do it, often have no ethically
completely satisfying solutions — precisely because the rules do not help anymore.

It is also important how one communicates the discovery of the cheating attempt to the
students. We first tried to keep the details of our method secret (so that we might apply it
again). That probably was a mistake. When a student gets such a message, he/she must
decide whether to admit breaking the rules or not. After denying the cheating attempt, one
cannot later change one’s mind without also admitting that one lied before (which is very
difficult). Therefore, the full evidence should be given to the student from the beginning. We
also got the advice (from a non-lawyer) to ask the student whether he/she wants us to deliver
the evidence. The answer “yes” might be understood as an agreement for data processing.
For data privacy laws, it is also important to inform each student in a separate email, not
containing the names of any other students, even if that would be an important part of the
evidence. This might also have the advantage that students can individually decide whether
to admit the cheating attempt.

One criticism of our work was also that we catch the “small criminals”, but so far we cannot
do anything against really big cases of cheating — such as letting a paid expert write the
entire exam. In future work, we plan to compare the programming style used in previous
homeworks with the style in the exam (see also [MJ15, ORKS18]). It might be possible
to do an additional oral exam (with full identification) in a few very suspicious cases. Of
course, the possibility of such additional exams must be announced in advance.

7 Conclusions

Online exams seem to make cheating much simpler and less risky. However, due to the
COVID-19 pandemic, they were often the only option. But even after the pandemic, new
teaching methods and conveniences developed during the pandemic will remain: The
expectations for online teaching are rising. If online exams could be done with trust in the
integrity of the result, it would be possible to rethink the entire examination process. The
techniques presented here might also be used for homeworks.

We used small variations in the exercises (nearly “invisible”) to prove that a solution was
copied (because it contained the wrong “watermark”). For SQL queries, we verified the
detected cheating attempts with data from the log of SQL queries tried during the exam. This
also showed that only about half of the forbidden communication between the students was
detected with the watermark technique. However, when the watermark technique shows a
case of plagiarism, we know that the query from another student was really used for the query
that was finally submitted (not only tried and thrown away). An interesting aspect of our work
is that we wrote nearly the entire analysis in SQL (including recursive queries). More infor-
mation is available from: [https://users.informatik.uni-halle.de/~brass/sqlplag/].
There will also be a longer version of this paper on [https://arxiv.org/].

616 Stefan Brass, Alexander Hinneburg

https://users.informatik.uni-halle.de/unhbox voidb@x protect penalty @M brass/sqlplag/
https://arxiv.org/

Semantic Watermarks for Detecting Cheating in Online Database Exams 11

Bibliography
[AHK03] Agrawal, Rakesh; Haas, Peter J.; Kiernan, Jerry: Watermarking relational data: framework,

algorithms and analysis. The VLDB Journal, 12:157–169, 2003.
https://doi.org/10.1007/s00778-003-0097-x.

[An22] Anonymous Authors: Betrug in Online-Klausuren (cheating in online exams), January
2022. https://www.wiwi-treff.de/Lernen-and-Klausuren/Taeuschungsversuch/
Betrug-in-Online-Klausuren/Diskussion-88316.

[Ba17] Bawarith, Razan; Basuhail, Abdullah; Fattouh, Anas; Gamalel-Din, Shehab: E-exam
Cheating Detection System. International Journal of Advanced Computer Science and
Applications (IJACSA), 8(4):176–181, 2017.
https://dx.doi.org/10.14569/IJACSA.2017.080425.

[BG06] Brass, Stefan; Goldberg, Christian: Semantic errors in SQL queries: A quite complete list.
The Journal of Systems and Software, 79(5):630–644, 2006.
https://doi.org/10.1016/j.jss.2005.06.028,
https://dbs.informatik.uni-halle.de/sqllint/.

[Bi15] Binstein, Jake: On Knuckle Scanners and Cheating — How to Bypass Proctortrack,
Examity, and the Rest. Blog, January 2015. https://jakebinstein.com/blog/
on-knuckle-scanners-and-cheating-how-to-bypass-proctortrack/.

[Cl20] Clark, Ted M.; Callam, Christopher S.; Paul, Noel M.; Stoltzfus, Matthew W.; Turner,
Daniel: Testing in the Time of COVID-19: A Sudden Transition to Unproctored Online
Exams. Journal of Chemical Education, 97(9):3413–3417, 2020.
https://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.0c00546.

[DH05] Daly, Charlie; Horgan, Jane: A Technique for Detecting Plagiarism in Computer Code. The
Computer Journal, 48(6):662–666, 2005. https://doi.org/10.1093/comjnl/bxh139,
https://www.researchgate.net/publication/31104286.

[Di03] Dick, Martin; Sheard, Judy; Bareiss, Cathy; Carter, Janet; Joyce, Donald; Harding, Trevor;
Laxer, Cary: Addressing student cheating: definitions and solutions. ACM SIGCSE
Bulletin, 35(2):172–184, June 2003. https://doi.org/10.1145/782941.783000.

[DS17] D’Souza, Kelwyn A.; Siegfeldt, Denise V.: A Conceptual Framework for Detecting
Cheating in Online and Take-Home Exams. Decision Sciences Journal of Innovative
Education, 15(4):370–391, 2017. https://doi.org/10.1111/dsji.12140,
https://www.researchgate.net/publication/319967019.

[Eh21] Ehrlinger, Christina; Fritsch, Thomas; Fruth, Michael; Lehner, Franz; Scherzinger,
Stefanie: Toolunterstützung für den Übungsbetrieb in der Datenbanklehre: Erfahrungen
mit der Software Praktomat (Tool support for database labs: Experiences with the Software
Praktomat). Datenbank-Spektrum, 21:91–98, 2021.
https://doi.org/10.1007/s13222-021-00374-y.

[FMG19] Foltýnek, Tomáš; Meuschke, Norman; Gipp, Bela: Academic Plagiarism Detection: A
Systematic Literature Review. ACM Computing Surveys, 52(6), 2019.
https://doi.org/10.1145/3345317.

[GA11] Gross-Amblard, David: Query-preserving watermarking of relational databases and Xml
documents. ACM Transactions on Database Systems, 36(1):1–24, 2011.
https://doi.org/10.1145/1929934.1929937.

Semantic Watermarks for Detecting Cheating in Online Database Exams 617

https://doi.org/10.1007/s00778-003-0097-x
https://www.wiwi-treff.de/Lernen-and-Klausuren/Taeuschungsversuch/Betrug-in-Online-Klausuren/Diskussion-88316
https://www.wiwi-treff.de/Lernen-and-Klausuren/Taeuschungsversuch/Betrug-in-Online-Klausuren/Diskussion-88316
https://dx.doi.org/10.14569/IJACSA.2017.080425
https://doi.org/10.1016/j.jss.2005.06.028
https://dbs.informatik.uni-halle.de/sqllint/
https://jakebinstein.com/blog/on-knuckle-scanners-and-cheating-how-to-bypass-proctortrack/
https://jakebinstein.com/blog/on-knuckle-scanners-and-cheating-how-to-bypass-proctortrack/
https://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.0c00546
https://doi.org/10.1093/comjnl/bxh139
https://www.researchgate.net/publication/31104286
https://doi.org/10.1145/782941.783000
https://doi.org/10.1111/dsji.12140
https://www.researchgate.net/publication/319967019
https://doi.org/10.1007/s13222-021-00374-y
https://doi.org/10.1145/3345317
https://doi.org/10.1145/1929934.1929937

12 Stefan Brass, Alexander Hinneburg

[Ja21] Janke, Stefan; Rudert, Selma C.; Petersen, Änne; Fritz, Tanja M.; Daumiller, Martin:
Cheating in the wake of COVID-19: How dangerous is ad-hoc online testing for academic
integrity? Computers and Education Open, 2(100055), 2021.
https://doi.org/10.1016/j.caeo.2021.100055.

[KS19] Kleerekoper, Anthony; Schofield, Andrew: The False-Positive Rate of Automated Plagia-
rism Detection for SQL Assessments. In: UKICER: Proceedings of the 1st UK & Ireland
Computing Education Research Conference. ACM, pp. 1–6 (Article No.: 6), 2019.
https://doi.org/10.1145/3351287.3351290,
https://www.researchgate.net/publication/335480205.

[La08] Lafaye, Julien; Gross-Amblard, David; Constantin, Camelia; Guerrouani, Meryem:
Watermill: An Optimized Fingerprinting System for Databases under Constraints. IEEE
Transactions on Knowledge and Data Engineering, 20:532–546, 2008.
https://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190713.

[LC15] Lancester, Thomas; Clarke, Robert: The implications of Plagiarism and Contract
Cheating for the Assessment of Database Modules, 2015.
https://www.slideshare.net/ThomasLancaster/the-implications-of-plagiarism-
and-contract-cheating-for-the-assessment-of-database-modules-
teaching-learning-and-assessment-of-databases-2015.

[MAF21] Miedema, Daphne; Aivaloglou, Efthimia; Fletcher, George: Identifying SQL Misconcep-
tions of Novices: Findings from a Think-Aloud Study. In: Proceedings of the 17th ACM
Conference on International Computing Education Research. ACM, pp. 355–367, 2021.
https://doi.org/10.1145/3446871.3469759.

[MJ08] McCart, James A.; Jarman, Jay: A Technological Tool to Detect Plagiarized Projects in
Microsoft Access. IEEE Transactions on Education, 51(2):166–173, 2008.
https://ieeexplore.ieee.org/document/4455466.

[MJ15] Mirza, Olfat; Joy, Mike: Style Analysis for Source Code Plagiarism Detection. In:
Plagiarism across Europe and Beyond — Conference Proceedings. European Network
for Academic Integrity (ENAI), pp. 53–61, 2015.
https://academicintegrity.eu/conference/proceedings/2015/Mirza_Style.pdf.

[NJK19] Novak, Matija; Joy, Mike; Kermek, Dragutin: Source-code Similarity Detection and
Detection Tools Used in Academia: A Systematic Review. ACM Transactions on
Computing Education, 19(3):1–37, 2019. https://doi.org/10.1145/3313290.

[NMA22] Noorbehbahani, Fakhroddin; Mohammadi, Azadeh; Aminazadeh, Mohammad: A system-
atic review of research on cheating in online exams from 2010 to 2021. Education and
Information Technologies, 27:8413–8460, 2022.
https://doi.org/10.1007/s10639-022-10927-7.

[ORKS18] Opgen-Rhein, Julia; Küppers, Bastian; Schroeder, Ulrik: An Application to Discover
Cheating in Digital Exams. In (Joy, Mike; Ihantola, Petri, eds): Proc. of the 18th Koli
Calling International Conf. on Computing Education Research. ACM, pp. 1–5 (Article
No.: 20), 2018. https://doi.org/10.1145/3279720.3279740.

[PMP02] Prechelt, Lutz; Malpohl, Guido; Phlippsen, Michael: Finding Plagiarisms among a Set of
Programs with JPlag. Journal of Universal Computer Science, 8(11):1016–1038, 2002.
https://doi.org/10.3217/jucs-008-11-1016.

618 Stefan Brass, Alexander Hinneburg

https://doi.org/10.1016/j.caeo.2021.100055
https://doi.org/10.1145/3351287.3351290
https://www.researchgate.net/publication/335480205
https://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190713
https://www.slideshare.net/ThomasLancaster/the-implications-of-plagiarism-and-contract-cheating-for-the-assessment-of-database-modules-teaching-learning-and-assessment-of-databases-2015
https://www.slideshare.net/ThomasLancaster/the-implications-of-plagiarism-and-contract-cheating-for-the-assessment-of-database-modules-teaching-learning-and-assessment-of-databases-2015
https://www.slideshare.net/ThomasLancaster/the-implications-of-plagiarism-and-contract-cheating-for-the-assessment-of-database-modules-teaching-learning-and-assessment-of-databases-2015
https://doi.org/10.1145/3446871.3469759
https://ieeexplore.ieee.org/document/4455466
https://academicintegrity.eu/conference/proceedings/2015/Mirza_Style.pdf
https://doi.org/10.1145/3313290
https://doi.org/10.1007/s10639-022-10927-7
https://doi.org/10.1145/3279720.3279740
https://doi.org/10.3217/jucs-008-11-1016

Semantic Watermarks for Detecting Cheating in Online Database Exams 13

[RC05] Russell, Gordon; Cumming, Andrew: Online Assessment and Checking of SQL: Detecting
and Preventing Plagiarism. In: 3rd Workshop on Teaching, Learning and Assessment in
Databases (TLAD), in 22nd British National Conference on Databases. HE Academy for
Information and Computing Sciences, pp. 1–6 (Article No.: 6), 2005.
https://www.researchgate.net/publication/252140116.

[Si13] Singh, Anil: Detecting Plagiarism in MS Access Assignments. Journal of Information
Systems Education, 24(3):177–180, 2013.
https://jise.org/Volume24/n3/JISEv24n3p177.html.

[SSS18] Scerbakov, Nikolai; Schukin, Alexander; Sabinin, Oleg: Plagiarism Detection in SQL
Student Assignments. In (Auer, Michael E.; Guralnick, David; Simonics, Istvan, eds):
Teaching and Learning in a Digital World, Proc. of the 20th Conf. on Interactive
Collaborative Learning (ICL). Springer, pp. 321–326, 2018.
https://www.researchgate.net/publication/319942726.

[TSV18] Taipalus, Toni; Siponen, Mikko; Vartiainen, Tero: Errors and Complications in SQL
Query Formulation. ACM Transactions on Computing Education, 18(3):1–29, 2018.
https://doi.org/10.1145/3231712.

Semantic Watermarks for Detecting Cheating in Online Database Exams 619

https://www.researchgate.net/publication/252140116
https://jise.org/Volume24/n3/JISEv24n3p177.html
https://www.researchgate.net/publication/319942726
https://doi.org/10.1145/3231712

cba

Rakow et al. (Hrsg.): 20th Conference on Database Systems for Business, Technology and Web,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Developing OERs for Teaching Database Systems1

A Two-Year Effort of Four Universities of Applied Sciences

Thomas C. Rakow2, André Kless3, Charlotte Hasler4, Harm Knolle3, Heide
Faeskorn-Woyke5, Inga Marina Saatz6, Jens Lambert4, Mareike Focken4

Abstract: In the project EILD.nrw, Open Educational Resources (OER) were developed for teaching
database systems. Lecturers can use the tools and courses in a variety of learning scenarios. Students
of computer science and application subjects can learn the complete lifecycle of databases. For this
purpose, we developed and published quizzes, interactive tools, instructional videos, and courses
for learning management systems, under a Creative Commons license. Find an overview of the
developed OERs according to topic, description, teaching form, and format in this paper. Furthermore,
we describe the implementation of licensing, sustainability, accessibility, contextualization, content
description, and technical adaptability. The learning and teaching modules were used in ongoing
classes and evaluated anonymously by students.

Keywords: database systems, open educational resources (OERs), higher education

1 Introduction

Using digital teaching and learning materials for teaching offers opportunities for design
of new scenarios: availability anytime and anywhere, customization, especially with the
individual speed of reception, automatable review of solutions, traceability of use as well as
easy reproducibility [Ra21; RF19]. The content consists of presentations, scripts, and tasks.
Activities can be forums and chats, surveys, and tests, enriched with gaming elements, all
provided for learning management systems.

Overall, the EILD.nrw project developed about 80 open educational resources (OERs) for the
life cycle of databases such as modelling, relational data model, SQL, and implementation
1 Main parts of this work were supported by a grant of the Ministry of Culture and Science of the State of North

Rhine-Westphalia as a cooperation project of the Digital University of North Rhine-Westphalia (DH.NRW).
2 Hochschule Düsseldorf University of Applied Sciences, Faculty of Media, Düsseldorf, thomas.rakow@hs-

duesseldorf.de, https://orcid.org/0000-0001-6374-9068
3 Hochschule Bonn-Rhein-Sieg University of Applied Sciences, Department of Computer Science, Sankt Augustin
4 Hochschule Düsseldorf University of Applied Sciences, Faculty of Media, Düsseldorf
5 Technische Hochschule Köln University of Applied Sciences, Faculty of Computer Science and Engineering

Science, Gummersbach
6 Fachhochschule Dortmund University of Applied Sciences and Arts, Faculty of Computer Science, Dortmund

cba doi:10.18420/BTW2023-31

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 621

mailto:thomas.rakow@hs-duesseldorf.de
mailto:thomas.rakow@hs-duesseldorf.de
https://orcid.org/0000-0001-6374-9068
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-31

2 Thomas C. Rakow et al.

of database management systems [EI22a; Ra22]. The project partners coming from four
universities have many years of experience in teaching database systems with self-developed
learning units. Every semester, about 1,000 students can acquire knowledge in supported
self-study and work on practical tasks for the conception, creation, and programming of
database systems.

The project was funded by the Ministry of Culture and Science (the Ministry) of the State
of North Rhine-Westphalia (NRW) starting in the winter semester of 2020 as a cooperation
project with the Digitale Hochschule of North Rhine-Westphalia (DH.NRW) The tools can
be used for courses dedicated to studies in Informatics and Media, Business or Technical
Informatics and applied to specific learning scenarios for blended learning. The content
created in this as well as the other projects of the funding line OERContent.nrw are being
made available under the CC BY-SA 4.0 license – sharing and editing with attribution and
passing on under the same conditions [NN22]. Other included software and other material
like logos are licensed as specified.

To our knowledge there is no recent initiative to develop such a huge amount of OERs for
teaching database systems covering the main topics. We present the full scope of material
and make it freely available to promote exchange in the database community and to improve
teaching the database systems subject. Hence, some of the tools and courses developed in
the project were presented at LWDA’22 [Ra22].

We outline studies of OER usage of lecturers internationally, but mainly focus on German
speaking countries’ conditions of use for the database systems subject. We describe the
requirements of OERs in general but also the requirements from the EILD.nrw project. The
developed OER are listed respectively with their teaching form and their technical format.
During development, we also focussed on quality assurance and compare our development
with the findings published at project start [Ra21].

2 Related Work

The use and usability of OERs by lecturers were examined in many international studies with
different focal points [BF21]. A study on how OERs must be designed so that lecturers can
use them for the database systems subject is still pending. However, the results from existing,
non-subject-specific studies already provide many clues that can be implemented for database
systems related OERs. Numerous and frequently examined factors influence teachers in
their decision to use an OER or not. Education, university policy and training can create the
prerequisites for the use of OERs, such as such as knowledge and technical ability. [Pi16;
WT17]. The nature of the OERs (content, technical, qualitative) including their metadata
are crucial for findability and selection. There are solutions to improve metadata, ranging
from cross-repository standardization [DD12] to subject-specific, ontology-based indexing
(RJG14). Quality control and reusability are important for creation and provisioning. To
ensure quality, one suggestion is to implement editorial processes [To19]. As a recent

622 Thomas C. Rakow, André Kless, Charlotte Hasler, Harm Knolle, Heide
Faeskorn-Woyke, Inga Marina Saatz, Jens Lambert, Mareike Focken

Developing OERs for Teaching Database Systems 3

initiative by lecturers, the 1st International Workshop on Data Systems Education brought
together case studies and experiences from the use of self-developed tools.

The usability of learning content and Open Educational Resources (OER) have been under
discussion in Germany since 2000 [De16]. Slides, scripts, tasks, wikis, blogs, and video
recordings are made available individually or as collections in online courses - the Massive
Open Online Courses (MOOCs). Nevertheless, there is a great deal of helplessness as of
how to integrate these offers into the curricula at German universities [De16].

At the 2008 autumn meeting in Düsseldorf, the German SIG Database Systems of the
German Informatics Society (GI-Fachgruppe Datenbanksysteme) dealt with the topic
"Quo Vadis: Forms of database training and further training"[Ra09]. A special issue of the
journal Datenbank-Spektrum edited by the GI-Fachgruppe Datenbanksysteme was published
introducing several digital and even one analog tool presented in the workshop [Ra09].
But it took a decade to address digital teaching agian prominently in the community. At a
workshop of the database systems conference BTW 2019 both procedures for teaching the
database systems subject – digital communication, portals, blended learning – and their
handling considered from the learner’s perspective were presented [RF19]. In 2021, two
issues of Datenbank-Spektrum were dedicated to the digital lecture of database systems
[STH21].

Our developments in the project EILD.nrw support the start done in 2019 by the German
database community very well. We have extended our effort to make existing or newly
developed tools available as OER. In our journal paper, we introduced the variables and their
features for a good practical usage of OERs [Ra21]. The forms of licensing, sustainability,
and accessibility, as well as the possibilities for contextualization and the content, the
technical adaptability as well as compliance with data protection on platforms are the
determining factors for exchanging digital content in teaching. In the project, we dedicated
our efforts to make already existing or newly developed tools available as OER, and thereby
fulfilling most of the requirements published.

3 Requirements for Database-related OERs

Are there any peculiarities in applying digital teaching to the database systems subject? –
The use of databases is taught using descriptive SQL programming. The desired results
are specified, but not the path to these results. Usually, programming is taught first with
procedural or object-oriented concepts [GI16]. Hence, the methods in SQL seem unfamiliar
and therefore require a special approach on how loops or intermediate results can be
"bypassed".

In computer science, digital tools are used professionally. Teaching has long been conducted
using these tools – commercial ones, open source or self-developed. But does computer
science in general not involve any practical work since “everything” is possible using

Developing OERs for Teaching Database Systems 623

4 Thomas C. Rakow et al.

computers? – Not necessarily, even if originally analogue working methods such as pair
programming can be mapped to digital formats. But in application areas such as media
technology with the use of photo and film cameras, as well as the green room, or in media
design using sheets of paper, analogue work continues [He17; Wo19]. Nevertheless, in the
EILD project we focus on the digital tools which is enough work to do.

The requirements for the exchange of OERs [Ra21] are classified with EILD specific marks
(Tab 1). Decisions must be made which types to choose resp. how to fulfil them. In the
project EILD.nrw, some were already set by the by the Ministry’s call for proposals.

Requirement Types

Licensing private without license commercial open

Sustainability permission
to use

customizability technical
feasibility

privacy

Accessibility style layout language language level

Contextual-
ization

vocational
training

school higher
education

professional

Content
description

knowledge learning
goals

competences learning
paths

Technical
adaptability

customization platform

Tab. 1: Requirements for the Exchange of OERs [Ra21],
EILD-specific marks are underlined (must, optional)

• Licensing: The licensing type was required to be Creative Commons with the variants
CC for free at all, CC-BY with a mandatory credit for the original creation, and
CC-BY-SA for the additional requirement using this licensing in case of further
distribution for other versions [NN22]. In all variants, commercial use is allowed. We
have chosen CC-BY-SA to be credited for our substantial work, and to encourage
making changes – not only updates, as well as also language adaptations – available
to the community.

• Sustainability: Permission to use is granted by licensing and cannot be withdrawn.
Customizability and technical feasibility as required by the request are achieved by
using open software and/or state of the art products. As in modular systems, the
resources should be selected based on metadata and a guide for the lecturers explaining
their properties. Privacy must comply with the European General Data Protection
Regulation (GDPR). The given distribution platform ORCA.nrw is operated by
a German institution; thus, the responsibility is on their side first [OR22]. If the
OERs log privacy-related data, their usage should be described and optionally made
available.

624 Thomas C. Rakow, André Kless, Charlotte Hasler, Harm Knolle, Heide
Faeskorn-Woyke, Inga Marina Saatz, Jens Lambert, Mareike Focken

Developing OERs for Teaching Database Systems 5

• Accessibility: Due to different teaching concepts synchronous digital media like
interactive presentations, courses, and (programmable) tools as well as asynchronous
digital media like instructional videos/ screencasts and tests are offered. Due to their
intended use in basic courses first, the initial content is in German. Translating the
content into other languages is intended, but as there are no funds available in the
project for translation, the OER community will have to rely on voluntary work.
However, for example, learning instructions for textbooks in German - which are
provided in our OER courses - , can only be mapped into other language settings with
a great effort.

• Contextualization: The OERs are provided with descriptions, learning outcomes,
and metadata. Teachers notes contain the didactic concept used in introductional
videos and courses, explained in terms of best practices. The funding line’s purpose
was to encourage the use of digital materials for universities and target the higher
educational sector. A professional level is not intended to be addressed. However,
vocational education and training (VET) and secondary school courses may use some
of the OERs provided.

• Technical adaptability: Easy customization is requested by the lecturers. It can
be achieved in different ways according to the teaching form of an OER – video,
tutorial, software tool, course – of an OER. The ministry requests the installation
of ORCA.nrw as distribution platform [OR22]. Also, the OERs must be useable for
the two learning management systems ILIAS and Moodle, which are widely used in
NRW.

4 EILD Educational Resources

Thematically, for database systems, the following topics are recommended [Ke15, Ku15,
Fa07]: conceptual design, relational data model, SQL programming and mapping from
models, database-based application development, and internals of database management
systems (DBMS). Learning modules building on those fundamentals being suitable for
master’s degree programs are distributed databases, mainly NoSQL databases, and data
analysis. The learning units developed are modular. Competencies (skills) to be taught are
described in the recommendations of the German Informatics Society (GI) for Informatics
[GI16] as well as for application subjects in Business Informatics [GI17], Media Informatics
[He17; Wo19], and Technical Computer Science [GI18]. The study regulations and module
descriptions of specific degree programs implement such recommendations institution
related.

The tools and courses can be selected and adapted to the respective requirements of the
lecturers and the type of their courses based on included guides. Using the open environments
HTML, JavaScript, SQLite, and Jupyter notebooks, ensures to meet these requirements.
For most of the tools, you can download texts in JSON format and change them to your

Developing OERs for Teaching Database Systems 625

6 Thomas C. Rakow et al.

own needs. Software versioning via GitHub provisioning [EI22b], inclusion of didactic
descriptions and evaluation results within the courses are also available.

The learning content is currently available on the ORCA.nrw platform [OR22] and partly as
a repository on GitHub as well as an executable version on GitHub Pages. You can run an
OER yourself on ILIAS, Moodle, or similar platforms by uploading the files provided on
the ORCA.nrw platform or in GitHub as a packed file and unpacking it within the LMS.
Another option is to generate the application from the source code using the build script.
The content is thus freely available and easily accessible.

The self-assessment tests provide direct feedback on what was answered correctly or
incorrectly. Thus, no user-specific data is processed at any time and no dependencies on
external servers are implemented. Alternatively, you can use the versions provided via
GitHub Pages making changes available immediately. Note, that the GitHub servers are
outside the scope of the GDPR.

Table 2 shows an aggregation of OERs we have developed. In each case, the topic, a
description of the content, the form of material, and the available formats are indicated.

Topic Description Form Format

Overlapping
Concepts

1300 questions with solution
hints Multiple choice test JavaScript Pages

SQL Database

Generation of crossword puzzles
from 200 items Interactive tool JavaScript Pages

Tutorial for the three-layer archi-
tecture Instructional video Video with subtitles

Conceptual
Design

Modelling ER diagrams Instructional video Video with subtitles

Interactive tool JavaScript Pages

Modelling UML class
diagrams Interactive presentation H5P

SCORM

Relational
Data Model

Introduction to the relational
data model and the
normalization of relations

Instructional videos Video with subtitles

Interactive course Moodle Course

Interactive tool JavaScript Pages

SQL
Programming
and Mapping
from Models

SQL querying and creating
databases

Interactive
programmable tool

JavaScript Pages

SQLite DBMS

Practicing triggers, functions,
and procedures in PL/SQL Interactive

programmable tool

SQL DBMS - Ora-
cle® application

Tab 2, part 1: Overview of the Developed OERs

626 Thomas C. Rakow, André Kless, Charlotte Hasler, Harm Knolle, Heide
Faeskorn-Woyke, Inga Marina Saatz, Jens Lambert, Mareike Focken

Developing OERs for Teaching Database Systems 7

Topic Description Form Format

Use of Oracle SQLcl®
[La21] Instructional screencast Video with subtitles

Use of Oracle SQL De-
veloper® for PL/SQL Instructional screencast Video with subtitles

Mapping the ER-Model
or UML-classes to SQL Interactive presentations JavaScript Pages

Optimising databases Interactive presentation Video with subtitles

Applications Object-relational
mapping

Instructional videos Video with subtitles

Interactive
presentation

H5P

ILIAS module

SCORM

Internals

The five-layer DBMS
architecture

Instructional video SCORM

Introduction to transac-
tion management Instructional videos Video with subtitles

Exercises to synchro-
nize transactions Interactive tool JavaScript Pages

Creation of a B-tree
index

Interactive tools JavaScript Pages

Distributed
Systems

Introduction to NoSQL
databases Instructional videos Video with subtitles

Distributed querying Interactive course Video with subtitles

MongoDB Interactive
programmable tool

Jupyter Notebook

Data Analytics

Programming Apache
SPARK with Python Interactive

programmable tool
Jupyter Notebook

Text analyses Interactive
programmable tool

Jupyter Notebook

Image analyses Interactive
programmable tool

Jupyter Notebook

Tab 2, part 2: Overview of the Developed OERs

Developing OERs for Teaching Database Systems 627

8 Thomas C. Rakow et al.

5 Quality Assurance

All new and further developed tools were presented and discussed in regular meetings
including all project members such as professors, scientific and student staff. Demonstrations
take place once per quarter. After the presentation of the innovations, the used contents
and concepts are discussed professionally for improvement and review. The discussion was
complemented by the exchange about didactic concept, technical implementation, usability,
and the need for actual use in teaching - with the associated difficulties.

The learning and teaching modules were used in ongoing classes and evaluated anonymously
by students [RF21]. A mixture of quantitative and qualitative surveys has proven to be
helpful. The evaluation results were documented in the learning units to provide students
and lecturers with an aid for selection.

While the quantitative information only records the valuation by the students, specific
suggestions and reasons for the valuation could be given in the free text. The free-text
option was well received by the students, and the suggestions made for improvement could
be evaluated in combination with the scaled answers and integrated into the modules
accordingly. For example, the "Podcast: Introduction to SQLcl from Oracle"was rated as
helpful according to quantitative questioning. In addition, criticism of the visibility of
individual elements in some web browsers was also expressed in the free text. The screencast
was therefore revised according to accessibility guidelines and the problem was solved with
improved browser compatibility.

Students also wanted more helpful tips beyond the DBMS’s error messages. For this
purpose, all faulty SQL statements were logged and compared with the stored sample
solution [FBS20]. Suggestions from student were not only related to the course content
itself, but also to its integration into teaching [RF21]. There was also a desire to improve
the instructions for using the tools, as well as suggestions for structuring the course.

In most cases, the peer discussions as well as student feedback have led to specific
improvements in OER and will be continued.

6 Conclusions

With our developments in the project, we could verify our findings published at the beginning
of the project in Datenbank-Spektrum [Ra21]: (1) a mix of synchronous and asynchronous
digital media, (2) a sustainable licensing, (3) a clear didactic concept, (4) a low-threshold
student participation (through reporting, voting, anonymous questionnaires, suggestion
boxes, breakout, and question sessions, etc.), (5) the agreement among the lecturers of a
degree program to limit the variety of tools and methods, and (6) the use of interactive tools.

628 Thomas C. Rakow, André Kless, Charlotte Hasler, Harm Knolle, Heide
Faeskorn-Woyke, Inga Marina Saatz, Jens Lambert, Mareike Focken

Developing OERs for Teaching Database Systems 9

We believe, there is not just one concept for successful teaching, but rather an interaction of
several influencing factors will decide on the success. The EILD.nrw project has made a
significant contribution to these finding.

Focusing on teaching as well as on the successful learning process allows a different view
on the integration of OERs, which in this scenario serves to improve teaching [BF21]. More
purposeful than the question of how teachers use or can use OER is the following question:
How can OERs enhance teaching as well as the learning process? And what do teachers
need for this?

In many projects we have developed predecessors of these OERs. We would like to thank
the students who helped us to improve the content through their questions in lectures and
practical courses. The students of our degree programs in the semesters starting in the winter
semester 2020 up to the summer semester 2022 took thankfully part in the quality assurance
surveys. Especially, we would like to thank the students who made the results of their student
research work available to us: Anne Giesen, Arabella Jackszis, Frederic Cieslik, Jonas Baur
and Monika Joussen. Together with the authors of this article, Alexander Kosmehl, Björn
Salgert, Christian Schindler and Melanie Beutel worked on the EILD.nrw project. Our
heartfelt thanks go to them all.

References

[AFM22] Aivaloglou, E.; Fletcher, G.; Miedema, D.: DataEd’22 - 1st International
Workshop on Data Systems Education: Bridging Education Practice with
Education Research. In: Proceedings of the 2022 International Conference on
Management of Data. SIGMOD ’22, Association for Computing Machinery,
Philadelphia, PA, USA, pp. 2556–2557, 2022, isbn: 9781450392495, url:
https://doi.org/10.1145/3514221.3524079.

[BF21] Baur, J.; Focken, M.: OER-Nutzung durch Lehrende. Arbeitspapiere des Lehrge-
biets Datenbanken und E-Business 2021/3, pp. 32–42, 2021, url: https:
//doi.org/10.20385/opus4-3372.

[DD12] Dichev, C.; Dicheva, D.: Open Educational Resources in Computer Science
Teaching. In: Proceedings of the 43rd ACM Technical Symposium on Com-
puter Science Education. SIGCSE ’12, Association for Computing Machinery,
Raleigh, North Carolina, USA, pp. 619–624, 2012, isbn: 9781450310987, url:
https://doi.org/10.1145/2157136.2157314.

[De16] Deutscher Bildungsserver: Machbarkeitsstudie zum Aufbau und Betrieb von
OER-Infrastrukturen in der Bildung (Stand: Februar 2016). 2016.

[EI22a] EILD.nrw: GitHub repository, 2022, url: https://github.com/EILD-nrw/,
visited on: 08/01/2023.

[EI22b] EILD.nrw: Website. 2022, url: https://eild.nrw, visited on: 08/01/2023.

Developing OERs for Teaching Database Systems 629

https://doi.org/10.1145/3514221.3524079
https://doi.org/10.20385/opus4-3372
https://doi.org/10.20385/opus4-3372
https://doi.org/10.1145/2157136.2157314
https://github.com/EILD-nrw/
https://eild.nrw

10 Thomas C. Rakow et al.

[Fa07] Faeskorn-Woyke, H.; Bertelsmeier, B.; Riemer, P.; Bauer, E.: Datenbanksysteme:
Theorie und Praxis mit SQL2003, Oracle und MySQL. Pearson Deutschland
GmbH, 2007.

[FBS20] Faeskorn-Woyke, H.; Bertelsmeier, B.; Strohschein, J.: A decision tree approach
for the classification of mistakes of students learning SQL, a case study about SE-
LECT statements. In: DELFI 2020–Die 18. Fachtagung Bildungstechnologien
der Gesellschaft für Informatik eV. Gesellschaft für Informatik eV, pp. 211–216,
2020, url: https://dl.gi.de/handle/20.500.12116/34162.

[He17] Heinecke, A. M.; Kindsmüller, M. C.; Noss, C.; Rakow, T. C.; Rumpler, M.;
Wolters, C.: Medieninformatik 2017: Berufsbilder, Färbungen, Curricula und
Erfahrungen. In: Mensch und Computer - Workshopband. Gesellschaft für
Informatik eV, pp. 459–464, 2017, url: https://doi.org/10.18420/muc2017-
ws10-0426.

[Ju17] Jung, R.: Rahmenempfehlung für die Ausbildung in Wirtschaftsinformatik an
Hochschulen (März 2017). Gesellschaft für Informatik eV, 2017.

[KE15] Kemper, A.; Eickler, A.: Datenbanksysteme. 10. Auflage, De Gruyter, Olden-
bourg, 2015.

[Ku15] Kudraß, T.: Taschenbuch Datenbanken. Carl Hanser Verlag GmbH Co KG,
2015.

[La21] Lambert, J.: Podcast: Einführung in Oracle SQL Command Line (SQLcl)./,
Hochschule Düsseldorf, 2021, url: https://doi.org/10.20385/opus4-3461.

[Ma18] Maehle, E.: Curriculum für Bachelor-und Masterstudiengänge Technische
Informatik (März 2018). Gesellschaft für Informatik eV, 2018.

[NN22] N.N.: Creative commons licenses. 2022, url: https://creativecommons.
org/licenses/, visited on: 08/01/2023.

[OR22] ORCA.nrw: Studium und Lehre digital unterstützt. 2022, url: https://orca.
nrw, visited on: 08/01/2023.

[Pi16] Piedra, N.; Chicaiza, J.; López, J.; Caro, E. T.: Integrating OER in the design of
educational material: Blended learning and linked-open-educational-resources-
data approach. In: 2016 IEEE Global Engineering Education Conference
(EDUCON). IEEE, pp. 1179–1187, 2016, url: https://doi.org/10.1109/
EDUCON.2016.7474706.

[Ra09] Rakow, T. C.; Faeskorn-Woyke, H.; Schiefer, B.; Vossen, G.; Wäsch, J.: Tools
für die Lehre im Fach Datenbanken. Datenbank-Spektrum 9/29, pp. 5–13, 2009,
url: https://www.researchgate.net/publication/220102832_Tools_fur_
die_Lehre_im_Fach_Datenbanken.

[Ra21] Rakow, T. C.; Faeskorn-Woyke, H.; Saatz, I. M.; Knolle, H.: Es EILD–
Anforderungen an die Publikation freier Lerneinheiten (OER) im Fach Daten-
banken. Datenbank-Spektrum 21/2, pp. 111–120, 2021, url: https://doi.
org/10.1007/s13222-021-00373-z.

630 Thomas C. Rakow, André Kless, Charlotte Hasler, Harm Knolle, Heide
Faeskorn-Woyke, Inga Marina Saatz, Jens Lambert, Mareike Focken

https://dl.gi.de/handle/20.500.12116/34162
https://doi.org/10.18420/muc2017-ws10-0426
https://doi.org/10.18420/muc2017-ws10-0426
https://doi.org/10.20385/opus4-3461
https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://orca.nrw
https://orca.nrw
https://doi.org/10.1109/EDUCON.2016.7474706
https://doi.org/10.1109/EDUCON.2016.7474706
https://www.researchgate.net/publication/220102832_Tools_fur_die_Lehre_im_Fach_Datenbanken
https://www.researchgate.net/publication/220102832_Tools_fur_die_Lehre_im_Fach_Datenbanken
https://doi.org/10.1007/s13222-021-00373-z
https://doi.org/10.1007/s13222-021-00373-z

Developing OERs for Teaching Database Systems 11

[Ra22] Rakow, T. C.; Faeskorn-Woyke, H.; Saatz, I. M.; Knolle, H.: OER Tools and
Courses for Teaching Database Systems as Developed in the Project EILD.nrw
(Extended Abstract). In. In: LWDA’22. To be published in: CEUR Workshop
Proceedings, 2022.

[RF19] Digitale Lehre im Fach Datenbanken, Gesellschaft für Informatik eV, 2019,
pp. 97–98, url: https://doi.org/10.18420/btw2019-ws-09.

[RF22] Rakow, T. C.; Focken, M.: EILD. nrw–Die Evaluation von Lehrinhalten im Fach
Datenbanken. In: Forschungsreport 2021. Hochschule Düsseldorf, pp. 138–139,
2022, url: https://nbn-resolving.org/urn:nbn:de:hbz:due62-opus-
36892.

[RJG14] Ruiz-Iniesta, A.; Jiménez-Díaz, G.; Gómez-Albarrán, M.: A semantically
enriched context-aware OER recommendation strategy and its application to
a computer science OER repository. IEEE Transactions on Education 57/4,
pp. 255–260, 2014, url: https://doi.org/10.1109/TE.2014.2309554.

[STH21] Scherzinger, S.; Thor, A.; Härder, T.: Themenhefte "Digitale Lehre im Fachgebiet
Datenbanksysteme". Datenbank-Spektrum 21/1/2, Mar. 2021, url: https:
//link.springer.com/journal/13222/volumes-and-issues/21-1/https:

//link.springer.com/journal/13222/volumes-and-issues/21-2.
[To19] Towey, D.; Reisman, S.; Chan, H.; Demartini, C.; Tovar, E.; Margaria, T.: OER:

Six perspectives on global misconceptions and challenges. In: 2019 IEEE
International Conference on Engineering, Technology and Education (TALE).
IEEE, pp. 1–7, 2019, url: https://doi.org/10.1109/TALE48000.2019.
9225943.

[Wo19] Wolters, C.; Kindsmüller, M. C.; Heinecke, A. M.; Rakow, T. C.; Dahm, M.;
Jent, S.; Rumpler, M.: Medieninformatik 2019: Kompetenzorientierte Lehr-
Lernszenarien in der Medieninformatik. In: Mensch und Computer 2019
- Workshopband. Gesellschaft für Informatik eV, pp. 512–517, 2019, url:
https://dx.doi.org/10.18420/muc2019-ws-305.

[WT17] Wang, T.; Towey, D.: Open educational resource (OER) adoption in higher
education: Challenges and strategies. In: 2017 IEEE 6th International Confer-
ence on Teaching, Assessment, and Learning for Engineering (TALE). IEEE,
pp. 317–319, 2017, url: https://doi.org/10.1109/TALE.2017.8252355.

[Zu16] Zukunft, O.: Empfehlungen für Bachelor-und Masterprogramme im Studienfach
Informatik an Hochschulen (Juli 2016). Gesellschaft für Informatik eV, 2016.

Developing OERs for Teaching Database Systems 631

https://doi.org/10.18420/btw2019-ws-09
https://nbn-resolving.org/urn:nbn:de:hbz:due62-opus-36892
https://nbn-resolving.org/urn:nbn:de:hbz:due62-opus-36892
https://doi.org/10.1109/TE.2014.2309554
https://link.springer.com/journal/13222/volumes-and-issues/21-1/https://link.springer.com/journal/13222/volumes-and-issues/21-2
https://link.springer.com/journal/13222/volumes-and-issues/21-1/https://link.springer.com/journal/13222/volumes-and-issues/21-2
https://link.springer.com/journal/13222/volumes-and-issues/21-1/https://link.springer.com/journal/13222/volumes-and-issues/21-2
https://doi.org/10.1109/TALE48000.2019.9225943
https://doi.org/10.1109/TALE48000.2019.9225943
https://dx.doi.org/10.18420/muc2019-ws-305
https://doi.org/10.1109/TALE.2017.8252355

cba

Herausgeber et al. (Hrsg.): BTW,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

Enhancing Explainability and Scrutability of Recommender
Systems

Azin Ghazimatin1

Abstract: Our increasing reliance on complex algorithms for recommendations calls for models
and methods for explainable, scrutable, and trustworthy AI. While explainability is required for
understanding the relationships between model inputs and outputs, a scrutable system allows us to
modify its behavior as desired. These properties help bridge the gap between our expectations as
end users and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with
information overload, recommender systems play a crucial role in filtering content (such as products,
news, songs, and movies) and shaping a personalized experience for their users. Consequently,
there has been a growing demand from the information consumers to receive proper explanations
for their personalized recommendations. To this end, we put forward proposals for explaining
recommendations to the end users. These explanations aim at helping users understand why certain
items are recommended to them and how their previous inputs to the system relate to the generation of
such recommendations. Such explanations usually contain valuable clues as to how a system perceives
user preferences and more importantly how its behavior can be modified. Therefore, as a natural
next step, we develop a framework for leveraging user feedback on explanations to improve their
future recommendations. We evaluate all the proposed models and methods with real user studies and
demonstrate their benefits at achieving explainability and scrutability in recommender systems.

Keywords: Recommender Systems; Explainable AI; Scrutability

1 Introduction

Our increasing reliance on complex algorithms for recommendations calls for models and
methods for explainable and scrutable AI. While explainability helps us understand the
cause of a decision made by an algorithm [Mi19], a scrutable system enables users to correct
system’s assumptions when needed [TM07]. These properties bring about trust by bridging
the gap between humans and AI.

Aiming to personalize content based on user preferences, recommender systems are perceived
as advice-givers that can improve our acceptance through explanations [RRS15]. With
the emergence of more complex models [KBV09] outperforming the simpler and more
explainable ones [Sa01], Explainable AI has progressively received more attention from the
Recommender Systems (RecSys) community [ZC20]. Lack of transparency in recommender
systems can have a direct impact on user acceptance, as based on the content personalized
1 Saarland University and Max Planck Institute for Informatics, 66123 Saarbrücken, Germany aghazima@mpi-

inf.mpg.de

cba doi:10.18420/BTW2023-32

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 633

mailto:aghazima@mpi-inf.mpg.de
mailto:aghazima@mpi-inf.mpg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-32

12 Azin Ghazimatin

for users, they may feel that the system is labeling them inappropriately2 or misusing their
private information3. To highlight the gravity of this matter, recently, laws have been passed
to establish users’ right to explanations [GF17].

Despite the close tie between explainability and scrutability [BR20], they do not necessarily
entail each other. In other words, knowing why the algorithm makes particular choices may
not be sufficient for realizing how to modify it. For instance, imagine a user of an online
movie streaming service who is frequently recommended with action movies. The system
explains its choices by drawing connections between the recommended movies and the
action movies the user previously watched on the platform. Now, consider a situation where
the user wants to stop receiving such movies as they do not entirely match her interest.
Here, the provided explanations do not act as a precise guide as to how they can effectively
exert control over their recommendations. Therefore, scrutability in recommender systems
requires separate consideration and handling.

The following sections delve into the concepts of explainability and scrutability and describe
our contributions towards realizing these objectives.

2 Explainable Recommendations

Recommender systems aim at delivering personalized content such as products, movies,
books, and songs to their users. The chosen content is often visualized in a ranked list,
where the order reflects the relevance of the items to the user. To compute these relevance
scores, recommender systems usually train models based on various inputs collected from
their users. User inputs can be explicit (e.g., rating or liking an item) or implicit (e.g.,
watching a movie or listening to a song). The abundance of implicit signals has facilitated
data collection by service providers.

Providing the systems with an enormous amount of data over time, users might not be
able to remember all the details of their interactions, and hence experience difficulty in
understanding why they receive certain items as their recommendations. This problem
particularly worsens when users do not even have access to the complete history of their
interaction with the system, a phenomenon referred to as inverse privacy [GW16]. Therefore,
it is imperative for the recommender systems to be explainable, i.e., to enable users to
understand the relationships between their own input to the system and the recommendations
they receive.

To illustrate how a recommendation can be explained, imagine a user who is a member
of a social cataloging website like Goodreads4 and receives a book recommendation,
titled Recovery: Freedom from Our Addictions. Example 2.1 presents a possible way of

2 https://www.wsj.com/articles/SB1038261936872356908

3 https://www.wired.co.uk/article/tiktok-filter-bubbles

4 https://www.goodreads.com

634 Azin Ghazimatin

https://www.wsj.com/articles/SB1038261936872356908
https://www.wired.co.uk/article/tiktok-filter-bubbles
https://www.goodreads.com

Ein Kurztitel 13

explaining this recommendation to the user by outlining a connection between the given
recommendation and their past actions on the platform:

Example 2.1 You liked−−−→ Becoming
has genre
−−−−−−−→ Autobiography

belongs to
−−−−−−−→ Recovery: Freedom

from Our Addictions

In Section 2.1, we describe a framework for generating such explanatory paths based on
user’s interactions with a given platform.

Apart from describing why a certain item is relevant to a user, recommender systems are also
expected to be able to explain the rankings, i.e., to reason why a certain item is more relevant
than the others. For instance, the following statement explains the cause of receiving the
book Recovery: Freedom from Our Addictions as the top-ranked recommendation:

Example 2.2 You are recommended with the book Recovery: Freedom from Our Addictions
because you liked the books Becoming and Dreams from My Father. If you did not like
these two books, your top-ranked recommendation would be the book Food and Nutrition.

Example 2.2 shows that liking the books Becoming and Dreams from My Father is the key
reason that the book Recovery: Freedom from Our Addictions is more relevant to the user
than the book Food and Nutrition. The blue text in this example demonstrates the causality
between user’s previous action and system’s outcome. Such explanations are referred to as
counterfactual; they pinpoint those user actions whose absence would result in a different
recommendation for them. Identifying the true reasons behind the recommendations, these
explanations pave the way towards scrutability, i.e., they help shed light on how users can
control what they see as their recommendations. In Section 2.2, we describe a method for
generating counterfactual explanations.

2.1 Post-hoc Explanations for Black-Box Recommenders

Web users interact with a huge volume of content every day, be it for news, entertainment,
or inside social conversations. To save time and effort, users are progressively depending
on curated feeds for such content. A feed is a stream of individualized content items that a
service provider tailors to a user. One example of a feed is the list of questions and answers
recommended to users on Quora5. Since a feed is a one-stop source for information, it is
important that users understand how items in their feed relate to their profile and activity on
the platform.

To help users understand these relationships, we introduce FAIRY, a Framework for Activity-
Item Relationship discoverY. FAIRY enables users to discover useful and surprising

5 https://www.quora.com

Enhancing Explainability and Scrutability of Recommender Systems 635

https://www.quora.com

14 Azin Ghazimatin

relationships between their own actions on the platform and their recommendations. For this,
we first model the user’s local neighborhood on the platform as an interaction graph. This
graph is constructed solely from the information available to the user. In a user’s interaction
graph, the set of simple paths connecting the user to her feed item are treated as pertinent
explanations. Example 2.1 illustrates one such explanatory path. Next, FAIRY scores the
discovered explanations with learning-to-rank models built upon users’ judgements on
relevance and surprisal of the explanation paths. Longitudinal user studies on two social
platforms, Quora and Last.fm6, demonstrate the practical viability and user benefits of this
framework in different domains. For more detailed analysis, refer to [Gh21a; GSW19].

2.2 Counterfactual Explanations for Recommendations

FAIRY’s explanations are post-hoc, i.e., they are decoupled from the underlying recommender
system. While essential for enhancing transparency of black-box models, these explanations
are not actionable; they may mislead the user when used for modifying the system’s
behavior. To overcome this limitation, we introduce PRINCE, a method for Provider-side
Interpretability with Counterfactual Evidence.

PRINCE enables graph-based recommenders with personalized PageRank at their co-
re [NK19] to generate concise and counterfactual explanations for their users. To see
an example of such explanations, see Example 2.2. PRINCE explains the most relevant
recommendation to the user by identifying the minimum number of their previous actions
whose removal from the user history could displace the top-ranked item. To find the
minimal counterfactual explanations from an exponential search space, Prince uses a
polynomial-time algorithm, and hence it is efficient.

Experiments on two real-world datasets show that PRINCE provides more compact
explanations than intuitive baselines. Insights from a crowdsourced user-study demonstrate
the viability of such action-based explanations. For further details refer to [ghaz; Gh20].

3 Scrutable recommendations

A scrutable recommender system allows its users to tell the system when it is wrong
and enables users to steer their recommendations accordingly [TM07]. This feature is
particularly useful when users experience drifts in their interests or when the system cannot
correctly infer their preferences. Evidence suggests that scrutability can improve user’s
engagement level and their satisfaction [HKN12; Kn12; PB15].

Critique-enabled recommenders have already taken the first step towards scrutability. These
systems employ a feedback mechanism called critiquing that enable users to express their

6 https://www.last.fm

636 Azin Ghazimatin

https://www.last.fm

Ein Kurztitel 15

Figure 1: Example illustrating the intuitions behind ELIXIR.

dissatisfaction with some characteristics of the recommended item [CP12]. For instance,
imagine a student who relies on an online service like Yelp 7 to find a nice place to have
dinner. The recommended restaurants, however, are not suitable for her as they are mostly
expensive and far from her place. In this scenario, she will benefit from system-suggested
critiques such as show me a cheaper or closer restaurant that enables her to explore other
options that suit her interest better. In the next section, we describe how recommender
systems can leverage user feedback on explanations as a critiquing mechanism to improve
their future recommendations.

3.1 Using Explanations to Improve Recommender Systems

Explanations contain valuable information on why a certain item is recommended to the
user. We posit that the similarity between the recommended item and is corresponding
explanation speaks to the reason behind receiving the recommendation in the first place.
This drives the design of a feedback collection mechanism to learn users’ fine-grained
preferences. Fig. 1 shows an illustrative scenario. User 𝑢 receives a recommendation for the
movie Fight Club (𝑟𝑒𝑐) based on her online history and factors like item-item similarities.
This is accompanied by an explanation referring to three items, all previously liked by 𝑢

and being similar, in some aspects, to 𝑟𝑒𝑐. We have 𝑒𝑥𝑝1: Seven Years in Tibet, 𝑒𝑥𝑝2: The
Prestige, and 𝑒𝑥𝑝3: Pulp Fiction. The system generated these three items for explanation
because:

• 𝑒𝑥𝑝1 features the actor Brad Pitt who also stars in 𝑟𝑒𝑐,
• 𝑒𝑥𝑝2 has a surprise ending, similar to 𝑟𝑒𝑐,

7 https://www.yelp.com

Enhancing Explainability and Scrutability of Recommender Systems 637

https://www.yelp.com

16 Azin Ghazimatin

• 𝑒𝑥𝑝3 contains violent content, like 𝑟𝑒𝑐.

Now suppose that user 𝑢 loves Brad Pitt and surprise endings but hates disturbing violence
(she likes Pulp Fiction for other reasons like its star cast and dark comedy, that dominated
her opinion, despite the violence). When receiving 𝑟𝑒𝑐 with the above explanation, user 𝑢
could give different kinds of feedback. The established way is to simply dislike 𝑟𝑒𝑐, as a
signal from which future recommendations can learn. However, this would completely miss
the opportunity of learning from how user 𝑢 views the three explanation items. The best
feedback would be if user 𝑢 could inform the system that she likes Brad Pitt and surprise
endings but dislikes violence, for example, by checking item properties or filling in a form
or questionnaire. However, this would be a tedious effort that few users would engage in.
Also, the system would have to come up with a very fine-grained feature space of properties,
way beyond the usual categories of, say, movie genres.

To facilitate efficient critiquing, we introduce ELIXIR, a framework for (Efficient Learning
from Item-based eXplanations In Recommenders). ELIXIR enables recommenders to
obtain user feedback on pairs of recommendation and explanation items, where users are
asked to give a binary rating on the shared aspects of the items in a pair. To incorporate the
collected feedback, we propose a method to learn user-specific latent preference vectors
used for updating item-item similarities. The underlying intuition is to increase (decrease)
the distance of disliked (liked) items and the like to the user’s profile, such that the quality
of future recommendations is improved. Our framework is instantiated using generalized
graph recommendation based on personalized PageRank. Insightful experiments with a
real user study show significant improvements for movie and book recommendations over
item-level feedback. For a detailed analysis, refer to [Gh21a; Gh21b].

4 Conclusion

In this work, we studied explainability and scrutability of recommender systems. We
introduced FAIRY, a framework for generating post-hoc explanations for black-box recom-
menders. We further proposed PRINCE, a provider-side interpretability tool, to provide
users with concise and counterfactual explanations. Putting explanations into action, we
lastly introduced ELIXIR, a framework for leveraging user feedback on explanations to
improve their future recommendations. Our studies demonstrate the benefits of explanations
for both end users and service-providers: users gain insight into the personalization process,
and service providers enhance their users’ experiences by offering more transparency and
facilitating user control through feedback on explanations. We hope that this work sparks
interest in the community towards responsible systems and pushes forward the mindsets
and infrastructures required for trustworthy AI.

638 Azin Ghazimatin

Ein Kurztitel 17

Literatur

[BR20] Balog, K.; Radlinski, F.: Measuring Recommendation Explanation Quality: The
Conflicting Goals of Explanations. In: Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval,
SIGIR 2020, Virtual Event, China, July 25-30, 2020. S. 329–338, 2020, url:
https://doi.org/10.1145/3397271.3401032.

[CP12] Chen, L.; Pu, P.: Critiquing-based recommenders: survey and emerging trends.
User Modeling and User-Adapted Interaction 22/1, S. 125–150, 2012.

[GF17] Goodman, B.; Flaxman, S. R.: European Union Regulations on Algorithmic
Decision-Making and a "Right to Explanation". AI Mag. 38/3, S. 50–57, 2017,
url: https://doi.org/10.1609/aimag.v38i3.2741.

[Gh20] Ghazimatin, A.; Balalau, O.; Saha Roy, R.; Weikum, G.: PRINCE: Provider-side
Interpretability with Counterfactual Explanations in Recommender Systems.
In: WSDM ’20: The Thirteenth ACM International Conference on Web Search
and Data Mining, Houston, TX, USA, February 3-7, 2020. S. 196–204, 2020,
url: https://doi.org/10.1145/3336191.3371824.

[Gh21a] Ghazimatin, A.: Enhancing explainability and scrutability of recommender
systems, Diss., Saarland University, Saarbrücken, Germany, 2021, url: https:
//publikationen.sulb.uni-saarland.de/handle/20.500.11880/32590.

[Gh21b] Ghazimatin, A.; Pramanik, S.; Roy, R. S.; Weikum, G.: ELIXIR: Learning from
User Feedback on Explanations to Improve Recommender Models. In: WWW
’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23,
2021. S. 3850–3860, 2021, url: https://doi.org/10.1145/3442381.3449848.

[GSW19] Ghazimatin, A.; Saha Roy, R.; Weikum, G.: FAIRY: A Framework for Un-
derstanding Relationships Between Users’ Actions and their Social Feeds. In:
Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019.
S. 240–248, 2019, url: https://doi.org/10.1145/3289600.3290990.

[GW16] Gurevich, Y.; Wing, J. M.: Inverse privacy. Commun. ACM 59/7, S. 38–42,
2016, url: https://doi.org/10.1145/2838730.

[HKN12] Hĳikata, Y.; Kai, Y.; Nishida, S.: The relation between user intervention and
user satisfaction for information recommendation. In: Proceedings of the ACM
Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, March
26-30, 2012. ACM, S. 2002–2007, 2012, url: https://doi.org/10.1145/
2245276.2232109.

[KBV09] Koren, Y.; Bell, R. M.; Volinsky, C.: Matrix Factorization Techniques for
Recommender Systems. Computer 42/8, S. 30–37, 2009, url: https://doi.
org/10.1109/MC.2009.263.

Enhancing Explainability and Scrutability of Recommender Systems 639

https://doi.org/10.1145/3397271.3401032
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1145/3336191.3371824
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/32590
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/32590
https://doi.org/10.1145/3442381.3449848
https://doi.org/10.1145/3289600.3290990
https://doi.org/10.1145/2838730
https://doi.org/10.1145/2245276.2232109
https://doi.org/10.1145/2245276.2232109
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263

18 Azin Ghazimatin

[Kn12] Knĳnenburg, B. P.; Bostandjiev, S.; O’Donovan, J.; Kobsa, A.: Inspectability and
control in social recommenders. In: Sixth ACM Conference on Recommender
Systems, RecSys ’12, Dublin, Ireland, September 9-13, 2012. S. 43–50, 2012,
url: https://doi.org/10.1145/2365952.2365966.

[Mi19] Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artif. Intell. 267/, S. 1–38, 2019, url: https://doi.org/10.1016/j.artint.
2018.07.007.

[NK19] Nikolakopoulos, A. N.; Karypis, G.: RecWalk: Nearly Uncoupled Random
Walks for Top-N Recommendation. In: Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, WSDM 2019,
Melbourne, VIC, Australia, February 11-15, 2019. S. 150–158, 2019, url:
https://doi.org/10.1145/3289600.3291016.

[PB15] Parra, D.; Brusilovsky, P.: User-controllable personalization: A case study
with SetFusion. Int. J. Hum. Comput. Stud. 78/, S. 43–67, 2015, url: https:
//doi.org/10.1016/j.ijhcs.2015.01.007.

[RRS15] Ricci, F.; Rokach, L.; Shapira, B., Hrsg.: Recommender Systems Handbook.
Springer, 2015, isbn: 978-1-4899-7636-9.

[Sa01] Sarwar, B. M.; Karypis, G.; Konstan, J. A.; Riedl, J.: Item-based collaborative
filtering recommendation algorithms. In: Proceedings of the Tenth International
World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001.
S. 285–295, 2001, url: https://doi.org/10.1145/371920.372071.

[TM07] Tintarev, N.; Masthoff, J.: A Survey of Explanations in Recommender Systems.
In: Proceedings of the 23rd International Conference on Data Engineering
Workshops, ICDE 2007, 15-20 April 2007, Istanbul, Turkey. S. 801–810, 2007,
url: https://doi.org/10.1109/ICDEW.2007.4401070.

[ZC20] Zhang, Y.; Chen, X.: Explainable Recommendation: A Survey and New
Perspectives. Found. Trends Inf. Retr. 14/1, S. 1–101, 2020, url: https:
//doi.org/10.1561/1500000066.

640 Azin Ghazimatin

https://doi.org/10.1145/2365952.2365966
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1145/3289600.3291016
https://doi.org/10.1016/j.ijhcs.2015.01.007
https://doi.org/10.1016/j.ijhcs.2015.01.007
https://doi.org/10.1145/371920.372071
https://doi.org/10.1109/ICDEW.2007.4401070
https://doi.org/10.1561/1500000066
https://doi.org/10.1561/1500000066

cba

Herausgeber et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Adaptive Architectures for Robust Data Management
Systems

Tiemo Bang1

Abstract: “Form follows function” is a well-known expression by the architect Sullivan asserting
that the architecture of a building should follow its function. “Adaptive Architectures for Robust Data
Management Systems” is a dissertation asserting that DBMS architectures should follow changing
workload and hardware to robustly achieve high DBMS performance. The dissertation first evaluates
how workload and hardware affect the performance of DBMSs with static architectures. This evaluation
concludes that static DBMS architectures degrade DBMS performance under changing workload and
hardware, and hence the DBMS architecture has to become adaptive. Subsequently, adaptation concepts
for the architecture of single-server and multi-server DBMSs are proposed. These concepts focus
fine-grained adaptation of DBMS architectures and are realized through asynchronous programming
models. These programming models decouple the implementation of DBMS components from
fine-grained architectural optimization. Thereby, optimizers can derive novel architectures better
fitting individual DBMS components, leading to high and robust DBMS performance under changing
conditions.

Keywords: Database Management System; Architecture; Adaptation; Scale-Up; Scale-Out

Summary of “Adaptive Architectures for Robust Data Management
Systems”

“Unceasingly the essence of things is taking shape in the matter of things. [. . .] It is the
pervading law of all things organic and inorganic, of all things physical and metaphysical,
[. . .] that form ever follows function. This is the law. Shall we, then, daily violate this law
in our art?” — Sullivan, 1896 in The Tall Office Building Artistically Considered

Sullivan asserts that the architecture of a building should follow from its function. The
dissertation “Adaptive Architectures for Robust Data Management Systems” [Ba22a] asserts
the same for the architecture of a database management system (DBMS). It particularly
asserts that changing workload and hardware for DBMSs necessitate changing (adaptive)
DBMS architectures. The dissertation contributes to adaptive DBMS architectures through
publications on the performance of DBMSs with static architectures [Ba22b, Ba20a] and
concepts for the adaptation of DBMS architectures for single-server DBMSs [Ba20b] and
multi-server DBMSs [Ba21]. The following provides a brief summary of the overall work.
1 University of California Berkeley, EECS, 1860 Le Roy Ave., CA 94709 Berkeley, United States of America

tbang@berkeley.edu

cba doi:10.18420/BTW2023-33

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 641

mailto:tbang@berkeley.edu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-33

2 Tiemo Bang

Volatile Workload (WL) Conditions Volatile Hardware (HW) Conditions

Partition-
ability

Load Fluc-
tuation

WL
Cond.

Access Pattern

Read/
Write MixConflicts

...

WL Class

O
LA

P

OLTP

...
WL

Characteristics

H
TA

P

Interconnect Bandwidth
& Latency

HW
Cond.

No. Cores

No. Processors

Cache
Capacity

...

HW Platform
A

R
M

x86

...
HW

Characteristics

Pow
er

Fig. 1: Overview of the volatile conditions challenging DBMS performance. DBMSs are exposed
to a range of workload classes and hardware platforms. These influence the displayed workload
and hardware characteristics and lead to challenging volatile conditions under which DBMSs still
need to perform well. The DBMS design has to align with these changing characteristics, otherwise
performance can degrade significantly.

DBMSs are challenged by changing workloads and hardware. Today’s DBMSs handle
various types of workloads for online commerce, banking, and fraud detection. These
workloads differ in key characteristics like the read-write pattern and further fluctuate
depending on the popularity of individual data items. Similarly, modern DBMSs are typically
compatible with a wide range of hardware platforms which still have different characteristics
like different types or numbers of processors. This presents DBMSs with the challenge to
perform well despite workload and hardware characteristics that widely vary, possibly at
runtime.

The performance evaluation of this dissertation, along with a review of related work, identifies
complex effects of various workload and hardware characteristics on the performance of
DBMSs with static architectures, cf. [Ba22b]. As summarized in Figure 1, the different
workload classes and hardware platforms lead to a wide range of characteristics that
make for volatile workload and hardware conditions a DBMS design has to cope with.
The evaluation surfaces a complex interaction between these characteristics with which
the DBMS components and the surrounding DBMS architecture have to align precisely,
otherwise performance can degrade sharply. Accordingly, the conclusion is that robust
performance under changing conditions requires precise adaptation of the entire DBMS
design, including the DBMS architecture.

DBMSs remain tethered to their static architecture. Serving changing workloads and
supporting diverse hardware platforms is non-trivial for DBMSs. The design of the DBMS
components and the DBMS architecture have to fit the conditions. DBMS components, like
the query execution engine, indeed have developed adaptation mechanisms for that reason.

642 Tiemo Bang

Adaptive Architectures for Robust Data Management Systems 3

Component stacks to
processors

Component stacks
to servers

Component stacks to
servers with shared

storage

Compute and
storage components

to distinct servers

Mapping: Component stack
to all resources

Component stacks
to processor cores

Fig. 2: Overview of the established DBMS architectures for single-server and multi-server DBMSs
with static deployment strategies, indicated by the colored boxes. Each architectures follows a static
deployment strategy that determines a resource partitioning (shown by the sizes of the boxes) and
deployment of DBMS components (shown by the colors the boxes). Most architectures uniformly
deploy a stack of each DBMS component onto the resource partitions.

Mechanisms like just-in-time query compilation, for example, allow the query execution
engine to flexibly specialize its operators to different workload or hardware. However, such
adaptation is limited to the internals of these DBMS components. There is no adaptation
outside of or across DBMS components, as the surrounding DBMS architecture is inflexible.

Today DBMS designers select from a handful of static architectures with rigid deployment
strategies. As shown in Figure 2, these static architectures predetermine a fixed resource
partitioning. The DBMS components are then deployed onto these resource partitions,
as stacks containing an instance of each component. For example, the NUMA-aware
architecture accounts for multi-processor hardware through resource partitions per processor
onto which the DBMS components are deployed. Such tailoring, however, is a static design
decision. This decision at design-time leads to an architecture baked into the DBMS
implementation that only fits predetermined workload and hardware. Moreover, this manual
decision also causes oversimplification. That is, all the static architectures uniformly deploy
DBMS components onto coarse-grained resource partitions ignoring the unique workload
and hardware effects within individual DBMS components. As a result, current static DBMS
architectures are not flexible and lack sophistication, such that these architectures become
unfit and degrade DBMS performance.

Adaptive DBMS Architectures

The overall idea for the adaptation of DBMS architectures is to flexibly compose fine-grained
“building blocks” of the DBMS to a best-fit architecture. This dissertation emphasizes
fine-grained adaptation of the architecture to suit the individual internal functions of DBMS
components. Besides a relief from the re-implementation effort, the goal is to create a
navigable optimization space for DBMS architectures, enabling optimizers to flexibly mimic
any existing architecture and more importantly to derive entirely new architectures.

Adaptive Architectures for Robust Data Management Systems 643

4 Tiemo Bang

NUMA-aware

Static Scale-Up Architectures Adaptive Scale-Up Architecture

All
components

composed
together

Fixed resource
partitioning,

e.g., by processor

...
Fine-grained
resource
partitioning

arbitrary hybrid NUMA-aware-like

Adapt to
specific

conditions

Database

DBMS

Fine-grained
composition

Fig. 3: Designing static scale-up architectures (left) versus proposed fine-grained adaptation (right).
Left: Current architectures are statically designed with static deployment strategies for specific
hardware/workload and treat all DBMS components uniformly, e.g., the NUMA-aware architecture
dictates the resources partitioning by processor which each contain the complete stack of components.
Right: The proposed adaptive scale-up architecture enables fine-grained arbitrary resource partitioning
for arbitrary compositions of DBMS components, facilitating best-fit architectures.

Adaptive Single-Server DBMS Architecture. The adaptive single-server architecture
introduces flexible configuration for DBMSs on shared-memory hardware, cf. [Ba20b].
It addresses the distinct adaptation demands on a single server, orthogonal to adaptation
across multiple servers.

The key factors for single-server DBMS architectures to address are shared-memory data
structures and the constraint to fixed resources. Single-server DBMS architectures must
carefully organize these limited resources, especially in regard to efficient concurrent
execution on shared data structures. For example, the static NUMA-aware architecture
employs processor-sized resource partitions to enforce processor-local concurrent execution
of DBMS components and explicit coordination of DBMS components across processors.
Generally, single-server architectures strive for a resource partitioning that effectively
balances partition-local concurrent execution on shared data structures within DBMS
components and the explicit coordination of components across resources partitions. Static
DBMS architectures strike this balance only for specific predetermined workloads and
hardware, but likely become unfit under changing conditions. Instead, the proposed adaptive
architecture enables flexible adaptation at the granularity of individual data structures of
DBMS components, for best-fit single-server architectures across changing workloads and
hardware.

644 Tiemo Bang

Adaptive Architectures for Robust Data Management Systems 5

The proposed adaptive single-server architecture introduces abstractions for the generic
implementation of DBMS components and the fine-grained configuration of the architecture.
It introduces a programming model of asynchronous data-aware tasks for DBMS components.
These data-aware tasks divide DBMS components into units of execution on individual
data structures, enabling the fine-grained configuration of the DBMS architecture. As
shown in Figure 3, this configuration enables optimizers to flexibly configure arbitrary
architectures with heterogeneous resource partitions tailored to individual data structures (or
composites thereof). In contrast to the static “prepackaged” architectures, optimizers thereby
can form novel architectures best-fit for each data structure under changing workload and
hardware. The benefits of this flexible configuration are demonstrated through an optimizer
for automatic throughput maximization.

Adaptive Multi-Server DBMS Architecture. The adaptive multi-server architecture
offers flexible orchestration of the DBMS across elastic network-connected resources, cf.
[Ba21]. It complements the above adaptation within a single server.

The key factors for multi-server architectures to address are the network communication
between resources and the flexible addition/removal (scaling) of resources. Especially in the
cloud, multi-server DBMSs can utilize an elastic resource pool to maintain high performance
when facing heterogeneous and fluctuating workloads. Yet, at the same time, the network
communication across this resource pool also poses a significant challenge. Multi-server
architectures therefore aim to balance resource load and network communication overhead
when orchestrating the DBMS across this resource pool. Static multi-server architectures,
however, strike this balance only for specific workloads, e.g., the shared-nothing architecture
for partitionable workloads. Changing or mixed workloads and the properties of individual
DBMS components are not well reflected. For example, analytical queries and the query
executor component can generally utilize more resources than transactional queries and the
transaction manager components.

The adaptive multi-server architecture introduces individually optimized architectures for
simultaneous queries. Rather than compromising on a common architecture, it simultaneously
orchestrates query-optimized architectures across elastic resources. It defines a reactive
programming model with generic DBMS actors for that reason. These actors are flexibly
instrumented to temporarily enact (parts of) DBMS components and together enact a DBMS
architecture. The execution and data flow of the DBMS are essentially broken down into
streams of events and data items that can be routed across the resource pool. As illustrated
in Figure 4, the routing and interleaving of these event and data streams therefore enables
the simultaneous orchestration of multiple query-optimized architectures. The dissertation
focuses on exploring the new degrees of freedom offered by this adaptive multi-server
architecture.

Adaptive Architectures for Robust Data Management Systems 645

6 Tiemo Bang

OLTP queryOLAP query

Shared-nothing-like
architecture of
OLTP query

Disaggregated
architecture of
OLAP query

Streams instrumenting resources
for architectures of queries:

Fig. 4: The adaptive multi-server DBMS architecture for simultaneous optimization to distinct queries.
The adaptive architecture instruments DBMS actors on elastic resources via event and data streams to
enact DBMS components, allowing to orchestrate query-optimized architectures for the concurrent
OLTP and OLAP queries. The purple streams orchestrate a disaggregated architecture for the OLAP
query, while the green streams simultaneously orchestrate a shared-nothing architecture for the OLTP
query.

Conclusion

The key findings are that both the realized adaptive single-server and multi-server architec-
tures prove effective and efficient. Under changing transactional and mixed workloads, the
proposed adaptive architectures generally perform at least on par with the individually best
state-of-the-art architecture. Indeed, when adopting novel better-fit architectures, all existing
architectures are outperformed, e.g., when partitioning resource at a granularity unlike any
of the existing architectures or when distinctly orchestrating architectures for queries of
mixed workloads. Overall, the proposed flexible and precise adaptation demonstrates higher
and more robust performance.

While the findings exhibit novel better-fit architectures only for a subset of possible workload
and hardware conditions, this dissertation overall indicates high potential for adapting
architectures with the proposed concepts. As the proposed concepts make a vast optimization
space generally navigable, optimizers will be able to adapt DBMS architectures flexibly and
more precisely to many workloads and hardware. Instead of fragile static architectures, the
proposed adaptive architectures thus provide a necessary element for DBMSs to achieve
high and robust performance under changing workload and hardware.

Acknowledgments I would like to thank the many people who provided advise, compan-
ionship, and sponsoring. Special thanks go to Carsten Binnig whose steadfast guidance led
to this dissertation.

646 Tiemo Bang

Adaptive Architectures for Robust Data Management Systems 7

Bibliography
[Ba20a] Bang, Tiemo; May, Norman; Petrov, Ilia; Binnig, Carsten: The Tale of 1000 Cores: An Eval-

uation of Concurrency Control on Real(ly) Large Multi-Socket Hardware. In: Proceedings
of the 16th International Workshop on Data Management on New Hardware. ACM, 2020.

[Ba20b] Bang, Tiemo; Oukid, Ismail; May, Norman; Petrov, Ilia; Binnig, Carsten: Robust Performance
of Main Memory Data Structures by Configuration. In: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIGMOD’20),. ACM, New
York, NY, USA, 2020.

[Ba21] Bang, Tiemo; May, Norman; Petrov, Ilia; Binnig, Carsten: AnyDB: An Architecture-less
DBMS for Any Workload. In: 11th Annual Conference on Innovative Data Systems Research
(CIDR ‘21). 2021.

[Ba22a] Bang, Tiemo: Adaptive Architectures for Robust Database Management Systems. PhD
thesis, Technische Universität, Darmstadt, 2022.

[Ba22b] Bang, Tiemo; May, Norman; Petrov, Ilia; Binnig, Carsten: The Full Story of 1000 Cores: An
Examination of Concurrency Control on Real(ly) Large Multi-Socket Hardware. In: The
VLDB Journal. 2022.

Adaptive Architectures for Robust Data Management Systems 647

Demo Track

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

JumpXClass: Explainable AI for Jump Classification in
Trampoline Sports

Lucas Woltmann1, Katja Ferger2, Claudio Hartmann1, Wolfgang Lehner1

Abstract: Movement patterns in trampoline gymnastics have become faster and more complex
with the increase in the athletes’ capabilities. This makes the assessment of jump type, pose, and
quality during training or competitions by humans very difficult or even impossible. To counteract
this development, data-driven solutions are thought to be a solution to improve training. In recent
work, sensor measurements and machine learning is used to predict jumps automatically and give
feedback to the athletes and trainers. However, machine learning models, and especially neural
networks, are black boxes most of the time. Therefore, the athletes and trainers cannot gain any
insights about the jump from the machine learning-based jump classification. To better understand the
jump execution during training, we propose JumpXClass: a tool for automatic machine learning-based
jump classification with explainable artificial intelligence. Using elements of explainable artificial
intelligence can improve the training experience for athletes and trainers. This work will demonstrate
a live system capable to classify and explain jumps from trampoline athletes.

Keywords: machine learning; applied AI; explainable AI; sports; trampoline

1 Introduction

Over the years, professional sports have experienced a boost in athletic capabilities. Athletes
are able to reach new heights of performance in their respective areas. This has led to the need
for better training tools including digital ones to better capture the athletes’ performance. As
a part of gymnastics, trampoline sport has experienced the same developments. Here, one
central point is the capture of jumps via near-body sensors and their automatic classification
to support the athletes and trainers via auxiliary digital tools [He11, Ca18, Wo22b]. The
idea encompassed by all publications is that athletes can improve their performance and
training experience by quantifying the exercise through near-body sensor measurements.

In recent research, Woltmann et al. promote using ML in a feedback system for trampoline
athletes to improve training experience [Wo22a]. The work enables athletes and trainers
to visualize the sensor measurements and automatically classify their jumps using a deep
feed-forward neural network (NN). All shown data can be manipulated interactively. Part of
the presented work in this demo is based on this preliminary work.
1 Technische Universität Dresden, Dresden Database Research Group, Dresden, Germany,

firstname.lastname@tu-dresden.de
2 Justus Liebig University Giessen, Institute of Sport Science, Giessen, Germany,

katja.ferger@sport.uni-giessen.de

cba doi:10.18420/BTW2023-34

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 651

mailto:firstname.lastname@tu-dresden.de
mailto:katja.ferger@sport.uni-giessen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-34

2 Woltmann et al.

User

Jump
protocol

Sensor
data

Neural network

Jump type
1

Comparison

2

SHAP values

4

Plots

3

Sensor

Data Management

Jump Classification

Explainable Jump Features

Fig. 1: System overview of JumpXClass. The numbers represent the different use cases.

The high volume of time series data and their black box characteristic are major drawbacks of
data-driven ML-based approaches. Decisions, like the jump classification, are generally not
traceable by or explainable to the user. This makes it challenging to analyze the interaction
between data and model for the subsequent discussions of model quality and application. The
scientific field researching this phenomenon and its solutions is called eXplainable Artificial
Intelligence (XAI). In this area, ML black boxes are analyzed to conclude about the inner
decision-making. For NNs, feature influences are one part of this analysis [LL17, KL17].
These influences quantify the input of an NN according to its influence on the decision. One
representative are shapley additive explanations (SHAP) values [LL17]. SHAP values are a
game theoretic approach modeling the exclusion of features and, therefore, their influence
on the model’s output. With SHAP, any ML model input feature is assigned a numerical
value, representing the absolute influence on the decision. For the jump classification NN,
these values represent the probability that the input feature adds to or subtracts from all
possible classes.

In this demonstrator, we combine the approaches of a feedback system, automated ML-based
classification, and XAI to build an ML-driven exercise assessment tool for trampoline athletes
and trainers. During the live demonstration, we will show that combining these concepts
brings several advantages to athletes and trainers by incorporating digital technologies into
the training.

652 Lucas Woltmann, Katja Ferger, Claudio Hartmann, Wolfgang Lehner

JumpXClass 3

2 Demonstrator Features

In this section, we present the features and modules of our demonstrator JumpXClass. Three
core concepts are implemented in three equivalent modules called Data Management to
handle user data and meta data, Jump Classification to make the ML components accessible,
and Explainable Jump Features to include the XAI parts. The three general modules of the
demonstrator are presented in Figure 1 indicated by gray frames. Each module will add up
on the following and improve the feedback given to the athletes and trainers. The four use
cases, indicated by numbers, are detailed in Section 3.

2.1 Data Management

The tool works on the sensor data collected by an accelerometer and a gyroscopic sensor on
the back of the athlete. After exporting the data from the sensor, the athletes upload their
exercise data, usually containing ten consecutive jumps, into the tool. These are usually
CSV files exported from the sensors with a measurement resolution of 500 Hz. Additionally,
athletes need to document their exercise in a jump protocol manually. Our tool allows for the
creation of such a protocol. Therefore, the athletes can store both their data and meta data
for further use. This is important for the reproducibility of a training session or competition
and the self-assessment of the athletes. The combined sensor data and jump protocols can
also be used as labeled training data within the tool.

2.2 Jump Classification

Another aspect of this work is the direct use of a model that takes the sensor data and
classifies all jumps according to their jump type. There are 148 jump types that our model
needs to distinguish. The model is trained and tested on data containing around 2,500 jumps.
The data was labeled by athletes (and their trainers) competing on a national level.

The classification gives direct feedback to the athletes about their high-level performance,
i.e., if they performed the jump correctly. This can be useful for training by giving the
athletes hints on the jumps they need to improve their performance. Another capability is
the direct checking of the jump protocol. Mislabeled or mixed-up entries in the protocol can
be spotted more quickly if the NN contradicts a protocol entry.

All sensor channels are visualized as time series plots, as shown in Figure 2b. Athletes and
trainers can analyze individual jumps from the jump data in more detail. The sensor data
contains fine-grained acceleration and orientation information. This enables the analysis
of wrong movements during individual jumps. As an additional feature, a comparison to
previous jumps or an averaged jump for a jump type is possible via an inlay plot as presented
by the lines with a lighter color in Figure 2b. This provides a comparative movement analysis

JumpXClass: Explainable AI for Jump Classification in Trampoline Sports 653

4 Woltmann et al.

(a) Use Cases (1) and (2): The jump protocol (left) and
the automatic jump classification (right).

(b) Use Case (3): The time series plot for a specific jump
including a reference jump (lighter colors).

Fig. 2: Example screens for three use cases.

to spot improvements or errors. Specifically, trainers can have a more detailed look at the
jump performance and give quantitative and qualitative feedback to the athlete.

2.3 Explainable Jump Features

The jump classification gives a high-level assessment of a jump but no detailed feedback
about the ML model’s decision. With XAI, the ML model can give athletes and trainers
feedback. To achieve this, we analyze the jump classification NN with SHAP and report the
SHAP values to the user via a waterfall plot. With the SHAP influences for each gyroscopic
measurement, the athlete can see what movement patterns define a specific jump type
according to the NN. For the first time in trampoline sports, XAI helps to identify the part
of a jump most influential for good execution. This opens up new possibilities to support
training and enhance athletes’ performances with ML and XAI. Additionally, the trainers
can identify the measurements leading the NN to a wrong classification and give feedback
to the athlete about a changed movement pattern for the jump. The athletes can get manifold
feedback from the ML and XAI components to improve their training.

654 Lucas Woltmann, Katja Ferger, Claudio Hartmann, Wolfgang Lehner

JumpXClass 5

Fig. 3: Use Case (4): The SHAP waterfall plot for a specific jump.

3 Demo Description

In the live demo session, the users will see four use cases: (1) the competition mode, (2)
the jump protocol, (3) the measurement plots, and (4) the XAI jump features. The cases
are depicted and highlighted according to their number in Figure 1. Every use case has a
dedicated target group. Whereas use cases (2), (3), and (4) are meant for athletes and trainers,
use case (1) is aimed at competition judges. In (1), only the NN’s jump classification from
an exercise data set is shown. Therefore, the judges can assess the exercise’s difficulty score.

In use case (2), the athletes upload their data for an exercise. The gyroscopic sensor produces
time series data sets containing all required measurement channels. Additionally, the athletes
can add their jump protocols and store them as meta data for the sensor data. Use case
(1) is a subpart of use case (2) since it uses the same sensor data. Both use cases (1) and
(2) are presented in Figure 2a. After uploading the data and adding the protocol, the NN
automatically analyzes and classifies the jumps into jump types according to [Wo22b].
Every classification is annotated by a percentage detailing the confidence of the NN for this
classification. Lower confidence scores usually show that a jump was not cleanly executed.
Another point is the direct comparison of the automatic classification and the jump protocol.
Color coding shows the users any discrepancies between these two parts and allows for a
high-level analysis of the athletes’ performance.

Use case (3) plots the uploaded sensor measurement channels as time series plots by clicking
on a specific jump in the jump protocol from the first use case, as shown in Figure 2b. The
user can (de-)select each channel separately to be plotted or not. Another feature is the
comparison view. Here, the athletes or trainers can choose either another jump from the
jump protocol or an averaged representative for the specific jump type to be plotted for
comparison with the original jump. This gives allows the users to compare their performance
to a quasi-standard.

JumpXClass: Explainable AI for Jump Classification in Trampoline Sports 655

6 Woltmann et al.

Use case (4) shows the SHAP value waterfall plot for the same selected jump as in use
case (3). As detailed in Figure 3, the plot provides feedback regarding the classification
and according to which features the NN decided on the jump type. The plot helps scientific
experts to assess the jump quality from a technical perspective. The measurements and their
influence on the decision can be analyzed and used to find the most important movement of
a jump or a deviation of the athlete from a high-quality jump. Additionally, the SHAP values
can be used to debug the data and model, either to re-record the jumps or to fine-tune the
NN. A re-recording is necessary if a certain feature greatly influences a wrong classification
and the corresponding movement is not part of the jump. Here, the athlete would execute
the jump again and generate new sensor data for verification. If a feature influences the
wrong classification but its corresponding movement is part of the jump, the NN needs to
be adjusted through hyperparameter tuning or retraining with new data.

4 Conclusion

In this work, we have shown JumpXClass, a feedback system for trampoline athletes and
trainers based on ML models and XAI. The multitude and interplay of features make the
tool a valuable asset for athlete quality assessment. It can help to identify errors in jumps
or quality metrics of jump types. We argue that using JumpXClass can also highlight the
advantages of ML and (X)AI in sports and other applications. For future work, we plan to
verify these advantages with actual trampoline gymnasts to obtain feedback for the tool.

Bibliography
[Ca18] Camomilla, Valentina; Bergamini, Elena; Fantozzi, Silvia; Vannozzi, Giuseppe: Trends

supporting the in-field use of wearable inertial sensors for sport performance evaluation: A
systematic review. Sensors, 18(3):873, 2018.

[He11] Helten, Thomas; Brock, Heike; Müller, Meinard; Seidel, Hans-Peter: Classification of
trampoline jumps using inertial sensors. Sports Engineering, 14(2):155–164, 2011.

[KL17] Koh, Pang Wei; Liang, Percy: Understanding black-box predictions via influence functions.
In: International conference on machine learning. PMLR, pp. 1885–1894, 2017.

[LL17] Lundberg, Scott M; Lee, Su-In: A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[Wo22a] Woltmann, Lucas; Ferger, Katja; Hartmann, Claudio; Lehner, Wolfgang: Exercise assess-
ment in trampoline sport by automated jump classification. In: Tagungsband zum 14.
Symposium der Sektion Sportinformatik und Sporttechnologie der Deutschen Vereinigung
für Sportwissenschaft. p. 23, 2022.

[Wo22b] Woltmann, Lucas; Hartmann, Claudio; Lehner, Wolfgang; Rausch, Paul; Ferger, Katja:
Sensor-based Jump Detection and Classification with Machine Learning in Trampoline
Gymnastics. German Journal of Exercise and Sport Research, 12 2022.

656 Lucas Woltmann, Katja Ferger, Claudio Hartmann, Wolfgang Lehner

cbe

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

UniDash: Interactive Dashboard for Data Driven Insights on
Universities

Mirjam Bayer 1 2, Yorik Timo Hansen 1, Kimberley Kosbü1, Andrea Kulow1, Peer Kröger1

Abstract: Universities, like other institutions or companies, are under steady quality control in pursuit
of improvement. Generating pertinent insights from consistently collected data at universities is one of
the many possibilities to integrate data science into our educational system. The proposed prototype
dashboard is designed for educational institutions to visually assess their shifts in relevant topics such
as diversity, accessibility, and planning aspects. This paper shows the workflow and dashboard using
the UnivIS database of Kiel University for extracting and preprocessing the data. The proposed demo
revealed interesting insights, such as how, in the planning stage, lecture halls are selected with only
50% capacity utilization; rooms for fewer than 50 people are planned to be used at 100% capacity.
The demonstration web application can be tested in German at unidash.tk.

Keywords: interactive dashboard; academic advising; data-driven decision-making

1 Introduction

In the past decade, it became of paramount interest to assess and improve the quality at
universities, leading up to tackling the required changes as described by Baker and Lenhardt
in [BL08]. In order to evaluate development, one must be able to measure and trace numbers
describing the feature of interest. However, collecting data is only the first step to extracting
valuable insights. Data scientists are trained to compare and visualize the generated data. To
perform quality evaluation on complex questionnaires, and working groups are required,
which are laborious, and demanding of time and monetary resources. Department heads of
large institutions like universities often lack the time to set up these complex evaluation tools
for their institution. Therefore, we approached the challenge and developed a dashboard
showcasing the progression of a university using its own data collected over the past 20 years.
We developed a workflow for extracting the data from open-source tools and implemented a
dashboard, making the shifts in the data clearly traceable. The derivable insights range from
the capacity utilization of classrooms to the percentage of accessible classrooms used by
each department.

Data mining is increasingly utilized for meta-evaluation in the academic world, for example,
the assessment of the student body [Th22], [Gu20], or optimizing teaching methods [MJ12].
1 Kiel University, Department of Computer Science, Christian-Albrechts-Platz 4, 24118 Kiel,
{miba,stu227160,stu207503,stu229089,pkr}@informatik.uni-kiel.de

2 Parts of this work has been done in the MARISPACE-X project funded by German Ministry of Economy
(BMWi)

cba doi:10.18420/BTW2023-35

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 657

unidash.tk
{miba, stu227160, stu207503, stu229089,pkr}@informatik.uni-kiel.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-35

2 Mirjam Bayer, Yorik Timo Hansen, Kimberley Kosbü, Andrea Kulow, Peer Kröger

The untapped potential of using academic data in the education system is further analyzed
in [We12] and [Fi20], concluding that incorporating data mining will enhance informed
decision-making, leading to optimized teaching effectiveness. This demonstrates the growing
significance of mining the available data in educational systems. In this paper, we propose
a workflow and prototype dashboard to visualize patterns and trends in data from Kiel
University. The main contributions can be summarized as follows:

• Workflow for the extraction of data from a university management system

• Dashboard with interactive visualizations

2 UnivIS Data

Large institutions like universities have to solve complex planning problems every semester.
The solution must combine human resources, room vacancies, and examination regulations
to name just a few of the constraints all timetables must fulfil. To combine all the required
information, multiple database services are used in the German network of universities.
Like the universities of, e.g., Erlangen-Nuremberg, Bamberg, and Lübeck, Kiel University
uses UnivIS [STU99] to store the relevant data for the planning of the semesters. UnivIS is
a relational database, with an API to extract data as XML. The database schema is adapted
for the university process, to seamlessly combine teaching, room and human data. Through
multiple API requests, [Ki22b], we were able to pull all of the collected data. We merged the
XML responses into a local SQL database using the same scheme as the UnivIS database.
In combination with UnivIS, Kiel University’s Department of Computer Science uses a
module database (the ModulDB) to store additional details regarding their courses. Data
from both sources were gathered for the dashboard.

Fig. 1: Workflow of generating the dashboard, grey fields: implemented processes at
universities, orange: our implemented contribution

3 Dashboard

The implemented dashboard is designed for universities to showcase their strengths and
weaknesses in a customized open-source application. It targets universities to enable them to

658 Mirjam Bayer, Yorik Timo Hansen, Kimberley Kosbü, Andrea Kulow, Peer Kröger

UniDash: Data Driven Insights on Universities 3

get a clear view of their own position on a variety of current and relevant aspects. Because
the application uses existing data sets the dashboard can also reveal past developments. The
proposed workflow is shown schematically in Figure 1. Steps that have already been taken
at the universities are drawn in grey. The orange steps entail our contribution built upon the
available databases.

On the dashboard, there are currently nine topics visualized. Each topic is designated to a
research question in a timely fashion. In this paper, we explain the following four questions
in more detail.

• Are the rooms used according to their capacity?

• How wheelchair accessible are the courses of different faculties? Is wheelchair
accessibility evenly distributed across faculties?

• Can students reach their classes on time, or are locations too far apart? (Exemplary
for two subjects of study)

• Kiel: ’Best Prof’ Award voted by students. What insights can be extracted from past
winners?

4 Technical details

UnivIS Kiel provides a public API, [Ki22b], supplying the required data for this dashboard.
As a result of the database being maintained and data being inserted manually, one has to
presume many errors regarding spelling, coherence, and missing values. This was especially
problematic when working with the addresses for classrooms. From abbreviations for
buildings, misspelled street names, and missing zip codes to lacking street numbers, all
possible errors had to be caught. Using regular expressions, almost all addresses could
be extracted, but this required expert knowledge of the university community, mainly
concerning common abbreviations.

Regarding the dashboard deployment, the Python library plotly [Pl15] was used for easy
and fast implementation. This also allows for simple modification and transfer to other
universities with few requirements of HTML and CSS knowledge. The code, including the
SQL requests for extracting from UnivIS, is available on a GitHub repository. 3

5 Demonstration

Using the example of Kiel University, the dashboard can be viewed in German at unidash.tk.
The elaborated topics are presented in separate tabs, where one or more interactive graphs
visualize the corresponding data for the different departments and semesters. The navigational
toolbar on the left leads to the different topic pages.
3 https://github.com/doubleblind44/unidash

UniDash: Interactive Dashboard for Data Driven Insights on Universities 659

unidash.tk

4 Mirjam Bayer, Yorik Timo Hansen, Kimberley Kosbü, Andrea Kulow, Peer Kröger

Fig. 2: Used capacity in percent of
different room sizes over the semesters

Fig. 3: Percentage of accessible rooms per
department per semester

Room sizes The question of room planning is of ongoing interest due to the exceeding
heating and lighting resources required for larger rooms, [Ki22a]. Are the rooms used to
full capacity, or could events be held in smaller rooms? An excerpt from the dashboard for
this topic can be seen in Figure 2. The rooms are grouped into three different categories,
according to the number of people they can host. This distinction showcases that, based
on the room size, there is a marked difference with respect to the used capacity. Rooms
with fewer than 50 seats are often used up to 100% capacity or even more. Larger rooms
(>=100 seats) on the other hand are often only 50% occupied. For this evaluation, the turn
out parameter, a value describing the planned number of attendees for the module, is used.
It is relevant to keep in mind that student attendance for lectures is often hard to estimate
beforehand. Therefore, it is necessary to allow for a buffer. Based on the obtained insights,
the administrative instances of the university can make an effort to determine the actual
capacity of the rooms during the semester in order to determine whether this discrepancy
could be a starting point for energy-saving improvements.

Accessibility The university strives for inclusiveness and fairness to ensure equal op-
portunities for all its student. This also includes wheelchair accessibility. The wheelchair
accessibility of modules is documented as a flag in the database. The accessibility of the
different faculties is depicted in Figure 3. The plot reveals how many faculties courses are,
on average, located in wheelchair accessible rooms or even buildings. Drastic shifts in
the percentage mostly correlate with changes in the locations of faculties. As an example,
the Faculty of Law (’Rechtswissenschaftliche Fakultät’) moved into a new building in
2021. The difference is obvious when comparing the values before and after the COVID-19
pandemic. Large jumps in the early years, e.g., in the winter semester 2004/2005 (2004w)
for the Faculty of Theology (’Theologische Fakultät’) suggest that the flag was not used in
the years before 2005. As all events during the pandemic took place online, classified as

660 Mirjam Bayer, Yorik Timo Hansen, Kimberley Kosbü, Andrea Kulow, Peer Kröger

UniDash: Data Driven Insights on Universities 5

non-accessible, an overall drop is observable in the winter semester 2020/2021 (2020w)
and summer semester 2021 (2021s).

Fig. 4: Locations of compulsory modules for
computer science semesters 1 and 3 in winter
semester 2021/2022

Walking distances When creating lec-
ture plans, the distances between module lo-
cations need to be taken into consideration.
For this dashboard, the compulsory mod-
ules for selected semesters of two subjects
of study were gathered, and the locations
were visualized on an interactive map. The
goal was to detect cohorts that were spread
out far and evaluate whether the distances
could lead to time conflicts in the semester
schedules.

In Figure 4 the comparison of two chosen
degree programs and semesters is depicted.
Additional data on the compulsory mod-
ules for the semesters had to be acquired
manually. Because this information changes
frequently, it is not stored in UnivIS but recorded in the examination regulations. Manual
evaluations revealed that some modules could not be chosen in certain semesters due to
time conflicts. With further development, this could be expanded into a tool for automatized
checking of time conflicts and added into the planning process.

Best Prof At Kiel University a ’Best Prof’ award4 is given by vote of the students in
the Department of Mathematics and the Department of Computer Science every year. The
dashboard traces the lectures of the past top three winners of each year. Two excerpts of the
evaluated statistics are shown in Figures 5 and 6. According to these analyses, past winning
professors held noticeably fewer modules on Monday, Friday, and Saturday than the other
days and started their courses mostly at 8 a.m., 10 a.m., or 12 a.m.

These findings were used to predict the top three candidates of 2022. With the above-
described filters, two of the three professors on the podium could be predicted correctly.
The professor in third place did not fit these insights as multiple modules were held on
Monday. This got the better of our logic and proved: Preferences cannot be predicted purely
on statistics. If you teach well, students will appreciate it, despite the course being held on
Mondays.

4 https://www.fs-infmath.uni-kiel.de/wiki/Best-Prof-Hall-of-Fame

UniDash: Interactive Dashboard for Data Driven Insights on Universities 661

6 Mirjam Bayer, Yorik Timo Hansen, Kimberley Kosbü, Andrea Kulow, Peer Kröger

Fig. 5: Lecture days of modules from past
winners

Fig. 6: Starting times of modules from
past winners

6 Conclusion

The proposed dashboard provides insight into the evolution of Kiel University and shows the
benefits from reaping the database systems in place. By using an already existing database,
this project was implemented with little necessary effort on the part of the university.
Thereby, this prototype is a feasible solution for interactively analyzing a large institution
where the gathering of data is often complicated and faces bureaucratic difficulties.

To transfer the dashboard to other universities, it is essential to extract an equivalent data set
from the system in place. Additional topics, that can be analyzed and added to the dashboard
are only limited by the data available. The proposed dashboard contains a baseline of
evaluations for answering the chosen questions of interest for large institutions regarding
the progression of room utilization, diversity, and inclusiveness. Further evaluations are
implemented in the prototype dashboard that could not be explained in detail here due to
brevity. The evaluations and insights are described in German on the demo web application.

Caution has to be exercised when drawing inferences from the data because the data used are
planning data and therefore do not always depict a true representation of the real conditions
at the institution. A strong example is the decision to flag online events as non-accessible,
resulting in a seemingly very retrogressive development concerning accessibility in the
semesters during the pandemic.

As for the evaluation of Kiel University, in the demonstration, we showcased the strong
suits such as the rise of wheelchair-accessible rooms, and make the potential for reasonable
areas of improvement visible. Answering all chosen questions with data visualizations. We
aim to make this dashboard easily transferable to other universities in the future to gather
insights into their performance. Furthermore, we plan on providing additional features, such
as advanced room planning, to reduce unnecessary heating costs. We are convinced that
interactive platforms, like the one proposed in this work, bear the potential to pave the path
for accelerated and improved performance assurance in universities.

662 Mirjam Bayer, Yorik Timo Hansen, Kimberley Kosbü, Andrea Kulow, Peer Kröger

UniDash: Data Driven Insights on Universities 7

References
[BL08] Baker, David P; Lenhardt, Gero: The institutional crisis of the German research university.

Higher Education Policy, 21(1):49–64, 2008.

[Fi20] Fischer, Christian; Pardos, Zachary A.; Baker, Ryan Shaun; Williams, Joseph Jay; Smyth,
Padhraic; Yu, Renzhe; Slater, Stefan; Baker, Rachel; Warschauer, Mark: Mining Big Data in
Education: Affordances and Challenges. Review of Research in Education, 44(1):130–160,
2020.

[Gu20] Gutiérrez, Francisco; Seipp, Karsten; Ochoa, Xavier; Chiluiza, Katherine; De Laet, Tinne;
Verbert, Katrien: LADA: A learning analytics dashboard for academic advising. Computers
in Human Behavior, 107:105826, 2020.

[Ki22a] Kiel University: , Energiesparmaßnahmen an der CAU. Webpage, 2022. https://www.uni-
kiel.de/de/energiesparen, [last access 01.11.2022].

[Ki22b] Kiel University: , UnivIS Kiel. Webpage, 2022. https://www.univis.uni-kiel.de, [last
access 25.10.2022].

[MJ12] Mandinach, Ellen B; Jackson, Sharnell S: Transforming teaching and learning through
data-driven decision making. Corwin Press, 2012.

[Pl15] Plotly Technologies Inc.: , Collaborative data science. Webpage, 2015. https://plot.ly.
[last access 25.10.2022].

[STU99] Scheler, Fabian; Turowski, Stefan; Ulbrich, Peter: , Information system for universities:
UnivIS. Webpage, 1999. Config Informationstechnik eG, https://www.config.de/UnivIS/,
[last access 30.10.2022].

[Th22] The University of Texas at Arlington (UTA): , University Analytics. Webpage, 2022.
https://www.uta.edu/administration/analytics, [last access 01.11.2022].

[We12] West, Darrell M: Big data for education: Data mining, data analytics, and web dashboards.
Governance studies at Brookings, 4(1):1–10, 2012.

UniDash: Interactive Dashboard for Data Driven Insights on Universities 663

https://www.uni-kiel.de/de/energiesparen
https://www.uni-kiel.de/de/energiesparen
https://www.univis.uni-kiel.de
https://plot.ly
https://www.config.de/UnivIS/
https://www.uta.edu/administration/analytics

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Better Safe than Sorry: Visualizing, Predicting, and
Successfully Guiding Courses of Study

Alexander Kerth1, Felix Schuhknecht2, Lukas Pensel3, Justus Henneberg4

Abstract:

Successfully going through a course of study is a lengthy and challenging task. To obtain a degree,
many obstacles must be overcome and the right decisions must be made at the right point in time,
often overwhelming students. To reduce the amount of dropouts, the goal of study advisors is to reach
out to endangered students in time and to provide them help and guidance. To support the work of
study advisors, who typically have to monitor a large amount of students simultaneously, we present
in this demonstration an easy-to-use graphical tool that (a) allows the advisor to visualize all relevant
information of study data in a responsive graph in order to overview the current study situation. In
addition to visualization, our tool provides (b) a forecasting functionality based on pre-trained models
and (c) a warning feature to identify endangered students early on. In the on-site demonstration, the
audience will be able to step into the role of a study advisor and use our tool and all of its features to
identify and guide struggling students within anonymized real-world study data.

Keywords: Study monitoring; Study Prediction; Visualization; Machine Learning; Graph Databases

1 Introduction

Successfully studying and obtaining a degree is challenging. While some students are able
to successfully make it through the forest of lectures, seminars, and labs on their own, many
struggle in finding the right individual path by themselves. To counter this problem, many
universities employ so-called study advisors. Their task is essentially threefold: (1) To
identify struggling students, for instance by analyzing their performance over the past
semesters. (2) To provide guidance for the identified students on how to improve their
individual situation. (3) To monitor whether the guidance actually helps and improves
the situation of the students. With their work, study advisors help in reducing (avoidable)
dropouts and eliminate stress and uncertainty on the side of students.

Unfortunately, all three tasks are highly difficult for the study advisor in the present situation.
In terms of (1), typically, a large number of students must be monitored, namely all currently
enrolled students in all stages of their studies. Therefore, overseeing the sheer amount
1 Johannes Gutenberg University Mainz, Institute of Computer Science, Staudingerweg 9, 55128 Mainz, Germany

alkerth@students.uni-mainz.de
2 schuhknecht@uni-mainz.de
3 pensel@uni-mainz.de
4 henneberg@uni-mainz.de

cba doi:10.18420/BTW2023-36

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 665

mailto:alkerth@students.uni-mainz.de
mailto:schuhknecht@uni-mainz.de
mailto:pensel@uni-mainz.de
mailto:henneberg@uni-mainz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-36

2 Alexander Kerth, Felix Schuhknecht, Lukas Pensel, Justus Henneberg

of data is already challenging when done (pseudo-)manually. Connected to this is the
problem that the study data is typically materialized in some sort of course management
system (CMS). The primary purpose of such a database is to reliably log all entered study
data, but not to perform any form of sophisticated analysis on it. This leads to the unpleasant
situation that accessing and analyzing the existing study data is already a cumbersome step
for the study advisor. Assuming that struggling students have been identified somehow in
step (1), step (2) is even more challenging. Now, the study advisor has to come up with
guidances and recommendations that fit to the individual problems of each student. This
requires a deep individual analysis of the study performance so far and the design of a fitting
counter-steering measure. Here, different courses could be advised to be taken in a specific
order. The optimization goal is basically to find a suitable trade-off between progress,
interests, and pressure for the student. When guidance has been given to a struggling student,
in step (3), the performance of the student must be monitored and evaluated throughout
the next semesters in some sort of feedback loop. Here, the study advisor has to carefully
analyze the development of the student over a longer period of time, requiring cumbersome
(repetitive) data analysis and comparison.

To support study advisors in their challenging tasks, in the following we propose a tool to
assist their workflow in all three previously mentioned steps. Note that we specifically use
the term “assist” and not “replace”, as we believe that human advising is (and will always
be) essential in this sensitive field. Precisely, our tool assists the advisor in the following
aspects:

(a) It makes study data accessible for the study advisor by connecting students, lecturers,
courses, and exam results with each other and by presenting their relation in a graph-based
visualization. We provide different views for different analysis purposes: For example, it
is possible to visualize for a particular student all taken courses and exam results. Or it is
possible to focus on a specific course and to see all exam performances of a specific semester
or over multiple semesters for all students. Any available meta-data, such as passing/failure
ratio, is also presented to ease the interpretation of the data.

(b) It contains an early warning system that automatically identifies potentially struggling
students. To do so, it predicts the likelihood of finishing the studies using an ML model,
which has been trained on available study data, and combines it with the number of exams
failed so far. The generated list of students can be ordered and post-filtered by the study
advisor to contact the students in danger.

(c) It allows the advisors to create a course of study forecast for a particular student to
give recommendations on which courses to take. This can come in handy if the curriculum
contains many courses to choose from. Again, we use pre-trained ML models to generate
this forecast and visualize it in an easy-to-digest manner. Besides the proposed courses, the
forecast also contains the predicted grade range and passing probability for each course.

Note that we designed our tool to be usable by non-computer-scientists, i.e., there is no

666 Alexander Kerth, Felix Schuhknecht, Lukas Pensel, Justus Henneberg

Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study 3

programming or query writing required. Therefore, our tool can be applied university-wide
by study advisors of all faculties.

2 Architecture and Setup

Our tool runs in a web browser and uses a multitude of technologies: For the frontend, we
use a combination of PHP, JavaScript, and Bootstrap, running on an Apache web server.
The backend is twofold: To manage the data, we use Neo4j [ht22] as a graph-based database
management system that is queried by the frontend via Cypher [Fr18] queries. Since all
study data in the CMS is typically in relational format, we use a converter that translates
the relational data into the corresponding graph representation by turning foreign-key
relationships into edges. In our case, we extracted the (anonymized) study data in relational
format from JoGu-StINe [Jo22], the CMS of JGU Mainz, and then converted the data into a
corresponding graph representation.

The machine learning part, which is required for forecasting and warning, is realized
in Tensorflow and largely builds upon the N-RELAGGS [PK19] work. The core idea is
to feed a neural network with input features composed of joined study data. The joined
data contains information about enrollment, semester statistics, and exam results for each
student. Underneath, Tensorflow and Keras are used to train the model and to forecast the
performance of students of interest. Note that other works [Zh20, Má13] also tried to predict
the performance of students using data mining and ML-assisted approaches. In general,
these approaches could be integrated into our prediction backend as well.

3 Visualization

Figure 1 shows a screenshot of the main view of our tool running in a browser. The depicted
center view shows the visualization of the performance of a specific student (turquoise
node). Around the student, all taken courses of that student are arranged (blue nodes) with
the semester in which the course was taken (yellow nodes). Linked to each course/semester
combination is the grade of the corresponding exam (green nodes for passing, red node for
failing). The border of each course node additionally shows the passing/failing ratio of this
particular course over all semesters. The same applies to exam nodes.

Note that at any time, the user can click a node in the center view to focus the view on that
node. Focusing on a node does more than rearranging the currently visible nodes as it might
trigger the loading of new nodes. For example, when clicking on a specific exam, the center
view will load and show all students of that particular exam. To go back to the previous
view, the user can click on the “return” button on the top of the view at any time.

Alongside the center view, on the right side we list various statistics that support the current
visualization. For example, we show the average grade of the student, the fraction of passed
exams, the number of courses taken, and the passing ratio of all exams. Note that the

Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study
667

4 Alexander Kerth, Felix Schuhknecht, Lukas Pensel, Justus Henneberg

Fig. 1: Frontend overview of our tool running in a web browser.

right-side view automatically adapts to the current visualization of the center view. The left
view of the tool serves as a settings and action panel that can be used to adjust the current
visualization and to trigger the loading of new visualizations. This includes triggering the
the course of study forecast (Section 4) and the early warning system (Section 5).

4 Course of Study Forecast

Besides visualization, our tool supports forecasting the performance of a particular student
in a particular course or even the whole (remaining) course of study. To enable this feature,
the course of study regulations must be encoded in our tool in advance, which contain
information on which courses are available and which combination of course (types) must
be passed to obtain the degree. For this demo, we encoded the study regulations of the B.Sc.
in Computer Science (2016 version) of JGU Mainz.

We now trained four different models for each course on the available study data, where
each model is tailored towards a different stage of study. We train the first model on the
first semester study data of all students, whereas the second model is trained on the first
and second semester study data of all students, and so on. We consider only courses that
contained at least 40 students and feed the model with exam results as well as meta-data such
as achieved credit points per semester and achieved credit points overall. When forecasting
for a particular student, the system automatically picks the model that fits best to the semester
in which the student is currently enrolled. For each recommended course, the model predicts
one of the outcomes “good” (grade range 1-2), “satisfactory” (grade range 3-4), or “failed”
(grade 5).

668 Alexander Kerth, Felix Schuhknecht, Lukas Pensel, Justus Henneberg

Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study 5

WSK: 75.00% (4)

WSK: 100.00% (1)*

WSK: 60.00% (5)

WSK: 98.28% (58)

1-2

1-2Modul Mikrooekonomie

2

WiSe 2020/21

Analysis II

beStudium generale BABSc

beLineare Algebra und Geometrie 1

2.7Theoretische Grundlagen der Informatik (BSc, BEd)

2.3Datenstrukturen und effiziente Algorithmen

be

SoSe 2021

Praktikum Mathematische Modellierung am Rechner 1

1.7Statistik fuer Informatiker

1.7Datenbanken I/Informationssysteme I

beDatenbanken Praktikum

5

WiSe 2021/22

Praktikum Mathematische Modellierung am Rechner 2

Modul Finanzwirtschaft

Modul Operations Management 1-2

1-2Software-Engineering / Software-Technik

Fig. 2: Course of study forecast for a particular student for winter semester 2021/2022 based on the
performance of the previous two semesters.

Additionally, a passing probability is predicted, which might be more relevant for endangered
students than the actual grade. It is based on a Naïve Bayes classifier, which has been used
in this context successfully in [DG17, PP21], using one of two metrics: In the first variant,
which is used by default, it computes the probability of passing a particular exam in the
first try depending on how many previous exams were passed in the first try. In the second
variant, which is used if the sample size is too small, it computes the passing probability
depending on the results achieved in already taken exams. Figure 2 shows how the complete
forecast visualization looks like. For the student of interest, we show for each semester the
already taken exams (winter semester 20/21 and summer semester 21 in this example) as
well as the predicted semester (winter semester 21/22 in this example). For the predicted
semester, we show all recommended courses along with the predicted grade ranges, passing
probabilities, and sample sizes.

5 Early Warning System

In addition to forecasting the performance of a particular student, our tool also supports the
automatic identification of potentially struggling students, so that the study advisor can help
these students as early as possible.

Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study
669

6 Alexander Kerth, Felix Schuhknecht, Lukas Pensel, Justus Henneberg

To do so, we again utilize our four pre-trained models and predict for each currently enrolled
student whether he or she will acquire the degree or not. We then combine this prediction
with the amount of already failed exams to compute a “risk score”, by which we can order all
students. The user can then view all students whose risk score lies above a certain threshold
in the frontend, as shown in Figure 3. From this visualization, the study advisor can then
directly perform a closer inspection of the performance of the endangered students.

Fig. 3: List of “endangered students”, who have a high risk score.
Note that we also support the visualization of “risky courses” that seem to be related to
dropouts. Here, we define risk as the number of students who failed an exam and then
dropped out in relation to the total number of students who took the corresponding course.
Figure 4 shows an example list representation of such identified courses.

Fig. 4: List of “risky courses” that are potentially related to dropouts of students.

6 Demonstration

In our on-site demonstration, the users will be able to freely interact with our tool, which
we pre-load with anonymized real-world student data from the computer science B.Sc.
course of study of JGU Mainz. The audience will step into the role of a study advisor and
experience the entire tool-assisted workflow: Identifying potentially endangered students via
the warning system, exploring their individual problems by navigating through the different
visualizations, and finally predicting the best courses to take alongside with their chances of
success. By inspecting the courses year-by-year, the audience can also identify temporal
trends in the passing/failing ratio and the number of students visiting the course.

Acknowledgements: We would like to thank Hans-Jürgen Schröder for his contributions to early
stages of this work and his efforts in acquiring the anonymized study data. Also, we would like to
thank JGU Mainz for providing the anonymized study data, as well as Markus Blumenstock for his
input as a study advisor.

670 Alexander Kerth, Felix Schuhknecht, Lukas Pensel, Justus Henneberg

Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study 7

Bibliography
[DG17] Dake, Delali Kwasi; Gyimah, Esther: Students Grades Predictor using Naïve Bayes Classifier

– A Case Study of University of Education, Winneba. International Journal of Innovative
Research in Science, Engineering and Technology, 6(10), 2017.

[Fr18] Francis, Nadime; Green, Alastair; Guagliardo, Paolo; Libkin, Leonid; Lindaaker, Tobias;
Marsault, Victor; Plantikow, Stefan; Rydberg, Mats; Selmer, Petra; Taylor, Andrés: Cypher: An
Evolving Query Language for Property Graphs. In (Das, Gautam; Jermaine, Christopher M.;
Bernstein, Philip A., eds): Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018. ACM, pp.
1433–1445, 2018.

[ht22] https://neo4j.com, 2022.

[Jo22] Johannes Gutenberg University Mainz: , https://jogustine.uni-mainz.de/, 2022.

[Má13] Márquez-Vera, Carlos; Cano, Alberto; Romero, Cristóbal; Ventura, Sebastián: Predicting
student failure at school using genetic programming and different data mining approaches
with high dimensional and imbalanced data. Appl. Intell., 38(3):315–330, 2013.

[PK19] Pensel, Lukas; Kramer, Stefan: Forecast of Study Success in the STEM Disciplines Based
Solely on Academic Records. In (Cellier, Peggy; Driessens, Kurt, eds): Machine Learn-
ing and Knowledge Discovery in Databases - International Workshops of ECML PKDD
2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part I. volume 1167 of
Communications in Computer and Information Science. Springer, pp. 647–657, 2019.

[PP21] Perez, Joann Galopo; Perez, Eugene S.: Predicting Student Program Completion Using Naïve
Bayes Classification Algorithm. International Journal of Modern Education and Computer
Science (ĲMECS), 13(3):57–67, 2021.

[Zh20] Zhao, Yĳun; Xu, Qiangwen; Chen, Ming; Weiss, Gary: Predicting Student Performance in a
Master’s Program in Data Science using Admissions Data. In (Rafferty, Anna N.; Whitehill,
Jacob; Romero, Cristóbal; Cavalli-Sforza, Violetta, eds): Proceedings of the 13th International
Conference on Educational Data Mining, EDM 2020, Fully virtual conference, July 10-13,
2020. International Educational Data Mining Society, 2020.

Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study
671

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

JPTest - Grading Data Science Exercises in Jupyter Made
Short, Fast and Scalable

Eric Tröbs1, Stefan Hagedorn2, Kai-Uwe Sattler3

Abstract: Jupyter Notebook is not only a popular tool for publishing data science results, but can
also be used for the interactive explanation of teaching content as well as the supervised work on
exercises. In order to give students feedback on their solutions, it is necessary to check and evaluate the
submitted work. To exploit the possibilities of remote learning as well as to reduce the work needed to
evaluate submissions, we present a flexible and efficient framework. It enables automated checking of
notebooks for completeness and syntactic correctness as well as fine-grained evaluation of submitted
tasks. The framework comes with a high level of parallelization, isolation and a short and efficient
API.

Keywords: Jupyter; Teaching; Exercising; Unit-Testing; Automation

1 Motivation

Teaching programming languages, SQL or data science related concepts often involves
exercises in which students have to solve tasks by writing programs and queries on their own.
Often, these exercises need to be evaluated and graded by some faculty member. However,
with hundreds of students, the grading process quickly becomes a burden and often leads
to the fact that only a sample is checked or that the number of tasks for the students is
reduced. However, especially the latter is to the disadvantage for the students as they miss
the potential of exhaustive examples for practicing with valuable feedback.

Thus, in order to exploit the possibilities of online and remote learning as well as to reduce
the burden of manually coding related tasks, our goal is to provide an extensive framework
to distribute and evaluate programming tasks. Especially for data analytic tasks Jupyter
Notebooks4 have become very popular as they allow to mix formatted text with executable
code. Notebooks are also useful for teaching purposes as they allow to show descriptions
and tasks within the same file. In our case, the notebooks are used in the context of a data
science lecture which contains exercises after every chapter to repeat what has been learned.

In order to give students feedback on their solutions, it is necessary to check and evaluate
the submitted work. In our case, this is compounded by the fact that not all assignments
1 Technische Universität Ilmenau, Germany, Eric.Troebs@tu-ilmenau.de
2 Technische Universität Ilmenau, Germany, Stefan.Hagedorn@tu-ilmenau.de
3 Technische Universität Ilmenau, Germany, kus@tu-ilmenau.de
4 https://jupyter.org/

cba doi:10.18420/BTW2023-37

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 673

mailto:Eric.Troebs@tu-ilmenau.de
mailto:Stefan.Hagedorn@tu-ilmenau.de
mailto:kus@tu-ilmenau.de
https://jupyter.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-37

2 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

are submitted at the same time and thus there is no practice effect on those who evaluate
solutions. At the same time, multiple attempts might be allowed and we use tasks that are
complicated to grade manually, for example, when a lot of if-statements need to be used.

In this paper, we present a flexible and efficient framework, called JPTest5, to automatically
evaluate and grade code from Jupyter notebooks. The main goal in developing JPTest was
therefore to automate the evaluation of coding tasks, while creating a tool that can also
check notebooks for completeness and syntax errors. The focus during development was on
fast execution through parallelization, isolated execution of student code and an efficient
interface. Most of our tasks can be evaluated by classical unit testing of single functions or
by comparing manipulated data sets with those of a sample solution. To shorten the process
with these task types, annotations exist to express recurring parts of the tests.

2 Related Work

Although the lockdown of schools and universities has drastically increased the need for
online learning formats, especially in computer science related lectures, various automated
solutions have been created and used for years. However, these are often self-implemented
solutions, that are not available to other groups or lack features important for grading. During
the peak of the lockdown-induced remote learning phase, the database community presented
some of their solutions and experiences with remote learning approaches in the Datenbank
Spektrum journal.

First among these is SQLValidator by Obionwu et al., where students can easily submit
queries to a prepared database and receive detailed feedback and explanations of mistakes
they encountered. SQLValidator also includes the possibility to create questionnaires and
test students automatically. Even though the authors report positive effects on their courses,
the software is limited to SQL [Obi+21].

The second example we would like to mention is a Data Engineering course for 10,000
participants by Alder et al. Based on the openHPI platform of the Hasso Plattner Institute
in Potsdam, a so-called Massive Open Online Course is offered, which includes lectures
supplemented by videos, homework and exams. According to the number of participants,
evaluation by hand is nearly impossible. Automated correction was made possible by the
use of multiple-choice and multiple-answer questions [Ald+20].

Beyond these teaching related approaches and because Jupyter is widely used not only for
prototyping and ad-hoc analytics, there also exist test frameworks for notebooks.

papermill6 is a project to parameterize notebooks. It works by evaluating tags and allows
modifying, storing, inspecting and running notebooks with different sets of parameters.
5 https://github.com/erictroebs/jptest
6 https://github.com/nteract/papermill

674 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

https://github.com/erictroebs/jptest
https://github.com/nteract/papermill

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 3

Although not directly related to our work, it might be a valuable alternative to create similar
reports with different values from a single notebook file.

nbgrader7 is an integrated solution for grading Jupyter Notebooks. It can be fully operated
via a graphical interface and also allows mixing manually and automatically graded tasks.
It also allows generating student versions of an assignment. In contrast to nbgrader, JPTest
completely detaches tests from notebooks, allows runs to test syntax and completeness, and
does not require any plugins in Jupyter. In addition, JPTest allows more freedom in the
design of the test code, for example through setup and teardown methods.

3 System Description

JPTest is an unit testing framework for Jupyter Notebooks created with the needs of our data
science lecture in mind. It uses nbclient8 as a base for executing code in notebooks. nbclient
was originally created for running notebooks to get the output of the cells and process it, for
example, for conversion to other formats. As in Jupyter Notebook, a kernel is necessary for
the execution of each code cell. It is not strictly necessary to start a separate kernel for each
notebook. However, JPTest does just that. From the process that was started to execute the
tests, at least a single kernel is started for each test. Each kernel is executed in a separate
process so that proper multiprocessing is possible across all tasks, while the test process
acts as a coordinator. JPTest always runs on an in-memory copy of the notebook and does
not modify files, but tests and code in the notebook still have the possibility to do so.

In summary, there is a process in which the test code runs and from which kernels are
started. We refer to this coordinator as the test context. Since our tests contain parts of the
solution, it is important that they are managed and stored separately from the notebooks.
Each test has exactly one function, which is identified by an annotation. Multiple tests can
be collected in one or more files and run together, adding up the scores and collecting the
comments. On the other hand, a separate Python process exists for each kernel, which we
refer to both individually and as a set of all these processes as the notebook context. Figure 1
visualizes the relationship and communication structure between the created processes.

For communication between contexts the default implementation jupyter_client is used,
resulting in the use of ZeroMQ. Pickle is used to serialize the objects to be transferred,
which, in contrast to JSON for example, can also serialize more complex objects such as
NumPy Arrays or Pandas DataFrames. Code written for the test context relies heavily on
the asyncio framework to exploit this multiprocessing environment.

The easiest way to execute code in the notebook is via the cells property. It returns a list of all
cells present in the notebook and allows to filter and execute them one by one. The function
7 https://github.com/jupyter/nbgrader
8 https://github.com/jupyter/nbclient

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 675

https://github.com/jupyter/nbgrader
https://github.com/jupyter/nbclient

4 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

n
o

teb
o

o
k

co
n

text
test

co
n

text

execu
te

cells
an

d
 o

th
er

co
d

e,
access

valu
es

an
d

fu
n

ctio
n

s

tests.py

user_submission.ipynb

JPTest

coordinator

notebook kernel for test 1

notebook kernel for test 2

…

create
p

ro
cesses

Fig. 1: The coordinator loads the tests and creates at least one kernel in a separate process for each
test. The kernel processes communicate only with the coordinator.

execute_cells represents a shortcut to select only code cells by tags prior to executing them
in their order of appearance.

Besides executing single cells, it is also possible to interact with objects and code in the
notebook context. The most important class in this regard is NotebookReference. References
returned, for example, by the ref and get functions, represent objects in the notebook
context and may be used for interaction in various ways. For example, they can be serialized
and transferred to the test context. However, it is also possible to create sub-references to
attributes or keys. References to functions can also be called, where the parameters can be
either other references or local variables. In the latter case, these are serialized and sent to
the notebook kernel before being called.

The result of almost all operations is delayed. This prevents the need for nesting of await
statements, what really enhances the readability, and improves the performance by less
inter-process communication. Only with a call to receive or execute the final statement is
built and executed in the notebook context, which can cause errors to occur later than their
actual call.

Furthermore, functions in the notebook context may be replaced with others, for example
to skip network requests and return a fixed response instead to speed them up. Even more
interesting is the monitoring of functions, where calls with their parameters and return
values are tracked. This makes it possible, for example, to determine whether a user’s
implementation is using recursion. The available context managers provide the option of
replacing functions only for specific statements.

It is also possible to inject own code from the test context into the notebook context. The
most simple way is to use a string that is inserted as a new cell at the end of the notebook and
executed in the notebook context. However, there are also two methods to inject functions:
The first transfers a function to the notebook context and returns a reference. This can be
called as described before or passed as a parameter to another function. The second copies
the body of a function into a new code cell and executes it. The header is used exclusively
in the test context. We use this functionality to write syntactically correct code with all the

676 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 5

user_submission.ipynb

[]: # task-1

def fib(n):

if n <= 1:

return n

else:

return fib(n-1) + fib(n-2)

1

tests.py
from jptest2 import *1

2
@JPTest('Task 1', max_score=1)3
async def test_task1(nb: Notebook):4
 await nb.execute_cells('task-1')5

6
 fib_fun = nb.ref('fib')7
 yield (8
 await fib_fun(5).receive() == 5,9
 1,10
 'better luck next time',11
 'very good'12
)13

Fig. 2: Left: A student’s submitted fibonacci function. Right: A unit test that executes all cells with
the tag task-1, creates a reference to the fib function and awards one point if a call to this function
with the parameter 5 returns 5.

benefits of analysis within an IDE, although it is later only executed in the notebook context,
which is a massive advantage over writing code as a string. The parameters in the header
define the necessary variables that are present in the notebook through the execution of
previous cells.

To register tests different annotations are used. They are available to either prepare one
or two notebooks or to run specific cells and copy single variables into the test context.
A maximum number of points can be set as well as an execution timeout. This reduces
the writing of tests to as less code as possible. The assignment of points is done using the
yield keyword. The test function then works as a generator, where each returned value is
understood as a part of the score. The value consists of a tuple containing a condition, a
score to be awarded when it is met and optional comments on success or failure. Figure 2
shows a basic unit test which uses this concept.

Last but not least, it is possible to connect other kernels, but Python-specific features are
lost in this process. Currently SQLite and DuckDB are partly supported.

4 Best Practices

Regarding references, there is also a way to exchange values between notebooks. The
function store can be used to store values, but also references into notebooks. References
can also be used as parameters to call functions within the notebook. If the reference is from
the notebook where it should be used, this operation is trivial. If it is from another notebook,
it automatically is copied to the former. However, copying objects across notebooks should
be avoided where possible.

In general, the test context can become a bottleneck because it uses only one thread. To use
the performance of multiple cores, the notebooks should work as independently as possible
and the test context should only be used for coordination and evaluation. For example, when
we evaluate manipulated DataFrames, one notebook runs the student’s solution and one runs

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 677

6 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

the sample solution. Both resulting DataFrames are copied to the test context and checked
there only for equality, so that the computationally intensive operations are outsourced.

In the case of data loading, we use setup functions to modify the data set before starting
the tests. Depending on the task, only a portion of all data is selected or the data set is
modified. This ensures that the student’s code actually solves the problem in general, rather
than exclusively providing the answer for the given data. A reduced data set can also speed
up the execution.

The simplest test possible is the one where no test file is provided. In this case JPTest loads
a default implementation that executes all cells once in the correct order, does not score
and passes exceptions. This can be used to check notebooks for syntax errors, determine if
libraries are missing within an image or if data sets have not been shipped.

Usually we use Docker to create a reproducible environment for our tests. All necessary
dependencies are installed in the image, while required data sets are mounted read-only.
By testing a notebook within the container after it has been modified, we can determine
whether the image does actually include all the required dependencies. In addition, the
containers operate without an internet connection, which creates an isolated environment
for each user’s notebook.

5 Demo Contents

We provide several Jupyter Notebooks and data sets to create and change unit tests using
a set of tasks from our data science lecture, which mainly relies on Python. This includes
submissions where functions are tested by simple unit tests as well as comparisons of objects
with the results from sample solutions. In addition, we show how data sets can be modified
before testing to reject hard-coded solutions and how function replacements can speed up
execution times. We also handle cases where values found experimentally by our students
have to be taken into account.

At the same time, using asyncio, the communication between tests and the concurrently
running notebooks will be explained further. Furthermore, we include test that make use
of the API to grade common tasks in just a few lines of code. As there is no way to avoid
explaining and using database systems in our lectures, we take a look at the use of external
services and how we try to replace them using embedded software.

Last but not least we show the use of the test framework with other kernels, so that SQL
statements, for example, can be graded directly.

Acknowledgements. This work was partially funded by the German Federal Ministry of
Education and Research under grant no. 16DHBKI085.

678 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 7

References

[Ald+20] Nicolas Alder et al. “Ein Data Engineering Kurs für 10.000 Teilnehmer”. In:
Datenbank-Spektrum 21.1 (2020), pp. 5–9.

[Obi+21] Victor Obionwu et al. “SQLValidator - An Online Student Playground to Learn
SQL”. In: Datenbank-Spektrum 21.2 (2021), pp. 73–81.

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 679

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

MEDUSE: Interactive and Visual Exploration of Ionospheric
Data

Joshua Reibert1, Arne Osterthun2, Marcus Paradies3

Abstract: Spatio-temporal models of ionospheric data are important for atmospheric research and the
evaluation of their impact on satellite communications. However, researchers lack tools to visually and
interactively analyze these rapidly growing multi-dimensional datasets that cannot be entirely loaded
into main memory. Existing tools for large-scale multi-dimensional scientific data visualization and
exploration rely on slow, file-based data management support and simplistic client-server interaction
that fetches all data to the client side for rendering.

In this paper we present our data management and interactive data exploration and visualization
system MEDUSE. We demonstrate the initial implementation of the interactive data exploration and
visualization component that enables domain scientists to visualize and interactively explore multi-
dimensional ionospheric data. Use-case-specific visualizations additionally allow the analysis of such
data along satellite trajectories to accommodate domain-specific analyses of the impact on data col-
lected by satellites such as for global navigation satellite systems and earth observation.

Keywords: Exploratory Data Analysis; Ionospheric Data; Data Cubes

1 Introduction

The Earth’s ionosphere is observed by an ever-growing amount of sensors–both ground-
and space-based–which results in a giant corpus of raw data [Ca20]. The research of this
space weather is important since space weather events (e.g., solar storms) can affect the
quality of satellite communication which in turn can impact services like global navigation
satellite systems (GNSS) such as the widely used global positioning system (GPS) [SJH19].
Hence, scientists have taken on harmonizing and integrating the raw measurement data into
dense models of the ionosphere to relate noise in satellite-based data back to space weather.

The resulting spatio-temporal model data quickly becomes unwieldy as the data volume
grows, especially in the temporal dimension. Hence, researchers oftentimes work on large
sets of small files and resort to static visualizations of small areas of interest which is cum-
bersome and limits interactivity during data exploration. Interactive visualization allows
1 German Aerospace Center (DLR), Institute of Data Science, Mälzerstr. 3 – 5, 07745 Jena, Germany joshua.

reibert@dlr.de
2 German Aerospace Center (DLR), Institute of Data Science, Mälzerstr. 3 – 5, 07745 Jena, Germany arne.

osterthun@dlr.de
3 German Aerospace Center (DLR), Institute of Data Science, Mälzerstr. 3 – 5, 07745 Jena, Germany marcus.

paradies@dlr.de

cba doi:10.18420/BTW2023-38

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 681

mailto:joshua.reibert@dlr.de
mailto:joshua.reibert@dlr.de
mailto:arne.osterthun@dlr.de
mailto:arne.osterthun@dlr.de
mailto:marcus.paradies@dlr.de
mailto:marcus.paradies@dlr.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-38

12 Joshua Reibert, Arne Osterthun, Marcus Paradies

users to visually explore the data and quickly gain new insights but it highly depends on
the system’s latency which impacts analysis performance [LH14]. As a consequence, ad-
equate data management technologies to store and access the spatio-temporal model data
are required to support scientists in their tasks. Besides providing fast access to the data
in the data management system, well-known techniques to reduce latency, e.g., client-side
caching, binary & compressed data transfers, progressive visualization, and execution of
native code on the client side, reduce the overall execution time of interactive exploration
queries [BS21]. To the best of our knowledge, currently no such data management and in-
teractive exploration system for spatio-temporal models exists. VirES4 provides some of
the features but is focused on specific satellite products and is hard to extend to model data.

In this paper we present an initial design of the MEDUSE eco system consisting of a data
management backend and a data exploration and visualization component specifically de-
signed to interactively and visually explore and analyze ionospheric model data. MEDUSE
builds on a custom data backend to query metadata and provide fast access to the underlying
multi-dimensional data exposed through a data cube data model. The data backend decou-
ples the physical data layout, i.e., files in specific data formats, such as NetCDF, TileDB,
or Zarr, from the logical layout and data model based on the concept of data cubes [Ba17].
The model data is visualized along the spatial and temporal dimensions–each visualizing
individual slices of the data. This allows users to iteratively navigate the data which is
adaptively loaded to reduce latency and provide fluid interaction. Specialized features like
showing data along satellite trajectories are tailored to expert domain users that want to
analyze the ionosphere’s impact on satellite communications.

2 Background

The ionospheric models in our use case are developed by domain experts from the atmo-
spheric sciences [HJP22]. They are based on ground- and space-based measurements to
compute a dense grid of earth-centric electron density data. In addition to the two com-
mon spatial dimensions of longitude and latitude, this also includes the vertical altitude
dimension and a temporal dimension, thereby resulting in a four-dimensional dataset.

The model includes the electron density (Ne) in the ionosphere with these four dimensions
and three additional, derived variables which omit the altitude dimension and are hence
only three-dimensional: The vertical total electron content (VTEC) is the integral of the
electron density along the altitude dimension. The maximum electron density along the
altitude dimension is the peak density (NmF2) and the corresponding altitude the peak den-
sity height (hmF2). The spatial resolutions are relatively low with 72 values for longitude
and latitude and 112 altitude steps. However, the data can be computed for up to 5-minute
intervals which quickly adds up when larger time spans are processed. While the data for a
single point in time makes up 2.5 MiB, a year worth of data amounts to about 266 GiB. The
4 https://earth.esa.int/eogateway/tools/vires-for-aeolus

682 Joshua Reibert, Arne Osterthun, Marcus Paradies

https://earth.esa.int/eogateway/tools/vires-for-aeolus

MEDUSE: Interactive and Visual Exploration of Ionospheric Data 13

Metadata STAC catalog

Visualizations xarray NetCDF

JSON

Arrow IPC

Frontend Data Backend

Fig. 1: MEDUSE architecture overview.

data size is then again multiplied by the number of models that are considered. Currently,
we consider two models in our application.

3 Interactive Visual Analysis of Ionospheric Models in MEDUSE

Figure 1 depicts the overall architecture of MEDUSE consisting of a web-based client and
the data management backend storing all the model data.

Data Backend

The data for the ionospheric models are provided in the NetCDF format from which meta-
data is generated in the spatio-temporal asset catalogs (STAC)5 format in a pre-processing
step. It encompasses data dimensions, axis types, coordinates, extreme values, and free-
form metadata, such as textual descriptions. A custom backend provides endpoints to query
this STAC metadata, queries for dicing and slicing using dimension ranges as well as point
queries for specific dimension value tuples. All of the queries are validated against the
metadata. The actual data access is performed using xarray6 and results are sent over the
network in the inter-process communication (IPC) format of Apache Arrow7 via HTTP.
Furthermore, aggregations can be queried directly by specifying the operation to compute
and the dimensions to apply them on. To support querying along satellite trajectories, point
queries interpolate the model data linearly.

Frontend

We developed a web application that builds on the metadata and the data cubes to enable
analysts and other domain users to quickly and interactively explore the ionospheric data.
5 https://stacspec.org
6 https://docs.xarray.dev/
7 https://arrow.apache.org/

Meduse : Interactive and Visual Exploration of Ionospheric Data 683

https://stacspec.org
https://docs.xarray.dev/
https://arrow.apache.org/

14 Joshua Reibert, Arne Osterthun, Marcus Paradies

A B C

D

Fig. 2: The web application visualizes the ionospheric data along the different dimensions. Different
models, variables, and dates in that dataset can be selected (A). The map visualizes the selected
variable along the spatial dimensions (B), the altitude profile visualizes the electron density along
the vertical altitude dimension (C), and the time-series chart visualizes a variable along the temporal
dimension (D).

Figure 2 depicts a screenshot of the interactive data exploration and visualization tool of
MEDUSE. It features a map or globe visualization for the horizontal spatial dimensions as
well as an altitude profile for the vertical spatial dimensions, and a time-series chart for the
temporal dimension. All of these visualizations are linked such that users can select specific
dimension values in them, for example a certain timestamp in the time-series, and the other
visualizations will update accordingly. As a result, users can directly and interactively select
dimension values in the visualizations to explore regions of interest in the data instead of
relying on external widgets.

Users can initially select one of the provided models, a variable, and a date of interest (see
Figure 2 (A)). The central visualization shows the color-encoded data along the horizon-
tal spatial dimensions mapped to Earth with country borders to give a frame of reference
(see Figure 2 (B)). It can be toggled between a 3D globe view and 2D map with a dedicated
button and uses WebGL for real-time rendering and interaction. Users can select individual
grid cells to focus on that spatial region. The altitude profile visualizes the electron density
for the selected timestamp along the altitude dimension (see Figure 2 (C)). It highlights the
peak density value as well as the respective altitude and can be used to interactively inspect
altitude and density values by hovering, and to select a different altitude value. The time-
series visualizes how a selected variable changes over time in a 60 hours window around
the selected date (see Figure 2 (D)). Again, specific values and the respective timestamp are

684 Joshua Reibert, Arne Osterthun, Marcus Paradies

MEDUSE: Interactive and Visual Exploration of Ionospheric Data 15

Fig. 3: The satellite trajectory visualization shows the trajectory of a selected satellite and color-codes
variable values along it. The time-series chart simultaneously plots the data as a line chart.

shown when hovering the chart and also allow interactively selecting a different timestamp
that is propagated to the other visualizations.

Since the electron density affects the quality of satellite communications, satellite operators
and users of GNSS or earth observation are often interested in investigating electron density
along satellite paths. We accommodate this use case by including a set of satellites and
allowing users to select one. Satellite data is provided as two-line element set (TLE) which
is used to compute the earth-centric 3D position from given timestamps. The resulting set
of values for all four dimensions is used to query the data from the data cube. The satellite
trajectory can then be toggled to be shown on the map or the globe and again color-coding
data values along its path (see Figure 3).

The application aims to allow researchers working with ionospheric data in validating their
models and investigating effects of the electron density on collected data from satellites.
However, this is often just a first step to discover relations and anomalies that entail further,
more focused analyses. Hence, we also provide the functionality to export the underlying
data of visualizations for further inspection and the charts as images for presentation.

4 Demonstration Outline

For the demonstration, we will assume the role of a researcher working with earth obser-
vation data who has encountered unusual levels of noise in their data. We will use the web
application to interactively explore the ionospheric models to look for unusual ionospheric
activity. Finally, we will take a look at the satellite’s path to analyze the electron density
along its path and identify anomalies.

Meduse : Interactive and Visual Exploration of Ionospheric Data 685

16 Joshua Reibert, Arne Osterthun, Marcus Paradies

5 Summary & Outlook

In this paper we presented the initial design of MEDUSE, a data management and interactive
exploration and visualization system for spatio-temporal model data from the ionosphere.
In the future, we want to continue to improve our prototype to reduce latency, e. g. by using
web assembly for client-side data cube access and computations as well as WebSockets to
reduce network latency. Furthermore, we want to generalize the data backend to be more
generally applicable to data-intensive web applications working with multi-dimensional
data beyond atmospheric sciences.

References

[Ba17] Baumann, P.: Standardizing Big Earth Datacubes. In (Nie, J.; Obradovic, Z.;
Suzumura, T.; Ghosh, R.; Nambiar, R.; Wang, C.; Zang, H.; Baeza-Yates, R.;
Hu, X.; Kepner, J.; Cuzzocrea, A.; Tang, J.; Toyoda, M., eds.): 2017 IEEE In-
ternational Conference on Big Data (IEEE BigData 2017), Boston, MA, USA,
December 11-14, 2017. IEEE Computer Society, pp. 67–73, 2017.

[BS21] Battle, L.; Scheidegger, C.: A Structured Review of Data Management Technol-
ogy for Interactive Visualization and Analysis. IEEE Trans. Vis. Comput. Graph.
27/2, pp. 1128–1138, 2021.

[Ca20] Carley, E. P.; Baldovin, C.; Benthem, P.; Bisi, M. M.; Fallows, R. A.; Gal-
lagher, P. T.; Olberg, M.; Rothkaehl, H.; Vermeulen, R.; Vilmer, N.; Barnes, D.;
the LOFAR4SW Consortium: Radio Observatories and Instrumentation Used
in Space Weather Science and Operations. J. Space Weather Space Clim. 10/7,
2020.

[HJP22] Hoque, M. M.; Jakowski, N.; Prol, F. S.: A New Climatological Electron Density
Model for Supporting Space Weather Services. J. Space Weather Space Clim.
12/1, 2022.

[LH14] Liu, Z.; Heer, J.: The Effects of Interactive Latency on Exploratory Visual Anal-
ysis. IEEE Trans. Vis. Comput. Graph. 20/12, pp. 2122–2131, 2014.

[SJH19] Su, K.; Jin, S.; Hoque, M. M.: Evaluation of Ionospheric Delay Effects on Multi-
GNSS Positioning Performance. Remote. Sens. 11/2, p. 171, 2019.

686 Joshua Reibert, Arne Osterthun, Marcus Paradies

cba

W. Lehner et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Interactive SQL Queries and Program Code in Presentations

Johannes Schildgen1, Florian Heinz1

Abstract: Nowadays, most database lectures are performed with an accompanying visual presentation
that further illustrates the conveyed facts. Conventional presentation software allows dynamic elements
up to a certain level, for example revealing or changing parts of the slide step by step, or even
an interaction with the viewers by means of polls or similar mechanisms. Recently, HTML- and
browser-based frameworks for presentations have emerged, which allow an even higher degree of
flexibility due to the manifold possibilities of HTML5 and JavaScript. This paper presents an approach
of how to interactively modify parts of a slide during the presentation, like SQL-based queries or
program code snippets, and show the results pretty-printed on the corresponding slide in real-time.
This enables the lecturer to easily show more examples, and answer and illustrate side questions,
which they did not prepare in advance.

Keywords: Lecture Slides; SQL

1 Introduction

Today, a lecture is not thinkable without an accompanying presentation that helps to visually
illustrate the topic. Often, this presentation is handed out to the audience and replaces, or at
least supports, handwritten notices taken by the audience. Classical presentation software is,
for example, Microsoft Powerpoint, Apple’s Keynote, or LibreOffice Impress, which have
roughly the same feature set available. Basic features are to reveal parts of a slide step-by-step
or provide animations. To implement more advanced features for more flexibility in the
presentation, software-specific plugins are needed here, for example, poll-plugins to interact
with the audience.

Recently, anothermethod to create presentations has becomemore andmore popular: browser-
based presentation frameworks that make heavy use of HTML5, CSS, and JavaScript. For
example, one of such frameworks is reveal.js [EH13]. A big advantage is the comparatively
easy extensibility of presentation features due to the open nature of the platforms used, to
tailor the presentation to the specific needs of the lecture topic.

In this paper, we present an extension to reveal.js that can be used for lectures in computer
science. Our first implementation was able to send SQL queries on the slides to a real
database, executes them, and shows the results directly within the slides. Then, we extended
our approach to supporting arbitrary program code.
1 OTH Regensburg, Postfach 120327, 93025 Regensburg, Germany
{johannes.schildgen,florian.heinz}@oth-regensburg.de

cba doi:10.18420/BTW2023-39

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 687

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-39

2 Johannes Schildgen, Florian Heinz

The traditional way of creating SQL slides is to think about an example, formulate a database
query for it, execute it in a database system and copy both the query and its result into
the presentation. The disadvantage of this approach becomes imminent when someone in
the audience asks a but what if?-question, where the query is slightly altered. With the
traditional tools, the lecturer has to stick with his prepared visualization and can only explain
verbally, what will happen or they have to make a context switch and reproduce the query
within an SQL client software.

This is where the new method described in this paper comes into play; a JavaScript-based
plugin for reveal.js that executes a query shown in the presentation and presents the results
to the audience. This enables the lecturer to flexibly react on questions regarding the queries
that are raised by the audience. Further benefits of this feature are: No erroneous queries
on the slides (it would show an error message), the avoidance of frequently switching
between the presentation window and a console (and setting up an example environment),
and consistent DB schemata and data values with less effort to produce, as they are based
on a real relational database.

In programming lectures, frequently similar situations occur. Small changes to the code often
result in completely different behavior. Operator precedence, lazy evaluation, out-of-order
processing, and many things more can be illustrated swiftly if questions occur spontaneously.
So, it is a big advantage if the code snippet is already part of a runnable program with the
irrelevant parts hidden and its output presented on the slide: for one, there is no room for
inconsistency or typos on the slide, because it is indeed compiled and executed. For another,
there is no need for the lecturer to set up an IDE for the programming language in question
and write boilerplate code to get a specific example running. This saves a lot of time and
does not confuse the audience: The bigger context of the code part can be concealed, but
modifications to the shown excerpt result in an immediate update of the output on the slide,
together with possible compile-time and runtime errors.

2 Related Work

reveal.js The HTML5- and JavaScript-based framework reveal.js [EH13] is the foundation
for the work presented here. Creating a presentation with reveal.js is similar to designing
an HTML website. For example, each slide is one <section> element, and the sizes of a
slide’s contents are automatically adjusted to the size of the browser viewport. reveal.js
offers a speakers view, math formulae, PDF export, syntax highlighting for code, slide
transitions, and fragments, i.e., elements on a slide can be revealed step-by-step. One of the
most useful features is the plugin interface2, which allows to extend the framework with
self-programmed functions, as for example polls, diagram-creation functions, or dynamic
SQL queries.

2 https://revealjs.com/plugins/

688 Johannes Schildgen, Florian Heinz

https://revealjs.com/plugins/

Interactive SQL Queries and Program Code in Presentations 3

LaTeX Beamer LaTeX Beamer is a popular alternative to PowerPoint and other presenta-
tion tools, especially in maths and science education. It works in a similar way as reveal.js:
A text-based syntax is used to develop and style the content of the presentation slides, and
then a PDF is generated, which can be presented to the audience with a PDF viewer. There
are tools like SQLTex [vE16] and LaTeXDB [Eß06], which act as a preprocessor for LaTeX
files. They execute SQL queries that are part of the file on a relational database and write
their results directly into the LaTeX document. This approach is similar to ours but—due to
the output format PDF—it does not allow for interactively changing and re-executing the
query while presenting the slides.

Jupyter Notebook Jupyter Notebooks [Kl16, GG16, Pe18] are often used by data scientists
to combine program code, documentation, and visualizationwithin a file that can be inspected
and executed within a browser. As this format is very interactive, users can change the
program code and see its effects immediately. With plugins like sqlalchemy [Co08] or
SQLFlow [Wa20], it is possible to include and execute SQL queries within a Jupyter
Notebook. Another plugin, RISE [Av17], allows for presenting the notebook as a sequence
of slides. While this approach follows the idea of creating an interactive document and
presenting this in the form of slides, our approach is vice versa: We will create slides and
enrich them with interactive elements.

LiaScript LiaScript [Di19] is a browser-based tool using an extendedMarkdown language
to create interactive online courses. It is designed to be easy-to-use and to provide a high
level of flexibility; the markdown source is rendered live in the browser itself. It also
provides the ability to execute code snippets, perform quizzes, surveys and more. The focus
is on providing an online course, while this work strives to augment a presentation with
interactive elements, that is performed by a lecturer with a live audience.

3 Dynamic Content Evaluation in Presentations

A central element of a successful lecture is illustrating the theoretical concepts by means of
examples. This helps to avoid misunderstandings and provokes questions from the public
that otherwise would not have come up. Usually, the lecturer strives to find suitable examples
and tries to anticipate possible questions to answer them in that course. This will, however,
not be possible in all situations. So, a dynamic component is the best option to provide
maximum flexibility during the presentation.

For example, the lecture comes to a point where NULL values in SQL are discussed and the
lecturer tries to convey that each comparative relational operation, i.e. less than, greater,
equality or inequality, with a NULL value is neither true, nor false, but NULL (“unknown”) in
the result and the correct way to test for such values to use the IS NULL operation. Then, one
slide might show a query SELECT * FROM people WHERE email IS NULL (see Figure 1).

Interactive SQL Queries and Program Code in Presentations 689

4 Johannes Schildgen, Florian Heinz

Fig. 1: Dynamic Query

Below the SQL statement, an exemplary result table with several rows that might be a
possible result of that query is shown. This is the primarily relevant information and will
also be part of the (printed or digital) handout. But when dynamic queries are used, some
more possibilities exist to further clarify this fact. The query is editable and the IS operator
can be replaced by the relational equality operation =. The keyboard shortcut ctrl +

re-executes that query live in an SQL database and shows that the result set is indeed empty.
After that, the lecturer might be confronted with the question of what the result with the
!= operation might be (people tend to think, that might yield all rows from the table then).
Again, the operator is quickly replaced and the audience notices, that the result set is empty
again. The reason for this can then be reiterated from the theoretical explanation beforehand
and the chances for a deeper understanding of the underlying mechanisms rise.

Another often-heard question when talking about the JOIN operator is: “How would the
result look with a left join?”. Using this framework, this can also be demonstrated easily by
changing the query in the slide accordingly. These are rather simple examples, but basically
all kinds of queries are possible.

The more complex the query, the more nuances can be demonstrated by changing small
parts of the query and explaining the observed changes in the result. This is exactly what the
SQL plugin is designed for. Figure 2 shows how the plugin works. For the database system
in the backend, there are two fundamentally different possibilities. For one, some modern
web browsers (e.g., Chrome and Opera) contain an internal WebSQL API that allows to
create and query a relational database from JavaScript without the need of any external
program or service. This also means, that the whole presentation can be held from local files
without the need of a web server. This is convenient, however, there are some drawbacks
with this approach. The Web SQL API has been deprecated since 2010. This leads to the
fact, that Mozilla Firefox and other major players in the browser business do not support this
API. The browsers that do support it all use SQLite as implementation, which provides a
rich set of SQL features. However, sometimes more complex database operations have to be

690 Johannes Schildgen, Florian Heinz

Interactive SQL Queries and Program Code in Presentations 5

local in-browser
WebDB (SQLite)

SQL

program
code /
SQL

Python
Java

C

PHP remote
DB server

result set

SQL

result set

console
output /
result set

Fig. 2: Operating principle of the plugin

discussed, which might not be supported by SQLite, full outer joins and stored procedures
for instance. For demonstrating code snippets in programming lectures, a backend server
that compiles and executes code snippets is always needed.

To also be able to cover these and more topics within a database-systems lecture, this plugin
also implements the possibility to connect to external database systems by proxying the
query through a server-side PHP script, which constitutes the adapter between the dynamic
JavaScript query functions and a database system, for example, a PostgreSQL server. Even
NoSQL databases can be connected with some minor effort here. Either way, the user has
the option to reset the database to a default state before loading the presentation or to stick
with the current state, which might be preferable when methods for modifying the database
scheme or the data itself are currently on-topic.

As already mentioned, the presentation framework used in this paper is reveal.js, which
basically is a set of CSS and JavaScript files to set up a presentation by using HTML. The
SQL query plugin uses the plugin interface of the framework and can easily be integrated
by downloading our sql.js file (URL: see below) and adding it to the list of dependencies:
{ src: ’src/sql.js’, async: true } After that, dynamic queries can be defined in the
presentation source like this:

<pre><code class="sql" contenteditable data-sql-engine="postgresql">

SELECT * FROM people WHERE email IS NULL</code></pre>

The result might be rendered as shown in Figure 1. If the query would contain an error, the
message from the database would be presented to the audience in a popup window.

Within the <code> element, the following classes and attributes are supported by this
implementation:

Interactive SQL Queries and Program Code in Presentations 691

6 Johannes Schildgen, Florian Heinz

• sql, java, . . . : classes for syntax highlighting from the library highlight.js;
furthermore, an indicator for our plugin to execute the query or code

• contenteditable: makes the code editable and re-executable

• data-sql-engine: allows for using different backend database connections

• dont_execute_sql: The SQL query should not be executed (for INSERT, UPDATE, . . .)

• sqlresult: class of span in which the result table will be shown

• data-sql="some_id" / result="some_id": result table / program output will be
shown in the span with the given id (if there are multiple code blocks on one slide)

The following will execute and show the results of a SQL query that is not shown on the
slides: This is useful for simply
showing a full table, for showing results of relational-algebra expressions, or for faking
queries (e.g., A right join B is shown on the slides, but B left join A is executed instead,
because SQLite does not support right joins).

4 Conclusion

This paper presents a technique for creating slides for database lectures and other teaching
presentations for computer science. SQL queries and program code are executed on a real
system, the result is shown to the audience. This enables the lecturer to flexibly react to
what-if questions from the audience without having to break the medium and frequently
switch to a database client, an IDE, or similar.

While results of SQL queries are displayed in a table format, results of general program-code
snippets is simple plain-text console output. By using JavaScript, this can be further
processed to display, for example, charts, diagrams, chemical formulae, and much more.

The implementation of the dynamic SQL-query plugin for reveal.js can be found under
https://github.com/jschildgen/db-slides.

Description of the Demonstration

We will present the reveal.js presentation framework together with our extensions to the
conference visitors in an interactive way. Everybody can click though slides, edit and execute
SQL queries and code, and they can inspect the source code. Furthermore, we present more
features and extensions of reveal.js, namely an ER-diagram creator and a poll plugin [Sc21].
The audience can use their own mobile phones to participate in polls and see how their
voting will affect the presentation.

692 Johannes Schildgen, Florian Heinz

https://github.com/jschildgen/db-slides

Interactive SQL Queries and Program Code in Presentations 7

Bibliography
[Av17] Avila, Damian: Rise: Reveal.js-jupyter/ipython slideshow extension. 2017.

[Co08] Copeland, Rick: Essential sqlalchemy. O’Reilly Media, Inc., 2008.

[Di19] Dietrich, André: LiaScript: a domain-specific-language for interactive online courses. In:
part of the Multi Conference on Computer Science and Information Systems 2019. p. 186,
2019.

[EH13] El Hattab, Hakim: The HTML presentation framework. reveal.js, Jul 2013.

[Eß06] Eßer, Hans-Georg: LaTeXDB - Integrates LaTeX and SQL databases. 2006.

[GG16] Granger, B; Grout, J: JupyterLab: Building Blocks for Interactive Computing. Slides of
presentation made at SciPy, 2016.

[Kl16] Kluyver, Thomas; Ragan-Kelley, Benjamin; Pérez, Fernando; Granger, Brian E; Bussonnier,
Matthias; Frederic, Jonathan; Kelley, Kyle; Hamrick, Jessica B; Grout, Jason; Corlay, Sylvain
et al.: Jupyter Notebooks-a publishing format for reproducible computational workflows. In:
ELPUB. 2016.

[Pe18] Perkel, Jeffrey M: Why Jupyter is data scientists’ computational notebook of choice. Nature,
2018.

[Sc21] Schildgen, Johannes: Interaktive Vorlesungsfolien mit SQL-Unterstützung. Datenbank-
Spektrum, 21(1):19–27, Mar 2021.

[vE16] van Eijk, Oscar: SQLTex v2.0. 2016.

[Wa20] Wang, Yi; Yang, Yang; Zhu, Weiguo; Wu, Yi; Yan, Xu; Liu, Yongfeng; Wang, Yu; Xie,
Liang; Gao, Ziyao; Zhu, Wenjing et al.: SQLFlow: A Bridge between SQL and Machine
Learning. arXiv preprint arXiv:2001.06846, 2020.

Interactive SQL Queries and Program Code in Presentations 693

Workshop Track

cbe

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

2nd Workshop on Novel Data Management Ideas on
Heterogeneous (Co-)Processors (NoDMC)

Dirk Habich1, David Broneske2

The objective of this one-day workshop is to explore the challenges and opportunities
of data processing on existing and future heterogeneous hardware architectures. On the
one hand, today’s processors are no longer mainly bound by the density and frequency of
transistors, but by their power and heat budgets. The so-called "power wall" forces hardware
suppliers to rely more on the design of specialized devices optimized for certain types
of calculations, which results in an increasingly heterogeneous processor landscape. On
the other hand, memory and storage has seen an unprecedented change as well: novel and
already commercially available techniques have blurred the traditional mental picture of
a memory/storage hierarchy. For example, Non-Volatile RAM (NVRAM) is a prominent
example to question the long-standing memory hierarchy reflected in almost all system-level
applications. Moreover, very large caches, High-Bandwidth-Memory (HBM), Non-Uniform
Memory Access (NUMA), or even remote-memory designs as well as extremely fast SSDs
add to the heterogeneous portfolio of available memory/storage techniques. Therefore, to
meet the performance requirements of the modern information society, tomorrow’s database
systems will have to exploit and embrace this increased heterogeneity of processor and
memory technologies.

The purpose of this workshop is to assist with training and fostering a community of
researchers and industry practitioners working on data processing issues on heterogeneous
hardware systems. To this end, we want to provide a forum to discuss challenges, progress and
directions, and to offer an environment for networking persons researching on related topics
and fostering future collaborations. Especially in the view of the SPP 2037 on Scalable Data
Management for Future Hardware and the SPP 2377 on Disruptive Memory Technologies, we
want to strengthen collaborations beyond individual SPP projects by connecting them with
other researchers. This workshop is co-organized by the GI-Arbeitskreis Data Management
on Modern Hardware.

The scope of the workshop includes, but is not limited to:

1 TU Dresden, dirk.habich@tu-dresden.de
2 German Centre for Higher Education Research and Science Studies, broneske@dzhw.eu

cba doi:10.18420/BTW2023-40

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 697

dirk.habich@tu-dresden.de
broneske@dzhw.eu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-40

2 Dirk Habich, David Broneske

• Applications of modern hardware in
– data mining

– data-intensive machine learning

– query processing

– sensor or stream processing

– non-traditional applications (e.g., graph processing)

• Algorithms and data structures for efficient data processing on and across different
(co-)processors or memory technologies

• Exploitation of specialized ASICs or specialized memories technologies (e.g., pro-
cessing in memory (PIM))

• Efficient memory management, data placement and data transfer strategies in hetero-
geneous systems

• Energy efficiency in heterogeneous hardware environments

• Programming models and hardware abstraction mechanisms for writing data-intensive
algorithms on heterogeneous hardware

• Query optimization, cost estimation and operator placement strategies for heteroge-
neous hardware

• Transaction processing in heterogeneous systems

With the given scope of the workshop, we are happy to announce a great program. The
workshop starts with a keynote by David F. Bacon working at Google Research, who is
the leading architect of the Spanner storage engine. From the submissions, we were able
to accept five technical papers as well as four extended abstracts. The corresponding talks
are organized in two sessions according to the topics of Advances in Storage, Memory,
and Network Technologies in Session 1 and Advances in (Co-)Processing Technologies
in Session 2. The first talk in the first session is by Baumstark et al. who investigate the
capabilities of processing-in-memory technologies for table scans. Afterward, El-Shaikh et
al. present how to store information using DNA-based storage systems. The third technical
paper by Lutsch et al. focuses on the performance of SGX for machine learning workloads.
Next, the extended abstract of Benson et al. gives lessons learned of using persistent memory
under CXL. The last talk in this session by Geyer et al. discusses benefits and drawbacks of
CXL for heterogeneous cloud architectures.

In Session 2, four papers in the area of (co-)processor acceleration are presented. The
first talk by Damme and Boehm is an extended abstract to a CIDR paper presenting an
architecture for exploiting heterogeneous processors for data science applications. Afterward,
Hahn et al. present an FPGA parser and an according parser generator for the Apache Avro

698 Dirk Habich, David Broneske

NoDMC Workshop 3

format – a semi-structured data format used in stream processing applications. The third
talk is by Schuhknecht and Islam, who benchmark heterogeneous multi-core CPUs running
multiple queries at a time in parallel. The workshop program closes with the presentation
by Fett et al. who investigate the performance of matrix multiplication under different
compressed formats and overflow handling on GPUs.

Last but not least, we like to thank everyone who contributed to this workshop, in particular,
the authors, the reviewers, the BTW team, and all participants.

PC Chairs
• David Broneske (DZHW)

• Dirk Habich (TU Dresden)

Steering Committee
• Wolfgang Lehner (TU Dresden)

• Gunter Saake (University of Magdeburg)

• Kai-Uwe Sattler (TU Ilmenau)

Program Committee
• Sebastian Breß (Snowflake)

• David Broneske (DZHW)

• Patrick Damme (TU Berlin)

• Philipp Götze (SAP SE)

• Dirk Habich (TU Dresden)

• Tilmann Rabl (HPI Potsdam)

• Hannes Rauhe (SAP SE)

• Horst Schirmeier (TU Dresden)

• Knut Stolze (IBM Germany)

• Annett Ungethüm (Universität Hamburg)

• Stefan Wildermann (Friedrich-Alexander Universität Erlangen-Nürnberg)

• Steffen Zeuch (DFKI und TU Berlin)

Second Workshop on Novel Data Management Ideas on Heterogeneous (Co-)Processors
(NoDMC) 699

cbe

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 11

Fourth Workshop on Big (and Small) Data in Science and
Humanities (BigDS 2023)

Andreas Henrich1, Naouel Karam 2, Birgitta König-Ries3, Bernhard Seeger4

In the last 20 years, we have seen a continuous digital transformation in science, society,
and economy. The growth of the internet and advancements in data collection have resulted
in the era of Big Data, marked by a massive and continually growing amount of complex,
interconnected, and heterogeneous data. Earth observation sensors, for instance, produce
petabytes of data with improved spectral, temporal, and spatial precision. Social media users
generate high volumes of content. The information and knowledge contained in these data
have huge potential value, which, if uncovered, could aid in improving our understanding of
complex systems such as earth and society, drive innovation, and empower well-informed
decisions.

Thus, the importance of data has increased dramatically not only in business, but also in al-
most all scientific disciplines, e.g., in meteorology, genomics, complex physical simulations,
bio- and environmental research, and more recently in the humanities. This led in particular
to the creation of the unique NFDI (National Research Data Infrastructure), which aims to
“systematically manage scientific and research data, provide long-term data storage, backup
and accessibility, and network the data both nationally and internationally”5. NFDI began
with more than 25 domain-specific consortia and projects in the area of basic infrastructure,
covering a broad range of scientific disciplines from cultural sciences, humanities and
engineering to life and earth sciences.

The availability of such a large volume of multidisciplinary data within NFDI and beyond
leads to a rethinking in scientific disciplines on how to extract relevant information and
on how to foster research. Researchers face severe challenges in leveraging data, since
appropriate data management, integration, analysis and visualization tools have not been
available so far. Recent advances in the development of big data technologies and the progress
in machine learning and semantic technologies allow for a better computational support to
deal with large amounts of heterogeneous data, and offer flexible end-to-end analytic and
1 University of Bamberg, Media Informatics, 96047 Bamberg, Germany andreas.henrich@uni-bamberg.de
2 Fraunhofer FOKUS & InfAI e.V., Berlin, Germany karam@infai.org
3 University of Jena, Heinz Nixdorf Chair for Distributed Information Systems, 07743 Jena, Germany birgitta.

koenig-ries@uni-jena.de
4 University of Marburg, Department of Mathematics and Computer Science, 35032 Marburg, Germany seeger@

informatik.uni-marburg.de
5 https://www.dfg.de/en/research_funding/programmes/nfdi/index.html

cba doi:10.18420/BTW2023-41

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 701

andreas.henrich@uni-bamberg.de
karam@infai.org
birgitta.koenig-ries@uni-jena.de
birgitta.koenig-ries@uni-jena.de
seeger@informatik.uni-marburg.de
seeger@informatik.uni-marburg.de
https://www.dfg.de/en/research_funding/programmes/nfdi/index.html
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-41

12 Andreas Henrich, Naouel Karam, Birgitta König-Ries, Bernhard Seeger

visualization solutions for various application domains. A critical prerequisite for achieving
those goals is the availability of data that is harmonized and made reusable in a sustainable
and qualitative manner. This needs to be realized following the FAIR data principles, the
fundamental concepts that aim to improve findability, accessibility, interoperability, and
reusability of research data6.

The need to discuss real-world problems in data science as well as the recent advances in
big data technology between database researchers and scientists from various disciplines
already led to the first three editions of the workshop on Big (and Small) Data in Science
and Humanities (BigDS) at BTW 2015, 2017, and 2019. This year’s fourth edition of the
BigDS workshop co-located with the 20th Conference on Database Systems for Business,
Technology and Web (BTW) accommodates the continuously growing interest in methods
to efficiently and effectively manage and analyze Big Data. With workshop contributions
from various disciplines, we hope to promote the dialog between domain experts and data
scientists and to foster the engagement of the database community to NFDI and other
important infrastructure projects.

The workshop program kicked off with Markus Stocker, who gave an inspiring keynote on
machine actionable scientific information. He introduced the basic concepts, discussed the
challenges, and pointed out the great opportunities for producing and sharing knowledge in
research and society.

We further selected eight contributions that address different challenges in the context of data-
driven processing and analytics. The papers contribute to broadly applicable technologies
like provenance for spreadsheets, management and integration of geo-spatial data, ontologies,
trust in AI, and user interfaces. The proposed approaches are applicable to various domains,
such as ecology and digital humanities.

Two papers focus on basic methods and systems for data processing. Müller and Mertová
addressed the provenance problem of data transformations in spreadsheets. Their approach
creates a copy of the source data in a new worksheet and performs data transformations on
this copy while referring back to the original sheet. Beilschmidt et al. presented the basic
concepts of Geo Engine, a new spatio-temporal processing infrastructure that has been
used in several ecological projects, including NFDI4Biodiversity. Their workflows with a
spatio-temporal context offer great potential and flexibility for many applications.

There are two papers addressing data extraction and data integration in scientific applications.
Bartsch et al. described an extraction process of various digital objects from different sources
to create a multimodal corpus for the analysis of climate change publications. Using a variety
of tools, they manage to extract images, graphs, tables or videos and annotate text. Jegan et
al. described an approach to support information integration and improving the data quality
by using multiple external information sources to facilitate disambiguation of geographic
data. The resulting system will be used within the infrastructure of the NFDI project Text+.
6 https://www.go-fair.org/fair-principles/

702 Andreas Henrich, Naouel Karam, Birgitta König-Ries, Bernhard Seeger

BigDS2023 13

As more data is available, dataset discovery is a frequent task in daily research practice. Thus,
the question of user interfaces becomes more important that is addressed in the following two
contributions. Löffer et al. proposed a semantic search for biological datasets. The authors
evaluated two kinds of search interfaces including free text, categories and annotating of
returned research results. Their results show that users prefer interfaces with a single input
field for search tasks and appreciate explanations of the results. Schildgen et al. reported on
an Alexa-based NLP tool to facilitate natural language querying of databases using SQL.
This also includes the translation of the query result (which is always a table) into text
and voice. Such kind of easy-to-use interfaces would widely facilitate the interaction with
scientific databases.

The work of Abdelmageed et al. addressed the problem of knowledge transfer on ontologies
and data integration towards a concrete application. The authors developed an agricultural
core ontology that is used to link general concepts to more domain-specific concepts.
Bruchhaus et al. presented how trust can be introduced into big data analysis and AI. Their
prototype offers a so-called trust-bus as a component in a microservice architecture.

All contributions to this year’s BigDS workshop provide new domain-relevant insights and
promote the use of generic as well as domain-specific methods for scientific data management
and analysis. We want to thank everyone who contributed to the workshop, especially the
authors, the keynote speaker Markus Stocker, the BigDS program committee, the BTW
team, and all the participants. We are grateful to NFDI4Biodiversity for its financial support
of the workshop.

Workshop Organizers

Andreas Henrich (Univ. Bamberg)
Naouel Karam (Fraunhofer FOKUS & InfAI e.V.)
Birgitta König-Ries (Univ. Jena)
Bernhard Seeger (Univ. Marburg)

Program Committee

Alsayed Algergawy (Univ. Jena)
Thomas Brinkhoff (FH Oldenburg)
Michael Diepenbroek (GFBio e. V., Bremen)
Jana Diesner (University of Illinois at Urbana-Champaign)
Michael Gertz (Univ. Heidelberg)
Anika Groß (Hochschule Anhalt)
Anton Güntsch (Botanischer Garten und Botanisches Museum, Berlin)
Dominik Hezel (Univ. Frankfurt)

Fourth Workshop on Big (and Small) Data in Science and Humanities (BigDS) 703

14 Andreas Henrich, Naouel Karam, Birgitta König-Ries, Bernhard Seeger

Alfons Kemper (TU München)
Toralf Kirsten (Univ. Leipzig)
Meike Klettke (Univ. Regensburg)
Ulf Leser (HU Berlin)
Richard Lenz (Univ. Erlangen)
Ulrike Lucke (Univ. Potsdam)
Bertram Ludäscher (University of Illinois at Urbana-Champaign)
Manja Marz (Univ. Jena)
Wolfgang Müller (HITS, Heidelberg)
Thorsten Papenbrock (Univ. Marburg)
Kai-Uwe Sattler (TU Ilmenau)
Sirko Schindler (DLR Jena)
Heiko Schuldt (Univ. Basel)
Uta Störl (Fernuni Hagen)
Dagmar Triebel (SNSB, München)
Matthias Weidlich (HU Berlin)
Claus Weiland (Senckenberg Gesellschaft für Naturforschung, Frankfurt)

704 Andreas Henrich, Naouel Karam, Birgitta König-Ries, Bernhard Seeger

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Workshop on Data Engineering for Data Science

Ralf Schenkel1, Ansgar Scherp2

1 Overview

Data engineering is a crucial part of any data science project: Data collection and metadata
management are the prerequisite of any meaningful analysis and, in practice, take up the
bulk of time spent in data science projects. These aspects, however, are often neglected
in research in favor of more mathematical aspects. The workshop thus focused on typical
data engineering topics such as data preparation and integration, scalable processing of
data science processes, data quality, and benchmarks. In addition to regular papers, the
workshop also offered to submit short reports on work in progress, applications, and tools
(e.g., interesting use cases, problems, data sets, benchmarks, visionary ideas, system designs,
and descriptions of system components and tools). Also, relevant papers that were already
accepted at major database conferences or journals could be presented.

The workshop was an initiative of the DBIS working group „Data Engineering for Data
Science“.

2 Program

The workshop featured an opening keynote by Markus Stocker (TIB Hannover) on recent
advances in the Open Research Knowledge Graph, jointly with the workshop on Big (and
Small) Data in Science and Humanities.

The first session focused on maintaining provenance information, which is clearly an
important aspect of data engineering pipelines. In the first paper by Erik Kleinsteuber et al.
(University of Jena), a provenance management framework for knowledge graph generation
was presented. The second paper by Dominik Kerzel et al. (University of Jena) introduced
provenance management for data science notebooks. The last paper of this session by
Maximilian Emanuel Schüle et al. (University of Bamberg and TU Munich) presented novel
approaches for recursive SQL and GPU support for in-database machine learning.

The second session started with two papers on fairness and responsibility in data science
applications. The first paper by Sabrina Göllner and Marina Tropmann-Frick (Hamburg
1 Universität Trier, schenkel@uni-trier.de
2 Universität Ulm, ansgar.scherp@uni-ulm.de

cba doi:10.18420/BTW2023-42

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 705

mailto:schenkel@uni-trier.de
mailto:ansgar.scherp@uni-ulm.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-42

2 Ralf Schenkel, Ansgar Scherp

University of Applied Sciences) presented VERIFAI, aiming at evaluating the responsibility
of AI systems. The second paper by Valerie Restat et al. (University of Hagen and University
of Regensburg) introduced the design of a framework of metrics that allows for a flexible
evaluation of data quality and data preparation results. The third paper by Arne Grünhagen
et al. (HAW Hamburg, Hamburg University of Technology and Deutsches Elektronen-
Synchrotron) included the results of a systematic literature study on predictive maintenance
for optical synchronization systems.

The third and last session featured four papers. The first paper by Pronaya Prosun Das
(Fraunhofer ITEM) discussed a solution for associative clustering in pediatric intensive care.
The second paper by Björn Engelmann and Philipp Schaer (Cologne University of Applied
Sciences) introduced reliable rules for relation extraction in a multimodal setting. The third
paper by David Burrel et al. (TU Berlin, DFKI, and IT University of Copenhagen) focused
on workload prediction for IoT data management systems. The fourth and last paper in this
session by Sven Langenecker et al. (DHBW Mosbach and TU Darmstadt) presented a new
corpus for semantic type detection.

706 Ralf Schenkel, Ansgar Scherp

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

A Tutorial Workshop on ML for Systems and Systems for ML

Manisha Luthra1, Andreas Kipf2, Matthias Boehm3

Abstract: This tutorial workshop on ML for Systems and Systems for ML is held on Tuesday, March
7th in conjunction with BTW 2023. In this workshop, we invite and bring together researchers working
actively in the research areas at the intersection of machine learning and data management systems.
There are invited/nominated talks on two topics of concern: (1) how machine learning can help or aid
in data management system tasks (ML for Systems side) and (2) how scalable and efficient system
design can improve machine learning pipelines (Systems for ML side). The talks will present accepted
peer-reviewed work in a tutorial fashion to give hints on the current establishment in the two topics of
concern and open research challenges thereby. The workshop showcases 13 high-quality talks with
speakers from North America and all over Europe.

1 Introduction

The current advances in machine learning (ML) have led to a wide adoption of ML in

different application areas across academia as well as industry. On the one hand, these novel

advancements have helped existing data management systems to improve, by sometimes

even completely replacing specific components with so-called learned system components

(ML for Systems area). On the other hand, the advancements in well-thought and engineered

systems aid in improvements of current ML techniques (Systems for ML area). For instance,

in databases, there has been a surge in replacing the manually designed parts of databases

with learned counterparts, such as learned query optimizers, learned indexes, learned

cardinality and cost estimators, and even query schedulers. There have been also prominent

examples where data access methods, such as indexing, and data flow optimizations have

improved ML techniques. Such approaches have led to autonomy in developing data

management systems and hence avoiding manual tuning by an administrator that current

data management systems succumb in.

It is often challenging for researchers to keep up with the pace of these two emerging

research areas, which is what we aim to make easier by means of this workshop tutorial.

Therefore, in this workshop, we invite 13 speakers working in these areas who will present

their already accepted peer-reviewed work in a tutorial fashion and give hints on their

current work and open research challenges they are currently facing.

1 TU Darmstadt and DFKI, manisha.luthra@dfki.de
2 Amazon Web Services
3 TU Berlin, matthias.boehm@tu-berlin.de

cba doi:10.18420/BTW2023-43

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 707

mailto:manisha.luthra@dfki.de
mailto:matthias.boehm@tu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-43

2 Luthra, Kipf, Boehm

2 Organization Committee

Workshop Co-chairs. This workshop is co-organized by the following workshop chairs

drawing from their previous experience and papers in this area.

• Manisha Luthra (TU Darmstadt)

• Andreas Kipf (Amazon Web Services)

• Matthias Boehm (TU Berlin)

Local Organization Chair. The local organization of the workshop as well as the website

is handled by Lucas Woltmann from TU Dresden.

3 Workshop Format

Hybrid format. While we encourage in-person speakers and participants, we allow for

hybrid attendance to account for the current travel restrictions. Therefore, the workshop is

held in a hybrid format (in-person and remotely) with the following full-day schedule.

• The first half covers the Systems for ML area

• The second half covers the ML for Systems area

Invited Speakers. We have invited a balanced mix of speakers presenting their published

prior work and open challenges in these two areas. With this workshop, we want to foster

discussions and collaborations among the participants, and at the same time, give the

speakers a platform to boost their work and gain visibility.

• Ziawasch Abedjan (Leibniz University Hannover)

• Stefan Hagedorn (TU Ilmenau)

• Benjamin Hilprecht (TU Darmstadt)

• Madelon Hulsebos (University of Amsterdam)

• Ryan Marcus (University of Pennsylvania)

• Arnab Phani (TU Berlin)

• Theodore Rekatsinas (ETH Zurich)

• Alexander Renz-Wieland (TU Berlin)

• Sebastian Schelter (University of Amsterdam)

• Stefanie Scherzinger (University of Passau)

• Maximilian E. Schüle (University of Bamberg)

• Immanuel Trummer (Cornell University)

• Giorgio Vinciguerra (University of Pisa)

708 Manisha Luthra, Andreas Kipf, Matthias Boehm

Workshop on Novel Data Management Ideas on
Heterogeneous Hardware Architectures (NoDMC)

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Benchmarking the Second Generation of Intel SGX for
Machine Learning Workloads

Adrian Lutsch1, Gagandeep Singh1, Martin Mundt1,2, Ragnar Mogk1, Carsten Binnig1

Abstract: For domains with high data privacy and protection demands, such as health care and
finance, outsourcing machine learning tasks often requires additional security measures. Trusted
Execution Environments like Intel SGX are a powerful tool to achieve this additional security. Until
recently, Intel SGX incurred high performance costs, mainly because it was severely limited in
terms of available memory and CPUs. With the second generation of SGX, Intel alleviates these
problems. Therefore, we revisit previous use cases for ML secured by SGX and show initial results of
a performance study for ML workloads on SGXv2.

Keywords: Trusted Execution Environments; Intel SGX; Machine Learning; Benchmarking

1 Introduction
The Importance of Trusted Computing. Trusted Execution Environments (TEE) are
a powerful tool for privacy-preserving, trusted, and secure data processing in cloud
environments. TEEs have been used to build secure systems like databases [PVC18;
VGG19], storage engines [Su21], and data processing systems [Sc15]. Furthermore, they
have also been used for secure machine learning (ML) systems. This includes work for
secure neural network training [Hu18; Le20; Oh16; Qu20] or secure inference [Hu18; Le19;
Qu20], secure federated learning [KCZ21; Mo21a; QF21; Qu20], and many more.
Intel SGX for Trusted Computing. The most widely used TEE implementation of the
aforementioned systems is Intel Software Guard Extensions (SGX) [An13; CD16; In22b;
Mc13]. Intel SGX assures the integrity of processes and the confidentiality of their data by
running them inside of protected memory regions called enclaves. Data inside an enclave
can only be accessed by the process running inside the same enclave, not by other processes,
the operating system, or a hypervisor. Additionally, SGX supports so-called attestation.
With attestation, a process can prove that it is running the expected code inside an enclave
[An13; CD16; Mc13]. Thereby, SGX protects against strong adversaries with full control
over operating system and hardware.
SGXv2 relieves previous Limitations. Although Intel SGX is a useful security technology,
its first version (which we call SGXv1 in this paper) has severe limitations for the shielded
applications, especially: (1) The encrypted and integrity-protected memory (called Enclave
Page Cache, EPC) is limited to 128 MB, of which only ~90 MB are usable for user enclaves.

1 Technical University of Darmstadt, Contact: adrian.lutsch@cs.tu-darmstadt.de
2 Hessian Center for AI (hessian.AI)

cba doi:10.18420/BTW2023-44

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 711

mailto:adrian.lutsch@cs.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-44

2 Adrian Lutsch, Gagandeep Singh, Martin Mundt, Ragnar Mogk, Carsten Binnig

(2) Context switches between normal unprotected execution and secure protected execution
of the enclave are costly. (3) Memory decryption and integrity protection cause overhead on
cache misses, and (4) server-grade and multi-socket CPUs are not supported. With the most
recent generation of SGX-enabled processors (which we call Second Generation of SGX or
SGXv2 in this paper), Intel introduced several enhancements to the SGX technology which
address some of the previous limitations [Jo21]. Primarily, new CPUs support up to 512 GB
of EPC per CPU socket, which alleviates the need for expensive EPC paging. Additionally,
SGX is now supported for multi-socket server systems. Enclaves on these systems can use
the combined cores and EPC of all sockets, enabling higher degrees of parallelization.
Revisit Secure ML on SGXv2. These developments raise the question whether previous
workarounds and optimizations for ML use cases in the restricted SGXv1 are still necessary.
Therefore, we study the performance of ML use cases secured using SGXv2. Towards
this goal, we measure the overhead of securely running ML tasks in SGXv2 enclaves and
compare the results to SGXv1. The impact of SGXv2 was already analyzed for database
workloads [El22]. However, we think that a closer look at machine learning workloads is
justified because they have very different characteristics in terms of data access, compute
intensity, and communication patterns. Furthermore, while the existing benchmarks are
rather low-level, we investigate the performance of more complex algorithms and systems.
In the rest of this paper we will present two of the most important use cases for Intel
SGX in machine learning, Outsourced ML and Federated Learning, and report on our first
evaluation results for outsourced neural network inference.

2 Using SGX for Secure ML
Since SGX is a versatile security technology with strong guarantees, it has been used to
secure different applications in various settings. Next, we discuss two of the main use cases
for SGX in secure ML and how SGXv1 limited them in terms of performance.
Outsourced ML is a setting in which an untrusted cloud provider offers infrastructure or
services used for machine learning applications. In this setting, a malicious cloud provider
is able to access the cloud customer’s model and data while it is decrypted in memory.
Furthermore, the cloud provider can also use its privileges to manipulate model and data
causing false or low quality model predictions. TEEs have been shown to prevent such attacks
[Gr19; Hu18; Le19; Le20; Oh16; Qu20; TB19]. For example, due to the confidentiality
guarantees, cloud customers can be sure that the model can not be accessed by the cloud
provider. Moreover, attestation and integrity guarantees ensure that the cloud provider does
not tamper with the model without the customer being able to detect it.

The main limiting factor, however, of SGXv1 for this use case is the enclave memory
size [Gr19; Le19; Qu20] which causes enclave paging. Enclave paging happens when
the CPU-supported EPC is exceeded. Since today’s deep neural network architectures
commonly require gigabytes of memory and SGXv1 only supports 90 MB of active memory,
previous approaches try to reduce memory consumption to prevent enclave paging [Le19;
Qu20]. Furthermore, previous works suggest that parallelizing training and inference in

712 Adrian Lutsch, Gagandeep Singh, Martin Mundt, Ragnar Mogk, Carsten Binnig

Benchmarking Intel SGX for ML Workloads 3

SGXv1 did not yield expected speedups [Qu20]. In Sect. 3 we report our results of using
SGXv2 which shows that these limitations do not hold anymore.
Federated Learning is an approach for machine learning over data of multiple data owners.
Instead of centralizing the data, the data owners (called clients) train their model together.
In the centralized setup, each client trains the model on its own data and a central parameter
server regularly collects model updates, averages them, and sends the updated model
to all clients. This process is repeated until convergence. At the end of this process, all
participants have a model trained on their joint data without exchanging the data itself
[Li20]. Although Federated Learning can mitigate some privacy risks in machine learning
by not centralizing the data, there exist attacks against it. For example, it has been shown
that a curious parameter server can reconstruct training data from model updates of the
clients [Ge20; Ph18]. Furthermore, a malicious parameter server can manipulate the model
and the training process [Ge20]. Running the server inside an SGX enclave mitigates these
kinds of attacks [KCZ21; Mo21a; Mo21b; QF21; Xu21].

The main limitation of SGXv1 for this use case is again the EPC size [KCZ21; Mo21a].
Additionally, the communication of clients and server via the network requires enclave
transitions. Frequent enclave transitions are known as a bottleneck of Intel SGX. Each
transition causes a constant overhead for flushing caches and TLBs as well as a linear
overhead with the parameters and gradients copied to and from the encrypted memory
region. Therefore, we will investigate how parameter servers for federated learning behave
when secured by SGX enclaves and whether SGXv2 improves compared to SGXv1.

3 Benchmarking SGX Neural Network Inference
In this section, we report on our initial results depicted in Fig. 1 and 2. We analyze the
overhead SGXv1 and SGXv2 cause when executing inference on neural networks of different
sizes (Fig. 1) and investigate the potential speedup through parallelism enabled by more
CPU cores in SGXv2 (Fig. 2). To show the influence of increasing network sizes, we
compare a small multi-layer perceptron (MLP), a simplified version of AlexNet [KSH17],
and the VGG19 convolutional neural network architecture [SZ15]. The MLP has three layers
with sizes 784, 100, and 10. The AlexNet was simplified by replacing the three final layers
with one layer of size 500. These networks thus cover a wide spectrum of model sizes: 2
MB (MLP), 80 MB (AlexNet) and 1.4 GB (VGG19). As such, VGG19 (1.4 GB) cannot be
stored in the EPC of SGXv1 whereas the other models fit in the EPC of SGXv1. For our
experiments, we use the Intel DNNL library available as part of the SGX SDK [In22a]. To
show differences between SGXv1 and SGXv2, we executed the inference on an Intel Xeon
E-2288G (SGXv1) and a server with two Intel Xeon Gold 6326 CPUs (SGXv2).

Fig. 1 shows the relative overhead ; i.e., the time required for inference inside an enclave
divided by the time required without SGX on the same hardware. We can see that inference
inside SGX has very low overheads if the enclave fits into the EPC and context switches
are amortized. The overhead for the small MLP can be explained largely by the necessary

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads 713

4 Adrian Lutsch, Gagandeep Singh, Martin Mundt, Ragnar Mogk, Carsten Binnig

Small MLP Simple AlexNet VGG19
Neural Network

1

2

3

4

5

6

Re
l.

Sl
ow

do
wn

 o
ve

r N
at

iv
e

18.1µs

35.5ms

2.56s

13.7µs

31.5ms 0.41s

Server
SGXv1
SGXv2

Fig. 1: Relative slowdown of SGX over native
execution (bars) and absolute SGX times (labels).

1 2 4 8 16 32
Number of Threads

0

5

10

15

20

25

Sp
ee

du
p

fo
r V

GG
19

1.0 2.0
3.9

7.5

13.9

24.9

1.0 2.0
3.8

7.2

12.9

17.0

SGX
Without SGXv2
With SGXv2

Fig. 2: Speedup by using multi-threading to paral-
lelize ML inference with and without SGXv2.

context switches. Context switches are needed to copy the input data to the model in the
enclave and inference results out of the enclave. Since the inference of the MLP takes only
5 - 7 microseconds, the relative cost of two context switches (that take ~4 microseconds) is
high. For the two larger neural networks, the relative context switch cost is negligible. For
the AlexNet we measured around 10% slower inference for SGXv1 and only 3% slower
inference for SGXv2. The large VGG19, which does not fit into the EPC of SGXv1, has a
nearly 5 times longer inference time in SGXv1 due to EPC paging. On SGXv2, paging is
not necessary, which leads to negligible overheads.

Additionally, in a second experiment we analyzed if the increased number of CPU cores
of the SGXv2 hardware can be used to speed up inference of large networks that fit into
the enlarged EPC. For the smaller models that would also fit into the EPC of SGXv1, the
parallelization speed up with higher core counts is outweighed by the overhead of thread
synchronization. Hence, we do not show these results. Fig. 2 shows the speedup gained
through parallelization for the large VGG19 network on the SGXv2 hardware. When using
only CPU cores on one socket, speedups with and without SGX are very similar. For
example, with 16 threads we observe a 12.9 times speedup in an SGXv2 enclave and a
13.9 times speedup without. However, when the work is distributed over both sockets of
the server, SGX seems to reduce parallelization gains. Using the 32 cores of both CPUs,
we observe a 24.9 times speedup without SGX and only a 17 times speedup with SGXv2.
We hypothesize that this is due to the non-uniform memory access and the encryption of
communication between both CPUs in SGX mode.

4 Conclusion
We benchmark SGXv2 for ML workloads. Our first experiments show, among other insights,
that the increased EPC capacity enables inference of today’s deep neural networks with
negligible overhead. We will continue our work with more in-depth analysis of neural
network inference, other secure ML use cases, such as training and federated learning,
an investigation into library operating systems like Gramine [Th22; TPV17], and an
investigation into application optimizations for the new hardware.

714 Adrian Lutsch, Gagandeep Singh, Martin Mundt, Ragnar Mogk, Carsten Binnig

Benchmarking Intel SGX for ML Workloads 5

References

[An13] Anati, I.; Gueron, S.; Johnson, S. P.; Scarlata, V. R.: Innovative Technology
for CPU Based Attestation and Sealing, 2013, url: https://www.intel.
com/content/dam/develop/external/us/en/documents/hasp- 2013-

innovative-technology-for-attestation-and-sealing.pdf, visited on:
11/23/2022.

[CD16] Costan, V.; Devadas, S.: Intel SGX Explained, 2016, url: https://eprint.
iacr.org/2016/086.pdf, visited on: 11/23/2022.

[El22] El-Hindi, M.; Ziegler, T.; Heinrich, M.; Lutsch, A.; Zhao, Z.; Binnig, C.: Bench-
marking the Second Generation of Intel SGX Hardware. In: Data Management
on New Hardware. DaMoN’22, Association for Computing Machinery, New
York, NY, USA, pp. 1–8, June 12, 2022, isbn: 978-1-4503-9378-2.

[Ge20] Geiping, J.; Bauermeister, H.; Dröge, H.; Moeller, M.: Inverting Gradients -
How Easy Is It to Break Privacy in Federated Learning? In: Advances in Neural
Information Processing Systems. Vol. 33, Curran Associates, Inc., pp. 16937–
16947, 2020, url: https://proceedings.neurips.cc/paper/2020/hash/
c4ede56bbd98819ae6112b20ac6bf145-Abstract.html, visited on: 11/28/2022.

[Gr19] Grover, K.; Tople, S.; Shinde, S.; Bhagwan, R.; Ramjee, R.: Privado: Practical
and Secure DNN Inference with Enclaves, Sept. 5, 2019, arXiv: 1810.00602
[cs], url: http://arxiv.org/abs/1810.00602, visited on: 04/08/2022.

[Hu18] Hunt, T.; Song, C.; Shokri, R.; Shmatikov, V.; Witchel, E.: Chiron: Privacy-
preserving Machine Learning as a Service, Mar. 15, 2018, arXiv: 1803.05961
[cs], url: http://arxiv.org/abs/1803.05961, visited on: 04/07/2022.

[In22a] Intel Corporation: Intel(R) Software Guard Extensions for Linux* OS, Nov. 26,
2022, url: https://github.com/intel/linux-sgx/tree/master/external/
dnnl, visited on: 11/29/2022.

[In22b] Intel Corporation: Intel® Software Guard Extensions, Intel, 2022, url: https:
//www.intel.com/content/www/us/en/developer/tools/software-guard-

extensions/overview.html, visited on: 11/23/2022.
[Jo21] Johnson, S.; Makaram, R.; Santoni, A.; Scarlata, V.: Supporting Intel SGX on

Multi-Socket Platforms, 2021, url: https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/supporting-intel-sgx-on-

mulit-socket-platforms.pdf, visited on: 11/23/2022.
[KCZ21] Kuznetsov, E.; Chen, Y.; Zhao, M.: SecureFL: Privacy Preserving Federated

Learning with SGX and TrustZone. In: 2021 IEEE/ACM Symposium on Edge
Computing (SEC). Pp. 55–67, Dec. 2021.

[KSH17] Krizhevsky, A.; Sutskever, I.; Hinton, G. E.: ImageNet Classification with Deep
Convolutional Neural Networks. Communications of the ACM 60/6, pp. 84–90,
May 24, 2017, issn: 0001-0782.

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads 715

https://www.intel.com/content/dam/develop/external/us/en/documents/hasp-2013-innovative-technology-for-attestation-and-sealing.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/hasp-2013-innovative-technology-for-attestation-and-sealing.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/hasp-2013-innovative-technology-for-attestation-and-sealing.pdf
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
http://arxiv.org/abs/1810.00602
http://arxiv.org/abs/1803.05961
https://github.com/intel/linux-sgx/tree/master/external/dnnl
https://github.com/intel/linux-sgx/tree/master/external/dnnl
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf

6 Adrian Lutsch, Gagandeep Singh, Martin Mundt, Ragnar Mogk, Carsten Binnig

[Le19] Lee, T.; Lin, Z.; Pushp, S.; Li, C.; Liu, Y.; Lee, Y.; Xu, F.; Xu, C.; Zhang, L.;
Song, J.: Occlumency: Privacy-preserving Remote Deep-learning Inference
Using SGX. In: The 25th Annual International Conference on Mobile Computing
and Networking. MobiCom ’19, Association for Computing Machinery, New
York, NY, USA, pp. 1–17, Oct. 11, 2019, isbn: 978-1-4503-6169-9.

[Le20] Lee, D.; Kuvaiskii, D.; Vahldiek-Oberwagner, A.; Vĳ, M.: Privacy-Preserving
Machine Learning in Untrusted Clouds Made Simple, Sept. 9, 2020, arXiv:
2009.04390 [cs].

[Li20] Li, T.; Sahu, A. K.; Talwalkar, A.; Smith, V.: Federated Learning: Challenges,
Methods, and Future Directions. IEEE Signal Processing Magazine 37/3, pp. 50–
60, May 2020, issn: 1558-0792.

[Mc13] McKeen, F.; Alexandrovich, I.; Berenzon, A.; Rozas, C. V.; Shafi, H.;
Shanbhogue, V.; Savagaonkar, U. R.: Innovative Instructions and Software
Model for Isolated Execution. In: Proceedings of the 2nd International Work-
shop on Hardware and Architectural Support for Security and Privacy. HASP
’13, Association for Computing Machinery, New York, NY, USA, p. 1, June 23,
2013, isbn: 978-1-4503-2118-1.

[Mo21a] Mo, F.; Haddadi, H.; Katevas, K.; Marin, E.; Perino, D.; Kourtellis, N.: PPFL:
Privacy-Preserving Federated Learning with Trusted Execution Environments.
In: Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services. MobiSys ’21, Association for Computing Machinery,
New York, NY, USA, pp. 94–108, June 24, 2021, isbn: 978-1-4503-8443-8.

[Mo21b] Mondal, A.; More, Y.; Rooparaghunath, R. H.; Gupta, D.: Poster: FLATEE:
Federated Learning Across Trusted Execution Environments. In: 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). Pp. 707–709, Sept.
2021.

[Oh16] Ohrimenko, O.; Schuster, F.; Fournet, C.; Mehta, A.; Nowozin, S.; Vaswani, K.;
Costa, M.: Oblivious Multi-Party Machine Learning on Trusted Processors.
In. 25th USENIX Security Symposium (USENIX Security 16). Pp. 619–636,
2016, isbn: 978-1-931971-32-4, url: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/ohrimenko, visited
on: 12/01/2022.

[Ph18] Phong, L. T.; Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S.: Privacy-Preserving
Deep Learning via Additively Homomorphic Encryption. IEEE Transactions
on Information Forensics and Security 13/5, pp. 1333–1345, May 2018, issn:
1556-6021.

[PVC18] Priebe, C.; Vaswani, K.; Costa, M.: EnclaveDB: A Secure Database Using
SGX. In: 2018 IEEE Symposium on Security and Privacy (SP). 2018 IEEE
Symposium on Security and Privacy (SP). Pp. 264–278, May 2018.

[QF21] Quoc, D. L.; Fetzer, C.: SecFL: Confidential Federated Learning Using TEEs,
Oct. 7, 2021, arXiv: 2110.00981 [cs].

716 Adrian Lutsch, Gagandeep Singh, Martin Mundt, Ragnar Mogk, Carsten Binnig

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko

Benchmarking Intel SGX for ML Workloads 7

[Qu20] Quoc, D. L.; Gregor, F.; Arnautov, S.; Kunkel, R.; Bhatotia, P.; Fetzer, C.:
secureTF: A Secure TensorFlow Framework. In: Proceedings of the 21st Inter-
national Middleware Conference. Middleware ’20, Association for Computing
Machinery, New York, NY, USA, pp. 44–59, Dec. 7, 2020, isbn: 978-1-4503-
8153-6.

[Sc15] Schuster, F.; Costa, M.; Fournet, C.; Gkantsidis, C.; Peinado, M.; Mainar-
Ruiz, G.; Russinovich, M.: VC3: Trustworthy Data Analytics in the Cloud
Using SGX. In: 2015 IEEE Symposium on Security and Privacy. 2015 IEEE
Symposium on Security and Privacy. Pp. 38–54, May 2015.

[Su21] Sun, Y.; Wang, S.; Li, H.; Li, F.: Building Enclave-Native Storage Engines for
Practical Encrypted Databases. Proceedings of the VLDB Endowment 14/6,
pp. 1019–1032, Apr. 12, 2021, issn: 2150-8097.

[SZ15] Simonyan, K.; Zisserman, A.: Very Deep Convolutional Networks for Large-
Scale Image Recognition, Apr. 10, 2015, arXiv: 1409.1556 [cs].

[TB19] Tramèr, F.; Boneh, D.: Slalom: Fast, Verifiable and Private Execution of
Neural Networks in Trusted Hardware. In. 7th International Conference on
Learning Representations, ICLR. New Orleans, LA, USA, May 6–9, 2019,
arXiv: 1806.03287 [cs, stat].

[Th22] The Gramine Project: Gramine, 2022, url: https://gramineproject.io/,
visited on: 11/24/2022.

[TPV17] Tsai, C.-C.; Porter, D. E.; Vĳ, M.: Graphene-SGX: A Practical Library OS
for Unmodified Applications on SGX. In. 2017 USENIX Annual Technical
Conference (USENIX ATC 17). Pp. 645–658, 2017, isbn: 978-1-931971-
38-6, url: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/tsai, visited on: 11/24/2022.

[VGG19] Vinayagamurthy, D.; Gribov, A.; Gorbunov, S.: StealthDB: A Scalable Encrypted
Database with Full SQL Query Support. Proceedings on Privacy Enhancing
Technologies 2019/3, pp. 370–388, July 1, 2019, issn: 2299-0984.

[Xu21] Xu, T.; Zhu, K.; Andrzejak, A.; Zhang, L.: Distributed Learning in Trusted
Execution Environment: A Case Study of Federated Learning in SGX. In: 2021
7th IEEE International Conference on Network Intelligence and Digital Content
(IC-NIDC). Pp. 450–454, Nov. 2021.

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads 717

https://gramineproject.io/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs

Experience Report

Felix Schuhknecht1, Tamjidul Islam2

Abstract:

Traditional multi-core CPU architectures integrate a set of homogeneous cores, where all cores are
of exactly the same type. With the release of Intel’s 12th generation Core x86_64 processors, this
setup has finally changed in the realm of commodity hardware: Apart from so-called performance
cores, which provide a high clock frequency, hyper-threading, and large caches, the architecture also
integrates so-called efficient cores, which are less performant but rather energy efficient. Obviously,
such a performance-heterogeneous architecture complicates task-to-resource scheduling and should
be actively considered by the application that schedules the tasks. In this experience report, we
discuss our first steps with this new architecture in the context of parallel query processing. We
focus on inter-query-parallelism, where whole transactions/queries are the unit of schedule, and
investigate which type of core fits to which type of workload best. To do so, we first perform a
set of micro-benchmarks on the cores to analyze their different performance characteristics. Based
on that, we propose two scheduling strategies that actively schedule tasks to different core types,
depending on their characteristics. Our initial findings suggest that the awareness of heterogeneous
CPU architectures must indeed be actively incorporated by the task scheduler within a DBMS to
efficiently utilize this new type of hardware.

Keywords: Query Processing; Parallelism; CPU Architectures; Heterogeneous Cores

1 Introduction
For many years, multi-core architectures used to be homogeneous in that they consist of
a set of compute cores that all have exactly the same characteristics. This simplified the
scheduling problem, as the choice to schedule a task to a specific core was solely determined
by the current load and the locality of work to the core.

This situation drastically changed with the advent of heterogeneous multi-core architectures,
a development largely driven by the so-called dark silicon effect [Ha11]. This effect describes
that thermal and energetic limitations force the CPUs developers to tune down compute
units, if they want to increase the overall core count. Initially, heterogeneous designs added
1 Johannes Gutenberg University Mainz, Institute of Computer Science, Staudingerweg 9, 55128 Mainz, Germany

schuhknecht@uni-mainz.de
2 Johannes Gutenberg University Mainz, Institute of Computer Science, Staudingerweg 9, 55128 Mainz, Germany

tislam@students.uni-mainz.de

cba doi:10.18420/BTW2023-45

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 719

mailto:schuhknecht@uni-mainz.de
mailto:tislam@students.uni-mainz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-45

2 Felix Schuhknecht, Tamjidul Islam

specialized cores with vastly different feature sets. For instance, the Sparc M7 [Co23]
combines general-purpose x86_64 cores with ASIC data analytics accelerators that support
only scans, selections, and semi-joins. Such feature-heterogeneous designs require a careful
rethinking of the scheduling mechanism [Du19] as it has to factor in which tasks can
actually be carried out by which core. Last year, even mainstream CPUs started to implement
heterogeneous multi-core architectures in form of the AlderLake architecture, which
resembles Intel’s 12th generation Core consumer processor. Therein, while all cores are
general-purpose x86_64 chips, the architecture separates them into performance cores and
efficiency cores. While the faster performance cores are meant to take over highly demanding
compute tasks, the efficiency cores should save energy when executing less demanding or
less performance-critical tasks. In this sense, they implement a performance-heterogeneity
instead of a feature-heterogeneity, on which we will focus in the following report.

As shown in Figure 1, the two core types of an AlderLake i9-12900K highly differ in
clock-speed range, cache hierarchy/cache sizes, and whether hyper-threading is available or
not, potentially resulting in very different performance characteristics.

P P P P P P PP
P P P P P P P P E E E E E E E E

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L1:
32
KiB

L2:
1.25
MiB

L2:
1.25
MiB

L2:
1.25
MiB

L2:
1.25
MiB

L2:
1.25
MiB

L2:
1.25
MiB

L2:
1.25
MiB

L2:
1.25
MiB

L2:
2

MiB

L3:
30

MiB

SMT (Hyper Threading)3.2GHz - 5.2GHz
2.4GHz - 3.9GHz

L2:
2

MiB

Fig. 1: A modern heterogeneous multi-core architecture (Intel AlderLake i9-12900K).

Therefore, we advocate that even though all cores implement the same instruction set, a
scheduler should still be aware of the performance difference of both types of cores and
assign tasks actively to the most fitting core type, as we visualize it in Figure 2. Note that
operating systems such as Windows 11 and Linux (since kernel 5.18) recently became
aware of the heterogeneous design and try to schedule tasks based on classification (a
concept marketed as Thread Director [SP22]). In recent years, alternative general-purpose
OS-level task scheduling mechanisms tailored to heterogeneous CPU architecture have been
proposed [Fa21, SNN22, Ni22, THW02, CJ09, Cr12, AA17]. Typically, they are designed
to optimize arbitrary heterogeneous architectures outside the database context and focus on
limiting energy consumption, the amount of thread migration, and the runtime of a batch of
tasks. We also want to point out that Intel’s new architecture is not the first performance-

720 Felix Schuhknecht, Tamjidul Islam

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 3

heterogeneous CPU: The ARM big.LITTLE, released several years ago, followed a similar
principle. In this regard, [Mü14] analyzed how to schedule DBMS-pipelines efficiently to
the different core types to optimize for energy-efficiency. With the concept now arriving on
commodity x86_64 CPUs, we see the topic worth to be revisited.

The question remains whether multi-threaded applications such as DBMSs should ad-
ditionally actively schedule threads on specific performance-heterogeneous cores based
on their available domain knowledge on these new processors. As queries have vastly
different characteristics, e.g., being compute-bound, bandwidth-bound, short/long-running,
or read/write-heavy, it is likely that certain query types will utilize a certain type of core
best.

1.2 Die hybride Prozessorarchitektur

Wenn eine hybride Struktur vorliegt, dann ist vor dem Hintergrund der eben be-
schriebenen Anfragearten umso wichtiger, eine gute Entscheidung bei der Wahl
der zu belastenden Struktur zu treffen. Bei modernen, hybriden CPUs können sich
unterschiedliche Ausführungszeiten allein durch die Wahl der ausführenden Kernart
ergeben. Intels zwölfte Core-i Prozessorgeneration mit dem Codenamen Alder Lake
führt einige neue Prozessoren mit hybrider Architektur ein. Das bedeutet, dass solche
CPUs zwei Kernarten mit unterschiedlichen Eigenschaften haben. Diese sind zum
Beispiel bei der maximalen Taktfrequenz oder bei der Cachestruktur vorzufinden. In
Kapitel 2 wird auf die hybride Struktur eingegangen, insbesondere die Turbotakt-
frequenzen sind in diesem Projekt relevant. Für die folgende Motivation reicht es
zunächst zu wissen, dass zwei verschiedene Kernarten existieren.

1.3 Motivation und Problemstellung

Die Abbildung 1.1 zeigt zunächst eine CPU mit einer gewöhnlichen Architektur.

Abbildung 1.1: Verteilen von Anfragen auf einer homogenen CPU Architektur

2 Kapitel 1 Einführung

Cores

Pool of
tasks

classified
as type (a)

Pool of
tasks

classified
as type (b)

Distribution of tasks to available
homogeneous cores

(a) Homogeneous multi-core architecture.

In Abbildung 1.1 ist ein Quadcore Prozessor erkennbar, der in dieser Form bereits
seit einigen Jahren erhältlich ist. Es sind zwei Anfragepools abgebildet, welche die
beiden erwähnten Arten von Anfragen darstellen sollen (ein Pool für analytische, der
andere für transaktionale Anfragen). Hierbei ist eine Untersuchung der CPU nicht
notwendig, weil alle zur Verfügung stehenden Kerne homogen sind, wodurch die
Ausführungszeit nicht allein durch die Wahl des konkreten Kerns reduziert werden
kann. Somit ist eine prozessororientierte Optimierung kaum möglich.

Anders ist dies hingegen bei einem Prozessor mit hybrider Architektur. Prinzipiell
sind zwei Ansätze für die Verteilung der Anfragen an die einzelnen Kerne denkbar.
Abbildung 1.2 zeigt vereinfacht einen Ansatz, bei dem nur eine Verteilerfunktion
über den direkten Zugriff auf die beiden Anfragepools verfügt. Die Funktion geht
die Anfragen durch und weist diese den Kernen zu. Es handelt sich hier um einen
Push-Ansatz. Die Verteilerfunktion arbeitet vergleichbar mit einem Vorarbeiter, der
die einzelnen Anfragen an die Kerne (Mitarbeiter) weitergibt.

Abbildung 1.2: Skizzierung zum Push-Ansatz mit hybrider CPU Architektur

Bisher ist jedoch vollkommen unklar, wie die Zuweisung im Detail funktionieren
soll. Aufgrund der unterschiedlichen Anfrage- und Kernarten beeinflusst die Wahl
des konkreten Kerns bereits die Ausführungszeit. Folglich kann pauschal keine zu-
verlässige Aussage darüber getroffen werden, wie dieser Ansatz am besten realisiert
werden kann.

1.3 Motivation und Problemstellung 3

P-Cores

heterogeneity-aware scheduling

E-Cores

(b) Heterogeneous multi-core architecture.

Fig. 2: Task scheduling on uniform architectures (2a) vs heterogeneous architectures (2b).

1.1 Contributions and Structure

Therefore, in the following, we would like to investigate the following questions, which also
mark the contributions of this experience report:

(1) Is there a sufficient performance difference between performance cores and efficiency
cores that would justify a manual core-type-aware scheduling within a DBMS?
(2) Which type of tasks perform well on which type of core? For which type of tasks is the
core choice irrelevant?
(3) Do core-type-aware scheduling strategies (push-based vs pull-based) perform better
than a completely unaware strategy?

The experience report is structured as follows: In Section 2, we first perform an initial
benchmarking of the AlderLake architecture, in which we identify how different workloads
map to the available cores. In Section 3, we present and evaluate two heterogeneity-aware
scheduling strategies and compare them against an unaware strategy. In Section 4, we outline
possible next steps in this topic and conclude with our early findings.

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 721

4 Felix Schuhknecht, Tamjidul Islam

2 Benchmarking the Architecture
We start by performing a set of micro benchmarks on our performance-heterogeneous
AlderLake CPU to identify which workload fits to which type of core. For all upcoming
experiments, we use an Intel i9-12900K with 8 performance cores of up to 5.2GHz (with
SMT aka hyper-threading) and 8 efficiency cores of up to 3.9GHz (without SMT). This
results in a total of 16 physical and 24 logical cores. The machine is equipped with 128GB
of DDR4-3200 RAM. As operating system, we use Arch Linux running kernel 5.17.5. Note
that in this kernel version, the scheduler was not yet aware of the heterogeneous architecture
– for our experiments, this does not matter as we manually perform all thread assignment in
our code. A comparison with a heterogeneity-aware scheduler on a newer kernel is left for
future work.

Figure 3 shows the results for executing four different workloads on each available logical
core individually. Note that logical cores 0-15 resemble the (logical) performance cores,
whereas cores 16-23 are the efficiency cores. No parallelism is happening here as only one
core is active during each measurement. To get an intuition for the architecture, we perform
the following set of micro-benchmarks on 300M integers in total: In Figure 3a, we schedule
the sorting of an array with integers using std::sort. In Figure 3b, we copy randomly
selected integers from one array into a second array. In Figure 3c, we copy the entire array
of sequentially into another array using memcpy. In Figure 3d, we read the entire array
sequentially to compute the sum of all integers. As we can see, the tasks have a different
runtime on the individual logical cores, where some tasks are highly affected by the type of
core while other tasks hardly show a performance difference at all. The sorting task, being
compute heavy and containing random access clearly benefits from being executed on a
performance core (core 0-15). Also, random copies perform better on performance cores,
although the difference being less prominent. When looking at the sequential tasks, we
interestingly hardly notice any difference between the core types anymore, as these tasks
are rather bandwidth bound than compute bound.

Overall, this gives us a first recommendation on how to utilize the cores: Compute-bound
tasks or tasks that contain random access should preferably go to performance cores, while
sequential tasks, that are mostly bandwidth-bound, could also be scheduled on efficiency
cores.

3 Heterogeneity-aware Scheduling
With the gained knowledge, in the following, we build and evaluate a simple scheduling
mechanism for parallel query processing using two different scheduling strategies.

3.1 Setup and Task Types

We set up a table of 𝑛 integers columns in row-layout represented by a two-dimensional
vector and support two types of tasks on this table: (a) Updating transactions that modify

722 Felix Schuhknecht, Tamjidul Islam

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 5

Logical Cores [ID]

Ru
nt

im
e

[s
ec

]
Run 1
Run 2
Run 3
Average of three runs on one core

Total average

(a) Sorting (compute-heavy, random reads, random writes)

Logical Cores [ID]

Ru
nt

im
e

[s
ec

]

(b) Copying randomly selected integers (random reads, random writes)

Logical Cores [ID]

Ru
nt

im
e

[s
ec

]

(c) Copying integers sequentially (sequential reads, sequential writes)

Logical Cores [ID]

Ru
nt

im
e

[s
ec

]

(d) Scanning & Aggregating (sequential reads)

Fig. 3: Executing different types of workloads of each available logical core.

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 723

6 Felix Schuhknecht, Tamjidul Islam

a certain number of rows of the table. These resemble a task from a traditional transactional
workload. (b) Read-only queries that select a specific value of a specific column and
count how often this value has been seen. These could represent a typical query from an
analytical workload. When creating a test workload, we specify the ratio of tasks of type (a)
in relation to tasks of type (b) and fill two pools of pending tasks of each type accordingly.
Our scheduler then executes these tasks using a specific scheduling strategy.

3.2 Scheduling Strategies

We compare three different strategies in the following. The first strategy is push-based and
simply ignores the heterogeneous architecture, as it uniformly distributed tasks of both types
to available cores. It will serve as our baseline. Figure 4 visualizes the setup for a batch of
100 tasks. Each core maintains a pool for update transactions and read-only queries.

4.6 Anfrageoptimierung auf hybrider CPU Architektur

Dank der vorherigen Experimente liegt nun die Vermutung nahe, dass eine op-
timale Verteilungsmethode Reads auf E-Kerne und Updates auf P-Kerne verteilt.
Reads haben sequentiellen lesenden Zugriff, deswegen sind diese Anfragen gut
vergleichbar mit den Aufgaben aus den Experimenten in Abbildung 4.3 und 4.4.
Updates hingegen ähneln aufgrund der zufälligen Zugriffe den Experimenten aus
Abbildung 4.1 und 4.2. Bei den folgenden drei Strategien verwenden zwei Strategien
diese Schlussfolgerungen, um die Ausführungszeiten zu verbessern, während eine
Strategie keinen Gebrauch von den Erkenntnissen macht.

4.6.1 Strategie Push_01: Gleichmäßiges Verteilen

Als erste Strategie (PS_01) wird eine gleichmäßige Push-Funktion verwendet. Diese
eignet sich zu Beginn am besten, da sie leicht zu implementieren ist und wichtige
Referenzzeiten bietet. Diese Strategie entspricht dem Ignorieren der hybriden Ar-
chitektur, da jeder Kern unabhängig von seiner Art möglichst gleich viele Anfragen
erhalten soll. Ist die Anzahl der zu verteilenden Anfragen nicht ganzzahlig durch 24
teilbar, dann beträgt der Unterschied der zu verarbeitenden Anfragen bei je zwei
Kernen 0 oder 1. Die Abbildung 4.11 visualisiert diese Strategie.

Abbildung 4.11: Funktionsweise von Strategie PS_01 bei einem Batch mit 100 Anfragen

4.6 Anfrageoptimierung auf hybrider CPU Architektur 39

Batch with 100 tasks

Logical Cores

Distribution
Strategy

Pools for K14 Pools for K15 Pools for K16 Pools for K17

Fig. 4: Architecture of the push-based scheduler. As distribution strategy, we test both a non-aware
strategy, which uniformly distributes tasks to all cores and an aware strategy, which tries to schedule
update transactions to performance cores and read-only queries to efficiency cores.

The second strategy is also push-based and resembles the architecture of Figure 4, but does
not uniformly distribute tasks across cores. Instead, it is aware of the heterogeneity and tries
to assign update transactions to performance-cores and read-only queries to efficiency cores.
Only if no core of the respective type is currently available, the task is scheduled on the
other type of core. The availability of cores is recorded in status flags that are accessed by
the scheduler and updated by the threads running on the cores.

The third strategy is also heterogeneity-aware, but follows a pull-based approach as visualized
in Figure 5. Here, the performance cores preferably pull from the pool containing update
transactions, while the efficiency cores pull from the pool containing read-only queries.

724 Felix Schuhknecht, Tamjidul Islam

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 7

Only if no work is left in a pool, the other pool is considered. A mutex protects each pool to
avoid races during the pulling of tasks.Abbildung 4.13: Funktionsweise von Strategie PL_01 inkl. geschütztem Poolzugriff

Bevor nun in Abschnitt 4.7 alle drei Strategien evaluiert und miteinander verglichen
werden, zeigt diese Auflistung nochmal alle drei Strategien in Kürze:

Gleichmäßiges Verteilen (PS_01):

Erstellt zuerst möglichst gleich große Subpools, die den logischen Kernen zugeordnet
werden. Alle Kerne werden wie in einer homogenen Struktur behandelt.

Verteilende Funktion (PS_02):

Verteilt die Anfragen aus den Pools an die verschiedenen Kerne, wobei Updates
bevorzugt an P-Kerne und Reads bevorzugt an E-Kerne zugewiesen werden. Dabei
wird live überwacht, ob die jeweiligen Kerne derzeit beschäftigt sind oder nicht.

Selbstständiges Einholen (PL_01):

Lässt alle Kerne selbstständig arbeiten und verwendet keine verteilende Funktion.
Dabei versuchen P-Kerne zuerst Anfragen aus dem Update-Pool und E-Kerne zuerst
Anfragen aus dem Read-Pool einzuholen.

42 Kapitel 4 Experimente und Ergebnisse

Logical Cores

for Updates for Reads

Fig. 5: Pull-based scheduler that is aware of the heterogeneous architecture.

Let us now see how the three scheduling strategies perform in comparison. We fire a batch
of 180 tasks and vary the mixture between update transactions and read-only queries in
steps of 25%. We use a table with 60M rows and 150 columns. Every update transaction
updates 12M randomly selected rows. We observe that the strategy indeed has a significant
impact on the runtime. The more update transactions we have in our batch, the more the
strategy matters and the heterogeneity-aware strategies win. This makes sense, as update
transactions must be actively scheduled to performance cores to yield the best runtime.Abbildung 4.17: Direkter Vergleich der Strategien bei unterschiedlichen Batches

Aus dieser Abbildung 4.17 lassen sich einige wichtige Interpretationen ableiten.
Zu Beginn kann festgehalten werden, dass bei Datenbanksystemen, die meistens
analytische Anfragen verarbeiten müssen und damit sequentielle Zugriffe brauchen,
keine besondere Strategie für eine hybride CPU Architektur verwenden müssen. Ein
gewöhnliche Push-Strategie kann hierbei sogar bei bestimmten Parametern bessere
Leistungen erbringen als komplexere Strategien (siehe Abbildung 4.17). Der klare
Vorteil liegt dabei darin, dass eine gleichmäßige Push-Verteilung vollkommen ohne
Mutexe arbeitet, wodurch die verschiedenen logischen Kerne sich nicht gegenseitig
behindern können.

Mit steigendem Anteil rechenintensiver Transaktionen muss aber von der gewöhnli-
chen Push-Strategie abgeraten werden. Dies liegt daran, dass das dabei zu häufig
Aufgaben mit zufälligem Zugriff an E-Kerne verteilt werden, wogegen P-Kerne solche
Aufgaben wesentlich besser bearbeiten. Folglich müssen in solchen Fällen Strategien
verwendet werden, bei denen ein Bewusstsein über die vorliegende hybride CPU
Architektur implementiert ist. Bei der hier modellierten Datenbanktabelle mit 60
Mio. Zeilen und 150 Spalten ist klar zu erkennen, dass die Verwendung einer Pull-
Strategie unter Berücksichtigung der Architektur um bis zu 30% schneller arbeitet
als eine gewöhnliche Strategie ohne Berücksichtigung der konkreten CPU.

46 Kapitel 4 Experimente und Ergebnisse

Unaware strategy
Aware push-based strategy
Aware pull-based strategy

Ru
nt

im
e

[s
ec

]

Share of update-transactions in the whole batch [percentage]

Fig. 6: Comparison of scheduling strategies under a varying mixture of update transactions and
read-only queries.

To get a deeper insight in the behavior of the task scheduling, in Figure 7 we additionally plot
heatmaps for the cases of 25% update transactions and 75% read-only queries (Figure 7a)

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 725

8 Felix Schuhknecht, Tamjidul Islam

respectively 75% update transactions and 25% read-only queries (Figure 7b) that show
the assignment from task (type) to logical core. Additionally to the total latency of batch,
we plot the time the first task of the batch finishes as well as the average task time. We

(a) Workload Mixture: 25% update transactions, 75% read-only queries

(b) Workload Mixture: 75% update transactions, 25% read-only queries

Fig. 7: Comparison of scheduling strategies under different workloads.

observe that the strategy indeed makes a significant impact on the scheduling behavior. Both
heterogeneity-aware strategies indeed try to assign update transactions to the performance
cores and read-only queries to the efficiency cores. However, we also see differences between
the strategies. In Figure 7a, we observe that the push-based strategy primarily distributes
update transactions to performance cores, while it also assigns read-only queries to both

726 Felix Schuhknecht, Tamjidul Islam

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 9

types of cores. The reason for this is that due to the low number of update transactions, the
performance cores are soon unused and can be used to answer read-only queries as well.
This behavior is different for the pull-strategy, where read-only queries are pulled only by
efficiency cores in the run. In Figure 7b, we see a similar picture, however, more compute-
intensive update transactions must be handled. These are indeed primarily scheduled to the
performance cores by both strategies. When analyzing the whole batch, we also observe
that using heterogeneity-aware strategies homogenizes the latency of individual tasks in a
batch. For the naive strategy, the minimum and maximum latency differs highly, while this
difference is much smaller for the aware strategies, showing that the hardware resources are
efficiently utilized.

4 Outlook and Conclusion

In this experience report, we presented our initial steps in understanding the impact of
a performance-heterogeneous CPU design on parallel query processing. To simplify the
analysis, we focused on inter-query parallelism, i.e., we scheduled whole transactions/queries
to individual cores and evaluated two strategies that try to cleverly assign fitting tasks to
a specific core type. We tested two simple heterogeneity-aware scheduling strategies and
showed that even on this coarse-grained level, a measurable performance boost can be
observed over an unaware strategy.

Of course, this report marks only the very first step towards query parallelism on this type
of hardware. As modern DBMS schedulers typically break down a transactions/query into
more fine-granular compiled pipelines and schedule these individually [Le14, NF20, Ne21],
a next step is to extend such a pipeline scheduler with heterogeneity-awareness. This
involves on-the-fly classification of (arbitrary) pipelines, finding a suitable mapping between
pipelines and core types, handling dependencies between pipelines, and ensuring a constant
utilizations of all cores. Also, an important baseline for any fine-grained approach will be the
new OS-level heterogeneity-aware scheduler. Here, we see a major advantage of a manual
approach by being able to include domain knowledge, such as detailed transaction/query
behavior, into the scheduling process. However, such a comparison is left for future work.

Bibliography
[AA17] AlEbrahim, Shaikhah; Ahmad, Imtiaz: Task scheduling for heterogeneous computing

systems. J. Supercomput., 73(6):2313–2338, 2017.

[CJ09] Chen, Jian; John, Lizy Kurian: Efficient program scheduling for heterogeneous multi-core
processors. In: Proceedings of the 46th Design Automation Conference, DAC 2009, San
Francisco, CA, USA, July 26-31, 2009. ACM, pp. 927–930, 2009.

[Co23] Corporation, Oracle: Oracle’s SPARC T7 and SPARC M7 Server Architecture:
https://www.oracle.com/assets/sparc-t7-m7-server-architecture-2702877.pdf. 2023.

Inter-Query Parallelism on Heterogeneous Multi-Core CPUs 727

10 Felix Schuhknecht, Tamjidul Islam

[Cr12] Craeynest, Kenzo Van; Jaleel, Aamer; Eeckhout, Lieven; Narváez, Paolo; Emer, Joel S.:
Scheduling heterogeneous multi-cores through performance impact estimation (PIE). In:
39th International Symposium on Computer Architecture (ISCA 2012), June 9-13, 2012,
Portland, OR, USA. IEEE Computer Society, pp. 213–224, 2012.

[Du19] Dursun, Kayhan; Binnig, Carsten; Çetintemel, Ugur; Swart, Garret; Gong, Weiwei: A
Morsel-Driven Query Execution Engine for Heterogeneous Multi-Cores. Proc. VLDB
Endow., 12(12):2218–2229, 2019.

[Fa21] Fan, Zhichao; Hu, Wei; Guo, Hong; Liu, Jing; Gan, Yu: An Efficient Scheduling Algorithm
for Interdependent Tasks in Heterogeneous Multi-core Systems. In: 2021 IEEE International
Conference on Systems, Man, and Cybernetics, SMC 2021, Melbourne, Australia, October
17-20, 2021. IEEE, pp. 2354–2359, 2021.

[Ha11] Hardavellas, Nikos; Ferdman, Michael; Falsafi, Babak; Ailamaki, Anastasia: Toward Dark
Silicon in Servers. IEEE Micro, 31(4):6–15, 2011.

[Le14] Leis, Viktor; Boncz, Peter A.; Kemper, Alfons; Neumann, Thomas: Morsel-driven paral-
lelism: a NUMA-aware query evaluation framework for the many-core age. In (Dyreson,
Curtis E.; Li, Feifei; Özsu, M. Tamer, eds): International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. ACM, pp. 743–754, 2014.

[Mü14] Mühlbauer, Tobias; Rödiger, Wolf; Seilbeck, Robert; Kemper, Alfons; Neumann, Thomas:
Heterogeneity-conscious parallel query execution: getting a better mileage while driving
faster! In (Kemper, Alfons; Pandis, Ippokratis, eds): Tenth International Workshop on
Data Management on New Hardware, DaMoN 2014, Snowbird, UT, USA, June 23, 2014.
ACM, pp. 2:1–2:10, 2014.

[Ne21] Neumann, Thomas: Evolution of a Compiling Query Engine. Proc. VLDB Endow.,
14(12):3207–3210, 2021.

[NF20] Neumann, Thomas; Freitag, Michael J.: Umbra: A Disk-Based System with In-Memory
Performance. In: 10th Conference on Innovative Data Systems Research, CIDR 2020,
Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org,
2020.

[Ni22] Nishikawa, Hiroki; Shimada, Kana; Taniguchi, Ittetsu; Tomiyama, Hiroyuki: Simultaneous
Scheduling and Core-Type Optimization for Moldable Fork-Join Tasks on Heterogeneous
Multicores. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 105-A(3):540–548,
2022.

[SNN22] Salami, Bagher; Noori, Hamid; Naghibzadeh, Mahmoud: Online energy-efficient fair
scheduling for heterogeneous multi-cores considering shared resource contention. J.
Supercomput., 78(6):7729–7748, 2022.

[SP22] Saez, Juan Carlos; Prieto-Matías, Manuel: Evaluation of the Intel thread director technology
on an Alder Lake processor. In (Serafini, Marco; Xu, Harry, eds): APSys ’22: 13th ACM
SIGOPS Asia-Pacific Workshop on Systems, Virtual Event, Singapore, August 23 - 24,
2022. ACM, pp. 61–67, 2022.

[THW02] Topcuoglu, Haluk; Hariri, Salim; Wu, Min-You: Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing. IEEE Trans. Parallel
Distributed Syst., 13(3):260–274, 2002.

728 Felix Schuhknecht, Tamjidul Islam

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

An FPGA Avro Parser Generator for Accelerated Data
Stream Processing

Tobias Hahn1, Daniel Schüll2, Stefan Wildermann3, Jürgen Teich4

Abstract: Big Data applications frequently involve processing data streams encoded in semi-structured
data formats such as JSON, Protobuf, or Avro. A major challenge in accelerating data stream processing
on FPGAs is that the parsing of such data formats is usually highly complex. This is especially true
for JSON parsing on FPGAs, which lies in the focus of related work. The parsing of the binary
Avro format, on the other hand, is perfectly suited for being processed on FPGAs and can thus serve
as an enabler for data stream processing on FPGAs. In this realm, we present a methodology for
parsing, projection, and selection of Avro objects, which enforces an output format suitable for further
processing on the FPGA. Moreover, we provide a generator to automatically create accelerators
based on this methodology. The obtained accelerators can achieve significant speedups compared to
CPU-based parsers, and at the same time require only very few FPGA resources.

Keywords: Avro, parsing, FPGA, semi-structured data, accelerator

Acknowledgement: This work has been supported by the German Science Foundation (Deutsche
Forschungsgemeinschaft, DFG) as part of the Priority Programme SPP 2037.

1 Introduction

Many Big Data applications in areas such as the Internet of Things and Industry 4.0 are not
only confronted with large volumes of data generated at a high frequency but also place high
demands on the latency for analyzing this data. In this area, stream processing is becoming
increasingly important, which means that data is continuously processed and analyzed as
soon as it is generated or received. To meet the growing demands of stream processing
applications in terms of high throughput and low latency, FPGA accelerators have been
proposed as a solution in the past [MTA09; TM11]. Since stream applications typically run
for long periods, the relatively long synthesis times required to generate application-specific
accelerators are tolerable as they enable perfectly tailored and thus very resource- and
energy-efficient data processing.

For being able to build such FPGA accelerators, different approaches to compile queries
to FPGA primitives have been presented in the past [MTA09; MTA10; Sa12]. However,
1 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, tobias.hahn@fau.de
2 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, daniel.schuell@fau.de
3 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, stefan.wildermann@fau.de
4 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, juergen.teich@fau.de

cba doi:10.18420/BTW2023-46

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 729

mailto:tobias.hahn@fau.de
mailto:daniel.schuell@fau.de
mailto:stefan.wildermann@fau.de
mailto:juergen.teich@fau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-46

2 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

these approaches ignore the fact that the data arriving at the FPGA is usually formatted in
ways that are difficult to process directly on the FPGA or even by machines in general. As a
matter of fact, parsing such data may take most of the time when being processed on a CPU.
For example, in case of JSON, it has been shown that parsing may account for around 90%
of CPU time for some stream processing applications [Li17].

Offloading parsing to an FPGA would offer two major advantages. First, would relieve
the CPU from this time-consuming task so that it can be better utilized by other tasks
or workloads. Second, this would be particularly advantageous when FPGAs can directly
access the data stream, e.g., when attaching them to a network interface or in the form of
FPGA-based smart NICs, as additional data movements could be avoided. However, this
requires concepts to parse the serialized data format as a byte stream.

In this realm, two approaches to parsing JSON data on FPGAs have been presented
recently [Da22; Pe21]. However, the presented approaches only consider the acceleration
of the parsing process, thus supporting only traditional software-based data processing.
Consequently, they parse the received data into data structures that are tailored to be further
processed on a CPU. In contrast, the approach presented in this paper aims at enabling
complete data processing on FPGAs.

We specifically target parsing, selection, and projection of Avro objects which are widely
used in Apache-based computing infrastructures. The Avro format [Ap21] has a much
higher information density than semi-structured formats such as JSON. It is better tailored
to FPGA-based processing than to CPU-based processing, as techniques to increase the
performance of modern CPUs, like branch prediction, multi-level caches, and SIMD
instructions, are not of any benefit when parsing Avro data. In this paper, we present general
techniques for parsing data streams consisting of Avro objects on FPGAs. In addition,
we introduce a methodology to automatically generate hardware accelerators for parsing,
selection, and projection on FPGAs based on user-defined Avro schemas and queries. We
present a system architecture where accelerators generated with the methodology can be
loaded to parse data streams of Avro objects at line rate, for example, arriving at a network
interface. Thanks to a fixed data layout, the outgoing data stream can even be forwarded to
other FPGA accelerators and used to process further application steps. Moreover, due to
low resource consumption, sufficient resources are often remaining available on the FPGA
to build further accelerators for subsequent processing of the parsed, filtered, and projected
data stream.

The paper is organized as follows: First, in Sect. 1.1, we will give a brief overview of
common semi-structured data formats and justify our choice of Avro. In Sect. 2 we will
introduce our parser generator and describe how an accelerator can be created given a
schema and a path expression. In Sect. 3, the obtained accelerators are evaluated using the
Yahoo [Ch16] and RiotBench [SCS17] benchmarks. Finally, the paper closes in Sect. 4 with
a conclusion and an outlook for future work.

730 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 3

1.1 Data Formats for Stream Processing

Despite the huge overheads that parsing semi-structured data formats imply, there are many
good reasons why these formats are nonetheless used universally today. These can be broken
down to being human readable, having a relatively small data footprint, the possibility
to enforce a fixed schema, and the possibility of extending the format while maintaining
forward and backward compatibility (schema evolution).

Semi-structured data formats can be roughly divided into storage formats and exchange
formats. Storage formats arrange objects in such a way that they can be quickly searched
for individual attributes, e.g., by using column-oriented formats. Examples are Apache
Parquet [Ap22b], Apache ORC [Ap13], and Google Dremel [Me10]. The exchange formats
on the other hand are easy to be serialized which makes it possible to write and process
objects continuously as a data stream. Examples are JSON [Br17], Apache Avro [Ap21],
and Google Protocol Buffers [Go22]. In the following overview, we focus on exchange
formats, as we aim to accelerate data stream applications.

JSON, CBOR & Protobuf Tab. 1 gives an overview of the most common exchange
formats. For each format, it rates the (a) readability by human and by machine and (b) the
data footprint. Here, also the footprint for encoding the same record is displayed. List. 1
shows this record formatted in JSON. Finally, the table rates (c) schema evolution and
(d) whether the format uses a schema. The most commonly used exchange format is the
text-formatted JSON [Br17], which particularly stands out due to its high human readability.
However, this in turn has a severe negative effect on its data footprint. In addition, JSON can
also be used to achieve a good backward and forward compatibility by simply adding new
attribute fields in newer versions. CBOR [BH20] is also a schema-less format where fields
are binary encoded, resulting in a smaller data footprint, while still allowing attributes to be
added or omitted as desired. Protobuf, on the other hand, relies on binary encoding and a
schema that can be extended without corrupting older parser versions. This is achieved by
assigning an index to all attributes in the schema so that the old parser versions can simply
ignore indexes they do not recognize.

Tab. 1: Overview of the strengths, weaknesses, and general properties of data formats discussed.

readability footprint (car ex. size) schema evolution schema used

human machine

JSON ++ - - - - (96B) ++ no
CBOR - - + - (50B) ++ no

Protobuf - ++ + (18B) ++ yes
Avro - ++ ++ (12B) + yes

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 731

4 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

{
"id": 42,
"name": "Golf",
"engine": {
"serialNr": 1234,
"horsepower": 85.5

}
}

List. 1: Motivational JSON record.

{
"name": "car",
"type": "record",
"fields": [
{"name":"id", "type":"int"},
{"name":"name", "type":"string"},
{"name":"engine","type": {
"name": "engine",
"type": "record",
"fields": [
{"name":"serialNr", "type":"int"},
{"name":"horsepower","type":"float"}]

}}]}

List. 2: Avro schema for a car object.

Avro Avro [Ap21] is a binary schema-based data format. Unlike Protobuf, Avro does not
use indexes to identify fields and consequently requires even fewer bytes for encoding. The
type and order of the fields are defined solely by the schema used. Accordingly, the Avro
object encoding itself does not support schema evolution, as decoding always requires the
corresponding schema. Instead, Avro is usually used in combination with wrapper formats,
as presented in Sect. 1.1, to solve schema evolution at a higher protocol layer.

In the following, the Avro specification [Ap21] will be presented in more detail. Avro offers
a range of elementary and complex data types. As elementary data types, booleans, signed
integers (32-bit), signed longs (64-bit), floats (32-bit), doubles (64-bit), strings, and byte
sequences of fixed and variable length are available. Avro includes records, enums, arrays,
maps of key-value pairs, and union types as complex types. The Avro schema to be used is
specified in JSON. List. 2 shows the Avro schema that complies with the JSON record from
List. 1.

In terms of parsing speed, Avro outperforms all other formats. JSON is the most time-
consuming to parse due to its text-based format. Unlike Protobuf and Avro, both JSON
and CBOR cannot be parsed using finite state machines due to the arbitrarily deep nesting
of records, making parsing again more complex. Since no indexes or attribute names are
required for reading, parsing Avro has the advantage over Protobuf that only the sequence
of fields defined in the schema has to be processed. However, Avro parsing does neither
require complicated control flow nor flexible memory accesses and thus is not the field
for which modern general-purpose processors with their sophisticated branch prediction
and multi-level cache hierarchy have been optimized for. Nonetheless, a required simple
finite state machine can be easily mapped to FPGAs with very low resource requirements.
In this paper, we show in this paper how the generation of such logic circuits can be
performed completely automatically solely based on the specified schema and a query
defining projection and selection in a path expression.

732 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 5

Avro Container- & Wire-Format The Avro format can be used both for storing data on
a hard drive and for transferring data over a network. In most cases, two wrapper formats
are used, which are tailored to the respective case. For the storage of Avro objects, there is
the Avro Object Container Format, which stores the used schema directly beside the data.
A particular advantage of this format is the partitioning of the objects into blocks, which
enables an efficient separation for parallel processing.

The wire format, on the other hand, is optimized for the transmission of data over a network.
The Avro object stream is organized in a series of buffers. Each buffer begins with a four-byte
length field that specifies the buffer length in bytes. The respective number of subsequent
bytes contain Avro objects. A message may contain multiple buffers. The end of a message
is indicated by a buffer of length zero, i.e., only a length field with value 0, and no buffer
data is transmitted. In contrast to the container format, the schema is not transmitted here.
Instead, the receiver must already be familiar with it, e.g., Apache Kafka uses a registry to
resolve schemas of incoming data.

1.2 Related Work

Extensive literature already exists for processing XML data on FPGAs [EI10; Mi09;
TWN12; WA11]. XML parsing on FPGAs has always been accompanied by path expressions
for projections to reduce the amount and complexity of the outstream data. As Koch et
al. [KSS08] have shown, projecting XML data can be solved most efficiently by transforming
the problem into a string matching problem. However, this makes it difficult to transfer
findings from XML parsing to parsers for binary encoded formats like Avro.

Recently, research attention has shifted to the JSON format which is predominant today.
However, research on JSON parsing on FPGAs is still scarce, and furthermore, there is
no solution for integrating FPGA parsers with existing accelerators for subsequent query
processing on the FPGA. Peltenburg et al. [Pe21] propose to speed up JSON parsing by
converting the input data to the columnar in-memory format Apache Arrow [Ap22a]. The
FPGA performs the parsing of the JSON data, converts the data to the Arrow format, and
then transmits it to the host memory. The authors implement their parser with a one-to-one
relation between fields in the schema and parser blocks, which hence expects the same
schema at all times. However, there is no fixed schema for JSON, so valid data in terms
of the JSON specification can cause the parser to enter an invalid state. PipeJSON [Da22]
follows a more flexible approach where the JSON data is converted into a tape structure,
similar to CPU-based parsers. This tape structure consists of a variable-length array of
64-bit values, which contains the decoded values as well as offsets for navigating through
the array structure (e.g., to the end of a record). While such flexible data structures can be
processed efficiently on the CPU, they are unsuitable for further processing on the FPGA.
Hahn et al. [Ha22; HWT22] present acceleration techniques for raw filtering of JSON data
on FPGAs. Raw filtering is a selection technique on the raw byte stream of serialized JSON
data. As such, it does not require to parse JSON records completely, but only to identify

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 733

6 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

specific patterns according to the filter expression in the byte stream. However, since only
irrelevant JSON records are filtered out and the data is not completely parsed, it does not
directly enable any further processing of a given data stream on the FPGA.

2 Proposed Parsing Architecture

In this section, we present a technique for automatically generating hardware parser
accelerators for a given schema and query (specified by JSONPath [Gö07]). The schema
defines all elements that appear in each Avro object. JSONPath defines the selection criteria
and attributes to be projected per Avro object. The parser generator goes through three
phases. In the first phase, an object parser is created that can parse incoming Avro objects
(see Fig. 1 left). In the second phase, this object parser is then extended to a Parse, Project
& Select (PPS) module by augmenting logic for projection and selection (see Fig. 1 right).
During the third phase, this PPS module is then wrapped into an accelerator which can later
be deployed on the FPGA.

1. Phase: object parser generation

FSM

id : int

name : string

engine : record

FSM

serialNr : int

horsepower
: float

byte in

car : record
|-id : int
|-name : string
|-engine : record
| |-serialNr : int
| |-horsepower : float

Avro schema

2. Phase: Parse, Project & Select (PPS)Module generation

FSM

id : int

name : string

engine : record

FSM

serialNr : int

horsepower
: float

byte in

&

=

42

$[id=42].(id |
engine.horsepower)

JSONPath

Fig. 1: Overview of the first and second phase of the parser generation process.

In the first phase, the schema is interpreted and a corresponding object parser is generated.
For this purpose, the schema is traversed recursively. A parser block module is instantiated
for each field of the schema. A finite state machine coordinates which field in the schema,
respectively which parser block module is responsible for parsing the incoming byte at each
clock cycle.

734 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 7

Example: Fig. 1 (left) schematically illustrates the parser structure generated for the
schema given in List. 2. It contains blocks for id, name, and engine, as well as an FSM that
coordinates the sequential parsing of the respective blocks. The latter is a complex (recursive)
type, which again consists of internal parser blocks as well as an FSM to hierarchically
coordinate the parsing procedure. Sect. 2.1 explains the details of parser block generation.

In the second phase (see Sect. 2.2), the PPS module is generated based on the object parser
from the first phase and the specified JSONPath query, which defines the attributes to be
projected and the selection criteria. First, all parser blocks are determined that provide the
attributes required for selection or projection and their output signals are connected to a
register stage (stage 1). The register stage also contains a valid bit which indicates whether
the object was read completely and that the data in the register represents a valid Avro
object. Subsequently, a further pipeline stage (stage 2) is generated containing the logic
for evaluating the selection expressions by comparisons on the values stored in the stage 1
register and combining the result with the valid bit of the stage 1 register.

Example: Fig. 1 (right) shows an example query with a selection on field id and projection
of attributes id and horsepower together with the generated parser accelerator. Only the
signals of the parser blocks responsible for parsing the respective attributes get connected
to the register stages. The selection logic for id == 42 is added between the register stages.

In the third phase (see Sect. 2.3), an accelerator is generated from the PPS module created
in the second phase, which can finally be deployed on the FPGA. One of the challenges
of parsing Avro data is that some of the elementary data types are encoded with variable
lengths. This makes it very difficult to parallelize generated hardware components to process
multiple bytes in one cycle since in order to interpret a byte, it must first be clear which field
in the schema it corresponds to. Therefore, we choose to process only one byte per cycle
with the introduced object parsers and PPS modules. During the third phase, however, we
again introduce parallelism by inserting multiple parallel PPS modules in the accelerator.
For this purpose, we exploit the properties of the wire format to split Avro objects among
parallel channels, while working with a higher word width.

2.1 Phase 1 – Object parser generation

Avro schemas are composed of different elementary and complex types. In the following,
we present parser blocks for each Avro type, excluding the null and array type. Parser blocks
can likewise be divided into elementary parser blocks (fixed, float, boolean, int, enum &
string) and complex parser blocks (record, map & union). Elementary parser blocks are
the basic blocks that interpret the input bytes to parse the desired fields. Complex parser
blocks, on the other hand, are composed of one or more parser blocks (both elementary
& complex) and do not interpret any input data but merely coordinate when which of the
contained blocks is active and when its output is valid.

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 735

8 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

All parser blocks follow the same interface as illustrated in Fig. 2. This consists of an
input in_byte, which contains the current input byte of the Avro object and is directly
connected across all parser blocks. The port in_valid controls which parser block is active.
The activated block accordingly interprets the obtained data on the port in_byte. If a parser
block finished reading an encoded field, the port out_valid is set to one. The signal out_value
remains still unconnected during the first phase and is subsequently connected to the register
stages during the second phase in case it is required for selection or projection. Next, the
details for generating parser blocks for covering all supported Avro types.

field name : block type
in valid

in byte[8]

out valid

out data[n]

Fig. 2: Interface of a parser block.

Fixed parser block (fixed) The fixed parser block reads a fixed amount of 𝑛 bytes,
which is statically defined by the given schema. The block is controlled based on a counter
which is initialized with 𝑛 − 1 and decremented in each clock cycle the signal in_valid is
one. Each input byte is written into a shift register of size 𝑛 − 1 bytes. When the counter
reaches zero, the complete field is available and a one is emitted on out_valid. The signal
out_value with 𝑛 bytes is then composed of the concatenation of the signal in_bytes and the
(𝑛 − 1) bytes in the shift register.

Float/double and Boolean parser block (float and boolean) In the Avro format, floating
point numbers are directly encoded in the IEEE 754 format. Accordingly, a float parser
block is just a special case of a fixed parser block of constant size 𝑛, which is 4 bytes for
floats (single precision) and 8 bytes for doubles (double precision). No further binary format
conversion is necessary by this parser block. The same applies to the boolean parser block,
which is always encoded using one byte and therefore implemented as fixed parser block
with a constant size of 1.

Int/long and enum type parser block (int and enum) Avro integers and longs are
encoded via the zigzag format, which allows for a small data footprint. The zigzag format is
a variable-length quantity code in which both small positive and negative numbers can be
encoded to fewer bytes. This is achieved by reserving the eighth bit of each byte to indicate
whether there are more bytes to follow, as can be seen in the example integer in Fig. 3. The
remaining parts carry payload bits. The task of the int parser block is to take the zigzag
formatted integer byte by byte and to decode it into the two’s complement.

For the sake of clarity, however, let’s first consider a zigzag-formatted number 𝑧 without
byte boundaries or continuation bits. The decoding of this zigzag encoded number 𝑧 into

736 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 9

its corresponding two’s complement 𝑏 of constant size 𝑛 depends on whether a positive
or negative number is encountered. Accordingly, the first step is to extract the sign of
the number to be decoded, which is located in bit 0 of the least significant byte (𝑧[0]).
Subsequently, the decoding is done via

𝑏 =

{
𝑧 >> 1 if 𝑧[0] = 0 //positive
∼ (𝑧 >> 1) else //negative

where >> is a non-arithmetic right shift (i.e., 0 padding) and ∼ is a bitwise inversion.

0 z20 z19 z18 z17 z16 z15 z14 1 z13 z12 z11 z10 z9 z8 z7 1 z6 z5 z4 z3 z2 z1 z0

payload

signcontinuation

Fig. 3: Example of a 3 byte zigzag integer.

As the decoding is carried out byte by byte, the sign is extracted at the start of the first step
𝑘 = 0. If a 1 is observed, the six payload bits 𝑧6 to 𝑧1 of the first byte are inverted. The
result whether inverted or not is then written into the lowest 6 bits of the destination register
(𝑏0 . . . 𝑏5). Since the obtained number can be smaller than the bit width of 𝑏, all higher
bits (𝑏6 . . . 𝑏𝑛−1) must be initially set to 1 in case of a negative sign, resulting in a sign
extension. Each following byte 𝑘 > 0 is treated as follows: 1.) Invert the 7 payload bits in
case of a negative sign. 2.) Write the result into the next 7 bits of the destination register
(𝑏6+(𝑘−1)∗7 . . . 𝑏6+𝑘∗7−1). The 𝑏 register is then connected to out_data and, as soon as a
continuation bit is 0, the signal out_valid is set to 1.

The size of b, respectively of the signal out_data can be configured freely for the int parser
block. Although 4 bytes are always used for integers and 8 bytes for longs, integer parser
blocks are also used internally for parsing enums and metainformation fields of other types
(see string, maps, union parser blocks below), where smaller sizes may be sufficient. Thus
the parser blocks can be constructed as small as possible. An enum block is accordingly
implemented as an int block with a 𝑏 register size of 𝑛 equal to log2 (# enum elements) bits.

String parser block (string and count_byte) The string parser block consists of an int
parser block and a count_byte block which are processed one after the other as shown in
the flowchart in Fig. 4. As soon as the integer length field len is parsed, the received value
is used to initialize the count_byte block. This block is basically a counter that remains
active for len subsequent valid bytes, with the current input byte written to a shift register
(similar to the fixed parser block). The length of the shift register, and thus the maximum
readable string length, is set to 32 bytes by default but can be altered in the second phase by
specifying a maximum string length in the JSONPath.

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 737

10 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

len : int data : count_byte

repeat for len

Fig. 4: FSM for the string parser block.

Record parser block (record) A record type contains multiple fields each being of a
specific Avro type. The record parser block, therefore, contains one parser block for each
field. Once in_valid is set to one, a controller consecutively activates the contained parser
blocks for evaluating the input bytes, as shown in Fig. 5. The signal out_valid is set to one
on completion of the last block.

field_0 : type_0 field_1 : type_1 . . . field_n : type_n

Fig. 5: FSM for the record<type_0, type_1, . . . , type_n> parser block.

Map parser blocks (map, key_value and string_matcher) The map type is encoded by
an int field obj_cnt, followed by as many key-value pairs as specified in the int field. Once
the obj_cnt field is parsed, it is used to initiate the loop counter to control the key_value
parse block, as illustrated in Fig. 6. The key_value parse block sequentially parses first a
key, which is encoded as a string, and then the respective value, which type is defined in
the schema. As long as the loop counter is greater than 0, the key_value parser block is
kept active, which repeats its internal parsing. The loop counter is decremented each time
the signal out_valid of the key_value parser block is one, i.e., after each parsed key-value
pair. The key_value parser block is a special case of a record parser block with only two
fields, where the first field is a string_matcher block. This is a special block that can test
whether the parsed string matches a given string from a dictionary. The rationale for this is
that a query may use values from a subset of keys for projection or selection. This means
that only key-value pairs with keys from this set have to be registered for the next pipeline
stage. Therefore, the second phase of parser generation will populate the string matcher
dictionary with each key string in this subset and augment the corresponding matching
logic. The string matcher will generate one signal per key in this set to indicate when the
respective key-value pair is currently parsed (see Sect. 2.2 for more details). According to
the Avro specification, the specified length of the map can also be negative. In this case, the
absolute value of the length does not indicate the number of objects, but the length of the
payload data in bytes. However, this behavior is not supported in our parser block but could
be added in the future by modifying the loop counter.

Union parser block (union) The Avro union type is a complex type. It is possible to
specify a list of several different types in the schema for a union field. The data contained
in that field of an Avro object can then be of one of these types. This is achieved in Avro

738 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 11

obj_cnt : int

objects : key_value

key : string_matcher value : value_type

repeat for obj_cnt

Fig. 6: FSM for the map<key_type, value_type> parser block.

by encoding an int index before the payload to indicate which type should be used for
encoding the field. The index can then be used to select the desired type from the given
list of types during interpretation. Accordingly, the union parser block is composed of an
int block followed by all types specified in the schema, respectively their associated parser
blocks, as seen in Fig. 7. Once the parsing of the 𝑢𝑛𝑖𝑜𝑛_𝑖𝑛𝑑𝑒𝑥 int block is complete, only
the input of the respective type_⟨union_idx⟩ block is activated. The signals out_valid of
the parallel blocks can simply be combined via an or-reduction, as only one of the blocks
can become active anyway.

union_idx : int

field : type_0

field : type_1

. . .

field : type_n

select with
union_idx

Fig. 7: FSM for the union<type_0, type_1, . . . , type_n> parser block.

Object parser generation The parser generation consists of allocating parser blocks
according to the given schema and generating the control logic of the FSMs (one for
each complex parser block) to coordinate the parsing process. Each Avro schema can be
represented by a object parser tree 𝐺𝑂{𝑉𝑂, 𝐸𝑂} with vertices𝑉𝑂 and edges 𝐸𝑂. The leaves
are elementary types. Complex types have multiple children. The child nodes are ordered
in the order they appear in the given schema. In the object parser generation phase, the
respective Avro parser tree is first generated from the given schema. Then, this parser tree is
traversed depth-first in the given order. At each node, a parser block of the respective type is
generated. As an example, Fig. 8a specifies the Avro parser tree of the schema in List. 2.
Fig. 1 illustrates the parser structure generated for this example. The FSMs are initialized to
schedule the parser blocks in the specified order.

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 739

12 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

2.2 Phase 2 – Selection and projection logic generation

The second step deals with creating the Parse, Project & Select (PPS) module based on the
object parser by adding the hardware for selection and projection, given by a JSONPath
expression. The JSONPath expression specifies all attributes that are relevant for projection
and selection. A dollar sign at the beginning represents the root (or start) of an Avro object.
Elements are separated by dots. If several attributes are required, they can be concatenated
with a |. In addition, the JSONPath expression contains the selection criterion consisting of
comparisons of attributes that can be combined via Boolean expressions. The JSONPath
expression spans a tree, which we denote by path tree 𝐺𝑃 (𝑉𝑃 , 𝐸𝑃) in the following, where
the root represents the start of the Avro object and the leaves the attributes of interest. Each
path in this tree also has a corresponding path in the object parser tree.

$: record

id : int name : string engine : record

serialNr : int
horsepower
: float

(a) Object parser tree 𝐺𝑂 for the schema in List. 2.

$

—

id engine

horse-
power

(b) JSONPath tree 𝐺𝑃 for
$.(id | engine.horsepower).

Fig. 8: Tree structures for the path evaluation.

Extract attributes We first consider only the projection of fields and present the specifics
of selection further below. The extraction of the attributes relevant to a given query works
by recursively traversing every path in the JSON path tree and at the same time determining
the respective path in the parser tree. The algorithm works by starting from the roots of both
trees, 𝑣𝑜 ∈ 𝑉𝑂 and 𝑣𝑝 ∈ 𝑉𝑃 . Then, for each child 𝑣′𝑝 ∈ 𝑉𝑃 of the current path tree node 𝑣𝑝 ,
the corresponding child 𝑣′𝑜 ∈ 𝑉𝑂 of the current object parser tree node 𝑣𝑜 is determined.
The same procedure is repeated for the obtained pair (𝑣′𝑝 , 𝑣′𝑜) of child nodes. Once, the path
tree node 𝑣′𝑝 is a leaf in the path tree, the respective object parser tree node 𝑣′𝑜 represents
one attribute that is required by the query. Therefore, the signals valid_out and data_out of
the parser block that was previously generated for this object parser tree node 𝑣′𝑜 are then
connected with the first stage register.

Example: Take as an example the parser tree 𝐺𝑂 shown in Fig. 8a and the path tree 𝐺𝑃 of
the path expression $.(id | engine.horsepower) shown in Fig. 8b. For extracting all attributes
needed for selection and projection, we first consider the root nodes of both trees, that is,
the record parser block of the parser tree and the $ node of the path tree. Starting from

740 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 13

the $ node, we next consider the children in the path tree. In Fig. 8b, this is the | node,
which in turn indicates that the path splits into two subpaths, each considering the respective
child node in the path tree and its associated parser block. Thus, in the first subpath, the id
: int parser block and the id node in the path tree are selected. Given that the id node is
a leaf node, the currently selected parser block (id : int) is marked for extraction so that
a later selection or projection can be performed. The same procedure is repeated in the
right subpath. However, in this case, the observed node in the path tree (engine) is not a
leaf node, which is why its child (horsepower) must be again taken into consideration. As
the currently selected parser block is of record type, the corresponding parser block to the
horsepower node can be selected (horsepower : float). At this point, the path node is a leaf
node as well, which means that the horsepower block is also marked for extraction. After
all paths have been traversed, the signals out_data of all parser blocks marked for extraction
are connected to the stage 1 registers, which are written with a one on the signal out_valid
of the selected block.

Attribute extraction works straightforward for elementary and record parser blocks. However,
map and union types have peculiarities as discussed in the following. While with a record
the children in the path tree correspond directly to the children in the parser block, the path
children of the map type correspond to its queried key strings (cf. Fig. 9). Accordingly,
no parser blocks are selected, but the string_matcher match dictionary is set up with the
searched key string. The resulting signal key_match is then used as a write condition for
writing out_data to the projection register in stage 1. Since several entries can be extracted
from a map, there is also the possibility to split the path into subpaths using | nodes, as can be
seen in Fig. 9b. In this case, a separate entry is created in the string_matcher dictionary for
each of the visited children (here "a" and "b"), each with its independent signal key_match.
The signal out_data of the value parser block is then connected to a separate stage 1 register
for each child and only written if the respective key_match is present.

m : map

key : string matcher value : int

(a) Object parser tree 𝐺𝑂 for the map type.

m

—

”a” ”b”

(b) JSONPath tree 𝐺𝑃 for
path .m.("a"|"b").

Fig. 9: Tree structures for the path evaluation of the map type.

Whereas with the maps type, the same parser block can be projected multiple times, the
union type contains multiple parallel parser blocks, one for each data type the field may
potentially take. During the projection and selection phase, it is therefore necessary to
decide which of the types and, with that, which of the parser blocks is relevant for the query

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 741

14 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

and should therefore be connected with the stage 1 register. The selection of the target type
could be done at runtime or statically at design time. Since we want to enforce a fixed data
layout for further data processing on the FPGA, we have opted for static types. However,
since the JSONPath syntax does not provide for type casts or similar, we extended the
syntax accordingly. For this purpose, the expected type is specified after the attribute name
separated by two colons (e.g., for a union variable sensor which is to be mapped to the
int type, the syntax is $.sensor::union(int)). Assuming it is not statically known which
union type is to be expected, all possible types must be projected as separate fields, which
of course creates overheads, but still allows to preserve a fixed layout.

Apply selection logic Filter expressions start with a question mark and iterate over all
array entries which can be referenced via the @ symbol. To be able to perform selections
on the record scope, we have again extended the JSONPath notation lightly. Thereby, entire
records can be filtered by specifying the filter expression directly at the root of the record
(e.g., $[?(id=0)]). If the expression evaluates to false, the entire record is discarded in the
parser and not passed on for further processing. The resulting path tree 𝐺𝑃 is depicted in
Fig. 10.

$

|

id engine

horse-
power

[]

==

id 42

Fig. 10: Path tree 𝐺𝑃 with selection for JSONPath $[?(id=42)].(id | engine.horsepower).

The filter expression is always placed at the left child of the root node, so before traversing
the path, it is checked first whether there is a filter expression at this position. If this is
the case, the filter expression is evaluated first. When visiting the comparison node, the
corresponding compare logic is instantiated based on the data types of its children. Here, we
support direct comparisons of two strings, two booleans, or two enums and <, >, ≤, ≥, ==
comparisons of two integers or two floats. When referencing attributes, as is the case with
the id block in Fig. 10, the corresponding parser block is connected to a stage 1 register as
described in the previous paragraph. The register is then used as input for the comparison
logic, as shown in Fig. 1 and the result is connected to the valid flag of the stage 2 register.
The right subtree represents the projection paths and therefore is evaluated as described
before. The stage 1 registers of the attributes to be projected must then be connected to the
stage 2 registers.

742 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 15

2.3 Phase 3 – Accelerator generation

In the third phase, additional logic is generated to obtain an accelerator module that can be
deployed on an FPGA. For communication with other accelerators or system interfaces, the
generated PPS module is connected to AXI interfaces. Furthermore, if the Avro objects are
embedded in a wrapper format, such as the container format or the wire format, its decoding
must be carried out. Furthermore, since the PPS module generated in the previous phase
can only process 1 byte per clock cycle, it is necessary to instantiate multiple PPS modules
to run parallel in order to achieve a high throughput.

Usually, we allocate 8 parallel PPS modules, each being fed by one channel. The wire
format introduced in Sect. 1.1 contains multiple subsequent buffers. Each buffer stores
one or multiple Avro objects. The buffers are assigned to the channels in a round-robin
fashion. As we instantiate 8 parallel channels, this scheme can saturate a 64-bit interface at
a throughput of 1 byte/cycle and channel.

However, this approach also results in limitations concerning the input data. If the objects
are required to be reassembled after processing in the same order they entered, each buffer
may only contain one Avro. Splitting individual Avro objects to the channels and assembling
from the parallel PPS modules has then to happen in the same round-robin fashion. For
larger objects, this is no problem, since the overhead of the buffer length field on the overall
data footprint can be neglected. Should this be a problem nevertheless, it could be solved by
modifying the Wire format: By splitting the 4 bytes of the length field into 3 bytes for the
buffer length and 1 byte for the number of records contained, the output stream could later
be reassembled based on the given number of records in each buffer and channel.

2.4 Automatic hardware generation

Automatic generation of hardware is typically done by emitting VHDL or Verilog code,
using template engines, or even worse, using a large number of print statements in the
generator. This results in extremely poor readability and maintainability of the generator
code. We therefore decided to generate all logic circuits using Python-based HDL called
Amaranth5. In Amaranth, hardware is described at the register transfer level as in VHDL or
Verilog, while allowing for modern language features of Python such as object orientation.
This is especially advantageous for the implementation of the parser blocks, since, for
example, all complex parser blocks can inherit from a class sequential_parser, which
already contains basic FSM logic for sequential activation of the instantiated parser blocks.
In addition, the interface for parser blocks introduced in Sect. 2.1 can be inherited by all
blocks via an abstract class, so instantiating parser blocks in other blocks (e.g., in the record
parser) can be easily implemented using attributes of the abstract class type. Moreover,
the object structure created in this way is perfectly suited for traversing the parser tree

5 Amaranth HDL: https://github.com/amaranth-lang/amaranth

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 743

16 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

(see Sect. 2.2). The described hardware can then be finally output in Verilog, allowing the
generated modules to be used platform-independently. The Python-based HDL not only
allows us to create highly nested modules, but it is also possible to leverage well-established
Python modules for parsing the Avro schema and JSONPath expressions.

3 Evaluation

We selected two stream processing benchmarks to evaluate our approach and the generated
circuits. These are the Yahoo Streaming Benchmark [Ch16], which monitors advertising
campaigns, and the RIoTBench [SCS17], which includes various applications for the Internet
of Things. In both cases, we only consider the parsing stage, as well as subsequent projections
and selections for our evaluation. As both benchmarks originally expect JSON-formatted
data as input, an equivalent Avro schema had to be defined first. However, to define these
schemas, we first discuss the input data of both benchmarks. Following this, a path expression
is to be chosen based on the selection & projection applied in each benchmark.

Yahoo Streaming Benchmark The input JSON data of the Yahoo Streaming benchmark
consists of 7 string attributes. These are first three UUIDs (user_id, page_id & ad_id)
to identify the advertisement event, two type fields (ad_type & event_type), a timestamp
(event_time) and the IP address of the user (ip_address). We decided to encode the UUIDs
using the fixed type (16 Byte), the type fields (ad_type & event_type) using one enum in
each case, the timestamp using a long and the IP address using a string. During selection, it
is tested whether the event_type enum type is set to the "view" enum element6 Subsequently,
the attributes ad_id and event_time are projected in the benchmark, which results in the
following path expression: $[?event_type = ’view’].(ad_id | event_time).

RIoTBench Similarly to the Yahoo Benchmark, the RIoTBench originally works with
JSON formatted data. The structure of the JSON data is based on the SenML format, which
is used as an exchange format for sensor measurements. The JSON records received in the
benchmark are encoded as a JSON record with initially two fields. This is first a timestamp
of the measurements and second an array which contains all measured values. The array is
in turn always comprised of 8 records. Each measurement records contain three fields, a
value field with the actual measured value, a field for the name of the measured value, and a
field for the physical unit. While the name and unit fields are encoded as a string, the value
field can be encoded either as an integer or as a float depending on the physical unit of the
sensor measurement.

We adapted the benchmark for Avro. The Avro schema first contains a long timestamp and a
field of type map (values), which contains the sensor measurements. We chose to use a map

6 In the original benchmark, this is a string comparison as the event_type attribute is formatted as a string.

744 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 17

for the measurements instead of an array, as this makes it easier to extract its entries. A map
entry, respectively a sensor measurement, consists of the sensor name as key and union type
for its value. The union type, in turn, defines one type for each physical unit. Accordingly,
the correct value type (int or float) can be defined for each physical unit. In the SmartCity
query of the RIoTbench, five variables are initially projected after parsing. All five variables
are then used for a selection expression. The resulting path expression can be seen in List. 3.

$[?values.temperature::union(senml_fahrenheit) >= -12.5
& values.temperature::union(senml_fahrenheit) <= 43.1
& values.humidity::union(senml_percentage) >= 10.7
& values.humidity::union(senml_percentage) <= 95.2
& values.light::union(senml_percentage) >= 1345
& values.light::union(senml_percentage) <= 26282
& values.dust::union(senml_percentage) >= 186.61
& values.dust::union(senml_percentage) <= 5188.21
& values.airquality_raw::union(senml_percentage) >= 17
& values.airquality_raw::union(senml_percentage) <= 363]

.(values.temperature::union(senml_fahrenheit))
|(values.humidity::union(senml_percentage))
|(values.light::union(senml_percentage))
|(values.dust::union(senml_percentage))
|(values.airquality_raw::union(senml_percentage))

List. 3: Path expression for the RIoTBench SmartCity query.

System architecture The generated parser accelerators have been evaluated on a Xilinx
ZCU106 Zynq SoC. Fig. 11 depicts the architecture of our system, based on [Be19],
consisting of a tightly coupled ARM CPU and programmable logic (PL). The PL contains
several dynamically Reconfigurable Regions (RRs), which are connected to each other and
to various interfaces via a crossbar. In each of the RRs resides a DMA engine, managed by
the on-chip ARM CPU.

RR0
Avro Parser

DMA

RR1
(Join)

DMA

RR2
(Window)

DMA

RRn

DMA

. . .

Crossbar

10G network interface

DMA

PCIe

DMA

NVMe controller

DMA

ARM CPU

core0 core1

core2 core3

Programmable Logic (PL)

RAM

Zynq SoC

Fig. 11: FPGA-based system architecture for evaluation.

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 745

18 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

In our experiments, 3.6 MB of Avro data from the Yahoo benchmark, as well as 1.5 MB
from the RiotBench, were preloaded into RAM and transferred to the parser accelerator
using DMA. The results containing the parsed Avro objects were again written back to
RAM via DMA. For the experiments, the entire system was clocked at 200 MHz, thus with
a word width of 64 bits, a throughput of 1.6 GB/s should ideally be achievable. In practice,
however, we only achieved a throughput of 1.45 GB/s, which was due to the CPU not being
able to schedule new DMA descriptors fast enough. In the future, this problem could be
solved by using more cores to schedule the DMAs, or even by adding a dedicated hardware
component for scheduling the DMAs. For us, however, the achieved throughput is sufficient
since it suffices to process the incoming data from a 10 GBit/s network interface at line rate.
Our system architecture can thus be used to process and accelerate further stages or even an
entire data stream processing application on the FPGA.

Example: Consider the Yahoo Benchmark again. First, a data stream of Avro objects
is received at the network interface. This stream is then forwarded as described to the
first Reconfigurable Region (RR) which contains our generated Avro parser accelerator,
directly performing the first three steps of the Yahoo benchmark (parse, project & select).
Then the stream of parsed, projected, and filtered Avro objects is passed to the next RR,
which performs a join against a document store in the Yahoo benchmark. The tuples of the
document store required for joining are also transferred via DMA from the NVMe controller
to the corresponding RR. The joined tuples are then passed again to another RR to aggregate
via a window function in the last step. The accelerators for processing joins and windows
can be generated as shown in past research [MTA09; MTA10; TM11]. The output stream of
the window is again to be stored in the document store and must be accordingly transferred
back to the NVMe controller.

Benchmark results Besides the above experiments, we determined the maximum achiev-
able clock frequency as well as the resource consumption of the generated accelerator engine
for both benchmarks. The results are depicted in Tab. 2. The number of LUTs required for
the more complex RIoTBench schema is slightly higher than for the Yahoo benchmark, but
remains low overall for both accelerators, thus allowing resources to be used for further query
processing, as described above. For the same reason, the maximum achieved clock frequency
is also higher for the Yahoo benchmark. If the two generated accelerators are operated at
their maximum clock rate, they can theoretically achieve throughputs of 3.4 GB/s (Yahoo)
and 2.8 GB/s (RIoTBench). Unlike JSON and CBOR, in Avro it is likely that decoded
objects have a larger data footprint at the output than at the input, making the output interface
potentially the bottleneck. However, since we perform additional selections and projections
in both evaluated benchmarks, the amount of data at the output is typically greatly reduced
compared to the input, so the input interface remains practically the bottleneck, meaning
that the given throughput numbers still correspond to the parsing speed.

Finally, the two parsing benchmarks were run with the C++ Apache Avro parser on an
Intel(R) Core(TM) i7-3770 CPU to obtain an x86 CPU baseline. With one thread, a

746 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

FPGA Avro Parser Generator 19

throughput of 390 MB/s was achieved for the Yahoo benchmark and a throughput of
96 MB/s for the more complex schema of the RIoTBench. A speedup of up to 4 can be
achieved by parallelizing on multiple threads for exploiting the 8 hyperthreads provided
by the CPU. Here, the limited scaling results from additional overhead due to the memory
management for distribution of the data as well as the synchronization of the threads. Only
the parsing itself was measured in the CPU benchmarks. If selection and projections are
additionally performed and the results of the threads are merged, the throughput would even
be worse. In contrast, the proposed FPGA design could ideally achieve a speedup of 8.8 for
the Yahoo benchmark or 29.4 for the more complex RIoTBench given that the problems of
the DMA scheduling are resolved, while only requiring a minimal share of its resources.

Tab. 2: Resource consumption, clock frequency, and throughput results for two benchmarks.

benchmark Yahoo RIoTBench

resources (% of FPGA) LUTs 4,900 (2.1%) 6,691 (2.9%)
FFs 7,288 (1.6%) 7,173 (1.6%)

maximal clock frequency 430 MHz 359 MHz

throughput (speedup)
CPU single thread 390 MB/s (1) 96 MB/s (1)
CPU multi thread 1,405 MB/s (3.6) 380 MB/s (4.0)
FPGA theoretical 3,440 MB/s (8.8) 2,827 MB/s (29.4)

FPGA experimental 1,450 MB/s (3.7) 1,450 MB/s (15.1)

4 Conclusion & Future Work

Avro’s simple encoding can be interpreted using basic finite-state machines, making the
parsing process perfectly suited for acceleration in hardware using FPGAs. The accelerators
generated by the presented generator can achieve significant speedups compared to CPU-
based parsers, although only a minimal share of the FPGA resources is required. Moreover,
path expressions can be used to parse the received objects into a fixed data layout and reduce
the amount of output data to avoid unnecessary data movement. The enforced data layout is
then perfectly tailored to accelerate further steps of the given application on the available
FPGA resources.

Optimization potential for our approach arises from the fact that parser blocks must be
instantiated multiple times when the same Avro type occurs multiple times in the schema.
Furthermore, the generated parser is only able to parse the schema it was generated
with, making schema evolution only possible by creating and instantiating multiple parser
accelerators. In the future, we want to solve these two problems by coordinating the parser
blocks via an instruction set. The schema would then be translated into a program that would
control the sequence of parser blocks. Thus, different schemas and, accordingly, schema
evolution could be achieved simply by executing different programs.

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 747

20 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

References

[Ap13] Apache Software Foundation: Apache ORC Specification v1, Oct. 13, 2013,
url: https://orc.apache.org/specification/.

[Ap21] Apache Software Foundation: Apache Avro 1.11.0 Specification, Oct. 29, 2021,
url: https://avro.apache.org/docs/1.11.0/spec.pdf.

[Ap22a] Apache Software Foundation: Apache Arrow Columnar Format Specification
v1, Dec. 1, 2022, url: https://arrow.apache.org/docs/format/Columnar.
html, visited on: 12/01/2022.

[Ap22b] Apache Software Foundation: Apache Parquet Specification, Mar. 24, 2022,
url: https://parquet.apache.org/docs/.

[Be19] Becher, A.; Herrmann, A.; Wildermann, S.; Teich, J.: ReProVide: Towards Uti-
lizing Heterogeneous Partially Reconfigurable Architectures for Near-Memory
Data Processing. In. Gesellschaft für Informatik, Bonn, 2019, url: https:
//doi.org/10.18420/btw2019-ws-04.

[BH20] Bormann, C.; Hoffman, P.: Concise Binary Object Representation (CBOR),
STD 94, RFC Editor, Dec. 2020, url: https://tools.ietf.org/pdf/rfc8949.

[Br17] Bray, T.: The JavaScript Object Notation (JSON) Data Interchange Format,
RFC 8259, Dec. 2017, url: https://www.rfc-editor.org/info/rfc8259.

[Ch16] Chintapalli, S.; Dagit, D.; Evans, B.; Farivar, R.; Graves, T.; Holderbaugh, M.;
Liu, Z.; Nusbaum, K.; Patil, K.; Peng, B. J.; Poulosky, P.: Benchmarking
Streaming Computation Engines: Storm, Flink and Spark Streaming. In: 2016
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). Pp. 1789–1792, 2016, url: https://doi.org/10.1109/IPDPSW.
2016.138.

[Da22] Dann, J.; Wagner, R.; Ritter, D.; Faerber, C.; Froening, H.: PipeJSON: Parsing
JSON at Line Speed on FPGAs. In. DaMoN’22, 2022, url: https://doi.
org/10.1145/3533737.3535094.

[EI10] El-Hassan, F.; Ionescu, D.: A hardware architecture of an XML/XPath broker
for content-based publish/subscribe systems. In: 2010 International Conference
on Reconfigurable Computing and FPGAs. IEEE, pp. 138–143, 2010.

[Gö07] Gössner, S.: JSONPath - XPath for JSON, Feb. 20, 2007, url: https :
//goessner.net/articles/JsonPath/.

[Go22] Google Inc.: Protocol Buffers Version 3 Language Specification, Nov. 1, 2022,
url: https://developers.google.com/protocol-buffers/.

[Ha22] Hahn, T.; Becher, A.; Wildermann, S.; Teich, J.: Raw Filtering of JSON
data on FPGAs. In: DATE’22, Antwerpen. Mar. 14–23, 2022, url: https:
//doi.org/10.23919/DATE54114.2022.9774696.

748 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

https://orc.apache.org/specification/
https://avro.apache.org/docs/1.11.0/spec.pdf
https://arrow.apache.org/docs/format/Columnar.html
https://arrow.apache.org/docs/format/Columnar.html
https://parquet.apache.org/docs/
https://doi.org/10.18420/btw2019-ws-04
https://doi.org/10.18420/btw2019-ws-04
https://tools.ietf.org/pdf/rfc8949
https://www.rfc-editor.org/info/rfc8259
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1145/3533737.3535094
https://doi.org/10.1145/3533737.3535094
https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/
https://developers.google.com/protocol-buffers/
https://doi.org/10.23919/DATE54114.2022.9774696
https://doi.org/10.23919/DATE54114.2022.9774696

FPGA Avro Parser Generator 21

[HWT22] Hahn, T.; Wildermann, S.; Teich, J.: Auto-Tuning of Raw Filters for FPGAs.
In: FPL’22, Belfast, United Kingdom. Aug. 29–Sept. 2, 2022.

[KSS08] Koch, C.; Scherzinger, S.; Schmidt, M.: XML Prefiltering as a String Matching
Problem. In: ICDE’08. Pp. 626–635, 2008, url: https://doi.org/10.1109/
ICDE.2008.4497471.

[Li17] Li, Y.; Katsipoulakis, N. R.; Chandramouli, B.; Goldstein, J.; Kossmann, D.:
Mison: A Fast JSON Parser for Data Analytics./, 2017, url: https://doi.
org/10.14778/3115404.3115416.

[Me10] Melnik, S.; Gubarev, A.; Long, J. J.; Romer, G.; Shivakumar, S.; Tolton, M.; Vas-
silakis, T.: Dremel: Interactive Analysis of Web-Scale Datasets. In: VLDB’10.
2010, url: http://www.vldb2010.org/accept.htm.

[Mi09] Mitra, A.; Vieira, M.; Bakalov, P.; Najjar, W.; Tsotras, V.: Boosting XML
Filtering with a Scalable FPGA-based Architecture./, 2009, url: https:
//arxiv.org/abs/0909.1781.

[MTA09] Mueller, R.; Teubner, J.; Alonso, G.: Streams on Wires: A Query Compiler for
FPGAs./, Aug. 2009, url: https://doi.org/10.14778/1687627.1687654.

[MTA10] Mueller, R.; Teubner, J.; Alonso, G.: Glacier: a query-to-hardware compiler.
In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. Pp. 1159–1162, 2010, url: https://doi.org/10.1145/
1807167.1807307.

[Pe21] Peltenburg, J.; Hadnagy, Á.; Brobbel, M.; Morrow, R.; Al-Ars, Z.: Tens of
gigabytes per second JSON-to-Arrow conversion with FPGA accelerators. In:
ICFPT’21. 2021, url: https://doi.org/10.1109/ICFPT52863.2021.9609833.

[Sa12] Sadoghi, M.; Javed, R.; Tarafdar, N.; Singh, H.; Palaniappan, R.; Jacob-
sen, H.-A.: Multi-query Stream Processing on FPGAs. In: 2012 IEEE 28th
International Conference on Data Engineering. Pp. 1229–1232, 2012, url:
https://doi.org/10.1109/ICDE.2012.39.

[SCS17] Shukla, A.; Chaturvedi, S.; Simmhan, Y.: RIoTBench: An IoT benchmark for
distributed stream processing systems. Concurrency and Computation: Practice
and Experience/, Oct. 2017, url: https://doi.org/10.1002%2Fcpe.4257.

[TM11] Teubner, J.; Mueller, R.: How Soccer Players Would Do Stream Joins. In.
SIGMOD ’11, Athens, Greece, 2011, url: https://doi.org/10.1145/
1989323.1989389.

[TWN12] Teubner, J.; Woods, L.; Nie, C.: Skeleton Automata for FPGAs: Reconfiguring
without Reconstructing. In. SIGMOD ’12, 2012, url: https://doi.org/10.
1145/2213836.2213863.

[WA11] Woods, L.; Alonso, G.: Fast data analytics with FPGAs. In: 2011 IEEE 27th
International Conference on Data Engineering Workshops. IEEE, pp. 296–299,
2011, url: https://doi.org/10.1109/ICDEW.2011.5767669.

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 749

https://doi.org/10.1109/ICDE.2008.4497471
https://doi.org/10.1109/ICDE.2008.4497471
https://doi.org/10.14778/3115404.3115416
https://doi.org/10.14778/3115404.3115416
http://www.vldb2010.org/accept.htm
https://arxiv.org/abs/0909.1781
https://arxiv.org/abs/0909.1781
https://doi.org/10.14778/1687627.1687654
https://doi.org/10.1145/1807167.1807307
https://doi.org/10.1145/1807167.1807307
https://doi.org/10.1109/ICFPT52863.2021.9609833
https://doi.org/10.1109/ICDE.2012.39
https://doi.org/10.1002%2Fcpe.4257
https://doi.org/10.1145/1989323.1989389
https://doi.org/10.1145/1989323.1989389
https://doi.org/10.1145/2213836.2213863
https://doi.org/10.1145/2213836.2213863
https://doi.org/10.1109/ICDEW.2011.5767669

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Working with Disaggregated Systems. What are the
Challenges and Opportunities of RDMA and CXL?

Andreas Geyer1, Daniel Ritter2, Donghun Lee3, Minseon Ahn3, Johannes Pietrzyk1,
Alexander Krause1, Dirk Habich1, Wolfgang Lehner1

Keywords: RDMA; CXL; Disaggregated Systems; Network; Memory

1 Motivation

The usage of disaggregated systems in large scale data-centers offers a lot of flexibility
and easy scalability in comparison to the traditional statically configured scale-up and
scale-out systems. Disaggregated architectures allow for the creation of software composable
systems [Li17, Li18]. On the one hand, this allows seamless integration of specialized
hardware like FPGAs or GPUs as well as a high degree of elasticity to scale a system with
its workload by dynamically adding and removing resources via software. On the other
hand, however, it also brings several challenges like an additional communication overhead
for memory accesses, which is especially critical for In-Memory databases.

With the more traditional scale-up system approach, all communication happens on the
same machine and is – depending on the interconnect and support by specific hardware
components [Yu07] – reasonably fast. To access data from main-memory or storage, it is
only necessary to retrieve it from the directly attached hardware. With growing systems,
the multi-socket system became the de facto standard. This introduced the challenge of
non-uniform memory access (NUMA) [Ps16]. The larger distance to hardware on the same
machine but connected to another socket introduces a latency overhead when collecting
data from this hardware. With growing NUMA distance to the desired hardware, the latency
overhead grows for each communication. Therefore, such systems are designed to keep the
NUMA distances as small as possible, which leads to the Near-Memory Processing (NMP)
or compute paradigm [Ps16, Ki14, Pa10]. Modern software has already mostly adapted to
the challenges NUMA entails, but it is still a research field of its own.

In comparison to these traditional system approaches, the usage of disaggregated systems
in large scale data-centers offer a lot of flexibility and easy scalability. It allows for the
1 Technische Universität Dresden, Database Systems Group, Nöthnitzer Straße 46, 01187 Dresden, Germany,
{first.last}@tu-dresden.de

2 SAP SE, Germany, daniel.ritter@sap.com
3 SAP Labs, Korea, [dong.hun.lee|minseon.ahn]@sap.com

cba doi:10.18420/BTW2023-47

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 751

mailto:{first.last}@tu-dresden.de
mailto:daniel.ritter@sap.com
mailto:[dong.hun.lee|minseon.ahn]@sap.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-47

2 Andreas Geyer, Daniel Ritter, Dong Hun Lee, Minseon Ahn, Johannes Pietrzyk, Alexander
Krause, Dirk Habich, Wolfgang Lehner

CPU CPU
NUMA

D
R

AM

PCIe PCIe

D
R

AM

RDMA (NIC) DRAM

CXL Type 3

Node 1

NUMA-remote

CPU

PCIe

DRAM/
HBM

 PIM

Node 2

CXL Type 3CXL Type 3

CXL Switch
 CXL Fabric Manager

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

C
XL

 3
.0

C
XL

 2
.0

Node n

CPU

PCIe

RDMA (NIC)

D
R

AM

D
R

AM

D
R

AM

AXDIMM

DRAM

Network

Node m

local

extended

in-memory
compute

shared /
pooled

disaggregated
(CPU independent)

disaggregated
(distributed, remote)

near-memory
compute

Fig. 1: Disaggregated Memory Approaches

creation of software composable systems [Wa22]. Therefore, the utilization of the available
hardware can be a lot better than in scale-up or scale-out scenarios. If memory or CPU is not
needed anymore, it is returned to the pool and can immediately be reassigned for other tasks.
However, composing the hardware through any virtualization leads to physically distributed
hardware and thus the inevitable necessity to cope with NUMA effects. Traditionally,
performance optimization was achieved through either copying the data to the execution
unit or moving the function to the data. This communication is a potential bottleneck for
fast computation even though fast communication techniques like Remote Direct Memory
Access (RDMA) and Compute Express Link (CXL) exist.

2 Classification

From a database perspective, data and its locality has always been the center of attention.
Correctly deciding on which data to prefetch from disk into memory was crucial for high
performance. However, hardware in the cloud setting advanced over the years from scale-up
and scale-out servers to disaggregated systems. Thus, imposing an even larger design space
to consider for data placement. With our research, we want to investigate the implications of
different hardware or memory extension techniques, based on RDMA and CXL. To achieve
that, we introduce a classification of the different memory distances, based on their actual
physical distance but taking the transport layer into account.

Figure 1 highlights the multitude of potential distances that can occur when scale-up servers
meet hardware disaggregation. A single compute node can consist of multiple sockets,
where a socket can then be further expanded both via RDMA, e.g. over InfiniBand, and

752 Andreas Geyer, Daniel Ritter, Dong Hun Lee, Minseon Ahn, Johannes Pietrzyk,
Alexander Krause, Dirk Habich, Wolfgang Lehner

Challenges and Opportunities of RDMA and CXL 3

CXL-based switches. Hence, we first divide memory into local and NUMA-remote, which
is meant to physically reside in the same server. Extended memory describes CXL memory
devices, which are directly attached via CXL through the PCIe connector of the mainboard.
Devices, that are attached to a socket through a CXL switch are called disaggregated
memory (DM). With CXL 3.0 it will be possible to share this DM between multiple systems.
When RDMA is used to connect two systems, we consider such memory to be disaggregated
remote memory (DRM). The distinction between DM and DRM is made because the DM is
managed from the host on the active side. DRM, however, is managed by another host, which
is just exposing a part of its own memory to remote systems. Additionally, technologies like
high bandwidth memory (HBM) [Ju17] and processing in memory (PIM) [GHI95] can be
used and further increase the performance of the system.

3 Use Cases

Recent research has already outlined the importance of available memory for in-memory
database systems [Ah22]. Without claiming completeness, we see a couple of main use cases
for database centric systems that are necessary to consider when working with hardware
disaggregation.

First, dynamic memory expansion for In-Memory Database Management Systems
(IMDBMS) through CXL. Even when data keeps increasing and the DIMM slots in
the server are already full, the customer can expand the memory space without upgrading
their server nor memory devices for scale-up. For this, the IMDBMS may allocate the
operational memory in the expanded memory without any change in data placement or may
move the table data to the expanded memory. The latter one would be more beneficial as
table data accesses consist of lots of sequential accesses than operational memory in general
and the longer latency of expanded memory can be hidden by prefetching.

Second, integrating memory expansion for multiple sockets of a single server through
CXL 2.0, since it allows the connection of multiple CXL devices through a CXL switch.
Attaching only one socket in a server to a CXL switch will cause NUMA-like effects among
the sockets. Providing a single memory pool, which can be accessed by every socket of the
server will contribute to even access latency with better bandwidth. CXL 2.0 does not allow
full sharing of a whole memory device, hence we would allocate dedicated regions per
socket. A limiting factor of the effectiveness for this scenario is the hardware itself: currently,
we would need the same amount of wired connections between the memory pool and each
socket of the server. With more servers and hence more sockets in the joint, concurrency
becomes an even more serious issue and dedicated memory areas are an important building
block for multi-server memory pools. Further, the amount of required wired connections
scales linearly to the amount of sockets of all servers.

Third, a shared memory pool among multiple servers, but through CXL 3.0 and hence the
ability of sharing the pool as a whole. With the newest CXL standard, even the same memory

Working with Disaggregated Systems. What are the Challenges and Opportunities of
RDMA and CXL? 753

4 Andreas Geyer, Daniel Ritter, Dong Hun Lee, Minseon Ahn, Johannes Pietrzyk, Alexander
Krause, Dirk Habich, Wolfgang Lehner

regions on a device can be shared among multiple hosts. This new degree of freedom
requires precise rights management, i.e. read-/write-permissions and data ownership.

Fourth, with PIM and dedicated RDMA-connected servers enabling the offloading of some
operators to the data. Due to computational power near the data this could reduce the data
transfer significantly. Therefore, when grouping the data access like in [Ge23] it would be
possible to reduce the latency and interleave data transfer and computation.

Based on these use cases, we see the possibility to further increase the systems complexity
by linking these multiple servers also with InfiniBand. Such a setup would allow to limit the
amount of CXL wires by replacing them with less InfiniBand cables. In this configuration,
one server could serve as a memory managing unit, which exposes selected data regions to
the other servers.

4 Call to Action

Based on our classification and the presented use cases, we identify a set of promising
research directions. Traditionally, data was either shipped to the central processing unit
(CPU) or the processing function or operator was moved to the data. We argue that with the
rise of high performance interconnects like RDMA and CXL, there is no such black-and-
white decision anymore. Our research focuses on investigating the performance implications
of the different memory categories, based on our classification from Section 2, from the
perspective of an IMDBMS. We already conducted initial experiments for disaggregated
remote memory [Ge23] and want to extend our prototype by combining the different memory
classes following our use case description of Section 3. The scope of our endeavor is not
limited to experimenting with memory extensions, but also on how to include computational
storage or Processing In memory (PIM) in such a system.

Conceptually speaking, we want to build a database prototype, that can leverage different
kinds of attached memory, based on a suitable abstraction layer. Our research aims to emit
three main contributions: (1) define and confirm the different memory classes, based on
our experiments with the combination of RDMA and CXL attached memory. (2) we will
provide an analytical model on when to use which memory. That includes the decision of
when to ship the data, e.g. because of computational limitations and when operators should
be offloaded. Lastly, (3) we will identify a set of common access primitives, that can be
leveraged to work with all memory classes through a dedicated API.

We would be delighted to present our ideas and the memory disaggregation classification at
the workshop and discuss the presented ideas. The valuable feedback of the attendees will
help us to further refine our classification both in terms of preciseness and applicability.

Acknowledgements. We would like to thank Marcel Weisgut from Hasso-Plattner-Institut,
Potsdam for the fruitful discussions on CXL and his contributions to the memory disaggre-
gation classification.

754 Andreas Geyer, Daniel Ritter, Dong Hun Lee, Minseon Ahn, Johannes Pietrzyk,
Alexander Krause, Dirk Habich, Wolfgang Lehner

Challenges and Opportunities of RDMA and CXL 5

Bibliography
[Ah22] Ahn, Minseon; Chang, Andrew; Lee, Donghun; Gim, Jongmin; Kim, Jungmin; Jung,

Jaemin; Rebholz, Oliver; Pham, Vincent; Malladi, Krishna T.; Ki, Yang-Seok: Enabling
CXL Memory Expansion for In-Memory Database Management Systems. In: DaMoN.
ACM, pp. 8:1–8:5, 2022.

[Ge23] Geyer, Andreas; Krause, Alexander; Habich, Dirk; Lehner, Wolfgang: Pipeline Group
Optimization on Disaggregated Systems. In: CIDR. 2023. to appear.

[GHI95] Gokhale, M.; Holmes, B.; Iobst, K.: Processing in memory: the Terasys massively parallel
PIM array. Computer, 28(4):23–31, 1995.

[Ju17] Jun, Hongshin; Cho, Jinhee; Lee, Kangseol; Son, Ho-Young; Kim, Kwiwook; Jin, Hanho;
Kim, Keith: HBM (High Bandwidth Memory) DRAM Technology and Architecture. In:
2017 IEEE International Memory Workshop (IMW). pp. 1–4, 2017.

[Ki14] Kissinger, Thomas; Kiefer, Tim; Schlegel, Benjamin; Habich, Dirk; Molka, Daniel; Lehner,
Wolfgang: ERIS: A NUMA-Aware In-Memory Storage Engine for Analytical Workload.
In (Bordawekar, Rajesh; Lahiri, Tirthankar; Gedik, Bugra; Lang, Christian A., eds):
International Workshop on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures - ADMS 2014, Hangzhou, China, September 1, 2014. pp. 74–85,
2014.

[Li17] Li, Chung-Sheng; Franke, Hubertus; Parris, Colin; Abali, Bülent; Kesavan, Mukil; Chang,
Victor I.: Composable architecture for rack scale big data computing. Future Gener. Comput.
Syst., 67:180–193, 2017.

[Li18] Lin, An-Dee; Li, Chung-Sheng; Liao, Wanjiun; Franke, Hubertus: Capacity Optimization
for Resource Pooling in Virtualized Data Centers with Composable Systems. IEEE Trans.
Parallel Distributed Syst., 29(2):324–337, 2018.

[Pa10] Pandis, Ippokratis; Johnson, Ryan; Hardavellas, Nikos; Ailamaki, Anastasia: Data-Oriented
Transaction Execution. Proc. VLDB Endow., 3(1):928–939, 2010.

[Ps16] Psaroudakis, Iraklis; Scheuer, Tobias; May, Norman; Sellami, Abdelkader; Ailamaki,
Anastasia: Adaptive NUMA-aware data placement and task scheduling for analytical
workloads in main-memory column-stores. Proc. VLDB Endow., 10(2):37–48, 2016.

[Wa22] Wang, Ruihong; Wang, Jianguo; Idreos, Stratos; Özsu, M. Tamer; Aref, Walid G.: The Case
for Distributed Shared-Memory Databases with RDMA-Enabled Memory Disaggregation.
CoRR, abs/2207.03027, 2022.

[Yu07] Yu, Hao; Moreira, José E.; Dube, Parĳat; Chung, I-Hsin; Zhang, Li: Performance Studies
of a WebSphere Application, Trade, in Scale-out and Scale-up Environments. In: 21th
International Parallel and Distributed Processing Symposium (IPDPS 2007), Proceedings,
26-30 March 2007, Long Beach, California, USA. IEEE, pp. 1–8, 2007.

Working with Disaggregated Systems. What are the Challenges and Opportunities of
RDMA and CXL? 755

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

What We Can Learn from Persistent Memory for CXL

Lawrence Benson1, Marcel Weisgut1, Tilmann Rabl1

Abstract:
With high-capacity Persistent Memory (PMem) entering the long-established data center memory
hierarchy, various assumptions about the performance and granularity of memory access have been
disrupted. To adapt existing applications and design new systems, research focused on how to efficiently
move data between different types of memory, how to handle varying access latency, and how to trade
off price for performance. Even though Optane is now discontinued, we expect that the insights gained
from previous PMem research apply to future work on Compute Express Link (CXL) attached memory.
In this paper, we discuss how limited hardware availability impacts the performance generalization of
new designs, how existing CPU components are not adapted towards different access characteristics,
and how multi-tier memory setups offer different price-performance trade-offs. To support future
CXL research in each of these areas, we discuss how our insights apply to CXL and which problems
researchers may encounter along the way.

1 Introduction
With the arrival of Intel Optane Persistent Memory (PMem) in 2019, research on new data
management techniques for byte-addressable persistent memory increased significantly.
Among other questions, this research investigates how to handle varying memory access
latency, how to place data based on available capacity, and how to design for memory
access sizes larger than a single cache line but smaller than a page [BMR21; Lu20; Re18].
However, in 2022, Intel announced that their Optane product line will be discontinued in
favor of recent trends toward Compute Express Link (CXL) [GZ22]. We expect that while
Optane was abandoned, research based on it still provides valuable insights.

In light of Intel citing CXL as one of the reasons for ending Optane, in this paper, we raise
the question: “What can we learn from PMem research for future CXL research?” Based on
benchmarks that we conducted in previous work on PerMA-Bench [BPR22], a configurable
benchmark framework for PMem access, we look at three insights from PMem that also
apply to future research on CXL.

First, we discuss how limited hardware access can lead to solutions that are too specialized
for one hardware configuration or not specialized enough. We then discuss how existing CPU
components interact with new memory types, based on the prefetching behavior with PMem.
Finally, we show that different memory types offer different price-performance trade-offs
depending on the use case. Even though CXL-attached memory is not yet generally available,
these insights highlight some challenges that future research faces when integrating new
memory types into a long-established memory hierarchy.
1 Hasso Plattner Insitut, Universität Potsdam, Germany. {first.last}@hpi.de

cba doi:10.18420/BTW2023-48

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 757

mailto:{first.last}@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-48

2 Lawrence Benson, Marcel Weisgut, Tilmann Rabl

PerMA Dash0
25
50
75

M
ill

io
n

O
ps

/s

PerMA F+F0
10
20

1st Gen 2nd Gen

Fig. 1: Performance of PerMA and actual index
implementation of Dash and FAST+FAIR.

64 256 512 1024
Access Size in Byte

0
20
40

Th
ro

ug
hp

ut
(G

B
/s

)

Enabled Disabled

Fig. 2: Impact of prefetcher on PMem random
read bandwidth.

2 Transferring Insights from PMem to CXL-Attached Memory
In this section, we discuss how insights derived from PMem transfer to future CXL research.

Persistent Memory.2 PMem can be used as a volatile DRAM extension (Memory Mode) or
explicitly as PMem beside DRAM (App Direct Mode). When using PMem in App Direct
Mode, PMem and DRAM share the application’s unified virtual address space, i.e., data
stored in both types of memory can be prefetched by the CPU. Data in PMem is accessed
via load/store instructions issued in the CPU. Through a modified DDR-4 interface (called
DDR-T), the CPU communicates with PMem DIMMs in 64 Byte cache lines. However,
Optane’s internal media access occurs at 256 Byte, causing read and write amplification for
access smaller than 256 Byte. PMem’s access latency for random reads and writes from
and to PMem is ~2-5× higher than DRAM’s and read/write bandwidth is ~2.5/5× lower.
Thus, even though DRAM and PMem share the same interface, applications designed for
PMem have to account for its worse performance. As future CXL-attached memory will
have higher latency and, for CXL versions 1.1 and 2.0, lower bandwidth than CPU-attached
memory (bound by PCIe 5.0 compared to memory channels), CXL designs face similar
issues as PMem designs.

Benchmark Setup. We evaluate two servers with 256 GB PMem DIMMs of the first and
second-generation Optane. The first generation server contains a Cascade Lake CPU with
18 cores and six PMem DIMMs at 2933 MT/s. The second generation server contains an Ice
Lake CPU with 32 cores and eight PMem DIMMs at 3200 MT/s. Both systems run Ubuntu
20.04 with a 5.4 kernel.

Application Tailoring. To understand how well applications utilize the hardware, we
compare the lookup() performance of PMem index structures modeled in PerMA-Bench
with the actual index implementations. The results obtained with PerMA-Bench show
a performance upper-bound, as they include only memory access without computation
or branching logic. The results for the hash index Dash [Lu20] and the B-Tree index
FAST+FAIR [Hw18] are shown in Figure 1. The memory access for Dash is modeled as a
512 Byte random read, as Dash reads two consecutive 256 Byte hash buckets to find an
entry. For FAST+FAIR, we issue 3× random 512 Byte reads that represent B-Tree node
lookups. The experiments are run with 16 threads. We observe that while the underlying
bandwidth improves across generations, the indexes do not (fully) utilize this. Unlike on

2 For a more in-depth introduction to PMem, we refer to [BPR22].

758 Lawrence Benson, Marcel Weisgut, Tilmann Rabl

3

the first generation server, Dash spends ~20% of all cycles on non-memory access on the
second generation server, which contains more PMem DIMMs, a newer CPU, and better
DRAM. Due to the high price of Optane, researchers often do not have access to different
setups, which leads to tailoring the application towards only a single setup and, in turn,
does not always generalize. On the other hand, we see FAST+FAIR as an index designed for
general PMem before Optane became available. The improved memory bandwidth does not
translate to the index, as FAST+FAIR spends a lot of time on heavy-weight locking and
inefficient PMem access on patterns. As FAST+FAIR was designed pre-Optane, we see that
the system is not tailored enough to the underlying hardware, and performance is lost.

Insight 1: Due to limited hardware availability, systems are tailored too much toward a single
setup or not tailored enough toward the actual hardware. Through the CXL abstraction,
future systems will cover a wider range of memory performance characteristics. Thus, it is
important to design and research robust systems that generalize across different hardware
and multiple memory tiers.

Prefetching. As a new layer in the long-established memory hierarchy, it is important to
understand how well PMem interacts with existing CPU components, which are optimized
for caches and DRAM. In Figure 2, we show the impact of the hardware prefetchers for
random memory reads on the second-generation Optane server. We en-/disable all hardware
prefetchers and run on 16 threads. We see that for small access sizes (< 256 Byte), the
prefetcher does not impact performance, i.e., the prefetcher does not prefetch. However,
for 512 and 1024 Byte access, the prefetcher speculatively loads unnecessary data not
accessed by the user in the background, reducing the available bandwidth for requested
reads. We observe this in hardware performance counters, where the underlying bandwidth
utilization is identical in both runs, but the effective bandwidth in the application is not.
Thus, disabling the prefetcher actually improves performance in this case. This effect is also
observable for 2048 Byte access but not for 4096 Byte or more [Da21], as page-size access
is a well-understood and optimized pattern in DRAM. As Optane’s internal access occurs
at 256 Byte granularity, most applications design access in multiples of 256 Byte. As a
consequence, a 512 Byte random access to Optane, e.g., a node lookup in FAST+FAIR,
spans only two Optane “cache lines”, which should not trigger prefetching. However, the
prefetcher views these 512 Byte as regular DRAM access, spanning eight consecutive cache
lines, and starts prefetching for sequential access.

Insight 2: Prefetchers are highly optimized toward 64 Byte DRAM cache line access, and
CXL specifies 64 Byte transfers in the transaction layer [Co22, p. 167]. However, CXL
abstracts from the underlying device, i.e., it could support Optane PMem or other memory
devices, and memory behind CXL may not be accessible in 64 Byte granularity. As all
CPU- and CXL-attached memory is available in the same unified virtual address space,
prefetchers operate on both types of memory. Future research should investigate how existing
components, like the prefetcher, interact with memory that is not attached directly to the
CPU and has different access characteristics. However, unlike Insight 1, this cannot be
solved by applications alone and most likely requires hardware changes as well.

What We Can Learn from Persistent Memory for CXL 759

4 Lawrence Benson, Marcel Weisgut, Tilmann Rabl

e/GB capacity seq. read rnd. read seq. write rnd. write
PMem 12.77 0.22 0.33 0.60 2.12
DRAM 59.37 0.38 0.46 0.70 0.91

Tab. 1: Price-performance of PMem and DRAM. Read/write values in e/GB/s. Calculation based on
listing prices from dell.de in February 2022.

Price-Performance. In Table 1, we show the price-performance for basic sequential/random
read/write access in PMem and DRAM on the same second-generation Optane server
while disregarding persistence. The data access-related prices per GB of throughput are
normalized to the device’s price per GB to avoid including the higher price for larger
capacity. We see that the price per GB capacity is significantly lower for the PMem DIMMs
than for the high-end DRAM DIMMs. As PMem is not available in cloud vendors, we
base our calculations on the list price on dell.de [De22] in February 2022. Focusing on
the relative scale between the listed prices rather than on the exact monetary values, for
sequential access and random reads, we observe that PMem has a better price-performance
ratio, as the bandwidth is often only 2–3× worse while the price per GB capacity is about 5×
better. DRAM outperforms PMem only for 64 Byte random writes, where PMem bandwidth
is very low because of high write amplification.

Insight 3: For applications that do not require peak performance or persistence, PMem can
be used as a cheaper DRAM alternative with significantly higher capacity. As increasing
memory capacity is a selling point of CXL, future research should investigate the price-
performance trade-off in multi-tier memory setups for slower and potentially cheaper
CXL-attached memory.

3 Conclusion
With PMem, various assumptions about the homogeneity of DRAM access have been
disrupted, leading to new challenges and designs. In this paper, we discussed how insights
from these designs also apply to future CXL research. New CXL-based approaches need to
focus on performance generalizability under initially limited hardware availability. They
should consider how interaction with long-established components, such as prefetchers,
impacts performance. And finally, in multi-tier memory setups, new designs should consider
their economic viability as a key trade-off. While PMem is discontinued for now, we hope
that future CXL work builds on these insights to establish a more general understanding of
how systems interact with multi-tier memory.

Acknowledgements: This work was partially funded by the German Ministry for Education
and Research (01IS18025A/01IS18037A), the German Research Foundation (414984028),
and the European Union’s Horizon 2020 research and innovation programme (957407).

760 Lawrence Benson, Marcel Weisgut, Tilmann Rabl

5

References

[BMR21] Benson, L.; Makait, H.; Rabl, T.: Viper: An Efficient Hybrid PMem-DRAM
Key-Value Store. en, Proceedings of the VLDB Endowment 14/9, pp. 1544–
1556, 2021.

[BPR22] Benson, L.; Papke, L.; Rabl, T.: PerMA-bench: benchmarking persistent memory
access. en, Proceedings of the VLDB Endowment 15/11, pp. 2463–2476, July
2022, issn: 2150-8097, url: https://dl.acm.org/doi/10.14778/3551793.
3551807, visited on: 11/22/2022.

[Co22] Compute Express Link Consortium, I.: Compute Express Link (CXL) Specifi-
cation, Revision 3.0, Version 1.0, https://www.computeexpresslink.org/
download-the-specification, 2022.

[Da21] Daase, B.; Bollmeier, L. J.; Benson, L.; Rabl, T.: Maximizing persistent mem-
ory bandwidth utilization for OLAP workloads. In: SIGMOD ’21. tex.ids=
daaseMaximizingPersistentMemory, ACM, 2021.

[De22] Dell Technologies: Dell Rack Servers, https://www.dell.com/de-de/work/
shop/deals/enterprise-deals/poweredge-rack-server-deals, 2022.

[GZ22] Gelsinger, P.; Zinsner, D.: Earnings Call Comments from CEO Pat Gelsinger and
CFO Dave Zinsner, https://www.intel.com/content/www/us/en/newsroom/
news/intel-reports-first-quarter-2022-financial-results.html, 2022.

[Hw18] Hwang, D.; Kim, W.-H.; Won, Y.; Nam, B.: Endurable Transient Inconsistency
in Byte-Addressable Persistent B+-Tree. In. Pp. 187–200, 2018, isbn: 978-
1-931971-42-3, url: https : / / www . usenix . org / conference / fast18 /
presentation/hwang, visited on: 10/22/2021.

[Lu20] Lu, B.; Hao, X.; Wang, T.; Lo, E.: Dash: scalable hashing on persistent memory.
Proceedings of the VLDB Endowment 13/8, pp. 1147–1161, Apr. 2020, issn:
2150-8097, url: https://doi.org/10.14778/3389133.3389134, visited on:
07/06/2020.

[Re18] van Renen, A.; Leis, V.; Kemper, A.; Neumann, T.; Hashida, T.; Oe, K.; Doi, Y.;
Harada, L.; Sato, M.: Managing Non-Volatile Memory in Database Systems. In:
SIGMOD ’18. SIGMOD ’18, ACM, Houston, TX, USA, pp. 1541–1555, May
2018, isbn: 978-1-4503-4703-7, url: https://doi.org/10.1145/3183713.
3196897, visited on: 07/06/2020.

What We Can Learn from Persistent Memory for CXL 761

https://dl.acm.org/doi/10.14778/3551793.3551807
https://dl.acm.org/doi/10.14778/3551793.3551807
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.dell.com/de-de/work/shop/deals/enterprise-deals/poweredge-rack-server-deals
https://www.dell.com/de-de/work/shop/deals/enterprise-deals/poweredge-rack-server-deals
https://www.intel.com/content/www/us/en/newsroom/news/intel-reports-first-quarter-2022-financial-results.html
https://www.intel.com/content/www/us/en/newsroom/news/intel-reports-first-quarter-2022-financial-results.html
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.usenix.org/conference/fast18/presentation/hwang
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3183713.3196897

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Improving GPU Matrix Multiplication by Leveraging Bit
Level Granularity and Compression

Johannes Fett1, Christian Schwarz1 Urs Kober1 Dirk Habich1 Wolfgang Lehner1

Abstract: In this paper, we introduce BEAM as a novel approach to perform GPU based matrix
multiplication on compressed elements. BEAM allows flexible handling of bit sizes for both input
and output elements. First evaluations show promising speedups compared to an uncompressed
state-of-the-art matrix multiplication algorithm provided by Nvidia.

Keywords: GPU; Matrix multiplication

1 Introduction

GPUs are becoming increasingly more popular for data analytics and compute workloads
with increasing memory demands. GPUs share the constraint of having a significantly
smaller memory capacity compared to CPUs with DRAM. One approach to mitigate this
issue is to use compression. Our focus is to explore how to perform calculations on already
compressed data.

In this work, we introduce BEAM (bitwise efficient matrix multiplication), a novel concept
to directly compute on compressed elements in GPU memory. Instead of using native
data types, we offer bit level granularity for unsigned integer based matrix multiplications.
BEAM calculates directly on compressed data on a bit level granularity. Different problems
that arise from bit level computation on GPU are discussed and strategies to deal with them
introduced and evaluated. This paper focuses on unsigned integer based matrix multiplication
to demonstrate that even in unfavourable compute bound use cases, compression can still be
beneficial. In Section 2 preliminaries about compression on GPU and GPU architecture are
introduced. Section 3 focuses on a detailed description of BEAM and strategies dealing
with overflows and calculation of output bit sizes. Section 4 deals with related work and
section 5 summarises the contribution.
1 TU Dresden, Database Research Group, Nöthnitzer Str. 46, 01187 Dresden, Germany {johannes.fett|christian.

schwarz5|urs.kober|dirk.habich|wolfgang.lehner}@tu-dresden.de

cba doi:10.18420/BTW2023-49

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 763

mailto:{johannes.fett|christian.schwarz5|urs.kober|dirk.habich|wolfgang.lehner}@tu-dresden.de
mailto:{johannes.fett|christian.schwarz5|urs.kober|dirk.habich|wolfgang.lehner}@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-49

2 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

2 Preliminaries

2.1 GPU Architecture

A Nvidia GPU consists of a large number of arithmetical logical units called CUDA cores.
Groups of 64 CUDA cores form a functional block called streaming multiprocessor. A
streaming multi processor also shares register memory and shared memory across all its
cores. A shared L2 Cache and VRAM (global memory) is accessible by all streaming
multiprocessors through a shared memory bus system. The total amount of global memory
is up to 80 GB for current GPU generations. Shared memory per streaming multi processor
ranges from 48 KiB to 64 KiB depending on the GPU generation. The programming Model
of a GPU is called single instruction multiple threads. A large number of threads is spawned
to perform a computation (kernel). A group of threads is called a block. The total amount
of threads is partitioned into a number of blocks. Each block is assigned to streaming
multiprocessor. Most instructions are performed in groups of 32 threads at once, which is
called a warp.

2.2 Compression on GPU

Typically, integer calculations work on an element level granularity. With BEAM we
introduce the ability to calculate elements on a flexible bit level granularity. Specifically,
we demonstrate a matrix multiplication on compressed elements. Different approaches to
integer data compression have been covered by [Da17]. By combining different compression
algorithms, an improved compression rate can be achieved. However, in our experiments
we assume that all elements are compressed by zero suppression.

3 BEAM

BEAM allows flexible matrix multiplications by allowing elements on a bit level granularity
instead of typical byte based data types. In case of using zero suppression, empty bits can
be removed from Integer based data types. Test data is generated accordingly to conduct
experiments on different bit sizes of elements ranging from 1 to 64 bit per element. The
input bit size is static across the elements within a matrix to avoid the need for a prefix sum
to access data elements. The supported data format is only unsigned Integers between 1 and
64 bit size.

3.1 Output Bit Strategies

The desired output bit size can vary depending on different strategies. If statistical information
of a matrix is known, there might be a lower possible output bit size that fits all elements. If

764 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 3

Strategy Description Acronym
Same as input output bits same as input bits sai

Ceil to Power of Two output bits is the smallest power of two c2p2
greater or equal to the input bits

Max Value largest required output value, maximum 64 bit maxv

Tab. 1: An overview of different strategies for calculating the output bit size.

Strategy Description Acronym
Overflow default CUDA behavior: wrap around zero and cycle through the value

range
ovf

Saturate Stay at the largest possible value. This behavior mimics sat
the common Sigmoid activation function from machine learning appli-
cations

Tab. 2: An overview of different strategies for dealing with overflows

Memory layout Description
Canonical Layout (naive) One matrix element uses 64 bits in memory.

Tight types A bit level element is packed into a single next largest native datatype
Padded Slabs (slabs) As many complete matrix elements as possible are placed into one

64 bit slab
Tight Packing (nogaps) Memory is viewed as a contiguous bitstream

Tab. 3: Memory representations for matrix multiplication.

there is no available information, defining a maximum needed bit size to avoid an overflow
is a safer approach.

3.2 Overflow Behavior

In the case the calculated element in the output matrix causes an overflow, our approach
offers two different strategies to deal with overflows. Saturate will pin the result at the max
value of the value range in case of an overflow. This is realized by a builtin GPU intrinsic.
Overflow is the default CUDA behavior that will lead to values cycling through the value
range in case of an overflow.

3.3 Matrix Memory Representation

Because the input (and output) bit length of elements is not fixed to powers of two, using the
native C integer types is inefficient. Therefore we experiment with different memory layouts
to increase the performance. The matrices are stored row-major, without loss of generality.

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 765

4 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Fig. 1: Squarestride Matrix Multiplication example

For an overview of memory representations see Table 3. Slabs tries to fit as many bit level
elements as possible into one 64 bit element. While this simplifies handling the memory it
also leads to internal fragmentation. For example, 8 different 8 bit elements can fit without
fragmentation into one 64 bit element. However, in case of 25 bits per element, only two
will fit and consume 50 bits of space. The remaining 14 bits remain empty and lead to
fragmentation. To avoid fragmentation the nogaps approach has been developed. In this
case a contiguous bitstream is used to store all compressed elements. To allow simpler
computations, end-of-row padding is introduced to the next 64 bit multiple.

3.4 Algorithms

This section contains an overview of all evaluated matrix multiplication approaches.

Squarestride Every thread block is responsible for exactly one sub-block of the output
matrix and for every one of its threads for exactly one element within it (black outlined 3x3
box in the image 1). Both, this sub-block and the currently required sub-blocks for the left
and right matrix, are kept in shared memory to reduce redundant reads from global memory.
This sub-block based computation works such that sub-blocks are loaded one by one going
inwards. Start by loading both red outlined sub-blocks and do partial computation, then
continue to load both green sub-blocks. This pattern repeats until all results values have

766 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 5

been calculated. If the matrix is not a multiple of the sub-block dimensions, the excess
values are assumed 0, such that they stay neutral to the computation. This avoids additional
bounds checks.

Flex out Because access and computation logic calculation is in some cases significantly
more complex if support for variable number of output bits (unequal to the input bits) is
added, both version are provided for fair comparison. The more flexible version is suffixed
with flex out.

Baseline Guide This kernel uses the squarestride strategy and the naive memory layout.
This is the approach described in the Nvidia programming guide matrix multiplication
example 2 [Nv].

Tight Types Tight types is using the squarestride strategy. Input bitsize is rounded up
to the next native datatype. For example a 31 bit element would be packed into one 32 bit
integer.

Squarestride and Slabs This kernel uses the squarestride strategy and the slabs memory
layout. The slabs memory layout is used in the shared memory sub-blocks as well. In this
case one thread no longer handles one element of the output matrix but one slab. Because
that would make the sub-blocks rectangular by the increased number of vertical slabs
required, each thread handles as many rows as there are elements in one slab.

Squarestride Nogaps and Shared Memory Slabs This kernel uses the squarestride
strategy and the nogaps memory layout. It is very similiar to the squarestride kernel with the
difference of using the noslabs memory layout in global memory. For faster computations,
the slabs memory layout is still used in shared memory. This also avoids stitching together
an element from two slabs during the computation within the individual sub-blocks.

Squarestride Flex Out This kernel is a version of matrix mul squarestride that supports
a variable number of output bits. To achieve this, the number of elements stored in each
shared memory slab is reduced to the number of elements in an output slabs. Note that the
bit size within the shared memory is still only following the input bit count. Flex out means,
that different output strategies are covered by the same kernel.

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 767

6 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

GPU GPU Generation CMake CUDA NVCC G++
RTX 8000 Quadro Turing 3.25.1 11.5 11.5.119 9.3.0-17

Tab. 4: An overview of used build and compilation tools as used in the evaluation.

Squarestride Nogaps Shared Memory Slabs Flex Out This kernel is a version of matrix
mul squarestride nogaps that supports a variable number of output bits. This is achieved
using the same adaption as described by flex out. Slabs are being held in shared memory.

4 Evaluation

In this section, all of BEAMS algorithms are compared against the state-of-the-art Nvidia
matrix multiplication. While all approaches receive the same input data, Nvidias approach
works on an element level granularity with naive memory layout mentioned in 3. To allow a
fair comparison, a variant of Nvidias matrix multiplication algorithm has been created that
supports the saturated overflow behavior 2. As a rising trend, both general data sizes and
machine learning models are growing in size. Thus, we evaluate both a small 64 MiB matrix
multiplication and a larger 1 GiB matrix. Each data element is generated with varying bit
size ranging from 1 to 64 bit. Bit sizes smaller than 64 bit use zero suppression to create
a compressed data element. The Nvidia approach uses each element as 64 bit element.
All experiments run with 3 repetitions. The average run time of all three is used in the
evaluation. All experiments run on CUDA Cores and no tensor cores are used. Cublas is not
used as frame of reference, as it does not support 64 bit Integer Operations. As BEAM is
designed for Integer calculations, comparing against Cublas would be unfair.

4.1 Implementation

All experiments have been implemented in CUDA and C++. As build system Cmake is
used. The Code builds with Clang and Nvcc. The experiments have been performed on an
nvcc based binary.

4.2 Experimental setup

All experiments have been conducted on a Nvidia RTX 8000 GPU. For an overview of
the system see Table 4. The GPU offers 48 GB GDDR6 Memory with a total theoretical
maximum bandwith of 672 GB/s.

768 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 7

0 16 32 48 64

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
tim

e
[s

]
maxv_ovf

0 16 32 48 64

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

c2p2_ovf

0 16 32 48 64

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

sai_ovf

0 16 32 48 64
bits

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

tim
e

[s
]

maxv_sat

0 16 32 48 64
bits

0.1

0.15

0.2

0.25

0.3

c2p2_sat

0 16 32 48 64
bits

0.1

0.15

0.2

0.25

0.3

sai_sat

approach
nvidia_guide
tight_types
best_compressed

Compressed Matrix multiplication 64 MiB

Fig. 2: 64 MiB Matrix multiplication. Compressed bitwise algorithms compared against Nvidia Matrix
Guide and tight types approach. The best performing compressed algorithm is picked per point.

4.3 Results

Figure 2 shows an overview of different experiments on a 64 MiB data set. The grid of
images is based on the chosen output bits approach in X direction as described in Table 1.
The Y axis of the grid shows both different overflow approaches as shown in Table 2. Three
different approaches are shown in each graph. Tight types and Nvidia guide have been
explained in Section 3.4.. Best compressed is the best performing compressed algorithm
per bit from a pool of all mentioned algorithms in Section 3.4.

In case of saturated overflow behavior, Nvidia’s Matrix algorithm shows the best performance.
Tight types performs better than best compressed across all three different bit output strategies.
For saturated overflow behavior on 64 MiB Matrices, Nvidia’s approach is the best. However,
this changes if the overflow behavior is allowing overflows instead of saturating. In cases
where the matrix multiplication will not overflow because the output data size is sufficiently
large, the best compressed approach outperforms both, the Nvidia approach and tight types
massively.

The size of data sets is constantly growing for machine learning and data management. To
accommodate this trend, another experiment has been conducted on matrices with the size
of 1 GiB. The experiment follows the same approach as the 64 MiB one. The results are

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 769

8 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

0 16 32 48 64

1

2

3

4

5

6
tim

e
[s

]
maxv_ovf

0 16 32 48 64

1

2

3

4

5

6

c2p2_ovf

0 16 32 48 64

1

2

3

4

5

6

sai_ovf

0 16 32 48 64
bits

4

4.5

5

5.5

6

tim
e

[s
]

maxv_sat

0 16 32 48 64
bits

4

5

6

7

8

9

10

c2p2_sat

0 16 32 48 64
bits

4

6

8

10

12

sai_sat

approach
nvidia_guide
tight_types
best_compressed

Compressed Matrix multiplication 1 Gib

Fig. 3: 1 GiB Matrix multiplication. Compressed bitwise algorithms compared against Nvidia Matrix
Guide and tight types approach

shown in Figure 3. In case of overflow behavior allows overflow, an increased speedup
compared to the 64 MiB experiment can be achieved.

Saturated 1 GiB For saturated overflow behavior the result is vastly different and the
Nvidia approach is the overall worst performing one. For the bit range of 33 to 64, tight
types mirrors the Nvidia guide behavior, while best compressed outperforms both of them.
The reason for this behavior is that tight types is only able to put one compressed element
into one natively supported data type. Thus, a 33 bit unsigned integer leads to a 64 bit
unsigned integer in case of tight types. Below 33 bits, tight types offers a speedup of about
1.4x compared to Nvidia’s approach. For both output bit behaviors ceil two power two and
same as input combined with saturated overflow behavior, tight types is the best solution
for elements ranging from 1 to 32 bit size. In case of maximum value output behavior, the
compressed approach offers a small speedup between 1 und 7 bits input bit size. In case
of 64 bit, no compression occurs, which leads to similar results for all three approaches.
For very low bit sizes, best compressed performs increasingly worse due to being more
compute intense on a rising number of elements.

Overflow allowed 1 GiB Changing the overflow behavior to allow overflows, reduces the
compute intensity of the algorithm. Instead of using an intrinsic to check for overflow and
handling it with branching within the kernel, this approach is default GPU behavior and

770 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 9

0 16 32 48 64

1000

2000

3000

4000

5000

6000

7000

tim
e

[s
]

maxv_ovf

0 16 32 48 64

1000

2000

3000

4000

5000

6000

7000

c2p2_ovf

0 16 32 48 64
bits

4000

5000

6000

7000

8000

9000

10000

tim
e

[s
]

maxv_sat

0 16 32 48 64
bits

5000

10000

15000

20000

25000

c2p2_sat

approach
slab_16
slab_8
nogaps_16
nogaps_8

Compressed Matrix multiplication 1 GiB

Fig. 4: 1 GiB Matrix multiplication. Comparison of different compressed computation algorithms

does not need any extra branches. Best compressed performs best across all input bit sizes
with no exception. For larger output sizes in case of maximum value as chosen output bit
strategy, best compressed performs slower than the other output bit strategies.

Comparison of different compression approaches Figure 4 shows 4 different compression
algorithms, that are compared in detail. As the output bit strategy same as input is very
similar to ceil to power two, it has been omitted from the graphs. Slabs is fitting into one
element while ogaps features a contiguous bitstream. The missing data points indicate, that
some CUDA configurations demand more shared memory than available. Overall the slabs
approach outperforms nogaps with few exceptions. Within a block threads are 2 dimensional.
Slab 16 for example uses 16 threads in two dimensions, which results in 256 total threads.
Slab 8 only uses 8 threads per dimension, resulting in 64 total threads per block.

5 Related work

Shabag et. al have designed a compression framework integer based gpu computing [Sh22]
called tile-based lightweight integer compression. It is based on storing compressed data
in global memory and decompresses the data in shared memory. After computations, the
data needs to be re-compressed and written back to global memory. The key difference
to BEAM is, that BEAM does not need to decompress data before using it. However our

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 771

10 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

approach is limited to zero suppression, while Shabag et. al combine a number of different
compression schemes to achieve higher compression rates. Also, their approach is focused
on database operators and does not support matrix operations. Fang et. al have proposed
compression for CPU GPU co-processing for databases [FHL10]. In this scenario, PCI-E
becomes a major bottleneck, which can be improved by transferring compressed data.

6 Conclusion and summary

Our approach allows GPU matrix multiplication on a bit level granularity instead of the
usual data element level granularity. It has been evaluated on different overflow strategies
and output bit strategies. BEAM outperforms Nvidia slightly in case of a 64 MiB matrix
and massively on a larger 1 GiB matrix. On average our approach offers a good speedup
compared to the state-of-the-art approach. We look forward to further extend our bitwise
GPU computation approach to other domains.

References

[Da17] Damme, P.; Habich, D.; Hildebrandt, J.; Lehner, W.: Insights into the comparative
evaluation of lightweight data compression algorithms. Algorithms 1/1oranN,
1mappingdependingontheimplementation, 2017.

[FHL10] Fang, W.; He, B.; Luo, Q.: Database compression on graphics processors.
Proceedings of the VLDB Endowment 3/1-2, pp. 670–680, 2010.

[Nv] Nvidia Matrix Multiplication Guide, https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html#shared-memory.

[Sh22] Shanbhag, A.; Yogatama, B. W.; Yu, X.; Madden, S.: Tile-based Lightweight In-
teger Compression in GPU. In: Proceedings of the 2022 International Conference
on Management of Data. Pp. 1390–1403, 2022.

772 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

DNAContainer: An object-based storage architecture on
DNA

Alex El-Shaikh1, Bernhard Seeger2

Abstract: The digital data volumes produced worldwide per year are ever-increasing. Estimates show
that by 2025, we will have reached 175 zettabytes of globally created digital data. Despite today’s
advancements in storage devices, current database management systems cannot cope with these
amounts of data. More than the recent improvements in storage technologies are needed to meet the
ever-accelerating growth of generated data. This problem is further exaggerated when considering that
current storage technologies such as HDD and tape require replacement every few years. To combat
this deficiency, deoxyribonucleic acid (DNA) offers a novel durable (millennia scale), extremely dense,
and energy-efficient storage medium. However, current DNA systems lack support for random access
and more expressive query support beyond key-value lookups. In this paper, we present DNAContainer,
a novel storage architecture on DNA that spans an ample virtual address space on objects, enabling
random access to DNA at a large scale while adhering to required biochemical constraints. The
interface of DNAContainer also facilitates the implementation of common external data structures,
such as arrays and lists that store data in blocks of fixed size.

Keywords: DNAContainer; DNA Storage; Random Access; DNA Data Structures

1 Introduction

Current database management systems rely on solid state disks (SSDs), magnetic hard disk
drives (HDDs), and tapes as their primary persistent memory devices [Bo16]. However, due
to the dramatic increase in data produced daily, these devices will no longer cope with the
amount of data soon. As stated in [Li20a], the increase in capacity of current data storage
devices is already behind that of the data created. In addition, these traditional storage devices
are rather expensive [Ma20] and require continuous replacement every few years due to
their low durability [Bo16]. To address these severe problems, deoxyribonucleic acid (DNA)
has recently been considered for managing persistent data. DNA is an extremely dense
biomaterial holding up to 455 exabytes per gram, and thus at least six orders of magnitude
denser than current devices [Bo16]. DNA endures several centuries and consumes around
eight orders of magnitude less energy than traditional storage devices [Li20a, Zh16, Al12].
Despite these apparent advantages, current technologies for reading and writing DNA
induce a high latency (from hours to days). However, around 80% of generated digital
1 University of Marburg, Department of Mathematics and Computer Science, Hans-Meerwein-Straße 6, D-35043

Marburg, Germany elshaika@mathematik.uni-marburg.de
2 University of Marburg, Department of Mathematics and Computer Science, Hans-Meerwein-Straße 6, D-35043

Marburg, Germany seeger@mathematik.uni-marburg.de

cba doi:10.18420/BTW2023-50

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 773

mailto:elshaika@mathematik.uni-marburg.de
mailto:seeger@mathematik.uni-marburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-50

2 Alex El-Shaikh, Bernhard Seeger

information worldwide is considered cold [Ap19, QSH22], i.e., the data is not accessed
frequently, making DNA storage a potential candidate for the management of cold data. In
addition, the cost of reading and writing DNA have declined dramatically over the past
years [Li22].

Among the severe drawbacks to using DNA as storage are its unsatisfying direct access
ability and its poor interface for reading and writing dedicated objects. Similar to blocks
on traditional devices, DNA consists of oligonucleotides (oligos) that are contiguous
subsequences, generally of fixed size. Furthermore, an oligo consists of a payload between
a pair of DNA addresses, the so-called primer pair. The primers are addresses used for
random access via Polymerase Chain Reaction (PCR) [Or18]. Due to strict biochemical
restrictions on primers, only a few hundred primers exist in a DNA library, leading to a very
small address space. However, there is a second approach to direct accessing oligos that
uses microarrays with barcodes that are unique prefixes of the payloads. Then, the available
address space grows up to several million [El22].

In this paper, we primarily address the second drawback that current DNA storage systems
do not provide a coherent interface to write and read random data objects. The reason is
that DNA does not offer a natural linear address space as it is known from disks and tapes.
Instead, there is only a key-value approach that maps a data object identifier (DOI) directly
to a barcode or primer. To access a requested data object, its DOI has to be translated into
the DNA address before performing the actual read operation. A so-called routing table
can manage the mappings on a traditional storage device. Furthermore, an insertion of a
new object first generates a new barcode (or primer) and updates the routing table before
storing the actual object on DNA. This direct approach of current DNA storage systems to
accessing data on DNA has serious drawbacks. For example, the generation of barcodes is
non-trivial because they have to be sufficiently different from the others.

In this paper, we introduce DNAContainer, a novel DNA storage architecture that offers
a virtual address space of objects on DNA, including put and get operations, addresses
translation, and rerouting of invalid addresses. Our system reads objects from DNA
via microarrays that allow using the ample available address space. As a special case,
DNAContainer also offers the same interface as block storage when the objects are defined
as fixed-sized blocks. Furthermore, a block storage facilitates the direct implementation of
essential external data structures like arrays and lists on DNA, hiding the actual complexity
of a DNA device. For example, DNAContainer internally checks if the generated addresses
are too similar by utilizing locality-sensitive hashing (LSH) and approximating the Jaccard
similarity of two DNA sequences [IM98, Br97, Bu01, Be15]. In addition, DNAContainer
supports error correction mechanisms such as Reed Solomon [RS60] to address the inherent
problem of error-prone reading from and writing to DNA. Users of DNAContainer do not
have to deal with these problems anymore and instead use the common interface of storage
systems as it is known from other devices.

774 Alex El-Shaikh, Bernhard Seeger

DNAContainer 3

The remainder of the paper is structured as follows. The following Sect. 2 discusses recent
works and studies on DNA systems and virtual address spaces. Section 3 introduces notation
and terminology commonly used in the context of DNA storage. Section 4 provides the
design and implementation of DNAContainer and its components. It further shows how
to generate DNA addresses and payloads that adhere to certain biochemical constraints.
In Sect. 5, we detail the implementation of basic data structures like array and list on
DNAContainer. Section 6 presents experimental results of a simulation with DNAContainer
managing millions of oligos. Finally, Sect. 7 concludes the paper.

2 Related Work

In the following we first discuss related work on DNA storage systems. Thereafter, we put
our focus on approaches with virtual address spaces.

The approach in [Ap19] encodes relational data objects (records) interleaved with meta-
information as oligos. The meta information contains, e.g., the table name of the record and
its primary key. Reading oligos is achieved by utilizing primers and PCR. Since only a few
primers are available due to the biochemical restrictions, i.e., the address space is small,
the same primer is used to address multiple records. For example, to read a specific record
from DNA, a pre-known primer is used to fetch all oligos tagged with that primer. The
encoded meta-information is further used to return the desired record, e.g., by its primary
key. Moreover, the meta-information encoded within each oligo significantly decreases the
information density per oligo, and the realized storage capacity is around ≈ 16.5%.

In [Or18], 35 different files were placed in a separate DNA pool each, resulting in 200MB
of information. Since PCR utilized random access, this physical separation of files was
necessary to overcome the imposed restrictions on the limited available primers. Additionally,
there are 35 physical addresses, each of which resembles a physical location of a single tube
with one file, which significantly decreases information density over all tubes.

Fountain codes were used in [EZ17] to encode 2.15MB of data plus 7% redundancy. Similar
to our previous work [El22], fountain codes provide a direct way to tune redundancy and
are very practical for DNA encoding. Nevertheless, the work in [EZ17] utilizes PCR for
retrieving data and does not support random access at a large scale.

So far, PCR is still the standard technology to read data from a DNA pool. In [Li20b], an
alternative technology called DORIS is proposed to overcome PCR limitations yielding a
larger address space at around 12, 000 available addresses. However, even 12, 000 addresses
are not sufficient to exploit the massive storage capacity of DNA.

The random access approach presented in [Ba20] encodes data physically encapsulated in
impervious silica capsules that are surface-labeled with selected DNA sequences called
barcodes. These barcode labels re-emit light when excited. Hence, each file is labeled with
specific barcodes and is detected by special optical channels. For example, the file “bird"can

DNAContainer: An object-based storage architecture on DNA 775

4 Alex El-Shaikh, Bernhard Seeger

be detected with the barcode “can fly” and so on. However, only labeled files can be detected.
Additionally, special equipment, such as optical channels, is needed.

According to [CNS19, Xu21], most recent studies do not support random access to their DNA
storage system. These systems require a 5 to 3, 000-fold physical and logical redundancy to
reduce errors, substantially reducing storage density. In addition, many DNA systems fail to
encode information such that the resulting DNA is sufficiently stable for long-time archival.
In particular, many DNA systems fail to restore the original data objects after reading
the DNA [Wa19]. Furthermore, we are unaware of a system with virtual address space to
access a data object. Instead, a user has to provide a primer for reading a data object. These
primers must be managed on a traditional storage device. More complex queries beyond
simple key-value queries are not supported on data collections. In particular, data structures
like lists and arrays are not supported in any system, making data management difficult.
Moreover, we use barcodes to exploit the large available address space [El22], whereas most
current systems still rely on PCR and primers, and thus only support a small address space.

There is a plethora of work related to virtual address spaces in computer systems. For
example, a few object-oriented database systems like O2 [De90] have used an address
transformation table to convert unique object addresses visible to the user into internal
addresses. In addition, a flash disk also offers a similar mapping known as the flash translation
layer (FTL) to implement wear leveling [MFL14]. However, the designs of these approaches
do not consider the unique features of DNA storage and thus are not directly applicable.

A common problem of today’s storage technologies is successfully restoring archived
data after several decades of writing the data to storage devices [AJ20]. For example, as
mentioned above, current storage technologies such as flash memory rely on FTL, which
requires storing meta-information about the corrupted memory cells to keep the device
functioning. Current DNA systems manage the used primers (or barcodes) on a traditional
storage device and face a similar problem. That is, if the used primers and barcodes
are lost, the data on DNA cannot be restored. However, for DNA, storing the required
meta-information also on DNA might solve this problem. DNA is an omnipresent material,
and its principal building structure has never changed over millions of years and is expected
to be ubiquitous for millions of years in the future.

3 Preliminaries

DNA is a long molecule found in all known living organisms. It carries the genetic code,
such as instructions, functions, and reproduction in living organisms, including some viruses.
Moreover, DNA is composed of smaller units called nucleotides. A nucleotide contains one
of the following nucleobases: Adenine (A), Thymine (T), Cytosine (C), or Guanine (G). These
nucleotides’ specific combination and order make up living organisms’ different instructions
and functions. Finally, DNA is composed of two polynucleotide strands of the same length
that loop and twist around each other to form a double-helix. Each nucleotide of one chain

776 Alex El-Shaikh, Bernhard Seeger

DNAContainer 5

pairs and forms hydrogen bonds with the corresponding nucleotide from the other strand.
According to the canonical Watson-Crick pairing [Sp59], A binds to T and G to C. Hence, we
say A is complementary to T, C is complementary to G, and vice versa.

In the following subsections, we will introduce key terms, such as DNA pool and hybridization,
typically used in the DNA storage context.

3.1 DNA Pool and Library

A DNA pool is a collection of one or more double-stranded DNA fragments held in-vitro,
i.e., outside of a living organism, in a single container or test tube. Typically, one container
refers to a single pool, whereas multiple pools represent a library. Nevertheless, a single
pool can also be referred to as a library.

3.2 Encoding and Decoding

The term encoding is used to describe the process of transforming binary data to DNA, i.e.,
instead of bits, the information is represented by nucleotides. On the other hand, decoding
describes the transformation of nucleotides back to the original binary representation.

3.3 Denaturation and Hybridization

Double-stranded DNA is generally stable under physiological conditions, meaning the bonds
forming the double-helix will remain bonded [Ch99, YPFK06]. However, as illustrated in
Fig. 1, raising the surrounding temperature, e.g., in a laboratory, will cause the strands to
separate as single-stranded DNA (ss-DNA). This process is called denaturation. Therefore,
lowering the temperature will allow the ss-DNA to bind together as double-stranded DNA
(ds-DNA), which is called hybridization.

3.4 DNA Synthesizing and Sequencing

DNA synthesis is writing DNA by linking and joining nucleotides together, forming a
single-stranded sequence. Today’s technologies allow near-perfect DNA synthesis for over
thousands of DNA fragments in parallel. However, a small error can already lead to a
significant decrease in product quality and redundancy is introduced to avoid these errors.
Thus, modern sequencing machines [KC14] read the same sequence multiple times. Both
synthesizing and sequencing costs have been declining dramatically over the past years,
and sequencing productivity has already outpaced Moore’s law by 2008 [Ap19]. However,
sequencing machines are designed for reading an entire DNA and not for random access so
far.

DNAContainer: An object-based storage architecture on DNA 777

6 Alex El-Shaikh, Bernhard Seeger

Increasing
Temperature

Denaturation

Hybridization

ds-DNA ss-DNA

T
A

C
G

A
T

C
G

G
C

T
A

A
T

A
T

G
C

A
T

A
T

T

C

A

G

C

A

A

A

G

T

T

A

G

T

C

G

T

T

T

C

A

A

Decreasing
Temperature

Fig. 1: DNA denaturation and hybridization.

3.5 Reading DNA with a Microarray

A microarray consists of a small surface (in the size of today’s HDD) usually made of glass.
It contains DNA sites to which DNA sequences can be immobilized or printed [Ku01].
The array can fetch a DNA sequence by printing its complementary sequence to one of its
sites. These printed DNA sequences are often called barcodes or probes, but we simply
call them DNA addresses. For example, a microarray with 20 printed DNA addresses
can simultaneously fetch 20 oligos from an oligo pool. This procedure is done as follows.
First, the oligo pool’s temperature is raised, denaturing the contained DNA. Next, the
denatured oligos are placed onto the microarray. Then, the temperature is lowered to allow
the single-stranded oligos to hybridize to their complementary sites on the array. Finally, the
array is washed, removing all the remaining oligos that did not hybridize, i.e., bind to any
of the array’s sites. The obtained bonded oligos are sequenced, and the data is transferred
to a computer for further analysis. Note that a microarray can fetch a sequence 𝑠, even if
only a complementary subsequence of 𝑠 is printed to the array. Today’s microarrays can
contain up to several million sites [Bu13], allowing access to millions of DNA sequences
simultaneously.

3.6 DNA Constraints

As described above, sequencing and synthesizing DNA is error-prone. For example, it is
well-known that DNA sequences with a too high or low number of G’s and C’s causes a high
error probability in the sequencing process [Sc20]. Hence, to reduce errors, our generated
DNA codes must adhere to the following constraints:

778 Alex El-Shaikh, Bernhard Seeger

DNAContainer 7

1. The number of G’s and C’s (GC content) should be around 50%.

2. Consecutive repeats of the same nucleotide (Homopolymer) should be avoided.

3. Mutual overlaps of DNA addresses should be avoided.

4. Mutual overlaps of the oligos should be avoided.

The first and second constraints considerably reduce sequencing and synthesizing errors
[Sc20]. Constraint (3) ensures that the microarray treats every DNA address uniquely.
Finally, constraint (4) guarantees that a DNA oligo does not carry a DNA address as a
payload.

4 The Design of DNAContainer

This section describes the architecture and functionality of DNAContainer. DNAContainer
provides an interface for writing binary data to and reading it back from DNA into the
memory of a computer system. It manages a DNA pool consisting of oligos of the same
length 𝐿𝑜𝑙𝑖𝑔𝑜, similar to a block on common storage devices. Each oligo is composed of an
address and a payload. Addresses are of the same length 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠, and payloads are then
of length 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝐿𝑜𝑙𝑖𝑔𝑜 − 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 . Current DNA synthesis and sequencing costs are
typically lower for shorter oligos (𝐿𝑜𝑙𝑖𝑔𝑜 ≤ 250) than for longer ones [HMG19, GMM16].
Thus, the size of an oligo is substantially smaller than a typical block size. Figure 2 provides
an example of an oligo of 𝐿𝑜𝑙𝑖𝑔𝑜 = 18, 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 6, and 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 12.

A C A TG G T G A TCGTACT A C

PayloadDNA Address

Oligo

Fig. 2: The composition of an oligo in DNAContainer.

Suppose a large data object like a block has to be written to DNA, exceeding the size of an
oligo. In that case, DNAContainer splits the data object into multiple segments, each of
which fits into an oligo’s payload. To read the data object back from DNA, DNAContainer
first computes all DNA addresses of the relevant oligos. Then, a microarray retrieves the
corresponding oligos, and finally, the oligos are assembled and decoded such that the object
(block) is in memory again.

In the following, we give an overview of the functionality of DNAContainer, which can
manage a set of objects in a linear address space. If objects refer to fixed-size blocks,
DNAContainer offers the standard interface of block-based storage. In contrast to traditional
devices, however, objects are not required to be of the same length. Rather than using block,
we prefer using the generic term objects instead.

DNAContainer: An object-based storage architecture on DNA 779

8 Alex El-Shaikh, Bernhard Seeger

Each data object written to the DNA storage is tagged with a unique integer number
Id obtained from a linear virtual address space. Furthermore, the Id is translated to a
DNA address and vice-versa (see Sect. 4.1), creating an unambiguous mapping Id ↔ DNA

address. The Id is a virtual address visible to the user, while the associated DNA address
refers to the root oligo of the object. In particular, a user can read the associated data
object from DNA by simply using the virtual address. Similar to bad blocks on disks, this
mapping ensures that virtual addresses are usable, which is not valid for the underlying DNA
addresses. This process is further explained in Sect. 4.1.2. Furthermore, the data object, i.e.,

DNAContainer Interface

get (Id) register (n)put (object)

Payload
Encoder/Decoder

Oligo Pool Routing Table

DNA
Constraints

put (Id, object)

Address Routing

Address
Translation

Address Encoding

Fig. 3: Overview of DNAContainer and its components.

the information in an oligo’s payload, can be encoded with different methods that we mention
in more detail in Sect. 4.2. Even if the payload’s encoder returns a payload that does not
adhere to the constraints in Sect. 3.6, DNAContainer implements additional optimizations
such that it fulfills the required constraints, which are discussed in Sect. 4.3. Figure 3
provides an overview of DNAContainter and its components. To sum up, DNAContainer is
composed of the following main components: address translation to map an Id to a DNA
address and vice-versa, address routing to map a DNA address to a new valid DNA address,
the payload encoder, the payload decoder, and the DNA pool where the data is stored.

Our interface provides an abstraction layer to the methods mentioned above. In particular, to
write a data object to DNA, we use the function put, the function get to read a data object
from DNA, and register to pre-register an Id that can be used to write a data object at
some point in the future, using that Id. The following discusses each of these functions in
more detail.

780 Alex El-Shaikh, Bernhard Seeger

DNAContainer 9

register. As mentioned above, our DNA system assigns each data object a unique Id. The
function register returns a unique Id that is not assigned a data object yet. In other words,
this Id is reserved for a future data object that can be stored later. Note that the returned Id
is not yet mapped to a DNA address and is only done once an actual data object is to be
stored in the DNA storage. We implement the function register(n) that returns 𝑛 newly
registered consecutive Id numbers.

put. This function represents the write operation on DNA. It is used to store a data object
in the DNA storage. We implement two variants of put. The first variant takes a data object,
stores it in the DNA storage, and returns a newly registered unique Id. This newly registered
Id is calculated by calling register(1). The second variant takes an Id that was previously
registered along with a data object and stores this data object in the DNA storage given
the Id. We can extract the data object from the DNA storage for both variants by calling
get(Id). The call put(Id, 𝑑) can be used to replace the currently stored data object at Id
with 𝑑. This is done by rerouting the virtual address Id (see Sect. 4.1.2), and the oligos of
the old data object are not physically removed by default. However, to physically remove a
data object from DNAContainer, the corresponding oligos can be fetched using get and
discarded. Hence, the used addresses of physically removed objects can be reused.

get. This operation represents the read operation from DNA. By providing an Id to the
function, get(Id) returns the data object associated with that Id. Hence, get is the inverse
of put. For example, the following equality 𝑑 = get(put(𝑑)) holds for any data object 𝑑.

4.1 Address translation

DNAContainer provides its interface based on the virtual address space on integers. The
put operation writes a data object into the DNA storage by generating a new Id, which is
translated to a DNA address. The data object is encoded to the payload, and the oligo is
formed by annealing the DNA address and the obtained payload. The following sections
detail the encoding of data objects as payloads and the translation of Ids to DNA addresses.

4.1.1 Address Encoding

We utilize the method described in [Go13] to encode an Id to a DNA address. First, the
Id is converted to a string of bytes by mapping every digit in base 10 to a byte character.
Next, the string is compressed with a static Huffman code of base three. Then, each of the
obtained Huffman digits is mapped to a nucleotide, forming a DNA sequence. The obtained
DNA sequence could be longer than 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠; thus, we set 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 to be sufficiently large.

DNAContainer: An object-based storage architecture on DNA 781

10 Alex El-Shaikh, Bernhard Seeger

Note that this method is reversible, i.e., following each mentioned step backward leads to
the Id used.

Furthermore, the obtained DNA sequence could be shorter than 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 or even violate
the constraints mentioned in Sect. 3.6. In that case, we apply the optimizations explained in
Sect. 4.3. The optimizations always return a DNA address of length 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 . However, if
the sequence after optimizations does not adhere to the required constraints, we route the
used Id to a new Id, which is explained in the following section.

4.1.2 Address Routing

Suppose a DNA address obtained after encoding and optimizations fails to fulfill the given
constraints in Sect. 3.6. In that case, the used Id is mapped (routed) to a new Id as shown in
Algorithm 1. Let us refer to the Id as 𝐼𝑑, the new Id as 𝐼𝑑𝑅, and the mapping 𝐼𝑑 ↦→ 𝐼𝑑𝑅

as the routing table. As depicted in Fig. 3, the address translation manages the routing
table 𝐼𝑑 ↦→ 𝐼𝑑𝑅, which is stored on a traditional storage device. The routing table must be
read before accessing the DNA storage. The new 𝐼𝑑𝑅 is encoded with the same method
mentioned in the section above.

Algorithm 1: Routing 𝐼𝑑 to 𝐼𝑑𝑅

Input: 𝐼𝑑
Output: 𝐼𝑑𝑅

1 𝐼𝑑𝑅 := 𝐼𝑑

2 𝑎𝑑𝑑𝑟 := asDnaAddress(𝐼𝑑𝑅)
3 while not constraints.adhere(𝑎𝑑𝑑𝑟) do
4 𝐼𝑑𝑅 := 𝐼𝑑𝑅 + 1
5 𝑎𝑑𝑑𝑟 := asDnaAddress(𝐼𝑑𝑅)
6 routingTable.put(𝐼𝑑 ↦→ 𝐼𝑑𝑅)
7 return 𝐼𝑑𝑅

As shown in Algorithm 1, the routing finishes once a new 𝐼𝑑𝑅 that fulfills the constraints is
found. Note that 𝐼𝑑 and 𝐼𝑑𝑅 could be equal if the Id already adheres to the constraints. The
algorithm iterates over the integers 𝐼𝑑𝑅 = 𝐼𝑑, 𝐼𝑑 + 1, 𝐼𝑑 + 2, . . . , translating each to a DNA
address, only stopping once it finds 𝐼𝑑𝑅 of which the DNA address fulfills all the required
constraints.

4.2 Payload Encoding

There are several approaches to how to encode a data object as DNA. We refer to the data
object as a stream of bytes, which can be mapped to DNA nucleotides. For example, a
straightforward method is to map every two consecutive bits to a respective DNA nucleotide,

782 Alex El-Shaikh, Bernhard Seeger

DNAContainer 11

e.g., 00 ↦→ A, 01 ↦→ C, 10 ↦→ T, and 11 ↦→ G. In that case, a data object consisting of long
runs of zeros or ones would get mapped to homopolymers, violating the required constraints
in Sect. 3.6. More sophisticated methods [Go13, EZ17, Do20, El22] have been proposed,
providing DNA codes that adhere to some or all the required constraints regardless of
the input byte stream. For DNAContainer, any method encoding the data object to DNA
nucleotides can be used because we apply optimizations (see Sect. 4.3) to return payloads
that adhere to all of the mentioned constraints. However, by utilizing a fountain code [EZ17]
to encode the payload, we already obtain DNA codes that obey the constraints (1) and (2)
and include error correction, which leaves optimizing for the remaining constraint (4).

Ids, n

Ido Payload

Ido

Ido

Ids

Ids+ 1

annealing header
to payload

partitioning

Lpayload Lpayload Lpayload

Oligos of
length Loligo

...

Ids+ n - 2

Lpayload

Fig. 4: Partitioning long oligos in DNAContainer.

Furthermore, if the given data object is too large, meaning that the payload is longer
than 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 , then the payload is partitioned among multiple oligos. This procedure is
illustrated in Fig. 4 and is explained in the following. Let us assume that 𝐼𝑑𝑜 is the registered
Id used to store the data object. First, we need to calculate the number of oligos 𝑛 to which
the long payload is split. Next, we register 𝑛 − 1 consecutive Ids, referred to as 𝐼𝑑𝑠 + 𝑖 for
𝑖 = 0, . . . , 𝑛 − 2. Then, we anneal 𝐼𝑑𝑠 and 𝑛 to the left end of the long payload. We will
refer to these two numbers as the payload’s header, marked in red in Fig. 4. Note that we
map the integers to DNA by representing them in base four and finally map each base four
digit to a corresponding nucleotide. Therefore, the occupied space of the payload’s header
is always the same. After that, we split the payload (payload plus header) into partitions
𝑝𝑖 , 𝑖 = 0, . . . , 𝑛 − 1 of the size 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 . Finally, we need to address the obtained partitions.
The first partition 𝑝0 is addressed by 𝐼𝑑𝑜, and each following partition 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1
is addressed with 𝐼𝑑𝑠 + 𝑖 − 1 as shown in Fig. 4. This method only works if the length
of the payload plus its header are divisible by 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 . In the other case, the last split
partition 𝑝𝑛−1 would be smaller than 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 . To solve this issue, we add specific padding

DNAContainer: An object-based storage architecture on DNA 783

12 Alex El-Shaikh, Bernhard Seeger

to 𝑝𝑛−1, resulting in all obtained oligos having the same length. Note that the function put
implements the partitioning procedure and returns 𝐼𝑑𝑜 for the given data object.

To further optimize the oligos (after partitioning), we initially split a long payload into
smaller payloads, each shorter than 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 , and further add specific padding to each of
them. This added padding is used to adjust the GC content and is further explained in the
following section.

To decode the obtained oligos, i.e., to read the encoded data object, we read the first oligo
given by 𝐼𝑑𝑜. Next, we decode 𝐼𝑑𝑠 and 𝑛 from the obtained payload to obtain the next virtual
addresses 𝐼𝑑𝑠 + 𝑖, 𝑖 = 0, . . . , 𝑛 − 2. Finally, we read the corresponding oligos, assemble the
payloads, and decode the data object.

4.3 Optimizing DNA Sequences

This section details the optimizations applied for DNA addresses and payloads. We implement
two optimization steps. The first adds specific padding to a given DNA sequence, correcting
its GC content closer to 50%. The second generates a number of permutations of the DNA
sequence, selecting the one that adheres to all the constraints in Sect. 3.6.

4.3.1 Padding

If a DNA sequence is too short and the GC content is not 50%, we append additional
nucleotides until the desired length is reached. For padding, we use 11 pre-computed DNA
sequences 𝑠𝑖 , 𝑖 = 0, . . . , 10 where 𝑠𝑖 has a GC content of 𝑖

10 . To add padding to a given DNA
sequence 𝑎, we append nucleotides from the padding sequence 𝑠𝑖 that best corrects the GC
content of 𝑎 to 50%. To mark the position at which the padding starts, we first append a
specific delimiter sequence that is not contained as a subsequence in any 𝑠𝑖 . Let us illustrate
this with an example. Suppose 𝑎 = (TCATT) with a GC content of 20%, and the target
length of 𝑎 is 𝑡 = 12. Let the delimiter be 𝑑 = (GT). The sequence 𝑎 after appending the
delimiter sequence is 𝑎𝑑 = (TCATTGT) with a GC content of ≈ 28.5%. There are 5 remaining
nucleotides to add from one of the pre-computed padding sequences. Since 𝑎𝑑 has a GC
content lower than 50%, we need to add padding information with a GC content higher than
50% to obtain a sequence with an overall GC content of nearly 50%. We evaluate the index 𝑖

of the ideal padding sequence 𝑠𝑖 as:

𝑖 =

⌊
10 · max

{
0,

𝑡
2 − |𝑞 |{G,C}
𝑡 − |𝑞 |

}⌋
(1)

The expression |𝑞 | returns the number of nucleotides in 𝑞, and |𝑞 |{G,C} returns the number
of nucleotides in 𝑞 that are either a G or a C. Plugging in 𝑡 = 12 and 𝑞 = 𝑎𝑑 in Eq. (1),

784 Alex El-Shaikh, Bernhard Seeger

DNAContainer 13

we obtain the padding sequence’s index 𝑖 = 7. Let us assume 𝑝7 was pre-computed as
𝑝7 = (TGCGGCTCCA). Hence, to reach 𝑡 = 12, we append the first 5 nucleotides from 𝑝7 to 𝑠𝑑
resulting in (TCATTGTTGCGG) with a GC content of 50%.

The obtained DNA sequence after padding is likely to fulfill the constraint (1) in Sect. 3.6
but could still violate the remaining constraints. To adhere to all constraints, we further
optimize the sequence after padding by permutations, which is explained in the following
section.

4.3.2 Permutation

The DNA sequence obtained after padding could still contain homopolymers and have
mutual overlaps with, e.g., other DNA addresses or payloads. To fulfill the remaining
constraints (2), (3), and (4), we generate 𝑚 permutations of the given DNA sequence,
selecting the permutation that fulfills the constraints. We use the classical Fisher-Yates
method [Du64] to compute a permutation. This method generates 𝑘 − 1 index pairs to be
swapped, where 𝑘 is the length of the sequence. This method requires sampling random
numbers from a random numbers generator (RNG) that requires a seed for initialization.
Two RNG instances initialized with the same seed produce the same random numbers in the
same order. To calculate the seed of a DNA sequence 𝑞, we evaluate:

𝑠𝑒𝑒𝑑 (𝑞) = |𝑞 |{A} · |𝑞 |{C} · |𝑞 |{T} · |𝑞 |{G} (2)

where |𝑞 |{𝑏} counts the number of 𝑏 ∈ {A, C, T, G} in 𝑞. Note that 𝑠𝑒𝑒𝑑 (𝑞) is invariant
of permutation, i.e., the seed of 𝑞 and all its permutations is the same. Hence, we can
reverse a permuted sequence to its original by knowing the seed. Finally, to compute the
𝑚 permutations of 𝑞, we initialize 𝑚 RNGs with 𝑠𝑒𝑒𝑑 (𝑞) + 𝑖, 0 ≤ 𝑖 < 𝑚 that are used to
permute 𝑞. Additionally, we append the offset 𝑖 to each permuted sequence. Therefore, to
reverse a permuted sequence, first, we decode and remove the encoded offset 𝑖 from the
DNA sequence to obtain the permuted DNA sequence 𝑞 without offset. Next, we initialize
an RNG with 𝑠𝑒𝑒𝑑 (𝑞) + 𝑖. Finally, using this initialized RNG, we swap the 𝑘 − 1 generated
index pairs in reverse, i.e., starting from the (𝑘 − 1)-th index pair to the first index pair.

After permutation, the obtained permuted sequence has its GC content corrected and is
not likely to contain any homopolymers. Constraints (3) and (4) are further checked by
approximating the Jaccard distance between two DNA sequences using LSH according
to [El22]. The Jaccard distance is a metric between 0 and 1. A Jaccard distance of 0
means that the given two DNA sequences are as similar as possible, and a Jaccard distance
of 1 is the maximum dissimilarity two DNA sequences can have. Hence, we select the
permuted sequence that simultaneously contains no homopolymers and maximizes the
Jaccard distance to the other DNA sequences.

This optimization is applied to both DNA addresses and payloads. If a DNA address after
padding and permutation still does not fulfill all constraints (1), (2), (3), and (4), we route its

DNAContainer: An object-based storage architecture on DNA 785

14 Alex El-Shaikh, Bernhard Seeger

corresponding 𝐼𝑑 to a new 𝐼𝑑𝑅 as detailed above in Sect. 4.1.2. If a payload does not fulfill
the constraints, even after optimizations, we have the following options: (i) increase the
number of permutations 𝑚, and (ii) incorporate the constraints into the payload’s encoder
and do not apply any optimizations to payloads. The first option to increase the number of
permutations 𝑚 is straightforward. More permutations increase the probability of finding
a permuted DNA sequence that adheres to the constraints. The second option shifts the
problem of generating payloads that adhere to certain constraints to the payload’s encoder
and is illustrated to work by utilizing fountain codes in [El22].

5 Implementing Data Structures on DNAContainer

Data structures provide useful abstractions and are necessary for efficient data access [Co22].
It is the basis for implementing efficient algorithms and even allows the integration of index
structures directly on DNA. Hence, we implement three basic data structures: (i) Reference,
(ii) Array, and (iii) List on DNAContainer, showcasing its usability.

5.1 Reference

This data structure (or data type) is implemented by the function put. In particular, by
calling put(𝑑), the data object 𝑑 is written to DNAContainer, returning a unique 𝐼𝑑. We
call this 𝐼𝑑 the reference to 𝑑. Therefore, essentially, every data object in DNAContainer is
stored by a reference.

5.2 Array

Arrays are a well-known construct that current programming languages implement and
data management algorithms rely on. We implement the array construct on DNAContainer,
enabling concurrent access to its elements using only one 𝐼𝑑. Let 𝐼𝑑𝑜 refer to an 𝑚-elements
array. We further assume that every element of this array is encoded to DNA, e.g., by a
fountain code. To write this array to DNAContainer, we generate 𝑚 consecutive Ids by
calling register(𝑚). Each of these Ids is used as a reference to an array’s element. Let us
refer to these Ids as 𝐼𝑑𝑎, 𝐼𝑑𝑎 + 1, . . . 𝐼𝑑𝑎 + 𝑚 − 1, and to the 𝑖-th element of the array as 𝑒𝑖
where the first element is 𝑒0 and the last is 𝑒𝑚−1. As illustrated in Fig. 5, we utilize the put
function with which we store each array’s element calling put(𝐼𝑑𝑎 + 𝑖, 𝑒𝑖). Note that by
calling put, the element could be partitioned to multiple oligos as explained in Sect. 4.2.
Furthermore, 𝐼𝑑𝑜 is used to store 𝐼𝑑𝑎 and 𝑚 as payload information.

To read an element of the array, we first call get(𝐼𝑑𝑜) to obtain the payload encoding
𝐼𝑑𝑎 and 𝑚. After that, we can access any index 𝑖 of the array by calling 𝑔𝑒𝑡 (𝐼𝑑𝑎 + 𝑖),
𝑖 = 0, . . . , 𝑚 − 1, returning the element 𝑒𝑖 of the array. Moreover, we can read the entire
array in parallel by calling get on each index of the array simultaneously.

786 Alex El-Shaikh, Bernhard Seeger

DNAContainer 15

Ida

Ida + 1

Ida + m - 1

Ido

e0

e1

...
em-1

Ido Ida, m

...

Ida + 1 e1Ids, n

Ida + 1

Ids

Ids+ 1

partitioning

Oligos of
length Loligo

...
Ids+ n - 2

put(Ida, e0)

put(Ida, e1)put(Ida, em-1)

put(Id0, {Ida, m})

Fig. 5: Implementation of the array construct on DNAContainer.

5.3 List

Like an array, a list is a collection of elements where we assume the elements are mapped
to DNA. However, unlike arrays, lists do not have a fixed size. DNAContainer implements
a list as a chain of elements where each element points to the next one. Let us illustrate
the implementation on DNAContainer by the example given in Fig. 6. 𝐼𝑑𝑜 is the Id used to
reference the list of elements 𝑒0 and 𝑒1 marked as blue. The first element 𝑒0 is stored in
DNAContainer along with a newly registered 𝐼𝑑1 by calling put(𝐼𝑑𝑜, {𝐼𝑑1, 𝑒0})where 𝐼𝑑1
is used to reference the next element of the list. Hence, element 𝑒1 is stored in DNAContainer
along with the next newly registered 𝐼𝑑2 and is referenced by 𝐼𝑑1 by put(𝐼𝑑1, {𝐼𝑑2, 𝑒1}).
Since we invoke a put operation every time we append an element to the list, each element
could be partitioned as detailed in Sect. 4.2. We repeat this procedure for every element
appended to the list. For example, adding a third element 𝑒2 to the list is done by storing 𝑒2
along with a newly registered 𝐼𝑑3 and referenced by 𝐼𝑑2. This is a crucial difference to an
array, where the array structure does not support adding elements after referencing the array.

DNAContainer: An object-based storage architecture on DNA 787

16 Alex El-Shaikh, Bernhard Seeger

Ido

Ido Id1 e0

Id1 Id2 e1

...

Id1 e1Ids, n

Id1

Ids

Ids+ 1

partitioning

Oligos of
length Loligo

...
Ids+ n - 2

put(Ido, {Id1, e0})

put(Id1, {Id2, e1})

Id2

Fig. 6: Implementation of the list construct on DNAContainer.

To read an element from the list, we first call get(𝐼𝑑𝑜) to obtain the payload encoding 𝐼𝑑1
and 𝑒0. After that, we could return the first element 𝑒0. Otherwise, we iterate through the
list by sequentially calling get(𝐼𝑑𝑖), 𝑖 = 1, . . . until we obtain the desired element.

6 Experiments

We implemented DNAContainer in Java and tested it by simulating several million
put and get operations. All the experiments were run on a computer with 256 logical
cores (1.5 − 2.25 GHz each) and 1 TB of RAM. We used the data set from the Open-
Sky Network in (https://opensky-network.org/datasets/publication-data/climbing-aircraft-
dataset/trajs/A321_valid.csv.xz), a relational table containing the tracking information of
aircraft. We inserted the first 100, 000 lines (records) into DNAContainer (without error
correcting codes), varying the address and payload sizes, resulting in millions of oligos.

As shown in Fig. 7a, the obtained oligos’ and DNA addresses’ GC content is at ≈ 50%,
adhering to the first constraint in Sect. 3.6. Furthermore, the average longest homopolymer’s
length is between 3 and 4, fulfilling the second required constraint as depicted in Fig. 7b.
Moreover, to check the remaining constraints (3) and (4), we used LSH according to [El22]
and set 𝑘 = 5 for the Jaccard similarity. Hence, our DNA addresses and oligos do not
significantly overlap and fulfill the remaining constraints as shown in Fig. 7c.

788 Alex El-Shaikh, Bernhard Seeger

https://opensky-network.org/datasets/publication-data/climbing-aircraft-dataset/trajs/A321_valid.csv.xz
https://opensky-network.org/datasets/publication-data/climbing-aircraft-dataset/trajs/A321_valid.csv.xz

DNAContainer 17

100 120 140
Lpayload

0.0

0.1

0.2

0.3

0.4

0.5

G
C

 c
on

te
nt

DNA sequence
address
oligo

(a) The GC content.

100 120 140
Lpayload

0

1

2

3

4

5

H
om

op
ol

ym
er

 le
ng

th

DNA sequence
address
oligo

(b) The longest homopolymer length.

100 120 140
Lpayload

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

di
st

an
ce

DNA sequence
address
oligo

(c) The distance of every address and oligo to the other
addresses and oligos calculated by LSH, respectively.

Fig. 7: GC content, the longest homopolymer length, and the mutual Jaccard distance of oligos and
addresses.

The DNA optimization parameters are set as follows. For padding, we inserted ≈ 16% of
the payload’s size as padding information to each payload. Furthermore, we used 𝑚 = 16
permutations for DNA addresses and payloads. After optimization, 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ranged in
100, 120 and 140, and 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 in 60, and 80. Note that by increasing the number of
permutations, we could, e.g., reduce the mutual overlaps of the oligos. However, setting
the permutations count to 𝑚 = 16 was sufficient to obtain DNA without significant mutual
overlaps. We repeated this experiment and turned off the permutations (𝑚 = 0), resulting in
longer homopolymers, and the largest difference was that the mutual overlaps increased
significantly. In particular, the average mutual Jaccard distance of the DNA addresses
dropped from ≈ 1.0 to ≈ 0.5, and the average mutual Jaccard distance of the oligos dropped
from ≈ 1.0 to ≈ 0.75.

DNAContainer: An object-based storage architecture on DNA 789

18 Alex El-Shaikh, Bernhard Seeger

100 120 140
Lpayload

0.0

0.2

0.4

0.6

0.8

Bi
t r

at
e

Bit rate of oligos

Laddress
60
80

(a) The bit rate of oligos.

100 120 140
Lpayload

1.20

1.25

1.30

1.35

Bi
t r

at
e

Bit rate of payloads

(b) The bit rate of payloads.

Fig. 8: The bit rate of oligos and payloads by varying the payload size.

Figure 8a depicts the bit rate of oligos, i.e., the information density for each oligo. The
bit rate is calculated as the total number of digital bits divided by the total number of
nucleotides. As expected, the bit rate for oligos with an address size of 80 is lower than that
of 60 because the address does not encode any information. Fig. 8b presents the bit rate of
payloads instead of oligos, i.e., ignoring the DNA address. The bit rate also increases by
increasing the payload’s size because more information can fit into the same number of
oligos as depicted in Fig. 9a and Fig. 9b. Thus, by increasing the payload’s size, we obtain
fewer oligos encoding the same information. A bit rate of 2.0 bits/nucleotide being optimal,
our system encodes the information to payloads at around 1.3 bits/nucleotide, which is
a ≈ 65% capacity utilization of payloads. Since a payload of length 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 optimally
encodes two bits for every nucleotide and a single byte contains 8 bits, then the maximum
capacity in bytes is calculated as:

maximum capacity (bytes) = 2 ·
𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑

8
(3)

For example, by setting 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 140, the payload could encode up to 35 bytes. Plugging
in our system’s capacity utilization of 65% yields ≈ 23 bytes per payload. We repeated the
same experiment above, stored the records in arrays and lists, and obtained similar results.
We also tested turning on the Reed Solomon error correcting code, where the parameters are
set such that up to 4 nucleotide erasures are corrected. The resulting capacity utilization was
slightly lower at ≈ 59%. Despite that, DNAContainer manages to out-compete many recent
DNA systems by supporting large-scale random access capabilities while maintaining a
relatively high bit rate [Xu21, Do20, CNS19, Xu21].

790 Alex El-Shaikh, Bernhard Seeger

DNAContainer 19

100 120 140
Lpayload

0

10

20

30

40

N
um

be
r o

f o
lig

os
 /

da
ta

 o
bj

ec
t

Number of oligos per data object

(a) The number of oligos encoding a single data object.

100 120 140
Lpayload

0

1

2

3

4

N
um

be
r o

f o
lig

os

1e6 Number of oligos

(b) The number of oligos encoding all data objects.

Fig. 9: The number of oligos representing a single data object and the number of all oligos representing
all the data objects.

Finally, to test the scalability of our approach, we translated 100 million addresses, i.e., we
mapped 100 million Ids to corresponding DNA addresses (see Sect. 4.1) with 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 80,
adhering to every constraint in Sect. 3.6. As shown above, our payloads with 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 140
reach a bit rate of 1.3, i.e., carry 23 bytes of information. Therefore, we could store up to
23 · 108 bytes or 2.3 GB of information using these addresses, storing more information
than the recently proposed DNA systems while providing sophisticated random access
capabilities [Xu21]. Furthermore, only ≈ 4000 addresses were considered invalid of the
generated 100 million addresses, and more addresses could be computed.

To store more information, e.g., in the terabyte range and beyond, in DNAContainer, more
addresses must be generated, or a larger payload must be used. Current DNA synthesis
technologies support synthesizing relatively short DNA sequences, whereas longer sequences
are costly or not supported yet [HA19]. Additionally, we approximate the DNA overlaps
using LSH, which requires extensive memory amounts. The computation time for generating
the mentioned 100 million addresses took ≈ 32.5 hours with our computer, of which most of
the time was spent on synchronizing checking constraint (3) for each generated permutation
in parallel. Hence, the computation times could be significantly higher with a computer
equipped with less memory or fewer processing cores.

Nevertheless, sequencing and especially synthesis technologies are constantly evolving.
Certain synthesis technologies are developed, allowing the synthesis of several thousand
nucleotides [Pi19]. For example, if we choose 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 5, 000 and use 1014 addresses,
then the theoretical storage capacity of DNAContainer is ≈ 11.5 EB, which could be
extended further by using more addresses or larger payloads.

DNAContainer: An object-based storage architecture on DNA 791

20 Alex El-Shaikh, Bernhard Seeger

7 Conclusion

This paper presents DNAContainer, an interface for DNA storage similar to a traditional
storage device. DNAContainer offers an abstraction layer by providing simple put and
get operations instead of synthesizing and sequencing DNA. Furthermore, we implement
the common data structures array and list on DNAContainer, making data management
more accessible. DNAContainer uses a virtual address space mapped to physical DNA
addresses, facilitating random access to the data objects using traditional methods. Moreover,
DNAContainer is aware of the required biochemical constraints. In particular, it encodes data
objects as DNA oligonucleotides that are stable for long archival times and enables randomly
accessing the data with the used virtual addresses. We tested our approach by simulating
the insertion of several thousand data objects into DNAContainer, proving its scalability of
managing up to millions of oligonucleotides addressed by millions of addresses.

In our future work, we will study multiple extensions of DNAContainer. In particular, we
are interested in supporting more advanced index structures supporting expressive filter
queries like range queries on DNA. Furthermore, we are designing a prototype of a physical
DNA storage system where DNAContainer will be the primary interface.

Acknowledgment

We thank the Hessian Ministry for Science and the Arts (LOEWE) for funding this work.

Bibliography
[AJ20] Appuswamy, Raja; Joguin, Vincent: Universal layout emulation for long-term database

archival. arXiv preprint arXiv:2009.02678, 2020.

[Al12] Allentoft, Morten E; Collins, Matthew; Harker, David; Haile, James; Oskam, Charlotte L;
Hale, Marie L; Campos, Paula F; Samaniego, Jose A; Gilbert, M Thomas P; Willerslev,
Eske et al.: The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils.
Proceedings of the Royal Society B: Biological Sciences, 279(1748):4724–4733, 2012.

[Ap19] Appuswamy, Raja; Lebrigand, Kevin; Barbry, Pascal; Antonini, Marc; Madderson, Oliver;
Freemont, Paul; MacDonald, James; Heinis, Thomas: OligoArchive: Using DNA in the
DBMS storage hierarchy. In: Biennal Conference on Innovative Data Systems Research
(CIDR 2019). p. p98, 2019.

[Ba20] Banal, James L; Shepherd, Tyson R; Berleant, Joseph D; Huang, Hellen; Reyes, Miguel;
Ackerman, Cheri M; Blainey, Paul; Bathe, Mark: Random access DNA memory in a
scalable, archival file storage system. bioRxiv, 2020.

[Be15] Berlin, Konstantin; Koren, Sergey; Chin, Chen-Shan; Drake, James P; Landolin, Jane M;
Phillippy, Adam M: Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nature biotechnology, 33(6):623–630, 2015.

792 Alex El-Shaikh, Bernhard Seeger

DNAContainer 21

[Bo16] Bornholt, James; Lopez, Randolph; Carmean, Douglas M; Ceze, Luis; Seelig, Georg;
Strauss, Karin: A DNA-based archival storage system. In: Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems. pp. 637–649, 2016.

[Br97] Broder, Andrei Z: On the resemblance and containment of documents. In: Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171). IEEE, pp.
21–29, 1997.

[Bu01] Buhler, Jeremy: Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics, 17(5):419–428, 2001.

[Bu13] Bumgarner, Roger: Overview of DNA microarrays: types, applications, and their future.
Current protocols in molecular biology, 101(1):22–1, 2013.

[Ch99] Chalikian, Tigran V; Völker, Jens; Plum, G Eric; Breslauer, Kenneth J: A more unified
picture for the thermodynamics of nucleic acid duplex melting: a characterization by
calorimetric and volumetric techniques. Proceedings of the National Academy of Sciences,
96(14):7853–7858, 1999.

[CNS19] Ceze, Luis; Nivala, Jeff; Strauss, Karin: Molecular digital data storage using DNA. Nature
Reviews Genetics, 20(8):456–466, 2019.

[Co22] Cormen, Thomas H; Leiserson, Charles E; Rivest, Ronald L; Stein, Clifford: Introduction
to algorithms. MIT press, 2022.

[De90] Deux, O et al.: The story of O2. IEEE Transactions on Knowledge & Data Engineering,
2(01):91–108, 1990.

[Do20] Dong, Yiming; Sun, Fajia; Ping, Zhi; Ouyang, Qi; Qian, Long: DNA storage: research
landscape and future prospects. National Science Review, 7(6):1092–1107, 2020.

[Du64] Durstenfeld, Richard: Algorithm 235: random permutation. Communications of the ACM,
7(7):420, 1964.

[El22] El-Shaikh, Alex; Welzel, Marius; Heider, Dominik; Seeger, Bernhard: High-scale random
access on DNA storage systems. NAR genomics and bioinformatics, 4(1):lqab126, 2022.

[EZ17] Erlich, Yaniv; Zielinski, Dina: DNA Fountain enables a robust and efficient storage
architecture. science, 355(6328):950–954, 2017.

[GMM16] Goodwin, Sara; McPherson, John D; McCombie, W Richard: Coming of age: ten years
of next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351,
2016.

[Go13] Goldman, Nick; Bertone, Paul; Chen, Siyuan; Dessimoz, Christophe; LeProust, Emily M;
Sipos, Botond; Birney, Ewan: Towards practical, high-capacity, low-maintenance infor-
mation storage in synthesized DNA. Nature, 494(7435):77–80, 2013.

[HA19] Heinis, Thomas; Alnasir, Jamie J: Survey of information encoding techniques for dna.
arXiv preprint arXiv:1906.11062, 2019.

[HMG19] Heckel, Reinhard; Mikutis, Gediminas; Grass, Robert N: A characterization of the DNA
data storage channel. Scientific reports, 9(1):1–12, 2019.

DNAContainer: An object-based storage architecture on DNA 793

22 Alex El-Shaikh, Bernhard Seeger

[IM98] Indyk, Piotr; Motwani, Rajeev: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium on
Theory of computing. pp. 604–613, 1998.

[KC14] Kosuri, Sriram; Church, George M: Large-scale de novo DNA synthesis: technologies
and applications. Nature methods, 11(5):499–507, 2014.

[Ku01] Kurella, Manjula; Hsiao, Li-Li; Yoshida, Takumi; Randall, Jeffrey D; Chow, Gary; Sarang,
Satinder S; Jensen, Roderick V; Gullans, Steven R: DNA microarray analysis of complex
biologic processes. Journal of the American Society of Nephrology, 12(5):1072–1078,
2001.

[Li20a] Li, Bingzhe; Song, Nae Young; Ou, Li; Du, David HC: Can We Store the Whole World’s
Data in {DNA} Storage? In: 12th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 20). 2020.

[Li20b] Lin, Kevin N; Volkel, Kevin; Tuck, James M; Keung, Albert J: Dynamic and scalable
DNA-based information storage. Nature communications, 11(1):1–12, 2020.

[Li22] Lin, Yi-Syuan; Liang, Yu-Pei; Chen, Tseng-Yi; Chang, Yuan-Hao; Chen, Shuo-Han; Wei,
Hsin-Wen; Shih, Wei-Kuan: How to Enable Index Scheme for Reducing the Writing Cost
of DNA Storage on Insertion and Deletion. ACM Transactions on Embedded Computing
Systems (TECS), 21(3):1–25, 2022.

[Ma20] Ma, Tian J; Garcia, Rudy J; Danford, Forest; Patrizi, Laura; Galasso, Jennifer; Loyd,
Jason: Big data actionable intelligence architecture. Journal of Big Data, 7(1):1–19, 2020.

[MFL14] Ma, Dongzhe; Feng, Jianhua; Li, Guoliang: A survey of address translation technologies
for flash memories. ACM Computing Surveys (CSUR), 46(3):1–39, 2014.

[Or18] Organick, Lee; Ang, Siena Dumas; Chen, Yuan-Jyue; Lopez, Randolph; Yekhanin, Sergey;
Makarychev, Konstantin; Racz, Miklos Z; Kamath, Govinda; Gopalan, Parikshit; Nguyen,
Bichlien et al.: Random access in large-scale DNA data storage. Nature biotechnology,
36(3):242–248, 2018.

[Pi19] Ping, Zhi; Ma, Dongzhao; Huang, Xiaoluo; Chen, Shihong; Liu, Longying; Guo, Fei;
Zhu, Sha Joe; Shen, Yue: Carbon-based archiving: current progress and future prospects
of DNA-based data storage. GigaScience, 8(6):giz075, 2019.

[QSH22] Quah, Jasmine; Sella, Omer; Heinis, Thomas: DNA data storage, sequencing data-carrying
DNA. arXiv preprint arXiv:2205.05488, 2022.

[RS60] Reed, Irving S; Solomon, Gustave: Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

[Sc20] Schwarz, Michael; Welzel, Marius; Kabdullayeva, Tolganay; Becker, Anke; Freisleben,
Bernd; Heider, Dominik: MESA: automated assessment of synthetic DNA fragments
and simulation of DNA synthesis, storage, sequencing and PCR errors. Bioinformatics,
36(11):3322–3326, 2020.

[Sp59] Spencer, M: The stereochemistry of deoxyribonucleic acid. I. Covalent bond lengths and
angles. Acta Crystallographica, 12(1):59–65, 1959.

794 Alex El-Shaikh, Bernhard Seeger

DNAContainer 23

[Wa19] Wang, Yixin; Zhang, Jingyun; Gunawan, Erry; Guan, Yong Liang; Poh, Chueh Loo
et al.: High capacity DNA data storage with variable-length Oligonucleotides using repeat
accumulate code and hybrid mapping. Journal of biological engineering, 13(1):1–11,
2019.

[Xu21] Xu, Chengtao; Zhao, Chao; Ma, Biao; Liu, Hong: Uncertainties in synthetic DNA-based
data storage. Nucleic acids research, 49(10):5451–5469, 2021.

[YPFK06] Yakovchuk, Peter; Protozanova, Ekaterina; Frank-Kamenetskii, Maxim D: Base-stacking
and base-pairing contributions into thermal stability of the DNA double helix. Nucleic
acids research, 34(2):564–574, 2006.

[Zh16] Zhirnov, Victor; Zadegan, Reza M; Sandhu, Gurtej S; Church, George M; Hughes,
William L: Nucleic acid memory. Nature materials, 15(4):366–370, 2016.

DNAContainer: An object-based storage architecture on DNA 795

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Accelerating Large Table Scan using Processing-In-Memory
Technology

Alexander Baumstark1, Muhammad Attahir Jibril2, Kai-Uwe Sattler3

Abstract: Today’s systems are capable of storing large amounts of data in main memory. Particularly,
In-memory DBMSs benefit from this development. However, the processing of data from the main
memory necessarily has to run via the CPU. This creates a bottleneck, which affects the possible
performance of the DBMS. Processing-In-Memory (PIM) is a paradigm to overcome this problem,
which was not available in commercial systems for a long time. However, with the availability of
UPMEM, a commercial product is finally available that provides PIM technology in hardware. In this
work, we focus on the acceleration of the table scan, a fundamental and memory-bound operation.
We show and investigate an approach that can be used to optimize this operation by using PIM.
We evaluate the PIM scan in terms of parallelism and execution time in benchmarks with different
table sizes and compare it to a traditional CPU-based table scan. The result is a PIM table scan that
outperforms the CPU-based scan significantly.

Keywords: UPMEM; Processing-In-Memory; In-Memory Database

1 Introduction

In-memory databases aim at low latency and high throughput for queries and updates in
order to support real-time data processing. By keeping (most of) the data in main memory,
workloads on such databases are typically memory-bound, and accessing main memory
becomes more and more a bottleneck – a phenomenon that is known as memory wall
[WM95]. However, novel and emerging memory technologies open up new opportunities
such as offloading computation to memory. One example is Processing-in-Memory (PIM),
a rather new concept where (simpler) operations can be executed directly in memory (on
the same die) without moving the data from DRAM. The basic idea of this approach is to
equip memory chips with additional processing units. Data can be processed directly on the
memory chips without involving the system’s CPU. PIM offers great potential: CPU load
could be reduced, and memory bandwidth could be increased by reducing the amount of
data to be transferred to the CPU.

Though, many PIM architectures have been proposed in the past (see [Ng20] for a classifica-
tion), the only publicly available commercial product is offered by the UPMEM company. In
addition, Samsung has also announced a product, but it is not available on the market yet. The
1 TU Ilmenau, DBIS, Helmholtzplatz 5, 98693 Ilmenau, alexander.baumstark@tu-ilmenau.de
2 TU Ilmenau, DBIS, Helmholtzplatz 5, 98693 Ilmenau, muhammad-attahir.jibril@tu-ilmenau.de
3 TU Ilmenau, DBIS, Helmholtzplatz 5, 98693 Ilmenau, kus@tu-ilmenau.de

cba doi:10.18420/BTW2023-51

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 797

mailto:alexander.baumstark@tu-ilmenau.de
mailto:muhammad-attahir.jibril@tu-ilmenau.de
mailto:kus@tu-ilmenau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-51

2 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

UPMEM technology has only recently become available (first presented at HotChips 2019),
therefore, only a few experimental studies of UPMEM have been published. In [Ni21], the
authors evaluate UPMEM PIM using a few use cases such as data compression, encryption,
JSON processing, and text search. [Gó22] presents PrIM – the Processing-In-Memory
benchmarks – a benchmark suite from different application domains as well as several key
observations and programming recommendations. Though PrIM contains also a database
selection operator, it is not integrated into a database engine. Both papers discuss also the
technical details of UPMEM.

Based on these works, we investigate in this paper the potential of offloading data management
processing to memory using PIM. Based on the observation that the performance of typical
data management operations often depends on memory bandwidth or latency, we try to
answer the question: Can we accelerate in-memory operations in a database using PIM?
For this purpose, we use a graph database engine Poseidon4, which supports in addition to
a persistent memory storage engine [Ji21] also an in-memory mode. However, because we
focus in this paper on scan operations, the findings of our experiments are not limited to
graph databases. Still, they can be generalized to scans on relational and other non-relational
databases.

2 Related Work

PIM is a well-known technique to overcome the CPU-memory bottleneck for several decades.
There have been a number of concepts and approaches to provide PIM on hardware since
the 1990s [Pa97, Pa97, Dr02]. The high cost and lack of industrial support for this concept
prevented the production and sale of real PIM hardware. Still, research was conducted based
on prototypes. The PIM technology follows a similar approach to GPU processing. The
design space of GPU-accelerated architectures transferred to PIM was investigated in the
work of [Zh14]. Further, with LazyPIM, the authors of [Bo17] published a mechanism for
reducing data exchange between CPU and PIM cores by means of caching. With the company
around UPMEM, hardware providing real PIM-enabled DRAM DIMMs was published
[UP22]. There are already a number of works concerning this architecture investigating
its characteristics and applicability. Gomez-Luna et. al investigates the architecture for its
limitations and performance as well as energy consumption [Gó22]. The result of the work
shows that the UPMEM system achieves suitable performance as long as the individual
components (DPUs) do not require communication (DPU-to-DPU). There is also available
work concerning the applicability of PIM hardware on real use cases. [Gu] investigates the
potential of PIM hardware for the acceleration of ML training. The results show that ML
training using PIM hardware can improve the training process compared with GPU-based
ML training. [Gi22] investigates the improvement of sparse matrix-vector multiplication
using real PIM hardware. [Ka22] provided an efficient index data structure that leverages
PIM.
4 https://dbgit.prakinf.tu-ilmenau.de/code/poseidon_core/-/tree/upmem

798 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

https://dbgit.prakinf.tu-ilmenau.de/code/poseidon_core/-/tree/upmem

Accelerating Large Table Scan using Processing-In-Memory Technology 3

However, due to the short availability of real PIM hardware at the time of this work, there is,
to our knowledge, no DBMS that directly integrates PIM.

3 PIM Technology

The first publicly available real-world PIM technology is provided by the UPMEM company
[UP22]. Because our work is based on this technology, in the following we give a brief
overview of this architecture and the programming model.

3.1 UPMEM Architecture

The core of the UPMEM architecture is the UPMEM DIMMs, which are based on regular
DDR4-2400 DIMM modules but equipped with additional PIM chips. A structural overview
is given in Fig. 1. The UPMEM DIMMs are organized into ranks. A UPMEM DIMM
consists of up to two ranks and each rank consists of up to 8 PIM-enabled chips. A PIM
chip usually consists of 8 DRAM Processing Units (DPUs). Each DPU has exclusive access
to 64 MB Main RAM (MRAM), 24 KB Instruction RAM (IRAM), and 64 KB Working
RAM (WRAM) for processing. As DPUs have only access to their own MRAM there
is no direct communication possible between different DPUs. Further, a DPU consists
of a general-purpose 32-bit RISC core with a maximum achievable frequency of 400
MHz, which can execute a special instruction set in a multithreaded in-order pipeline. For
multithreading, there are 24 hardware threads available. The context is switched on every
cycle between the threads, which hides the memory latency [La16]. All threads share the
same memory on the DPU which requires synchronization to guarantee consistency. This
architecture allows the parallel execution of a program on different pieces of data directly
on DRAM.

3.2 Programming Model

For the utilization of the 24 hardware threads of a DPU, up to 24 tasklets can be used. This
follows the Single Program Multiple Data programming model. All threads are executed
with the same code but on different pieces of data. The number of used tasklets must
be defined by the programmer at compile-time. As the MRAM and WRAM are shared
among all tasklets on a DPU, the model provides synchronization primitives like mutexes,
semaphores, barriers, and handshakes. Critical sections in the execution of a DPU program
can be protected by mutexes with mutex_lock and mutex_unlock methods. Their effect is
the same as the mutexes in usual systems. The critical section is then only accessible by one
tasklet at a time. The purpose of the barriers is to control the execution flow of all tasklets.
This can be done by using the barrier_wait method. The tasklets of the DPU wait at this

Accelerating Large Table Scan using Processing-In-Memory Technology 799

4 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Fig. 1: Overview of a UPMEM DIMM with 2 Ranks of 64 DPUs.

point until all other tasklets have reached the barrier. After this, the execution continues.
The handshake primitives are used for direct synchronization between the tasklets and the
semaphores primitives for counters, similar to the counters known in operating systems.
Using these primitives enables the effective utilization of multithreading provided by the
DPUs.

The execution and control of the DPU program are handled by the host application. The host
application allocates the set of desired DPUs and selects the appropriate DPU program. It is
possible to allocate a specific rank or a specific number of DPUs. Further, the host application
manages the execution of the DPU program and the data transfer to and from MRAM.
The actual execution and data transfer can be handled synchronously and asynchronously
by the host application. When executing the DPU program launch or the data transfer
synchronously, the host application waits for the complete execution of the launch or data
transfer. When transferring data, it is often desired to prepare the next batch for data transfer,
while transferring the old batch. For this purpose, the UPMEM host library provides the
possibility to execute the data transfer and DPU launch asynchronously. The asynchronous
execution executes the instructions in the background using another thread and gives the
control back to the host application. It allows the host application to proceed with the next
batch for data transfer, or launch the same of another program on another set of DPUs.

The workflow of a host program running a DPU program with UPMEM technology can be
summarized in the following steps:

1. Environment allocation (DPU, Ranks, DPU Program),

2. Buffer population from the host’s main memory to MRAM of DPUs.

800 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Accelerating Large Table Scan using Processing-In-Memory Technology 5

3. Execution of the DPU Program.

4. Retrieving of the processed results from the MRAM of the DPUs to the host’s main
memory.

The DPU program can be executed several times. The data is retained in the MRAM of the
DPUs and does not have to be reinitialized. This is useful for tasks where a solution has
to be calculated in several iterations. The DPU programs are written in the programming
language C and compiled by a special compiler, which is based on LLVM and Clang.

3.3 Memory Management

As already mentioned, various memory types are available to a DPU. These differ in size
and also in connection to the DPU. The largest memory available to a DPU is the MRAM.
It has a capacity of 64 MB and has the purpose of exchanging data with the host. The host
system can copy data from its main memory to the MRAM and also transfer data from the
MRAM to the main memory of the host.

The WRAM of a DPU is a working memory in which a DPU stores the stack and global
variables. Access to this memory is restricted to the DPU itself. Direct access from the
host is not possible. Further, the DPU can access the WRAM only through 8-64 bit DMA
instructions. The UPMEM runtime library provides for the transfer between MRAM and
WRAM the methods mram_read for WRAM-MRAM and mram_write for MRAM-WRAM
transfer. Each DMA instruction can copy up to 2 KB of data.

Communication with the host is done through data transfers between the main memory
of the host and the MRAM of the DPU. The UPMEM runtime library provides different
instructions for this purpose like dpu_copy_to/dpu_copy_from for copying a buffer from
and to MRAM of specific DPUs. For parallel data transfer, the library provides the method
dpu_prepare_xfer which assigns a buffer to a specific MRAM of a DPU. The actual data
transfer is then performed in parallel using the dpu_push_xfermethod but requires the same
buffer size for all DPUs.

4 The Poseidon Graph Database

The present work is mainly developed for the graph database Poseidon. Although Poseidon
was originally optimized for the characteristics of persistent memory, these characteristics
can also be transferred to the exploitation of in-memory processing in DRAM. For this
purpose, Poseidon already provides the necessary optimized data structures. In the following,
the general architecture of Poseidon is described.

Accelerating Large Table Scan using Processing-In-Memory Technology 801

6 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

4.1 Data Model and Storage

The data layout of the Poseidon Graph Database is based on the labeled property graph
model wherein labels and property values can be assigned to nodes and relationships. A
complete graph in the Poseidon Graph Database consists of different tables in which the
nodes, relationships, and respective property entries are stored. The tables are directly
stored on DRAM. The Poseidon Graph Database provides also support for the storage of
data directly on disk or Persistent Memory using similar data structures but optimized for
utilization of the underlying storage. However, for the scope of this paper, we focus on the
implementation of the storage on DRAM. For the underlying data structure, a linked list of
fixed-size arrays (chunks) is used, which is referred to as a chunked vector. Furthermore, the
nodes, relationships, and properties are stored in fixed-size records within the appropriate
chunked vector. For entries with variable sizes, such as string values, an entry is created in
a dictionary, and the corresponding dictionary code is stored in the respective record. To
achieve the connection between nodes and relationships, the offsets of the respective entries
are used. A node record stores the offsets of the first incoming and outgoing relationships.
This offset points to an entry in the relationship table. A relationship record contains the
offsets of the source and destination nodes. Moreover, the corresponding relationships are
also linked to each other. A relationship record, therefore, contains the next offset of the
relationship list of the source and destination node. The traversing through a graph can
be achieved by alternately searching the node and relationship table for the offsets of the
respective records.

4.2 Graph Queries

Processing graph database queries consists mainly of discovering a path between nodes
in a graph. Besides the usual operators known from relational DBMSs like selections,
projections, or joins, the Poseidon Graph Database provides an additional set of operators,
especially for the processing of graph queries. These operators are based on graph algebra
which is an extension of relational algebra [HG16]. For the data flow between operators, we
implemented a push-based query processing approach. Here, the operators are organized
into a pipeline and push their results toward the consuming operator until a pipeline breaker
occurs [NL14]. For various reasons regarding the simplicity of a graph query language, we
implemented an easy and manageable query language oriented to graph algebra.

Project({{0,"name"},{2,"name"}},
Expand(OUT, "Person",
ForeachRelationship(FROM, ":friendOf",
NodeScan("Person"))))

Fig. 2: Example Graph Query in Poseidon

802 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Accelerating Large Table Scan using Processing-In-Memory Technology 7

An example graph query in our language is given in 2. The aim of this query is to find all
Person nodes in the graph, which are connected to another Person node with a :friendOf
relationship, resulting in an overview of all friends in a graph.

The entry point of every query in Poseidon is the NodeScan operator. As the name suggests,
it scans the underlying table for nodes, compares optionally each node with a given label,
and pushes the appropriate nodes to the next operator. A scan as shown in the example is
actually a scan combined with a filter for finding nodes with the given label. Because strings
are dictionary encoded, this kind of filter is a simple integer comparison representing an
appropriate candidate for offloading to UPMEM.

The nodes can be then processed with the ForeachRelationship operator, in order to
find an ingoing or outgoing relationship of the previous node. Optionally, it compares the
relationship label with a given label. The found relationship is then passed to the next
operator. A relationship tuple can then be processed using the Expand operator. This operator
extracts the source or destination node of the handed relationship. With these operators, it is
possible to traverse a graph to find paths between two nodes.

4.3 Query Processing

For the processing of graph queries, Poseidon’s query engine relies on push-based query
processing and Morsel-driven parallelism [Le14]. The data flow at query processing is
organized in a pipeline, and the resulting tuples are pushed from one operator toward their
consuming operator. This flow continues until a pipeline breaker is reached. For parallelism,
the engine exploits Morsel-driven parallelism using the underlying chunked vector data
structure. Before the execution of the query, the query and each individual chunk of the
chunked vector will be assigned to the task and pushed into a task pool. When executing the
query, the engine spawns several threads which pull a task from the pool and executes the
given query on this task until all tasks are processed.

The query engine provides three different execution modes for the actual processing:
executing ahead-of-time (AOT) compiled code, just-in-time (JIT) compilation, and an
adaptive approach. The AOT-compiled mode processes the given query using pre-compiled
C++ methods, which execute the given operators. The JIT-compilation mode transforms the
given graph query into highly optimized machine code and executes it directly. For this, we
use the LLVM compilation framework. The graph query will be transformed into a single
function in LLVM IR. Then, it will be optimized using several optimization passes like
dead-code elimination or instruction combining. The resulting optimized LLVM IR code
will then be transformed into machine code and executed by the engine. To hide compilation
time, the engine can execute queries in the adaptive mode. Here, the engine starts the query
processing using the AOT-compiled mode and compiles the query in the background. As
soon as the compilation is complete, it switches to the new compiled code. Additionally, this

Accelerating Large Table Scan using Processing-In-Memory Technology 803

8 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

mode is useful to hide access latencies of the underlying storage type like disk or persistent
memory [BJS21].

5 PIM-based Table Scans

The starting points of most queries are table scans. Often there is no other way than to
traverse the entire table for tuples that match a given predicate. Especially in the case of
predicates with particularly low selectivity, tuples that do not correspond to the predicate
must be transferred unnecessarily via the CPU of the system. This procedure in today’s
usual systems leads to a bottleneck and reduces the possible performance. In this section,
we will show the possibility of implementing a table scan operator by exploiting the PIM
technology.

5.1 Memory layout

For the execution of table scans on the DPU, the memory of the DPUs must be taken into
account according to their characteristics. The tables of nodes, relationships, and properties
of the Poseidon Graph database are based on the chunked vector data structure. The chunking
of the table can also be exploited for the design of the memory layout on the DPUs.

struct mram_node {
uint8_t tx_pad[40];
uint64_t id;
uint64_t from_rship_list;
uint64_t to_rship_list;
uint64_t property_list;
uint32_t node_label;
};

List. 1: Structure of node in MRAM

struct mram_chunk {
struct mram_node data[C_ELEMENTS];
struct mram_chunk* next;
char bitset[BS_SIZE];
uint32_t first;
char padding[PAD_SIZE];
};

List. 2: Structure of chunk in MRAM

Listing 1 shows the structure of the nodes and Listing 2 is the structure of the chunks which
are stored in MRAM. The required size of the nodes for storing the necessary data is 80
bytes. We leave the parts that are used for transactional processing out of the scope of
this paper for the moment and label them as tx_pad. A similar structural layout is used
to represent the relationships and properties in the MRAM of the DPUs. Basically, the
representations are equivalent to those used for storing the data in the main memory of the
host. In addition, care was taken that the size is a multiple of 8 bytes to allow transfer to
MRAM and between MRAM-WRAM without additional transformation. The appropriate
alignment of the data allows the direct transfer to the DPU but also buffering a part of the
data in the DPU WRAM for faster access. With large tables, it may happen that more chunks
exist than available DPUs. To use the memory of a DPU efficiently and to process as much

804 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Accelerating Large Table Scan using Processing-In-Memory Technology 9

Fig. 3: Rank Parallel Chunk to DPU Assigment.

data as possible on it, it is more beneficial to transfer several chunks to a DPU. Considering
the chunk size of 65536 bytes, we reserve in each DPU space that is able to hold up to 1000
chunks. The remaining MRAM space can be used for parameters such as the number of
chunks passed, filter arguments, and storing the results.

5.2 Chunk-DPU Assignment

In order to transfer the data efficiently, we make use of asynchronous and parallel host-to-
DPU data transfer. To implement the data transfer as efficiently as possible the data must
be transferred as parallel as possible. This is achieved with DPU and Rank parallel data
transfer. The underlying data structure in Poseidon, which is used for the storage of nodes
and relationships, is perfectly suited to achieve this with the least possible implementation
effort. Fig. 3 shows the rank parallel chunk-to-DPU assignment. Each chunk is assigned a
DPU on a rank in a round-robin way. After the assignment is done, the data is transferred

Accelerating Large Table Scan using Processing-In-Memory Technology 805

10 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

in parallel per rank. This ensures that the workload on all DPUs is similar. Furthermore,
multiple chunks can be assigned to a DPU to make efficient use of the available MRAM
memory. If the table does not fit completely into the MRAM, the program must be executed
with the already transferred part. Then the remaining part must be transferred back to the
DPU. The following listing shows the algorithm for the chunk to DPU assignment.

foreach(chunk) {

DPU_RANK_FOREACH(set, rank) {

DPU_FOREACH(rank, dpu) {

dpu_prepare_xfer(dpu, chunk);

dpu_push_xfer(rank, DPU_XFER_DEFAULT, "mram_chunks",

offset, CHUNKS_SIZE, DPU_XFER_ASYNC);

calc_offset(); }}}

List. 3: Host to DPU chunk transfer algorithm

The algorithm iterates over the available chunks of nodes, relationships, or properties. Then
it iterates over the DPU of a rank. This is advantageous to allow efficient parallel data
transfer, as the buffer for the data transfer must be the same size and write to the same offset
address in the MRAM. Otherwise, the transfer would be serial.

5.3 DPU Scan

To enable an efficient multithreading scan of the chunks, we divide the workload among all
available tasklets. For this, we distribute the elements to all available tasklets per chunk.
Each tasklet thus works on an allocated area in each chunk assigned to the DPU. Then each
tasklet iterates over the allocated area of the chunks. In each iteration, a record is checked
for a given filter predicate. As soon as a record matches the predicate, the result is saved by
setting the corresponding position of the record in the chunk to 1 in a bit vector. Per DPU
there is a single bit-vector for each passed chunk. This tasklet design also has the advantage
that no further synchronization mechanisms are necessary since each tasklet writes the
result to its own memory area.

6 Evaluation

We use the Social Network Benchmark (SNB) dataset from the Linked Data Benchmark
Council (LDBC) for the following benchmarks. This is an applicable benchmark to evaluate
the performance of this approach in a graph DBMS. The used scale factor of the dataset is
1. We further restrict ourselves to the nodes of the dataset which we store in a nodes table in
Poseidon. In total, the table contains 1.180.565 entries, which are stored in 1445 chunks in
DRAM with 817 entries per chunk. For the scan query, we scan the node entries for nodes
labeled as Post with a selectivity of 10%.

806 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Accelerating Large Table Scan using Processing-In-Memory Technology 11

1 4 8 12 16 20 24
Tasklets

0

50

100

150

200

250

300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

2 DPUs
4 DPUs
8 DPUs
16 DPUs
32 DPUs

1 4 8 12 16 20 24 28 32
Threads

0

50

100

150

200

250

300

Baseline

Fig. 4: Table Scan with 2 - 32 DPUs

1 4 8 12 16 20 24
Tasklets

0

2

4

6

8

10

12

14

16

18

20

Ex
ec

ut
io

n
Ti

m
e

(m
s)

48 DPUs
64 DPUs
96 DPUs
128 DPUs
160 DPUs

1 4 8 12 16 20 24 28 32
Threads

0

2

4

6

8

10

12

14

16

18

20

Baseline

Fig. 5: Table Scan with 48 - 160 DPUs

6.1 System

The system used for the following benchmarks runs with two Intel Xeon Silver 4215R with
a total of 16 cores with 2 threads each. A total of 32 threads can be executed on the system.
Furthermore, the system has 512 GB of DRAM, which is made up of 8 x 64 GB DIMMs. In
terms of PIM, the system has 4 UPMEM DIMMs with 16 GB each. Each UPMEM DIMM
has 2 ranks with up to 64 DPUs each. The total number of DPUs is 510, divided into 8 ranks.
The clock rates of the DPUs are between 200-400 MHz. The system runs under Ubuntu
20.04.1 with Linux kernel 5.4.0. The code of the host and DPU program was compiled with
Clang at version 12 and full optimization at -O3.

The data layouts of the baseline and the DPU implementation are based on the same data
structures and the same optimization to get a fair comparison.

6.2 DPU Parallelism

Fig. 4-Fig. 6 show the execution of table scans with different numbers of DPUs as well
as with different numbers of tasklets. The baseline in these experiments is the usual CPU
execution of the table scan with varying numbers of hardware threads (1-32). Furthermore,
each thread performs the scan operation on the same number of chunks. The results in the
baseline execution are saved in a result vector similar to the DPU program in order to obtain
a workload as similar as possible. With a particularly large number of DPUs (164 or more),
the execution runtimes change only slightly, since the size of the workload also changes
only very slightly. The sweet spot for parallelism is around 12-24 task sets and a DPU count
of around 160 for this table size.

Accelerating Large Table Scan using Processing-In-Memory Technology 807

12 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

1 4 8 12 16 20 24
Tasklets

0

2

4

6

8

10

12

14

16

18

20

Ex
ec

ut
io

n
Ti

m
e

(m
s)

164 DPUs
196 DPUs
256 DPUs
384 DPUs
510 DPUs

1 4 8 12 16 20 24 28 32
Threads

0

2

4

6

8

10

12

14

16

18

20

Baseline

Fig. 6: Table Scan with 164 - 510 DPU

As the number of tasklets increases, the parallelism of the execution also increases. This
can further improve the runtime. Furthermore, with an increasing number of DPUs the
parallelism increases additionally. However, it can be seen that around 32 DPUs, which are
used for the table scan, the runtime approaches the baseline of the CPU execution more and
more. From 128 DPUs and the maximum number of 24 tasklets, the PIM execution is even
faster than the CPU execution with all available hardware threads.

In summary, it can be concluded that the full utilization of the parallelism of the tasklets and
a high number of DPUs can improve the runtimes of table scans by a considerable amount.

808 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Accelerating Large Table Scan using Processing-In-Memory Technology 13

1K 2K 4K 8K 10
K

12
K

Table Chunks

0

100

200

300

400

500

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Baseline
32 DPUs
510 DPUs

Fig. 7: Execution time of table scan on different table sizes.

6.3 Table Size

The execution times of the DPU scan with different table sizes are given in Fig. 7. The
baseline of this experiment is again the execution of the table scan on the CPU with all
available hardware threads. Each of these hardware threads executes the scan for several
chunks. To achieve a similar workload, the baseline execution stores the result in a result
vector, similar to the DPU program. The table size is represented by a different number of
chunks. One chunk contains up to 817 records. A table that consists of 1000 chunks (1K)
contains up to 817.000 entries. For this benchmark, we created an additional graph from
using the LDBC SNB dataset containing 50% Post-nodes and 50% Person-nodes.

Accelerating Large Table Scan using Processing-In-Memory Technology 809

14 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

The linear increase in the execution time can be seen directly for all executions. Furthermore,
the table scan on the DPU itself with a small number of 32 DPUs is much faster than the
corresponding execution on the CPU with 32 threads. The high task parallelism can lead to
very fast processing of the scan. Anyway, to enable the highest possible parallelism of the
DPUs, it is necessary to have as little inter-DPU communication as possible and as little
synchronization as possible at the tasklet level. In our approach, each tasklet worked on its
own allocated memory space on the MRAM. Thus, no synchronization mechanisms were
necessary. The result is a significant runtime improvement of the table scan.

1K 2K 4K 8K 10
K

12
K

Table Chunks

0

50

100

150

200

250

300

350

400

Tr
an

sf
er

 T
im

e
(m

s)

32 DPUs
64 DPUs
128 DPUs
256 DPUs
510 DPUs

Fig. 8: Table transfer times from host to DPUs with different numbers of DPUs.

810 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Accelerating Large Table Scan using Processing-In-Memory Technology 15

6.4 Data transfer

Fig. 8 shows the transfer times of large tables for different numbers of DPUs. For this
experiment, we created several graphs with different numbers of chunks, ranging from 1000
(1K) to 12000 (12K). Each chunk contains up to 817 node records. We considered the
transfer times on different numbers of DPUs to study the parallel data transfer. Furthermore,
we made sure that the total number of chunks is distributed among the DPUs. If the amount
of data does not fit into the memory of the DPUs, the data transfer would have to be executed
multiple times. The results clearly show that the transfer times increase as the number of
data increases. Parallel data transfer can reduce the transfer times by a few milliseconds. For
example, the transfer time can be decreased by half if all 510 DPUs are used instead of 32.

Since the data only has to be loaded into the memory of the DPUs at the startup of
the database, the result of the data transfer is acceptable. However, by using interleaved
execution, the transfer times of data can be hidden. However, these possibilities are outside
the scope of this paper.

7 Conclusion

The table scan is the most basic operator in the query processing of databases. In this work,
we have investigated how we can accelerate table scans with filters using PIM technology.
However, this approach requires an adapted design, since this new paradigm brings different
characteristics with it, such as the transfer of data and the partitioning of the workloads in
order to achieve the highest possible parallelism. As shown in the benchmarks presented
here, PIM technology can outperform the runtime of a comparable CPU execution. To
achieve this, however, high parallelism is needed. Furthermore, PIM technology can also be
used to improve other operators. It is conceivable that especially the operators which are
needed in graph databases for traversing can be further improved in their runtime.

Even when utilizing the CPU with its maximum possible parallelism, the results cannot
come close to the runtimes of a table scan on multiple DPUs. With very large tables, this
effect becomes even more pronounced. This has several implications for the execution of
table scans. To save as much runtime as possible, as much data as possible, if not all of it,
must be transferred to the DPUs’ memory. A problem that comes along with this is data
transfer. As shown in the evaluation, the transfer times increase with increasing table size.
To take advantage of this as much as possible, the data must be transferred to the memory
when the DBMS is started. The execution of updates and the maintenance of the consistency
of this data is another problem, which is outside the scope of this paper. Furthermore, the
data transfer can be optimized by using the possible bandwidth of the DPUs to transfer as
much as possible in parallel.

Accelerating Large Table Scan using Processing-In-Memory Technology 811

16 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

The economic aspect of the currently available PIM hardware cannot be fairly measured and
compared to the baseline hardware at the time of this work. Current hardware is currently
only prototypically distributed by the UPMEM company.

8 Outlook

In future work, plan to integrate the compilation process of DPU programs directly into the
query compiler. This would allow more flexible filter operations instead of only pre-coded
filters. Furthermore, the design of an approach for asynchronous execution can be subject
to investigation. The data transfer times are particularly high for very large tables. If this
data were to be transferred to the DPUs before query execution, this would have a negative
impact on the overall response time of the system. With an adaptive design, which transfers
data asynchronously and executes it in parallel on different DPUs or on the rank level,
this problem can be efficiently overcome. Finally, having multiple memory technologies
including PIM available in a database server raises the question of data placement and/or
efficient data transfer.

Acknowledgements. This work was partially funded by the German Research Foundation
(DFG) in the context of the project “Hybrid Transactional/Analytical Graph Processing
in Modern Memory Hierarchies (#TAG)” (SA 782/28-2) as part of the priority program
“Scalable Data Management for Future Hardware” (SPP 2037), “Processing-In-Memory
Primitives for Data Management (PIMPMe)“ (SA 782/31) as part of the priority program
“Disruptive Memory Technologies” (SPP 2377), and by the Carl-Zeiss-Stiftung under the
project “Memristive Materials for Neuromorphic Electronics (MemWerk)”.

Bibliography
[BJS21] Baumstark, Alexander; Jibril, Muhammad Attahir; Sattler, Kai-Uwe: Adaptive Query

Compilation in Graph Databases. In: 37th IEEE International Conference on Data
Engineering Workshops, ICDE Workshops 2021, Chania, Greece, April 19-22, 2021.
IEEE, pp. 112–119, 2021.

[Bo17] Boroumand, Amirali; Ghose, Saugata; Patel, Minesh; Hassan, Hasan; Lucia, Brandon;
Hsieh, Kevin; Malladi, Krishna T.; Zheng, Hongzhong; Mutlu, Onur: LazyPIM: An Efficient
Cache Coherence Mechanism for Processing-in-Memory. IEEE Computer Architecture
Letters, 16(1):46–50, 2017.

[Dr02] Draper, Jeff; Chame, Jacqueline; Hall, Mary; Steele, Craig; Barrett, Tim; LaCoss, Jeff;
Granacki, John; Shin, Jaewook; Chen, Chun; Kang, Chang Woo; Kim, Ihn; Daglikoca,
Gokhan: The Architecture of the DIVA Processing-in-Memory Chip. In: Proceedings of
the 16th International Conference on Supercomputing. ICS ’02, Association for Computing
Machinery, New York, NY, USA, p. 14–25, 2002.

812 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

Accelerating Large Table Scan using Processing-In-Memory Technology 17

[Gi22] Giannoula, Christina; Fernandez, Ivan; Gómez-Luna, Juan; Koziris, Nectarios; Goumas,
Georgios; Mutlu, Onur: , Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Systems, 2022.

[Gó22] Gómez-Luna, Juan; Hajj, Izzat El; Fernandez, Ivan; Giannoula, Christina; Oliveira, Ger-
aldo F.; Mutlu, Onur: Benchmarking a New Paradigm: Experimental Analysis and Char-
acterization of a Real Processing-in-Memory System. IEEE Access, 10:52565–52608,
2022.

[Gu] Guo, Juan Gómez-Luna1 Yuxin; Brocard, Sylvan; Legriel, Julien; Cimadomo, Remy;
Oliveira, Geraldo F; Singh, Gagandeep; Mutlu, Onur: Machine Learning Training on a
Memory-Centric Computing System.

[HG16] Hölsch, Jürgen; Grossniklaus, Michael: An Algebra and Equivalences to Transform Graph
Patterns in Neo4j. In (Palpanas, Themis; Stefanidis, Kostas, eds): Proceedings of the
Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT Workshops 2016,
Bordeaux, France, March 15, 2016. volume 1558 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[Ji21] Jibril, Muhammad Attahir; Baumstark, Alexander; Götze, Philipp; Sattler, Kai-Uwe: JIT
happens: Transactional Graph Processing in Persistent Memory meets Just-In-Time Compi-
lation. In (Velegrakis, Yannis; Zeinalipour-Yazti, Demetris; Chrysanthis, Panos K.; Guerra,
Francesco, eds): Proceedings of the 24th International Conference on Extending Database
Technology, EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021. OpenProceedings.org, pp.
37–48, 2021.

[Ka22] Kang, Hongbo; Zhao, Yiwei; Blelloch, Guy E; Dhulipala, Laxman; Gu, Yan; McGuffey,
Charles; Gibbons, Phillip B: PIM-tree: A Skew-resistant Index for Processing-in-Memory.
arXiv preprint arXiv:2211.10516, 2022.

[La16] Lavenier, Dominique; Deltel, Charles; Furodet, David; Roy, Jean-François: BLAST on
UPMEM. PhD thesis, INRIA Rennes-Bretagne Atlantique, 2016.

[Le14] Leis, Viktor; Boncz, Peter A.; Kemper, Alfons; Neumann, Thomas: Morsel-driven paral-
lelism: a NUMA-aware query evaluation framework for the many-core age. In (Dyreson,
Curtis E.; Li, Feifei; Özsu, M. Tamer, eds): International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. ACM, pp. 743–754, 2014.

[Ng20] Nguyen, Hoang Anh Du; Yu, Jintao; Lebdeh, Muath Abu; Taouil, Mottaqiallah; Hamdioui,
Said; Catthoor, Francky: A Classification of Memory-Centric Computing. ACM J. Emerg.
Technol. Comput. Syst., 16(2):13:1–13:26, 2020.

[Ni21] Nider, Joel; Mustard, Craig; Zoltan, Andrada; Ramsden, John; Liu, Larry; Grossbard,
Jacob; Dashti, Mohammad; Jodin, Romaric; Ghiti, Alexandre; Chauzi, Jordi; Fedorova,
Alexandra: A Case Study of Processing-in-Memory in off-the-Shelf Systems. In (Calciu,
Irina; Kuenning, Geoff, eds): 2021 USENIX Annual Technical Conference, USENIX ATC
2021, July 14-16, 2021. USENIX Association, pp. 117–130, 2021.

[NL14] Neumann, Thomas; Leis, Viktor: Compiling Database Queries into Machine Code. IEEE
Data Eng. Bull., 37(1):3–11, 2014.

[Pa97] Patterson, D.; Asanovic, K.; Brown, A.; Fromm, R.; Golbus, J.; Gribstad, B.; Keeton, K.;
Kozyrakis, C.; Martin, D.; Perissakis, S.; Thomas, R.; Treuhaft, N.; Yelick, K.: Intelligent
RAM (IRAM): the industrial setting, applications, and architectures. In: Proceedings

Accelerating Large Table Scan using Processing-In-Memory Technology 813

18 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

International Conference on Computer Design VLSI in Computers and Processors. pp. 2–7,
1997.

[UP22] UPMEM: , https://www.upmem.com/, 2022.

[WM95] Wulf, William A.; McKee, Sally A.: Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[Zh14] Zhang, Dongping; Jayasena, Nuwan; Lyashevsky, Alexander; Greathouse, Joseph L.; Xu,
Lifan; Ignatowski, Michael: TOP-PIM: Throughput-Oriented Programmable Processing
in Memory. In: Proceedings of the 23rd International Symposium on High-Performance
Parallel and Distributed Computing. HPDC ’14, Association for Computing Machinery,
New York, NY, USA, p. 85–98, 2014.

814 Alexander Baumstark, Muhammad Attahir Jibril, Kai-Uwe Sattler

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Enabling Integrated Data Analysis Pipelines on
Heterogeneous Hardware through Holistic Extensibility

Extended Abstract (New Idea)

Patrick Damme1, Matthias Boehm2

1 Introduction

Integrated data analysis (IDA) pipelines, that combine data management/query processing,
high-performance computing, and machine learning training/scoring, become increasingly
common in practice. Systems of these areas share many compilation and runtime techniques,
and stress every hardware aspect of storage, computation, and networking. Accordingly,
these systems are strongly impacted by hardware challenges such as the end of Dennard
scaling and the end of Moore’s law, which ultimately lead to dark silicon and increasing
specialization at device level (CPUs, GPUs, FPGAs, ASICs), storage level (computational
memory/storage, storage hierarchies), and workload level (data types and sparsity).

While this makes research on novel and heterogeneous hardware more exciting than ever,
researchers are increasingly confronted with the question of how to integrate their prototypes
to evaluate their impact on end-to-end IDA pipelines. Building yet another dedicated system
offers a lot of flexibility, but requires substantial infrastructure efforts. However, enhancing
an established system requires deep knowledge of the system internals and can be very hard.
Thus, already in the 1980/90s, there was a wave of research on extensible DBMSs [CH90].
One of the most famous systems developed at that time is Postgres, which allows adding
user-defined data types, functions, and access methods [SAH87]. Since then, concepts for
extensibility and variability have been proposed for various system components, at different
abstraction levels, and in different kinds of data systems. Recently, extensibility has also
gained traction in the context of component-based systems [HD23]. However, to the best of
our knowledge, there is no system infrastructure that holistically supports user extensions for
all components relevant to the efficient execution of IDA pipelines on today’s heterogeneous
compute/storage hardware. To overcome this problem, we propose holistic extensibility.

In this talk, we present the concept of holistic extensibility for IDA pipelines, sketch how
we approach this concept in DAPHNE, and provide an overview of our ongoing work.
1 Technische Universität Berlin, Germany, patrick.damme@tu-berlin.de
2 Technische Universität Berlin, Germany, matthias.boehm@tu-berlin.de

cba doi:10.18420/BTW2023-52

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 815

mailto:patrick.damme@tu-berlin.de
mailto:matthias.boehm@tu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-52

2 Patrick Damme, Matthias Boehm

2 Holistic Extensibility for IDA Pipelines

Holistic extensibility means that every aspect of a data processing system for IDA pipelines
should be easily extensible by users without a deep understanding of the system internals.
This concept can be seen as an ideal, since it is hard to define a provably complete set
of aspects requiring extensibility, and the need can evolve over time (e.g., integrating
heterogeneous hardware was not a focus in the 1980s). However, we identify the following
extensibility aspects relevant to the integration of novel computing or storage hardware:

Operators. Supporting different hardware accelerators typically requires dedicated operator
code for each device. For instance, a CPU operator may be written in C++ employing SIMD
intrinsics while a GPU operator may be written in CUDA. An extensible system should
enable the integration of different physical operators, targeting different devices, for the
same logical operator. Moreover, it should allow the definition of new (e.g., composite)
operators in cases where this facilitates the execution on a particular device.

Data Representation. Operators targeted at specific hardware often require or enable
specific data representations in terms of the overall storage layout (data types) and individual
values (value types). E.g., in linear algebra for ML and simulations, different dense and sparse
matrix data types were proposed. Furthermore, new value types for certain accelerators are
emerging, e.g., tf32 (GPUs) or bf16 (TPUs). Moreover, specialized hardware often addresses
specific applications, requiring the extension by domain-specific data representations.

Optimization & Scheduling. To make effective use of extensions, the system’s optimizer
must be able to reason about them, which requires an extensible internal representation (IR).
The crucial decisions include when to use which custom operator and data representation,
and how to place operators and data on the available (heterogeneous) computation and
storage devices. For this purpose, it must be possible to add specific optimization passes to
statically decide based on inferred data properties and system architecture, as well as to add
specific runtime schedulers to make dynamic decisions which take the current execution
behavior and system load into account. Both of these can benefit from custom cost models.

Typically, all of these extensibility aspects need to interact to fully integrate a novel hardware
device. However, a low barrier of entry is crucial to achieve adoption and to facilitate
exploratory specialization. For instance, it should be possible to add a physical operator for
an accelerator without building an entire new processing engine. Moreover, existing operator
implementations should be reusable for a custom data representation with acceptable
out-of-the-box performance, to allow the user to focus on specializing and optimizing
heavy-hitter operators for this representation. Finally, a deep integration into the optimizer
should be optional by supporting hints on which physical variant and accelerator to use for
an operator and which representation and storage device to use for an intermediate result.

The crucial aspects of holistic extensibility include: (1) how to balance expressiveness and
additional complexity of the extensible system, and (2) how to achieve superb performance
underneath the newly introduced abstractions.

816 Patrick Damme, Matthias Boehm

Enabling IDA Pipelines on Heterogeneous Hardware through Holistic Extensibility 3

extension
catalog

1

2

3

implementation

registration

utilization

DaphneDSL script

GPU kernels

SelectGPUPass

TF32Type

FPGA kernels

STD Kernels

STD Types shared lib

DAPHNE system custom extensionsuser script for IDA pipeline

// Simple example:
// matrix-vector multiply

// automatically select
// placement, devices,
// representations
// (default)
Y = X @ v;

// place v on GPU0
v = device(v, "/GPU:0");
// represent X as sparse
X = sparse(X);
// execute mult on GPU
Y = X @_gpu v;

manually

automatically

Fig. 1: DAPHNE System Architecture with Three-step Extension Approach.

3 Towards Holistic Extensibility in DAPHNE

DAPHNE3 [Da22] is an open and extensible system infrastructure for IDA pipelines,
including language abstractions, compilation and runtime techniques, multi-level scheduling,
heterogeneous hardware accelerators, and computational storage for increasing productivity
and eliminating unnecessary overheads. IDA pipelines are expressed in DaphneDSL, a
domain-specific language for linear algebra and extended relational algebra over matrices
and frames. DaphneDSL is parsed into DaphneIR. In an MLIR-based [La21] compilation
chain, DaphneIR is optimized by domain-specific and traditional programming language
optimizations, lowered to LLVM with calls to pre-compiled operator kernels, JIT compiled,
and executed in a local or distributed runtime. DAPHNE’s vectorized engine fuses pipelines
of operators, serves as the central means for parallelism, and is the central component for
simultaneously utilizing heterogeneous hardware such as GPUs, FPGAs, and computational
storage. Next, we give an overview of our extensibility design and mention some interesting
research questions. To extend DAPHNE, users follow a three-step approach (Figure 1).

1. Implementation. The user implements the custom extensions for kernels, data/value
types, optimizer passes, or scheduling techniques outside the DAPHNE code base in C++
adhering to well-defined extension hooks, and compiles them as a shared library. This does
not require a deep understanding of the DAPHNE code base. Research questions include
defining the right interfaces to balance expressiveness and complexity, achieving efficiency
underneath these abstractions, and combining existing kernels and new data/value types.

2. Registration. The user registers the extension in DAPHNE’s extension catalog either
through configuration files or from DaphneDSL. This requires providing the name and
shared library as well as information specific to kernels (e.g., DaphneIR operation, expected
input/output data/value types, required interesting data properties), data types (logical data
type, preferred slicing axis for partitioning), and value types (bit width, semantics). More
information can optionally be provided, e.g., traits and cost models to be used by the
DAPHNE compiler. As the extension catalog can get large, its internal structure is decisive
to efficiently serve relevant access patterns like look-up by operation and hardware device.

3 https://github.com/daphne-eu/daphne

Enabling Integrated Data Analysis Pipelines on
Heterogeneous Hardware through Holistic Extensibility 817

https://github.com/daphne-eu/daphne

4 Patrick Damme, Matthias Boehm

3. Utilization. By default, DAPHNE makes all decisions like the selection of kernels and
physical data types as well as placement automatically, to increase users’ productivity. To
support this behavior for custom extensions, one option is to provide traits and cost models
(e.g., for operator execution times or physical data size) in the extension catalog, which
can be used by built-in optimization passes. Another option is to add a new optimization
pass employing the extension where beneficial, which is simplified in DAPHNE due to the
modular nature of the optimizer pipeline in MLIR. Even entire third-party MLIR dialects
could be added, including operations, traits, and transforms. In fact, this is a promising
option for generating code for hardware accelerators. This approach allows integrating new
accelerators through dedicated dialects. Interesting questions include suitable abstractions
for cost models and the integration of custom traits and interesting properties into the existing
optimizer. To facilitate experimentation, DAPHNE also supports manual decisions. In
DaphneDSL, users can provide hints on which device, kernel, or physical data representation
to use for an operation or intermediate. These hints are treated as constraints by the optimizer.
Interesting questions include the propagation of hints through the IR.

4 Conclusions and Outlook

We proposed holistic extensibility for IDA pipelines to handle increasing specialization from
operators for heterogeneous hardware over the often co-designed data representations to the
corresponding optimization and scheduling techniques. We sketched the extensibility design
of DAPHNE, which offers users great benefits, while requiring low effort. We are currently
implementing this design with a focus on kernels and data/value types, including some
useful example extensions to showcase its simplicity. Our vision is to enable researchers to
easily integrate their prototypes into a full-fledged system for IDA pipelines with minimal
effort, thereby simplifying experimentation with and sharing of their work.

Acknowledgments. The DAPHNE project has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement No 957407.

Bibliography
[CH90] Carey, Michael J.; Haas, Laura M.: Extensible Database Management Systems. SIGMOD

Rec., 19(4):54–60, 1990.
[Da22] Damme, Patrick et al.: DAPHNE: An Open and Extensible System Infrastructure for Integrated

Data Analysis Pipelines. In: CIDR. 2022.
[HD23] Haffner, Immanuel; Dittrich, Jens: mutable: A Modern DBMS for Research and Fast

Prototyping. In: CIDR. 2023.
[La21] Lattner, Chris et al.: MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.

In: CGO. 2021.
[SAH87] Stonebraker, Michael; Anton, Jeff; Hirohama, Michael: Extendability in POSTGRES. IEEE

Data Eng. Bull., 10(2):16–23, 1987.

818 Patrick Damme, Matthias Boehm

Workshop on Big (and Small) Data in Science and
Humanities (BigDS)

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Using SQL/MED to Query Heterogeneous Data Sources with
Alexa Voice Commands

Johannes Schildgen1, Florian Heinz1, Andreas Olĳnyk1, Arvid Lindenau1

Abstract: Typical Alexa skills and other add-ons for voice assistants need to be custom developed for
their one specific use case. This paper presents an approach to map arbitrary data sources (databases,
APIs, services) to the relational model by using SQL/MED and to transform voice-based queries into
SQL. The key challenges for such a universal skill are to correctly map the natural-language question
into a SQL query on the correct source table in the federated database and to convert the result set
back to a compact and well-understandable answer.

Keywords: Voice Assistants; SQL/MED; Natural-Language Processing; User interfaces for big data

1 Introduction and Motivation

Speech recognition and voice-based queries have been research topics for many years. While
transforming speech into written text has basically reached a good-enough level [Hu17], the
big challenge in building voice assistants is understanding what the user wants to know or to
do. As there is no universal machine that understands all kinds of voice queries, companies
develop individual voice applications for each specific scenario: finding train connections,
news, stocks, weather, and so on. Alexa, Siri, and Google Assistant only support a limited set
of built-in commands. Nevertheless, they often use a fallback method by doing a traditional
web search with the full query and speaking out the text of the most relevant search result.
As this approach is very error-prone and does not support customized queries, the typical
approach is developing custom add-ons for voice assistants. For Alexa, these add-ons are
called skills.

Each skill has to be individually developed by defining a list of example sentences, so-called
intents. An intent contains zero or more slots. A slot is like a variable; it has a name and a
data type. The skill developers must implement a when-this-then-that behavior of what to
answer or do when which intent is called. For example, “Which are the meals in the canteen
on <date>”. Voice frameworks work in a flexible way so that this intent also matches the
following input sentence: “Tell me today’s meals in the canteen.” In this case, the slot
<date> will be set to the current date.

Besides these end-user-focused use cases, voice interfaces are increasingly adopted in
professional contexts. A recent trend is the use of natural-language interfaces to work with
1 OTH Regensburg, Postfach 120327, 93025 Regensburg, Germany
{johannes.schildgen,florian.heinz}@oth-regensburg.de; {andreas.olĳnyk,arvid.lindenau}@st.oth-regensburg.de

cba doi:10.18420/BTW2023-53

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 821

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-53

2 Johannes Schildgen2, Florian Heinz1, Andreas Olĳnyk1, Arvid Lindenau1

data-analytics applications [Go20]. These so-called conversational analytics allow users
without data-science skills to explore and analyze data. Big business-intelligence platforms
like Tableau Ask Data [Ma18] or SAP Conversational AI have been launched in recent
years to enable companies with business data to use natural-language queries.

This paper presents an approach that uses the database language SQL as an intermediate
layer between Alexa skills and arbitrary data sources. Of course, this approach is not
limited to Amazon Alexa; it also works for arbitrary other voice assistants. Our command
from above would be translated into the following query: SELECT name FROM meals WHERE
meal_date = current_date; The table names and column names (meals, name, meal_date)
are determined by exploring the database metadata. If the desired data is stored in the
tables of a relational database, then this query can simply be sent to that database. If not,
our approach uses external tables as proposed by the SQL/MED standard (Management
of External Data) [Me01]. Depending on the federated database management system, this
concept is also called foreign-table wrappers (PostgreSQL), datalinks (DB2), external tables
(Oracle), connect tables (MariaDB) or virtual schemas (Exasol). The idea of SQL/MED is
to virtually integrate external data sources, like APIs or NoSQL databases, and let them
appear in the database catalog like native tables. Each query on these tables is forwarded to
the external system on demand (see Figure 1). In the example above, meals could be an
external table to the API of OpenMensa.org or a view that joins physical and external tables.

Central

Database

System

Databases

Tables

Fields

SQL/MED

Foreign

Data

Wrappers

E-Mail LDAP
RSS

Voice

Interface

Fig. 1: Database System as the central data source for natural language queries

In this paper, we make the following contributions:

1. We present an SQL/MED-based approach for voice queries on arbitrary data sources.
2. We identify how to transform natural-language queries into valid SQL commands.
3. We transform query results back into a compact and well-understandable voice answer.

The following section shows a brief history of natural-language queries and other related
work. In Section 3, we explain our approach for a universal Alexa skill. In Section 4, we
present exemplary use cases and a short evaluation. We conclude in Section 5.

822 Johannes Schildgen, Florian Heinz, Andreas Olijnyk, Arvid Lindenau

Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice Commands 3

2 Related Work

Translating natural language into SQL queries (NL2SQL) has been a research topic for
several decades [ART95, LJ14a, LJ14b]. Kim et al. [Ki20] provide an overview of those
NL2SQL techniques. They use different benchmarks and automatic and manual matching
approaches to evaluate whether natural-language commands are translated into a semantically
correct SQL query or not. Some of the systems with the highest accuracy are NSP [Iy17],
TypeSQL [Yu18], GNN [BGB19], and IRNet [Gu19]. They all use deep-learning methods
to learn cross-domain as well as domain-specific terminologies and relationships. The
approach that we used for our prototype implementation uses simple natural-language
processing techniques. But it is easy to replace these techniques with others to increase the
accuracy.

EchoQuery [Ly16] is a system that focuses on voice inputs and voice outputs to query
relational databases. It can be used in an interactive way. The user can refine previous
queries with follow-up questions, and the system can ask clarifying questions back to the
user. The findings from this approach can easily be applied to our approach as well to make
it more interactive. Cyrus [GJ19] is an iPhone app that converts voice commands into SQL
queries for teaching purposes. The app can be used to learn SQL. Cyrus is very similar to
EchoQuery and also to our approach. But our approach is voice-only; Cyrus displays the
query and the result table on the smartphone display. They do not convert the result set into
a well-understandable spoken answer.

There is only a little research on one-size-fits-all conversational systems. Haase et al. [Ha17]
convert voice commands into SPARQL queries and send them to the Wikidata knowledge
graph. However, most skills for Alexa and others are custom-developed for just one single
application scenario. Atefi et al. [At20] studied the user reviews of more than 2800 of those
custom Alexa skills. They found out that the most frequent complaint is that the content
provided by the skill is undesired or uninteresting. The main reason for this is that in custom
skills, users often need to ask questions in a prespecified and fixed form. With our approach,
we try to solve this problem by building a universal Alexa skill. There, fuzzy matching
methods on database metadata allow for a broad diversity of supported queries.

Given that databases are often accessed via an API, some work has been done on querying
APIs with natural language (NLI2API). This is often done by training machine-learning
models on examples of natural-language commands and their mapping to API calls.
In [Su17], the authors proposed a framework to collect high-quality training data and
evaluated it using real-world APIs, yielding good results. In follow-up work, an NLI2API
system with fine-grained control was tested in a user study [Su18]. The participants had to
complete several tasks using text queries, e.g., retrieving emails from their inboxes. The
novel approach in this work was to split the queries into so-called modules that correspond
to different API parameters. After performing a query, users could remove or add modules
to correct their initial query. Eventually, the approach reduced the number of required
interactions and task completion time and thus improved the overall user experience.

Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice Commands 823

4 Johannes Schildgen3, Florian Heinz1, Andreas Olĳnyk1, Arvid Lindenau1

3 Implementation based on Amazon Alexa

Spoken

Inquiry
Textual

representation

Speech

recognition

engine

Natural

Language

Processing
Tokens

Database

Schema

extraction
<<Database>>

Schema Query

Builder

Object

Predicate

Question

Matching

Matching

Execute query

Fetch result Formulate

response

Spoken

Response

Text-to-Speech

engine

Foreign

data

wrappers

E-Mail

Reddit

RSS

Fig. 2: Process Overview

Figure 2 sketches the coarse overview of the process. The human interface is a speech-
recognition service as is provided by, for example, Alexa, Siri, Google Assistant, Cortana,
Bixbi, or similar engines. Our reference implementation is basically independent of the
speech-recognition service, but we chose Amazon Alexa for our prototype. The Alexa
skill transcribes the spoken query into a text string, and this string is fully sent to our
Python-based server via HTTPS. The only task of the voice service is the speech-to-text
and text-to-speech part.
The main part of the process happens within a server application. When this server starts up,
it first connects to the database to discover the database schema. In this step, not only the
table and column names are fetched, but also a set of aliases for each of these identifiers is
generated. They contain different word variations such as singular/plural forms or synonyms.
For this task, string-normalization techniques, thesauruses, dictionaries, and the Python
libraries “nltk”, “wordnet” and “inflect_engine” are used.
After receiving the inquiry string, also this query is cleaned and normalized. For example,
Alexa passes numbers up to ten as words, not as a sequence of digits, which is fixed up in
that step, together with several other minor corrections like resolving abbreviations (“who’s”
→ “who is”) or question words (“how much” → “price”). These words are then used to try
to find the correct parts of the database schema in the following order: (1) direct matches
(original identifiers), (2) fuzzy search (using doublemetaphone), (3) matching of aliases, (4)
association matching. After that, the matching concepts of the found tokens in the database
query have to be determined: table name, column name (projection or selection), column
value, and aggregation function. This is performed by heuristics that take into account
the position inside the sentence, preceding or following words, and several more criteria.
Finally, the query is executed and a natural sounding answer is generated from the result set.
So, for example, the following conversations could be happening:
> What is the firstname of the employee with employeeid five?

The firstname of the employees with the employeeid 5 is ’Steve’.

824 Johannes Schildgen, Florian Heinz, Andreas Olijnyk, Arvid Lindenau

Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice Commands 5

It is quite useful that the answer always contains parts of the question. If the answer would
just be “Steve”, the user cannot be that sure that the question was understood correctly by
the system.

Limitations Our prototype supports single-table queries with multiple projection columns
in the SELECT clause, simple aggregation functions (COUNT(*), SUM|AVG|MIN|MAX(col))
without GROUP BY, and a WHERE clause with one or many (AND|OR) predicates. Each predicate
consists of a column identifier, a comparison operator (<, <=, =, !=, >, >=, LIKE) and
a numeric or string literal. These are the same limitations as in the WikiSQL [ZXS17]
benchmark. For more complex queries with joins or groupings, the workaround is to create
a view and query that view with a voice command.

4 Use Cases

In the previous section, we presented a simple implementation of how a natural-language
query can be translated into a SQL query. This allows for voice queries on arbitrary tables
in a relational database. This section describes some interesting use cases and evaluates
the overall usability of this system. We will not only use native SQL tables for this but we
will also use external tables. The idea is to virtually integrate external data so that it can be
accessed with SQL. For our prototype, we use PostgreSQL’s foreign data wrappers. One
can develop their own wrapper or use one of the available foreign data wrappers for JDBC,
NoSQL (MongoDB, Neo4J, Redis, ...), files (CSV, JSON, XML, ...), services (Google
Spreadsheet, Open Weather Map, Open Street Map, Twitter, ...) and many more4.

One useful foreign data wrapper is the FileGW module, which spans a bridge between the
database and a local file system. After creating the foreign table, a typical command could
be: “What is the content of the file with the name memo?”.

Another interesting foreign-data wrapper is the RSS gateway5:
CREATE FOREIGN TABLE newsfeed (title varchar(800), description varchar(800),

pubDate timestamp, link varchar(800)) server rss_srv options (url ’...xml’);

A command like “What are the titles of the newsfeed of the last two hours?” or “What is
the description of the newsfeed with the title ’clean energy’?” can now be used to extract
information from arbitrary RSS feed sources.

Many types of information can be represented by a relational schema and the foreign-data-
wrapper method is an easy and practical way to not only retrieve that information from a
database but also link it with other relations in the database. It is for example possible to
create a view that joins several (native or foreign) tables and retrieve information from this
view with a spoken inquiry.

4 https://wiki.postgresql.org/wiki/Foreign_data_wrappers

5 https://multicorn.org/foreign-data-wrappers/

Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice Commands 825

https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://multicorn.org/foreign-data-wrappers/

6 Johannes Schildgen7, Florian Heinz1, Andreas Olĳnyk1, Arvid Lindenau1

External tables in PostgreSQL are not read-only but also writable. This makes it possible
to extend our voice assistant by supporting inserts, updates, and deletes. For example, the
foreign data wrapper for Philips Hue6 shows a table with all lightbulbs and their states. A
voice command can create an UPDATE query to turn on or off one or multiple lights.

Companies are increasingly adopting NLP technologies to power data-driven use cases.
Decision makers use KPIs to monitor the current status of manufacturing processes, make
analyses like trend predictions or get notified in case of critical deviations. We used our
voice-based approach in a proof-of-concept implementation at an automotive company and
it showed that it can improve the usability of a data-analytics application in a manufacturing
domain. As an alternative to using the web application, users can use voice commands to
query an underlying API and retrieve the desired information like “What is the current
production status in plant Berlin?”. There has been a major challenge in implementing
these use cases. Professional environments often have a domain-specific vocabulary that
is difficult to integrate into NLP systems. Thus, it is important that the relevant terms are
present in the database metadata. Database views can be used to structure the data in a
useful way and to name the attributes accordingly, e.g., production_status. Once the data
is structured in a useful way, the system can be used immediately.

Tests with users showed that the system improves the usability of the underlying KPI system
because the information can be easily retrieved in any scenario directly on their phone
without the need to have access to a PC.

5 Conclusion

This work shows a general-purpose method to retrieve specific information from an SQL
database system. The focus where this work excels is to cope with database systems by only
retrieving the database schema; other information is not needed. Nevertheless, the user can
intuitively formulate spoken inquiries and the system often does a good job of translating the
sentence into an SQL query. For this, fuzzy matching with Doublemetaphone and thesaurus
lists is used to find out where the sought information might be stored. External information
can be provided to the database by foreign-data-wrapper modules, where a rich amount of
existing modules is available, but also developing customized wrappers is not a big task.

Further development should include the automatic joining of tables to retrieve information
that cannot be derived from a single table. In the current state of the implementation, one or
more views would have to be prepared in advance to achieve such a task. Beyond that, it
would be desirable to support some more typical operations and aggregations on both sides
- projections and predicates - of a query. As modern AI language models are well-suited for
generating SQL queries, one approach could be integrating systems like OpenAI GPT to
support more complex queries.

Our prototype’s source code is open-source, available at github.com/fwheinz/datalexa
6 https://github.com/rotten/hue-multicorn-postgresql-fdw

826 Johannes Schildgen, Florian Heinz, Andreas Olijnyk, Arvid Lindenau

github.com/fwheinz/datalexa
https://github.com/rotten/hue-multicorn-postgresql-fdw

Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice Commands 7

Bibliography
[ART95] Androutsopoulos, Ion; Ritchie, Graeme D; Thanisch, Peter: Natural language interfaces to

databases–an introduction. Natural language engineering, 1(1):29–81, 1995.

[At20] Atefi, Soodeh; Truelove, Andrew; Rheinschmitt, Matheus; Almeida, Eduardo; Ahmed,
Iftekhar; Alipour, Amin: Examining user reviews of conversational systems: a case study
of Alexa skills. arXiv preprint arXiv:2003.00919, 2020.

[BGB19] Bogin, Ben; Gardner, Matt; Berant, Jonathan: Representing schema structure with graph
neural networks for text-to-SQL parsing. arXiv preprint arXiv:1905.06241, 2019.

[GJ19] Godinez, Josue Espinosa; Jamil, Hasan M: Meet Cyrus: the query by voice mobile assistant
for the tutoring and formative assessment of SQL learners. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. pp. 2461–2468, 2019.

[Go20] Goasduff, L: , Megatrends Dominate the Gartner Hype Cycle for Artificial Intelligence,
2020.

[Gu19] Guo, Jiaqi; Zhan, Zecheng; Gao, Yan; Xiao, Yan; Lou, Jian-Guang; Liu, Ting; Zhang, Dong-
mei: Towards complex text-to-sql in cross-domain database with intermediate representation.
arXiv preprint arXiv:1905.08205, 2019.

[Ha17] Haase, Peter; Nikolov, Andriy; Trame, Johannes; Kozlov, Artem; Herzig, Daniel M: Alexa,
Ask Wikidata! Voice Interaction with Knowledge Graphs using Amazon Alexa. In: ISWC
(Posters, Demos & Industry Tracks). 2017.

[Hu17] Huang, Xuedong: Microsoft researchers achieve new conversational speech recognition
milestone. Microsoft, August, 2017.

[Iy17] Iyer, Srinivasan; Konstas, Ioannis; Cheung, Alvin; Krishnamurthy, Jayant; Zettle-
moyer, Luke: Learning a neural semantic parser from user feedback. arXiv preprint
arXiv:1704.08760, 2017.

[Ki20] Kim, Hyeonji; So, Byeong-Hoon; Han, Wook-Shin; Lee, Hongrae: Natural language to
SQL: where are we today? Proceedings of the VLDB Endowment, 13(10):1737–1750,
2020.

[LJ14a] Li, Fei; Jagadish, Hosagrahar V: Constructing an interactive natural language interface for
relational databases. Proceedings of the VLDB Endowment, 8(1):73–84, 2014.

[LJ14b] Li, Fei; Jagadish, Hosagrahar V: NaLIR: an interactive natural language interface for
querying relational databases. In: Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. pp. 709–712, 2014.

[Ly16] Lyons, Gabriel; Tran, Vinh; Binnig, Carsten; Cetintemel, Ugur; Kraska, Tim: Making
the case for Query-by-Voice with EchoQuery. In: Proceedings of the 2016 International
Conference on Management of Data. pp. 2129–2132, 2016.

[Ma18] Markas, Ruhaab: , Ask Data: Simplifying analytics with natural language, 2018.

[Me01] Melton, Jim; Michels, Jan-Eike; Josifovski, Vanja; Kulkarni, Krishna; Schwarz, Peter;
Zeidenstein, Kathy: SQL and management of external data. ACM SIGMOD Record,
30(1):70–77, 2001.

Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice Commands 827

8 Johannes Schildgen8, Florian Heinz1, Andreas Olĳnyk1, Arvid Lindenau1

[Su17] Su, Yu; Awadallah, Ahmed Hassan; Khabsa, Madian; Pantel, Patrick; Gamon, Michael;
Encarnacion, Mark: Building natural language interfaces to web apis. In: Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management. pp. 177–186,
2017.

[Su18] Su, Yu; Hassan Awadallah, Ahmed; Wang, Miaosen; White, Ryen W: Natural language
interfaces with fine-grained user interaction: A case study on web apis. In: The 41st
International ACM SIGIR Conference on Research & Development in Information Retrieval.
pp. 855–864, 2018.

[Yu18] Yu, Tao; Li, Zifan; Zhang, Zilin; Zhang, Rui; Radev, Dragomir: Typesql: Knowledge-based
type-aware neural text-to-sql generation. arXiv preprint arXiv:1804.09769, 2018.

[ZXS17] Zhong, Victor; Xiong, Caiming; Socher, Richard: Seq2sql: Generating structured queries
from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103,
2017.

828 Johannes Schildgen, Florian Heinz, Andreas Olijnyk, Arvid Lindenau

cba

B. König-Ries et al (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

Integrating Access to Authority Data for Improved
Interoperability of Research Data in the Digital Humanities

Robin Jegan1, Leon Fruth1, Tobias Gradl1, Andreas Henrich1

Abstract: Authority data is used to unambiguously identify persons, organizations and places. In this
paper, a means to integrate access to several providers of authority data into data curation processes is
described, which facilitates disambiguation of geographic data. Combined access to general datasets,
in our case the Integrated Authority File (GND), as well as highly specialized datasets, here the
Memorial Archives, improves the resolution of ambiguities and particularly benefits use cases of
the Digital Humanities. The integration is necessary in order to abstract from technical, syntactical
and semantic heterogeneity of the providers. Operations such as querying geographic information
and receiving enriched data from different data sources are facilitated. An overview of the goals
of the system, related projects and authority data providers are presented, as well as details on the
implementation and further steps.

Keywords: authority file; geographic databases; data integration

1 Introduction

FAIR2 has become a prominent keyword in academia that summarizes fundamental
requirements of research data management. Authority files play a key role with respect to
multiple FAIR principles in that entities such as persons, organizations and places can be
unambiguously identified. Potentially ambiguous textual descriptions of entities (i.e. name
attributions) can thus be replaced with references to their representation in authority files –
improving the interoperability and in consequence the findability and reusability of data.

Numerous sources of authority data exist and provide access in terms of distinct data
structures and formats – either by means of downloadable archives or in the form of accessible
APIs. Data selection and their semantic and structural representation are influenced by
requirements and contexts of respective providers. Authority files of national libraries,
such as the Integrated Authority File (Gemeinsame Normdatei, (GND)3 of the German
National Library (DNB) aggregate authority data within their legal setting4 and thus with
a national bias. In contrast, universal data sources such as GeoNames5 might expose a
1 Otto-Friedrich-Universität Bamberg, Lehrstuhl für Medieninformatik, An der Weberei 5, 96047 Bamberg,

Germany, [robin.jegan,leon.fruth,tobias.gradl,andreas.henrich]@uni-bamberg.de
2 Findability, Accessibility, Interoperability, and Reuse of digital assets https://www.go-fair.org/fair-
principles/ All links accessed on 18-01-2023.

3 https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html

4 https://www.gesetze-im-internet.de/dnbg/__2.html

5 https://www.geonames.org/

cba doi:10.18420/BTW2023-54

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 829

mailto:[robin.jegan,leon.fruth,tobias.gradl,andreas.henrich]@uni-bamberg.de
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
https://www.gesetze-im-internet.de/dnbg/__2.html
https://www.geonames.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-54

12 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

reduced descriptive depth. As an example of a highly specific normative data source, the
Memorial Archives6 contain entity descriptions in the specific context of the Flossenbürg
Concentration Camp and as such, entities that are often unavailable in more generic authority
files.

Concurrent access to multiple authority files is required if information of universal and
specific files need to be referenced and combined. Use cases with such integrative require-
ments are often found in the Digital Humanities (DH), where historic entities and attributes
such as names and chronologies are of particular relevance. As an example, the project
Oral-History.Digital (OH.D)7 develops a curation and research platform for collections of
audiovisually recorded narrative interviews. Metadata and transcripts of interviews usually
include geographic data such as historic places connected to the interviewed person or
the location the interview was recorded. In order to clearly label and identify the spatial
information, authority file providers are used to differentiate between ambiguous places.
As such, interviews with survivors of the Flossenbürg concentration camp might contain
references to specific places such as satellite camps, which can be found in the Memorial
Archives. On the other hand, that same interview might reference commonly known places
such as cities and buildings, that can be referenced by using the GND.

In this paper, we present an idea and software component that mediates between the required
contextualization of research data (such as interviews) and the wide-spread authority data
that is available. After presenting a more detailed perspective on data providers and the
technological complexities of accessing provided data, we introduce a service that mitigates
these complexities by modeling and mapping between heterogeneous data structures,
providing integrated access and presenting authority data in an integrated manner. For an
initial realization of the service, we have focused on geographical authority data, but expect
to integrate other entity types in the near future.

Our contributions are twofold. After analyzing and evaluating data providers and use
cases, we identify possibilities to enable access to heterogeneous spatial data through
dedicated APIs. Furthermore, we propose integrative access to spatial data by means of a
Transformation Service, which is realized on the basis of existing modeling and mapping
capabilities, see 4.2.

Authority data in our paper includes data from authority file providers such as the GND,
which are curated by their holding institutions, as well as community-based projects like
WikiData8. With respect to our user-case, both types of data serve the same purpose,
identifying entities, and from a technical perspective can be handled similarly in order to
achieve the objectives presented in this paper.

6 https://memorial-archives.international/

7 https://www.oral-history.digital/

8 https://www.wikidata.org/

830 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

https://memorial-archives.international/
https://www.oral-history.digital/
https://www.wikidata.org/

Integrating Access to Authority Data 13

2 Related Work

The features of authority data include identifiers that can serve to clearly identify entities. In
contrast to curated qualitative data from authority file providers, community-based projects,
e.g. WikiData or Nominatim9, are characterized by user-created data and their immense
volume, and can therefore be used to interconnect with information from providers like the
GND, to enrich and broaden the data.

Regarding the flexible integration of different authority file providers for spatial data, to the
best of our knowledge, no solution is available. A similar, but more general effort has been
made to create an overarching authority file across multiple national libraries and archives,
resulting in the Virtual International Authority File (VIAF) [Be06]. Other datasets such
as the Library of Congress Name Authority Files (LCNAF)10 serve the same purpose. For
these resources, VIAF and LCNAF, an OpenRefine implementation11 connecting the two
datasets has been implemented. The Open Researcher and Contribution Identifier (ORCID),
a database for researchers, is another authority file, mainly including data on persons and
their publications. However, ORCID has to be separated from VIAF and LCNAF, since
researchers themselves can edit, or even remove, their entries and thus the persistence of
ORCID data cannot be assured [Pi22, p. 137-138].

On a national level, there have been efforts to integrate authority files from many independent
archives and libraries, such as the national network of Italian libraries (Servizio Bibliotecario
Nazionale), whose goal is to integrate roughly 12,000 libraries across Italy and their authority
files [Ma22]. Another project describes the efforts in the research field technology assessment
and its portal for specialists, in which authority files and other data sources are used to
identify persons, organization and other data [Ho18]. There, the GND is used in combination
with data from ORCID or WikiData in order to identify entities.

Regarding spatial data, the Geobrowser project of the Digital Research Infrastructure for the
Arts and Humanities (DARIAH) enables the upload of spatial data in various file formats
and visualization on a geographic map 12. The integration of geographic data in KML, KMZ
or CSV formats is available here as well as various options regarding the presentation of the
data, e.g. individual layers via file upload (again in KML or KMZ file formats), as well as
ArcGIS layers or predefined layers such as historical data for the Roman Empire [Ko16].

The requirement to integrate different authority data providers for geographic data in one
infrastructure and thus to enable querying on this heterogeneous data is a new application
scenario and will be presented below, after a closer look on data providers.

9 https://nominatim.org/

10 https://authorities.loc.gov/

11 https://github.com/mcarruthers/LCNAF-Named-Entity-Reconciliation/

12 https://geobrowser.de.dariah.eu/

Integrating Access to Authority Data for Improved Interoperability of Research Data in the
Digital Humanities 831

https://nominatim.org/
https://authorities.loc.gov/
https://github.com/mcarruthers/LCNAF-Named-Entity-Reconciliation/
https://geobrowser.de.dariah.eu/

14 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

3 Data Providers

During an initial requirements analysis in the OH.D project, several providers for authority
data were identified. These are divided into generic and specialized data sources.

A generic authority file provider that was used for this implementation is the GND entity
Geografikum. The access to the data is enabled through the data service entity facts, which
comprises a web interface as well as dataset dumps13 including over 322,000 GND entities.
The dataset mostly consists of geographical places, including information like different
names of the place and the geographical area code. The metadata included in this dataset
is however lacking in some aspects. Many entities contain little to no alternative names,
like language or historical variants, which can help to resolve ambiguities. Furthermore,
geographic coordinates are only included in roughly 19% of all entities. Some entities
contain references to other data sources, such as WikiData that can be used to further enrich
the available data, for example to add historical places names.

Other generic authority file sources include GeoNames, a geographical database containing
over 12 million entries, which can be downloaded as a data dump. Nominatim, the backbone
of OpenStreetMap (OSM), provides an API, that allows access to over 7 billion OSM nodes.
In addition to the online API, OSM data can be downloaded and has thus been reused in
multiple projects. One prominent example can be found in Photon14, an open-source search
platform for OSM data.

Apart from the previously mentioned services, which offer generic spatial information,
more specialized authority file providers are of particular relevance to the DH and thus
represent interesting use-cases for this project. Interviews in OH.D, which comprise reports
of contemporary witnesses, often include historic place names. Therefore, general authority
data providers, even if they contain alternative place names in their datasets, are not suitable
for connecting these historical places to their use in the interviews. In such cases, providers
like the Memorial Archives, initiated by the Flossenbürg Concentration Camp Memorial15,
are needed for more specialized authority data. The Memorial Archives contain data on over
890,000 persons, 4,700 publications, 5,500 places and more. Furthermore, it incorporates
references between those different data entries. Regarding spatial data, the type of the place,
the time and name are included as well as coordinates. Here, an exemplary use-case for a
historical researcher would be using the Memorial Archives in order to get all names for
the town Chrastava in the Czech Republic. During the Second World War, a concentration
camp near the city was also known by its Polish as well as German name, since the city is
close to the Polish and German border. Through specialized data archives such as Memorial
Archives, the names of this concentration camp in all three languages are available for
further research16.
13 https://data.dnb.de/opendata/

14 https://github.com/komoot/photon/

15 https://www.gedenkstaette-flossenbuerg.de/

16 https://memorial-archives.international/entities/show/56dc6ea9759c022fd48d5286

832 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

https://data.dnb.de/opendata/
https://github.com/komoot/photon/
https://www.gedenkstaette-flossenbuerg.de/
https://memorial-archives.international/entities/show/56dc6ea9759c022fd48d5286

Integrating Access to Authority Data 15

The Heterogeneity inherent in these data providers is apparent in different aspects. Direct
API access is seldom available, which is why usually data dumps are downloaded and
indexed. The dumps themselves come in various formats and require processing in a
case-by-case manner.

4 Implementation

Authority data providers are heterogeneous in terms of access types (i.e. data downloads or
query interfaces), models (i.e. query languages and schemata) and contexts (i.e. universal,
national, specific). Our objective is to abstract from these aspects of heterogeneity and to
facilitate integrative access to authority data. With regard to harmonizing access to authority
data sources, section 4.1 describes the process and technical complexity of creating query
APIs based on downloadable data dumps. With harmonized accessibility by means of
existing or created APIs, section 4.2 focuses on the idea of overcoming model and context
heterogeneity by introduction of the Transformation Service – a mediating component that
translates between integrative models and the local models of a dynamic set of data sources.

4.1 Data Preparation & Indexing

To create accessible APIs based on available data dumps, microservices are created that
process and index the different data sources in Elasticsearch17 indices. These indices can
be searched using the names of places and further filtered with information like country
codes and spatial data. Additionally, individual entities can be requested by their respective
identifier. The APIs use POST and GET Requests, with JSON request bodys and are
automatically built and deployed as Docker images using continuous integration and
deployment pipelines. First, the data dumps need to be processed and indexed. To keep data
up to date they are reindexed in fixed intervals.

Fig. 1: Procedure of getting raw data, processing and indexing it to a Elasticsearch instance.

17 https://www.elastic.co/elasticsearch/

Integrating Access to Authority Data for Improved Interoperability of Research Data in the
Digital Humanities 833

https://www.elastic.co/elasticsearch/

16 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

Fig. 1 shows the process from downloading data sources to indexing them with Elasticsearch.
The step Resolve dependencies is not necessary for all data sources. Also, the step Enrich
data is not implemented yet and is further discussed in Section 5. So far the database dumps
from the authority file providers GND Geografikum and GeoNames have been considered
and indexed to an Elasticsearch instance, a next step will be to integrate the crawled
Memorial Archives geographic data. Elasticsearch has been chosen due to other software
projects that are connected or will be linked to this service in the future. It allows metadata
to be queried in different ways, for example by filtering based on spatial information, such
as coordinates or country codes.

For illustration purposes, the indexing of the Geografikum data dump is further described.
The files containing the spatial data are available in several formats. Due to the use of
Elasticsearch the format JSON-LD was chosen, since it is easy to integrate. The JSON-LD
file contains entries with three different types of identifiers. One describes a GND entity (e.g.
https://d-nb.info/gnd/4004391-5), which references entries with other types of identifiers,
if available. The second type of identifier (e.g. https://d-nb.info/gnd/4004391-5/about/)
carries further information about the entity. For almost one fifth of the GND entities, a third
type of identifier (e.g. _:node1gf2tc0d5x21379656) is referenced, which points to an entry
in the file containing the coordinates of the location. Before indexing, the dependencies
between the entries in the JSON-LD file need to be resolved and integrated into one entity.
Lastly, the coordinates are defined as so called Geopoints to allow querying and filtering by
distance or location using Elasticsearch.

4.2 Data and Service Consolidation

Based on applied schemata and technical contexts of providers, APIs expect requests in
specific forms (i.e. input models) and provide responses in terms of output models. In
consequence, services with a need for integrated access to multiple data sources such as
OH.D need to implement access to heterogeneous interfaces, input and output models.
Emerging from the modeling capabilities of the DARIAH-DE Data Modeling Environment
(DME)18 [GH16, HG21] we propose the concept of a generic Transformation Service.
Among other roles, the service acts as intermediary to online interfaces – mediating between
integrative data demands and the accessible, yet heterogeneous sources of relevant data.
Integrated query and result models are tailored to individual needs – here the OH.D portal
and its technical setting.

Fig. 2 outlines the main functionality of the service with particular focus on the idea of
interface mediation: Users of the OH.D portal formulate queries in terms of a defined query
model and submit them to an API provided by the service. By applying mappings between
integrated and local input models, queries can be translated and executed against applicable

18 https://de.dariah.eu/en/dme/

834 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

https://de.dariah.eu/en/dme/

Integrating Access to Authority Data 17

data sources. Returned results are collected and sent to the user in terms of an integrated
result model – again by applying relevant mappings.

Fig. 2: Transformation service

In order to address initial use cases of OH.D, multiple APIs have been configured to
each query one primary data source, whose results are enriched by queries to secondary
sources. Primary and secondary geographical data sources can be configured individually
per interview collection. All APIs oriented towards the OH.D portal share the same input
and output models, despite binding to different data sources.

5 Discussion and Outlook

The advancements presented in this paper are embedded in the infrastructure of the
language- and text-based infrastructure NFDI19 project Text+ and can thus be re-used for
future application scenarios. The integrated access to geographic information will enhance
the capabilities of the Transformation Service (detailed in 4.2), as intermediary between
requests, interfaces and data sources.

Still, the integration of data providers is affected by different file formats and access
modalities. Thus, a procedural approach is necessary in order to handle the integration of
additional data providers to enable comprehensive access.

To further improve the metadata, data providers described in Section 3 can be used. First,
the number of geographic locations can be increased by utilizing more data providers
like Nominatim and the Memorial Archives. Next, the data quality can be enriched by
incorporating more historical place names or adding missing geographic information, like
coordinates or country codes. Moreover, other types of entities such as persons or historical
events should be considered in the future. Additional data dumps from GND and further
sources of authority data can be used for this to index and search the data in a similar way
to geographical data addressed in this work.

Our system is currently used as part of the OH.D project in order to identify spatial
information and enrich metadata of interview transcripts. In doing so, feedback from
researchers is raised and influences further development.
19 https://www.nfdi.de/

Integrating Access to Authority Data for Improved Interoperability of Research Data in the
Digital Humanities 835

https://www.nfdi.de/

18 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

Bibliography
[Be06] Bennett, Rick; Hengel-Dittrich, Christina; O’Neill, Edward T; Tillett, Barbara B: Viaf (virtual

international authority file): Linking die deutsche bibliothek and library of congress name
authority files. In: World library and information congress: 72nd IFLA general conference
and council. 2006.

[GH16] Gradl, Tobias; Henrich, Andreas: Data Integration for the Arts and Humanities : A Language
Theoretical Concept. In: Research and Advanced Technology for Digital Libraries 20th
International Conference on Theory and Practice of Digital Libraries, TPDL 2016, Hannover,
Germany, September 5–9, 2016, Proceedings, pp. 281–293. Springer International Publishing,
Cham, Switzerland, 2016.

[HG21] Henrich, Andreas; Gradl, Tobias: Integration von Forschungsdaten : Wie können
Forschungsinfrastrukturen helfen? In: Innovation in der Bauwirtschaft, pp. 749–786.
De Gruyter, Berlin, Boston, 2021.

[Ho18] Hommrich, Dirk; Pasucha, Beate; Razum, Matthias; Riehm, Ulrich: Normdaten und Date-
nanreicherung beim Fachportal openTA. Bibliotheksdienst, 52(3-4):248–265, 2018.

[Ko16] Kollatz, Thomas: Raum-zeit-analysen mit geo-browser und datasheet-editor. Bibliothek
Forschung und Praxis, 40(2):229–233, 2016.

[Ma22] Mataloni, Maria Cristina: Integrated Search System: evolving the authority files. Biblio-
graphic Control in the Digital Ecosystem, 7:335–346, 2022.

[Pi22] Piazzini, Tessa: Bibliographic control and institutional repositories: welcome to the jungle.
Bibliographic Control in the Digital Ecosystem, 7:132–142, 2022.

836 Robin Jegan, Leon Fruth, Tobias Gradl, Andreas Henrich

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Geo Engine: Workflow-backed Geo Data Portals

Christian Beilschmidt1, Johannes Drönner1, Michael Mattig1, Philip Schweitzer1, Bernhard
Seeger12

Abstract: Geo data portals play a key role in the distribution and exploitation of domain-specific
geo data. While such portals are highly specialized, they share a number of common requirements
that span from data access and processing to UI components. Geo Engine is able to provide all the
necessary parts for portal building. We demonstrate this on a real data portal we built for the dragonfly
community. In addition, we show its general architecture and outline future improvements.

Keywords: Geo processing; Data portals

1 Introduction

In recent years, many tailor-made geo data portals have arisen to provide specific data
and services to a domain-specific user group. The primary goal is to provide powerful
geo-temporal insight as simply as possible for a few dedicated use cases. On the other
hand, geographic information systems (GIS) have matured over the last two decades to
address the needs of processing Big Data regarding volume, variety, and velocity. However,
there is a high demand for systems providing powerful processing and the ability to create
customized portals to empower non-technical users to take full advantage of open and FAIR
data [Wi16]. So far, current portals are not capable of dealing with Big Data.

The foundation of generating customized geo data portals are building blocks for accessing
large raster and vector data, geo-temporal workflow processing and analysis, and flexible data
access by standard-compliant interfaces. These blocks are already integral components of
Geo Engine, a novel service platform that has already served as the basis for various portals.
Geo Engine is the successor of the VAT system (cf. Sect. 5), which already powered GFBio’s
[Di14] data portal until 2021. We took the lessons learned from our five-year development
of VAT and designed Geo Engine as an entirely new system that overcomes previous
limitations. Geo Engine offers new functionality to empower (data) scientists dealing with
large and heterogeneous datasets via different semantically equivalent interfaces (e.g., a
Python interface for programming enthusiasts and a no-code interface for less technically
experienced users). Among the many novel features of Geo Engine is its abstraction for
data access and its consistent temporal approach to treating every data item as a time series.
1 Geo Engine GmbH, Am Kornacker 68, 35041 Marburg, Germany {firstname.lastname}@geoengine.de
2 University of Marburg, Dept. of Mathematics and Computer Science, Hans-Meerwein-Str., 35032 Marburg,

Germany seeger@mathematik.uni-marburg.de

cba doi:10.18420/BTW2023-55

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 837

mailto:{firstname.lastname}@geoengine.de
mailto:seeger@mathematik.uni-marburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-55

2 Christian Beilschmidt et al.

This makes Geo Engine a unique system for geo-spatial time series processing. Geo Engine
is also a progressive system [Be19, Ho20] supporting the early delivery of approximate
results to users to support an interactive and exploratory way of working on Big Data. In
addition, Geo Engine offers the building blocks for customized portals such that only a thin
mashup layer is required to meet users’ specific demands.

This paper is structured as follows: In Sect. 2, we present Geo Engine’s architecture and
describe its data and processing model, as well as abstractions and components. In Sect. 3,
we outline the requirements of data portals and how Geo Engine tackles them by providing
suitable building blocks. In Sect. 4, we showcase a demo portal that is built on top of Geo
Engine. In Sect. 5, we present related work. Finally, in Sect. 6, we give a brief summary and
point out future directions of Geo Engine.

2 Geo Engine: Architecture Overview

Geo Engine consists of a backend3 and two frontends: geoengine-ui4 for Web and geoengine-
python5 (Fig. 1). The backend handles data access, data management and query execution. It
also provides APIs for the frontends and third-party applications. OGC6-compliant interfaces,
e.g. Web Map Service (WMS), Web Coverage Service (WCS), and Web Feature Service
(WFS), allow access to data layers and computed layers derived on-the-fly at runtime. This
makes Geo Engine compatible with most other geo software. The remaining functionality
is available through a custom RESTful Web API with an OpenAPI7 specification. We
deploy Geo Engine using OCI8 containers (e.g. Docker) where the backend and the selected
frontend run in separate containers.

The backend of Geo Engine is written in Rust, a system language that overcomes many of the
deficiencies of C and C++. It consists of three modules: data types, operators, and services.
Data types contains the primitives for vector and raster data as well as basic operations and
spatial projections. Operators contains the spatio-temporal query execution engine and the
implementation of operators. Services contains the data management, i.e. adding, updating
and removing artifacts such as datasets, workflows and projects, and Web APIs on top of
this functionality. Optionally, it also handles user management, authentication via OpenID
Connect [Sa14] single sign-on (SSO) providers, and authorization, which allows restricting
access to resources such as data and workflows to certain users and groups.

The main output of Geo Engine are layers of spatio-temporal data: either feature collections
or raster images. Workflows specify the processing of the layers as a graph of operators. All

3 github.com/geo-engine/geoengine

4 github.com/geo-engine/geoengine-ui

5 github.com/geo-engine/geoengine-python

6 www.opengeospatial.org

7 www.openapis.org

8 www.opencontainers.org

838 Christian Beilschmidt, Johannes Drönner, Michael Mattig, Philip Schweitzer,
Bernhard Seeger

https://github.com/geo-engine/geoengine
https://github.com/geo-engine/geoengine-ui
https://github.com/geo-engine/geoengine-python
www.opengeospatial.org
www.openapis.org
www.opencontainers.org

Geo Engine: Workflow-backed Geo Data Portals 3

Fig. 1: A high-level overview of Geo Engine’s architecture and its main components. The features
in PRO are not open source but source-available. They are also freely available for non-commercial
users and projects.

workflows consist of input operators and optionally processing operators. The two most
important input operators are the GdalSource and the OgrSource that handle raster and
vector data loading, respectively. They use the omnipresent GDAL library [Ro22] in order to
support a variety of geospatial data formats as input. Processing operators either transform
one piece of data into another, e.g. by filtering, or combine multiple inputs into a new output,
e.g. attaching raster values to a point collection.

All data in Geo Engine is spatio-temporal and homogeneous. This means in a single raster
all cells have the same size and the same data type. In contrast to data cubes, however,
different rasters can still have other data types and sizes and will only be harmonized when
it is necessary for a computation. In a feature collection, all features are of the same type,
e.g. MultiPoint (cf. simple feature model [Op10]). This is necessary to define meaningful
operations, e.g., filtering a collection’s points based on them being contained in another
collection’s polygons.

Geo Engine: Workflow-backed Geo Data Portals 839

4 Christian Beilschmidt et al.

Everything also has a temporal validity, defined as a half-open time interval [start, end). In
a raster, all cells have the same temporal validity. In a feature collection, each feature has its
own temporal validity. If a feature has multiple geometries, e.g. points in a MultiPoint, all
geometries have the same temporal validity.

In order to enable the processing of datasets larger than the available main memory, all
computations are performed on streams of chunks (vectors) and tiles (rasters) of a fixed
size. A stream is a Rust data type that allows asynchronously producing and consuming
data. Input operators produce chunks when they read the data and operators can await these
chunks to be ready. In turn, other operators that use these outputs can again await them.
This allows Geo Engine to interleave data loading and processing because operations do not
block. The actual work is performed in a thread pool with a fixed number of workers, which
is chosen with respect to the number of CPU cores.

Raster tile streams are produced as time first, and space second. Starting with the first image
in a raster time series, we produce the tiles starting from the top-left and increasing right and
then down. Then, we continue with the image of the next time step in the same way. First
of all, it is crucial to fix the tile order, such that consuming (parent) operators can rely on
these order guarantees. Moreover, from our experience, this particular order is suitable for
most common spatial operations on time series. For different requirements, e.g., temporal
aggregations of single pixels, Geo Engine employs adapters that break the problem down
into a set of subqueries that contain exactly one tile to generate a time-first stream.

Feature collections are split up by a fixed size limit such that chunks are of roughly the
same size. Operators in turn have to produce new output chunks/tiles from input chunks.
This sometimes requires reading the same piece of data multiple times, e.g. for a join or a
convolution. This can be mitigated by employing an LRU cache to alleviate this problem of
redundant computations.

For rasters, all processing is performed on a global grid with a fixed origin and a fixed tile
size (e.g. 512 × 512 pixels). For a given query bounding box (BBox), we compute all the
tiles that intersect this BBox. The major advantage of uniform tiling is that it allows us to
easily combine multiple rasters, as the tiles are always aligned. It also allows easier re-use
of cached results, because elements can be taken as they are and not be stitched together.

Geo Engine can access internal and external data. Our approach is to identify loadable
data by an ID. An input operator obtains this ID as a parameter and resolves the necessary
loading information using a metadata provider. This information is, for instance, the file
name, the location, and the used spatial projection. Here, users can also specify regular
time series by file names with date templates or a list of irregular time steps of a time series.
Internal data are stored as datasets in a database. User can create their own datasets and
share them with other users. External data is provided by Data Providers.

Data Providers allow (1) to browse and (2) to access data that is not managed by Geo Engine
itself. In contrast to internal datasets, external data is referenced by an external data ID that

840 Christian Beilschmidt, Johannes Drönner, Michael Mattig, Philip Schweitzer,
Bernhard Seeger

Geo Engine: Workflow-backed Geo Data Portals 5

Fig. 2: A screenshot of Geo Engine’s GIS UI.

combines a provider ID with a layer ID. When an input operator gets an external data ID,
it uses the data provider to resolve the necessary loading information for the layer ID. In
contrast to local datasets, external data cannot be edited or deleted and the available data
may change over time. Some examples of external data providers are generic WCS and
STAC services, and more specialized ones like the GEO BON EBV Data Portal9 and NFDI
Core Storage10. To browse all available data, Geo Engine exposes internal and external data
in a uniform layer collection API.

Our Web frontend geoengine-ui consists of three parts: a core library, a GIS application, and
multiple apps and dashboards. The core provides a client implementation for the backend
API services, e.g. for managing layers, and building block components like the map, plots,
and operator dialogs. These components are all interconnected via application-wide states
and services within a reactive application architecture. For instance, a data table and a map
layer would relate to the same layer object that is managed by the core library. The GIS
application (Fig. 2) offers the full functionality of Geo Engine, which is targeted at expert
users. They can work with multiple layers, apply operators and review workflow graphs. All
views (map, plots, data table) are synchronized and automatically adjust to the selected time
and map extent. For instance, when a user pans to a different spatial area, a histogram plot
would be recomputed to reflect the visible data on the screen. The dashboards are much
simpler applications that focus on a concrete use case and only require access to a few

9 portal.geobon.org

10 www.nfdi4biodiversity.org

Geo Engine: Workflow-backed Geo Data Portals 841

https://portal.geobon.org
www.nfdi4biodiversity.org

6 Christian Beilschmidt et al.

selected inputs. This allows for building easy-to-use domain-specific dashboards that still
are able to leverage the full power of the Geo Engine data access, operator engine, and UI
components.

3 Building Data Portals using Geo Engine

Data portals are highly specific to their target audience, but most of them share the same
fundamental requirements. From our experience, the following list captures the most
important properties of a modern geo data portal:

R1 Flexible data access to different data types and formats

R2 Combining local and remote data sources

R3 Basic layers and derived layers using GIS operations on available data

R4 A map as a central dashboard component

R5 A web-based user interface and reusable components

R6 User interactions, e.g. panning, zooming or selecting data subsets

R7 Time functionality for working with time series

R8 Multi-views, e.g. data tables and plots

R9 Access control, i.e. ensuring data privacy and having a multi-user system

R10 Administration tools for defining and managing the portal

R11 Response times that allow working interactively

The combination of rich data access (R1), flexible layer definitions that leverage workflows,
basic GIS operators, and a UI component library makes it easy and efficient to build
interactive geo data portals using Geo Engine. The data can either be added as internal
datasets or accessed externally using a data provider, for instance, accessing a project
database (R2). For displaying data as layers on the map, data is either used as it is or
processed using advanced workflows (R3). In both cases, users can group the data as
needed and uniformly browse them via our layer collection API. Then, the portal offers
different display options, e.g., a simple list or cascaded dropdown lists for hierarchies (R6).
Furthermore, the portal is able to show multiple datasets at once and, e.g., to enrich project
data with other public data. As Geo Engine supports time as an integral dimension, it is
easy to realize time sliders (R7). Moreover, in addition to the map, a portal can provide
different kinds of plots and tabular views of the data (R8). If required, it can offer users to

842 Christian Beilschmidt, Johannes Drönner, Michael Mattig, Philip Schweitzer,
Bernhard Seeger

Geo Engine: Workflow-backed Geo Data Portals 7

dynamically input their data, e.g., by drawing areas of interest, which act as new datasets
that are read-to-use for processing in the portal.

Data is, by default, only processed with respect to the current map resolution, i.e. the number
of pixels and the zoom level that is currently visible to the user. This allows Geo Engine
to perform the calculations on overviews and avoids processing all the data at their finest
level of detail. This leads to high interactivity (R11), even supporting a large number of
operators and computing steps. If computations take too long for reasonable user interaction,
administrators can also save the result of a workflow as a new dataset upfront and avoid
recomputations.

Setting up a data portal currently consists of creating a new project that builds upon the
core library of the geoengine-ui project. Then, developers can combine existing components
into a domain-specific dashboard that can be enriched with custom texts and explanations.
Additionally, they can define specific color schemes and styles, and add project-specific
icons and logos. After setting up the application, one can set up datasets, layers, and other
config items in the backend (R10). Datasets and layers are defined as JSON files and either
loaded during the start of the backend or added later via REST. The layer IDs can be stored
in the frontend’s config for their retrieval at runtime. Finally, the dashboard is packaged as a
container and deployed alongside a backend instance. For each user of the data portal, Geo
Engine will create an anonymous user account on the fly and the user is logged into the
system automatically. This allows users to get their own private session while avoiding a
registration. However, it is also possible to add a global password or individual user accounts
to an instance to allow access only to a specific target audience (R9).

Some of the main UI building blocks are the map, the layer list, the data table, plots, legends,
and colorizers (R8). The map is typically the central point of attention in a geo data portal
(R4). It overlays multiple layers of raster and vector data. The rasters are styled in the
backend using a colorizer. The colorizer is predefined for each layer but can be changed by
the user in an editor if it is integrated into the portal. Vectors are styled in the frontend itself
and can also be customized, e.g., by varying the size of points depending on the value of an
attribute. The plots are computed in the backend, but rendered in the frontend using the
Vega plot grammar [Sa17]. This allows for a good visual quality and plot interactions but
requires little computing resources. While in our GIS the plots are always linked to the map
and data table with respect to time and space, portal creators are free to set time and space
for maps and plots independently. Thus, it is, e.g., possible to show a plot for a whole year,
while navigating through time month-by-month on the map.

Geo Engine’s core UI library is based on Angular11 components, which pose a form of Web
Component12 implementation (R5). Since Web Components are not yet fully standardized
and thus have varying implementations, project dashboards currently need to be Angular

11 www.angular.io

12 www.webcomponents.org

Geo Engine: Workflow-backed Geo Data Portals 843

www.angular.io
www.webcomponents.org

8 Christian Beilschmidt et al.

projects as well. Since Angular and its Material Design13 look-and-feel are widely used on
the Web, they are familiar to users. In the future, it is likely that these components can more
easily be used within different Web frameworks.

In addition to UI building blocks, for enthusiasts and advanced users, portal providers can
use the geoengine-python library to allow users extended capabilities. Users can then get
the portal data as geo data frames and xarrays [HH17] into their Jupyter Notebooks. There
they can perform extended analyses and combinations with their own datasets.

4 A Use Case: Dragonfly Portal

As part of the NFDI4Biodiversity project, and in cooperation with the society of German-
speaking odonatologists (GdO e.V)14 we built a demo of a dragonfly geo portal for the
GdOnline 2022 conference [GdOe22]. The portal allows visualizing occurrence data of
dragonflies15 for all of Germany. It offers some basic analysis functions, e.g., correlating
occurrences with monthly temperature aggregates from remote sensing models (ECMWF
ERA-5 Land [MS19]) or land cover based on Sentinel-2 data [Ri21]. It is meant as a
collective hub of information about dragonflies (descriptions, pictures) and a contact point
for people interested in dragonflies. Thus, it is a means to increase the visibility of the
valuable work of volunteers who collect the data.

The portal is divided into two parts (Fig. 3). On the left-hand side, the data selection and
plots are placed. On the right-hand side, we see the map. The user can select a dragonfly
species by name and add an additional environmental layer, e.g. temperature or land use.
Optionally, they can also activate the sampling frequency layer which gives some context to
the absolute occurrence number shown in the observation points. This sampling frequency
is pre-computed by a Geo Engine workflow of all dragonfly occurrences within a certain
time period and the application of a grid-based rasterization that counts the number of
observations per square.

The time selector on the top allows selecting the year. All observations within this year
will be shown on the map as an aggregated number. This is internally done by applying
a workflow that projects the temporal validity of the occurrences to full months. Doing
this aligns the occurrences with the temporal selection as well as the temporal validity
of the environmental layers. To avoid clutter and yield a better visualization, the points
are clustered using the VisualPointClustering [Be17b] operator to present an overlap-free
representation. The second time slider near the bottom allows selecting the month within
the year. This slider is only relevant to the histogram plot that is optionally calculated when
clicking a button at the bottom. The plot visualizes the correlation between the occurrences
and the selected environmental variable within the chosen month.
13 www.material.io

14 www.libellula.org

15 Demonstration data from AK Libellen NRW (2020), www.ak-libellen-nrw.de

844 Christian Beilschmidt, Johannes Drönner, Michael Mattig, Philip Schweitzer,
Bernhard Seeger

www.material.io
www.libellula.org
www.ak-libellen-nrw.de

Geo Engine: Workflow-backed Geo Data Portals 9

Fig. 3: A screenshot of the GdO e.V. dragonfly portal demonstrator.

The dragonfly occurrence points use a number of Geo Engine features. The data is loaded
from a GeoPackage database via Geo Engine’s OgrSource. The filtering of points by species
and aggregation over time is performed by the workflow processing engine. The selected
time is used in the query rectangle of the query and allows reusing a fixed set of workflows
for different points in time. In addition to the map view, the layer selection and legend
displays are used from the core library. The plots use Geo Engine workflows to combine the
occurrence points with the environmental raster data. This raster data is loaded from a set
of Cloud-Optimized GeoTiffs (COG) via the GdalSource. The plots’ data itself is calculated
in the backend and displayed by the plot component from the core library.

The portal demonstrator poses an easy-to-use GIS subset within a domain-specific data
portal. The portal providers can predefine a fixed set of data and derived data by registering
workflows in the Geo Engine for future re-use. Note, that it is possible to use either Jupyter
notebooks or the Geo Engine GIS application to formulate these workflows. In conclusion,
the demonstrator is a successful example of leveraging Geo Engine’s existing functionality
instead of developing a tailor-fit data portal from scratch.

5 Related Work

Geo Engine is the successor of the VAT System [Au15b, Au15a, Be17a] that was developed
as part of the GFBio project [Di14]. The original purpose of VAT was to make GFBio data
more easily accessibly, but over time it developed into a more full-fledged geo data analysis

Geo Engine: Workflow-backed Geo Data Portals 845

10 Christian Beilschmidt et al.

platform. In comparison to VAT, Geo Engine offers a great number of improvements, of
which we highlight the three most important ones. While VAT could only work on single
rasters, Geo Engine is able to process arbitrary raster time series. Both for raster and vector
data, Geo Engine is no longer limited by the amount of available main memory. While VAT
required implementing special operators to access external data, Geo Engine introduces the
data providers that only require creating the loading information and reusing the basic input
operators.

A notable type of geoprocessing software that tackles similar problems as Geo Engine are
data cubes. One representative is the Open Data Cube (ODC) [Ki18]. In contrast to Geo
Engine, ODC harmonizes all data upfront while building the 𝑛-dimensional data cube. This
makes it far more inflexible as the requirements, e.g., for the resolution and the included
datasets must be known up-front, or the data cube has to be rebuilt. It is limited by the
available main memory and does not support vector data in the processing in the same
fashion as Geo Engine.

Google Earth Engine16, as a representative of cloud GIS services, [Go17] is a popular tool
for analyzing earth observation data. It provides a range of datasets that are ready to use and
a variety of processing tools. In contrast to Geo Engine, Google Earth Engine is not Open
Source and cannot be hosted on-premise. All data that is to be analyzed, has to be uploaded
to Google. Also, the Google Earth Engine does not support temporal processing as a core
feature of its language but rather has to be performed manually in its supported scripting
language.

Carto17 and Mapbox18 are two providers that specialize in the creation of maps. Here, the
focus is not on processing, but on designing good-looking and highly informative maps. In
contrast to Geo Engine, there is no focus on processing pipelines and supplying GIS-like
interfaces for generic geoprocessing.

GeoNode19 is a data management platform that builds upon GeoServer [Ia17]. It allows
non-expert users to create interactive maps and to publish data for external tools. As its
focus is on data management and sharing, it lacks a flexible toolbox to process the data
beyond simple filter mechanisms. In contrast to Geo Engine, analysis is done with external
GIS tools, e.g., QGIS20, rather than having workflows within GeoNode itself.

In the context of biodiversity data, GBIF hosted portals21 are an easy way of creating custom
geo portals. The portals make use of the existing GBIF infrastructure which alleviates
the work and costs of hosting. However, the portals are limited to the data that is already

16 earthengine.google.com

17 www.carto.com

18 www.mapbox.com

19 www.geonode.org

20 www.qgis.org

21 www.gbif.org/hosted-portals

846 Christian Beilschmidt, Johannes Drönner, Michael Mattig, Philip Schweitzer,
Bernhard Seeger

https://earthengine.google.com
www.carto.com
www.mapbox.com
www.geonode.org
www.qgis.org
www.gbif.org/hosted-portals

Geo Engine: Workflow-backed Geo Data Portals 11

available on GBIF. Also, portals can only be created after a successful application and
review by GBIF.

The Atlas of Living Australia22 (ALA) offers open access to Australia’s biodiversity data. It
offers a rich set of feature modules for discovering and visualizing geo data, which in part
uses existing geo software like GeoServer. The ALA software can be used for custom geo
portals as well. In contrast to Geo Engine, it does not allow for custom interactive analysis.
Also, it cannot be readily installed by anyone, but only on an individual per-request basis.

6 Summary and outlook

In this paper, we presented Geo Engine’s architecture and its usage for powering geo
data portals. For this, we outlined general requirements for modern data portals and how
Geo Engine fulfills them. Moreover, we presented a use case of a Geo Engine data portal
presenting dragonflies. Finally, we compared Geo Engine to related systems.

In the future, we will focus on improving the creation and administration of geo portals
with Geo Engine. We are working on a portal builder that eliminates the need to write
custom code in our geoengine-ui repository (which took the majority of the time in building
the dragonfly portal). Instead, it will be possible to create dashboards declaratively in the
Geo Engine UI. This will also make it easier to host multiple geo portals using a single
Geo Engine instance. Currently, a single backend instance can already serve multiple
frontends, but each portal frontend has to be deployed individually. We will also provide an
administration UI for managing existing portals. This will reduce the required technical
knowledge for operating portals. Furthermore, we are going to develop more geo portals
ourselves as blueprints. This will help the adoption of our technology for portal building
and facilitate community building.

For improving Geo Engine as a platform, we will create more functionality such as new
operators to support a greater variety of use cases. In particular, we will develop means for
creating machine learning models that are fed by Geo Engine’s data pipeline. Then, experts
can learn a model using Geo Engine’s full-fledged capabilities. In data portals, one can use
these models and apply them simply as another operator of a Geo Engine workflow.

Acknowledgments

This work was partially funded by the German Federal Ministry for Economic Affairs and
Climate Action (BMWK) under grant number O3EUPHE069.

22 www.ala.org.au

Geo Engine: Workflow-backed Geo Data Portals 847

www.ala.org.au

12 Christian Beilschmidt et al.

Bibliography
[Au15a] Authmann, C.; Beilschmidt, C.; Drönner, J.; Mattig, M.; Seeger, B.: Rethinking spatial

processing in data-intensive science. In: Lecture Notes in Informatics (LNI), Proceedings
- Series of the Gesellschaft fur Informatik (GI). volume 242, 2015.

[Au15b] Authmann, Christian; Beilschmidt, Christian; Drönner, Johannes; Mattig, Michael; Seeger,
Bernhard: VAT: A System for Visualizing, Analyzing and Transforming Spatial Data in
Science. Datenbank-Spektrum, 15(3):175–184, 2015.

[Be17a] Beilschmidt, Christian; Drönner, Johannes; Mattig, Michael; Seeger, Bernhard: VAT:
A System for Data-Driven Biodiversity Research. 20th International Conference on
Extending Database Technology (EDBT), 2017.

[Be17b] Beilschmidt, Christian; Fober, Thomas; Mattig, Michael; Seeger, Bernhard: A Linear-
Time Algorithm for the Aggregation and Visualization of Big Spatial Point Data. In:
SIGSPATIAL ’17: Proceedings of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, New York, NY, USA, pp.
73:1–73:4, 2017.

[Be19] Berg, Lukas; Ziegler, Tobias; Binnig, Carsten; Röhm, Uwe: ProgressiveDB - Progressive
data analytics as a middleware. In: Proceedings of the VLDB Endowment. volume 12,
2019.

[Di14] Diepenbroek, Michael; Glöckner, Frank Oliver; Grobe, Peter; Güntsch, Anton; Huber,
Robert; König-Ries, Birgitta; Kostadinov, Ivaylo; Nieschulze, Jens; Seeger, Bernhard;
Tolksdorf, Robert; Triebel, Dagmar: Towards an Integrated Biodiversity and Ecological
Research Data Management and Archiving Platform: The German Federation for the
Curation of Biological Data (GFBio). In: GI-Jahrestagung. volume 232 of LNI, GI, Bonn,
Germany, pp. 1711–1721, 2014.

[GdOe22] Gesellschaft deutschsprachiger Odonatologen e.V., Heidelberg: GdOnline 2022. In: 2.
Digitalkonferenz der Gesellschaft deutschsprachiger Odonatologen (GdO e.V.), 18.-19.
März 2022. 2022.

[Go17] Gorelick, Noel; Hancher, Matt; Dixon, Mike; Ilyushchenko, Simon; Thau, David; Moore,
Rebecca: Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote
Sensing of Environment, 2017.

[HH17] Hoyer, Stephan; Hamman, Joe: xarray: N-D labeled Arrays and Datasets in Python. Journal
of Open Research Software, 5(1), 2017.

[Ho20] Holanda, Pedro; Raasveldt, Mark; Manegold, Stefan; Mühleisen, Hannes: Progressive
indexes: Indexing for interactive data analysis. In: Proceedings of the VLDB Endowment.
volume 12, 2020.

[Ia17] Iacovella, Stefano: GeoServer Beginner’s Guide: Share Geospatial Data using Open Source
Standards. Packt Publishing Ltd, 2017.

[Ki18] Killough, Brian: Overview of the open data cube initiative. In: International Geoscience
and Remote Sensing Symposium (IGARSS). volume 2018-July, 2018.

[MS19] Muñoz Sabater, J.: ERA5-Land Monthly Averaged Data From 1981 to Present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), 2019.

848 Christian Beilschmidt, Johannes Drönner, Michael Mattig, Philip Schweitzer,
Bernhard Seeger

Geo Engine: Workflow-backed Geo Data Portals 13

[Op10] Open Geospatial Consortium: OpenGIS Implementation Standard for Geographic Infor-
mation - Simple Feature Access. OpenGIS Pro-ject Document, 2010.

[Ri21] Riembauer, Guido; Weinmann, Anika; Xu, Shaojuan; Eichfuss, Silas; Eberz, Charlotte;
Neteler, Markus: Germany-wide Sentinel-2 based land cover classification and change
detection for settlement and infrastructure monitoring. In: Proceedings of the 2021
conference on Big Data from Space. pp. 53–56, 2021.

[Ro22] Rouault, Even; Warmerdam, Frank; Schwehr, Kurt; Kiselev, Andrey; Butler, Howard;
Łoskot, Mateusz; Szekeres, Tamas; Tourigny, Etienne; Landa, Martin; Miara, Idan; Elliston,
Ben; Kumar, Chaitanya; Plesea, Lucian; Morissette, Daniel; Jolma, Ari; Dawson, Nyall: ,
GDAL, 7 2022.

[Sa14] Sakimura, Natsuhiko; Bradley, John; Jones, Mike; De Medeiros, Breno; Mortimore, Chuck:
Openid Connect Core 1.0. The OpenID Foundation, p. S3, 2014.

[Sa17] Satyanarayan, Arvind; Moritz, Dominik; Wongsuphasawat, Kanit; Heer, Jeffrey: Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization and Computer
Graphics, 23(1), 2017.

[Wi16] Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, Ĳsbrand Jan; Appleton, Gabrielle;
Axton, Myles; Baak, Arie; Blomberg, Niklas; Boiten, Jan-Willem; da Silva Santos,
Luiz Bonino; Bourne, Philip E.; Bouwman, Jildau; Brookes, Anthony J.; Clark, Tim;
Crosas, Mercè; Dillo, Ingrid; Dumon, Olivier; Edmunds, Scott; Evelo, Chris T.; Finkers,
Richard; Gonzalez-Beltran, Alejandra; Gray, Alasdair J.G.; Groth, Paul; Goble, Carole;
Grethe, Jeffrey S.; Heringa, Jaap; ’t Hoen, Peter A.C; Hooft, Rob; Kuhn, Tobias; Kok,
Ruben; Kok, Joost; Lusher, Scott J.; Martone, Maryann E.; Mons, Albert; Packer, Abel L.;
Persson, Bengt; Rocca-Serra, Philippe; Roos, Marco; van Schaik, Rene; Sansone, Susanna-
Assunta; Schultes, Erik; Sengstag, Thierry; Slater, Ted; Strawn, George; Swertz, Morris A.;
Thompson, Mark; van der Lei, Johan; van Mulligen, Erik; Velterop, Jan; Waagmeester,
Andra; Wittenburg, Peter; Wolstencroft, Katherine; Zhao, Jun; Mons, Barend: The FAIR
Guiding Principles for scientific data management and stewardship. Scientific Data,
3(1):160018, 12 2016.

Geo Engine: Workflow-backed Geo Data Portals 849

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Semantic Search for Biological Datasets: A Usability Study
on Modes of Querying and Explaining Search Results

Felicitas Löffler1, Fateme Shafiei2, René Witte3, Birgitta König-Ries4, Friederike Klan5

Abstract: Dataset discovery is a frequent task in daily research practice, yet studies are missing
that explore the usability of user interfaces (UI) in data portals. In particular, very few user studies
exist that analyze whether particular elements in the user interface are useful for search tasks. We
aim to address those needs for more specific usability evaluations in dataset search. In this work, we
present a flexible semantic search over biological datasets with two user interfaces. The search result
contains semantically related terms, such as synonyms or more specific terms, obtained from domain
ontologies. We evaluated the system in a user study with 20 scholars. We focused on two components,
the query input to explore a search in categories (entity types) in comparison to a single input field,
and we analyzed textual highlightings in the returned datasets to study whether users are distracted
by semantic information such as URIs. Our results show that users prefer interfaces with a single
input field for search tasks they are not familiar with, and that users appreciate explanations with
terminologies and URIs.

Keywords: Dataset Search; Semantic Search; Biodiversity; Life Sciences; User Interface; Usability

1 Introduction

Data-intensive research increasingly requires scientists to retrieve datasets in data portals.
Scholars look for datasets to compare their own results with legacy data, to prevent repeating
cost-intensive experiments or to merge multiple data sources into a new dataset, in order to
explore novel hypotheses. Biodiversity research is one example of a data-intensive research
area. It examines the variety of species and their genetic and ecological diversity [Lo10].
Multiple studies report on various obstacles users encounter while searching for datasets.
Main problems are missing primary data and lacking information on data collection methods
[Pa16], scattered data in different data repositories [Cu18], unsatisfactory user interfaces
[Gr20] and insufficient metadata descriptions and unaligned terminologies [Lö21]. Semantic
search approaches that are going beyond the classical keyword search can partially help
1 Heinz Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University, Jena, Germany,

felicitas.loeffler@uni-jena.de
2 Heinz Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University, Jena, Germany
3 Semantic Software Lab, Concordia University, Montréal, Canada
4 Heinz Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University, Jena, Germany

Michael-Stifel-Center for Data-Driven and Simulation Science, Jena, Germany
German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany

5 Data Acquisition and Mobilization Department, Institute of Data Science, German Aerospace Center (DLR),
Jena, Germany

cba doi:10.18420/BTW2023-56

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 851

mailto:felicitas.loeffler@uni-jena.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-56

2 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

to overcome the current drawbacks: In particular, using standardized domain vocabularies
and terminologies in the search process enhances sparse metadata and enables users to
find more relevant data [LK16]. However, very few semantic search solutions for dataset
search are publicly available. In this work, we present a semantic search over metadata files
and domain vocabularies. We link entries in metadata files with concepts from relevant
domain taxonomies and ontologies with respective URIs. Based on the linked vocabularies
and its concepts, we also derive an entity type (entity category or type). Both information
(URIs and entity types) are added to metadata as semantic annotations and are utilized in
a semantic index with a URI-based retrieval model. In order to study which search input
users prefer in dataset search, we implemented two user interfaces: a UI with a single
input field and a second UI enabling a search over different semantic categories. In both
interfaces, the search results are enhanced with text highlightings and additional information
on demand, to support users in obtaining a quick overview with explanations of the returned
datasets. We evaluated the system with 20 scholars working in the field of Life Sciences
and Environmental Sciences. The participants performed various search tasks in a given
time frame and answered questionnaires before and after each search task, for each user
interface, and at the end of the session. Thus, our contribution is two-fold:

1. We present an architecture enabling a flexible, semantic dataset search; and

2. We provide a usability study on two main aspects in search: the query input and
search result explanations, such as textual highlightings with additional information.

The structure of the paper is as follows: First, we present related work in Section 2, followed
by the evaluation setup in Section 3, including information on our system architecture. The
evaluation results are presented in Section 4.

2 Related Work

Due to the multitude of heterogenous data formats, research data, such as spread sheets,
multimedia files or questionnaires, are described by metadata. This descriptive information
on, e.g., author, title, abstract, collection time and data format, are utilized by data portals in
search indexes [KCW18]. Very few usability studies for dataset search are publicly available.
Therefore, besides a discussion on user studies in dataset retrieval in the Life Sciences, here
we introduce semantic search approaches in the Life Sciences and user studies for semantic
search systems.

User studies in dataset retrieval. [Di17] and [Ch18] are examples for user studies in the
Datamed portal,6 a federated approach providing datasets from numerous biomedical data
repositories. A second data portal that conducted a user evaluation is DataONE7 [Vo15],

6 Datamed, https://datamed.org/
7 DataONE, https://www.dataone.org/

852 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

https://datamed.org/
https://www.dataone.org/

Usability Study on a Semantic Dataset Search in Biodiversity Research 3

a data portal providing environmental and biological datasets from various sources. The
studies by [MM15] and [Ka20, Ka21] report results from user studies in the earth observation
and oceanography domain (dealing with spatial and temporal data). Most of the studies
collected qualitative data with less than 30 subjects. All studies focused on the evaluation of
the usability and utilized various usability methods, such as thinking-aloud, questionnaires
and interviews. Apart from [Ch18], all studies observe two main obstacles: (A) metadata
quality [Vo15, Di17, Ka20, MM15], e.g., different spellings of variable names and (B)
problems with the user interface, e.g., inconsistent information in title and description or a
purely text-based presentation [Vo15, Ka20]. Users of the Datamed portal also suggested
offering an enhanced search input, allowing them to search for domain specific topics, such
as a search for phenotypes or genes [Di17]. Another source for guidelines and good practices
in dataset search are the outcomes of the RDA Data Discovery Paradigms Interest Group.8
Based on 79 data discovery use cases, heuristic evaluations and interviews with experts, they
propose ten recommendations for enhancing dataset search and user experience [Wu19].
The main areas addressed in the RDA’s suggestions are: (i) providing multiple search inputs
in order to support different information needs, (ii) filtering options, and (iii) comprehensible
search summaries on the search entry result page (SERP), by displaying dataset snippets
that belong to a search query.

Semantic search systems in the Life Sciences. Semantic search is a “search beyond
keywords” [BBH16]. Instead of matching query input and document content syntactically,
the result set also contains semantically related content by exploiting additional knowledge
to the search process. Data sources are either plain text, structured data from knowledge
bases or a combination of both. Search approaches vary between keyword search (+ query
expansion techniques), structured search by using specific query languages such as SPARQL
and full natural language questions in question answering [BBH16]. Multiple semantic
search approaches have emerged in the biomedical domain focusing on scientific articles
from PubMed9, e.g., [LLW15, Mu17, Al18, SPA18]. For dataset search, only very few
semantic systems exist such as BioFid [Pa21] (German legacy collection data), Datamed
[Ch18] (biomedical datasets) and GFBio (biological and environmental data) [Lö17]. Most
systems expand the query input. Data discovery with named entities over semantic categories
is only supported by [LLW15, SPA18, Al18]. The search summaries usually present snippets
of the document or datasets, contain information on data sources and highlight the matched
search terms. Explanations on semantic categories or matching entities [SPA18, Al18], full
query information [Ch18] or additional information from external sources such as wikipedia
[Pa21] are only partially available.

User studies on semantic search systems. [KB07] was one of the first studies exploring
different query interfaces on a knowledge base with geographical information. This study
also utilized a combination of search tasks and a System Usability Scale (SUS) question-
naire [Br96] to determine which kind of query input is useful for a search over knowledge

8 RDA DDP IG, https://rd-alliance.org/node/52248/outputs
9 PubMed, https://pubmed.ncbi.nlm.nih.gov

Semantic Search for Biological Datasets: A Usability Study on Modes of Querying and
Explaining Search Results 853

https://rd-alliance.org/node/52248/outputs
https://pubmed.ncbi.nlm.nih.gov

4 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

bases. The user interface with support for full natural language questions obtained the
best success rate and resulted in the highest SUS score (75.73). The authors of [EWC12]
utilized the same geographic knowledge base and analyzed two user types, experts and
casual, for three different query inputs: natural language, form-based and graph-based. Their
results show that casual users prefer the form-based query interface and experts favored the
graph-based search. The study by [Ve16] also conducted an A/B test with 15 users and two
semantic search systems over an RDF dataset with administrative and financial information
of Norwegian companies. The participants performed four search tasks for each system and
filled in questionnaires before and after each search task, after each system, and at the very
end of the evaluation. Similar to the study of [EWC12], the form-based system was favored
by casual users and the graph-based one by expert users.

The evaluation studies in dataset retrieval introduced above only collected qualitative
data, through questionnaires and interviews. In contrast, the semantic search user studies
followed the Text REtrieval Conference (TREC) guidelines for interactive information
retrieval [Du05], but did not focus on dataset search. [Ch18] and [Lö17] are dataset search
approaches with semantic enhancements based on query expansion. While [Ch18] extends
the entered keywords with synonyms, scientific and common names obtained from the
UMLS,10 a knowledge base for the biomedical domain, [Lö17] utilizes the GFBio TS
[Ka14]. Both systems do not offer searching for specific entity types and only partially
support explanations on matched entities.

3 Evaluation Setup

Previous studies always examined user interfaces as a whole. In order to identify the impact
of different UI choices more precisely, we decided to focus our study on two main parts
of search: the query input and the search result summary. These two aspects are also
top-ranked recommendations in the RDA guidelines [Wu19]. In the user study of [Di17],
users mentioned the need for searching specific entity types. Our previous work [Lö21]
also revealed that scientific information needs to differ in granularity. Search questions can
be very specific, e.g., a search for a concrete species, or can have a broader scope, e.g.,
a search for datasets with organisms in water samples. Therefore, we implemented two
user interfaces: the first one (Biodiv 1) provides a category-based input of search terms
and the second interface (Biodiv 2) offers a classical single-input field and determines
entity types automatically. The search results in both interfaces can contain datasets going
beyond the entered query terms, to broaden the search on semantically related terms,
like synonyms. Concerning the presentation of the search results, we followed the RDA
recommendations for search summaries in dataset search. To ensure a consistent layout, we
aligned the presentation of each dataset entry to existing data portals, such as GFBio11 and
Zenodo.12 In a previous study [LK16], we determined that end users need more explanations
10 UMLS, https://www.nlm.nih.gov/research/umls/index.html
11 GFBio, https://www.gfbio.org
12 Zenodo, https://zenodo.org/

854 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

https://www.nlm.nih.gov/research/umls/index.html
https://www.gfbio.org
https://zenodo.org/

Usability Study on a Semantic Dataset Search in Biodiversity Research 5

when being faced with search results going beyond keywords. This motivated us to further
focus our analysis of the search summary to the presentation of explanations, allowing
us to study whether displaying terminologies and matching URIs confuse and distract
users or help them. Through the biodiversity research projects we are involved in (e.g.,
iDiv,13 NFDI4Biodiversity14), we know that most scholars in the Life and Environmental
Sciences are casual users, with no expertise in semantic technologies. However, as FAIR
data management with terminologies are increasingly forming the semantic backbone in
academia, it is necessary to explore what additional information end users need from a
semantic dataset search, in order to understand and assess the relevance of search results.

3.1 System Architecture

The overall architecture (Figure 1) is an extended version of a framework we introduced in
previous work [Sh21]. According to [BBH16], our system represents a structured search
over text and knowledge bases. A semantic search index (see paragraph below on semantic
indexing) and a local terminology service with ontologies of the OBO Foundry initiative15
form the back-end. In order to link entered keywords with concepts in ontologies, we
utilize an updated version of the Semantic Assistants framework [WG08]. This new version
provides several text mining pipelines from various sources in a Spring boot application and
two micro services, accessible via REST services.16 The first micro service offers pipelines
of the text mining framework GATE.17 Currently, three taggers are available: GATE ANNIE
[Cu13], which extracts named entities, such as people, locations and organizations; the
BiodivTagger [Lö20], focusing on the recognition of environmental terms, data parameters,
materials, chemicals and processes; and the OrganismTagger [Na11] extracting species.
A REST API in the middleware enables the front-end to communicate with the back-end
applications.18

Fig. 1: Extended architecture and overall flow, based on the previous version introduced in [Sh21]

13 iDiv, https://www.idiv.de
14 NFDI4Biodiversity, https://www.nfdi4biodiversity.org/de/
15 OBO Foundry, https://obofoundry.org/
16 SA2.0, https://github.com/fusion-jena/SA2.0
17 GATE, https://gate.ac.uk/
18 [Dai:Si] semantic search, https://github.com/fusion-jena/daisi-semantic-search

Semantic Search for Biological Datasets: A Usability Study on Modes of Querying and
Explaining Search Results 855

https://www.idiv.de
https://www.nfdi4biodiversity.org/de/
https://obofoundry.org/
https://github.com/fusion-jena/SA2.0
https://gate.ac.uk/
https://github.com/fusion-jena/daisi-semantic-search

6 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

Users can either enter keywords per category or they can type all search terms in one input
field (1). In the latter case, the Semantic Assistants service is called to look for matching
URIs and entity types in the entered search terms (1A–1B). Afterwards, the query terms are
sent to the terminology service (2) and matching URIs are returned to the middleware (3).
The obtained URIs and entity types are utilized to fill templates being sent to the search
engine (4). The obtained datasets from the search index (5) are forwarded to the Angular
application, and finally, the result is presented to the user (6).

Dataset corpus preparation and semantic indexing. We downloaded metadata files
from GFBio19 being relevant for the selected search tasks. The files were provided a in
repository specific metadata format.20 We manually annotated the search tasks with URIs
from OBO Foundry ontologies to obtain descendants nodes, labels and alternate labels via
SPARQL queries from our local terminology service. These additional terms were added to
the original query terms. We downloaded only the top-100 datasets per query, to ensure a
manageable corpus size. The obtained ∼52.000 metadata files were semantically annotated
with the OrganismTagger [Na11] and the BiodivTagger [Lö20]. As a result, key terms in the
metadata were linked to matching entities and their types in domain specific ontologies, such
as Organism, Environment, Data Parameter, Process, or Material. Using GATE’s Semantic
Enrichment Processing Resource, we added ancestor nodes to each entity as additional
annotations (subClassOf* relations), facilitating a hierarchy search at run-time. SPARQL
queries for hierarchy relations can become complex, and a call to a terminology service can
take up to several minutes to come back. Therefore, we added these hierarchical relations to
the metadata files in the pre-processing phase as ‘broader’ annotations. All metadata files
were indexed with GATE Mímir [Cu13], a search engine that provides indexing of semantic
annotations with entity types and features, like matching URIs.

User interfaces. We proposed several UIs in clickable paper prototypes, discussing them
in a focus group with three biodiversity scholars. We finally selected two UIs for supporting
scholars who are not experts in semantic web technologies. As a result, we decided to
support keyword search in both user interfaces and to omit an entity-based search. The
first UI (Biodiv 1, Figure 2 (left)) provides a category-based input. Here, users need to
actively sort the search terms into given domain categories. The entered keywords are sent
to the terminology service to find matching URIs. In the second UI (Biodiv 2, Figure 2
(right)), the query terms are additionally sent to the Semantic Assistants server to obtain the
entity types. The retrieved URIs and entity types are then utilized to form the final query
being sent to the search index. In case no matching URI can be found, we also consider the
original keywords in the query (Listing 1).

((((``honeybee'' IN {Organism}) OR (``honeybee'' OVER {Organism}) OR (``honeybee'' AND

{Organism})) OR ({Organism broader=``http://purl.obolibrary.org/obo/NCBITaxon_7460''} OR

{Organism inst=``http://purl.obolibrary.org/obo/NCBITaxon_7460''})))

List. 1: Full query for the search ‘honeybee’ in Figure 2

19 GFBio Metadata, https://github.com/fusion-jena/GFBioMetadata
20 PAN-MD, http://ws.pangaea.de/schemas/pangaea/MetaData.xsd

856 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

https://github.com/fusion-jena/GFBioMetadata
http://ws.pangaea.de/schemas/pangaea/MetaData.xsd

Usability Study on a Semantic Dataset Search in Biodiversity Research 7

Fig. 2: Screenshots of Biodiv 1 and Biodiv 2, with a search for ‘honeybee’, returning alternate labels

We leverage search templates with the introduced ‘broader’ annotation to consider exact
matches, as well as more specific terms, in the result set. The search results display also
provides two types of highlighting: The original entered query terms and their related
terms are highlighted in bold font (‘default highlightings’). If synonyms are available, they
are displayed with a green underline. On demand (mouse-over) a separate dialog opens
and displays alternate labels. In Biodiv 1, this dialog shows only the entity type of the
highlighted term, whereas in Biodiv 2, the respective terminologies and URIs are presented
additionally. A summarized version of the available synonyms is listed in an explanation
tab. This tab also displays information on the search query. In Biodiv 1, users can view
only a shortened search query, whereas in Biodiv 2, the full query to the search index is
presented. Supplementary highlightings of further biological entities can be displayed with
a ‘biological entities’ button. This function sends the textual information of a dataset to
the Semantic Assistants service and returns annotations obtained from the taggers. These
highlightings of data parameters, environmental terms, processes, materials and species are
underlined in blue color.

3.2 Experimental Design

Our setup generally follows the TREC-9 guidelines.21 The overall aim was to measure
the usability of a semantic dataset search, but with a particular focus on the query input
and provided explanations in the search summary. In total, 20 scholars with a research
background in the Life Sciences and Environmental Sciences took part. Each participant
performed eight search tasks in different orderings, e.g., “What data exists in the repository

21 TREC Interactive Track, https://trec.nist.gov/data/t9i/spec.html

Semantic Search for Biological Datasets: A Usability Study on Modes of Querying and
Explaining Search Results 857

https://trec.nist.gov/data/t9i/spec.html

8 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

for bacteria in the groundwater?”. For each user interface, every scholar carried out four
tasks. In a maximum of five minutes, the users had to search for up to three datasets
per task. When they considered a dataset as relevant, they added the dataset to the data
basket, and at the end of the five minutes, the basket was downloaded. We conducted the
evaluation in live sessions at the Friedrich Schiller University Jena (FSU Jena) or visited
the participants at their working places, e.g., iDiv, Leipzig22, Senckenberg, Frankfurt23
and BGBM, Berlin.24 The total evaluation time for each session was around 120 minutes.
The search part took around 80 minutes, with ten minutes per task. The non-search part
was around 40 minutes; 25 minutes were utilized for the post system questionnaires and
five minutes for the exit questionnaire, with questions about a comparison between the
two interfaces and some demographic questions. Before the start, we allotted 15 minutes
for introductory explanations. For instance, we explained the purpose of the study and
demonstrated some example searches to minimize the training effect [RC08].

Fig. 3: Study flow for the first three users. Every user performed eight search tasks in different
orderings. Half of the participants started with Biodiv 1, the other half started with Biodiv2.

Data collection and metric. Measuring the usability involves examining whether users
are able to complete tasks in a given time (efficiency), how easy it is to work with
the system (learnability), how many errors occur (issues), how easy it is to remember
navigations and functions (memorability) and how satisfied users are overall with a system
(satisfaction) [Ni93]. Apart from the memorability, we addressed all variables in our study.
We evaluated the efficiency and effectiveness of the query input by means of user tasks
(performance-based metrics). If users found three datasets in five minutes, we counted it as
a complete task; if only one or two datasets could be found, it was considered as partially
complete; and if no dataset was found, it counted as an uncompleted task. We measured the
satisfaction, the learnability and collected usability issues with questionnaires (self-reported
metrics) and through observation. Concerning the highlightings and explanations, we
explored the comprehensibility, completeness and satisfaction through questionnaires. We
also observed the participants and encouraged them to report occurring issues orally.

Search tasks and questionnaires. We selected eight search tasks from the question corpus
we introduced in our previous work, to ensure that relevant categories from biodiversity
research are contained [Lö21]. In order to better guide users through the evaluation, we

22 iDiv, https://www.idiv.de/
23 Senckenberg, https://www.senckenberg.de
24 BGBM, https://www.bgbm.org

858 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

https://www.idiv.de/
https://www.senckenberg.de
https://www.bgbm.org

Usability Study on a Semantic Dataset Search in Biodiversity Research 9

prepared a survey for each user.25 The overall evaluation flow is presented in Figure 3. The
survey provided questions before and after each task, according to the TREC guidelines,
e.g., whether the participants expect certain content in the datasets, as well as questions on
satisfaction, easy of use and ease of learnability afterwards. After four tasks (=each user
interface), the scholars had to assess ten statements (a SUS questionnaire) on a five-point
Likert scale to capture feedback on the usability. However, as we aimed to study the query
input and explanation strategies, we adapted the classical SUS statements to our needs. The
final SUS questionnaire contained two questions on the query input, three questions on the
default highlightings, three questions concerning the biological entities highlighting and
two questions on the provided query explanations. The final search tasks, the questionnaires
and the original survey result files are available in Zenodo [Lö22].

4 Results

We compiled all results into one large CSV file and created a Jupyter notebook26 to analyze
the results. The code and the full results are available on GitHub.27 Two-third of the 20
scholars search for datasets monthly or at least once in a year, and the other seven scholars
use dataset search applications daily or weekly. The overall SUS scores for both interfaces
resulted in values above 68 (Biodiv 1: 68, Biodiv 2: 71), which points to a good usability
with respect to the two studied UI components in both interfaces. However, the dispersion in
Biodiv 2 is large, because eleven users gave higher ratings for the interface with the single
input field (Biodiv 2) than for the category-based search (Biodiv 1).

Search Input. With respect to the task success and task time, more scholars were able to
retrieve three datasets, with fewer failure cases and in a shorter time, with Biodiv 2 (204ms)
than with Biodiv 1 (225ms). However, the differences are small. Figure 4 reveals that for
almost all tasks, the users were able to retrieve datasets. For two tasks, the success rate is
low in both interfaces and the users complained that the returned datasets were not relevant
or only partial information was relevant. This points to missing data in the metadata corpus.
In addition, most scholars were not familiar with the search tasks (see the figures available
on GitHub28). As the provided search tasks addressed a specific research question or a
scientific information need, we did not expect that. However, this lack of specific knowledge
impacted the results.

Concerning the learnability (see the figures on GitHub), the results of the questionnaires
after each task and the respective statements in the SUS questionnaire reveal that it was
easier for users to get started with Biodiv 2. But with respect to the ease of use, there is no

25 Limesurvey, https://www.limesurvey.org
26 Jupyter notebook, https://jupyter.org/
27 Analysis, https://github.com/fusion-jena/semantic-search-usability-analysis
28 Results for 20 users, https://github.com/fusion-jena/semantic-search-usability-analysis/tree/main/analysis/
results20

Semantic Search for Biological Datasets: A Usability Study on Modes of Querying and
Explaining Search Results 859

https://www.limesurvey.org
https://jupyter.org/
https://github.com/fusion-jena/semantic-search-usability-analysis
https://github.com/fusion-jena/semantic-search-usability-analysis/tree/main/analysis/results20
https://github.com/fusion-jena/semantic-search-usability-analysis/tree/main/analysis/results20

10 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

1 2 3 4 5 6 7 8
Tasks

0

2

4

6

8

10

Us
er

s

Task success per task for Biodiv 1

1 2 3 4 5 6 7 8
Tasks

0

2

4

6

8

10

Us
er

s

Task success per task for Biodiv 2

Success scale
No success
Partial success
Full success

Fig. 4: Task success per task

difference between the two interfaces. Looking at the answers in the exit questionnaire paints
the same picture. The pre-defined categories in Biodiv 1 were not as easy to understand, and
it took some time for users to become familiar with the topical categorization of search terms.
However, comments on Biodiv 1 reveal that one half of the users liked the category-based
interface, because categories “helped to narrow down the search criteria and to get pertinent
results.” In contrast, the other half of scholars liked Biodiv 2, because it is “easier, as it goes
straight forward without thinking about categories,” and it “is more general and helped in
searching for topics that I was unfamiliar with.”

Highlightings and explanations. The users gave high ratings for the overall usefulness of
default highlightings in both interfaces (Figure 5). However, in some result sets, the default
highlightings were missing or too many terms were highlighted, which led to medium
ratings. Overall, the provided information is sufficient and comprehensible. Concerning
the highlighting of biological entities in the datasets (see figure on GitHub), we observed
that only 50% of the participants utilized this function. Only when they had to give a rating
on this function in the SUS questionnaire, they investigated it. Thus, this might have led
to medium ratings with respect to the comprehensibility. However, the participants gave
high ratings for the overall usefulness of this additional highlighting. For Biodiv 2, the
users pointed out more than twice as often as for Biodiv 1 that they would need more
information on the presented information of the biological entities. This also correlates with
our observations. In some cases, the biological entity function took some time to deliver a
result (as it was a request to the Semantic Assistant service calling various NLP pipelines)
or not all expected terms were highlighted. In these cases, users looked up the terms in
Google29 or Wikipedia30 (which was permitted), to obtain more information. With respect
to the usage of the query explanation tab, we noticed less usage, too. Thus, the helpfulness
obtained medium ratings (see figure on GitHub). Concerning the comprehensibility, users
gave a little more preference to the simpler query explanations without URI information in
Biodiv 1.

29 Google, https://www.google.de/
30 Wikipedia, https://de.wikipedia.org

860 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

https://www.google.de/
https://de.wikipedia.org

Usability Study on a Semantic Dataset Search in Biodiversity Research 11

2 3 4 5
Ratings: (1) strongly disagree - (5) strongly agree

0

2

4

6

8

Us
er

s

Highlights are helpful.
Biodiv 1
Biodiv 2

1 2 3 4 5
Ratings: (1) strongly disagree - (5) strongly agree

0

2

4

6

8

10

Us
er

s

Highlights' information is not sufficient
Biodiv 1
Biodiv 2

1 2 3 4
Ratings: (1) strongly disagree - (5) strongly agree

0

1

2

3

4

5

6

7

Us
er

s

Highlights' information is not comprehensible
Biodiv 1
Biodiv 2

Fig. 5: SUS statements on the default highlighting of query terms in bold font

In comparision to other user studies [EWC12, Ve16], our results show that overall both
interfaces are suitable for a semantic dataset search in biodiversity research. A user interface
with a single input field and automatic category detection is more suitable when users
have no expertise in the search topic. In order to get more insights on daily usage of the
systems with the user’s own search tasks, further long-term studies are needed. The users
appreciated highlightings and explanations and were not confused about information on
terminologies and URIs. Only with respect to query information, users preferred the simple
explanations without information on the linked ontology. Concerning further improvements
of the user interface, the participants suggested to integrate facets and filters to narrow down
the results, e.g., to sort the data along metadata fields such as data repository or data type.
This confirms the RDA recommendations [Wu19] that users need different entry points and
filtering options in dataset search.

5 Conclusion

In this study, we proposed an improved user interface for a semantic search over datasets
in the Life Sciences. We conducted a usability study of this novel system with two user
interfaces, with a particular focus on query inputs and different explanation strategies. Our
results reveal that both interfaces are suitable for semantic dataset search. For users that are
not familiar with a search topic, a user interface with a single input field is slightly more
efficient. Details about utilized ontologies and URIs are helpful and desired. More studies
in other applied domains are needed to examine whether this outcome can be generalized.
In addition, long-term studies would be benefical to study semantic search in daily usage.

Acknowledgement

We would like to thank all participants in this study for their time and valuable feedback.

Semantic Search for Biological Datasets: A Usability Study on Modes of Querying and
Explaining Search Results 861

12 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

Bibliography
[Al18] Allot, Alexis; Peng, Yifan; Wei, Chih-Hsuan; Lee, Kyubum; Phan, Lon; Lu, Zhiyong:

LitVar: a semantic search engine for linking genomic variant data in PubMed and PMC.
Nucleic Acids Research, 46(W1):W530–W536, 2018.

[BBH16] Bast, Hannah; Buchhold, Björn; Haussmann, Elmar: Semantic Search on Text and
Knowledge Bases. Foundations and Trends® in Information Retrieval, 10(2-3):119–271,
2016.

[Br96] Brooke, John: SUS - A quick and dirty usability scale. In (Jordan, P.W.; Thomas, B.;
McClelland, I.L.; Weerdmeester, B., eds): Usability Evaluation In Industry. CRC Press,
chapter SUS - A quick and dirty usability scale, 1996.

[Ch18] Chen, Xiaoling; Gururaj, Anupama E; Ozyurt, Burak; Liu, Ruiling; Soysal, Ergin; Cohen,
Trevor; Tiryaki, Firat; Li, Yueling; Zong, Nansu; Jiang, Min; Rogith, Deevakar; Salimi,
Mandana; Kim, Hyeon-eui; Rocca-Serra, Philippe; Gonzalez-Beltran, Alejandra; Farcas,
Claudiu; Johnson, Todd; Margolis, Ron; Alter, George; Sansone, Susanna-Assunta; Fore,
Ian M; Ohno-Machado, Lucila; Grethe, Jeffrey S; Xu, Hua: DataMed – an open source
discovery index for finding biomedical datasets. Journal of the American Medical
Informatics Association, 25(3):300–308, 2018.

[Cu13] Cunningham, Hamish; Tablan, Valentin; Roberts, Angus; Bontcheva, Kalina: Getting More
Out of Biomedical Documents with GATE’s Full Lifecycle Open Source Text Analytics.
PLoS Computational Biology, 9(2):e1002854–e1002854, 2013.

[Cu18] Culina, Antica; Baglioni, Miriam; Crowther, Tom W.; Visser, Marcel E.; Woutersen-
Windhouwer, Saskia; Manghi, Paolo: Navigating the unfolding open data landscape in
ecology and evolution. Nature Ecology & Evolution, 2(3):420–426, 2018.

[Di17] Dixit, Ram; Rogith, Deevakar; Narayana, Vidya; Salimi, Mandana; Gururaj, Anupama;
Ohno-Machado, Lucila; Xu, Hua; Johnson, Todd R: User needs analysis and usability
assessment of DataMed – a biomedical data discovery index. Journal of the American
Medical Informatics Association, 25(3):337–344, 2017.

[Du05] Dumais, Susan: The Interactive TREC Track: Putting the User Into Search. MIT Press,
2005.

[EWC12] Elbedweihy, Khadĳa; Wrigley, Stuart N.; Ciravegna, Fabio: Evaluating Semantic Search
Query Approaches with Expert and Casual Users. In (Cudré-Mauroux, Philippe; Heflin,
Jeff; Sirin, Evren; Tudorache, Tania; Euzenat, Jérôme; Hauswirth, Manfred; Parreira,
Josiane Xavier; Hendler, Jim; Schreiber, Guus; Bernstein, Abraham; Blomqvist, Eva, eds):
The Semantic Web – ISWC 2012. Springer Berlin Heidelberg, pp. 274–286, 2012.

[Gr20] Gregory, Kathleen; Groth, Paul; Scharnhorst, Andrea; Wyatt, Sally: Lost or Found?
Discovering Data Needed for Research. Harvard Data Science Review, 4 2020. https:
//doi.org/10.1162/99608f92.e38165eb.

[Ka14] Karam, Naouel.; Fichtmüller, David.; Gleisberg, Maren.; Becker, Florian.; Tolksdorf,
Robert.; Müller-Birn, Claudia.; Paschke, Adrian.; Güntsch, Anton. (Eds.): , The Terminol-
ogy Service of the German Federation for Biological Data (GFBio) - Service of semantic
technologies in scientific environments. http://terminologies.gfbio.org/ - [Accessed
2023-01-22], 2014.

862 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

https://doi.org/10.1162/99608f92.e38165eb
https://doi.org/10.1162/99608f92.e38165eb
http://terminologies.gfbio.org/

Usability Study on a Semantic Dataset Search in Biodiversity Research 13

[Ka20] Kalantari, Mohsen; Syahrudin, Syahrudin; Rajabifard, Abbas; Subagyo, Hardi; Hubbard,
Hannah: Spatial Metadata Usability Evaluation. ISPRS International Journal of Geo-
Information, 9(7), 2020.

[Ka21] Kalantari, Mohsen; Syahrudin, Syahrudin; Rajabifard, Abbas; Hubbard, Hannah: Syn-
chronising Spatial Metadata Records and Interfaces to Improve the Usability of Metadata
Systems. ISPRS International Journal of Geo-Information, 10(6), 2021.

[KB07] Kaufmann, Esther; Bernstein, Abraham: How Useful Are Natural Language Interfaces
to the Semantic Web for Casual End-Users? In (Aberer, Karl; Choi, Key-Sun; Noy,
Natasha; Allemang, Dean; Lee, Kyung-Il; Nixon, Lyndon; Golbeck, Jennifer; Mika, Peter;
Maynard, Diana; Mizoguchi, Riichiro; Schreiber, Guus; Cudré-Mauroux, Philippe, eds):
The Semantic Web. Springer Berlin Heidelberg, pp. 281–294, 2007.

[KCW18] Khalsa, SiriJodha; Cotroneo, Peter; Wu, Mingfang: A survey of current practices in
data search services. Technical report, Research Data Alliance Data (RDA) Discovery
Paradigms Interest Group, 2018.

[LK16] Löffler, Felicitas; Klan, Friederike: Does Term Expansion Matter for the Retrieval of
Biodiversity Data? In (Martin, Michael; Cuquet, Martí; Folmer, Erwin, eds): Joint
Proceedings of the Posters and Demos Track of the 12th International Conference on
Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic
Change & Evolving Semantics (SuCCESS’16), co-located with the 12th International
Conference on Semantic Systems (SEMANTiCS 2016). CEUR Workshop Proceedings,
2016.

[LLW15] Liu, Yifeng; Liang, Yongjie; Wishart, David: PolySearch2: a significantly improved
text-mining system for discovering associations between human diseases, genes, drugs,
metabolites, toxins and more. Nucleic acids research, 43:W535–42, 2015.

[Lo10] Loreau, Michel: Excellence in Ecology: Book 17, The Challenges of Biodiversity Science.
International Ecology Institute, Oldendorf, Germany, 2010.

[Lö17] Löffler, Felicitas; Opasjumruskit, Kobkaew; Karam, Naouel; Fichtmüller, David; Schindler,
Uwe; Klan, Friederike; Müller-Birn, Claudia; Diepenbroek, Michael: Honey Bee Versus
Apis Mellifera: A Semantic Search for Biological Data. In (Blomqvist, Eva; Hose, Katja;
Paulheim, Heiko; Ławrynowicz, Agnieszka; Ciravegna, Fabio; Hartig, Olaf, eds): The
Semantic Web: ESWC 2017 Satellite Events: Portorož, Slovenia. Springer International
Publishing, pp. 98–103, 2017.

[Lö20] Löffler, Felicitas; Abdelmageed, Nora; Babalou, Samira; Kaur, Pawandeep; König-Ries,
Birgitta: Tag Me If You Can! Semantic Annotation of Biodiversity Metadata with the
QEMP Corpus and the BiodivTagger. In: Proceedings of The 12th Language Resources
and Evaluation Conference. European Language Resources Association, pp. 4557–4564,
2020.

[Lö21] Löffler, Felicitas; Wesp, Valentin; König-Ries, Birgitta; Klan, Friederike: Dataset search
in biodiversity research: Do metadata in data repositories reflect scholarly information
needs? PLOS ONE, 16(3):1–36, 2021.

[Lö22] Löffler, Felicitas; Shafiei, Fateme; Witte, René; König-Ries, Birgitta; Klan, Friederike:
, [Dataset] Supplementary material for a usability evaluation of a semantic search for
biological datasets, https://doi.org/10.5281/zenodo.7388037, 2022.

Semantic Search for Biological Datasets: A Usability Study on Modes of Querying and
Explaining Search Results 863

https://doi.org/10.5281/zenodo.7388037

14 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

[MM15] Megler, Veronica M.; Maier, David: Are Data Sets Like Documents?: Evaluating Similarity-
Based Ranked Search over Scientific Data. TKDE: Transactions on Knowledge and Data
Engineering, 27(1), 2015.

[Mu17] Mueller, Bernd; Poley, Christoph; Pössel, Jana; Hagelstein, Alexandra; Gübitz, Thomas:
LIVIVO - the Vertical Search Engine for Life Sciences. Datenbank-Spektrum, 17(1):29–34,
2017.

[Na11] Naderi, Nona; Kappler, Thomas; Baker, Christopher J. O.; Witte, René: OrganismTagger:
detection, normalization and grounding of organism entities in biomedical documents.
Bioinformatics, 27(19):2721–2729, 2011.

[Ni93] Nielsen, Jakob: Chapter 6 - Usability Testing. In (NIELSEN, JAKOB, ed.): Usability
Engineering, pp. 165–206. Morgan Kaufmann, 1993.

[Pa16] Parker, Timothy H.; Forstmeier, Wolfgang; Koricheva, Julia; Fidler, Fiona; Hadfield,
Jarrod D.; Chee, Yung En; Kelly, Clint D.; Gurevitch, Jessica; Nakagawa, Shinichi:
Transparency in Ecology and Evolution: Real Problems, Real Solutions. Trends in Ecology
& Evolution, 31(9):711 – 719, 2016.

[Pa21] Pachzelt, Adrian; Kasperek, Gerwin; Lücking, Andy; Abrami, Giuseppe; Driller, Christine:
Semantic Search in Legacy Biodiversity Literature: Integrating data from different data
infrastructures. Biodiversity Information Science and Standards, 5:e74251, 2021.

[RC08] Rubin, Jeffrey; Chisnell, Dana: Handbook of Usability Testing: How to Plan, Design, and
Conduct Effective Tests, 2nd Edition. Wiley, 2008.

[Sh21] Shafiei, Fateme; Löffler, Felicitas; Thiel, Sven; Opasjumruskit, Kobkaew; Grabiger, Denis;
Rauh, Pauline; König-Ries, Birgitta: [Dai:Si] - A Modular Dataset Retrieval Framework
with a Semantic Search for Biological Data. In (Sanfilippo, Emilio M.; Kutz, Oliver;
Troquard, Nicolas; Hahmann, Torsten; Masolo, Claudio; Hoehndorf, Robert; Vita, Randi;
Algergawy, Alsayed; Karam, Naouel; Klan, Friederike; Michel, Franck; Rosati, Ilaria, eds):
S4BioDiv 2021: 3rd International Workshop on Semantics for Biodiversity, held at JOWO
2021: Episode VII The BolzanoSummer of Knowledge, September 11–18, 2021, Bolzano,
Italy. 2021.

[SPA18] Soto, Axel J; Przybyła, Piotr; Ananiadou, Sophia: Thalia: semantic search engine for
biomedical abstracts. Bioinformatics, 35(10):1799–1801, 2018.

[Ve16] Vega-Gorgojo, Guillermo; Slaughter, Laura; Giese, Martin; Heggestøyl, Simen; Soylu,
Ahmet; Waaler, Arild: Visual query interfaces for semantic datasets: An evaluation study.
Journal of Web Semantics, 39:81–96, 2016.

[Vo15] Volentine, Rachel; Owens, Amber; Tenopir, Carol; Frame, Mike: Usability Testing to
Improve Research Data Services. Qualitative and Quantitative Methods in Libraries,
4(1):59–68, 2015.

[WG08] Witte, René; Gitzinger, Thomas: Semantic Assistants – User-Centric Natural Language
Processing Services for Desktop Clients. In (Domingue, John; Anutariya, Chutiporn, eds):
The Semantic Web. Springer Berlin Heidelberg, pp. 360–374, 2008.

[Wu19] Wu, Mingfang; Psomopoulos, Fotis; Khalsa, Siri Jodha; de Waard, Anita: Data Discovery
Paradigms: User Requirements and Recommendations for Data Repositories. Data Science
Journal, 18(1):3, 2019.

864 Felicitas Löffler, Fateme Shafiei, René Witte, Birgitta König-Ries, Friederike Klan

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

ReStoRunT: Simple Recording, Storing, Running and
Tracing changes in Spreadsheets1

Wolfgang Müller2, Lukrécia Mertová2

Abstract: In addition to the ubiquitous big data, one key challenge in data processing and management
in the life sciences is the diversity of small data. Diverse pieces of small data have to be transformed
into standards-compliant data. Here, the challenge lies not in the difficulty of single steps that need to
be performed, but rather in the fact that many transformation tasks are to be performed once or only a
few times. This limits the time that can be put into automated approaches, which in turn severely limits
the verifiability of such transformations. As much of the data to be processed is stored in spreadsheets,
within this paper we justify and propose a lightweight recording-based solution that works on a wide
variety of spreadsheet programs, from Microsoft Excel to Google Docs.

Keywords: Provenance; Harmonisation; Spreadsheets

1 Introduction

One of the challenges of real-life data harmonisation in the life sciences is the implementation
of standards in everyday work. The challenge lies in the fact that research needs to be flexible
and fast, while in the end, one needs reliable data with known semantics. This is the gist of
the FAIR principles [Wi16] - Findability, Accessibility, Interoperability and Reusability,
which depend mostly on the known semantics of the data.

The semantics of the data is typically conveyed in one of three ways

1. Annotation to ontologies (for example, using web standards like the Resource
Description Framework [CK04])

2. Description via markup languages (using SBML [Hu03], for example)

3. Via location in a spreadsheet (as done by many MIBBI [FA22] standards that provide
mandatory sets of attributes and sometimes even precise file formats to be filled)

In the latter two cases, the semantics is not conveyed via an ontology but rather via the
documentation of the respective formats.
1 Supported by the Heidelberg Institute for Theoretical Studies and the Klaus Tschira Foundation, as well as

MESI-STRAT. MESI-STRAT has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 754688.

2 Heidelberg Institute for Theoretical Studies — HITS gGmbH, 69118 Heidelberg, Germany wolfgang.mueller@
h-its.org

cba doi:10.18420/BTW2023-57

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 865

mailto:wolfgang.mueller@h-its.org
mailto:wolfgang.mueller@h-its.org
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-57

2 Wolfgang Müller, Lukrécia Mertová

CSV files and spreadsheets play an essential role here. They are used as lightweight databases
with bespoke data models and are transformed towards standard formats to convey semantics
by adhering to a pre-defined structure.

As a matter of efficiency, scientists typically use formats compatible with the machines and
the software they are using. They are usually different to standard formats such as MIBBI
formats. Scientists design their everyday formats to be simple to use with their machines
and their software. Often the formats are organized around one cut-and-paste operation
from a key proprietary software. This way of action reduces errors and minimizes time for
an outcome.

Standards like MIBBI provide mandatory sets of attributes or concrete file formats for data
files. However, scientists are left alone with the question of how to bring their day-to-day
files into a common format (e.g. for one partner or the local lab) or a mandatory format (e.g.
a standard format for a data publication).

Both transformation tasks are indeed very similar. They mainly differ in the number of files
concerned. Long-term experience with tools like RightField [Wo11] or openRefine [te22]
showed that a given internal file format is typically used only a couple of times, a common
format is used a couple of tens of times, and finally, the mandatory format is used thousands
of times.

The difficulty in this setup does not lie in the transformations themselves. They are mostly
based on simple operations on single values (such as moving a value to another cell) or
tables (such as the transposition of a matrix or a permutation of columns). The difficulty
lies in the combination of functional and non-functional requirements that are hard to fulfil
via the typical approach, i.e. writing and deploying complex software.

As stated above, most of the transformations to be written pertain to comparatively few files.
As a consequence, one has the following alternatives.

• Perform the transformation fully manually. However, a manual transformation is hard
to check. Errors that distort the meaning of the measurement may go undetected and
are hard to verify after the fact. Tracking changes needs additional software.

• Write a transformation via a program, be it Python [VD09], R [R 22], or workflow
systems like KNIME [Be09]. This has the following potential drawbacks:
– There is more work needed for testing the code than the work needed to do the

transformation itself. This is frustrating, but too little testing may lead to later
undetected errors.

– For a multitude of formats there will be a multitude of pieces of transformation
software. Thereby it becomes a challenge to keep track of which input lead to
which output using which transformation software.

These problems call for the following:

866 Wolfgang Müller, Lukrécia Mertová

ReStoRunT 3

• A recording-based solution. Creating the transformation software should be as simple
as doing the transformation by hand.

• There must be a trace of both source and destination of the transformation. In addition,
the software used for transformation should be recorded within the workbook that
contains source and transformed data.

• Ideally, the methods used should be platform-independent and should work with as
many spreadsheet systems as possible.

In building the solutions, it has to be kept in mind that there are two types of users in most
realistic scenarios: (i) the data steward, i.e. an experienced user whose focus is on data quality.
They are typically able to choose their toolchain for performing data transformation. (ii) the
end user, i.e. the scientist who is generating the data and has to provide standards-compliant
data. Typically they have the following challenges:

• They are restricted in the tools they can use due to security concerns. The machines are
often managed by the institute, which makes it hard to install plugins and add-ons (e.g.
Excel), install scripts based on languages not yet installed as well as new executables.

• They are restricted in the use of cloud services due to security concerns. Data paths
are carefully monitored, and sending early experimental data to a cloud service is
discouraged, for example.

• They are restricted in the time they can invest into tools that do not directly increase
their chances of getting a paper accepted. It means tools should be easy to use and
cannot e.g. expect dexterity or an advanced level of long-term concentration for their
use.

• Much preliminary data exchange is still done via mail. This favours methods that
easily pass antivirus software (i.e. no macros). This also favours methods that enable
sending related data in one single file as opposed to having to send a collection of
files.

ReStoRunT (Record, Store, Run, Trace transformations in Excel sheets) addresses the needs
expressed above. It is a recording-based solution that comes in two flavours, (i) an operating
protocol that can be performed manually by experimentalists and already captures most of
the advantages of ReStoRunT. (ii) A collection of small Python scripts (to be extended) in
case the use of Python is possible. We took Python, as it is a frequently used programming
language, also in the biological context. In both cases, the original data and the transformed
data stay together in one file, enabling easy sending.

Within this paper, we first describe the key properties of MS Excel that play a role later. We
then describe a toy example that we solve via ReStoRunT. Afterwards, we describe some
software tools that simplify the use of ReStoRunT and then compare the outcome to the
state of the art. This is followed by a summary and an outlook on future work.

ReStoRunT: Simple Recording, Storing, Running and Tracing changes in Spreadsheets 867

4 Wolfgang Müller, Lukrécia Mertová

2 Key properties of Spreadsheets and Workbooks

According to Wikipedia [Wi23], the first product introducing the concept of spreadsheets
that auto-update was VisiCalc in 1979. It enabled the interactive laying out of data in a table
containing cells and combining these cells using formulas. A formula in a cell was able to
aggregate information from other cells, such as summing them up. The key innovation was
a simple, intuitively graspable way to update the cells when a dependent cell was changed.

However, Lotus 1-2-3, an early successor, advertised already in 1983 that it had functionality
for using Lotus sheets as a simple database. Excel, starting in 1985, offered the same.
So, it does not come as a surprise that scientists soon took up using Excel as a simple
database. And —while database scientists reserve the term database for software that has
other properties, such as a well-defined data model— the popularity of spreadsheets as
makeshift databases are due to their ease of use and flexibility. The present tool tries to
alleviate some of the drawbacks of use of Excel as a database.

2.1 Definitions

Within this paper, a spreadsheet 𝑆 is viewed as an n-dimensional arbitrarily large matrix:

𝑆 =
©«
𝐴1 𝐵1 𝐶1 ... 𝑍1 𝐴𝐴1 𝐴𝐵1 ...

𝐴2 𝐵2 𝐶2 ... 𝑍2 𝐴𝐴2 𝐴𝐵2 ...

𝐴𝑛 𝐵𝑛 𝐶𝑛 ... 𝑍𝑛 𝐴𝐴𝑛 𝐴𝐵𝑛 ...

ª®®¬ (1)

Each element of a spreadsheet is called a cell, and it contains data of an arbitrary type.
The format of a cell determines how it is interpreted. Numbers adhering to the locale are
recognized as such (e.g. 1, 2 in Germany corresponds to 1.2 in the UK). Formulas are
expressions that start with an ‘=’ sign.

The cell is uniquely identified by a cell address (or location), which consists of a sheet
identification, a column letter, and a row number. For example, cell c has a cell location 𝐴6
in the spreadsheet 𝑆. Formally written as 𝑆!𝐴6, where ! is a delimiter.

Formulas can also reference cells, so = 𝐴1 ∗ 𝐵1 will be the value obtained by multiplying
the number in cell 𝐴1 by the number in cell 𝐵1.

Addresses in cells are implicitly relative. So if the formula = 𝐴1 ∗ 𝐵1 is written into the
cell 𝐶1, copying the data from 𝐶1 to 𝐶2 will change the formula to = 𝐴2 ∗ 𝐵2. This is
very useful for performing the same operation on numerous cells, e.g. multiplying the price
by the number of items or similar. Sometimes this is unwanted, e.g. when applying the
same tax rate to multiple items. For this purpose, it is possible to reference cells fixedly,
= $𝐴$1 ∗ 𝐵1 would become = $𝐴$1 ∗ 𝐵2 upon copying it to 𝐶2.

In this paper, we propose a ReStoRunT copy sheet 𝐶 of a source sheet 𝑆 with 𝑛 lines and
𝑚 columns, which is is a matrix with cells 𝐶!𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝑙, 𝑐) 1 ≤ 𝑙 ≤ 𝑛, 1 ≤ 𝑐 ≤ 𝑚, where

868 Wolfgang Müller, Lukrécia Mertová

ReStoRunT 5

𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝑙, 𝑐) denotes the string consisting of column letter and line number for line 𝑙 and
column 𝑐, and each cell 𝐶!𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝑙, 𝑐) is a reference to 𝑆!𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝑙, 𝑐).

The formula = $𝐴$1 references the content of the cell 𝐴1. = 𝛼!$𝐴$1 denotes the content of
the cell 𝐴1 in the sheet 𝛼, = 𝛼!$𝐴$2 the cell 𝐴2, and so forth. However if 𝛼!$𝐴$2 is empty,
= 𝛼!$𝐴$2 is not shown and treated as an empty cell, but as 0! This needs to be filtered out,
by an if statement, yielding the following formula:

= if($𝐴$2 =′′′′;′′′′ ; $𝐴$2) (2)

The copy sheet thus consists of such a formula in each cell.

We call ReStoRunT transformation sheet of 𝑆 a ReStoRunT copy sheet of 𝑆 that has been
modified, e.g. by moving cells or deleting cells or adding content such as names and labels.
A relationship between the source sheet and the ReStoRunT transformation sheet can be
viewed as a transformation function applied on the source sheet, returning the ReStoRunT
transformation sheet.

Note: Two cells in the ReStoRunT transformation sheet can reference the same cell in the
source sheet.

3 ReStoRunT by example

Within this section, we will describe ReStoRunT via an example that covers the inner
workings of ReStoRunT and give an insight into the outcomes.

3.1 The transformation task

In the scenario, Alice and Bob have agreed on a common format. Denoting values measured
for two enzymes (called E1, E2), measured at time points 5, 10, 15, and 20 minutes, and
as the measurement can (at times) vary by batch, the batch number is noted. Only Alice
needs an average between the experiments for each time point. Each measurement value
is accompanied by the possibility to make notes. A hypothetical file may look like the
following. The numbers have been picked, of course, so that the reader can easily see how
the transformation moves cells:

Batch# 55
time(min) E1 E2 Average Notes
5 11 21 16 Note1
10 12 22 17 Note2
15 13 23 18 Note3
20 14 24 19 Note4

Alice needs this data form.

time (min) 5 10 15 20
E1 11 12 13 14
E2 21 22 23 24

Notes Note1 Note2 Note3 Note4
Batch # gel 55

Bob has this data form.

ReStoRunT: Simple Recording, Storing, Running and Tracing changes in Spreadsheets 869

6 Wolfgang Müller, Lukrécia Mertová

As a consequence, Bob needs to apply transformations in order to share his data with Alice.

3.2 Transformation without ReStoRunT

Imagine that it is a one-off exchange of data. Alice needs Bob’s data in her format (to feed it
into some software or some agreed-on standard format), but currently, there is only one file,
and Bob does not want to waste time before knowing there are more files of the same kind.

So, Bob transforms his data manually. In MS Excel, the easiest way to do this is to cut and
paste “special“, and transpose the data on the way. So he marks data at the first line down to
the fifth, takes an empty sheet and pastes them into that empty sheet, choosing to transpose
the matrix, to the second line of the sheet (Left Table). We replace the empty column with
line averages using the formula =AVERAGE(B1:C1) (Right Table).

time(min) E1 E2 Notes
5 11 21 Note1
10 12 22 Note2
15 13 23 Note3
20 14 24 Note4

The transformation of Bob’s table.

time(min) E1 E2 Average Notes
5 11 21 16 Note1
10 12 22 17 Note2
15 13 23 18 Note3
20 14 24 19 Note4

We replace the empty column with line aver-
ages.

And then we notice that the batch number is missing, which we also have to add on top via
two cut-and-paste operations. By this, we have achieved Alice’s format.

3.3 Weaknesses purely manual transformation

For this one time, this is the most simple that can be done. The goal is met without any
overhead. However, if there is any doubt about the accuracy of the transformation ("Did
Bob mispaste?"), Alice will have to check the original file, which may still be somewhere
on Bob’s hard disk.

It would have been simpler to verify, had Bob used a script or a computational workflow to
modify the data. However, for a one-time transformation spending (in real-life-sized cases)
several hours for preparing and testing the script would have been prohibitive.

With the ReStoRunT approach, a couple of minutes of additional work in preparing the
sheet will suffice, and the rest will work as before. And the result will be a workbook that
(1) contains Bob’s original data sheet, and (2) contains a sheet that holds the data in Alice’s
format. It is a ReStoRunT transformation sheet This sheet contains the information in a

870 Wolfgang Müller, Lukrécia Mertová

ReStoRunT 7

way that (3) enables each cell to trace the origin into Bob’s sheet. And finally, (4) new Bob
format sheets can be transformed in the same way into Alice format sheets, reusing the
sheet described in (2).

3.4 Copy sheet and transformation sheet

In the previous section, we have described our goal. Creating a transformation sheet that
contains the data in Alice’s format and that can be reused to transform other data in Bob’s
format into Alice’s format.

We do so by creating a copy sheet and then modifying it manually.

As described above ReStoRunT copy sheet 𝛽 of 𝛼 is a sheet, where each 𝑐 in 𝛽 references
the cell in the same line and column in 𝛼 using formula 2 in section 2.1.

3.5 Creating a transformation sheet by manually applying a sequence of changes

We call Bob’s sheet 𝛼, and its ReStoRunT copy sheet 𝛽. In section 3.2, Bob has applied his
changes to 𝛼. Now we just apply the same changes to the copy sheet 𝛽, instead. The result
will just look the same. We omit showing the table for brevity.

We have turned the copy sheet into a transformation sheet that shows the transformed data,
and which —as shown in the next sections– embodies the transformation in a reusable
manner.

Fig. 1: Right: A ReStoRunT copy sheet referencing the original. Left: A ReStoRunT transformation
sheet.

3.6 Tracing the result back to the source

Now imagine that the value 12 is in doubt. We want to know, is there a copy-paste error? The
value 12 is in cell 𝛽!𝐵4. Looking into the cell, the cell 𝛽!𝐵 contains the formula = 𝛼!$𝐶$2

ReStoRunT: Simple Recording, Storing, Running and Tracing changes in Spreadsheets 871

8 Wolfgang Müller, Lukrécia Mertová

whose value is 12, as desired. The headers in the sheet 𝛼 appear to be correct. So, after
looking at the formula, we can tell where the value of 𝛽!𝐵4 comes from. The same applies
to all other cells in the sheet 𝛽.

In other words, the sheet 𝛽 now contains all references to the original values in 𝛼 and it
meets Alice’s format requirements. The workbook containing both 𝛼 and 𝛽 contains both
the original values in the original format as well as the transformation. This also works with
single-cell formulas and with many multi-cell formulas.

3.7 Rerunning the transformation sheet on a new data sheet

Now, assume that the data exchange between Alice and Bob has been successful. Bob has
the sheets 𝛼 and the transformation sheet 𝛽. He now has additional data 𝛼′ that he would
like to turn into Alice’s format.

All he needs to do is the following two steps:

1. Create a copy 𝛽′ of 𝛽 that copies all the formulas. Each formula references a cell in 𝛼

2. Now do a replace on all cells in 𝛽′: Replace references to 𝛼 by references to 𝛼′. This
can be done via a simple string replacement on all formulas. Now all these formulas
reference the corresponding cells in 𝛼′.

So, by one copy and one search/replace operation, the same transformation was applied to
another sheet in Bob’s format. This is suitable for small numbers of workbooks and sheets.

4 Software supporting ReStoRunT

Creating a copy sheet 𝛽 for a given sheet 𝛼 in a workbook appears to be the most tedious
and error-prone step. However, it suffices to create a workbook that contains an empty sheet
𝛼 and an 𝑛 × 𝑚 sheet 𝛽 that is a copy sheet of the empty sheet 𝛼. 𝛽 can then be used as a
copy sheet for any non-empty sheet of size 𝑛 × 𝑚 or below.

To further reduce the manual work, e created some lightweight Python tools that simplify
using ReStoRunT. We chose Python as a language that is widely accepted and installed. The
software is small and open source in order to invite checks by its users. [MM22] contains a
repository with the following tools:

ReStoRunTify --infile f.xslx --outfile g.xslx

reads f.xslx, adds ReStoRunT copy sheets for each sheet in f and writes the resulting
workbook to g.xslx.

872 Wolfgang Müller, Lukrécia Mertová

ReStoRunT 9

IsolateReStoRunTsheet --infile f.xslx \

--tobeisolated "TestSheet" --outfile isolated.xslx

Takes ReStoRunT-TestSheet from f.xslx and creates a workbook that contains just
ReStoRunT-TestSheet and an empty TestSheet. We need the empty TestSheet, as without
such a sheet, all the references in ReStoRunT-TestSheet will be broken and replaced by an
error string.

ApplyReStoRunTsheet --infile f.xslx --sheetfile g.xslx \

--destinationsheet "Sheet 2" --outfile o.xslx

takes the first ReStoRunT sheet in the sheetfile (g.xslx) and applies it to the sheet
--destinationsheet Sheet 2, and then writes out the resulting workbook to the
--outfile o.xslx.

5 Advantages and limitations of the ReStoRunT approach

Using simple and well-known means, we have reached a useful way of storing Excel
transformations for reuse in small series. These transformations are stored within the
workbook and are platform-independent. The representation can be used to create other
software for larger series of documents. This is our priority in future work on this topic.

MS Excel has the functionality to trace back formula references to their origins. That makes
ReStoRunT more useful, as one can see visually which cells depend on which other cells.

ReStoRunT works for arbitrarily large, finite-sized sheets. It is applicable for all use cases
where the maximum size of the matrix to be transformed can be determined beforehand. In
this paper, we described the transformation as the translation of cells. But also normalisation
and other formulas that concern a small, finite number of cells (like the average in our
example) are something that is tackled using ReStoRunT.

ReStoRunT uniquely works on the layout of sheets, so far, it does not make use of labels or
other content within the sheet.

We see as the main limitations (i) that very large numbers of cells will slow down Excel and
(ii) that there are some Excel area functions that make it hard to trace back. For example:
Sorting a column will yield results, but it will be hard to trace back which value really
was the third biggest value in a cell set containing 30.000 cells. This can be countered by
cascading ReStoRunT sheets thereby extending the detail of traces of changes.

ReStoRunT is using basic Excel formulas, RStoRunT works on Google Sheets, LibreOffice,
as well as Apple Numbers and Gnumeric.

ReStoRunT: Simple Recording, Storing, Running and Tracing changes in Spreadsheets 873

10 Wolfgang Müller, Lukrécia Mertová

6 State of the art compared to ReStoRunT

For re-applying changes, MS Excel has a built-in macro recorder. When using it, it is hard
to build working code without modifying the recorded VBA macro afterwards. This is
problematic, as the recording needs to be done by experimental scientists who cannot practise
this task sufficiently to reach proficiency. Also, the intended users cannot be expected to be
fluent in VBA. In addition, a drawback of recorded Excel macros is that many spam filters
mark .xlsm (Excel with Macro) files as SPAM, as the powerful embedded VBA code poses
a security risk. Furthermore, the receiver is asked if they want to run the security risk of
using the macro. Especially novices will not be equipped to take this decision. In addition
to that, the resulting transformation code is platform dependent, as it is expressed in Visual
Basic for Applications (VBA). Only through an analysis of a given macro a proficient reader
will be able to find out what field was the source of a change. The reader will have to invert
the operations done while recording the macros to find the source of data.

In contrast, one click on the formula in a ReStoRunT sheet will show which cells in the
original data sheet contributed to the current value. Furthermore, ReStoRunT needs only
key Excel mechanisms for functioning that function across a wide range of spreadsheet
tools, as stated above.

InSituTrac [As13] is a comprehensive Excel add-in for recording changes to Excel files.
The purposes are tracing provenance and re-applying changes. The comprehensive solution
features visualising types and sequences of changes to Excel sheets. Functionality-wise it
goes far beyond ReStoRunT. The Excel add-in centres around a ribbon in Excel that gives
access to the recording and exploration functionality.

In contrast, ReStoRunT is cross-platform, packages both original and result in one workbook,
and the provenance information can be perused without resorting to any add-in.

Google Sheets [Go] are a cloud service for spreadsheets that provide macro recording and
change tracking information. However, recorded macros are not exported alongside an
Excel export of Google Sheets. So the relation between Sheet and Macro is lost. Copying
workbooks provide a way to get a script into another workbook. However, again the users
are asked to take uncomfortable security decisions.

Excemplify [Sh13] was a tool for doing traceable changes to Excel files in the frame of
Immunoblot experiments. However, this was a large piece of configurable bespoke software
with the problems we described above, i.e. it needed too much configuration work for each
format change.

openRefine [te22] is a tool built for cleaning dirty data. It is a separate application to be
installed in user space. It provides functionality to import sheets and then modify them
using point ’n’ click as well as multi-cell operations. The traces of such modifications can
be recorded, stored, imported, and reused. However, the transformation is not shipped with

874 Wolfgang Müller, Lukrécia Mertová

ReStoRunT 11

the data, and openRefine first imports data into one structure, and then re-exports them.
This makes it hard to work with complex workbooks.

Workflow tools such as KNIME [Be09] and Galaxy [Af18] provide rich table functionality.
But just as using Python’s Pandas library [te20], R [R 22], R tidyverse [Wi19], and another
tooling, creating transformers in these tools does not happen by simple recording and needs
to be tested to a greater extent than recording based solutions. Some of them also import the
table into an intermediate format, thus losing the formatting information of the initial table.

[Wo11] is a tool for adding ontology information to spreadsheets, a complementary approach.
It can read workbooks, add hidden sheets with ontology information and then store the sheet.
These data can then subsequently be read by other tools. RightField’s use is complementary
to the tools described above.

To our knowledge, ReStoRunT has its use in the space of Spreadsheet-related tools, being
a useful addition because it is simple, not in the cloud, and doing quality control using a
ReStoRunT sheet does not need anything beyond standard software.

7 Conclusion

We argued that transforming Excel files and similar spreadsheets is an important task in
experimental biological work. The difficulty lies in the fact that one needs many different
transformations that need to be traced and possibly rerun several times, but not rerun often
enough to warrant a large development or configuration effort.

For this task, we have proposed ReStoRunT, i.e. recording and storing transformations such
that results can be traced to their origin and finally can be rerun, i.e. applied to new data.

ReStoRunT can be used entirely manually as a set of Excel practises or complemented via
tooling, of which we present an initial version. We hope to help scientists in sharing their
experimental data in a harmonized manner.

Acknowledgements

Müller and Mertová are funded by HITS and the Klaus Tschira Foundation, KTS. Müller
had been co-funded by MESI-STRAT. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
754688. Much of this work came from discussions with Ines Heiland and Cecilia Barile
about their needs for Excel transformations and traceability. Another input came from
programming work that Mertová and Müller did for ASSR, the Samaritans of Slovakia. We
thank Stefan Giulini of ASSR for a guided tour of their needs and their application in real
life.

ReStoRunT: Simple Recording, Storing, Running and Tracing changes in Spreadsheets 875

12 Wolfgang Müller, Lukrécia Mertová

References

[Af18] Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.;
Chilton, J.; Clements, D.; Coraor, N.; Grüning, B. A.; Guerler, A.; Hillman-
Jackson, J.; Hiltemann, S.; Jalili, V.; Rasche, H.; Soranzo, N.; Goecks, J.;
Taylor, J.; Nekrutenko, A.; Blankenberg, D.: The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids
Res. 46/W1, W537–W544, 2018.

[As13] Asuncion, H. U.: Automated data provenance capture in spreadsheets, with case
studies. Future Generation Computer Systems 29/8, Including Special sections:
Advanced Cloud Monitoring Systems & The fourth IEEE International Confer-
ence on e-Science 2011 — e-Science Applications and Tools & Cluster, Grid,
and Cloud Computing, pp. 2169–2181, 2013, issn: 0167-739X, url: https:
//www.sciencedirect.com/science/article/pii/S0167739X13000691.

[Be09] Berthold, M. R.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kötter, T.; Meinl, T.; Ohl, P.;
Thiel, K.; Wiswedel, B.: KNIME - the Konstanz Information Miner: Version
2.0 and Beyond. SIGKDD Explor. Newsl. 11/1, pp. 26–31, Nov. 2009, issn:
1931-0145, url: http://doi.acm.org/10.1145/1656274.1656280.

[CK04] Carroll, J.; Klyne, G.: Resource Description Framework (RDF): Concepts and
Abstract Syntax, W3C Recommendation, https://www.w3.org/TR/2004/REC-
rdf-concepts-20040210/, W3C, Feb. 2004.

[FA22] FAIRsharing.org: MIBBI; Minimum Information for Biological and Biomedical
Investigations, https://fairsharing.org/3518, [Online, accessed 2022-12-02],
2022.

[Go] Google Workspace, G.: Google Sheets: Online Spreadsheet Editor, url: https:
//www.google.com/sheets/about/.

[Hu03] Hucka, M.; Finney, A.; Sauro, H. M.; Bolouri, H.; Doyle, J. C.; Kitano, H.;
Arkin, A. P.; Bornstein, B. J.; Bray, D.; Cornish-Bowden, A.; Cuellar, A. A.;
Dronov, S.; Gilles, E. D.; Ginkel, M.; Gor, V.; Goryanin, I. I.; Hedley, W. J.;
Hodgman, T. C.; Hofmeyr, J.-H.; Hunter, P. J.; Juty, N. S.; Kasberger, J. L.;
Kremling, A.; Kummer, U.; Novère, N. L.; Loew, L. M.; Lucio, D.; Mendes, P.;
Minch, E.; Mjolsness, E. D.; Nakayama, Y.; Nelson, M. R.; Nielsen, P. F.; Saku-
rada, T.; Schaff, J. C.; Shapiro, B. E.; Shimizu, T. S.; Spence, H. D.; Stelling, J.;
Takahashi, K.; Tomita, M.; Wagner, J.; Wang, J.; Forum, S. B. M. L.: The systems
biology markup language (SBML): a medium for representation and exchange
of biochemical network models. Bioinformatics 19/4, pp. 524–531, Mar. 2003.

[MM22] Mueller, W.; Mertová, L.: ReStoRunT GitHub repository, https://github.com/
mertova/ReStoRunT, [Online, accessed 2022-12-01], 2022.

[R 22] R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2022, url: https:
//www.R-project.org/.

876 Wolfgang Müller, Lukrécia Mertová

https://www.sciencedirect.com/science/article/pii/S0167739X13000691
https://www.sciencedirect.com/science/article/pii/S0167739X13000691
http://doi.acm.org/10.1145/1656274.1656280
https://fairsharing.org/3518
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/
https://github.com/mertova/ReStoRunT
https://github.com/mertova/ReStoRunT
https://www.R-project.org/
https://www.R-project.org/

ReStoRunT 13

[Sh13] Shi, L.; Jong, L.; Wittig, U.; Lucarelli, P.; Stepath, M.; Mueller, S.;
D’Alessandro, L.; Klingmüller, U.; Müller, W.: Excemplify: a flexible template
based solution, parsing and managing data in spreadsheets for experimentalists.
J Integr Bioinform. 2/10, p. 220, Apr. 2013.

[te20] pandas development team, T.: pandas-dev/pandas: Pandas, version latest, Feb.
2020, url: https://doi.org/10.5281/zenodo.3509134.

[te22] openRefine team: openRefine, http://openrefine.org/, [Online, accessed
2022-12-01], 2022.

[VD09] Van Rossum, G.; Drake, F. L.: Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009, isbn: 1441412697.

[Wi16] Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I. J.; Appleton, G.; Axton, M.;
Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P. E., et al.:
The FAIR Guiding Principles for scientific data management and stewardship.
Scientific data 3/, 2016.

[Wi19] Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L. D.; François, R.;
Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T. L.;
Miller, E.; Bache, S. M.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D. P.;
Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H.: Welcome
to the tidyverse. Journal of Open Source Software 4/43, p. 1686, 2019.

[Wi23] Wikipedia: VisiCalc, 2023, url: https://en.wikipedia.org/wiki/VisiCalc,
visited on: 01/22/2023.

[Wo11] Wolstencroft, K.; Owen, S.; Horridge, M.; Krebs, O.; Mueller, W.; Snoep, J.;
du Preez, F.; C., G.: RightField: embedding ontology annotation in spreadsheets.
Bioinformatics 14/27, pp. 2021–2, July 2011.

ReStoRunT: Simple Recording, Storing, Running and Tracing changes in Spreadsheets 877

https://doi.org/10.5281/zenodo.3509134
http://openrefine.org/
https://en.wikipedia.org/wiki/VisiCalc

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

A Core Ontology to Support Agricultural Data
Interoperability

Aly Abdelmageed1, Shahenda Hatem1, Tasneem Wael1,, Walaa Medhat1, Birgitta
König-Ries2, Susan F. Ellakwa3, Passent Elkafrawy14, Alsayed Algergawy2 5

Abstract: The amount and variety of raw data generated in the agriculture sector from numerous
sources, including soil sensors and local weather stations, are proliferating. However, these raw data
in themselves are meaningless and isolated and, therefore, may offer little value to the farmer. Data
usefulness is determined by its context and meaning and by how it is interoperable with data from
other sources. Semantic web technology can provide context and meaning to data and its aggregation
by providing standard data interchange formats and description languages. In this paper, we introduce
the design and overall description of a core ontology that facilitates the process of data interoperability
in the agricultural domain.

Keywords: Semantic Web; Ontology; Knowledge Modeling; Agriculture

1 Introduction

The Agricultural Research Center (ARC)6 and the Central Lab for Agricultural Expert
Systems (CLAES)7 have been established to enhance the productivity of knowledge engineers
in building agricultural expert systems in Egypt. The ARC center has several institutes
focusing on soil, water, environment, and field crops. The outcome of those institutes is a
large amount of scattered and not well-described data, which makes it hard to integrate and
reuse. Furthermore, there is no availability of those data to the international community due
to lack of data representation and standardization. For example, the Registry of Research Data
Repositories8 has the resource of information about research data repositories, including
agricultural data. Even though it indexes and provides extensive information about more
than 270 agricultural data repositories. However, there are no records from Egypt. Therefore,
there is a growing need to start a process that supports the interoperability of agricultural
data in Egypt.
1 Information Technology and Computer Science School, Nile University, Egypt
2 Heinz Nixdorf Chair for Distributed Information Systems, Friedrich-Schiller University of Jena, Germany
3 Climate Change Information Center Renewable Energy Expert Systems, Agricultural Research Center, Egypt
4 Collage of Engineering, Effat University, SA
5 alsayed.algergawy@uni-jena.de
6 http://www.arc.sci.eg/
7 http://www.claes.sci.eg/
8 https://www.re3data.org/(http://doi.org/10.17616/R3KG8X last accessed: 2022-11-27)

cba doi:10.18420/BTW2023-58

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 879

mailto:alsayed.algergawy@uni-jena.de
https://www.re3data.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-58

2 Alsayed Algergawy, et al

The objective of this work is to enhance and improve the interoperability of agricultural
data in Egypt collected and coordinated from CLAES. In this context, the semantic web, in
general, and ontology, in particular, play a crucial role. As the ontology formally represents
key concepts, properties, relationships, and axioms of a given domain, where it allows a
richer set of relationships and constraints among key terms in the domain[Pr13, Jo16, Dr19].
These silent features allow the ontology to make domain-specific knowledge more explicit
and in a machine-readable format. As it is hard to develop a single ontology that covers the
entire scope of the agricultural domain, we initially focus on developing a core ontology
for key terms extracted from different datasets collected at CLAES. To this end, we design
and develop a semantic model to capture the domain knowledge and to be used as the core
component in carrying out the Egyptian agricultural data interoperability. It is not a simple
task since agricultural data are described using different languages.

Furthermore, terminologies used in agricultural data, such as names of the crop, equipment,
and activity, have not been standardized because agriculture is local [Jo16]. To this end, we
exploit available resources at CLAES, such as datasets, technical reports, and surveys, to
extract and collect main terms relevant to the agricultural domain. To develop a core ontology
from the extracted set of terms,we employ the fusion-merge approach [PM04,OYD21, Sc11],
where these extracted terms are then used to localize related ontologies that can be reused as
a basis for the core ontology design from available ontology portals, such as BioPortal9 and
AgroPortal10. We employed module extractor strategy to the selected set of ontologies to
reduce the number of selected concepts and properties and to ensure that the core ontology
will not contain unneeded concepts making it more complex than necessary [Al20, Br22].
These modules are then combined to form the initial version of the core ontology. Further
improvements are made, such as revising the ontology and adding missing concepts. The
role of domain experts is very significant and essential in almost all steps during the
development of the core ontology.

The rest of the paper is organized as follows: In the next section, we present the background
and related work. The main methodology for developing the core ontology will be introduced
in Section 3. Section 4 is devoted to concluding the paper and discussing the open issues
and future work.

2 Related work

The rapidly growing population and climate changes have been accompanied by the
emergence of new priorities in agricultural research, which is marked by a large volume
and heterogeneous range of data sources and formats [De23, Dr19]. This data in itself is
meaningless and isolated and therefore may offer little value to the farmer. The usefulness
of data comes from context and meaning, as well as its aggregation with other data sources.

9 https://bioportal.bioontology.org/
10 http://agroportal.lirmm.fr/

880 Aly Abdelmageed, Shahenda Hatem, Tasneem Wael, Walaa Medhat, Birgitta
König-Ries, Susan F. Ellakwa, Passent Elkafrawy, Alsayed Algergawy

A Core Ontology to Support Agricultural Data Interoperability 3

Semantic web technology can provide context and meaning to data and its aggregation
by providing standard data interchange formats and data description languages. The RDA
working group, ’Agrisemantics WG’ 11, has been working on gathering community-based
requirements and use cases for an infrastructure that supports the use of semantics for
agricultural data interoperability. However, the working group has been criticized for not
focusing on data from non-EU countries and for not addressing core ontologies enough.
Despite the large number of domain-specific ontologies in the field of agriculture, there is a
lack of core ontologies that link foundational and domain-specific ontologies.

3 Methodology

In this section, we focus on the strategy used to develop a core ontology that will be used as
a seed for the interoperability of agricultural data. In this context, we first will introduce the
use case and scenario where the development of such a core ontology is necessary, then
we will present our methods to achieve this goal, and finally, we will describe the main
outcome of the development process.

Scenario. To motivate the presented work, we shall start introducing the current scenario
of representing and managing agricultural data in Egypt. As mentioned, the Agricultural
Research Center (ARC) is the responsible unit for gathering agricultural data. These data
can be provided to the center in different formats. It could be unstructured data, such as
technical reports by scientists and surveys through interviews with farmers. It could also
be semi-structured data in XML formats or/and tabular data. The results of modeling and
representing these different data sources are a number of isolated XML files (datasets). For
example, as shown in Fig. 1, where a piece of three different datasets about Wheat, Rice,
and Tomato are illustrated. The figure shows that the three different datasets represent the
same concept ’Soil Salinity’. It has to be repeated in each dataset with a different level
of knowledge. For example, the Wheat dataset models the ’Soil Salinity’ with more
information, such as it gives the Arabic label of the concept, which is missing information
in the other two datasets. Furthermore, the Wheat and Rice datasets provide a legal value
’Salinity’ for the concept, while it is not provided in the Tomato dataset. The legal value
is in both English and Arabic languages in the Wheat dataset, while it is specified only in
English in the Rice dataset.
Another example that demonstrates the need to unify and organize the same piece of
information in the same way is illustrated in Fig. 2. The figure shows that the concept
’Agricultural Operations’ is defined in the Wheat and Rice with three subclasses:
’Pre-Cultivation’, ’Cultivation’, and ’Post-Cultivation’ with different level of
information. The concept ’Pre-cultivation’ from the Rice dataset has one property
defined only in English, while it has two properties defined in English and Arabic in
the Wheat dataset. These examples show that there is a large redundancy and different

11 https://www.rd-alliance.org/groups/agrisemantics-wg.html

A Core Ontology to Support Agricultural Data Interoperability 881

https://www.rd-alliance.org/groups/agrisemantics-wg.html

4 Alsayed Algergawy, et al

Abb. 1: Data sources challenges: Example 1

representations of the same concepts. Therefore, there is a growing need to unify the
representation of these concepts across different datasets, which motivates the development
of a core ontology.

As shown in Figures 1 and 2, these words are repeated in these XML files with the same
definitions; thus, domain experts select one of them with its children. In order to have the
semantic model has no redundant concepts. Some concepts have the same meaning but
different structures like disease and disorder, hence domain experts select one of them. All
data types will be linked together using semantic modeling approaches to make it reusable.
Providing a global ontology for the Egyptian community while having wide exposure to the
international research of foreign countries. The international agricultural knowledge base
will provide a common understanding of the huge and continuously growing domain of
agricultural knowledge. The idea is to add Arabic plant knowledge to the global semantic
agricultural knowledge with the German counterpart for a World Global plant knowledge
base. This big goal is to be achieved after defining a core concept design for aligning and
merging CLAES ontologies for a global agricultural knowledge base. Such structure will
facilitate semantic definition and integration of a huge amount of knowledge with different
criteria and presentation.

Strategy. The entire process of developing a core ontology is illustrated in Fig. 3, where
the proposed framework is illustrated. The figure shows that the framework has four main
layers. The data sources layer keeps track of data resources used during the development
of the core ontology. As shown in Fig. 3, these data resources include unstructured data
(PDF files representing technical reports and/or surveys) and semi-structured data (XML
datasets). The preprocessing layer is to allow reading of different data resources. For that,
it has a translator component to translate Arabic into English. Furthermore, to enable the
processing of PDF files, we transform these files into text format using Python libraries such
as pdftextract12. We decided to use these libraries as it is a very simple and efficient python
PDF text extractor that uses the xpdf c++ library. It allows the extraction of text from the

12 https://pypi.org/project/pdftextract/

882 Aly Abdelmageed, Shahenda Hatem, Tasneem Wael, Walaa Medhat, Birgitta
König-Ries, Susan F. Ellakwa, Passent Elkafrawy, Alsayed Algergawy

https://pypi.org/project/pdftextract/

A Core Ontology to Support Agricultural Data Interoperability 5

Abb. 2: Data sources challenges: Example 2

whole PDF or a specific page from the PDF file. Another important component is the XML
reader which parses XML files to extract elements and their properties. For example, the
XML Reader component reads the Wheat dataset, shown in Fig. 2 and extracts the element
’Agricultural Operation’ with a definition ’A set of operations that is applied during
the agricultural process and is divide according to the applying time to 1-PreCultivation
2-During Cultivation 3-Post Cultivation’ as well as the associated definition in Arabic. The
set of extracted texts is preprocessed and input to a natural language processing API. At
that point, we make use of the TextRazor demo version13. It is an easy-to-use API and very
effective. The main goal to use the TextRazor tool is to extract main terms (entities) from
text information, such as element names, and comments. For example, input the above
definition to the NLP API results in the following terms: set, operation, agricultural
process, cultivation. As shown in Fig. 3, the role of domain experts is needed at the end
of the preprocessing step to validate and confirm the set of extracted terms. At least three
experts from CLAES have proved the preprocessing outcome.

Once we have the set of relevant terms, the next step, as shown in Fig. 3, is to start the
semantic modeling process. The semantic modeling layer has three main components:
ontology selection, module extractor, and ontology merging. The first component, ontology
selection, is to select a set of relevant ontologies that cover the set of input terms. To this
end, we make use of the available ontology portals, such as BioPortal and AgroPortal. To
this end, we make use of available APIs from the two portals, which accept the set of
terms as input and return back a set of ontologies that may cover the terms. We extracted
important information from these ontologies to be revised by domain experts to select the
most suitable ontologies for the domain. For example, the term ’Fruit’ has been found in
24 ontologies representing different pieces of the domain. The fruit concept is defined in the
Agricultural Growers Resource Organization (AGRO) 14 as a multi-tissue plant structure

13 https://www.textrazor.com/

14 https://bioportal.bioontology.org/ontologies/AGRO

A Core Ontology to Support Agricultural Data Interoperability 883

https://www.textrazor.com/

6 Alsayed Algergawy, et al

Abb. 3: Proposed framework architecture

that develops from a Gynoecium or a single carpel, and at maturity may have as parts one
or more seeds. Also, it may contain additional plant structures that are part of a flower
and mature along with the Gynoecium, such as a receptacle. A fruit may develop without
fertilization in cases of parthenocarpy, apomixis, or other hormone-induced conditions
and may not always contain seeds. When annotating fruit that is referred to as ‘aggregate’,
‘multiple’, or ‘compound’, it is annotated directly to the appropriate plant structure, such
as receptacle, hypanthium or infructescence. Fruits only occur in angiosperms. While it
is defined within the Medical Subject Headings (MESH) 15 as the fleshy or dry ripened
ovary of a plant, enclosing the seed or seeds. Another example to demonstrate the need for
feedback from domain experts is the term ’crop’ exists in 16 different ontologies, but our
experts selected only two definitions that align with the intended meaning.

After having a set of ontologies, for each term we extracted the set of corresponding
concepts from different ontologies along with their URIs, labels, and definitions (if they
exist). Then the domain experts shall validate the extracted concepts. After settling on a
number of ontologies to be adopted according to the fusion/merge strategy [AKR19], a
module extractor is applied to each ontology to elicit smaller partitions from the selected
set of ontologies. Those concepts are the ones containing only relevant concepts and those
needed to connect them. Finally, these sets of partitions were combined and merged to form
the initial version of the new ontology.

Outcomes. The outcome of applying the proposed approach to available data sources
at CLAES is summarized in Table 1, and some of the core concepts and their initial

15 https://bioportal.bioontology.org/ontologies/MESH

884 Aly Abdelmageed, Shahenda Hatem, Tasneem Wael, Walaa Medhat, Birgitta
König-Ries, Susan F. Ellakwa, Passent Elkafrawy, Alsayed Algergawy

A Core Ontology to Support Agricultural Data Interoperability 7

relationships are shown in Fig. 4. The table shows that after applying the preprocessing
step, we got 211 unique terms extracted from available data sources at CLAES. Using
these terms to look up similar concepts from BioPortal and AgroPortal we found 178
concepts. After applying the module extractor and filler irrelevant concepts we got 147
concepts from 11 ontologies. A first trial to build the core ontology is shown in Fig. 4. The
core concepts, as well as the related concepts, form the basis for semantically modeling
significant assumptions in the Egyptian agricultural sector.

Tab. 1: Data Description Results

Number of extracted terms from available resources 211
Number of concepts found in relevant ontology portals 178
Size of output of extracted concepts from the portal 18324
Number of the concepts after filtering ontologies 147 which belongs to 11 ontologies

Abb. 4: Extracted concept

All the resources related to the design of the core ontology as well as the first versions of
the ontology are accessible online at https://github.com/fusion-jena/agriSem.

4 Conclusions and Future work

We attempt to address the interoperability of agricultural data in Egypt. We draw the first
step towards achieving this goal by developing a core ontology that covers core concepts in
the domain. Therefore, we proposed a framework to achieve this goal by producing one
merged ontology of core concepts. Even some successful steps have been drawn to reach
the main goal; however, several rooms for improvement and future directions are arising.
The first is to enhance this initial version of the core ontology, as more work is needed to
edit, revise and consider domain experts’ feedback before publishing and/or deployment
of the ontology. This results into the next issue of how to involve domain experts in the
development process. It is a very hard and time-consuming process, where intelligent
solutions have to be proposed.

Acknowledgments

This work has been funded by the German Academic Exchange Service (DAAD) and
Standards and Trade Development Facility (STDF) as part of Semantic Web Technologies
for Agricultural data interoperability (AgriSem).

A Core Ontology to Support Agricultural Data Interoperability 885

https://github.com/fusion-jena/agriSem

8 Alsayed Algergawy, et al

Literaturverzeichnis
[AKR19] Algergawy, Alsayed; König-Ries, Birgitta: Partitioning of BioPortal Ontologies: An

Empirical Study. In: SWAT4HCLS. S. 84–93, 2019.

[Al20] Algergawy, Alsayed; Babalou, Samira; Klan, Friederike; König-Ries, Birgitta: Ontology
Modularization with OAPT. Journal on Data Semantics, 9(2-3):53–83, 2020.

[Br22] Bravo, Maricela; González-Villarreal, Darinel; Reyes-Ortiz, José A; Sánchez-Martínez,
Leonardo D: Modularization Method to Reuse Medical Knowledge Graphs. Applied
Sciences, 12(22):11816, 2022.

[De23] Devare, Medha; Arnaud, Elizabeth; Antezana, Erick; King, Brian: Governing agricultural
data: Challenges and recommendations. Towards Responsible Plant Data Linkage: Data
Challenges for Agricultural Research and Development, S. 201, 2023.

[Dr19] Drury, Brett; Fernandes, Robson; Moura, Maria-Fernanda; de Andrade Lopes, Alneu: A
survey of semantic web technology for agriculture. Information Processing in Agriculture,
6(4):487–501, 2019.

[Jo16] Joo, Sungmin; Koide, Seiji; Takeda, Hideaki; Horyu, Daisuke; Takezaki, Akane; Yoshida,
Tomokazu: Agriculture Activity Ontology: AnOntology for Core Vocabulary of Agriculture
Activity. In: ISWC (Posters & Demos). 2016.

[OYD21] Osman, Inès; Yahia, Sadok Ben; Diallo, Gayo: Ontology integration: approaches and
challenging issues. Information Fusion, 71:38–63, 2021.

[PM04] Pinto, Helena Sofia; Martins, João P: Ontologies: How can they be built? Knowledge and
information systems, 6(4):441–464, 2004.

[Pr13] Prestes, Edson; Carbonera, Joel Luis; Fiorini, Sandro Rama; Jorge, Vitor AM; Abel, Mara;
Madhavan, Raj; Locoro, Angela; Goncalves, Paulo; Barreto, Marcos E; Habib, Maki et al.:
Towards a core ontology for robotics and automation. Robotics and Autonomous Systems,
61(11):1193–1204, 2013.

[Sc11] Scherp,Ansgar; Saathoff,Carsten; Franz, Thomas; Staab, Steffen:Designing core ontologies.
Applied Ontology, 6(3):177–221, 2011.

886 Aly Abdelmageed, Shahenda Hatem, Tasneem Wael, Walaa Medhat, Birgitta
König-Ries, Susan F. Ellakwa, Passent Elkafrawy, Alsayed Algergawy

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

The InsightsNet Climate Change Corpus (ICCC) -

Compiling a Multimodal Corpus of Discourses in a Multi-Disciplinary Domain

Elena Volkanovska1, Sherry Tan2, Changxu Duan3, Sabine Bartsch4 and Wolfgang Stille5

Abstract: The discourse on climate change has become a centerpiece of public debate, thereby
creating a pressing need to analyze the multitude of communications created by the participants in this
communication process. In addition to text, information on this topic is communicated multimodally,
through images, videos, tables and other data objects that are embedded within documents and
accompany the text. This paper presents the process of building a multimodal pilot corpus to the
InsightsNet Climate Change Corpus (ICCC) using natural language processing (NLP) tools to enrich
corpus metadata, thus building a dataset that lends itself to the exploration of the interplay between
the various modalities that constitute the discourse on climate change.

Keywords: corpus; climate change; computational linguistics; annotation; metadata

1 Introduction

In recent years, the topic of climate change has taken center stage in discourses across
different segments of society through different channels, media and publications. While
climate scientists are in agreement that climate change is ongoing and real, debates on this
topic as well as its influences on policy-makers remain highly controversial [SP21].

With the surge of published data on the topic of climate change, linguistics as well as other
related disciplines have identified the study of data representing discourses on climate change
as a research desiderate in order to gain a better understanding of this multidisciplinary
field and the role played by a diverse set of participants with different scientific and
political backgrounds who are assuming different roles and interests. In order to enable such
studies, research is needed to collect and organize suitable corpora in a comprehensive and
1 Technische Universität Darmstadt, Corpus and Computational Linguistics, Residenzschloss 1, 64283 Darmstadt,

Deutschland elena.volkanovska@tu-darmstadt.de
2 Technische Universität Darmstadt, Corpus and Computational Linguistics, Residenzschloss 1, 64283 Darmstadt,

Deutschland sherry.tan@tu-darmstadt.de
3 Technische Universität Darmstadt, Corpus and Computational Linguistics, Residenzschloss 1, 64283 Darmstadt,

Deutschland changxu.duan@tu-darmstadt.de
4 Technische Universität Darmstadt, Corpus and Computational Linguistics, Residenzschloss 1, 64283 Darmstadt,

Deutschland sabine.bartsch@tu-darmstadt.de
5 Technische Universität Darmstadt and Hessian Center for Artificial Intelligence (hessian.AI) wolfgang.stille@

hessian.ai

cba doi:10.18420/BTW2023-59

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 887

mailto:elena.volkanovska@tu-darmstadt.de
mailto:sherry.tan@tu-darmstadt.de
mailto:changxu.duan@tu-darmstadt.de
mailto:sabine.bartsch@tu-darmstadt.de
mailto:wolfgang.stille@hessian.ai
mailto:wolfgang.stille@hessian.ai
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-59

2 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

meaningful way to inform the different communities engaging and interested in relevant
discourses as well as processes concomitant with their roles as scientists, laypersons,
politicians, managers and many others involved in the relevant debates and policy making
processes. According to [LCJ20], the climate change related topic of global warming “has
received little attention in natural language processing [NLP] despite its real world urgency”.
One plausible reason for this may be attributed to the lack of available corpora focusing
on climate change. Additionally, as a topic - like many topics with a multidisciplinary
coverage - climate change is represented in many publications not merely by means of
natural language text, but also by means of a multitude of modalities such as images, maps,
data tables and visualizations that are hardly captured, let alone systematically analysed for
their contribution at all. So while there may be an abundant volume of digital text to be
potentially included in corpora, the demonstration of textual and embedded multimodal
data objects extracted and stored together in a corpus on the topic of climate change is
still lacking. Therefore, the research reported in this paper aims to fill this gap by building
multimodal corpora representing discourses from the domain of climate change across
different genres. We furthermore set out to demonstrate some exemplary methods from
corpus and computational linguistics to enrich the corpus data by metadata and annotations
to allow for more in-depth analyses to further our understanding of discourses on the topic
of climate change. We believe the analysis of such corpora and the study of the interlinking
between the multimodal objects with its textual counterparts will create new insights into
the topic of climate change and drive new discussions across various communities.

2 Overview of corpora for discourse analysis on climate change

Prior to embarking on corpus-building, we explored existing corpora and datasets that
have been used in previous studies on the climate change discourse. A good overview of
datasets used to investigate the debate on climate change by practitioners in the community
of NLP and social sciences is provided in [SP21]; unfortunately, none of these studies takes
multimodality into account. A further potentially relevant climate change dataset is the
Science Daily Climate Change (SciDCC) dataset, presented in [MM21], which includes
approximately 11,000 news articles scraped on the topics “Earth and Climate” and “Plant
and Animals” of the Science Daily website. Yet, this is a text-only resource as well. There
is a limited number of studies on the topic of climate change conducted on multimodal
corpora, but these are largely combinations of texts and photographic illustrations (see
[ADY11] and [We16]).

The exploration of existing corpora on the topic of climate change revealed that while they
are well-suited for text-based discourse analysis, none of them can help us fully address the
objective of our study, which is to analyse the climate change discourse as an interaction
between various modalities. The corpora that we inspected do not store data objects of
different formats in a single corpus in a manner that lends itself to the study of the interplay
between a document’s text and any multimedia content embedded in it. In addition, existing

888 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

The InsightsNet Climate Change Corpus (ICCC) - 3

multimodal corpora take into consideration a set number of media types, which does not
allow for the exploration of the range of embedded media types. Rather than moulding our
research to fit the data that was readily available at the time this study began, we decided to
build a multimodal corpus from authentic data that would allow us to examine (1) the type
of modalities embedded in a document, and (2) how different modalities contribute to the
discourse on climate change.

3 Developing a pilot corpus

The pilot corpus described in this section is a precursor to ICCC. The objective is to explore
the possibilities of developing a multimodal corpus on climate change and to systematically
learn more about the challenges before expanding it. At the onset of the corpus-building
process for the pilot corpus two main criteria were devised: the corpus had to contain content
in both English and German, and any collected multimedia content had to be embedded in
the document. We refrain from incorporating stand-alone collections of single-modality data
such as collections of images or photos etc. We did not set a limit on the types of multimodal
data to be collected with the expectation that we will encounter data objects beyond images
and videos. Beyond this, we adhere to a fairly standard corpus-design procedure, which
includes the following steps: (1) identify genres of interest and data sources that contain
suitable content; (2) contact copyright holders to obtain their approval to collect and use the
data; (3) define metadata properties to store relevant information; (4) collect the data from
each data source, (5) parse it in a project-specific corpus structure.

3.1 Identifying genres, data sources, and obtaining copyright permissions

The objective in this step was to ensure that each genre included in the corpus represents
various entities or members of society that actively take part in the public discourse on
climate change. The pilot corpus entails content from three genres: academic papers on
climate change, reports published by the International Panel on Climate Change (IPCC), and
content published on the websites of Greenpeace International and Greenpeace Germany
(Non-Governmental Organisations (NGOs)). Academic papers can be found either under
a free open access (OA) policy, which does not require specific copyright permissions,
or hidden behind a paywall, in which case the rules for content use are governed by the
specific publisher. IPCC reports can be downloaded from the official website of IPCC6 and
used for personal, non-commercial purposes as long as the source is duly acknowledged.
Translation of IPCC reports into German is managed by the German IPCC Coordination
Office7 and the translated content can be retrieved from their website. Content published on
the two Greenpeace websites posed the most complex copyright case, mostly because of the

6 https://www.ipcc.ch/
7 https://www.de-ipcc.de/index.php

The InsightsNet Climate Change Corpus (ICCC) 889

4 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

different copyright rules applicable to text on the one hand, and multimedia content on the
other. Greenpeace has granted us approval to use images and videos that have been created
by and are sole property of Greenpeace, as long as the content is used for research purposes
[Gr22a, Gr22b] only.

3.2 Developing and implementing a metadata scheme

Metadata support corpus management and exploitation and constitute an integral part of
linguistic research. They can be retrieved from the content description provided by the
publisher, or obtained through data post-processing, including linguistic processing and
information extraction. The metadata framework for the pilot corpus uses properties from
the Dublin Core Metadata Initiative (DCMI Metadata Terms) as its backbone. We opted
for the DCMI framework because it provides descriptive terms for data objects of different
formats and constitutes a widely acknowledged standard that has been used in the description
of both web and physical collections. This allows us to use the same schema for digitised
collections which were not primarily designed to serve as web content.

At the time of the property selection, DCMI Metadata Terms entailed 55 properties [Du20],
accompanied by a set of datatypes and vocabulary encoding schemes for the description of
digital resources of various formats (including image, video, and audio). We selected 14
DCMI metadata terms: title, type, subject, publisher, contributor, identifier, rights, format,
bibliographicCitation, rightsHolder, license, extent, created, accrualMethod. For a more
detailed description of each term please see [Du20]. This information should be retrievable
for each document in the corpus.

While the DCMI Metadata Terms provide a good selection of descriptive elements, they do
not include fields for encoding all information of relevance to the project. Two containers
of metadata properties were added to address this shortcoming: linguisticInformation and
mediaInformation. The former is a container for project-relevant linguistic information
gathered from both the given metadata, that is, metadata provided by the publisher, and
for metadata derived by performing linguistic processing on the corpus. The latter gives
information about the number and type of multimedia data objects embedded in a document.
The two metadata containers are flexible and more properties can be added as necessary.
At the moment, linguisticInformation stores information about genre, language, text type,
status of content (archived or not, for more information see section 4.3), number of tokens,
number of words, word types, content words, type-token ratio, lexical density, information
about sentence, word, and token length, named entities and abbreviations. Each document
was given a filename according to an agreed workable convention so that various media
types can be linked to the document in which they are embedded. The intention is to apply
this scheme to each document collected from the three data sources described in section 3.1.
The collected metadata is added to each document and helps us build a profile of the whole
corpus.

890 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

The InsightsNet Climate Change Corpus (ICCC) - 5

As already mentioned, some of the metadata properties are obtained by conducting linguistic
processing and annotation of the content, which at the moment entails tokenization,
part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER), and
abbreviation extraction.8

4 Data collection

This section elaborates on the data collection process from three sources: academic papers,
the website of the International Panel on Climate Change (IPCC), and the content published
on the websites of Greenpeace International and Greenpeace Germany.

4.1 Academic Papers

As a starting point for data collection for the pilot corpus, we used an article published by
CarbonBrief titled “The most influential climate change papers of all time” [Pi15]. In this
article, eight academic writings [AH97, Ca38, MW67, Ke76, No91, GZ00, HS06, HSR12]
were highlighted as the most “cited” papers, which is a measure and an indication of how
much impact the paper has in the scientific world. These seed papers ranged between the
years 1896 to 2012, giving us a wide range of different climate change perspectives as the
topic has evolved over time. We coined these eight papers as “seed papers” and these papers
provided a way for us to extract information from them that would link us to other related
academic works along the same topics across different years, providing a way for us to build
a more comprehensible corpus.

Building a corpus with the seed papers We explored two methods for building a corpus
using the eight seed papers that we have obtained: (1) checking the overlap of references
between the seed papers, (2) extracted keywords and keyphrases from the academic papers
were used as seed terms for search of more academic papers in the similar topic in Google
Scholar.

With the first approach, we were not able to find any overlap between the references of
the seed papers. Therefore, we did a search on Dimensions9 for a list of the top citation
references for each seed paper and from there we looked for overlapping citations. If a paper
referenced to at least two seed papers, then that paper was taken to be included in the corpus.
Based on this method, a total of 84 papers were initially collected.

8 Any metadata obtained through content post-processing will be affected by the choice of tool used to perform
this process. This paper demonstrates how such tools can be applied for metadata enrichment and does not focus
on ways of improving their performance.

9 https://www.dimensions.ai/

The InsightsNet Climate Change Corpus (ICCC) 891

6 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

The second method was based on information extraction. The text content of the seed
papers was extracted and analyzed with KeyBERT[Gr20]. KeyBERT provides integration
of different pre-trained language models and since we only have academic papers in the
English language, we opted for the model10 developed initially by [RG19].

The top 10 keywords/keyphrases from each paper were extracted and these were grouped
together according to semantic similarity. After the first iteration of extracting the key-
words/keyphrases from the seed papers and grouping them together, a total of 9 clusters of
keywords were formed. Each cluster of keywords was used as seed terms to search Google
Scholar with AND operator between the terms and the top 20 results were taken and added
to our collection. This iterative process was completed when we evaluated the corpus and
found that we had obtained 1,812 academic papers using this method (see figure 1 for
visualization of the process). The total number of academic papers downloaded was 1887,
ranging from the years 1895 to 2022.

Fig. 1: An example of the iterative process for keywords extraction from seed papers to downloading
the papers from Google Scholar.

4.2 Reports published by the International Panel on Climate Change (IPCC)

In the pilot corpus, we included the IPCC synthesis reports from each reporting period11 12.
These reports are originally published in English; translations into German were collected

10 all-MiniLM-L6-v2
11 “Climate Change: The IPCC 1990 and 1992 Assessments”, “SAR Climate Change 1995: Synthesis Report”,

“TAR Climate Change 2001: Synthesis Report”, “AR4 Climate Change 2007: Synthesis Report”, “AR5 Synthesis
Report: Climate Change 2014”.

12 At the time of writing this paper, the publication of the AR6 Synthesis Report is pending; only an outline of the
report is available.

892 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

The InsightsNet Climate Change Corpus (ICCC) - 7

when available13. This means that the pilot corpus contains 5 synthesis reports in English
and 3 synthesis reports or part of the synthesis report in German.

4.3 Greenpeace International and Greenpeace Germany

The web pages from Greenpeace International and Greenpeace Germany relevant to
our project were retrieved by entering the prompt ’climate change’ and ’Klimawandel’
respectively in the search bar on each organisation’s web site14 15. The search, performed in
March 2022, returned 4057 links to web pages from Greenpeace International, of which
698 were hosted on the domain of Greenpeace International, while 3359 were archived and
hosted on the domain of the Wayback Machine - Internet Archive16. We only include the
698 web pages hosted on the Greenpeace International domain in our pilot corpus in order
to have a balanced number of tokens in each language (see table 1 for corpus size). From
Greenpeace Germany, the search returned 1281 links to web pages.

5 Data parsing

The process described in section 4 resulted in files in two formats: PDF and HTML. This
section discusses the tools used to parse the documents and extract relevant information.

5.1 Academic papers and IPCC reports

All academic papers and IPCC reports are saved and parsed as PDF files. For the scanned
versions of PDF files, we use Tesseract [Ka07] to do OCR on the text and append the results
as transparent text layers to the original PDF pages.

We combine the VILA [Sh22] and Resnet101 [He15] that was trained on DocBank [Li20]
to parse PDF Files. VILA is a model for token sequence prediction, which does not predict
the images in the document. Resnet101 takes as input the rendered image of each page
of the document and identifies only the location of the figures on each page. The output
label set is Abstract, Author, Caption, Equation, Figure, Footer, List, Paragraph, Reference,
Section, Table and Title.

The models for parsing PDF files are run in an Online Learning [Ho18] framework and
are loaded in Label Studio [Tk22] as a machine learning backend service. We import the

13 At the moment, there are full translations of the synthesis reports for the years 2007 and 2014, and a translation
of the Summary for Policymakers from 2001.

14 https://www.greenpeace.org/international/
15 https://www.greenpeace.de
16 https://archive.org/web/

The InsightsNet Climate Change Corpus (ICCC) 893

8 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

documents as a rectangular label object detection task into the front end, use the original
models to make predictions for a small subset of documents, correct the prediction manually,
and then fine-tune the models. Finally, we parse all documents using the updated models.
The goal is not only to extract the text and other data objects from the PDF files, but also
to retain the layout information of the documents so that we can examine the interactions
between the data objects.

5.2 Greenpeace International and Greenpeace Germany

Since many of the webpages that we needed to download and parse were dynamic, we
used Selenium17 to retrieve the HTML from the collected links (see section 4.3) and
BeautifulSoup [Ri07] to parse the content. When extracting the relevant data objects, we
made sure to preserve the order of appearance of HTML elements containing important
information, to extract their position on the web page, and to extract all HTML elements
that might contain links to data objects in a modality different than text. This resulted in
documents that mirror the output of the PDF parsing process described in section 5.1, hence
allowing us to examine the interaction between various modalities.

6 Data Annotation

This section will highlight some of the methods used to annotate the parsed data. We will
mainly discuss the annotation process for: (1) linguistic annotations including sentence
splitting and tokenization, part-of-speech tagging and dependency parsing, (2) Named-entity
recognition and (3) keywords/keyphrases extraction.

6.1 Linguistic annotation and Named-Entity Recognition (NER)

The linguistic annotation was done in a bottom-up approach: the text of a document was split
into sentences, which were then run through an annotation pipeline. Three libraries constitute
the annotation pipeline for English texts: spacy-stanza18, Stanford CoreNLP [Ma14]19, and
SciSpacy[Ne19]20. Stanford CoreNLP is used to complement the named entity extraction
for categories of named entities not covered by spacy-stanza. The extracted named entities
from the English texts belong to the following 24 categories: PERSON, NORP, FAC, ORG,
GPE, LOC, PRODUCT, EVENT, WORK-OF-ART, LAW, LANGUAGE, DATE, TIME,
PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL, TITLE, CITY, IDEOLOGY,

17 https://github.com/SeleniumHQ/selenium, v.3.14.0
18 https://spacy.io/universe/project/spacy-stanza, running on stanza language model 1.4.1
19 Version 4.4.0
20 https://github.com/allenai/scispacy

894 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

The InsightsNet Climate Change Corpus (ICCC) - 9

RELIGION, CRIMINAL-CHARGE, and CAUSE-OF-DEATH. With SciSpacy we extract
abbreviations from each sentence. The German documents were processed with stanza only,
since both stanza and Stanford CoreNLP have only four categories of named entities for
German language texts (ORG, PERSON, LOC, MISC).

In addition to saving the extracted annotations in a JSON file, each document with linguistic
annotations is saved as a pickle file (German content) and both pickle file and spaCy object
(English content). This step allows for consistency should we decide to extract linguistic
patterns or another type of linguistic information.

The linguistic annotation served as the backbone of the linguistic information extracted and
calculated for each document. The result of this process feeds back into the metadata, where
the information is saved in the metadata container linguisticInformation as mentioned in
section 3.2.

6.2 Keywords/Keyphrases extraction

As previously mentioned in section 4.1, KeyBERT was implemented to capture keywords
and keyphrases that are semantically similar to the document content. The same approach
was used to annotate the documents in our corpus. Since our corpus contains documents
both in English and German, using pretrained language models in English is not enough.
Therefore, a multilingual model 21 developed by [RG20] was used for German texts.

Through our implementation and experimentation of using KeyBERT for identifying seed
terms as seen in section 4.1, we found that KeyBERT has the tendency to create noisy results,
which did not have much effect on our results when using them as seed terms to search on
Google Scholar, but would potentially have a much larger effect on keywords/keyphrases
annotation of the data. Therefore, we combined the KeyBERT approach with the textrank
approach proposed by [MT04]. We implemented textrank using PyTextRank [Na16] in the
spaCy pipeline. Both English22 and German23 models were used through spaCy.

The keywords and keyphrases that had a semantic similarity score of 0.7 or higher were
extracted using KeyBERT and the list was compared to the set that were extracted using
PyTextRank; overlapping results were discarded and the final list of keywords and keyphrases
was added to the metadata term subject.

7 Results

We present the results obtained from the data curation process of the pilot corpus and the
type of multimedia data objects retrieved from each of the three data sources.
21 paraphrase-multilingual-MiniLM-L12-v2
22 en_core_web_sm and en_core_web_trf
23 de_core_news_sm and de_dep_news_trf

The InsightsNet Climate Change Corpus (ICCC) 895

10 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

Academic papers A total of 1,887 academic papers were collected and 15,461 images
and figures were extracted from the PDFs. 1,095 equations and 2,207 tables were extracted
and these are listed under “Other” in table 1. A total of over 43 million tokens were extracted
from these documents.

IPCC reports The 5 English IPCC reports contained 315 images and figures and 104
tables/equations. A total of 496,477 tokens were extracted. For the 3 reports in German, 135
images and figures were extracted with 31 tables/equations and a total of 170,617 tokens
were extracted.

Greenpeace International and Greenpeace Germany The 698 documents of Greenpeace
International have 2066 embedded images, 123 embedded videos, 67 videos added to the
content as hyperlinks, and 458 other types of multimedia objects. In 1, “Other” entails
iframes, which are web pages embedded within another web page. In the context of the
Greenpeace International corpus, iframes store videos, text, images, animations, dynamic
charts, tweets, Facebook posts, Instagram posts, and files in a PDF format. The 1281
documents of Greenpeace Germany contained 2463 images and 14 videos. We retrieved
188 YouTube videos from Greenpeace International, whose total duration was 25.55 hours.
The 14 videos of Greenpeace Germany amounted to 3.35 hours. Total number of tokens in
the Greenpeace International transcripts were 157,115 and 27,586 tokens for Greenpeace
Germany.

It is evident that of the total number of collected documents (3,874), the majority have
embedded multimedia content (3,317), compared to text-only documents (557). This finding
underpins the need for awareness of the various media types that support textual content,
and for incorporating processing techniques that would enable researchers to analyse media
content in the context of a document as a whole.

Data Source Docs without
MC*

Docs with
MC*

Multimedia Content #
of TokensImgs/Figs Videos Other

Academic Paper 100 1 787 15 461 - 3 302 43 152 714
IPCC reports EN 0 5 315 - 104 496 477
IPCC reports DE 0 3 135 - 31 170 617

Greenpeace
International 228 470 2 066 188 458 676 879

Greenpeace
Germany 229 1 052 2 463 14 463 645 962

*MC: Multimedia Content
Tab. 1: Summary of the pilot corpus with number of extracted contents.

896 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

The InsightsNet Climate Change Corpus (ICCC) - 11

8 Discussion

This paper describes the process of building a multimodal pilot corpus comprising both
a substantial number and a wide range of data types in documents. The pilot corpus was
the starting point for developing methodologies that would allow us to better design and
curate the ICCC. We believe such a multimodal dataset is needed as a starting point in
order to gain further insights to the climate change topic by analyzing multimodal data and
exploring the additional information that can be obtained.

Possible use-case One example use-case of such analysis can be the study of political
views on a specific policy. With textual information, one can analyze the textual data with
sentiment analysis to extract the sentiments regarding the policy. With the addition of
multimodal data, we can also extract the sentiment in those data objects and determine if
they play a role in strengthening the sentiment found in the textual data or not. Such insight
can lead to a deeper understanding of the views and opinions concerning the specific policy.

Lessons learned We present some of the lessons learned in terms of data modelling of
multimodal corpora, application of data annotation and information retrieval techniques,
and challenges of working with a bilingual corpus.

It is evident that discarding multimedia data objects, as is common practice in corpus
development, results in the possible loss of relevant information and eliminates the opportu-
nity to investigate the interaction between data objects of different modalities. As seen in
this paper, creating a data model that lends itself to modelling and analyzing interactions
between different types of data objects presents another layer of complexity in the process
of collecting, parsing, and analysing multimodal data.

Another important task was to enrich the corpus metadata by incorporating NLP tools
for corpus annotation and information retrieval. While some of these techniques evidently
enriched the metadata of the corpus, others performed well on one type of data, but not on
another, highlighting the necessity of employing tools or models built for specific task in
the specific target domain. More work will need to be done in this respect to seek out the
appropriate tools and models and fine-tuning them to our domain-specific documents.

Lastly, we found that it is difficult to achieve entirely matching annotations for English and
for German corpora, mostly because existing tools and models for processing German texts
do not offer the same level of granularity and linguistic detail. Improving this situation is
identified as a research desiderate in our future work.

As stated previously, the goal of this paper on the creation of ICCC pilot corpus is to explore
the design and curation process of a multimodal corpus. The impact for future research is to
provide a corpus-building methodology that will be applied in the next step of the research,

The InsightsNet Climate Change Corpus (ICCC) 897

12 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

which is to expand the ICCC by looking further into collecting data from other sources in
the climate change domain.

Acknowledgments We would like to thank Rasmus Beckmann and Jasper Korte of the
Institute for Software Technology, German Aerospace Centre (DLR) for their assistance in
identifying sources of data relevant to our research.

The research reported is this paper was conducted within the research project InsightsNet
(https://insightsnet.org/) which is funded by the Federal Ministry of Education and
Research (BMBF) under grant no. 01UG2130A.

898 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

https://insightsnet.org/

The InsightsNet Climate Change Corpus (ICCC) - 13

Bibliography
[ADY11] Anne DiFrancesco, Darryn; Young, Nathan: Seeing climate change: The visual construction

of global warming in Canadian national print media. cultural geographies, 18(4):517–536,
2011.

[AH97] Arrhenius, S.; Holden, Edward S.: ON THE INFLUENCE OF CARBONIC ACID IN THE
AIR UPON THE TEMPERATURE OF THE EARTH. Publications of the Astronomical
Society of the Pacific, 9(54):14–24, 1897.

[Ca38] Callendar, Guy Stewart: The artificial production of carbon dioxide and its influence on
temperature. Quarterly Journal of the Royal Meteorological Society, 64(275):223–240,
1938.

[Du20] DublinCore: DCMI Metadata Terms. 2020.

[Gr20] Grootendorst, Maarten: , KeyBERT: Minimal keyword extraction with BERT., 2020.

[Gr22a] Greenpeace, International: Email to Elena Volkanovska, 13 April. 2022.

[Gr22b] Greenpeace, International: Email to Elena Volkanovska, 15 March. 2022.

[GZ00] Guisan, Antoine; Zimmermann, Niklaus E: Predictive habitat distribution models in
ecology. Ecological modelling, 135(2-3):147–186, 2000.

[He15] He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian: , Deep Residual Learning for
Image Recognition, 2015.

[Ho18] Hoi, Steven C. H.; Sahoo, Doyen; Lu, Jing; Zhao, Peilin: , Online Learning: A Comprehen-
sive Survey, 2018.

[HS06] Held, Isaac M; Soden, Brian J: Robust responses of the hydrological cycle to global
warming. Journal of climate, 19(21):5686–5699, 2006.

[HSR12] Hansen, James; Sato, Makiko; Ruedy, Reto: Perception of climate change. Proceedings of
the National Academy of Sciences, 109(37):E2415–E2423, 2012.

[Ka07] Kay, Anthony: Tesseract: An Open-Source Optical Character Recognition Engine. Linux
J., 2007(159):2, jul 2007.

[Ke76] Keeling, Charles D; Bacastow, Robert B; Bainbridge, Arnold E; Ekdahl Jr, Carl A; Guenther,
Peter R; Waterman, Lee S; Chin, John FS: Atmospheric carbon dioxide variations at Mauna
Loa observatory, Hawaii. Tellus, 28(6):538–551, 1976.

[LCJ20] Luo, Yiwei; Card, Dallas; Jurafsky, Dan: Detecting stance in media on global warming.
arXiv preprint arXiv:2010.15149, 2020.

[Li20] Li, Minghao; Xu, Yiheng; Cui, Lei; Huang, Shaohan; Wei, Furu; Li, Zhoujun; Zhou, Ming:
, DocBank: A Benchmark Dataset for Document Layout Analysis, 2020.

[Ma14] Manning, Christopher D; Surdeanu, Mihai; Bauer, John; Finkel, Jenny Rose; Bethard,
Steven; McClosky, David: The Stanford CoreNLP natural language processing toolkit.
In: Proceedings of 52nd annual meeting of the association for computational linguistics:
system demonstrations. pp. 55–60, 2014.

The InsightsNet Climate Change Corpus (ICCC) 899

14 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

[MM21] Mishra, Prakamya; Mittal, Rohan: NeuralNERE: Neural Named Entity Relationship
Extraction for End-to-End Climate Change Knowledge Graph Construction. In: Tackling
Climate Change with Machine Learning Workshop at ICML. 2021.

[MT04] Mihalcea, Rada; Tarau, Paul: Textrank: Bringing order into text. In: Proceedings of the
2004 conference on empirical methods in natural language processing. pp. 404–411, 2004.

[MW67] Manabe, SvUkURO; Wetherald, Richard T: Thermal equilibrium of the atmosphere with a
given distribution of relative humidity. 1967.

[Na16] Nathan, Paco: , PyTextRank, a Python implementation of TextRank for phrase extraction
and summarization of text documents, 2016.

[Ne19] Neumann, Mark; King, Daniel; Beltagy, Iz; Ammar, Waleed: ScispaCy: Fast and Robust
Models for Biomedical Natural Language Processing. In: Proceedings of the 18th BioNLP
Workshop and Shared Task. Association for Computational Linguistics, Florence, Italy, pp.
319–327, August 2019.

[No91] Nordhaus, William D: To slow or not to slow: the economics of the greenhouse effect. The
economic journal, 101(407):920–937, 1991.

[Pi15] Pidcock, Roz: The most influential climate change papers of all time. 2015.

[RG19] Reimers, Nils; Gurevych, Iryna: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 11 2019.

[RG20] Reimers, Nils; Gurevych, Iryna: Making Monolingual Sentence Embeddings Multilingual
using Knowledge Distillation. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics, 11
2020.

[Ri07] Richardson, Leonard: Beautiful soup documentation. Dosegljivo: https://www. crummy.
com/software/BeautifulSoup/bs4/doc/.[Dostopano: 7. 7. 2018], 2007.

[Sh22] Shen, Zejiang; Lo, Kyle; Wang, Lucy Lu; Kuehl, Bailey; Weld, Daniel S; Downey, Doug:
VILA: Improving structured content extraction from scientific PDFs using visual layout
groups. Transactions of the Association for Computational Linguistics, 10:376–392, 2022.

[SP21] Stede, Manfred; Patz, Ronny: The climate change debate and natural language processing.
In: Proceedings of the 1st Workshop on NLP for Positive Impact. pp. 8–18, 2021.

[Tk22] Tkachenko, Maxim; Malyuk, Mikhail; Holmanyuk, Andrey; Liubimov, Nikolai: , La-
bel Studio: Data labeling software, 2020-2022. Open source software available from
https://github.com/heartexlabs/label-studio.

[We16] Wessler, Hartmut; Wozniak, Antal; Hofer, Lutz; Lück, Julia: Global multimodal news
frames on climate change: A comparison of five democracies around the world. The
International Journal of Press/Politics, 21(4):423–445, 2016.

900 Elena Volkanovska, Sherry Tan, Changxu Duan, Sabine Bartsch and Wolfgang Stille

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Towards a User-Empowering Architecture for Trustability
Analytics

Sebastian Bruchhaus1, Thoralf Reis2, Marco X. Bornschlegl3, Uta Störl4, Matthias
Hemmje5

Abstract: Machine learning (ML) thrives on big data like huge data sets and streams from Internet of
Things (IOT) devices. Those technologies are becoming increasingly commonplace in our day-to-day
existence. Learning Autonomous Intelligent Actors (AIAs) impact our lives already in the form of, e.g.
chat bots, medical expert systems, and facial recognition systems. Doubts concerning ethical, legal,
and social implications of such AIAs consequently become increasingly compelling. Our society now
finds itself confronted with decisive questions: Should we trust AI? Is it fair, transparent, and respecting
privacy? An individual psychological threshold for cooperation with AIAs has been postulated. In
Shaefer’s words: “No trust, no use”. On the other hand, ignorance of an AIA’s weak points and
idiosyncracies can lead to overreliance. This paper proposes a prototypical microservice architecture
for trustability analytics. Its architecture shall introduce self-awareness concerning trustability into the
AI2VIS4BigData reference model for big data analysis and visualization by borrowing the concept of
a “looking-glass self” from psychology.

Keywords: Trust; Machine Learning; Digital Humanities; Foundation Model; Transparency; XAI

1 Introduction and Motivation

Individuals in our modern society are arguably compelled to accept the presence of
Autonomous Intelligent Actors (AIAs) in their everyday environment. In literature AIAs are
also referenced as “AI systems”, “artificial agents”, “autonomous systems”, and sometimes
“robots”. Applied AI promises tremendous benefits, ranging from such diverse fields like
healthcare to meteorology [Rei+22a; Rei+22b; Hig20]. This begs the question how society
is going to integrate AIAs. A formal verification of their code is basically not unfeasible in
most cases, because their ML models tend to be quite complex. GPT-3 was built in 2020
and has around 175 billion parameters [Bro+20]. On top of that, comprehension of its
1 FernUniversität, DBIS, Universitätsstr. 1, 58097 Hagen, Germany, sebastian.bruchhaus@fernuni-hagen.de,
https://orcid.org/0000-0002-7783-2636

2 FernUniversität, MMIA, Universitätsstr. 1, 58097 Hagen, Germany, thoralf.reis@fernuni-hagen.de, https:
//orcid.org/0000-0003-1100-2645

3 FernUniversität, MMIA, Universitätsstr. 1, 58097 Hagen, Germany, marco-xaver.bornschlegl@fernuni-hagen.de,
https://orcid.org/0000-0003-3789-5285

4 FernUniversität, DBIS, Universitätsstr. 1, 58097 Hagen, Germany, uta.stoerl@fernuni-hagen.de, https://
orcid.org/0000-0003-2771-142X

5 FernUniversität, MMIA, Universitätsstr. 1, 58097 Hagen, Germany, matthias.hemmje@fernuni-hagen.de,
https://orcid.org/0000-0001-8293-2802

cba doi:10.18420/BTW2023-60

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 901

mailto:sebastian.bruchhaus@fernuni-hagen.de
https://orcid.org/0000-0002-7783-2636
mailto:thoralf.reis@fernuni-hagen.de
https://orcid.org/0000-0003-1100-2645
https://orcid.org/0000-0003-1100-2645
mailto:marco-xaver.bornschlegl@fernuni-hagen.de
https://orcid.org/0000-0003-3789-5285
mailto:uta.stoerl@fernuni-hagen.de
https://orcid.org/0000-0003-2771-142X
https://orcid.org/0000-0003-2771-142X
mailto:matthias.hemmje@fernuni-hagen.de
https://orcid.org/0000-0001-8293-2802
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-60

2 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias Hemmje

training data is key to understanding a model’s behavior. In practice such knowledge is
often sketchy at best. These properties effectively turn all but the simplest AIAs into black
boxes [Rud19]. The so-called “value alignment problem” results from this fundamental
uncertainty [Had21]. Risk is a necessary prerequisite of trust [Jac+21]. Common sense
forbids overreliance on automated decisions with the penalty of catastrophic consequences
[Lif15]. Stakeholders resort to trust when they choose to accept the risks of an AIA although
its benevolence or robustness cannot be proven rigorously. Trustworthy AIAs in data
analytics and cyber-physical systems will arguably have an empowering effect on their
human users [Rei+21]. They will be an important intermediate step towards real digital
empathy between humans and AIAs [Bon+19].

1.1 Problem Statement and Research Questions

Trust is a necessity when working with AIAs but it is also a somewhat elusive concept. AI
architects and engineers need standardized architectures and best practices that facilitate
qualified trust. These architectures will serve as a foundation and yardstick for trustworthy AI
software systems. This paper identifies the following challenges from the current scientific
debate on trust and AIAs as research problems:

(i) Trust in AI has no canonical definition and lacks an universal vocabulary.
Terms like “transparent AI”, “explainable AI”, and even “responsible AI” or “ethical
AI” may have subtly differentiated connotations with different authors. Researchers
ought to refrain from using their own ad-hoc definitions. A common framework for
trustability analytics needs to be established. There should be an unequivocal language
and a sound understanding with rigorous models of trust as a solid foundation for
future debate [Jac+21; Mil19; Lip18; Rud19].

(ii) Stakeholders must still rely on their intuition or educated guessing in order to determine
the trustworthiness of an AI system.
The concept of trust has been described as “diffuse”, “disappointing”, and even
“useless” by authors like O. Williamson [Wer18]. This paper intendeds to demonstrate
that the latter verdict is an exaggeration. Trust clearly is an important asset for human
society, which empowers us to cooperate and reach otherwise unachievable goals
[Luh14].There is, however, not yet a generally accepted metric for trustworthiness
of AI. Trust is almost universally described as a highly individual and situational
[KCW05]. Therefore it is a desirable feature for AIAs to address users individually
and adjust to feedback.

(iii) There are no actionable guidelines on the practical engineering of trustworthy AIAs.
Despite of the many guidelines for ethical or trustworthy AI on the one hand, and a
growing number of algorithms for ostensibly explainable, robust ML on the other, there
is still hardly any practical, systematic advice on the implementation of trustworthy
AIAs. Existing solutions seem somewhat insular. AIAs should be able to prove their

902 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias
Hemmje

Towards a User-Empowering Architecture for Trustability Analytics 3

adherence to ethical and legal principles in the light of ongoing efforts to regulate ML
for critical domains such as healthcare.

Foundation models are an excellent show case for these open problems, because of their
immense practical usefulness despite a fundamental opacity [Bom+21]. Three questions
shall be addressed in the following:

1. How can trustability of AIAs be practically modeled and analyzed?
2. How can a user empowering AIA maximize its trustability?
3. How can we design systems with regard to trustability?

The goal in answering those questions is to establish qualified trust or trustability in AIAs
and an AIA architecture for big data analytics and visualization that proactively anticipates
and maximizes its user’s level of trust. Therefore it works out an actionable model of
trust in section 3.1 after surveying the state of art of explainable AI (XAI) in section 2.3
and digital trust in section 3.2. It lays out a prototypical microservice architecture for
trustability analytics in 3.2. This will introduce self-awareness concerning trustability into
the AI2VIS4BigData reference model (sec. 2.2) for big data analysis and visualization in
analogy to the “looking-glass self” theory from psychology described in 2.1.

2 State of the Art

A fair amount of literature is devoted to trust in AIAs. Yet there is still a shortage of practical
research results such as complete and ready for use mathematical models. Stenton and
Jensen come close to this with their blueprint model for trust in AI [SJ21]. Abbass lists a
number of mathematical models of trust in [ALM16]: statistical models, Bayesian analysis,
discrete models, belief models, fuzzy models, flow models, and optimization models. Some
of which take the reputation of an AIA into consideration.

2.1 The Looking-Glass Self Theory

The psychologist Cooley developed a theory of an individual’s self that he labeled “the
looking-glass self”. The eponymous “looking-glass” is an archaic term for a mirror. His
theory is opposite the “self-verification theory” which states that we want others to see
as we see ourselves. The self evolves by forming assumptions about the way that other
individuals perceive us according to Cooley. His theory describes the human tendency to
understand oneself through the judgements that others supposedly make In short, humans
form a mental model of their peers and how they perceive them. Then they adjust their
self-view accordingly[McI07]. This happens in a three-step process [Sha04]:

1. Actors imagine how others must perceive them.
2. Actors consider how those others think of them.

Towards a User-Empowering Architecture for Trustability Analytics 903

4 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias Hemmje

3. Actors feel an affective reaction, e.g. pride or shame.

Consider an artist painting a self-portrait using a mirror, e.g. as depicted in the famous
self-portraits of Johannes Gumpp and Norman Rockwell [Gos10; Roc60]. The artist (a
stand-in for the AIA) uses a mirror (looking glass, the putative user’s perspective on the
AIA) to paint an image of himself. A point of note here is that the affective reaction
spurs a reaction and thus stimulates a feedback loop. This is sometimes is known as the
“Michelangelo phenomenon” in sociology. It causes individuals in romantic relationships to
adjust their behavior in the direction to their assumed ideal self. In the context of AIAs,
users’ mental processes in relation to the AIA must be emulated by a mathematical model
of trust. Such a user models may be based on actual input data from the users or from first
principles. The AIA can then adapt itself according to its supposed trustability score.

2.2 Big Data Analytics and AI2VIS4BigData

Training of ML models usually involves “big data”, i.e. data of high volume, variety,
and velocity. Such a process tends to be lengthy and highly cost-intensive [Bom+21].
Many of the popular pre-trained foundation models, e.g. GPT-3, DALL-E 2, and BERT
[Ram+22; Vas+17] do not enable end-users to inspect their training data. This can lead to
underappreciation of algorithmic bias [Meh+21]. Applying the FAIR principles is arguably
a step in the right direction [Jac+20], but this alone is insufficient to empower humans to
a trustful collaboration with AIAs [Mon+20]. Data engineering for end-to-end machine
learning usually happens in ML pipelines.

Reis developed a generic reference model called AI2VIS4BigData for such pipelines
[Rei+22a]. It is an extension to the IVIS4BigData framework by Bornschlegl [BH21], using
AI both directly and indirectly for analytics and user empowerment, e.g. by recommending
analytics algorithms to subject matter experts without a background in data science
[Rei+22b]. This abstract and versatile rendition of a generic data analytics workflow makes
AI2VIS4BigData a suitable stand-in for a broad class of AIAs. Its focus on visual analysis
for big data in combination with a strong connection to AI predisposes it for XAI use cases
in particular.

AI2VIS4BigData describes a circular process repeating the following four steps of a big
data analytics pipeline: Data Management & Curation, Analytics, Insight & Effectuation,
and Interaction & Perception.

2.3 Trustability, Explanability, and Transparency of AI

Trust is primarily an interpersonal phenomenon. It has been studied extensively in psychology,
sociology, and philosophy. Kracher gives an overview of the theories about trust in sociology
with regard to computer science in [KCW05]. Trust is a prerequisite for human society

904 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias
Hemmje

Towards a User-Empowering Architecture for Trustability Analytics 5

Fig. 1: Reis’ AI2VIS4BigData reference model [Rei+22a]

in Niklas Luhman’s opinion, as it reduces complexity for the individual [Luh14]. The
sources of trust are twofold according to K. Wehrbach [Wer18]: “On one side is a belief
rooted in some combination of rational and emotional factors; on the other is acceptance of
uncontrolled risk.” Three things are essential to trust: a trustor 𝑥, a trustee 𝑦 which may
be an inanimate object or AIA, and an element of uncertainty that introduces a risk. Its
stakeholders must resort to trust. Hoff and Bashir describe a three-layered model of trust
in automation that comprises dispositional, situational, and learned trust [HB14]. Better
yet, users ought to be empowered by informed consent. Hence, they should depend on
qualified trust that deals with risks transparently. Transparency has been identified as a
fundamental prerequisite for trust [HBS11; Jac+21; Rud19; Bon+19]. This insight gave rise
to the explainable AI (XAI) branch of AI research [GA19; Bar+20]. It is a truism in the field
of explainable AI that understandability begets trust [HBS11; Mil19]. This paper follows
the definitions in Barredo Arrieta’s paper [Bar+20]: transparent systems are understandable
by themselves while explainable systems present explanations as an accurate proxy to their
users, etc. Yet the distinction between transparent and non-transparent ML models still
lacks a satisfactory differentiation. The field of XAI is a very active research topic [GA19].
Several ostensibly transparent ML algorithms have been developed in recent years [DR20;
BB21]. These are complemented by post-hoc explainers like SHAP and LIME for the
analysis of black-box models [LL17; RSG16]. As all ML algorithms, these have individual
strengths and weaknesses that can affect their trustability. These are hardly assessable –
even by users with a background in ML. While it is reasonable that stakeholders are prone
to put faith in systems they understand well, this idea should be taken with a grain of salt.
There seems to be a trade-off with explanation completeness, as too complete explanations
can even discourage users’ trust in them [Kul+13; Pap+22]. Sceptics like Rudin and Lipton
criticize current XAI methods and post-hoc explainers for black box models in particular
[Lip18; Rud19].

Towards a User-Empowering Architecture for Trustability Analytics 905

6 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias Hemmje

3 Model Building

Abbass proposes a trust bus that has a Belief-Desire-Intention-Trust-Motivation (BDI-TM)
architecture [ALM16]. The trust bus learns by passing messages between its six components.
The constituent modules are these: actors and entities memory, trust production, identity
management, intent management, emotion management, risk management, and complexity
management. While Abbass’ BDI-TM architecture is quite abstract and intended also
for interactions between different AIAs, this paper will only consider it in the context of
AI2VIS4BigData. Hence it focuses on AIA-user interactions as trustee and trustor. Therefore
this paper adapts and simplifies the architecture significantly according to its use case,
leading to a prototypical implementation.

3.1 Trustability Analytics

The overall theme of this paper are trustability analytics for AI. Even if a satisfactory model
for trust can be found, it is still not quite clear what the terms “trustability of AI” and
by extension “trustability of AIA” exactly mean. In order to find an answer for research
question 1, i.e. an actionable definition of trust, trustability analytics must be delineated. In
the following, this paper will follow McCarthy’s working definition [McC07]: “Intelligence
is the computational part of the ability to achieve goals in the world.”, considering also the
ISO’s definition of risk as the “effect of uncertainty on an objective” in this context [ISO18].
Without a rigorous definition of AI the subsequent definition of its trustability, this paper
must, however, remain preliminary.

AIAs are complex, emergent systems prone to unintended behavior [SY19]. The time-tested
practice of software verification for critical settings guarantees that a program’s execution
aligns with its programmer’s codified intentions. This is not yet feasible for AIAs. When
the outcome of a computation involves uncertainty, the users knowingly or unknowingly
accept some risk. That is inherently the case with self-modifying software such as any ML
system during its training phase. A certain risk is consequently characteristic for AIAs.

Gerck offers different definitions of trust [Ger02]. The simplest form is: “Trust is to rely upon
actions at a distance.” This describes the concept of trust as reliance. Another is “qualified
reliance on information”. Gerck’s definitions connect information theory and – by extension
probability theory – with risk and its role as a precondition for trust. These thoughts on trust
are rather insightful but too abstract to be directly applicable for software implementation.
In summary, uncertainty begets risk and by extension (dis-)trust. Transparency on the other
hand reduces uncertainty, or rather epistemic uncertainty, for the user (see also fig. 2).

If trust is “qualified reliance”, how is it to be qualified conveniently? In line with the research
question 1 Stanton and Jensen give an answer to the question: “How does our evolutionarily
ingrained and socially conditioned trust mechanism respond to machines?” They present
a mathematical model for AI trustability 𝑇 (𝑢, 𝑠, 𝑎) depending on a specific user 𝑢, an AI

906 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias
Hemmje

Towards a User-Empowering Architecture for Trustability Analytics 7

AI Model

Risk

Transparency

Trust/
Empathy

Explanations
Gunning [GA19]

Uncertainty
Smithson [Smi18]

Promotes
Hancock [HBS11]

Necessitates
Kate Devitt [Kat18]

Fig. 2: Risk and transparency as influence factors for trust

system 𝑠, and a specific context 𝑎 [SJ21]. They define the User Trust Potential 𝑈𝑇𝑃(𝑢).
This subsumes the cultural, individual and otherwise subjective attributes of a user 𝑢. An
AI system designer has little influence over 𝑈𝑇𝑃 beyond precluding certain potential users
from using his system. Of course, predominantly positive experiences with AI will have a
positive impact on society-wide 𝑈𝑇𝑃 in the long run.

There is also a less arbitrary and subjective factor of trustability that is significantly
determined by the design of software architecture. This factor is Perceived System Trust
Potential 𝑃𝑆𝑇 (𝑢, 𝑠, 𝑎) in a system 𝑠 within a context 𝑎. This has an extensive overlap
with learned and situational trust in Hoff’s and Bashir’s model. There is arguably also
an additional objective component of qualified trust depending on 𝑠 and 𝑎. The overall
likelihood of trust is defined as:

𝑇 (𝑢, 𝑠, 𝑎) = 𝑈𝑇𝑃(𝑢) · 𝑃𝑆𝑇 (𝑢, 𝑠, 𝑎). (1)

𝑃𝑆𝑇 itself is defined as an arbitrary function 𝑔 of user experience𝑈𝑋 and perceived technical
trustworthiness 𝑃𝑇𝑇 : The latter is the sum of nine system characteristics 𝑝𝑡𝑡𝑐: accuracy,
reliability & resiliency, objectivity & security, explainability, safety & accountability, and
privacy. Thus

𝑃𝑆𝑇 = 𝑔(𝑈𝑋, 𝑃𝑇𝑇), 𝑃𝑇𝑇 =

9∑︁
𝑐=1

𝑝𝑡𝑡𝑐 . (2)

Each characteristic is the product of its pertinence 𝑝𝑐 and sufficiency 𝑠𝑐:

𝑝𝑡𝑡𝑐 = 𝑝𝑐 · 𝑠𝑐 . (3)

Each of the nine characteristics is assigned a relative Pertinence

𝑝𝑐 =
𝑞𝑐∑9
𝑘=1 𝑞𝑘

. (4)

for an absolute pertinence 𝑞𝑐 and a sufficiency 𝑠𝑐 for a trustworthiness metric 𝑚𝑐 and a
perceived risk 𝑟𝑎 in the given context:

𝑠𝑐 = 𝑚𝑐/𝑟𝑎 . (5)

Towards a User-Empowering Architecture for Trustability Analytics 907

8 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias Hemmje

Obviously, Stanton’s and Jensen’s model of trust in AI is far from complete. 𝑈𝑇𝑃, 𝑔, 𝑞𝑐,
𝑚𝑐, and 𝑟𝑎 remain uncertain. They address this by posing a number of research questions.
Most are concerned with deducing parameter values from first principles. As this is not
yet possible, a prototypical implementation must resort to preliminary measures like user
and expert surveys or estimation in lieu of deduction. This should happen on a case by case
basis. This paper proposes an XAI knowledge base (KB) that compiles these values for
different ML algorithms and will be updated regularly.

The parameters must be deduced from first principles whenever possible. But what are good
candidates for those principles? Subjective trust is not enough to build robust and beneficial
AIAs. Attributes like reproducibility, transparency, and fairness must be monitored and
quantified, if objective facts are to guide the decision to trust an AIA. Users must be made
aware of risks that they have to accept [HBS11; Kat18; Smi18]. AIAs not only need to
demonstrate the “what?” to their stakeholders but must also be able to explain the “how?”
of their decisions, in order to achieve transparency. The answer to “how?“ will come from
systematically captured and analyzed meta-data presented in unison with the model’s main
results. Concerning the quality of training data, AIAs’ purpose is to receive complex tasks
from a human user. They represent data in action [ASR18] while FAIR is more concerned
with data reusability for scientific knowledge mining and synthesis. Other metrics, e.g. for
fairness or robustness, can be chosen according to the individual use case.
Fig. 3: Trust bus architecture for AI2VIS4BigData, adds a feedback loop that facilitates self-assessment
through empathy with its users (Parts of this image were created with the assistance of DALL-E 2.)

3.2 Trust Bus

The research question 2 asks for the implementation of a software service for trustability
analytics. This service cannot be a data sink, i.e. the meta-data must be processed somehow.
This paper suggests a trust bus architecture to synthesize qualified trust in the trustor. The
trust bus architecture was introduced in section 3.1. See figure 3 for its structure. The authors
of this paper envision a rule based expert system (ES) for this task. This system will be akin
to that in [Rei+22b]. This ES can query an analogue to the looking-glass self for AIAs.

908 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias
Hemmje

Towards a User-Empowering Architecture for Trustability Analytics 9

Thus, the service can self-assess its trustworthiness in the eyes of its users. It computes the
trust value 𝑇 (𝑢, 𝑠, 𝑎) from eq. 1. The goal is to empower users by suggesting trustworthy,
transparent, and explainable algorithms according to their individual needs. Therefore, the
ES needs knowledge about the specific user 𝑢 and the situation 𝑎 that it addresses.

BDI-TM Module Function

Actors and Entities Memory stores information about past interactions between trustor and
trustees for later evaluation by the trust production module

Trust Production mechanisms to gauge trustworthiness of the AIA
Identity Management identifies users or groups of users for appropriate handling by

emotion and intent management
Intent Management estimates users’ intent, predicts possible consequences of trust and

informs the trust production module accordingly
Emotion Management models and learns affective states of the user from interaction
Risk Management manages a task-specific risk registry and analyzes uncertainties in

relation to possible risks
Complexity Management estimates task complexities and the users’ ability to make reason-

able decisions under these circumstances

Tab. 1: Components of the trust bus BDI-TM architecture from [ALM16]

ES takes care of the trust production in table 1. It requests data from the knowledge
base KB that stores information about explainability and the specific risks encodes as
parameters of ML algorithms. The task specific empathy module holds information about
complexity management that it passes on to ES and evaluates whether a given task has
special requirements concerning fairness, transparency, etc. The metadata store (MS) holds
the actors and entities memory, but also deals with identity management.

The trust bus is intended to be a reference architecture for trustability analytics and
hence ought to be fairly universal. Therefore, it needs to interact with all steps of the
AI2VIS4BigData analytics pipeline in figure 1. It shall recommend analytics, pre-processing
and visualization methods in order to maximize the users’ trust 𝑇 (𝑢, 𝑠, 𝑎) from equation 1,
which it provides for different users and situations by means of modularization. The system
gauges its own value for 𝑇 (𝑢, 𝑠, 𝑎) with a use case specific “empathy module” (EM). This
module represents the mirror or looking-glass in the looking-glass self analogy. It has a
user trust model that estimates 𝑈𝑇𝑃(𝑢). It also predicts the values for 𝑃𝑆𝑇 (𝑢, 𝑠, 𝑎) to the
ES. The EM’s input data come from ES, MS, and KM. Cues from its end users are taken in
the last step of AI2VIS4BigData: “insight and effectuation”. This is feedback is taken into
account along with the other metadata when updating this trust model in a feedback loop. It
is possible that the system asks the user to intervene when it passes a predefined uncertainty
level.

Towards a User-Empowering Architecture for Trustability Analytics 909

10 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias Hemmje

3.3 Towards a Prototypical Implementation

Steps towards a prototypical implementation of the reference architecture are underway. An
experimental system based on AI2VIS4BigData for the explanation of sentiment analysis
of natural language texts was implemented. This system uses the visual presentation of
feature importance calculated by the post-hoc explanation algorithms LIME and SHAP
on variants of the transformer model BERT [Vas+17]. However, it turns out to be highly
sensitive to certain data errors like word permutation and duplication, sometimes resulting
in incomprehensible explanations. A later and structurally similar system is used for the
recognition of emergent, formerly unknown named entities (NER) in medical texts. It
forgoes explicit explanations but adds training on adversarial examples to its ML-pipeline
for improved robustness. More use-cases involving foundation models for semi-autonomous
visual information extraction of highly non-uniform documents and the generation of
ontologies from biomedical research documents are being developed. A commonality
between these systems is their emphasis on interaction with a human in the loop for result
quality control. These systems and more provide input for the knowledge base KB on
different approaches to XAI and test beds for the trust bus. As a next step and future research,
a data schema for the knowledge base KB must be modeled. Concurrently an expert system
will be implemented using miniKanren [Wil20; FBK05]. Together, these will build a first
iteration of a prototypical trust bus as outlined above. The rules for this expert system ES
will be evaluated in cooperation with users and domain experts.

4 Summary and Outlook

This paper has posed a number of open research questions concerning technical solutions of
trust issues arising from the emergence of AIAs in big data analytics. It seeks to answer
these questions by the nascent field of trustability analytics which is multidisciplinary and
is located in digital humanities. The authors proposed a software service that takes cues
from the theory of a looking-glass self. Such a service may fill the role of an architectural
blueprint for future designs of trustworthy AIAs in big data analytics.

Many details of such a trustability service remain for future research because of the
preliminary condition of the scientific debate. In particular, parameters cannot yet be
derived from first principles. First and foremost, a knowledge base for XAI algorithms with
parameters for Stanton’s and Jensen’s trust model has to be compiled before the trust bus
architecture for AI2VIS4BigData can be implemented.

“Trustability analytics” stand for a reductionist concept of trust that can be reasoned about
rigorously and which leads towards practical software engineering. This paper’s outlook on
digital trust will undoubtedly leave something to be desired for humanities’ scholars, but as
George Box famously quipped: “All models are wrong, but some are useful.”

910 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias
Hemmje

Towards a User-Empowering Architecture for Trustability Analytics 11

The authors of this paper hope that the proposed architecture will be a step towards practical
application and a software prototype in the near future.

References

[ALM16] Hussein A. Abbass, George Leu, and Kathryn Merrick. “A Review of Theo-
retical and Practical Challenges of Trusted Autonomy in Big Data”. In: IEEE
Access 4 (2016), pp. 2808–2830. doi: 10.1109/access.2016.2571058.

[ASR18] Hussein A. Abbass, Jason Scholz, and Darryn J. Reid. “Foundations of Trusted
Autonomy: An Introduction”. In: Foundations of Trusted Autonomy. Springer
International Publishing, 2018, pp. 1–12. doi: 10.1007/978-3-319-64816-
3_1.

[Bar+20] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI”.
In: Information Fusion 58 (2020), pp. 82–115. issn: 1566-2535. doi: 10.
1016/j.inffus.2019.12.012.

[BB21] Przemyslaw Biecek and Tomasz Burzykowski. Explanatory Model Analysis.
Explore, Explain, and Examine Predictive Models. CRC PRESS, 2021. isbn:
9780367135591.

[Bom+21] Rishi Bommasani et al. On the Opportunities and Risks of Foundation Models.
2021.

[Bon+19] Raymond Bond et al. “Digital empathy secures Frankenstein’s monster”. In:
Proceedings of the 5th Collaborative European Research Conference (CERC
2019). Vol. 2348. Apr. 2019, pp. 335–349.

[BH21] Marco Xaver Bornschlegl and Matthias L. Hemmje. “Supporting Data Science
in Automotive and Robotics Applications with Advanced Visual Big Data
Analytics”. In: Advances in Data Science: Methodologies and Applications. Ed.
by Gloria Phillips-Wren, Anna Esposito, and Lakhmi C. Jain. Cham: Springer
International Publishing, 2021, pp. 209–249. isbn: 978-3-030-51870-7. doi:
10.1007/978-3-030-51870-7_11.

[Bro+20] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. doi:
10.48550/ARXIV.2005.14165.

[DR20] Arun Das and Paul Rad. “Opportunities and Challenges in Explainable Artificial
Intelligence (XAI): a Survey”. In: CoRR (2020).

[FBK05] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned
Schemer. The MIT Press, 2005. isbn: 0262562146.

[Ger02] Ed Gerck. “Trust as Qualified Reliance on Information, Part I”. en. In: (2002).
doi: 10.13140/RG.2.2.22646.04165.

Towards a User-Empowering Architecture for Trustability Analytics 911

https://doi.org/10.1109/access.2016.2571058
https://doi.org/10.1007/978-3-319-64816-3_1
https://doi.org/10.1007/978-3-319-64816-3_1
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1007/978-3-030-51870-7_11
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.13140/RG.2.2.22646.04165

12 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias Hemmje

[Gos10] Helena Goscilo. “The Mirror in Art: Vanitas, Veritas, and Vision”. In: Studies
in 20th &; 21st Century Literature 34.2 (June 2010). doi: 10.4148/2334-
4415.1733.

[GA19] David Gunning and David Aha. “DARPA’s Explainable Artificial Intelligence
(XAI) Program”. In: AI Magazine 40.2 (June 2019), pp. 44–58. doi: 10.1609/
aimag.v40i2.2850.

[Had21] Dylan Hadfield-Menell. “The Principal-Agent Alignment Problem in Artifi-
cial Intelligence”. PhD thesis. EECS Department, University of California,
Berkeley, Aug. 2021.

[HBS11] P. A. Hancock, D. R. Billings, and K. E. Schaefer. “Can You Trust Your Robot?”
In: Ergonomics in Design: The Quarterly of Human Factors Applications 19.3
(July 2011), pp. 24–29. issn: 1064-8046. doi: 10.1177/1064804611415045.

[Hig20] High-Level Expert Group on AI. White Paper on Artificial Intelligence. a Euro-
pean approach to excellence and trust. eng. Report. Brussels: EU Kommission,
Feb. 2020.

[HB14] Kevin Anthony Hoff and Masooda Bashir. “Trust in Automation”. In: Human
Factors: The Journal of the Human Factors and Ergonomics Society 57.3 (Sept.
2014), pp. 407–434. doi: 10.1177/0018720814547570.

[ISO18] ISO Central Secretary. Risk management – Guidelines. en. Standard ISO
31000:2018. Geneva, CH: International Organization for Standardization,
2018.

[Jac+20] Annika Jacobsen et al. “FAIR Principles: Interpretations and Implementation
Considerations”. In: Data Intelligence 2.1-2 (Jan. 2020), pp. 10–29. issn:
2641-435X. doi: 10.1162/dint_r_00024.

[Jac+21] Alon Jacovi et al. “Formalizing Trust in Artificial Intelligence: Prerequisites,
Causes and Goals of Human Trust in AI”. In: FAccT ’21. Virtual Event,
Canada: Association for Computing Machinery, 2021, pp. 624–635. isbn:
9781450383097. doi: 10.1145/3442188.3445923.

[Kat18] S. Kate Devitt. “Trustworthiness of Autonomous Systems”. In: Studies in
Systems, Decision and Control (2018), pp. 161–184. issn: 2198-4190. doi:
10.1007/978-3-319-64816-3_9.

[KCW05] Beverly Kracher, Cynthia Corritore, and Susan Wiedenbeck. “A foundation for
understanding online trust in electronic commerce”. In: Journal of Information,
Communication and Ethics in Society 3 (Aug. 2005), pp. 131–141. doi:
10.1108/14779960580000267.

[Kul+13] T. Kulesza et al. “Too much, too little, or just right? Ways explanations impact
end users’ mental models”. In: Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC (2013), pp. 3–10. doi:
10.1109/VLHCC.2013.6645235.

912 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias
Hemmje

https://doi.org/10.4148/2334-4415.1733
https://doi.org/10.4148/2334-4415.1733
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1177/1064804611415045
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1162/dint_r_00024
https://doi.org/10.1145/3442188.3445923
https://doi.org/10.1007/978-3-319-64816-3_9
https://doi.org/10.1108/14779960580000267
https://doi.org/10.1109/VLHCC.2013.6645235

Towards a User-Empowering Architecture for Trustability Analytics 13

[Lif15] Future of Life Intitute. An Open Letter on AI. https://futureoflife.org/ai-
open-letter/. Accessed: 2020-8-25. 2015.

[Lip18] Zachary C. Lipton. “The mythos of model interpretability”. In: Communications
of the ACM 61.10 (Sept. 2018), pp. 36–43. doi: 10.1145/3233231.

[Luh14] Niklas Luhmann. Vertrauen – Ein Mechanismus der Reduktion sozialer
Komplexität. 5th ed. utb GmbH, Feb. 2014. doi: 10.36198/9783838540047.

[LL17] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774.

[McC07] John McCarthy. WHAT IS ARTIFICIAL INTELLIGENCE? 2007. url: http:
//www-formal.stanford.edu/jmc/whatisai.html (visited on 04/01/2021).

[McI07] L. McIntyre. The Practical Skeptic: Core Concepts in Sociology. McGraw-Hill
Companies,Incorporated, 2007. isbn: 978-0-07-340415-8.

[Meh+21] Ninareh Mehrabi et al. “A Survey on Bias and Fairness in Machine Learning”.
In: ACM Comput. Surv. 54.6 (July 2021). issn: 0360-0300. doi: 10.1145/
3457607.

[Mil19] Tim Miller. “Explanation in artificial intelligence: Insights from the social
sciences”. In: Artificial Intelligence 267 (Feb. 2019), pp. 1–38. doi: 10.1016/
j.artint.2018.07.007.

[Mon+20] Barend Mons et al. “The FAIR Principles: First Generation Implementation
Choices and Challenges”. In: Data Intelligence 2.1-2 (Jan. 2020), pp. 1–9.
issn: 2641-435X. doi: 10.1162/dint_e_00023.

[Pap+22] Andrea Papenmeier et al. “It’s Complicated: The Relationship between User
Trust, Model Accuracy and Explanations in AI”. In: ACM Trans. Comput.-Hum.
Interact. 29.4 (Mar. 2022). issn: 1073-0516. doi: 10.1145/3495013.

[Ram+22] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with
CLIP Latents. 2022. doi: 10.48550/ARXIV.2204.06125.

[Rei+21] Thoralf Reis et al. “Towards Modeling AI-based User Empowerment for
Visual Big Data Analysis”. In: BIRDS+WEPIR @ CHIIR 2021. Ed. by Ingo
Frommholz et al. Vol. 2863. CEUR Workshop Proceedings. CEUR-WS.org,
Mar. 2021, pp. 67–75.

[Rei+22a] Thoralf Reis et al. “A Service-based Information System for AI-supported
Health Informatics”. In: 2022 IEEE 5th International Conference on Big
Data and Artificial Intelligence (BDAI). 2022, pp. 99–104. doi: 10.1109/
BDAI56143.2022.9862611.

[Rei+22b] Thoralf Reis et al. “Supporting Meteorologists in Data Analysis through
Knowledge-Based Recommendations”. In: Big Data and Cognitive Computing
6.4 (Sept. 2022), p. 103. doi: 10.3390/bdcc6040103.

Towards a User-Empowering Architecture for Trustability Analytics 913

https://futureoflife.org/ai-open-letter/
https://futureoflife.org/ai-open-letter/
https://doi.org/10.1145/3233231
https://doi.org/10.36198/9783838540047
http://www-formal.stanford.edu/jmc/whatisai.html
http://www-formal.stanford.edu/jmc/whatisai.html
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1162/dint_e_00023
https://doi.org/10.1145/3495013
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.1109/BDAI56143.2022.9862611
https://doi.org/10.1109/BDAI56143.2022.9862611
https://doi.org/10.3390/bdcc6040103

14 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias Hemmje

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust
You?": Explaining the Predictions of Any Classifier”. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016. 2016, pp. 1135–
1144.

[Roc60] Norman Rockwell. “Triple self-portrait”. In: The Saturday Evening Post (Feb.
1960).

[Rud19] Cynthia Rudin. “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead”. In: Nature Machine
Intelligence 1.5 (May 2019), pp. 206–215. doi: 10.1038/s42256-019-0048-x.

[SY19] P.J. Scott and R.V. Yampolskiy. “Classification Schemas for Artificial Intelli-
gence Failures”. In: Delphi - Interdisciplinary Review of Emerging Technologies
2.4 (2019), pp. 186–199. doi: 10.21552/delphi/2019/4/8.

[Sha04] Leigh S. Shaffer. “From mirror self-recognition to the looking-glass self:
Exploring the Justification Hypothesis”. In: Journal of Clinical Psychology
61.1 (2004), pp. 47–65. doi: 10.1002/jclp.20090.

[Smi18] Michael Smithson. “Trusted Autonomy Under Uncertainty”. In: Studies in
Systems, Decision and Control (2018), pp. 185–201. issn: 2198-4190. doi:
10.1007/978-3-319-64816-3_10.

[SJ21] Brian Stanton and Theodore Jensen. Trust and Artificial Intelligence. en. Mar.
2021. url: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
931087 (visited on 01/09/2023).

[Vas+17] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017.

[Wer18] Kevin Werbach. The blockchain and the new architecture of trust. Information
Policy. London, England: MIT Press, Nov. 2018.

[Wil20] Brandon T. Willard. miniKanren as a Tool for Symbolic Computation in Python.
2020. doi: 10.48550/ARXIV.2005.11644.

914 Sebastian Bruchhaus, Thoralf Reis, Marco Xaver Bornschlegl, Uta Störl, Matthias
Hemmje

https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.21552/delphi/2019/4/8
https://doi.org/10.1002/jclp.20090
https://doi.org/10.1007/978-3-319-64816-3_10
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931087
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931087
https://doi.org/10.48550/ARXIV.2005.11644

Workshop on Data Engineering for Data Science
(DE4DS)

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

“FAIR” is not enough – A Metrics Framework to ensure Data
Quality through Data Preparation

Valerie Restat1, Meike Klettke2, Uta Störl3

Abstract: Data-driven systems and machine learning-based decisions are becoming increasingly
important and are having an impact on our everyday lives. The prerequisite for good results and
decisions is good data quality, which must be ensured by preprocessing the data. For domain experts,
however, the following difficulties arise: On the one hand, they have to choose from a multitude of
different tools and algorithms. On the other hand, there is no uniform evaluation method for data
quality. For this reason, we present the design of a framework of metrics that allows for a flexible
evaluation of data quality and data preparation results.

Keywords: data quality; metrics; evaluation; data preparation

1 Introduction

Real data is rarely error-free. To use it for analysis and to ensure the quality of the derived
decisions, data preparation is necessary [Ab16]. A variety of different tools exist for this
purpose, which are often combined in a preprocessing pipeline. The difficulty, however, is
to choose from this range of tools and possible combinations depending on the data and the
use case. More support is required for domain experts without in-depth IT knowledge. As a
first step in this direction, we see the need for a framework of metrics to assess data quality.
Such a framework would generate a number of advantages:

• The results of different data preparation tools become comparable.
• New solutions can be evaluated.
• Data quality is measurable and thus the quality of analyses and automated decisions

can be ensured.

To the best of our knowledge, such a systematic framework does not yet exist. Hence, in this
paper we propose a framework of metrics that takes into account many different aspects of
data quality. Depending on the use case, this allows metrics to be selected that are suitable
for the scenario in question.

After the summarization of related work in Section 2, we present this framework in
Section 3. It consists of two dimensions, which are described in Section 3.1 and Section 3.2
1 University of Hagen, Universitätsstr. 1, 58097 Hagen, Germany valerie.restat@fernuni-hagen.de
2 University of Regensburg, Bajuwarenstr. 4, 93053 Regensburg, Germany meike.klettke@ur.de
3 University of Hagen, Universitätsstr. 1, 58097 Hagen, Germany uta.stoerl@fernuni-hagen.de

cba doi:10.18420/BTW2023-61

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 917

mailto:valerie.restat@fernuni-hagen.de
mailto:meike.klettke@ur.de
mailto:uta.stoerl@fernuni-hagen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-61

2 Restat, Klettke and Störl

subsequently. The measurement of the proposed metrics is defined in Section 3.3. We
conclude the paper in Section 4 and present future work.

2 Related Work

Well-known principles are the FAIR principles (Findable, Accessible, Interoperable and
Re-usable) for automatically finding, using, and re-using data [Wi16]. However, these do
not take into account the quality of the data, which must be ensured by preprocessing.

In software engineering, there is a standard (ISO/IEC 9126) that defines software quality
criteria, and various metrics have been proposed to prove each criterion. For data, there is
no such standardization yet. There is some initial research work here.

A variety of different definitions exist for data quality, including timeliness, currency,
accuracy and completeness, credibility, and presentation quality [CZ15; Si12]. In addition,
aspects such as relevance and fairness must be considered [CZ15; Pi20; SS20]. We have
provided a more detailed description of the different dimensions of data quality in [RKS22].
Since the focus of this paper is on the metrics framework, only the most important aspects
are mentioned here.

The multitude of different definitions also leads to the fact that there is no standardized
evaluation. Different metrics exist (e.g. [HH16] and [BM11]), but these only cover a few
aspects of data quality. To the best of our knowledge, a systematic framework that takes into
consideration many different data quality dimensions does not yet exist.

Data quality validation is also addressed in Schelter et al. [Sc18]. The authors describe a
system for automating the verification of data quality. The following aspects are considered:
Completeness, consistency, and accuracy. The system scales well for large data sets and
provides users with a declarative API. By combining common quality constraints and custom
validation code, it offers many possibilities for evaluation. However, our classification is
even more comprehensive. It provides a more detailed classification of the metrics and
distinguishes more precisely to what extent domain knowledge is required.

In Polyzotis et al. [Po17], challenges related to machine learning are addressed, with
particular reference to the deviation between serving and training data. Our framework can
be used to compare the quality of serving and training data. In future work, we also want to
explore how we can further extend the framework to address the challenges that specifically
arise in context of machine learning.

3 Metrics Framework

Our proposed framework consists of two dimensions, which are explained in more detail in
the following subsections:

918 Valerie Restat, Meike Klettke, Uta Störl

“FAIR” is not enough 3

• Horizontal dimension – The status of data preparation (Section 3.1)
• Vertical dimension – The extent to which ground truth is known (Section 3.2)

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets26

Status of data preparation

…

Data loading Data preparation process Final evaluation

(a) Horizontal dimension

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets25

G
ro

un
d

tr
ut

h
kn

ow
n

Manual verification by domain experts

Verification by rules or external sources

Automatic verification
(without learned rules or domain knowledge)

Verification by ground truth

D
om

ai
n

ex
pe

rt
s

in
vo

lv
em

en
t

(b) Vertical dimension

Fig. 1: Metrics framework

The horizontal dimension, shown in Figure 1a, describes the status of data preparation.
Some aspects have to be considered already at the time of data collection or loading. Other
aspects are continuously improved by preprocessing the data. At the end of preprocessing, a
final evaluation should be performed again.

On the vertical dimension, shown in Figure 1b, a distinction is made between the extent
to which ground truth is known. It is only rarely the case that ground truth is completely
available. In other cases, the evaluation depends on the degree to which domain experts are
involved. If these are available, a manual evaluation can be performed. Otherwise, the data
quality must be checked using rules or external sources. If these are also not available, an
automated check can be performed in individual cases.

In the following, the two dimensions and the corresponding metrics are explained in more
detail. It is described which aspects of data quality must be taken into account. Subsequently,
Section 3.3 outlines how the metrics can be measured.

3.1 Horizontal Dimension

First, the horizontal dimension is considered. It defines the point in time when the evaluation
of data quality takes place.

Data loading At the beginning of data preparation, the data must be loaded. In the process,
some aspects of data quality must first be checked. This includes the following aspects,
which have been mentioned in Section 2:

• Timeliness
• Credibility
• Relevance

“FAIR ” is not enough – A Metrics Framework to ensure Data Quality through Data
Preparation 919

4 Restat, Klettke and Störl

These aspects must be checked at the beginning and are prerequisites for data quality. If
they are not met, an improvement by e.g. data cleaning is not possible. For example, if the
data is not suitable for the application purpose, data preparation will not improve it either.
New data must then be collected instead.

Data preparation process Other aspects of data quality are only achieved through the
preparation process itself. Continuous evaluation is possible here. After each step, it can
be checked whether the data quality has improved. At the end of data preparation, a final
evaluation should be performed. In [Re22], we have already declared an extensive error
classification that covers a variety of different data quality aspects. Therefore, we base these
kinds of metrics on the error classification presented in [Re22], illustrated in Figure 2. The
different types of errors are shown in Table 1. In the first step, we focus on single relation
levels to assess the quality of individual data sets. In future work this classification should
be extended.

An Attribute Value
of a Single Tuple

The Values of a
Single Attribute

The Attribute Values
of a Single Tuple

The Attribute Values
of Several Tuples

Relationships among
Multiple Relations

Multiple Data Sources

Data Quality Problems

Single Source

Single Relation

Fig. 2: Error classification specified in [Re22]

Final evaluation At the end of the data preparation process, all aspects from Table 1
should be checked again. As an additional point, depending on the use case, the evaluation
of the presentation quality, mentioned in [RKS22], is also conceivable here.

In the following section, the metrics are described and subdivided in the vertical dimension.

3.2 Vertical Dimension

This dimension describes the extent to which ground truth is incorporated into the metrics.
It also indicates how much domain experts are involved in the verification.

920 Valerie Restat, Meike Klettke, Uta Störl

“FAIR” is not enough 5

Tab. 1: Error types specified in [Re22]

Level Error Type

An Attribute Value
of a Single Tuple

Missing value

Syntax violation

Interval violation

Set violation

Misspelled error

Inadequate value to the attribute context

Value items beyond the attribute context

Meaningless Value

Erroneous entry

The Values
of a Single Attribute

Uniqueness value violation

Synonyms existence

Outlier

Missing Attribute

The Attribute Values
of a Single Tuple

Semi-empty tuple

Inconsistency among attribute values

Irrelevant observation

The Attribute Values
of Several Tuples

Redundancy about an entity

Inconsistency about an entity

Bias

Noise

Verification by ground truth When ground truth is present, automated matching can take
place. However, it is only rarely the case that ground truth is fully available. The creation
may also require a high level of involvement of domain experts. In addition, it must be noted
that there is no ground truth for some quality aspects. Along the horizontal dimension, this
concerns mainly the aspects of data loading, as will be shown in Section 3.2.1. In the final
evaluation there is also one aspect for which no ground truth can be determined, shown in
Section 3.2.3.

Manual verification by domain experts If ground truth is not available, human involve-
ment is necessary. Normally, domain experts know the data best and are therefore in the

“FAIR ” is not enough – A Metrics Framework to ensure Data Quality through Data
Preparation 921

6 Restat, Klettke and Störl

best position to judge the quality of the data. However, this process is very time consuming
and therefore mostly not feasible.

Verification by rules or external sources For this reason, the next step is to permit
domain experts to specify rules that can be used to check errors in the data. In some cases,
it is also possible to use external sources. It should be noted that there are a number of tools
that use pattern enforcement or machine learning models to detect errors. HoloDetect [He19]
and Raha [Ma19] are examples for such tools. Theoretically, those models or rules learned
by models can also be used for evaluation. The result of these could then be compared with
the results present. However, it is difficult to state about which results are more correct. For
this reason, it was not considered in the present framework.

Automatic verification (without learned rules or domain knowledge) If no rules or
external sources are available, there are a number of aspects that can be checked automatically
without any rules. Examples are missing values or duplicates.

In the following, the categories of the horizontal dimension, presented in Section 3.1, are
listed. The individual aspects of these categories are classified on the basis of the categories
of the vertical dimension just presented.

3.2.1 Data loading

On the horizontal axis, the first category is data loading. Table 2 shows the aspects mentioned
and describes how an evaluation can be done.

Tab. 2: Evaluation of data quality at the time of data loading

Evaluation method

Auto-
matic

Rules Experts Ground
Truth

Data quality aspect

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets21

G
ro

un
d

tr
ut

h
kn

ow
n Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without learned rules or domain knowledge)

Verification by ground truth

Timeliness - (✓) ✓ -

Credibility - (✓) ✓ -

Relevance - (✓) ✓ -

None of the aspects can be tested by automated evaluation without rules or domain knowledge.
With rules, the following evaluations are conceivable: For timeliness, checks can be made
according to the arrival time and intervals of the data. For credibility, a verification by

922 Valerie Restat, Meike Klettke, Uta Störl

“FAIR” is not enough 7

domain experts is necessary. In addition, checks according to the range of data or accepted
values are conceivable. In terms of relevance, the assessment of whether data is suitable for
a specific use case, primarily depends on the goal of the analysis or prediction. It must be
evaluated by a domain expert. Information about the distribution of the data, warnings of
protected features and fairness metrics can be supportive in the decision-making process.
However, all these rules can only support the evaluation. The final assessment must be made
by a domain expert. Ground truth cannot be detected for these aspects. For example, there is
no ground truth that tells whether a data set is credible. Such aspects can only be assessed by
domain experts. This is why ground truth cannot be used for an evaluation of these aspects.

3.2.2 Data preparation process

The goal of data preprocessing is to achieve the best possible data quality. As described,
many different approaches and tools exist for this purpose. For better comparability, it must
be possible to evaluate the results of such tools. The following metrics are suitable for this
purpose, but also to subject the data to continuous evaluation. Thus, the quality of the data
can be tracked at any time. Table 3 shows how the quality aspects can be evaluated in the
context of the data preparation process.

All these aspects can be checked with ground truth, if available. If this is not available, the next
step could be a manual verification by domain experts. If domain experts can not support, all
these aspects could be checked using rules or external sources. The better the rules, the more
accurate the assessment of the data quality. If no rules or external sources are available, only
certain data quality aspects can be checked automatically. This includes the following aspects:

Missing values can be easily detected automatically. Rules are only needed here if missing
values are encoded by specific values, such as −9999.

Duplicates can – to a certain degree – be checked automatically. At column level (Uniqueness
value violation), duplicate detection is easy, but it is usually allowed for most columns that
several rows have the same value. Further information is therefore needed to decide for
which columns duplicates must not exist. On row level (Redundancy about an entity) it can
be checked automatically if identical rows exist. For rows that are merely similar, however,
further information is again required for evaluation.

Outliers can – to a certain extent – be detected automatically as well. A common approach
is to apply the three sigma rule, which states that if the data is normally distributed, 99.7%
of the values will be within three standard deviations of the mean [CBK09]. However, if
the values of a column do not follow the normal distribution, this rule is not applicable.
Furthermore, problems arise in this context when data changes and therefore the statistical

“FAIR ” is not enough – A Metrics Framework to ensure Data Quality through Data
Preparation 923

8 Restat, Klettke and Störl

Tab. 3: Evaluation of data quality at the time of the data preparation process

Evaluation method

Auto-
matic

Rules Experts Ground
Truth

Data quality aspect

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets21
G

ro
un

d
tr

ut
h

kn
ow

n Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without learned rules or domain knowledge)

Verification by ground truth

Missing Value ✓ ✓ ✓ ✓

Syntax violation - ✓ ✓ ✓

Interval violation - ✓ ✓ ✓

Set violation - ✓ ✓ ✓

Misspelled error - ✓ ✓ ✓

Inadequate value to the attribute
context

- ✓ ✓ ✓

Value items beyond the attribute
context

- ✓ ✓ ✓

Meaningless Value - ✓ ✓ ✓

Erroneous entry - ✓ ✓ ✓

Uniqueness value violation (✓) ✓ ✓ ✓

Synonyms existence - ✓ ✓ ✓

Outlier (✓) ✓ ✓ ✓

Missing Attribute - ✓ ✓ ✓

Semi-empty tuple ✓ ✓ ✓ ✓

Inconsistency among attribute values - ✓ ✓ ✓

Irrelevant observation - ✓ ✓ ✓

Redundancy about an entity ✓ ✓ ✓ ✓

Inconsistency about an entity - ✓ ✓ ✓

Bias (✓) ✓ ✓ ✓

Noise - ✓ ✓ ✓

parameters may need to be re-examined. For more extensive outlier detection, additional
rules or sources are needed.

924 Valerie Restat, Meike Klettke, Uta Störl

“FAIR” is not enough 9

Semi-empty tuples can be checked automatically. As with missing values, rules are needed
only in case empty fields are encoded by values such as −9999.

Bias: Already at the time of data loading, as described in Section 3.2.1, it should be
checked whether the data is relevant. This also includes the analysis of whether the data
is representative for the use case. However, as described in [SS20], a bias can also be
introduced into the data by preprocessing. Therefore, as a first indicator, an automated check
can be made to see if the distribution of the data changes significantly during preprocessing.

All other aspects cannot be checked automatically. Further information, rules or external
sources are required for an evaluation.

The framework does not yet consider error hierarchies. For example, spelling errors may
also lead to a set violation. After the spelling error has been corrected, there would possibly
no longer be a set violation. In future work, this should be included in the framework.

3.2.3 Final evaluation

As already mentioned, all aspects specified in Section 3.2.2 should be checked again in
the final evaluation. In addition, the presentation quality can also be evaluated. This is not
possible without any rules or domain knowledge, as shown in Table 4.

Tab. 4: Evaluation of data quality for the final evaluation

Evaluation method

Auto-
matic

Rules Experts Ground
Truth

Data quality aspect

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets17

Status of data preparation

H
um

an
 in

vo
lv

em
en

t

…

Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without rules or domain knowledge)

Data loading Data preparation process Final evaluation

Folie Chair of Databases and Information SystemsGouDa - Generation of universal Data Sets21

G
ro

un
d

tr
ut

h
kn

ow
n Manual verification by domain experts

Verification by rules (specified by domain experts)

Verification by rules (learned by artificial intelligence)

Automatic verification (without learned rules or domain knowledge)

Verification by ground truth

Presentation Quality - (✓) ✓ -

For an evaluation against rules, checks can be made based on given standards or specifications.
A detailed evaluation can only be done by a domain expert. Ground truth does not exist in
this case.

3.3 Measurement

In the following, we will look at how the metrics presented can be applied and how a
measurement of quality can be made. Along the vertical dimension, evaluation becomes

“FAIR ” is not enough – A Metrics Framework to ensure Data Quality through Data
Preparation 925

10 Restat, Klettke and Störl

more accurate once domain knowledge becomes available. Along the horizontal axis, a
distinction is made depending on the time of data preparation.

3.3.1 Data loading

For all these criteria, it is only possible to check whether they are met or not. No percentage
is given. For example, a data set may or may not be suitable for the use case. It is not checked
whether it is 50% suitable. In future work, a more precise distinction could be made here.

3.3.2 Data preparation process

For each error listed in Table 1, the corresponding metric indicates whether that error occurs.
Depending on the level of error classification, a distinction is made: In some cases, the
percentage of errors per column is considered. In other cases, it is only checked whether the
error occurs in the data (yes/no). The mapping depending on the level of error classification
is shown in Table 5.

Tab. 5: Evaluation type per error classification level

Level Evaluation Type

An Attribute Value of a Single Tuple Percentage per column

The Values of a Single Attribute Percentage per column
(except for Missing Attribute)

The Attribute Values of a Single Tuple Percentage per data set

The Attribute Values of Several Tuples Yes/no per data set

For the error types of the first level, An Attribute Value of a Single Tuple, the percentage per
column can be measured in each case. The same applies to the second level, The Values
of a Single Attribute. However, the error type Missing Attribute is an exception. Here, the
percentage per data set must be applied. This is also considered for the third level, The
Attribute Values of a Single Tuple. For the fourth level, a percentage can no longer be
calculated. It is only checked whether the corresponding error type occurs in the data set or
not.

An exception is when ground truth is available. In this case, metrics such as precision and
recall can be used for evaluation.

926 Valerie Restat, Meike Klettke, Uta Störl

“FAIR” is not enough 11

3.3.3 Final evaluation

The same aspects apply to the final evaluation. However, for the examination of the
presentation quality (as with the aspects at the time of data loading) it can only be stated
whether it is provided or not.

Example Each quality criterion corresponding to the rows of tables 2, 3, and 4 is assigned
a metric. Thus, the framework is easily extendable. The metric for Missing Value is described
here as an example: The error type belongs to the first level An Attribute Value of a Single
Tuple (see Table 1). Therefore, the metric is measured by the percentage per column
(see Table 5). As can be seen in Table 3, an automatic verification is possible. Thus, the
percentage of missing values per column in the data set can be calculated automatically.
If there is a special encoding of missing values, further rules are necessary to be able to
determine the percentage correctly. If these rules are not available, a domain expert can
give the correct percentage. In case that ground truth is present, precision and recall can be
applied for evaluation as described.

As a result of the evaluation, a corresponding report with all described metrics would be
generated. Via color coding, the reliability of the results could be marked according to the
vertical dimension. Thus, a detailed evaluation of data quality would be possible. In addition
to validating individual data sets, different data sets can also be compared, for example to
contrast the quality of serving and training data in context of machine learning.

4 Conclusion and Future Work

To measure data quality and evaluate data preparation tools, we created a framework of
metrics. This can be used flexibly, depending on the extent to which ground truth is available
or domain experts are available for verification. It also considers the time of the evaluation.
Different aspects need to be checked at the beginning of data preprocessing rather than
during the process itself. It was shown that domain knowledge is needed especially at
the point of data loading and the initial investigation of various quality aspects, such as
the usability of the data. As data preparation continues, more automation in evaluation is
possible.

In the future, the presented framework will be made available to domain experts for an
empirical validation. They should review the framework to ensure that all relevant data
quality aspects for their domain and data engineering application are included in the
classification. Beyond that, we would like to further develop this framework in future work.
This includes further levels of the error classification presented as well as the consideration
of error hierarchies. Moreover, only the metric for Missing Value was described as an
example. The elaboration of the other metrics will be done accordingly to emphasize

“FAIR ” is not enough – A Metrics Framework to ensure Data Quality through Data
Preparation 927

12 Restat, Klettke and Störl

practical relevance. In addition to the further development of the theoretical foundations,
implementation also has to be carried out. In our vision, a framework like this must be
an integral part of every data engineering pipeline to ensure data quality through data
preparation.

References

[Ab16] Abedjan, Z. et al.: Detecting Data Errors: Where are we and what needs
to be done? Proc. VLDB Endow. 9/12, pp. 993–1004, 2016, url: http:
//www.vldb.org/pvldb/vol9/p993-abedjan.pdf.

[BM11] Blake, R. H.; Mangiameli, P.: The Effects and Interactions of Data Quality and
Problem Complexity on Classification. ACM J. Data Inf. Qual. 2/2, 8:1–8:28,
2011, url: https://doi.org/10.1145/1891879.1891881.

[CBK09] Chandola, V.; Banerjee, A.; Kumar, V.: Anomaly detection: A survey. ACM
Comput. Surv. 41/3, 15:1–15:58, 2009, url: https://doi.org/10.1145/
1541880.1541882.

[CZ15] Cai, L.; Zhu, Y.: The Challenges of Data Quality and Data Quality Assessment
in the Big Data Era. Data Sci. J. 14/, p. 2, 2015, url: https://doi.org/10.
5334/dsj-2015-002.

[He19] Heidari, A. et al.: HoloDetect: Few-Shot Learning for Error Detection. In:
Proceedings SIGMOD 2019. ACM, pp. 829–846, 2019, url: https://doi.
org/10.1145/3299869.3319888.

[HH16] Heinrich, B.; Hristova, D.: A quantitative approach for modelling the influence of
currency of information on decision-making under uncertainty. J. Decis. Syst. 25/
1, pp. 16–41, 2016, url: https://doi.org/10.1080/12460125.2015.1080494.

[Ma19] Mahdavi, M. et al.: Raha: A Configuration-Free Error Detection System.
In: Proceedings SIGMOD 2019. ACM, pp. 865–882, 2019, url: https:
//doi.org/10.1145/3299869.3324956.

[Pi20] Pitoura, E.: Social-minded Measures of Data Quality: Fairness, Diversity, and
Lack of Bias. ACM J. Data Inf. Qual. 12/3, 12:1–12:8, 2020, url: https:
//dl.acm.org/doi/10.1145/3404193.

[Po17] Polyzotis, N.; Roy, S.; Whang, S. E.; Zinkevich, M.: Data Management Chal-
lenges in Production Machine Learning. In: Proceedings SIGMOD 2017. ACM,
pp. 1723–1726, 2017, url: https://doi.org/10.1145/3035918.3054782.

[Re22] Restat, V. et al.: GouDa - Generation of universal Data Sets: Improving Analysis
and Evaluation of Data Preparation Pipelines. In: Proceedings DEEM ’22. ACM,
2:1–2:6, 2022, url: https://doi.org/10.1145/3533028.3533311.

[RKS22] Restat, V.; Klettke, M.; Störl, U.: Towards a Holistic Data Preparation Tool. In:
Proceedings DATAPLAT ’22. Vol. 3135, CEUR-WS.org, 2022, url: https:
//ceur-ws.org/Vol-3135/dataplat_short1.pdf.

928 Valerie Restat, Meike Klettke, Uta Störl

http://www.vldb.org/pvldb/vol9/p993-abedjan.pdf
http://www.vldb.org/pvldb/vol9/p993-abedjan.pdf
https://doi.org/10.1145/1891879.1891881
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.5334/dsj-2015-002
https://doi.org/10.5334/dsj-2015-002
https://doi.org/10.1145/3299869.3319888
https://doi.org/10.1145/3299869.3319888
https://doi.org/10.1080/12460125.2015.1080494
https://doi.org/10.1145/3299869.3324956
https://doi.org/10.1145/3299869.3324956
https://dl.acm.org/doi/10.1145/3404193
https://dl.acm.org/doi/10.1145/3404193
https://doi.org/10.1145/3035918.3054782
https://doi.org/10.1145/3533028.3533311
https://ceur-ws.org/Vol-3135/dataplat_short1.pdf
https://ceur-ws.org/Vol-3135/dataplat_short1.pdf

“FAIR” is not enough 13

[Sc18] Schelter, S.; Lange, D.; Schmidt, P.; Celikel, M.; Bießmann, F.; Grafberger, A.:
Automating Large-Scale Data Quality Verification. Proc. VLDB Endow./,
pp. 1781–1794, 2018, url: http://www.vldb.org/pvldb/vol11/p1781-
schelter.pdf.

[Si12] Sidi, F. et al.: Data quality: A survey of data quality dimensions. In: 2012
International Conference on Information Retrieval & Knowledge Management.
IEEE, pp. 300–304, 2012, url: https://doi.org/10.1109/InfRKM.2012.
6204995.

[SS20] Schelter, S.; Stoyanovich, J.: Taming technical bias in machine learning pipelines.
IEEE Data Engineering Bulletin (Special Issue on Interdisciplinary Perspectives
on Fairness and Artificial Intelligence Systems) 43/4, pp. 39–50, 2020.

[Wi16] Wilkinson, M. D. et al.: The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data/, p. 160018, Mar. 2016, issn:
2052-4463, url: https://doi.org/10.1038/sdata.2016.18.

“FAIR ” is not enough – A Metrics Framework to ensure Data Quality through Data
Preparation 929

http://www.vldb.org/pvldb/vol11/p1781-schelter.pdf
http://www.vldb.org/pvldb/vol11/p1781-schelter.pdf
https://doi.org/10.1109/InfRKM.2012.6204995
https://doi.org/10.1109/InfRKM.2012.6204995
https://doi.org/10.1038/sdata.2016.18

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Recursive SQL and GPU-Support for In-Database Machine
Learning

Maximilian E. Schüle1

Abstract: In machine learning, continuously retraining a model guarantees accurate predictions based
on the latest data as training input. But to retrieve the latest data from a database, time-consuming
extraction is necessary as database systems have rarely been used for operations such as matrix algebra
and gradient descent. In this work, we demonstrate that SQL with recursive tables makes it possible
to express a complete machine learning pipeline out of data preprocessing, model training and its
validation. To facilitate the specification of loss functions, we extend the code-generating database
system Umbra by an operator for automatic differentiation for use within recursive tables: With the
loss function expressed in SQL as a lambda function, Umbra generates machine code for each partial
derivative. We further use automatic differentiation for a dedicated gradient descent operator, which
generates LLVM code to train a user-specified model on GPUs. We fine-tune GPU kernels at hardware
level to allow a higher throughput and propose non-blocking synchronisation of multiple units. In our
evaluation, automatic differentiation accelerated the runtime by the number of cached subexpressions
compared to compiling each derivative separately. Our GPU kernels with independent models allowed
maximal throughput even for small batch sizes, making machine learning pipelines within SQL more
competitive.

References

[Sc22] Schüle, M. E.; Lang, H.; Springer, M.; Kemper, A.; Neumann, T.; Günnemann, S.:
Recursive SQL and GPU-support for in-database machine learning. Distributed
Parallel Databases 40/2, pp. 205–259, 2022.

1 University of Bamberg, maximilian.schuele@uni-bamberg.de

cba doi:10.18420/BTW2023-62

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 931

mailto:maximilian.schuele@uni-bamberg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-62

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

VERIFAI - A Step Towards Evaluating the Responsibility of
AI-Systems

Sabrina Göllner 1, Marina Tropmann-Frick 2

Abstract: This work represents the first step towards a unified framework for evaluating an AI
system’s responsibility by building a prototype application. The python based web-application uses
several libraries for testing the fairness, robustness, privacy, and explainability of a machine learning
model as well as the dataset which was used for training the model. The workflow of the prototype
is tested and described using images of a healthcare dataset since healthcare represents an area
where automatic decisions affect human lives, and building responsible AI in this area is therefore
indispensable.

Keywords: Artificial Intelligence; Responsible AI; Privacy-preserving AI; Explainable AI; Ethical
AI; Trustworthy AI

1 Introduction

This paper is based on the Structured Literature Review ’Aspects and Views on Responsible
AI’ presented at the LOD conference 2022 [LO22] and on the follow-up paper which is
currently in the writing process. The aforementioned papers conclude from the current
state of the art that Responsible AI encompasses the aspects of ’security, privacy, ethics,
explainability, human-centeredness, and trust’. The trust aspects are also up to the user’s
perception and human-centeredness requires a human-in-the-loop setting and will be part
of our future work. Our first goal is to verify the security, privacy, ethics, and explainability
within an AI system through different metrics in a single framework. Therefore we have
created ’VERIFAI’ (eValuating thE ResponsibIlity oF AI-systems), which is a first step
towards putting this concept into practice. To the best of our current knowledge, there is
no other framework that checks and evaluates multiple responsibility factors, so this is the
novelty of the present work.

2 Implementation

This section is divided into two parts: the first part explains the selection of the data, and
model architecture as well as the selection of toolkits for the evaluations and the second
1 Hamburg University of Applied Sciences, Department of Computer Science, Berliner Tor 7, 20099 Hamburg,

Germany sabrina.goellner@haw-hamburg.de
2 marina.tropmann-frick@haw-hamburg.de

cba doi:10.18420/BTW2023-63

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 933

mailto:sabrina.goellner@haw-hamburg.de
mailto:marina.tropmann-frick@haw-hamburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-63

12 Sabrina Göllner, Marina Tropmann-Frick

part consists of the presentation of the resulting web application based on an example
walkthrough.

2.1 Dataset and model architecture

For the prototype implementation the healthcare dataset HAM10000 [Ts18] was chosen
because it satisfies two criteria: 1) it consists of dermatoscopic images from different
populations including a representative collection of all important diagnostic categories in
the realm of pigmented lesions and 2) because it consists not only of image data but also of
metadata for the analysis.
The chosen model architecture for testing is Xception [Ch17], which is a network with a
linear stack of depthwise separable convolution layers with residual connections. It achieved
the best results on the dataset compared to other architectures.

2.1.1 Selection of toolkits

Since the project’s goal was to verify the ethics, security, privacy, and explainability of
both the data and model, the first step was to research state-of-the-art toolkits for testing.
From the result of the libraries found, each of them could be classified into one of our four
categories:

1. Evaluation of Explainability: Quantus [He22], IBM AI Explainability 360: [Ar19]

2. Evaluation of Ethics: Tensorflow Fairness Indicators [Te22], IBM AI Fairness 360
[Be18], Fairlearn [Bi20], Aequitas [Sa18], REVISE [Wa22], VISSL [Go21],

3. Evaluation of Security: IBM Adversarial Robustness 360 Toolkit [Ni18], Foolbox:
[Ra20], Advbox [Go20], UnMask [Fr20]

4. Evaluation of Privacy: Privacy Meter [Sh22], IBM: differential privacy toolkit [Ho19],
Tensorflow Privacy [ACP22]

Based on the features, metrics, quality, and usage limitations of the analyzed toolkits and
libraries we came up with the following decisions for the prototype:
For the ethics/fairness evaluation of the model, there was, unfortunately, no suitable library
that could handle medical image data properly, so the results were calculated without the
usage of a toolkit, but with self-written python functions. The well-documented Tensorflow
privacy was chosen for the privacy verification. For the security verification, the robustness
test was performed using Foolbox because the calculation is reliable and fast, and the
set of metrics can be extended in the future with others from the same library. In terms
of explainability toolboxes, the choice fell on the Quantus toolbox because it supports
evaluations of all kinds of neural networks and provides many different metrics to test

934 Sabrina Göllner, Marina Tropmann-Frick

VERIFAI 13

against that can be used for comparison in the future. To counteract confusion, the terms
’robustness’ will be used instead of security and ’fairness’ instead of ethics hereafter, as
these are also referred to as such in the evaluations in this context.

2.2 Exemplary Walkthrough

This section shows the exemplary program flow based on an example with the presented
data set using screenshots of the results and explanations.

2.2.1 The responsible data science lifecycle and the selection of the use case

(a) Screenshot: index / responsible data science lifecycle (b) Screenshot: use cases

Fig. 1: Dataset

The index page, shown in figure 1a, is intended to introduce the systems’ workflow to the
user. It also offers a figure of the Responsible Data Science Lifecycle, which is the data
science lifecycle extended through responsibility checks. At the top of the web page, there is
an explanation of the current step, this continues throughout the application. Figure 1b is a
screenshot of the step, where the user can choose from different use cases and corresponding
data sets to run the evaluation on. In this case, we choose the HAM10000 image dataset
with pigmented skin lesions which belongs to the healthcare use cases. By choosing the
dataset we can go to the next step.

VERIFAI - A Step Towards Evaluating the Responsibility of AI-Systems 935

14 Sabrina Göllner, Marina Tropmann-Frick

2.2.2 Exploratory fairness analysis of the dataset

In this step, we can analyze our dataset based on an exploratory fairness analysis.

(a) Screenshot: Evaluate Dataset (part 1) (b) Screenshot: Evaluate Dataset (part 2)

Fig. 2: Screenshot: exploratory fairness analysis of the dataset

Figure 2a and 2b display the data exploration for detecting potential biases to the user. For
example, we can see that class melanocytic nevi is the dominant one in the dataset (67%).
Using the data for modeling could result in a bias towards this type of skin lesion. This
analysis is to help users detect such biases and prevent bad modeling.

2.2.3 Evaluate Model

Fig. 3: Screenshot: load model and set configurations

In this step (see figure 3), the user can select the model and configuration for evaluation.
The model in this example is an already trained Xception model. Choosing the batch size
for the test dataset is also possible. The evaluations for robustness, fairness, privacy, and
explainability are explained next.

936 Sabrina Göllner, Marina Tropmann-Frick

VERIFAI 15

Fig. 4: Screenshot: evaluate model robustness (result)

Robustness Evaluation Figure 4 shows the results of testing if the model is robust against
adversarial attacks with perturbated images, a metric which is called adversarial robustness.
This is tested using the Projected Gradient Descent (PGD) attack. It attempts to find the
perturbation that maximizes the loss of a model on a particular input while keeping the size
of the perturbation smaller than a specified amount referred to as epsilon (eps) while max.
eps = 0.3, as this is used for benchmarking in the RobustBench [Cr20]). Each round the eps
is increasing and the robustness score is measured as shown in the plots: starting from 82%,
the model has still an accuracy of 72% in the last round, using a perturbation of eps=0.3,
which is still a good accuracy. The image on the right is an example image from the test
batch with the maximum perturbations (eps=0.3) added.

Fig. 5: Screenshot: evaluate fairness (result)

Fairness Evaluation Figure 5 shows the correctly and incorrectly classified images
through a confusion matrix. We can see, that the tested model is very biased in the direction
of the class melanocytic nevi. The reason for this result is probably because we already
had an imbalanced dataset before. The second plot is the F1-score for the different classes,
which is suitable for imbalanced data. Because we have a bias in the model the end results
are not good enough for a good fairness score.

Privacy Evaluation Figure 6 shows the check of the privacy leakage through a membership
inference attack, which tries to find out if specific examples were in the training set (see fig.
6a). The results show that the membership inference attack was successful but had only an

VERIFAI - A Step Towards Evaluating the Responsibility of AI-Systems 937

16 Sabrina Göllner, Marina Tropmann-Frick

(a) Screenshot: membership
inference explanation

(b) Screenshot: ROC curve of the
membership inference attack

Fig. 6: Screenshots: Evaluate model privacy (results)

AUC of 66% (see fig. 6b). This means, that the privacy leakage was only satisfactory for
the attacker, which is better for the model’s privacy score, we can therefore determine that
the leak of information was only moderate in this case.

Fig. 7: Screenshot: Evaluate Model Explainability

Explainability Evaluation Figure 7 displays the quantitative evaluation of the model’s
explanation in combination with the chosen explainability method. We chose the suitable
XAI-Method called Integrated Gradients. The used metrics are: Robustness, which measures
the probability that the inputs with the same explanation have the same prediction label
[Ye19], Complexity that measures if only highly attributed features are truly predictive of
the model output [Ch18], Faithfulness which iteratively replaces a random subset of given
attributions with a baseline value and then measures the correlation between the sum of this
attribution subset and the difference in function output [BWM20], and Randomisation, which
computes for the distance between the original explanation and the explanation for a random
other class [SGL20]. In the barplot on the left, we can see that Robustness, Complexity, and
Randomisation scored well with relatively high percentages, but Faithfulness did not. All
four scores contribute with equal weighting to the final result and their scores were therefore

938 Sabrina Göllner, Marina Tropmann-Frick

VERIFAI 17

averaged. In the figure next to the bar chart, we can see also examples of images from the
test batch, and the corresponding explanation. This is so that the user can also get an idea of
whether the explanation is good enough or not.

Fig. 8: Screenshot: Responsibility Evaluation

Responsibility Evaluation Finally, the Responsibility Evaluation in figure 8 summarizes
the calculated scores using the proposed metrics and highlights them with different colors
according to their scores. The rating was calculated as follows: A ’perfect’ model would
score full points in every aspect, which equals 10 points. In our test case, the security
evaluation was tested with a good result (8/10) as well as privacy (6/10), while the other
metrics fairness and explainability (6/10) show still some weaknesses and achieved therefore
moderate scores. The worst result was the fairness score of the model (5/10) because of the
bias. Thus, our model achieved a final score of 62.5% (25/40) with the metrics currently
implemented.

3 Open challenges and future work

In this work, we created a prototype implementation of VERIFAI, an application for
evaluating an AI system’s responsibility based on several aspects. In the present prototype, we
used a healthcare dataset. The tool can evaluate the dataset for fairness and a trained machine
learning model for fairness, privacy leakage, adversarial robustness, and explainability using
a variety of state-of-the-art metrics. Even though this work only covers a limited number of
metrics so far, it is a good basis for future work. The following extensions are planned for
future work: We will add more data sets belonging to different suitable scenarios, different
machine learning models for each scenario, extend the set of metrics for each category,
choose between selectable or auto-selection of the right metrics for the given problem,
selectable target user, selectable focus for which aspect is most important for the target user,
the tolerance level for each aspect, suggestions for mitigations, evaluation of trustworthiness
and human-in-the-loop aspects. We are also working on making VERIFAI as transparent as
possible for the users for helping to create more responsible AI systems.

VERIFAI - A Step Towards Evaluating the Responsibility of AI-Systems 939

18 Sabrina Göllner, Marina Tropmann-Frick

Bibliography
[ACP22] Andrew, Galen; Chien, Steve; Papernot, Nicolas: , Tensor Flow Privacy. https://github.

com/tensorflow/privacy, 2022.

[Ar19] Arya, Vĳay; Bellamy, Rachel KE; Chen, Pin-Yu; Dhurandhar, Amit; Hind, Michael;
Hoffman, Samuel C; Houde, Stephanie; Liao, Q Vera; Luss, Ronny; Mojsilović, Aleksandra
et al.: One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques.
arXiv preprint arXiv:1909.03012, 2019.

[Be18] Bellamy, Rachel K. E.; Dey, Kuntal; Hind, Michael; Hoffman, Samuel C.; Houde,
Stephanie; Kannan, Kalapriya; Lohia, Pranay; Martino, Jacquelyn; Mehta, Sameep;
Mojsilovic, Aleksandra; Nagar, Seema; Ramamurthy, Karthikeyan Natesan; Richards,
John; Saha, Diptikalyan; Sattigeri, Prasanna; Singh, Moninder; Varshney, Kush R.; Zhang,
Yunfeng: AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and
Mitigating Unwanted Algorithmic Bias. October 2018.

[Bi20] Bird, Sarah; Dudík, Miro; Edgar, Richard; Horn, Brandon; Lutz, Roman; Milan, Vanessa;
Sameki, Mehrnoosh; Wallach, Hanna; Walker, Kathleen: Fairlearn: A toolkit for assessing
and improving fairness in AI. Technical Report MSR-TR-2020-32, Microsoft, May 2020.

[BWM20] Bhatt, Umang; Weller, Adrian; Moura, José MF: Evaluating and aggregating feature-based
model explanations. arXiv preprint arXiv:2005.00631, 2020.

[Ch17] Chollet, Francois: Xception: Deep Learning With Depthwise Separable Convolutions.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017.

[Ch18] Chalasani, P; Chen, J; Chowdhury, AR; Jha, S; Wu, X: Concise explanations of neural
networks using adversarial training. arXiv arXiv–1810. arXiv preprint arXiv:1810.06583,
2018.

[Cr20] Croce, Francesco; Andriushchenko, Maksym; Sehwag, Vikash; Debenedetti, Edoardo;
Flammarion, Nicolas; Chiang, Mung; Mittal, Prateek; Hein, Matthias: Robustbench: a
standardized adversarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

[Fr20] Freitas, Scott; Chen, Shang-Tse; Wang, Zĳie J; Chau, Duen Horng: Unmask: Adversarial
detection and defense through robust feature alignment. In: 2020 IEEE International
Conference on Big Data (Big Data). IEEE, pp. 1081–1088, 2020.

[Go20] Goodman, Dou; Xin, Hao; Yang, Wang; Yuesheng, Wu; Junfeng, Xiong; Huan, Zhang:
Advbox: a toolbox to generate adversarial examples that fool neural networks. 2020.

[Go21] Goyal, Priya; Duval, Quentin; Reizenstein, Jeremy; Leavitt, Matthew; Xu, Min; Lefaudeux,
Benjamin; Singh, Mannat; Reis, Vinicius; Caron, Mathilde; Bojanowski, Piotr; Joulin,
Armand; Misra, Ishan: , VISSL. https://github.com/facebookresearch/vissl, 2021.

[He22] Hedström, Anna; Weber, Leander; Bareeva, Dilyara; Motzkus, Franz; Samek, Wojciech;
Lapuschkin, Sebastian; Höhne, Marina M.-C.: Quantus: An Explainable AI Toolkit for
Responsible Evaluation of Neural Network Explanations. 2022.

[Ho19] Holohan, Naoise; Braghin, Stefano; Mac Aonghusa, Pól; Levacher, Killian: Diffprivlib:
the IBM differential privacy library. ArXiv e-prints, 1907.02444 [cs.CR], July 2019.

[LO22] LOD Conference: . https://lod2022.icas.cc/program/, 2022.

940 Sabrina Göllner, Marina Tropmann-Frick

https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
https://github.com/facebookresearch/vissl
https://lod2022.icas.cc/program/

VERIFAI 19

[Ni18] Nicolae, Maria-Irina; Sinn, Mathieu; Tran, Minh Ngoc; Buesser, Beat; Rawat, Ambrish;
Wistuba, Martin; Zantedeschi, Valentina; Baracaldo, Nathalie; Chen, Bryant; Ludwig,
Heiko et al.: Adversarial Robustness Toolbox v1. 0.0. arXiv preprint arXiv:1807.01069,
2018.

[Ra20] Rauber, Jonas; Zimmermann, Roland; Bethge, Matthias; Brendel, Wieland: Foolbox
Native: Fast adversarial attacks to benchmark the robustness of machine learning models
in PyTorch, TensorFlow, and JAX. Journal of Open Source Software, 5(53):2607, 2020.

[Sa18] Saleiro, Pedro; Kuester, Benedict; Stevens, Abby; Anisfeld, Ari; Hinkson, Loren; London,
Jesse; Ghani, Rayid: Aequitas: A Bias and Fairness Audit Toolkit. arXiv preprint
arXiv:1811.05577, 2018.

[SGL20] Sixt, Leon; Granz, Maximilian; Landgraf, Tim: When explanations lie: Why many
modified bp attributions fail. In: International Conference on Machine Learning. PMLR,
pp. 9046–9057, 2020.

[Sh22] Shokri, Reza: ML Privacy Meter: A Tool to Quantify Information Leakage through
Machine Learning Models. 2022.

[Te22] Tensorflow: , Tensor Flow Fairness Indicators. https://github.com/tensorflow/
fairness-indicators, 2022.

[Ts18] Tschandl, Philipp: The HAM10000 dataset, a large collection of multi-source dermato-
scopic images of common pigmented skin lesions. 2018.

[Wa22] Wang, Angelina; Liu, Alexander; Zhang, Ryan; Kleiman, Anat; Kim, Leslie; Zhao, Dora;
Shirai, Iroha; Narayanan, Arvind; Russakovsky, Olga: REVISE: A Tool for Measuring
and Mitigating Bias in Visual Datasets. International Journal of Computer Vision (ĲCV),
2022.

[Ye19] Yeh, Chih-Kuan; Hsieh, Cheng-Yu; Suggala, Arun; Inouye, David I; Ravikumar, Pradeep K:
On the (in) fidelity and sensitivity of explanations. Advances in Neural Information
Processing Systems, 32, 2019.

VERIFAI - A Step Towards Evaluating the Responsibility of AI-Systems 941

https://github.com/tensorflow/fairness-indicators
https://github.com/tensorflow/fairness-indicators

cbe

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Workload Prediction for IoT Data Management Systems

David Burrell1, Xenofon Chatziliadis2, Eleni Tzirita Zacharatou3, Steffen Zeuch4, Volker
Markl5 6

Abstract: The Internet of Things (IoT) is an emerging technology that allows numerous devices,
potentially spread over a large geographical area, to collect and collectively process data from
high-speed data streams. To that end, specialized IoT data management systems (IoTDMSs) have
emerged. One challenge in those systems is the collection of different metrics from devices in a central
location for analysis. This analysis allows IoTDMSs to maintain an overview of the workload on
different devices and to optimize their processing. However, as an IoT network comprises of many
heterogeneous devices with low computation resources and limited bandwidth, collecting and sending
workload metrics can cause increased latency in data processing tasks across the network.

In this ongoing work, we present an approach to avoid unnecessary transmission of workload metrics
by predicting CPU, memory, and network usage using machine learning (ML). Specifically, we
demonstrate the performance of two ML models, linear regression and Long Short-Term Memory
(LSTM) neural network, and show the features that we explored to train these models. This work is
part of an ongoing research to develop a monitoring tool for our new IoTDMS named NebulaStream.

Keywords: Internet of Things; stream processing; machine learning; workload prediction

1 Introduction

The Internet of Things (IoT) describes a distributed system in which a large number of
devices with sensing or processing capabilities communicate with each other [PPS16]. The
IoT enables new possibilities for applications that have led to advances in many fields,
including healthcare [Ab19], disaster management [OTM21], and smart cities [Mo21].
1 TU Berlin, Database Systems and Information Management, Einsteinufer 17, 10587 Berlin, Germany d.

burrell736@googlemail.com
2 TU Berlin, Database Systems and Information Management, Einsteinufer 17, 10587 Berlin, Germany x.

chatziliadis@tu-berlin.de
3 IT University of Copenhagen, Data-intensive Systems and Applications, Rued Langgaards Vej 7, DK-2300

Copenhagen S, Denmark elza@itu.dk
4 German Research Center for Artificial Intelligence (DFKI), Alt-Moabit 91c, 10559 Berlin, Germany steffen.

zeuch@dfki.de
5 TU Berlin, Database Systems and Information Management, Einsteinufer 17, 10587 Berlin, Germany volker.

markl@tu-berlin.de
6 German Research Center for Artificial Intelligence (DFKI), Alt-Moabit 91c, 10559 Berlin, Germany Volker.

Markl@dfki.de

cba doi:10.18420/BTW2023-64

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 943

d.burrell736@googlemail.com
d.burrell736@googlemail.com
x.chatziliadis@tu-berlin.de
x.chatziliadis@tu-berlin.de
elza@itu.dk
steffen.zeuch@dfki.de
steffen.zeuch@dfki.de
volker.markl@tu-berlin.de
volker.markl@tu-berlin.de
Volker.Markl@dfki.de
Volker.Markl@dfki.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-64

2 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker Markl

To process data in real time in such a distributed environment, stream processing engines
(SPEs) are often used. SPEs enable the continuous execution of user-defined queries on data
streams to extract useful information. SPEs are designed to execute these queries across
distributed devices optimally, in terms of the placement of the data processing operations
and the management of the information flow. However, SPEs are designed for the cloud,
which has significantly different characteristics compared to the IoT.

For system-internal decision-making processes, such as load balancing and query opti-
mization, existing SPEs often require performance metrics from their topology. In an IoT
topology, the collection and sending of these metrics can be detrimental to the overall data
processing efficiency. Many devices have few computational resources, and the collection of
workload metrics leads to reduced processing performance [Ch21, CFSF20]. Additionally,
the collection process affects the network, since it requires a large amount of bandwidth to
send the collected metrics and therefore introduces additional latency [SJL18]. Finally, the
additional processing and network efforts required for the metric collection process reduce
the operational lifetime of battery-powered devices [Ma05].

To mitigate these issues, it would be beneficial for an SPE to be able to infer workload
metric values and avoid the need to collect these metrics continuously. This would reduce
the load on the workers themselves as well as the volume of data being sent through the
network, thus decreasing the response time for user queries. In this work, we show our
current progress in testing the suitability of machine learning techniques to predict the
workloads of the NebulaStream (NES) IoTDMS [Ze20a, Ze20b]. Using a small-scale lab
topology with five devices, we have trained a linear regression and an LSTM model to
predict the CPU, memory, and network utilization of different query workloads. We show
that for all workloads, our linear regression models significantly outperform the LSTMs
with a PRED 25 score (i.e., percentage of predicted values that are within 25% of the actual
value) between 56% and 86%.

The remainder of this paper is structured as follows: In Section 2, we analyze the different
workloads and features for our ML models. In Section 3, we evaluate the suitability of linear
regression and LSTM to predict CPU, memory, and network utilization. We conclude our
work in Section 4 and discuss future work directions.

2 Methodology

Data collection and data engineering steps are of essential importance to produce adequate
training data sets for accurate ML models. To this end, we create an emulated NES topology
where we execute specific queries on predefined data to generate workload information.
During the execution of these queries, we collect metrics on CPU, memory, and network
utilization. We collect these metrics along with additional features about the topology that
can be used to train our ML models. In the remainder of this section, we describe in detail

944 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker
Markl

Workload Prediction for IoT Data Management Systems 3

how we generate different workloads in NES and the features we investigate to train our ML
models.

Fig. 1: Overview of the emulated topology in NebulaStream.

2.1 Workload Generation

For generating training load data we create a controlled NebulaStream lab topology with
Docker containers [Me14]. Communication between containers is established using the
Containernet network emulation [PKvR16]. In total, the topology consists of one coordinator,
four workers, and an MQTT broker (cf. Fig. 1). The MQTT broker (HiveMQ) has four
topics, one for each worker to subscribe to and where data is pushed in regular intervals.
The data that is pushed to the workers is generated using the humidity and temperature
sensors data set of the UCI Machine Learning Repository [Hu16]. The workers are used to
process and send the data to the coordinator. In order to represent the heterogeneity of the
IoT environment in our lab topology, we assign each worker different resources in terms
of available memory, memory swap limit, and CPU shares. Regarding the distribution of
resources, worker number zero had the fewest available resources with a memory limit
of 10Mb, a memory swap limit of 30Mb, and a CPU share of 20%. For each worker,
we incrementally increased then the resources, such that worker number three has 40Mb
memory limit, 120Mb memory swap limit, and 80% CPU shares.

The coordinator is the central component of NebulaStream, which is responsible for
processing user requests, scheduling queries, and managing the life cycle of running queries.
We used the coordinator as a sink for our streaming queries and an endpoint for our queries.
To generate different load types, we deployed four queries to NES, 1) a select-all query, 2)
a projection, 3) a filter with a selectivity of 0.77, and 4) a user-defined function with the
map operation. These queries were deployed from our Python application via the REST
interface of NES. Workload metrics were collected through the NES monitoring API and
the docker metrics API while running the queries. For analysis and feature exploration, we
stored all workload metrics in the InfluxDB key-value store.

Workload Prediction for IoT Data Management Systems 945

4 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker Markl

2.2 Feature Selection

For training accurate ML models, we require feature variables that have some relationship
with the target variables, i.e., the workload metrics. In general, the stronger the relationship
between the features and the target, the higher the model’s prediction accuracy. We have
analyzed two different types of features.

The first type are static features, where the value does not change over time. The static
features collected from the emulated topology are: the worker resource limits, the tuples per
second received at the workers, the executed queries, and their operators. The second type
of features are time-series features that we divide into two classes. The first class belongs
to the independent variables that are recorded separately to the workload metric streams.
These variables are the number of nanoseconds since the query began, the data received
at the coordinator from each worker, and the coordinator’s CPU usage. The second set of
time-series features are the metric streams of the workloads.

Fig. 2: (left) Heatmap of the SRCC between the static variables and the workload metrics.
(right) The moving average of the CPU usage during the execution of the ßelect all"query.

To identify important candidates, we use Pearson and Spearman Rank Correlation Coefficient
(SRCC) to determine if a relationship exists between potential features and our target variables
CPU, memory, and network usage. Due to space limitations, we highlight here the most
influential features, which can be seen based on SRCC between the resource limits (i.e.,
memory, memory swap, and CPU share) and memory usage, with a particularly strong
negative correlation (cf. Fig. 2 (left)). The reason is that workers with the fewest resources
available to process the arriving data are required to store the data for a longer period before
the data can be sent to the coordinator.

By looking at the moving average of the values over time, it is possible to see the effect of
having different percentages of CPU for each worker (cf. Fig. 2 (right)). For the moving
average, we use a window size of 300ms and a sampling period of 20ms. It can be seen that
worker number zero has the most CPU usage due to having the smallest share of CPU and
requiring more time to complete tasks, while the other workers (which were closer together
in value) followed in order of increasing percentage of CPU share.

946 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker
Markl

Workload Prediction for IoT Data Management Systems 5

In summary, the patterns we observe via SRCC and the moving average plot confirm that
available resources on the workers have a huge effect on the workload and are thus important
features that should be taken into account when training an ML model.

3 Evaluation

For each load metric, i.e., CPU, memory, and network, we train a linear regression and
LSTM model, which results in six models in total. We evaluate the models using the PRED
25 score, which measures the percentage of predicted values that are within 25 percent
of the actual value (cf. Table 1). The models are trained on 80 multivariant time series
with 246.883 different samples, and for validation on 246.883 samples. Overall, the linear
regression model (LR) is more accurate at predicting the three workload metrics than the
LSTM model, which is similar to the results reported by [AB16]. In the remainder of this
section, we will give a more detailed discussion of our results and findings.

Query Type CPU Model Memory Model Network Model
LR LSTM LR LSTM LR LSTM

Select all 98.53 87.98 0.15 57.11 89.15 16.68
Projection 29.00 20.65 69.13 42.59 83.23 15.39
Filter 94.94 39.83 76.59 43.23 89.26 28.17
Map 49.20 39.45 89.85 36.94 91.97 22.80
Total Mean 73.07 50.32 58.87 46.13 86.34 28.55

Tab. 1: PRED 25 score for each of the machine learning models.

3.1 CPU Model

The linear regression CPU model achieves, on average, for all query types a PRED 25 score
of 73.07%, which significantly outperforms the LSTM model that reaches only 50.32%.
Looking at the scores of individual query types, we can see that the linear regression
performs extremely well for the select all and filter query type with a score over 90%. On
the contrary, for the projection and map query, our models achieve a score below 50%.
For the latter our models had captured in general the trends of the curves. However, they
predicted incorrectly the starting values which consequently lead to wrong forecasts of the
subsequent values.

Workload Prediction for IoT Data Management Systems 947

6 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker Markl

3.2 Memory Model

For the memory model we reach with the linear regression in total a mean score of around
59% and the LSTM around 46%. Looking at the different query types individually we can
see, on the one hand, that the performance of the select all query is the biggest detractor for
the linear regression model with a score below 1%. During the execution of the projection,
filter and map query, we could observe often spikes in the curves regarding memory
consumption. However, for the select all query a spiking of memory consumption does not
happen, as the internal memory management of NES is keeping for that particular case
always the same amount of data tuples in memory. We believe that the performance of the
linear regression can be improved here by adding more information about the query type
to the ML model. For the projection, filter and map query, on the other hand, the linear
regression achieved a performance of ca. 70% up to 90%. The LSTM model performed for
the prediction of memory utilization again worse for all query types with a score between
37% and 57%.

3.3 Network Model

The linear regression model is performing consistently well for all different query types
with a PRED 25 score between 83% and 92% and an average score of 86.34%. The LSTM
on the contrary reaches only scores between ca. 15% and 28%. During training, we had
observed that the LSTM model was having problems with over fitting, as the prediction
performance on the training data set was always larger than 90%. In future work, we will
further investigate the reasons why the LSTM was over fitting that extremely for predicting
network utilization.

4 Conclusion and Future Work

This paper explores the applicability of ML approaches to predict workload characteristics
in streaming IoT environments. Our early results show that for a particular small-scale lab
topology, workloads can be estimated with a PRED 25 score of up to 86% by using a linear
regression model. However, to completely avoid direct value collection from the devices in
the topology, further work is needed to increase the prediction accuracy. In future work,
we plan to incorporate topological traits and create workload data on the basis of more
complex queries. In our current work, we tested our models only against a single data set
that was generated on a static lab topology. Additionally, we plan to integrate our approach
of workload prediction to NebulaStream, in order to evaluate the general benefits.

Finally, we also plan to investigate different query optimization and operator placement
strategies. By examining the operators that are deployed on each worker we hope to be able
to identify a pattern in which cases the static and time-series characteristics can replace the
continuous collection of performance measures and why in other cases this does not work.

948 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker
Markl

Workload Prediction for IoT Data Management Systems 7

Acknowledgments
This work has received funding by the German Ministry for Education and Research as
BIFOLD - Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A,
01IS18037A) and from the European Union’s H2020 research and innovation programme
under grant agreement No. 957286.

References

[AB16] Ajila, Samuel; Bankole, Akindele: Using Machine Learning Algorithms for Cloud Client
Prediction Models in a Web VM Resource Provisioning Environment. Transactions on
Machine Learning and Artificial Intelligence, 2016.

[Ab19] Abdellatif, Alaa; Mohamed, Amr; Chiasserini, Carla-Fabiana; Tlili, Mounira; Erbad,
Aiman: Edge Computing For Smart Health: Context-aware Approaches, Opportunities,
and Challenges. IEEE Network, 2019.

[CFSF20] Cid-Fuentes, Javier Álvarez; Szabo, Claudia; Falkner, Katrina E.: Adaptive Performance
Anomaly Detection in Distributed Systems Using Online SVMs. IEEE Transactions on
Dependable and Secure Computing, 2020.

[Ch21] Chatziliadis, Xenofon; Tzirita Zacharatou, Eleni; Zeuch, Steffen; Markl, Volker: Monitor-
ing of stream processing engines beyond the cloud: an overview. Open Journal of Internet
Of Things (OJIOT), 2021.

[Hu16] Huerta, Ramon; Mosqueiro, Thiago; Fonollosa, Jordi; Rulkov, Nikolai F; Rodriguez-Lujan,
Irene: Online decorrelation of humidity and temperature in chemical sensors for continuous
monitoring. Chemometrics and Intelligent Laboratory Systems, 2016.

[Ma05] Madden, Samuel R.; Franklin, Michael J.; Hellerstein, Joseph M.; Hong, Wei: TinyDB:
An acquisitional query processing system for sensor networks. ACM Transactions on
database systems (TODS), 2005.

[Me14] Merkel, Dirk: Docker: lightweight linux containers for consistent development and
deployment. Linux journal, 2014.

[Mo21] Moreno-Bernal, Pedro; Cervantes-Salazar, Carlos Alan; Nesmachnow, Sergio; Hurtado-
Ramírez, Juan Manuel; Hernández-Aguilar, José Alberto: Open-Source Big Data Platform
for Real-Time Geolocation in Smart Cities. Ibero-American Congress of Smart Cities,
2021.

[OTM21] Ouro Paz, Elena Beatriz; Tzirita Zacharatou, Eleni; Markl, Volker: Towards Resilient
Data Management for the Internet of Moving Things. In: Datenbanksysteme für Business,
Technologie und Web (BTW). volume P-311 of LNI, pp. 279–301, 2021.

[PKvR16] Peuster, M.; Karl, H.; van Rossem, S.: MeDICINE: Rapid prototyping of production-ready
network services in multi-PoP environments. 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2016.

Workload Prediction for IoT Data Management Systems 949

8 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker Markl

[PPS16] Patel, Keyur K; Patel, Sunil M; Scholar, P: Internet of things-IOT: definition, characteristics,
architecture, enabling technologies, application & future challenges. International journal
of engineering science and computing, 2016.

[SJL18] Son, Yunsik; Jeong, Junho; Lee, YangSun: An Adaptive Offloading Method for an
IoT-Cloud Converged Virtual Machine System Using a Hybrid Deep Neural Network.
Sustainability, 2018.

[Ze20a] Zeuch, Steffen; Chaudhary, Ankit; Monte, Bonaventura Del; Gavriilidis, Haralampos;
Giouroukis, Dimitrios; Grulich, Philipp M.; Bress, Sebastian; Traub, Jonas; Markl, Volker:
The NebulaStream Platform: Data and Application Management for the Internet of Things.
CIDR, 2020.

[Ze20b] Zeuch, Steffen; Tzirita Zacharatou, Eleni; Zhang, Shuhao; Chatziliadis, Xenofon; Chaud-
hary, Ankit; Del Monte, Bonaventura; Giouroukis, Dimitrios; Grulich, Philipp M; Ziehn,
Ariane; Mark, Volker: NebulaStream: Complex analytics beyond the cloud. The Interna-
tional Workshop on Very Large Internet of Things (VLIoT), 2020.

950 David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, Volker
Markl

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

A Provenance Management Framework for Knowledge
Graph Generation in a Web Portal

Erik Kleinsteuber1, Samira Babalou2, Birgitta König-Ries3

Abstract: Knowledge Graphs (KGs) are the semantic backbone for a wide variety of applications in
different domains. In recent years, different web portals providing relevant functionalities for managing
KGs have been proposed. An important functionality of such portals is provenance data management of
the KG generation process. Capturing, storing, and accessing provenance data efficiently are complex
problems. Solutions to these problems vary widely depending on many factors like the computational
environment, computational methods, desired provenance granularity. In this paper, we present one
possible solution: a new framework to capture coarse-grained workflow provenance of KGs during
creation in a web portal. We capture the necessary information of the KG generation process and store
and retrieve the provenance data using standard functionalities of relational databases. Our captured
workflow can be rerun over the same or different input source data. With this, the framework can
support four different applications of provenance data: (i) reproduce the KG, (ii) create a new KG
with an existing workflow, (iii) undo the executed tools and adapt the provenance data accordingly,
and (iv) retrieve the provenance data of a KG.

Keywords: Semantic Web; Knowledge Graph; Knowledge Graph Platform; Provenance Tracking;
Reproducibility

1 Introduction

KnowledgeGraphs (KGs) are graph-structured knowledge bases that store factual information
about a particular domain in the form of relationships between entities. They are the semantic
backbone for awide variety of applications. This brings the need to support their management.
In consequence, different KG management platforms have been suggested for both scientific
and commercial applications [Sy22, SDA20, Ha19, Be20]. Such platforms mostly cover
the whole lifecycle of KG application and include relevant services or functionalities for
creating, using, and further management of KGs. The KG generation process (see Figure 1,
top) can be modeled as an ordered execution of tools to transform source data into a data
graph. Ideally, during this creation process, detailed provenance information should be
1 Heinz-Nixdorf Chair for Distributed Information Systems, Institute for Computer Science, Friedrich Schiller
University Jena, Germany erik.kleinsteuber@uni.jena.de
2 Heinz-Nixdorf Chair for Distributed Information Systems, Institute for Computer Science, Friedrich Schiller
University Jena, Germany; German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig
samira.babalou@uni.jena.de
3 Heinz-Nixdorf Chair for Distributed Information Systems, Institute for Computer Science, Friedrich Schiller
University Jena, Germany; German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig;
Michael-Stifel-Center for Data-Driven and Simulation Science, Jena, Germany birgitta.koenig-ries@uni-jena.de

cba doi:10.18420/BTW2023-65

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 951

mailto:erik.kleinsteuber@uni.jena.de
mailto:samira.babalou@uni.jena.de
mailto:birgitta.koenig-ries@uni-jena.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-65

12 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

captured and subsequently managed. With this, on the one hand, it is possible to track
where information in the KG stems from. This increases trust in the information provided
and supports open science principles [SKR22]. On the other hand, provenance information
enables rerunning the creation process to check for reproducibility and/or to create an
updated version of a KG. Both are important factors in increasing KGs usage. Capturing,
storing, and accessing provenance data are complex problems. Solutions to them vary widely
depending on many factors like the computational environment, computational methods,
desired provenance granularity, and much more. The decision on a provenance solution
depends on interests, needs, and expectations of the developers or potential users, and heavily
on the domain of applications [PRSA18]. One solution is to integrate a computational task
into an environment capable of capturing provenance of the results of these tasks.

In a KG-generation web portal with user interaction, it is necessary to consider dependencies,
restrictions, security, and fault tolerance issues of different tools during KG generation
process. Third-party tools need to be securely connected, safely executed, and carefully
monitored. It is also important to embed these tools in a way that they do not affect each other
(e.g., writing files or memory usage). Moreover, requirements on the provenance solution
for the web portal might change during development, thus a highly flexible architecture is
required. Existing provenance systems (cf. the reviewed systems in [PRSA18]) tend to have
constraints on programming languages and on domains. Integrating third-party tools into
a computational notebook can be a difficult task depending on the complexity of the tool.
Additionally, connecting such a provenance system or computational notebook to the web
portal’s functionalities adds an extra layer of complexity if possible at all.

In this paper, we present our solution to providing users with all necessary information
(so-called provenance data) about the KG generation process in a web portal. We present
the provenance data of KG generation process as a workflow. It holds information about
all executed tools and necessary inputs and outputs during KG generation. We propose a
framework that can capture the coarse-grained workflow provenance of generated KGs in a
web portal. This framework is customized in our studied platform, but it can be adopted
for any other platform. We capture the necessary information about the user, source data,
intermediate results, and executed tools during the KG generation process. We ensure that
the data about the computational tasks needed to create the KG are stored in a reusable
workflow associated to the KG. We retrieve the captured provenance data accordingly to
provide user convenience and better insight into the KG generation process. Our captured
workflow can be rerun over the same or different source data. We show different applications
of the provenance data. Moreover, we show how the workflow in our framework can be
mapped to the W3C PROV ontology [Le13].

The rest of the paper is organized as follows. Section 2 presents preliminaries along with
literature review. Section 3 shows our proposed framework, followed by implementation
detail in Section 4. We conclude the paper in Section 6.

952 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

A Provenance Management Framework for KGs 13

KG

Phase 1 Phase 2 Last Phase

…Tool Tool

Config.

Output Output

Input

Config.

Tool

Output

Input

Config.

Provenance Workflow

Knowledge Graph generation process

Capturing provenance data

Provenance
Data

1
Association

3

Storing
2

Provenance
Data

Provenance
Data

Reproduction Altered rerun Redo operation Provenance retrieval

Provenance applications4

Knowledge
base

Database

source data

Fig. 1: Overview of our management framework for managing the provenance of the Knowledge
Graph generation in a web portal.

2 Literature Review & Preliminaries

The provenance of an object is the history of its origin and derivation [MMW13]. Provenance
tracking records the provenance of an object. In the literature, there have been different
surveys (cf. [PRSA18, HDBL17]) on provenance characteristics and provenance models.
The importance of provenance on large-scale KGs and the Web of Data has been highlighted
in [Ho20]. As a solution to manage the provenance, computational Notebooks (cf. Jupyter
Notebook [Kl16]) have gained widespread adoption in recent years, cf. ProvBook [SKR18].
However, implementing large, complex projects in a notebook, especially when multiple
programming languages are used, is not straightforward. Another issue is the automation
of a notebook. We faced different problems to connect a piece of software implemented
in Jupyter Notebook to the backend of our studied platform, and executing cells when
we receive specific user requests. On the other hand, web-based interactive development
environments such as JupyterLab that can be hosted and accessed by multiple people would
introduce security issues. Existing tools such as Open Refine (https://openrefine.org/)
among others, can also track applied operations on the data and thus can be used as a
provenance solution. However, we did not use such tools as a provenance solution, as they
are not a fully-fledged development environment and it is not always possible to extend those
tools with arbitrary code and still make use of its provenance features. To the best of our
knowledge, a few KG platforms [Sy22, SDA20, Ha19, Be20] apply a provenance solution
in some capacity. Of those, Blue Brain Nexus [Sy22] is the only one explicitly mentioning
the importance of provenance data and their usage of the W3C PROV ontology [Le13].

A Provenance Management Framework for Knowledge Graph Generation in a Web Portal
953

https://openrefine.org/

14 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

The other platforms did not explain their approach on provenance management in their
publications.

Preliminaries. To generate a KG, different phases need to be carried out (see Figure 1, top),
where in each phase a (different) tool will be executed. Definition 1 shows our definition of
the KG generation process.

Definition 1 KG generation is an ordered execution of tools in different phases, where
source data 𝑑𝑠 is the input and a Knowledge Graph (KG) is the output. Formally, this yields
𝐾𝐺 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑑𝑠).

The tools are executed to perform different computational tasks e.g., cleaning datasets,
linking the entities to external resources, and generating specific output. In this paper, we
define a tool as:

Definition 2 A tool (TO) is an executable piece of software that performs some
computational task. The input of a tool is a file along with a configuration. The output of a
tool is a new processed file.

A configuration is a set of input parameters for executing the tool. Every configuration is a
set of key-value pairs, containing the name of a parameter and its value. For simplicity, we
assume that tools are run sequentially to generate a KG. This execution order needs to be
preserved. We assume the input of a tool execution is the output of the prior tool execution.
Every tool execution has a file as an input and a new file as an output. We define any such
file as a data object.

3 Our Proposed Provenance Management Framework

Figure 1 shows our provenance management framework in the KG generation of a web
portal. The users go through different phases to generate the KG based on their source data.
The resulting KG is added to the knowledge base. Thus, with each generation of a new
(sub-)KG, the overall KG (in the remainder of the paper referred to as main KG) is extended.
The provenance data of each phase is captured (1), stored (2), and associated with the
generated KG (3). The provenance data can be used for various applications (4).

3.1 Capturing provenance data

The provenance capture mechanisms collect information related to the KG generation
process. In the web portal, each KG generation starts by uploading source data 𝑑𝑠 by a user.

954 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

A Provenance Management Framework for KGs 15

After that, the user selects a tool with a specific configuration and then the tool gets executed.
This happens sequentially multiple times until the KG is generated. In our framework, we
capture (see 1 in Figure 1) the provenance of each data object, that got processed by a tool
execution during the KG generation process. All executed tools, configurations, and input
and output of each phase of the KG generation are saved separately. For each, we save a set
of information such as the version of the tool or the storage location of a file. We capture
all provenance data of an executed tool at every phase. We call the information about all
executed tools in the sequential phases of the KG generation a workflow (see Definition 3).
Note that, the provenance data of a data object includes all stored data of prior phases until
that phase. In this view, the provenance data of the generated KG is the complete workflow
𝑊 .

Definition 3 A workflow𝑊 is an ordered collection of provenance data of executed tools
in all phases of the KG generation process.

3.2 Provenance storage and association

During KG generation, we store (see 2 in Figure 1) the provenance of each produced
data object. Note that, each generated KG is a sub-KG of the main KG in the web portal.
We consider two approaches for provenance storage and associating provenance data to a
generated sub-KG (see 3 in Figure 1).

Approach 1: Provenance data is saved in the knowledge base. This would require the
provenance data to be represented as triples. These triples could be grouped by another graph
name. The provenance data can then be coupled by a triple featuring both the provenance
data of graph name and the KG.

Approach 2: The generated KGs are stored in a knowledge base, while their provenance
data are stored in a relational database. To handle the provenance storage in the web portal,
we store provenance data of KG generation process (i.e., workflow) as a JSON-string inside
the provenance record. Listing 1 shows a layout of a workflow𝑊 holding for 𝑃ℎ𝑎𝑠𝑒𝑖 . For
every new phase, a new key 𝑃ℎ𝑎𝑠𝑒𝑖+1 gets created together with a new dictionary and new
values.

A Provenance Management Framework for Knowledge Graph Generation in a Web Portal
955

16 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

{"Phase_i":

{

"input": "referenceTo(data object)",

"tool": "referenceTo(TO)",

"configuration":

{

"argname1": "value1",

"argname2": "value2",

...

},

"output": "referenceTo(data object)"

}

}

List. 1: Example of a workflow holding one phase in JSON-string.

For each request of KG generation in the web portal, we create a new entry in the relational
database (provenance information of KG generation’s phases). Table 1 shows a simplified
version of this database (the database, including provenance data of tools, datasets, and
users, are not shown here). Each KG generation process has a primary key and belongs to a
specific project. All provenance data of a KG generation’s phases (i.e., the workflow) is
saved as a provenance record. We support here both graph- and triple-levels.

At the graph-level, we store the reference (URI of the sub-KG in the knowledge base)
to this sub-KG in our relational database (Column 3 of Table 1). In this case, for each
saved sub-KG in the knowledge base, we save the reference (id) of that sub-KG next to
its provenance data. In the triple-level, subjects, predicates, and objects of all triples are
annotated (e.g., via rdfs.seeAlso, rdfs.comment, or other defined annotations) with their
respective provenance ids. With the provenance id we mean the first column of Table 1. If a
user wants to retrieve the provenance of a specific sub-KG or a term (subject, predicate,
or object), we can lookup for its provenance data via the reference of the sub-KG. The
association is of type “no-coupling” according to [PRSA18]. The associated provenance
data can be stored in different formats such as JSON, XML, or turtle (an RDF KG relying
on the PROV-O ontology (see next section)). In this approach, provenance data is stored in
the relational database and can be exported in different formats.

4 Implementation

We have partially tested our provenance management framework in the iKNOW project
(https://planthub.idiv.de/iknow/), which is distributed under an open-source license in
https://github.com/fusion-jena/iKNOW. iKNOW [Ba21] is a planned semantic-based
toolbox for Knowledge Graph creation and evolution in the biodiversity domain. For the

956 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

https://planthub.idiv.de/iknow/
https://github.com/fusion-jena/iKNOW

A Provenance Management Framework for KGs 17

Tab. 1: Provenance data about the KG generation process in the web portal.

Project RefTo ProvenanceKey Name Sub-KG Record

001 NameA 𝑒𝑥 : 𝐺1
[[(phase,“1”), (input,“file12”), (tool,“ToolA”), (output,“file33”),(config,“arg1”)]
[(phase,“2”), (input,“file33”), (tool,“ToolD”), (output,“file53”),(config,“arg3”)]
[(phase,“3”), (input,“file53”), (tool,“ToolB”), (output,“file22”),(config,“arg6”)]]

002 NameB 𝑒𝑥 : 𝐺2

[[(phase,“1”), (input,“file10”), (tool,“ToolC”), (output,“file44”),(config,“arg1”)]
[(phase,“2”), (input,“file44”), (tool,“ToolE”), (output,“file42”),(config,“arg4”)]
[(phase,“3”), (input,“file42”), (tool,“ToolG”), (output,“file12”),(config,“arg5”)]
[(phase,“4”), (input,“file12”), (tool,“ToolF”), (output,“file68”),(config,“arg8”)]]

Fig. 2: Provenance Management GUI.

backend, we used the Python web framework Django (www.djangoproject.com/). For
building user interfaces on the frontend, we used Svelte (https://svelte.dev/). We
used Docker (www.docker.com/) to encapsulate the different pieces of software that are
- or will be - implemented on our server. A Docker container packages up code and
all associated dependencies. This prevents dependency issues and provides an isolated
runtime environment that can be used to serve all kinds of tasks. We used Postgresql
(www.postgresql.org/) for saving data of the portal functionalities along with provenance
data, and Blazegraph DB (www.blazegraph.com/) for storing and accessing KGs. We
currently implemented the second approach of provenance association.

5 Provenance Applications

Figure 2 shows the GUI of provenance management. Our provenance framework can support
four different applications (see 4 in Figure 1):

1. Reproducibility. A reproducible KG can increase trust in the information provided and
support open science. Reproducibility of a KG is the capability of getting the same KG by
recreating or reproducing the KG. Reproducing the KG in our framework can be done by
automatically running a pre-existing workflow of a sub-KG with the goal of reproducing
the same KG. Through our GUI, the user can select one of the existing workflows and
run the whole process. After executing the workflow, the resulting KG can be downloaded

A Provenance Management Framework for Knowledge Graph Generation in a Web Portal
957

www.djangoproject.com/
https://svelte.dev/
www.docker.com/
www.postgresql.org/
www.blazegraph.com/

18 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

separately. We also show the original version of the KG, so that the user can compare their
triples and metadata (such as the number of triples).

2. Altered rerun. Let us consider this scenario, where a user wants to generate a new KG
based on one of the existing workflows𝑊 of a pre-generated KG while possibly changing
tools, configurations, or even the source data. To achieve this, we let the user select one of
the existing workflows (see Figure 3), make the desired changes on that (such as selecting
other tools or changing the tool’s configuration), and then run the workflow over the same
or another source data. The main advantage here is the possibility of generating a new KG
automatically with an already known workflow𝑊 . This provides user convenience. In the
end, we save this altered workflow as a new workflow in our portal.

3. Undo operation. Let us consider a user is in the process of generating a new sub-KG
wanting to undo one or multiple tool executions. In this scenario, we let the user roll back one
or several executed tool(s). Upon this action, the provenance data will be updated accordingly.
Some additional implementation details (e.g., deleting files, or making provenance data and
files consistent in the database) have to be considered to ensure the safety of the operation.
This application is implemented in the Knowledge Graph generation scenario (see Figure 5).

4. Provenance retrieval. Retrieving provenance data is important for a user to view the
data and understand how tools were executed during KG generation. Through our GUI
(see Figure 4, top) users can select which sub-KG they want to retrieve provenance data.
They can also retrieve the provenance data of a specific term. The system first search on
which sub-KG the term exists. It then shows the list of sub-KGs to the user. Then, the user
can select one of the sub-KG to see its provenance data. Figure 4, down, shows the result
of provenance retrieval. The user can observe who, when and how the sub-KG is built.
We currently offer the possibility to download provenance data of a sub-KG as a JSON.
Moreover, our provenance data is mapped to the popular, standardized PROV-Ontology and
can be downloaded in any RDF Syntax. We plan to provide downloading provenance data as
a Turtle file, mapped to PROV-Ontology. A workflow can be mapped to the PROV-Ontology,
considering the following rules:

• Every provenance data of each phase of KG generation gets a URI and becomes a
prov:Activity.

• Every data object and configuration of a tool gets a URI according to its reference
and becomes a prov:Entity.

• Every tool gets a URI according to its reference and becomes a prov:Agent.

• For every phase (provenance data of each phase), there is a triple with the URI of the
phase as the subject, prov:wasAssociatedWith as the predicate and the URI of the
tool as the object

• For every phase, there is a triple with the URI of the phase as the subject, prov:used
as the predicate and the URI of the input data object as the object

958 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

A Provenance Management Framework for KGs 19

Fig. 3: The GUI of altered rerun scenario.

A Provenance Management Framework for Knowledge Graph Generation in a Web Portal
959

20 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

Fig. 4: Top: Users select which term or sub-KG they want to retrieve the provenance; Down: It shows
the result of provenance retrieval.

960 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

A Provenance Management Framework for KGs 21

Fig. 5: Undo operation in the Knowledge Graph generation process.

• For every output data object there is a triple with the URI of the output data object
as the subject, prov:wasGeneratedBy as the predicate and the URI of the according
phase as the object

• The configuration gets a URI according to the index of the phase and becomes a
prov:Entity. For every key-value pair in the configuration, a new triple can be created
with the URI of the configuration as the subject.

• To show that the configuration is used in the phase, a triple <ex:phase_i prov:used
ex:config_i> is generated.

• Additionally, the triple <ex:output prov:wasDerivedFrom ex:input> can be
generated to show that the output data object was derived from the input data
object.

Listing 2 shows an example of a phase in PROV format in the turtle syntax. The URIs
of phase, tool, configuration, input, and output data objects are simplified to ex:phase_i,
ex:tool, ex:config_i, ex:input_i, and ex:output_i, respectively. The URI of a tool
ex:tool does not need an index, because we always have a finite set of known tools and no
new tools get generated during tool execution. For every other subject, the URIs can be
individualized e.g., by appending the index of phase i. For every following phase, the URI
of the last output data object ex:output_i can be used without generating a new URI e.g.,

A Provenance Management Framework for Knowledge Graph Generation in a Web Portal
961

22 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

ex:input_i+1. In general, the URIs of data objects do not necessarily have to contain the
terms input or output. This is just for explanatory purposes. It is only important that these
URIs are unique.

ex:tool a prov:Agent .

ex:config_i a prov:Entity .

ex:phase_i a prov:Activity ;

prov:used ex:input ;

prov:wasAssociatedWith ex:tool ;

prov:used ex:config_i .

ex:input_i a prov:Entity .

ex:output_i a prov:Entity ;

prov:wasGeneratedBy ex:phase_i ;

prov:wasDerivedFrom ex:input .

List. 2: Example of a phase in PROV format and the turtle syntax.

6 Conclusion & Future Work

In this paper, we provided the core concept and design of a framework to capture, store
and retrieve provenance data of KG generation in a web portal and show an environment
capable of provenance management. We presented four different applications to show the
benefit of our proposed framework. However, the experimental test over this framework
via a user study stays for our future work. Another future plan is extending the provenance
capture and storage for tools with special requirements outside of our definition. This can
involve e.g., multiple inputs and outputs of a tool. A possible solution to retrieve provenance
data more efficiently and to enable retrieving triples based on the provenance data of the
KG they belong to, can be achieved by saving provenance data in the same location as the
KG is. In this way, a single query on the knowledge base can be issued, that filters results
accordingly. Thus, we will handle this issue in our future work, too.

Bibliography
[Ba21] Babalou, Samira; Schellenberger Costa, David; Kattge, Jens; Römermann, Christine;

König-Ries, Birgitta: Towards a Semantic Toolbox for Reproducible Knowledge Graph
Generation in the Biodiversity Domain - How to Make the Most out of Biodiversity Data.
In: INFORMATIK 2021. Gesellschaft für Informatik, Bonn, pp. 581–590, 2021.

[Be20] Berven, Arne; Christensen, Ole A; Moldeklev, Sindre; Opdahl, Andreas L; Villanger,
Kjetil J: A knowledge-graph platform for newsrooms. Computers in Industry, 123:103321,
2020.

962 Erik Kleinsteuber, Samira Babalou, Birgitta König-Ries

A Provenance Management Framework for KGs 23

[Ha19] Haase, Peter; Herzig, Daniel M; Kozlov, Artem; Nikolov, Andriy; Trame, Johannes:
metaphactory: A platform for knowledge graph management. Semantic Web,
10(6):1109–1125, 2019.

[HDBL17] Herschel, Melanie; Diestelkämper, Ralf; Ben Lahmar, Houssem: A survey on provenance:
What for? What form? What from? The VLDB Journal, 26(6):881–906, 2017.

[Ho20] Hogan, Aidan: Web of data. In: The Web of Data, pp. 15–57. Springer, 2020.

[Kl16] Kluyver, Thomas; Ragan-Kelley, Benjamin et al.: Jupyter Notebooks-a publishing format
for reproducible computational workflows. In: In Positioning and Power in Academic
Publishing: Players,Agents and Agendas, F. Loizides and B. Schmidt (Eds.). volume
2016. IOS Press, pp. 87–90, 2016.

[Le13] Lebo, Timothy; Sahoo, Satya; McGuinness, Deborah; Belhajjame, Khalid; Cheney, James;
Corsar, David; Garijo, Daniel; Soiland-Reyes, Stian; Zednik, Stephan; Zhao, Jun: Prov-o:
The prov ontology. 2013.

[MMW13] Majumdar, Rupak; Meyer, Roland; Wang, Zilong: Provenance verification. In:
International Workshop on Reachability Problems. Springer, pp. 21–22, 2013.

[PRSA18] Pérez, Beatriz; Rubio, Julio; Sáenz-Adán, Carlos: A systematic review of provenance
systems. Knowledge and Information Systems, 57(3):495–543, 2018.

[SDA20] Staar, Peter W. J.; Dolfi, Michele; Auer, Christoph: Corpus processing service: A
Knowledge Graph platform to perform deep data exploration on corpora. Applied AI
Letters, 1(2):e20, 2020.

[SKR18] Samuel, Sheeba;König-Ries, Birgitta: ProvBook: Provenance-based Semantic Enrichment
of Interactive Notebooks for Reproducibility. In: ISWC (P&D/Industry/BlueSky). 2018.

[SKR22] Samuel, Sheeba; König-Ries, Birgitta: End-to-End provenance representation for the
understandability and reproducibility of scientific experiments using a semantic approach.
Journal of Biomedical Semantics, 13(1):1, December 2022.

[Sy22] Sy, Mohameth François; Roman, Bogdan; Kerrien, Samuel; Mendez, Didac Montero;
Genet, Henry; Wajerowicz, Wojciech; Dupont, Michaël; Lavriushev, Ian; Machon, Julien;
Pirman, Kenneth et al.: Blue Brain Nexus: An open, secure, scalable system for knowledge
graph management and data-driven science. Semantic Web, (Preprint):1–31, 2022.

A Provenance Management Framework for Knowledge Graph Generation in a Web Portal
963

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

MLProvLab: Provenance Management for Data Science
Notebooks

Dominik Kerzel1, Birgitta König-Ries2, Sheeba Samuel3

Abstract: Computational notebooks are a form of computational narrative fostering reproducibility.
They provide an interactive computing environment where users can run and modify code and repeat
the exploration, providing an iterative communication between data scientists and code. While the
ability to execute notebooks non-linearly benefits data scientists for exploration, the drawback is that it
is possible to lose control over the datasets, variables, and methods defined in the notebook and their
dependencies. Thus, in this process of user interaction and exploration, there can be a loss of execution
history information. To prevent this, a possibility is needed to maintain provenance information.
Provenance plays a significant role in data science, especially in facilitating the reproducibility of
results. To this end, we developed a provenance management tool to help data scientists track, capture,
compare, and visualize provenance information in notebook code environments. We conducted an
evaluation with data scientists, where participants were asked to find specific provenance information
from the execution history of a machine learning Jupyter notebook. The results from the performance
and user evaluation show promising aspects of provenance management features of the tool. The
resulting system, MLProvLab, is available as an open-source extension for JupyterLab.

Keywords: Data Science; Information Extraction; Provenance; Jupyter Notebook; Reproducibility

1 Introduction

Data science and machine learning (ML) techniques significantly impact the scientific
community in developing relevant and practical applications for society. With the rapid
publication of results in the data science and ML field, it is increasingly important for
scientists also to be able to reproduce and recreate results. Jupyter notebook [KR+16] is one of
the adopted approaches researchers use to publish results of their data science and ML projects
to enable reproducible computational research. The notebooks are computational narratives
that data scientists widely use in multiple ways for scientific computing, exploration,
tutorials, documentation, interactive manuals, publications, etc. This is possible because
the notebooks encapsulate code and explanatory text, computational results, visualizations,
etc., in a single document. In addition to being a stand-alone tool, it is also integrated with
different data science platforms like Kaggle, Colab notebooks, etc. As a result of exploration
1 Friedrich Schiller University Jena, Germany dominik.kerzel@uni-jena.de
2 Heinz-Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University Jena, Germany

Michael Stifel Center Jena birgitta.koenig-ries@uni-jena.de
3 Heinz-Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University Jena, Germany

Michael Stifel Center Jena sheeba.samuel@uni-jena.de

cba doi:10.18420/BTW2023-66

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 965

mailto:dominik.kerzel@uni-jena.de
mailto:birgitta.koenig-ries@uni-jena.de
mailto:sheeba.samuel@uni-jena.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-66

2 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

and constant changes done in a data science pipeline, it is essential to understand how the
results are derived under which choices and assumptions of researchers. Provenance plays
a significant role to record and reference the history of results. This, in turn, helps data
scientists to enable reproducibility [SK21]. However, scientists do not have direct access to
the history of their frequent experimentation in these notebooks. The rapid development
of data science and ML methods and algorithms results in new releases of libraries and
modules. As a result, running old notebooks without knowing the versions of libraries and
modules can cause execution errors and incompatibility issues. Another significant barrier
is the possibility of running notebooks non-linearly. It becomes difficult to reproduce and
get the same or close-by results without understanding how each cell and the variables
defined in them are dependent on each other.
To address these issues, in this paper, we present MLProvLab as an extension to JupyterLab4,
providing provenance management for reproducibility. This tool provides significant benefits
for data scientists to track, compare, manage, and visualize provenance information of their
computational experiments written in Jupyter notebooks. We can track, at runtime, the
datasets, variables, libraries, and functions used in the notebook and their dependencies
between cells. This is also visualized as a provenance dependency graph with temporal
information. We evaluated its efficiency and features through a performance test and a user
evaluation with 15 participants using practical tasks. The study shows that these 15 data
scientists using MLProvLab for the first time correctly answered an average of 82% of the
tasks they were provided in a machine learning notebook which was totally new to them
and consisted of 55 executions.

2 Background and Related Work

Though data scientists use multiple tools and software for their computational tasks, writing
code using programming languages like Python and R is common in data science and ML.
The open-source libraries like Scikit-Learn5, PyTorch6, Numpy7, etc., provide accessible
and reusable tools for data analysis and are heavily used for data science, ML, and deep
learning applications. Jupyter notebooks that support over 40 programming languages,
including Python and R, are widely used by millions of scientists. This is clearly seen in the
availability of millions of notebooks on GitHub. Hence, in this research, we focus on the
provenance management of Jupyter notebooks, with specific attention on providing support
for the reproducibility of data science workflows.
Tools for capturing provenance from scripts and programs at different levels of granularity
have been actively developed [Da12; Mc15; Pi15]. The noWorkflow tool [Pi15] is one
such tool that captures the definition, deployment, and execution provenance of Python
scripts. With the current wide adoption of Jupyter notebooks [KR+16], research works have

4 https://jupyterlab.readthedocs.io

5 https://scikit-learn.org

6 https://pytorch.org/

7 https://numpy.org/

966 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

https://jupyterlab.readthedocs.io
https://scikit-learn.org
https://pytorch.org/
https://numpy.org/

MLProvLab: Provenance Management for Data Science Notebooks 3

also focused on tracking provenance from computational notebooks [Ca17; He19; Ho14;
KM18; KP17; Ma21; PGS18; Pi15; Sh23; SK18; Wa20; We19]. Prov-o-matic provides a
provenance-tracking extension for older versions of IPython Notebooks, which saves the
provenance traces to Linked Data file [Ho14]. Another approach to track provenance in
computational notebooks is by integrating noWorkflow [Pi15]. As a result, the features
provided by noWorkflow are available in the IPython notebooks. However, this approach
allows a python script to be run from inside IPython notebooks capturing the provenance of
scripts instead of notebooks. Systems like Verdant [Ke19] are more closely aligned with
MLProvLab. Verdant helps data scientists examine the execution history and notebook
events. However, we analyze the code and provide artifacts used in the code and the
dependencies between the cells based on the artifacts.
Recent approaches have also developed custom Jupyter kernels to trace runtime user
interactions and automatically manage the lineage of cell execution [KP17; Ma21]. In their
approach, the tool is developed as a separate Jupyter kernel, allowing users to update all cells
affected by a change in a cell. This is possible by adding unique and persistent identifiers
to each cell and providing references to results in other cells. This is different from our
approach as these approaches [KP17; Ma21] introduce changes to the kernel and requires
its installation.
Recent works have also focused on the provenance and model management of data science
and ML pipelines beyond computational notebooks. An overview of conceptual, data
management, and engineering challenges in the ML model management is given in [Sc18].
One of the data management challenges concerning the provenance management of ML is
automatically tracking and querying model metadata. Several tools have been developed as
metadata capturing systems in recent years [Or20; Va16; Za18]. ModelDB [Va16] provides
a feature to manage ML models with metadata logging of metrics, artifacts, tags, and user
information. Some systems track detailed provenance data by depending on the users to
understand their complex schema and integrate their code with the corresponding API
provided by the system [Sc17]. These provenance-capturing systems generally require
users to actively configure their code, e.g., by annotating functions, hyperparameters, and
operations. Due to the extra time and effort required, users may omit to configure and
annotate their code. Therefore, tools that automatically extract and manage metadata are
preferable to systems that require human intervention.
It is essential to provide provenance management without changing the code environment
for the user. It is also essential that such platforms provide metadata management to all their
users, irrespective of their skills and experience in data science. JupyterLab is a great basis
for such projects, as shown in other works [Ke19]. Hence, in this paper, we target the users
of JupyterLab and allow automatic provenance extraction from data science notebooks.

3 MLProvLab

Kerzel et al. [KSK21] describe the use case, challenges, and design goals of our data
science and ML provenance management tool to automatically expose the metadata. Based

MLProvLab: Provenance Management for Data Science Notebooks 967

4 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

on the design goals, we present MLProvLab, a provenance management tool to track,
manage, compare, and visualize the provenance of data science notebooks. The tool is
available as an open-source extension for JupyterLab8. MLProvLab is composed of two
components. A Python backend component provides event listeners for user interactions,
an Abstract Syntax Tree (AST) generator for analyzing the code, and a core messaging
plugin to request information from the kernel and notebook panel. On the visualization
side, MLProvLab provides a Javascript frontend component that captures user interactions,
renders visualization, and generates provenance graph. The tool contains provenance capture,
visualization, comparison, and export modules.
Provenance Capture. The provenance capture module of MLProvLab collects and stores
the provenance of a user session triggered by the start of the kernel. We call the lifetime of a
kernel an epoch. For every new kernel, the provenance of epochs is created and stored in
the notebook metadata. The tool defines event listeners for different user actions like the
execution, addition, and deletion of a cell. When a code cell is executed, the cell content
is returned to the backend. The executed code is then analyzed using Abstract Syntax
Tree (AST) and string pattern matching techniques to get data provenance. We capture
information on the definition and usage of variables, functions, and classes. The import
statements are also tracked to extract information on the libraries and modules used and
their version information. Additional operations are performed to find data sources for
ML provenance management using string matching. In summary, the MLProvLab tracks
and manages every variable declared in the cell, the dependencies of variables that are
not defined in the evaluated cell, used datasets and the corresponding variables, imported
libraries, and modules, etc.
Provenance Visualization. For the provenance visualization module, the MLProvLab uses
a provenance graph to visualize the provenance of the notebook, including the execution
order of cells and the data dependencies between cells. The tool can be invoked using the
‘MLProvLab’ button in the notebook toolbar. Figure 1 shows the provenance visualization
graph of a sample ML notebook. The data sources and execution provenance are shown in
the graph. A node is created in the graph for every cell in the notebook. Edges show the
dependencies between cells using variables or methods declared in a cell. The outgoing edge
from a node indicates that a data source was defined and is used in the other corresponding
node. The colors of the nodes and edges represent their status. Cells that are colored orange
represent cells with data sources, and green represents cells with output. Cell half colored
with orange and green show that the cell contains both datasets and output. Users can
move the sliders at the bottom of the panel to see the history of the changes and runs
performed by the user. The ‘Epoch’ slider provides the history of the execution of the Jupyter
Notebook every time a new user session of the kernel is started. The ‘Execution’ slider
depicts the execution history of the Jupyter Notebook every time an event on the notebook
cell is registered. Correspondingly, the information for the execution environment, datasets,
and libraries used are shown to the user for the selected execution. The tool also shows
the number of user sessions, executions, and execution time. MLProvLab also provides a

8 https://github.com/fusion-jena/MLProvLab/

968 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

https://github.com/fusion-jena/MLProvLab/

MLProvLab: Provenance Management for Data Science Notebooks 5

Fig. 1: Provenance Execution Graph in MLProvLab. The notebook cells are depicted as vertices of
the graph. Green nodes in the graph show cells with any output type, orange show cells with data
source, grey shows cells where no data source or output is detected. Edges in the graph show the
dependencies between cells. The footer allows to slide the execution history of the notebook.

Fig. 2: Libraries and modules used in the notebook in the 4th epoch.

MLProvLab: Provenance Management for Data Science Notebooks 969

6 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

general menu with options to customize the graph to get additional provenance information.
Figure 2 shows the Import Info menu in MLProvLab. It shows the information about the
imported libraries, the module used in the notebook, and their version information. The
libraries which are imported but not used are marked as red. To visualize the definition
provenance, users can click on a node and open a radial context menu. This gives detailed
information on the used datasets, functions, variables, outputs, etc. Users can also compare
the definition provenance from previous runs. The graph is built using Cytoscape.js9.

Fig. 3: Execution environment information of the notebook

Fig. 4: Information on the datasets used in the notebook

Figure 3 and 4 shows the information of the execution environment of the notebook and the
datasets used in the code, respectively. The execution environment of the notebook provides
information on the programming language, kernel, operating system, and the versions of
the selected epoch. Similarly, the General info provides information on the datasets used in
each execution with their variable name.
Provenance Comparison. In the provenance comparison module of MLProvLab, the
changes made to a notebook cell can be examined by users (Fig. 5). Users can select the
execution of previous ML experiments and compare it with the current execution. We use
the react-diff-view10 component to visualize the differences.
Provenance Export. The provenance export module of MLProvLab allows users to export
the collected provenance information of the notebook. Users can also clear the provenance
history. However, users are given an alert to export the provenance before removing the
provenance history from the notebook. This information is currently available in JSON
format. For semantic interoperability, we plan to make this information available in other
formats, including JSON-LD, RDF, etc.

9 https://cytoscape.org/
10 https://github.com/otakustay/react-diff-view

970 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

https://github.com/otakustay/react-diff-view

MLProvLab: Provenance Management for Data Science Notebooks 7

Fig. 5: Code difference between 2 different epochs

4 Evaluation of MLProvLab

The primary goal of our evaluation was to gather information about how the features of
MLProvLab assist data scientists in the provenance management of Jupyter notebooks. As a
result, we conducted a performance evaluation to test how MLProvLab handles notebooks
with different numbers of cells. We also conducted a user evaluation to gather information
on the impression of MLProvLab and test how the provenance management helps them
understand the notebooks.

4.1 Performance Evaluation

We did a performance test with two different notebooks, one with 25 notebook code cells
and the other with 100 code cells. Based on the study of analyzing 1 million computational
notebooks on GitHub [RTH18], the typical number of total cells in a notebook range from
25-30. Notebook with more than 100 cells is infrequent. Hence, we selected notebooks with
25 and 100 cells. For the performance test, we used notebooks that calculate the Fibonacci
number given an input. We defined ten variables, with each calculating a Fibonacci number
for ten. These ten variables were assigned to each other and were repeated in the other cells.
This was done to get multiple dependencies between every cell. As a result, each node in
the provenance graph had ten outgoing edges to the other node.
Table 1 shows the status of the notebook run scenarios used for the evaluation. We evaluated
six notebook run scenarios with different configurations. For example, in Notebook Run

MLProvLab: Provenance Management for Data Science Notebooks 971

8 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

Scenario A, the notebook with 100 cells is executed without enabling and updating the
MLProvLab extension and provenance graph. While in Scenario B, the notebook has the
same number of cells, with both MLProvLab extension and provenance graph enabled, and
in Scenario C, MLProvLab enabled but without updating the provenance graph. These
scenarios are also repeated with a notebook with 25 cells. We measured the execution time
of the notebook in each scenario. Table 2 shows the results from the performance test for
each notebook scenario. Each notebook is tested with different numbers of epochs (1, 2, 3,
4, 5, 10, and 20). The execution time in seconds for each notebook run scenario for each
epoch count is shown.

Notebook Run Sce-
nario

Count of code cells MLProvLab enabled Provenance Graph
Updated

A 100 no no
B 100 yes yes
C 100 yes no
D 25 no no
E 25 yes yes
F 25 yes no

Tab. 1: Definition of the notebook run scenarios

Epoch Time in seconds
Notebook
Run Sce-
nario

A B C D E F

1 2.46 89.06 4.13 1.02 5.83 1.66
2 2.39 90.94 5.58 1.05 6.64 1.75
3 2.50 7.37 1.02 6.24 1.54
4 2.47 8.56 1.01 6.21 1.99
5 2.48 10.05 1.02 6.37 2.21
10 21.02 7.97 2.62
20 24.18 8.11 3.85

Tab. 2: Performance evaluation of MLProvLab

Notebook size Epochs Count of notebook code cells
12.0 KB 0 25
2.5 MB 10 25
5.0 MB 20 25
36.0 KB 0 100
9.9 MB 10 100

Tab. 3: Cell count and size of evaluation notebooks

As seen in Table 2, the execution time of the notebooks increases as the number of epochs
increases. For notebook scenario B, where there are 100 cells and both MLProvLab and
the provenance graph are enabled and updated, we can see the overhead in loading the
notebook. If one compares the runs with enabled and disabled extensions, one quickly sees

972 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

MLProvLab: Provenance Management for Data Science Notebooks 9

that a constant overhead is added. It is also noticeable that the execution times increase the
more often the notebook is executed. This behavior is expected, as additional computations
must be performed in the backend. Users working with notebooks with the average number
of cells (around 25-30) are unaffected. However, working with notebooks with around 100
code cells with and without MLProvLab with multiple executions results in overhead in
time. The overhead is due to the recomputation of the graph. However, due to this limitation,
MLProvLab provides an option to disable the recalculation of the graph after every cell
execution. This can further minimize the general overhead.
Table 3 shows the statistics based on the size of the notebooks and the number of execution.
As expected, the size of the provenance information increases with the number of executions
and code cell count. Currently, the captured provenance information is stored in the
metadata of the notebook. This is located in a JSON object that has to be rewritten to
disk after each update. Notebook containing the provenance information benefits users to
share their intermediate and negative results, their choices and assumptions made during
experimentation, etc. Currently, MLProvLab allows users to export the collected provenance
data and then remove the provenance information if the notebook size gets too large. We
plan to provide users an option to efficiently store the data, e.g., in SQLite database outside
of JupyterLab.

4.2 User Evaluation

We present the materials and methods used and the results of the user evaluation conducted
to get the impression of MLProvLab.
Participants. We used convenience sampling for the recruitment of participants. Partici-
pation in the user evaluation was voluntary. Forty participants responded to the survey, of
which 36 agreed to the consent form and filled in their research background. However, only
15 participants finished the user evaluation and submitted their responses. We believe that
this was due to the relative long time (around 25 minutes) needed to complete the tasks.
Participants who read and agreed to the informed consent form and submitted their full
responses were included in the final study. Of 15 participants, 14 have a computer science
background, and 1 has physics. Seven undergraduate students, 2 Master students, 4 PhD
Students, 1 PostDoc, and 1 Professor participated in the user evaluation.
Materials. We explored many publicly available data science notebooks to create a realistic
provenance history for the experimentation. We also selected the evaluation notebook,
which is not difficult for the participants to understand in minimum time. We used the
Digit Recognizer problem from Kaggle, which uses the MNIST dataset11. We adapted the
code and the resulting notebook contained 19 code cells with the provenance information
collected from 4 epochs and 55 executions.
The questionnaire for the user evaluation was designed and developed using the following
resources: (1) interviews conducted with the data scientists [SLK21] in the Werkstatt project

11 https://www.kaggle.com/c/digit-recognizer

MLProvLab: Provenance Management for Data Science Notebooks 973

https://www.kaggle.com/c/digit-recognizer

10 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

[Sa20] and (2) existing published literature on computational research reproducibility [Pi20].
The interviews and the existing literature provided insights into the challenges and problems
faced by scientists and the provenance information required in reproducing published results
of others in the context of data science and ML. The questionnaire was developed in English.
A group of three researchers from computer science provided feedback on the length of the
questionnaire, the priority and clarity of the defined questions, and technical issues in filling
out the questionnaire. Based on the feedback, changes were made to the final version of the
questionnaire.
The evaluation consisted of 26 questions grouped in 6 sections. The six sections are (1)
Informed Consent Form (2) Research context of the participant (3) Testing MLProvLab
with evaluation notebook (4) MLProvLab Introduction (5) Questions for Evaluation (6)
General Impressions of MLProvLab. In the first section, we asked the consent from the
respondents to participate in the evaluation. The informed consent form contained informa-
tion about the study’s background, purpose, procedure, voluntary participation, and contact
information. Other than the informed consent form, none of the questions in the evaluation
were mandatory.
In the second section, we asked about the research background of the participants. In
addition to their current domain and position, we asked the participants whether they use
Juypter Notebooks and machine learning in their work. In the third section, we asked the
participants to open the evaluation notebook and in the following section, we introduced
MLProvLab. We provided a short tour showing its features and how they worked. This
help page included screenshots and annotations of each feature provided by the tool. In
the fifth section, we provided the questions to answer based on the evaluation notebook
using MLProvLab. This section included 13 questions. Some of the questions were either
single-choice or multiple-choice questions. Here is a list of the questions:

Q1 Which version of the kernel was used in epoch ‘1’?

Q2 Which external modules were used in epoch ‘1’?

Q3 Are there any imported modules that were not used in epoch ‘3’?

Q4 Which one was the most used module in epoch ‘3’?

Q5 Which data sources were used in the notebook?

Q6 In which execution and epoch the following figure got printed?

Q7 Which version of seaborn was used?

Q8 Which versions of python were used in the notebook?

Q9 When was the notebook last executed?

Q10 Are there any differences in the python and kernel versions used in the notebook in
different executions?

974 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

MLProvLab: Provenance Management for Data Science Notebooks 11

Q11 Which cells of the notebook in epoch ‘4’ are dependent on the variable ‘X_train’?

Q12 What is the accuracy score of the experiment in epoch ‘2’ when RandomForestClas-
sifier was used?

Q13 Has the train-test split ratio for the dataset changed during different executions?

In the last section, we asked the participants about their general impression of MLProvLab.
In the first question, we asked how important is each MLProvLab module for the provenance
management of computational experiments. We used a 5-point Likert scale for the answer
options from Very Easy to Very Difficult. We also asked how easy it is to find provenance
information on data science scripts using MLProvLab. In the next question, we asked the
users to rate the perceived usefulness of MLProvLab. We asked whether they would like to
use MLProvLab in their daily work. In the end, we provided an open-response question to
participants to provide comments regarding the new features or changes they would like
to see in MLProvLab. The average time taken to answer the evaluation questions in the
notebook was 8 minutes. However, the average interview time, including the MLProvLab
tour, was 28 min. The extra loading time of the Binder instance and the tour of MLProvLab
could be some reasons for the long interview time.
The online evaluation was implemented using LimeSurvey12. The evaluation notebook
is available in GitHub and was hosted using Binder13. Binder allows users to open the
notebook with its execution environment, making the code and the extension (in this case,
MLProvLab) available to everyone. We used a Jupyter notebook with Python version 3
to analyze the evaluation results. The source code and the results are available in GitHub
repository14.
Methods. We sent invitations for participation to the PhD, Master, and Bachelor students in
the Fusion group of the Computer Science Department of the University of Jena, Germany,
and the Werkstatt project’s collaborating partners.
Results. Of 15 participants, 80% use Jupyter notebooks regularly or sometimes in their
work. 66.67% of participants use Machine Learning regularly or sometimes in their work.
Analyzing the results from the evaluation tasks of the notebooks, we see that 82% of answers
to each question were correct, while 18% of answers were wrong. Three participants
answered all the questions correctly. Eleven participants answered more than 60% of the
questions correctly. However, the one participant who scored 46% did not attempt four
questions and partially answered three correctly. For multiple-choice questions, we mark
the answer correct only if the participants select all the right options. We observe that the
multiple-choice questions were answered incorrectly, in particularly for Question Q11, where
seven participants gave the wrong answer. Questions Q1 and Q8 were answered correctly
by every participants, followed by Questions Q3, Q7, Q10 and Q12. For Question Q11,
none of the persons selected the wrong option, but all the correct options were not marked.

12 https://www.limesurvey.org/

13 https://mybinder.org/v2/gh/fusion-jena/MLProvLab/HEAD?urlpath=lab%2Ftree%2Fbinder%

2Fevaluation_notebook.ipynb

14 https://github.com/fusion-jena/MLProvLab

MLProvLab: Provenance Management for Data Science Notebooks 975

https://www.limesurvey.org/
https://mybinder.org/v2/gh/fusion-jena/MLProvLab/HEAD?urlpath=lab%2Ftree%2Fbinder%2Fevaluation_notebook.ipynb
https://mybinder.org/v2/gh/fusion-jena/MLProvLab/HEAD?urlpath=lab%2Ftree%2Fbinder%2Fevaluation_notebook.ipynb
https://github.com/fusion-jena/MLProvLab

12 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

The majority of the questions were answered correctly, which matches the impression given

Fig. 6: Ease of finding provenance information of data science scripts using MLProvLab

by the users as shown in Figure 6. Finding the inputs and outputs of previous executions,
the datasets and modules used, dependencies between cells, execution environment, and
temporal aspects of notebook execution are either very easy or easy to find using MLProvLab
(Figure 6). We did not provide any questions/tasks related to deleted cells; hence, we see
that some participants were not aware of this feature of MLProvLab and chose the difficult
option. Figure 7 shows the perceived usefulness and importance of MLProvLab modules.

Fig. 7: Perceived usefulness and importance of MLProvLab and its modules for provenance management

Most of them marked that it was easy to use and navigate. Everyone agreed that the system
is important for the provenance and metadata management of notebooks. Execution graph,
Input-Output Difference, and Code Information are considered very important for users.
The export information module was not considered important in the survey. We believe
that this is because there were no tasks involving the export module. We received general
comments from 11 participants for the open-response questions. The majority of them
provided positive feedback. Some of the improvements provided by the participants include
renaming the tabs to more meaningful names, rearranging tabs, creating a user option to
directly input the epoch and execution number near the slider, and adding more general
details in the Help tab as some features are not self-explanatory, and graph visualization not

976 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

MLProvLab: Provenance Management for Data Science Notebooks 13

following temporal order. Some suggested improvements are taken care of and implemented
after the evaluation.
Limitations.
This study was exploratory, and the sample needs to be more diverse to generalize the
findings. Most of the participants have a computer science background. We expected more
participation from other areas of study. Five participants from fields other than computer
science did not complete the study. However, only 1 of these five respondents uses Jupyter
Notebooks and Machine Learning in their work. This could be one of the reasons for not
participating in the user evaluation. Our primary users are data scientists who use and have
used Jupyter Notebooks. Most of the participants are students, but also other academic
grades are represented. We also see many participants who do not use ML in their work.
As a result, we also got opinions from users with and without experience in the domain.
However, we have observed that each such participant has answered nine and more questions
using MLProvLab.

5 Conclusions and Future Work

We presented MLProvLab for the provenance management of data science notebooks. It
is an extension of JupyterLab, to track, manage, compare, and visualize the provenance
of notebooks. Through MLProvLab, users can efficiently and automatically track the
provenance metadata, including datasets and modules used. We provide users the facility
to compare different runs of computational experiments, thereby ensuring a way to help
them make their decisions. The tool helps data scientists to collect more information
on their experimentation and interact with them. It is designed so that the users do not
need to change their scripts or configure them with additional annotations. In our future
work, we aim to extend MLProvLab to identify the relationships between data and models
for ML automatically. We want to track further the datasets and columns that have been
used to derive the features of an ML model. This will help data scientists to get more
information on the configurations used, e.g., hyperparameters, ML methods, etc. We also
plan to provide interoperability by providing semantic annotations and descriptions of the
collected fine-grained provenance information. We plan to use this provenance information
to replay and rerun a notebook.

Acknowledgments

The authors thank the Carl Zeiss Foundation for the financial support of the project “A
Virtual Werkstatt for Digitization in the Sciences (K3)” within the scope of the program
line “Breakthroughs: Exploring Intelligent Systems for Digitization - explore the basics, use
applications” and Friedrich Schiller University Jena for the IMPULSE funding: IP 2020-10.

MLProvLab: Provenance Management for Data Science Notebooks 977

14 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

References

[Ca17] Carvalho, L. A. M. C.; Wang, R.; Gil, Y.; Garĳo, D.: NiW: Converting Notebooks
into Workflows to Capture Dataflow and Provenance. In. SciKnow 2017, Austin,
Texas, 2017, 2017.

[Da12] Davison, A.: Automated Capture of Experiment Context for Easier Repro-
ducibility in Computational Research. Computing in Science Engineering 14/4,
pp. 48–56, 2012, issn: 1521-9615.

[He19] Head, A.; Hohman, F.; Barik, T.; Drucker, S. M.; DeLine, R.: Managing Messes
in Computational Notebooks. In: Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, CHI 2019, Glasgow, Scotland, UK, May
04-09, 2019. ACM, p. 270, 2019.

[Ho14] Hoekstra, R.: PROV-O-Matic, https://github.com/Data2Semantics/prov-o-
matic, Accessed 10 September 2021, 2014.

[Ke19] Kery, M. B.; John, B. E.; O’Flaherty, P.; Horvath, A.; Myers, B. A.: Towards
Effective Foraging by Data Scientists to Find Past Analysis Choices. In: Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, Glasgow Scotland Uk, pp. 1–13, May 2019, isbn: 978-1-4503-5970-2,
visited on: 05/16/2021.

[KM18] Kery, M. B.; Myers, B. A.: Interactions for Untangling Messy History in a
Computational Notebook. In: 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC 2018, Lisbon, Portugal, October 1-4,
2018. IEEE Computer Society, pp. 147–155, 2018.

[KP17] Koop, D.; Patel, J.: Dataflow Notebooks: Encoding and Tracking Dependencies
of Cells. In: 9th USENIX Workshop on the Theory and Practice of Provenance,
TaPP 2017, Seattle, WA, USA, June 23, 2017. USENIX Association, 2017.

[KR+16] Kluyver, T.; Ragan-Kelley, B., et al.: Jupyter Notebooks-a publishing format for
reproducible computational workflows. In: ELPUB. Pp. 87–90, 2016.

[KSK21] Kerzel, D.; Samuel, S.; König-Ries, B.: Towards Tracking Provenance from
Machine Learning Scripts. In: Proceedings of the 13th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, IC3K 2021, October 25-27, 2021. SCITEPRESS, 2021.

[Ma21] Macke, S.; Parameswaran, A. G.; Gong, H.; Lee, D. J. L.; Xin, D.; Head, A.:
Fine-Grained Lineage for Safer Notebook Interactions. Proc. VLDB Endow.
14/6, pp. 1093–1101, 2021, url: http://www.vldb.org/pvldb/vol14/p1093-
macke.pdf.

[Mc15] McPhillips, T. et al.: YesWorkflow: a user-oriented, language-independent
tool for recovering workflow information from scripts. arXiv preprint
arXiv:1502.02403/, 2015.

978 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

https://github.com/Data2Semantics/prov-o-matic
https://github.com/Data2Semantics/prov-o-matic
http://www.vldb.org/pvldb/vol14/p1093-macke.pdf
http://www.vldb.org/pvldb/vol14/p1093-macke.pdf

MLProvLab: Provenance Management for Data Science Notebooks 15

[Or20] Ormenisan, A. A.; Ismail, M.; Haridi, S.; Dowling, J.: Implicit provenance for
machine learning artifacts. Proceedings of MLSys 20/, 2020.

[PGS18] Petricek, T.; Geddes, J.; Sutton, C.: Wrattler: Reproducible, live and polyglot
notebooks. In (Herschel, M., ed.): 10th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2018, London, UK, July 11-12, 2018. USENIX
Association, 2018.

[Pi15] Pimentel, J. F. N.; Braganholo, V.; Murta, L.; Freire, J.: Collecting and Analyzing
Provenance on Interactive Notebooks: When IPython Meets No Workflow.
In: Proceedings of the 7th USENIX Conference on Theory and Practice of
Provenance. TaPP’15, USENIX Association, Edinburgh, Scotland, p. 10, 2015.

[Pi20] Pineau, J.; Vincent-Lamarre, P.; Sinha, K.; Larivière, V.; Beygelzimer, A.;
d’Alché-Buc, F.; Fox, E.; Larochelle, H.: Improving reproducibility in machine
learning research (a report from the neurips 2019 reproducibility program).
arXiv preprint arXiv:2003.12206/, 2020.

[RTH18] Rule, A.; Tabard, A.; Hollan, J. D.: Exploration and Explanation in Compu-
tational Notebooks. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. CHI ’18, ACM, Montreal QC, Canada, 32:1–
32:12, 2018, isbn: 978-1-4503-5620-6.

[Sa20] Samuel, S.; Shadaydeh, M.; Böcker, S.; Brügmann, B.; Bucher, S. F.; Deckert, V.;
Denzler, J.; Dittrich, P.; von Eggeling, F.; Güllmar, D., et al.: A virtual “Werkstatt”
for digitization in the sciences. Research Ideas and Outcomes 6/, 2020.

[Sc17] Schelter, S.; Boese, J.-H.; Kirschnick, J.; Klein, T.; Seufert, S.: Automatically
tracking metadata and provenance of machine learning experiments. In: Machine
Learning Systems Workshop at NIPS. Pp. 27–29, 2017.

[Sc18] Schelter, S.; Biessmann, F.; Januschowski, T.; Salinas, D.; Seufert, S.; Szarvas, G.:
On Challenges in Machine Learning Model Management. IEEE Data Eng. Bull.
41/, pp. 5–15, 2018.

[Sh23] Shankar, S.; Macke, S.; Chasins, S.; Head, A.; Parameswaran, A.: Bolt-on,
Compact, and Rapid Program Slicing for Notebooks [Technical Report]./, 2023.

[SK18] Samuel, S.; König-Ries, B.: ProvBook: Provenance-based Semantic Enrichment
of Interactive Notebooks for Reproducibility. In: International Semantic Web
Conference (P&D/Industry/BlueSky). 2018, url: http://ceur-ws.org/Vol-
2180/paper-57.pdf.

[SK21] Samuel, S.; König-Ries, B.: Understanding experiments and research practices
for reproducibility: an exploratory study. PeerJ 9/, e11140, Apr. 2021, issn:
2167-8359, url: https://doi.org/10.7717/peerj.11140.

MLProvLab: Provenance Management for Data Science Notebooks 979

http://ceur-ws.org/Vol-2180/paper-57.pdf
http://ceur-ws.org/Vol-2180/paper-57.pdf
https://doi.org/10.7717/peerj.11140

16 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

[SLK21] Samuel, S.; Löffler, F.; König-Ries, B.: Machine Learning Pipelines: Provenance,
Reproducibility and FAIR Data Principles. In: Provenance and Annotation of
Data and Processes - 8th and 9th International Provenance and Annotation Work-
shop, IPAW 2020 + IPAW 2021, Virtual Event, July 19-22, 2021, Proceedings.
Vol. 12839. Lecture Notes in Computer Science, Springer, pp. 226–230, 2021.

[Va16] Vartak, M.; Subramanyam, H.; Lee, W.-E.; Viswanathan, S.; Husnoo, S.;
Madden, S.; Zaharia, M.: ModelDB: a system for machine learning model
management. In: Proceedings of the Workshop on Human-In-the-Loop Data
Analytics. Pp. 1–3, 2016.

[Wa20] Wang, J.; Kuo, T.; Li, L.; Zeller, A.: Assessing and Restoring Reproducibility of
Jupyter Notebooks. In: 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020, Melbourne, Australia, September 21-25,
2020. IEEE, pp. 138–149, 2020.

[We19] Wenskovitch, J.; Zhao, J.; Carter, S.; Cooper, M.; North, C.: Albireo: An
Interactive Tool for Visually Summarizing Computational Notebook Structure.
In: 2019 IEEE Visualization in Data Science (VDS). IEEE, pp. 1–10, 2019.

[Za18] Zaharia, M. et al.: Accelerating the Machine Learning Lifecycle with MLflow.
IEEE Data Eng. Bull. 41/4, pp. 39–45, 2018, url: http://sites.computer.
org/debull/A18dec/p39.pdf.

980 Dominik Kerzel, Birgitta König-Ries, Sheeba Samuel

http://sites.computer.org/debull/A18dec/p39.pdf
http://sites.computer.org/debull/A18dec/p39.pdf

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Data Extraction for Associative Classification using Mined
Rules in Pediatric Intensive Care Data

Pronaya Prosun Das1, Marcel Mast2, Lena Wiese1 3, Thomas Jack4, Antje Wulff2 5, ELISE
STUDY GROUP6

Abstract: Based on the characteristics of health and medical informatics, data mining techniques that
were designed to tackle healthcare problems are faced with new challenges. One such challenge is
to prepare medical data for pattern mining or machine learning. In this paper, we present a feature
engineering technique for the Associative Classification of the Systemic Inflammatory Response
Syndrome (SIRS) in severely ill children by mining Associative Rules. SIRS is characterized as the
body’s excessive defense response due to malevolent stressors such as trauma, acute inflammation,
infection, malignancy, and surgery. It can have an impact on the clinical outcome and elevate
vulnerability for organ dysfunctions. We aim to extract the features from given datasets using the
described extraction process. After the transformation, those features are used to mine rules using
Association Rule Mining. Those rules are used to perform Associative Classification and evaluated
with the result generated by SIRS criteria defined by the experienced clinicians. The mined rules
provide better control over sensitivity and specificity than the SIRS criteria used in everyday medical
practice..

Keywords: Data Mining; SIRS; Association Rule Mining; Associative Classification

1 Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany. pronaya.prosun.das@
item.fraunhofer.de

2 Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School,
Hannover, Germany.

3 Institute of Computer Science, Goethe University Frankfurt, Frankfurt a. M., Germany.
4 Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Hannover,

Germany.
5 Big Data in Medicine, Department of Health Services Research, School of Medicine and Health Sciences, Carl

von Ossietzky University Oldenburg, Oldenburg, Germany.
6 ELISE STUDY GROUP: Louisa Bode 𝑎; Marcel Mast 𝑎; Antje Wulff 𝑎, 𝑑 ; Michael Marschollek 𝑎; Sven

Schamer 𝑏; Henning Rathert 𝑏; Thomas Jack 𝑏; Philipp Beerbaum 𝑏; Nicole Rübsamen 𝑐 ; Julia Böhnke 𝑐 ;
André Karch 𝑐 ; Pronaya Prosun Das 𝑒; Lena Wiese 𝑒; Christian Groszweski-Anders 𝑓 ; Andreas Haller 𝑓 ;
Torsten Frank 𝑓

𝑎Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School,
Hannover, Germany.
𝑏Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Hannover,
Germany.
𝑐Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany.
𝑑Big Data in Medicine, Department of Health Services Research, School of Medicine and Health Sciences,
Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
𝑒Research Group Bioinformatics, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover,
Germany.
𝑓 medisite GmbH, Hannover, Germany.

cba doi:10.18420/BTW2023-67

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 981

mailto:pronaya.prosun.das@item.fraunhofer.de
mailto:pronaya.prosun.das@item.fraunhofer.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-67

2 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

1 Introduction

Recently, patient monitoring and clinical documentation in the Intensive care unit (ICU)
are performed with patient data management systems (PDMS). Sophisticated PDMS are
able to directly present and analyze all incoming data, necessary for the diagnosis of a
disease. Systemic inflammatory response syndrome (SIRS) was introduced along with the
definition of sepsis for the adult in 1992 [Bo92] and SIRS criteria were modified for the
children with age-specific norms in 2005 [Go05]. Four criteria were proposed to detect
the presence of SIRS in children, which are a) hyperthermia or hypothermia, b) tachy- or
bradycardia c) tachy- or bradypnoea or d) leukocytosis, leukopenia or increased immature
neutrophile count [Go05]. Two of these four criteria must be evident, one of which has to be
abnormal leukocyte count or temperature to be diagnosed with SIRS. For pediatricians, the
recognition of SIRS in children is a challenging duty due to the nature of its definition, as
there are different age-specific values for all these criteria except temperature. Age groups
for some patients, especially newborn children, can even change multiple times within a
short timespan i.e., during their stay on the pediatric intensive care unit (PICU) [In09].
Due to this complexity, it is difficult to diagnose SIRS in an early manner, especially in
the stressful surroundings of a PICU. Several studies showed that any delay in recognizing
SIRS and sepsis could increase mortality and morbidity significantly [Ha03]. Yet, by early
identification of SIRS and sepsis, it is possible to prevent organ dysfunction and lead to a
much better outcome for ICU patients.
In this work, a data mining technique is introduced to extract and transform different vital
signs and laboratory tests from the ‘cross-institutional and data-driven decision-support for
intensive care environments’ (CADDIE-2) dataset [Wu19] and to find associations between
them. In clinical settings, these association rule mining approaches can be considered as
supporting methods to better comprehend the disease patterns for the patients. Mainly, the
goal of this work is four-fold: i) to explore a data extraction and transformation technique
for SIRS, ii) to evaluate the extraction process using expert rules (SIRS criteria), iii) to get
important features and iv) to find association rules for associative classification and evaluate
it using the result produced by expert rules.
The rest of this article is organized as follows. Section 2 discusses prior work. We describe
our feature engineering and extraction techniques in Section 3. In Section 4, we present the
definition of expert rules and association rule mining (ARM). Results and discussion are
provided in Section 5. Finally, we derive conclusions of the study in Section 6.

2 Prior Works

Hospital data are still, to a large extent, under-explored, despite growing awareness of
their particular potential value in health analytics and risk modeling [De06, Ke13]. The
variety and complexity of patient records present a substantial challenge for knowledge
discovery. Generally, disease-specific data are gathered by various medical expertise; for
instance, suicide risk assessments use a distinct data format than white blood cell counts.

982 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

Data Extraction for Associative Classification 3

It is apparent that hand-picking features for each analysis are inadequate, and it is also
impossible to ensure that all substantial information in the data is incorporated. Nowadays,
the use of Machine Learning (ML) approaches are escalating for knowledge discovery and
prediction of biomedical data [Ta07, XJ19]. ARM is one of the areas of ML that can also be
used for finding patterns in biomedical data; this commonly used data mining application
determines the patterns of items or events [So17, Iv15]. To mine association rules for
pattern discovery, several incremental techniques were presented recently [Aq19, LNFV21].
It was also utilized to solve various problems in the healthcare sector. Mainly, there are a
number of links between patients’ diseases and vital signs or symptoms. ARM can assist
researchers to comprehend a disease effectively by finding those links. One study identified
early childhood caries using ARM [Iv15]. Other authors [RN20] used ARM in conjunction
with a keyword-based clustering strategy for the prediction of the disease. Risk factors of
heart diseases were determined using ARM in some studies [Na13, So17]; while others
[No18] identified the negative incidents caused by drug-drug interactions. The risk of
diabetes mellitus was predicted using ARM in [Ka16]. Moreover, Borah et al. [BN18]
identified different risk factors of breast cancer, hepatitis, and cardiovascular disease by
applying dynamic rare ARM. However, the use of ARM to find a pattern for SIRS is absent
in the literature which also highlights the importance of this work.

3 Data Preparation

This section provides an overview of the used dataset, extraction and transformation of the
features for ARM. The overall procedure is illustrated in Figure 1.

Hourly
split and
merging

Moving
Average

 Thresholding
with age
specific
values

Datasets

Transformed
dataset

Classification
using expert rules

Association
rule mining

5*5 cross
validation result

Associative
classification using

mined rules

Result

Linear
imputation

All features
except lab test

Lab test

Fig. 1: Block diagram for the overall procedure.

3.1 Initial Dataset

In the context of this work, we use routine data from the PICU of the Hannover Medical
School [Wu21]. The data is not currently available for public use, but within the ELISE
project we are creating an Evolutionary Open Pediatric Intensive Care Dataset [Rü22]. The
dataset consists of various vital parameters like temperature values, heart and respiration
rates as well as laboratory test results and information from medical devices such as cooling
blankets, ventilation and pacemaker for each of the included 168 pediatric patients. The

Data Extraction for Associative Classification using Mined Rules in Pediatric Intensive
Care Data 983

4 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

patients can be distinguished from one another by a unique identifier (study number) that
was generated as part of the pseudonymization. Laboratory test results include leukocyte,
platelet and neutrophil counts as well as INR values derived from the prothrombin time. All
measurements in the dataset come with a timestamp documenting its time of measurement
by which a temporal sequence is ensured. Furthermore, the age of the respective patients
is given. These parameters are supplemented by blood pressure values. In addition to the
existing data, there is also a gold standard for the existence of SIRS for the respective
patients for the period of the documented data available [Wu19, Wu21]. For the generation
of this gold standard, two experienced pediatric intensive care physicians assessed the
patients according to SIRS diagnostic rules defined by the International Pediatric Sepsis
Consensus Conference (IPSCC) [Go05]. The clinician’s decision on the presence of SIRS
has been documented for each day that a particular patient was stationed at the PICU. In
addition to this day-based gold standard, SIRS episodes were precisely documented in terms
of time in order to provide an additional episode-based gold standard. The data set includes
168 patients from the pediatric intensive care in 243 days corresponding to a total of 1,998
days of stay within the ward. From those 1.998 days of stay, 460 days were labeled as SIRS
within the day-wise gold standard [Wu21]. According to the gold standard 101 out of 168
patients suffered from SIRS during their hospitalization corresponding to a proportion of
approximately 60%. The distribution of the sex is 106 to 62 in favor of male patients.

3.2 Feature Extraction

We work with five different vital signs named temperature, pulse rate, respiration rate
and systolic and diastolic pressures, and one lab test result. We use these features due to
the orientation along with the IPSCC criteria. Birthdate, disease diagnosis and gender
information of the patient are also being taken for further analysis. All of these features are
extracted from their respective datasets and merged into a single table based on timestamps
for further processing. The extraction process is described in the following subsections.

3.2.1 Moving Average

In this approach, we obtain the moving average (MA) for temperature, pulse, respiration,
systolic and diastolic pressures data, and used these averages for further processing. However,
we do not apply MA to laboratory test values (leukocyte counts), as very few observations
are available for it. Sometimes, there are only one or two laboratory values per 24 hours.
A MA is a type of finite impulse response filter which is normally used in technical
analysis by constructing a sequence of averages of different subsets of the full dataset. There
are different variations existing in the literature (e.g., simple [Hy11], exponential [Br57],

984 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

Data Extraction for Associative Classification 5

weighted [Hy11], etc.). In our work, we have used the standard version of moving average
of order 𝑚 can be written as [Hy11],

𝑇𝑡 =
1
𝑚

𝑘∑︁
𝑖=−𝑘

𝑦𝑡+𝑖 where 𝑚 = 2𝑘 + 1 (1)

MA eliminates randomness in the data, leaving behind a consistent trend-cycle component.
The trend-cycle at time 𝑡 is estimated by taking the average of the values of the time series
within 𝑘 periods (in minutes) of 𝑡. We try to find the optimal k and experiment with different
values from 𝑘 = 10 to 𝑘 = 30. Based on the experiment, we choose 𝑘 = 15, as the result
remains almost unchanged when 𝑘 > 15. We do not apply the MA operation to the lab-test
dataset due to the unavailability of sufficient data points. The effect of the moving average
is shown in Figure 2. It also improves the overall classification result as shown in Section 5.

Fig. 2: The effect of moving average of the temperature data within a particular stay for a specific
study number. (a) raw data. (b) after applying MA operation to the raw data of (a)

3.2.2 Hourly split

The features are split on an hourly basis after obtaining the moving average and merged
into a single table. This produces missing values for laboratory tests due to a lack of hourly
observation as mentioned previously. Table 1 shows the imputation for the feature ‘leukocyte
count’. The column named Lab test represents the actual leukocyte measurement in each
hour. The missing values are imputed before any further processing on this data as follows,

• The missing values between any two numerical observations are imputed by the
equally spaced numbers of those two observations (linear imputation).

𝑋val = 𝐴val +
𝐵val − 𝐴val

Number of observation between 𝐴val and 𝐵val (inclusive) − 1
(2)

where, 𝑋val is the missing value, 𝐴val is the actual assessment taken prior to 𝑋val, and
𝐵val is the the actual assessment taken after 𝑋val.

Data Extraction for Associative Classification using Mined Rules in Pediatric Intensive
Care Data 985

6 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

• If a column starts with missing values, all the missing values prior a numerical
observation are imputed with the same value of that observation.

• If a column ends with missing values, we look for the last observation with a
numerical value and impute all the missing values after that with the same value of
that observation.

Tab. 1: Imputation for lab test (leukocyte count). The actual lab test measurement and the imputed
values are shown in Lab Test and Imputed columns, respectively.

Study Lab Test Date-time From Date-time To Imputed

2 2018-08-01 16:00:00 2018-08-01 17:00:00 8
2 8 2018-08-01 17:00:00 2018-08-01 18:00:00 8
2 2018-08-01 18:00:00 2018-08-01 19:00:00 8.4
2 2018-08-01 23:00:00 2018-08-01 00:00:00 8.8
2 9.2 2018-08-02 00:00:00 2018-08-01 01:00:00 9.2
2 2018-08-02 01:00:00 2018-08-01 02:00:00 9.2

3.2.3 Thresholds for numerical values

Initially, we convert the age into age groups using Table 2. This table defined the High (H.),
Low (L.) and Normal (N.) thresholds for the body vitals and laboratory test. Using these
thresholds, we also convert the needed features (Temperature (Temp.), Pulse, Respiration
(Resp.), Leukocytes (Leuk.), etc.) to categorical features.

3.3 Feature Transformation

One of our objectives is to apply expert rules to the extracted dataset that contains maximum,
minimum, mean and median values for the vital signs and lab tests for the individual study
numbers in a stay- and day-wise manner. We use the birth date from the Electronic Health
Record (EHR) dataset and calculate the age in weeks for the specific study number by
looking at the day/stay-based Gold standard datasets. Gender information is added as well
from the Gender dataset. Feature Transformation transforms numerical values to categories
using thresholds for numerical values.

As we have mentioned, five vital signs and one laboratory test are used in our experiment
due to the fact that the SIRS criteria (expert rules / IPSCC criteria) only utilize those
variables. Actually, blood pressure is not explicitly used in the four IPSCC criteria, although
Goldstein et al. [Go05] listed norm-values for blood pressure. Therefore, we slightly modify
the SIRS criteria by adding systolic and diastolic blood pressures to it. It increases the
feature count as well as provides us with the impact of systolic and diastolic pressure on
SIRS in rule mining. For each feature, four simple descriptive statistical summaries are

986 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

Data Extraction for Associative Classification 7

Tab. 2: Thresholds for age-specific vital signs and laboratory tests [Go05].

A
ge

G
ro

up
s

Pu
ls

e
H

ig
h

(B
ea

t/m
)

Pu
ls

e
Lo

w
(B

ea
t/m

)

Re
sp

.(
B

re
at

h/
m

)

Le
uk

.H
ig

h

Le
uk

.L
ow

Sy
s.

N
or

m
al

D
ia

s.
N

or
m

al

Te
m

p.
H

ig
h

Te
m

p.
Lo

w

Newborn
(0d-1wk)

>180 <100 >50 >34 - 60-90 20-60 >38.5 <36

Neonate
(1wk-1m)

>180 <100 >40 >19.5 <5 87-105 53-66 >38.5 <36

Infant
(1m-1y)

>180 <90 >34 >17.5 <5 95-105 53-66 >38.5 <36

Toddler
(2-5y)

>140 <60 >22 >15.5 <6 95-110 56-70 >38.5 <36

School age
(6-12y)

>130 <60 >18 >13.5 <4.5 97-112 57-71 >38.5 <36

Adolescent
(13-18y)

>110 <60 >14 >11 <4.5 112-128 66-80 >38.5 <36

obtained (Maximum (Max), Minimum (Min), Median and Average (Avg)). Hence, only
one summary at a time is used by the expert rules. For example, after transforming the
maximum values of the Temperature (Temp.), Pulse, Respiration (Resp.), Systolic (Sys.)
and Diastolic (Dias.) pressure, and Leukocytes (Leuk.) along with the age groups, the data
looks like Table 3. Afterwards, the results (specifically accuracy, sensitivity and specificity)
of expert rules are acquired for each summary.

Tab. 3: An example of a transformed dataset after thresholding.

Pulse Resp. Temp. Leuk. Sys. Dias. Age Diagnosis

Tachyc. High Normal Normal High Normal Neonate No SIRS
Tachyc. High High Normal High Normal Neonate SIRS
Normal High Normal Normal Normal Normal Newborn No SIRS

4 Exploring Rules

Initially, the definition of SIRS criteria is presented. Then, frequency-based association rule
mining along with their definitions is illustrated and associative classification is described.

Data Extraction for Associative Classification using Mined Rules in Pediatric Intensive
Care Data 987

8 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

4.1 SIRS criteria

The definition of SIRS is depicted here in simple terms. For diagnosing SIRS, at least two of
the following four criteria must be present, one of which has to be abnormal leukocyte count
or temperature [Go05]. (1) Pulse: high (tachycardia) or low (bradycardia); (2) Temperature:
high or low (3) Respiration: high (4) Leukocyte count: high or low. We modify the expert
rules (SIRS criteria) by adding a new rule for blood pressure: (5) Blood pressure: diastole
high or diastole low and systole high or systole low. Here, high or low value means above or
below age-specific norm values, respectively. The purpose of applying these expert rules is
to understand the quality of the dataset and choose statistical features (maximum, minimum,
average and median) for ARM.

4.2 Association Rule Mining

In ARM, association rules are extracted by mining transaction data to find out the relationships
of different items inside the dataset. Assume, we have a transaction dataset with 𝑛 transactions,
𝑇 = {𝑡1, 𝑡2, 𝑡3 . . . , 𝑡𝑛} and 𝑚 items, 𝐼 = {𝑖1, 𝑖2, 𝑖3 . . . , 𝑖𝑚}. Here, each transaction is a set of
items, therefore, 𝑡𝑐 ∈ 𝑇 with a distinct identifier TID is a subset of 𝐼. A transaction dataset
is derived from the transformed dataset of Table 3 is shown in Table 4.

Tab. 4: A transaction dataset derived from Table 3.

TID Transaction

𝑡1

(Pulse tachyc.:1), (Resp. high:1), (Temp. normal:1), (Leuko normal:1),
(Syst. high:1), (Diast. Normal:1), (No SIRS:1)

𝑡2

(Pulse tachyc.:1), (Resp. normal:1), (Temp. high:1), (Leuko high:1),
(Syst. high:1), (Diast. Normal:1), (SIRS:1)

..

Suppose, X and Y are the sets of items. Therefore, a rule is inferred by 𝑋 → 𝑌 . Here X and
Y are known as antecedent and consequent, respectively. Also, 𝑋 ∩𝑌 = ∅ and 𝑋,𝑌 ⊂ 𝐼. We
use support and confidence for rule mining.

Support It provides the notion of how frequent or popular an itemset is in all transactions.

Support(𝑋 → 𝑌) = Number of transactions containing both 𝑋 and 𝑌

Total number of transactions
(3)

Confidence This metric specifies how regularly the association rule is identified to be
authentic: for a given antecedent, it finds out the likelihood of occurrence of the consequent.

Confidence(𝑋 → 𝑌) = Number of transactions containing both 𝑋 and 𝑌

Number of transactions containing 𝑋
(4)

988 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

Data Extraction for Associative Classification 9

Following algorithm is used for association rule mining:
𝐼𝑛𝑝𝑢𝑡 :
𝑚𝑖𝑛_𝑐𝑜𝑛 𝑓 : 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑛 𝑓 𝑖𝑑𝑒𝑛𝑐𝑒;
𝑖𝑡𝑒𝑚𝑠𝑒𝑡 1 : 𝐼1;
𝑖𝑡𝑒𝑚𝑠𝑒𝑡 2 : 𝐼2;
𝑂𝑢𝑡𝑝𝑢𝑡 :
𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 : 𝐼1→ 𝐼2;

𝑋 ← 𝐼1
𝑌 ← 𝐼2
if 𝑋 ⊆ 𝑌 then

𝐶𝑜𝑛 𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ← 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋) ÷ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑌)
if 𝐶𝑜𝑛 𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝑚𝑖𝑛_𝑐𝑜𝑛 𝑓 then

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 ← 𝐼2→ 𝐼1
end

end
Return 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒

Algorithm 1: ARM algorithm

4.3 Associative classification

By using a set of provided rules, specifically the class association rules, it is possible to
design a rule-based classifier consisting of two phases [AT14]. Initially, the ARM technique
is used to obtain a set of rules for the classifier. Afterwards, the rules are refined and joined
together in order to construct the finalized rule-based classifier. Refining the rules requires
pruning, tuning and ranking operations. The evaluation of the classifier can be performed on
the test set using standard metrics. In this work, the accuracy, the sensitivity or true positive
rate (TPR) and the specificity or true negative rate (TNR) are obtained for evaluation.

5 Results and Discussion
Tab. 5: Classification results of expert rules.

Using MA Summary Accuracy Sensitivity (TPR) Specificity (TNR)

Yes Maximum 0.87 0.76 0.93
Yes Median 0.86 0.76 0.93
Yes Average 0.86 0.76 0.93
Yes Minimum 0.86 0.76 0.92

No Maximum 0.86 0.76 0.92
No Median 0.86 0.75 0.93
No Average 0.86 0.75 0.92
No Minimum 0.83 0.72 0.90

We now assess the extraction process using expert rules, find association rules for classi-
fication and evaluate it with the result produced by expert rules. We analyse the effect of

Data Extraction for Associative Classification using Mined Rules in Pediatric Intensive
Care Data 989

10 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

MA as part of extraction process. The definition of expert rules from Section 4.1 is applied
to the transformed datasets (with and without MA) and the results are shown in Table 5.
We can see that applying MA during data extraction, gives us the increments of 1% in
Accuracy and Specificity while considering Maximum summary. For median and average
summaries, Accuracies remain the same, however, Sensitivities improve while applying
MA. For minimum summary, we get better results in all three metrics while applying MA.
Therefore, the result justifies the use of moving average to the features.

Tab. 6: Classification results of mined rules.

summary Confidence Accuracy Sensitivity (TPR) Specificity (TNR)

Maximum 0.709 0.70 0.96 0.43
0.712 0.72 0.92 0.52
0.715 0.77 0.85 0.69
0.724 0.79 0.83 0.76

For associative classification, we perform 5 × 5 cross validation with the mined rules and
the results are shown in Table 6. We consider the Maximum summary, as it gives the best
result for expert rule in terms of Accuracy, Sensitivity and Specificity (see Table 5). We
can see that Confidence 0.724 gives us better accuracy whereas Confidence 0.709 has
lower accuracy but higher Sensitivity. In our work, we prioritize Sensitivity over Specificity.
Sensitivity corresponds to the true positive rate for SIRS. Therefore, it is crucial that we
do not miss a significant amount of diagnosis regarding SIRS. However, we also want the
difference between Sensitivity and Specificity to be minimized. Therefore, Confidence 0.712
is more preferable, as Sensitivity and Specificity are more than 0.90 and 0.50, respectively.

Tab. 7: Top 10 generalized rules (N=14920, Rules=103, Min.confidence=0.71).

LHS RHS Confidence

Leukocyte high, Respiration high, Temperature low

SIRS

1.0
Leukocyte high, Pulse tachycardia, Respiration high 1.0
Leukocyte high, Respiration high, Temperature high 1.0
Leukocyte low, Respiration high 1.0
Leukocyte high, Respiration high 0.971
Leukocyte high, Pulse tachycardia 0.967
Respiration high, Temperature low 0.923
Leukocyte high, Temperature high 0.913
Pulse normal, Respiration high, Temperature high 0.909
Respiration high, Temperature high 0.905

Figure 3 shows the frequency of the features or items in the itemsets. From this figure, we
can see the importance of the features which is crucial for the validation of the SIRS criteria.
In the SIRS criteria, abnormal leukocyte count and temperature is given higher importance
as mentioned in Section 4.1. From Figure 3, we can see, both features are at the top. The
third, fourth, and fifth features are pulse tachycardia, high respiration and normal diastolic

990 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

Data Extraction for Associative Classification 11

pressure, respectively. Naturally, the normal categories are in the bottom. Normal diastolic
pressure is in the fourth place, which tells us that in many SIRS cases diastolic pressure
remains normal when other parameters are abnormal (either high or low). We discover rules
for SIRS patients using ARM techniques and the top 10 mined rules are shown in Table 7.
Our study reports a relatively higher proportion of abnormal Leukocyte count, temperature
and pulse in SIRS patients. Applying these mined rules to the transformed dataset gives us
better results than the SIRS criteria in terms of Sensitivity. As we present the top 10 rules,
most of the rules are aligned with the SIRS criteria which also validates the criteria itself.

12.41Leuk_high
9.22Temp_high

8.51Pulse_tachycardia
8.51Resp_high

7.8Diastol_normal
7.8Leuk_low

6.74Systol_high
6.38Temp_low
6.38Systol_normal

6.03Systol_low
4.96Diastol_low

4.26Pulse_normal
3.55Diastol_high

2.84Resp_normal
2.38Pulse_bradycardia

2.13Temp_normal
0.1Leuk_normal

0 13
Frequency (%)

Fig. 3: Frequency of vital signs and lab test (items in the itemsets).

Better accuracy does not imply better results. From the experiment, we see that the expert
rules have an accuracy at most 0.87 (Table 5). However, for that accuracy, we have a
Sensitivity around 0.76 and Specificity around 0.93. As we prioritize Sensitivity over
Specificity, the result of the mined rules with Maximum summary is more favorable. It
can also be noted that the Sensitivity (TPR) and the Specificity (TNR) have a reciprocal
relationship. With increasing confidence, Sensitivity (TPR) reduces whereas Specificity
(TNR) escalates. Therefore, we can easily choose a confidence that can give us Sensitivity
over 0.9 and Specificity over 0.5.

6 Conclusion

This work demonstrated a data mining technique in terms of feature extraction and
transformation for finding association rules using Apriori algorithm. These rules are used to
perform Associative Classification and compared with the results found using SIRS criteria.

Data Extraction for Associative Classification using Mined Rules in Pediatric Intensive
Care Data 991

12 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

Using SIRS criteria on the transformed dataset also showed the quality of the extraction
process. We analyzed the effect of Moving Average (MA); it was found that MA improved
the result to some extent in terms of Accuracy, Sensitivity and Specificity when applying
SIRS criteria. In simple terms, we extracted a feature set with four summaries (Maximum,
Minimum, Median and Average). Then we applied the SIRS criteria with a set of thresholds
for age-specific vital signs and laboratory variables from the literature to see which summary
is better. Then we used that summary for rule mining. After generating a set of rules, we
again applied the mined rules for classification. This experiment was carried out to show
the efficacy of mined rules while evaluated with expert rules (SIRS criteria).

Due to the nature of the diagnosis, Sensitivity was given more priority than Specificity and
they showed a reciprocal relationship. By tuning the confidence of the mined rules, we
gained control over Sensitivity and Specificity. From the SIRS criteria, the best result was
found with Accuracy, Sensitivity and Specificity up to 0.87, 0.76 and 0.93, respectively for
the Maximum summary. While applying mined rules with varying Confidence, we were able
to achieve higher Sensitivity up to 0.96. However, Accuracy and Specificity were reduced
to 0.70 and 0.43, respectively. Therefore a Confidence with 0.712 was more suitable where
the Accuracy, Sensitivity and Specificity were around 0.72, 0.92 and 0.52, respectively.

In future work, we plan to explore other ways of feature extractions and perform a comparative
analysis with SIRS criteria. We will also apply different Machine Learning algorithms like
Decision Tree, Random Forest, Support Vector Machine.

Acknowledgments

The ELISE project is partially funded by the Federal Ministry of Health; Grant No.
2520DAT66A. This work was also partially supported by the Fraunhofer Internal Programs
under Grant No. Attract 042-601000. Ethics approval for use of routine data was given by
the Ethics Committee of Hannover Medical School (approval number 9819_BO_S_2021).
We would like to thank our colleagues from the MHH Information Technology (MIT) from
the Hannover Medical School for their support.

Bibliography
[Aq19] Aqra, Iyad; Abdul Ghani, Norjihan; Maple, Carsten; Machado, José; Sohrabi Safa, Nader:

Incremental algorithm for association rule mining under dynamic threshold. Applied
Sciences, 9(24):5398, 2019.

[AT14] Abdelhamid, Neda; Thabtah, Fadi: Associative classification approaches: review and
comparison. Journal of Information & Knowledge Management, 13(03):1450027, 2014.

[BN18] Borah, Anindita; Nath, Bhabesh: Identifying risk factors for adverse diseases using
dynamic rare association rule mining. Expert systems with applications, 113:233–263,
2018.

992 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

Data Extraction for Associative Classification 13

[Bo92] Bone, Roger C; Balk, Robert A; Cerra, Frank B; Dellinger, R Phillip; Fein, Alan M; Knaus,
William A; Schein, Roland MH; Sibbald, William J: Definitions for sepsis and organ failure
and guidelines for the use of innovative therapies in sepsis. Chest, 101(6):1644–1655,
1992.

[Br57] Brown, Robert G: Exponential smoothing for predicting demand. In: Operations Research.
volume 5. Inst Operations Research Management Sciences, pp. 145–145, 1957.

[De06] De Lusignan, Simon; Metsemakers, Job; Houwink, Pieter; Gunnarsdottir, Valgerdur;
VanDerLei, Johan: Routinely collected general practice data: goldmines for research?
A report of the European Federation for medical informatics primary care informatics
Working Group (EFMI PCIWG) from MIE2006, Maastricht, the Netherlands. Journal of
Innovation in Health Informatics, 14(3):203–209, 2006.

[Go05] Goldstein, Brahm; Giroir, Brett; Randolph, Adrienne et al.: International pediatric sepsis
consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatric
critical care medicine, 6(1):2–8, 2005.

[Ha03] Han, Yong Y; Carcillo, Joseph A; Dragotta, Michelle A; Bills, Debra M; Watson, R Scott;
Westerman, Mark E; Orr, Richard A: Early reversal of pediatric-neonatal septic shock by
community physicians is associated with improved outcome. Pediatrics, 112(4):793–799,
2003.

[Hy11] Hyndman, Rob J.: Moving Averages. In (Lovric, Miodrag, ed.): International Encyclopedia
of Statistical Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 866–869, 2011.

[In09] Inwald, David P; Tasker, Robert C; Peters, Mark J; Nadel, Simon: Emergency management
of children with severe sepsis in the United Kingdom: the results of the Paediatric Intensive
Care Society sepsis audit. Archives of disease in childhood, 94(5):348–353, 2009.

[Iv15] Ivančević, Vladimir; Tušek, Ivan; Tušek, Jasmina; Knežević, Marko; Elheshk, Salaheddin;
Luković, Ivan: Using association rule mining to identify risk factors for early childhood
caries. Computer Methods and programs in Biomedicine, 122(2):175–181, 2015.

[Ka16] Kamalesh, Murari Devakannan; Prasanna, K Hema; Bharathi, B; Dhanalakshmi, R;
Aroul Canessane, R: Predicting the risk of diabetes mellitus to subpopulations using
association rule mining. In: proceedings of the international conference on soft computing
systems. Springer, pp. 59–65, 2016.

[Ke13] Keen, Justin; Calinescu, Radu; Paige, Richard; Rooksby, John: Big data+ politics= open
data: The case of health care data in England. Policy & Internet, 5(2):228–243, 2013.

[LNFV21] Liu, Xiangyu; Niu, Xinzheng; Fournier-Viger, Philippe: Fast top-k association rule mining
using rule generation property pruning. Applied Intelligence, 51(4):2077–2093, 2021.

[Na13] Nahar, Jesmin; Imam, Tasadduq; Tickle, Kevin S; Chen, Yi-Ping Phoebe: Association
rule mining to detect factors which contribute to heart disease in males and females.
Expert Systems with Applications, 40(4):1086–1093, 2013.

[No18] Noguchi, Yoshihiro; Ueno, Anri; Otsubo, Manami; Katsuno, Hayato; Sugita, Ikuto;
Kanematsu, Yuta; Yoshida, Aki; Esaki, Hiroki; Tachi, Tomoya; Teramachi, Hitomi: A
new search method using association rule mining for drug-drug interaction based on
spontaneous report system. Frontiers in pharmacology, 9:197, 2018.

Data Extraction for Associative Classification using Mined Rules in Pediatric Intensive
Care Data 993

14 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

[RN20] Ramasamy, S; Nirmala, K: Disease prediction in data mining using association rule
mining and keyword based clustering algorithms. International Journal of Computers and
Applications, 42(1):1–8, 2020.

[Rü22] Rübsamend, Nicole; Böhnked, Julia; Karchd, André; Dase, Pronaya Prosun; Wiesee,
Lena; Groszewski-Andersf, Christian; Hallerf, Andreas; Frankf, Torsten: Towards an
evolutionary open pediatric intensive care dataset in the ELISE project. Advances in
Informatics, Management and Technology in Healthcare, 295:100, 2022.

[So17] Sonet, KM Mehedi Hasan; Rahman, Md Mustafizur; Mazumder, Pritom; Reza, Abid;
Rahman, Rashedur M: Analyzing patterns of numerously occurring heart diseases using
association rule mining. In: 2017 twelfth international conference on digital information
management (ICDIM). IEEE, pp. 38–45, 2017.

[Ta07] Tarca, Adi L; Carey, Vincent J; Chen, Xue-wen; Romero, Roberto; Drăghici, Sorin:
Machine learning and its applications to biology. PLoS computational biology, 3(6):e116,
2007.

[Wu19] Wulff, Antje; Montag, Sara; Steiner, Bianca; Marschollek, Michael; Beerbaum, Philipp;
Karch, André; Jack, Thomas: CADDIE2—evaluation of a clinical decision-support system
for early detection of systemic inflammatory response syndrome in paediatric intensive
care: study protocol for a diagnostic study. BMJ open, 9(6):e028953, 2019.

[Wu21] Wulff, Antje; Montag, Sara; Rübsamen, Nicole; Dziuba, Friederike; Marschollek, Michael;
Beerbaum, Philipp; Karch, André; Jack, Thomas: Clinical evaluation of an interoperable
clinical decision-support system for the detection of systemic inflammatory response
syndrome in critically ill children. BMC medical informatics and decision making,
21(1):1–9, 2021.

[XJ19] Xu, Chunming; Jackson, Scott A: Machine learning and complex biological data. Genome
biology, 20(1):1–4, 2019.

994 Pronaya Prosun Das, Marcel Mast, Lena Wiese, Thomas Jack, Antje Wulff

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

SportsTables: A new Corpus for Semantic Type Detection

Sven Langenecker1, Christoph Sturm2, Christian Schalles3, Carsten Binnig4

Abstract: Table corpora such as VizNet or TURL which contain annotated semantic types per column
are important to build machine learning models for the task of automatic semantic type detection.
However, there is a huge discrepancy between corpora that are used for training and testing since
real-world data lakes contain a huge fraction of numerical data which are not present in existing
corpora. Hence, in this paper, we introduce a new corpus that contains a much higher proportion
of numerical columns than existing corpora. To reflect the distribution in real-world data lakes, our
corpus SportsTables has on average approx. 86% numerical columns, posing new challenges to
existing semantic type detection models which have mainly targeted non-numerical columns so far.
To demonstrate this effect, we show the results of a first study using a state-of-the-art approach for
semantic type detection on our new corpus and demonstrate significant performance differences in
predicting semantic types for textual and numerical data.

Keywords: Semantic Type Detection; Column Annotated Corpora

1 Introduction

Semantic type detection is important for data lakes. Semantic type detection of table
columns is an important task to exploit the large and constantly changing data collections
residing in data lakes. However, manually annotating tables in data lakes comes at a high
cost. Hence, in the past many approaches have been developed that automatically derive
semantic types from table data [Hu19b, Zh20, De21, Su22]. Many of the recent approaches
use deep learning techniques to build semantic type detection models. As such, corpora
containing large amounts of table data with assigned semantic types are required for training
and validating. Existing annotated table corpora (e. g. VizNet, TURL) primarily contain
tables extracted from the web and therefore limit the capability to represent enterprise data
lakes.

Existing corpora and models fall short on real-world data lakes. However, as we can see
in Fig. 1, almost all existing corpora that provide annotated columns labeled with semantic
types have a lack of table columns that contain numerical data, and tables in these datasets
incorporate either only or a very high percentage of textual data. Only GitTables [HDG21]
contains a more balanced ratio of textual and numerical data. Nevertheless, compared to real
1 DHBW Mosbach, Germany sven.langenecker@mosbach.dhbw.de
2 DHBW Mosbach, Germany christoph.sturm@mosbach.dhbw.de
3 DHBW Mosbach, Germany christian.schalles@mosbach.dhbw.de
4 TU Darmstadt, Germany carsten.binnig@tu-darmstadt.de

cba doi:10.18420/BTW2023-68

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 995

mailto:sven.langenecker@mosbach.dhbw.de
mailto:christoph.sturm@mosbach.dhbw.de
mailto:christian.schalles@mosbach.dhbw.de
mailto:carsten.binnig@tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-68

2 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Fig. 1: Average percentage of textual and numerical based columns per table in existing semantically
annotated corpora6 (left bars) compared to real-world data lakes (right bar). This shows the fact that
there is a significant shift in the ratio of textual to numeric columns per table from existing corpora
to real data lakes. Since all existing semantic type detection models were developed by using the
existing corpora, shortcomings in validating the models on numerical data are present and it has not
yet been studied in depth how well the models can perform on datasets containing a high proportion
of numerical data.

enterprise data lakes, there is a significant discrepancy in the ratio of textual to numerical
data. An inspection of a large real-world data lake at a company5 has shown that on average
approx. 20% textual data and 80% numerical data are present (see. Fig. 1 bars on the right).
Moreover, semantic type detection models [Hu19b, Zh20, De21, Su22] that are trained on
the available corpora also mainly target non-numerical data.

Semantic type detection for numerical data is challenging. Detecting semantic types
of numerical columns is generally harder than for textual columns. For example, for a
textual column with the values {Germany, USA, Sweden, ...} a model can easily identify the
semantic type country. Instead, for a numeric column with e. g. the values {20,22,30,34,...}
it is not that straightforward and several possibilities for a matching semantic type exist such
as age, temperature, size, money. The fundamental reason here is that numerical values
can be encoded with much fewer bits than string values [Sh48], resulting in a lower overall
entropy and thus providing less information content that can be used by a machine learning
model to infer the underlying semantic type. Due to the existing corpora providing annotated
columns that have been used to create and validate semantic type detection models, we see
several essential shortcomings that could not be addressed until now because of the absence
of a sufficient dataset for this purpose.

5 The analyses were done at the company LÄPPLE AG
6 Notice that for GitTables we only considered the tables and columns labeled by terms from DBpedia using the

semantic annotation method as described in the GitTables paper. Therefore our reported ratios of textual and
numerical data differ from those shown in the GitTables paper because they consider all data, whether annotated
or not.

996 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

SportsTables: A new Corpus for Semantic Type Detection 3

Contributions. In this paper, we thus contribute a new corpus containing tables with
semantically annotated columns with numeric and non-numeric columns that reflect the
distribution of real-world data lakes. We will make the corpus available which should
stimulate research directions such as working on new model architectures that can reliably
annotate types to numeric and non-numerical columns. In the following, we discuss the
main contribution of this paper.

As a first contribution, we present and provide our new corpus SportsTables7. To the best
of our knowledge, SportsTables is the first corpus with annotated table columns, which
contains a significantly larger proportion of numerical data than textual data. In total, the
tables in our corpus have on average about 3 textual and 18 numerical columns. Moreover,
the tables in our new corpus are much larger in both the number of columns and the number
of rows than in existing corpora which better reflects the characteristics of real-world tables.

As a second contribution that comes together with the corpus, we specify an ontology
with semantic types for the sports baseball, basketball, football, hockey, and soccer. This
ontology provides fine granular semantic types for all kinds of sports we considered to
build SportsTables and allows us to semantically describe each occurring table column,
which is not possible with the current ontologies (e. g. DBpedia) at this level of detail.
Using a manually created dictionary, we assign a semantic type to each existing column in
SportsTables.

As a third contribution, we present our initial results of using our new corpus on Sato [Zh20],
a state-of-the-art semantic type detection model. Overall, we can see that when trained on
our new corpora, Sato can improve the performance on numerical data types. However, one
shortcoming that our analysis shows is that current model architectures are not targeting
numerical columns. To be more precise, our analysis demonstrates that textual data columns
are mostly correctly semantically interpreted with Sato (F1-Score of 1.0), but on numerical
data columns, the model only achieves an F1-Score of about 0.55. This large difference
indicates that new model architectures that take the characteristics of numerical columns
into account are needed which is a direction that could be stimulated by the availability of
our corpus.

Outline. In Section 2, we first provide an overview of existing corpora which was used to
build and validate semantic type prediction models and discuss their characteristics and
statistics. Afterward, in Section 3, we then introduce our new corpus SportsTables and
describe in detail how we created the corpus and labeled the table columns with semantic
types. Section 4 first demonstrates the main characteristics of our corpus before we then
show the initial results of using our new corpus on Sato. Next, further research challenges
are discussed in Section 5 before Section 6 concludes the paper.

7 Available on https://github.com/DHBWMosbachWI/SportsTables.git

SportsTables: A new Corpus for Semantic Type Detection 997

https://github.com/DHBWMosbachWI/SportsTables.git

4 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Corpus #Table #Total Columns Avg. #Columns per Table Avg. #Rows per Table

VIZNET 78,733 120,609 1.53 18.35
TURL 406,706 654,670 1.61 12.79
SemTab2019 13,765 21,682 1.58 35.61
SemTab2020 131,253 190,494 1.45 9,19
SemTab2021 795 3,072 3.86 874.6
GitTables 1.37M 9.3M 6.82 184.66
SportsTables 1,187 24,838 20.93 246.72

Tab. 1: Corpus statistics about the number and sizes of tables.

2 Existing Corpora with Semantic Data Types

In the following, we describe different existing corpora that contain annotated table columns
and therefore can be used to build and validate semantic column type detection models. We
summarized the main statistics for all corpora in Tab. 1.

VizNet [Hu19a]. The original VizNet corpus [Hu19a] is a collection of data tables from
diverse web sources ([Ca08, Vi07, Pl18, NUP16]) which initially do not contain any
semantic label annotation. The corpus we consider in this paper is a subset of the original
VizNet corpus, which was annotated by a set of mapping rules from column headers to
semantic types and then used to build and validate the Sherlock [Hu19b] and Sato[Zh20]
prediction model. The corpus contains in total 78,733 tables and 120,609 columns annotated
with 78 unique semantic types. Overall, the tables in the corpus contain only 1.53 columns
and 18.35 rows on average. Furthermore, the distribution of the column data types is 87.58%
textual and 12.42% numerical and thus leads to the shortcomings as described before.

TURL [De21]. The TURL corpus uses the WikiTable corpus [BND15] as basis. To label
each column they refer to the semantic types defined in the Freebase ontology [Go22] with a
total number of 255 different semantic types. What distinguishes TURL from other corpora
is that columns can have multiple semantic types assigned. In total, there are 406,706 tables
resulting in 654,670 columns, and on average a table consists of 1.61 columns and 12.79
rows. Again, these are rather small dimensions. In addition, the Turl corpus includes no
numerical data at all, which leads to the shortcomings mentioned above when using the
corpora.

SemTab. SemTab is a yearly challenge with the goal of benchmarking systems that match
tabular data to knowledge graphs since 2019. The Challenge includes the tasks of assigning
a semantic type to a column, matching a cell to an entity, and assigning a property to
the relationship between columns. Every year, the challenge provides different datasets to
validate the participating systems against each other. In this paper we observed the provided
corpora for the years 2019 [Ha19], 2020 [Ha20, Cu20], and 2021 [Ha21, Cu20, OP21,
ASKR21, HDD21]. Statistic details of the corpora are shown in Tab. 1. In case more than
one dataset was provided per year, we aggregated the statistics over all datasets included
in the challenge. While SemTab2019 consists of 13,765 tables and 21,682 columns in

998 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

SportsTables: A new Corpus for Semantic Type Detection 5

total, there are 131,253 tables and 190,494 columns in SemTab2020. In both corpora, the
dimensions of the included tables are rather small (on average 1.58 columns and 35.61
rows in 2019 and 1.45 columns and 9.19 rows in 2020). In SemTab2021, the contained
tables are the largest in terms of rows with almost 875 on average. However, the number of
columns (3.86 on average) is only moderate and the corpus in general is the smallest with a
total of 795 tables and 3,072 columns. Numerical data is almost nonexistent in the first two
years (0.63% in 2019 / 0.07% in 2020), increasing to 28.24% numeric columns per table on
average in 2021, which is still not comparable to the number of numeric data in real world
data lakes.

GitTables [HDG21]. GitTables is a large-scale corpus of relational tables created by
extracting CSV files from GitHub repositories. Table columns are labeled with semantic
types from Schema.org [GBM16] and DBpedia [Au07] using two different automated
annotation methods (syntactically/semantically similarity matching from semantic type to
column header). In this paper, we have focused on the annotations origin from DBpedia and
the results of the semantic annotations method as described in the GitTables paper [HDG21].
This leads to a corpus containing over 1.37M tables and 9.3M columns in total. Although
this is by far the largest collection of data tables, the dimensions of the tables are on average
only moderate with 6.82 columns and 184,66 rows. Overall, GitTables incorporates the
most numeric data with an almost balanced ratio of 53.08% textual and 46.92% numerical
columns per table.

Discussion. The overview in Tab. 1 and the discussion before shows that most existing
corpora contain no or only a minimal fraction of numerical data types which is very different
from real-world data lakes. An exception is GitTables which has a much higher ratio of
numerical columns. However, as we show in Sect. 4, GitTables still lacks a good coverage
of different numeric semantic types which is one important aspect that we tackle with our
new corpus SportsTables which covers a wide variety of different numerical semantic types.
Moreover, another important (but orthogonal) aspect is that existing corpora include a large
number of tables. However, on average the tables are very small in terms of the number
of columns and the number of rows. Instead, our new corpus SportsTables contains fewer
tables, but on average a significantly higher number of columns and rows per table to better
reflect the characteristics of real-world data lakes

3 The SportsTables Corpus

In the following, we will introduce our new corpus and describe in detail the implemented
construction pipeline to build SportsTables.

Methodology to generate corpus. Fig. 2 gives an overview of our implemented pipeline
to generate the new corpus. The main idea was to collect data tables from different sports
domains such as soccer, basketball, baseball, etc. since data tables coming from such kinds
of sources are rich in numerical columns. For example, a soccer player statistic table of

SportsTables: A new Corpus for Semantic Type Detection 999

6 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Fig. 2: Overview of the implemented pipeline to build SportsTables. We use web-scraping techniques
to extract HTML tables from a manually defined web page collection for each selected sport and
convert the tables to CSV files. With the help of a defined ontology and a manually created dictionary
that maps column headers to semantic types, we annotate each table column with an appropriate
semantic type.

a soccer season contains typically 3 textual columns (e. g., player name, team name, field
position) and 18 numerical columns (e. g., goals, games played, assists). Hence, building a
collection of such tables will lead to a corpus that contains many numerical columns which
are in addition semantically interpretable. As a result, the corpus will enable to analyze the
performance of semantic type prediction models in a much more rigorous manner regarding
numerical data.

Scraping data from the web [Di19]. A vast amount of data covering information about
player statistics, team statistics, coach statistics, or season rankings of different sports are
available on various web pages. Therefore, for collecting the data, we built a data collection
pipeline based on web scraping technology[Di19]. In the first step, we manually searched
and defined a set of different web pages for each of the selected sports of which we want to
scrape contained data tables (left side of Fig. 2). We first converted each HTML table on
the web pages to Pandas-Dataframes using Python and then saved them as CSV files (center
of Fig. 2), since this file format is most known and used to store raw structured data [Mi16].
During the scrape process, we kept the respective column headers from the original HTML
table and used them as headers in the CSV file.

Annotating columns with semantic types. Due to the low granularity of existing ontologies
(e. g. DBpedia) regarding semantics of a given sport, we manually created an ontology-like
set of valid semantic types for all sports. For example, in DBpedia there is the type
Person.Athlete.BasketballPlayer, but semantic labels in the particular that would match
individual numerical columns such as NumberOfGoals are not defined. Next, we annotated
all table columns with semantic types using a manually created dictionary that maps column
headers to matching semantic types from our created set. Since the column headings were
in many cases identical if the semantic content was the same, this procedure significantly
reduces the manual labeling effort. In addition, to ensure that the labels are of very high
quality in terms of correctness, we manually checked each assignment based on the content
of the columns.

1000 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

SportsTables: A new Corpus for Semantic Type Detection 7

Sports #Table #Total Cols Avg. #Text. Cols per Table Avg. #Num. Cols per Table Avg. #Rows per Table

Baseball 174 3,829 3.97 18.03 76.34
Basketball 180 3,801 1.78 19.34 152.5
Football 303 6,764 2.45 19.88 354.79
Hockey 257 5,347 2.1 18.7 247.15
Soccer 273 5,097 3.9 14.77 297.11
Total 1,187 24,838 2.83 18.1 246.72

Tab. 2: Corpus statistics about the number and size of included tables. Statistics are shown broken
down by individual sports taken into account and in total. Across all sports, the average number of
numeric columns is much higher than textual columns.

4 Analysis of the Corpus

This section describes the characteristics of SportsTables in detail and then demonstrates
the significant impact of these characteristics on semantic type prediction frameworks in a
small study where we apply the corpus to an existing type detection model.

4.1 Corpus Characteristics

In the following. we discuss the statistics of the SportsTables corpus and compare them to
the existing corpora.

Data statistics (Tab. 1&Tab. 2). Using the described pipeline for creating SportsTables,
a total of 1,187 tables which comprises 24,838 columns (approx. 86% numeric and 14%
textual) are scraped from the web resulting in 20.93 columns (2.83 textual and 18.1
numerical) per table on average. This ratio of textual to numerical columns, as well as the
total average number of columns in a table, differs significantly from existing corpora. To
provide details about the contribution of different sports areas contained in SportsTables,
Tab. 2 shows the main statistics by the individual areas of sports.

Fig. 3 shows a comparison of the average number of textual and numerical columns per
table of SportsTables versus that of the existing corpora. Here we can see that numerical
columns only exist in the corpora VizNet with 0.33, SemTab2021 with 1.09, and GitTables
with 3.2 columns per Table. Compared to GitTables, in SportsTables there are thus on
average over 6 times more numeric columns per table. Moreover, as we discuss below, our
corpus uses a much richer set of numerical data types that better reflects the characteristics
in real-world data lakes which is very different from GitTables. For example, when looking
at the semantic types that are assigned to numerical columns in GitTables, more than half
(393,925) of the columns are labeled with just a single type Id.

In terms of the total number of columns, the tables in SportsTables (20.93 columns per table)
are on average about 3 times wider than in GitTables (6.82 columns per table), which contains
the widest tables among the existing corpora. As such, the number of columns in tables

SportsTables: A new Corpus for Semantic Type Detection 1001

8 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

Fig. 3: Average number of textual and numerical columns per table for each existing annotated corpora
and our new SportsTables corpus. This shows the absence of numerical data columns per table in
most existing corpora and the dominance of textual data columns per table in all existing corpora.
Instead, our new corpus SportsTables contains on average over 6 times more numerical columns than
textual columns.

Fig. 4: Corpus statistics about the number of unique semantic types included. Showing that our new
corpus has a higher proportion of numerical semantic types than textual semantic types in contrast to
the existing corpora. In addition, there is a large overlap of semantic types used for textual and numeric
columns in the existing corpora. In comparison, the semantic types in SportsTables are disjoint for the
two column data types.

of SportsTables are reflecting better the width when comparing this to the characteristics
of the tables in the real-world data lakes which we analyzed. Moreover, considering the
average number of rows per table, it can be seen that the tables in SportsTables have on
average 246.72 rows. In comparison, tables in SportsTables are larger on overage than in
many other corpora where tables have typically fewer rows.

Annotation statistics. Semantic type annotation follows a two step process. First, we
establish a directory with manually defined mappings from column header to semantic type
for each existing header. Second, we label each column with the semantic type listed in the
directory for its header. As a result, 56 textual and 419 numerical semantic types are present
in the corpus. Thereby textual semantic types are those which specify textual columns and
numerical types are those which specify columns containing numeric values. To compare
the annotation statistics, we also counted the number of textual and numerical semantic
types in an analysis of the existing corpora. The results of these analyses can be seen in
Fig. 4. Different from our corpus, the sets of textual and numerical types are not disjoint in
all other corpora (except TURL where no numeric values are present). This indicates that

1002 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

SportsTables: A new Corpus for Semantic Type Detection 9

(a) Top 20 textual sem. types (b) Top 20 numerical sem. types

Fig. 5: Semantic type annotation statistics of SportsTables. (a) Shows column annotation counts of the
top 20 textual semantic types. Across all kinds of sports, player.name and team.name are the most
common. (b) Shows column annotation counts of the top 20 numerical semantic types. A dominant
type here is rank, which describes a column containing the placements of e. g. a team in a season
standings table.

individual semantic types were assigned to both textual and numerical columns which is
problematic if semantic type detection models should be trained and tested on these corpora.
In particular, GitTables has a very large overlap and almost all semantic types are used in
both column data types. To give an example, in GitTables the semantic types comment,
name and description are assigned to both column data types. Next, we take a closer look
into the semantic types of our corpus.

Fig. 5a and Fig. 5b shows the top 20 semantic types (textual and numerical) in regards
to how often they were assigned to a table column. It can be seen that the most common
textual types across all sports are player.name and team.name. These are types that occur
in almost every table. Other types such as country or city are also common, describing,
for example, the player’s origin or the team’s hometown. Among numeric semantic types,
rank is by far the most common and is present in almost all tables. The type describes a
column containing the placement of e. g., a team in a ”seasons standing” table or a player in
a ”top scorer” table. All other numeric semantic types show mainly an equal distribution
of the frequency, which is a good precondition for training machine learning models. In
order to show not only the frequency of the top 20 semantic types, Fig. 6 plots all semantic
types (separated in textual and numerical) by the frequency of occurrences. Here we see
that 19 textual and 66 numerical semantic types occur only once in the entire corpus. For

SportsTables: A new Corpus for Semantic Type Detection 1003

10 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

the training and testing of prediction models, we would suggest not considering these types
due to the low occurrences.

SportsTables vs. GitTables. Since GitTables is the largest corpus with the most tables,
one could argue that a subset of GitTables would result in a new corpus with similar
characteristics as SportsTables. To analyze this, we executed a small experiment in which we
filtered out only tables from GitTables where the number of textual and numerical columns
(min. 3 textual and 18 numerical columns) is at least the same as it is in SportsTables.
The result was a corpus containing a total of 16,909 tables and 743,432 columns. On
average a table has 12.53 textual columns, 31.43 numerical columns, and 17.35 rows.
However, looking at the semantic types that are assigned to numerical columns, more
than half (393,925) of the columns are labeled with the type Id. In terms of training and
validating semantic type detection models, this is rather an unfavorable type representing
no semantically meaning. Moreover, the next 5 most common numerically based semantic
types are parent, max, comment, created and story editor, constituting a large proportion of
the columns. The assignment of these types to numerical data is slightly less understandable
and indicates a lack of quality in the automatically generated labels for table columns.

4.2 An Initial Study of Using SportsTables

In the following, we report on the initial results of using Sato, a recent semantic type
detection model, on our new corpus. With this, we want to measure how well the semantic
types in our corpus can be inferred by the model with a special focus on how it performs on
textual and numerical columns.

Experiment setup. For the first experiments, we only considered the soccer data from
SportsTables. Thereby, we split the corpus into different sizes of train and test sets (5/95,
10/90, 15/85, 20/80), to show the results of scenarios where the model has less and more
training data available. We use the pre-trained Sato model, which was trained on the VizNet
corpus, and re-trained it with the different training set sizes. During re-training, we replaced
the last layer of Sato to support the number of semantic types that occur in SportsTables
and then re-trained the entire neural network. To measure the performance, we applied the
re-trained model to the corresponding test data set.

Results of study. Fig. 7 shows the results of the experiments reporting F1-Scores using
the defined different sizes of train and test splits as described before. We plot macro and
weighted average F1-Score across all semantic types to show the total performance, but
also separate average F1-Score for only textually and numerically based semantic types,
respectively. As we can see in the figure, while Sato can detect numerical types, there is a
significant performance difference between predicting textual and numerical semantic types
for all setups. At the data split 20/80, all textual columns can be predicted correctly by the
model, whereas for numerical columns only an F1-Score of 0.56 is achieved. On average,
the difference in F1-Score between textual and numeric types is 0.41 across all setups.

1004 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

SportsTables: A new Corpus for Semantic Type Detection 11

Fig. 6: Shows how often semantic types occur
in SportsTables using buckets of varying widths,
which represents the frequency of occurrences.
For example, 19 textual and 66 numerical types
occur only once in the entire corpus.

Fig. 7: Initial results using the Sato model on our
new SportsTables corpus with different train/test
split sizes. The differences in F1-Scores for pre-
dicting textual and numeric columns indicate that
the model can handle textual data more effectively
than numeric data.

These results indicate that the model is more able to handle textual data and determine the
associated semantic type more accurately than for numeric data. Across all semantic types,
the weighted F1-Score increase from 0.73 to 0.82 while the macro F1-Score range from
0.53 to 0.63, which are rather moderate score values for semantic type prediction models.

5 Further Research Challenges

Detecting semantic types in real-world data lakes comes with many more challenges that
need to be addressed. In particular, based on our findings of the analysis using Sato in
Section 4, we think that new model architectures are needed for detecting numerical data
types which have very different characteristics from non-numerical data. In the following,
we list some of the challenges we think are important to be addressed. We hope that our
corpus enables research on those challenges.

Embedding numerical data: Most state-of-the-art models apply language models like BERT
[De19] to encode literals to infer the semantic type of a table column. Since such approaches
are optimized for textual data, the performance on numerical data of such models is not
entirely analyzable with the existing corpora.

Leveraging numerical context: To improve the semantic type prediction of a table column,
recent approaches like Sato [Zh20], TURL [De21] and Doduo [Su22] incorporate also
context information like the table-topic or values from neighboring columns of the same
table. Given that tables in existing corpora contain almost entirely textual columns, the
contexts (e. g. values from neighboring columns) used are rich in information and therefore
also lead to performance improvements. However, it is unclear how effective this approach

SportsTables: A new Corpus for Semantic Type Detection 1005

12 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

is in case the tables contain many numerical columns and only a few textual columns since
the context information provided is reduced due to the lower entropy of numeric values as
described before.

Supporting wide tables: Existing datasets for semantic type detection consist of tables with
small numbers of columns and rows. In nearly all corpora, the existing tables contain on
average less than two columns and less than 40 rows (see Tab. 1). Therefore, at the current
state, it has not been analyzed how state-of-the-art models can handle such large tables.
To give an example of why large tables could be a problem for recent models, we will
briefly discuss Doduo[Su22]. Doduo uses pre-trained language models (e. g., BERT) and
hence they have to convert the entire table into token sequences with a fixed tensor length
of 512 elements so that the table and its entries can be meaningfully processed by the
language model. To accomplish this, Doduo serializes the complete table and its entries as
follows: for each table that has 𝑛 columns 𝑇 = (𝑐𝑖)𝑛𝑖=1, where each column has 𝑁𝑚 column
values 𝑐𝑖 = (𝑣 𝑗

𝑖
)𝑚
𝑗=1, they let 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑇) ::= [𝐶𝐿𝑆]𝑣1

1...[𝐶𝐿𝑆]𝑣𝑛1 ...𝑣
𝑛
𝑚 [𝑆𝐸𝑃], where the

special token [CLS] marks the beginning of a new table column and [SEP] the end of a
token sequence. With this methodology of serialization and the fixed given tensor length,
increasing the number of table columns means that decreasing number of values of each
column can be included for serialization. For example, a table with 512 columns would
allow only one value per column to be considered and this would most likely result in an
insufficient semantic representation of the column based on that one value.

6 Conclusion

Existing corpora for training and validating semantic type detection models mainly contain
tables with only or a very high proportion of textual data columns and no or just a
limited number of numerical data columns. Therefore, it has not been studied precisely
how well state-of-the-art models perform on a dataset with a very high percentage of
numerical columns as it occurs in real-world data lakes. Moreover, tables in existing
corpora are very small regarding the total number of columns and rows. To tackle these
shortcomings, we built a new corpus called SportsTables which contains tables that have
on average approx. 3 textual columns, 18 numerical columns, and 250 rows. With our
new corpus, semantic type detection models for table columns can now be holistically
validated against numerical data. We show initial results by using Sato – a state-of-the-
art model – on our new corpus and report significant differences in the performance of
predicting semantic types of textual data and numerical data. The corpus is available on
https://github.com/DHBWMosbachWI/SportsTables.git. Finally, we think that the corpus
is just a first step to stimulate more research on new model architectures that can better deal
with numerical and non-numerical data types.

1006 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

https://github.com/DHBWMosbachWI/SportsTables.git

SportsTables: A new Corpus for Semantic Type Detection 13

Bibliography

[ASKR21] Abdelmageed, Nora; Schindler, Sirko; König-Ries, Birgitta: , fusion-jena/BiodivTab,
October 2021. https://doi.org/10.5281/zenodo.5584180.

[Au07] Auer, Sören; Bizer, Christian; Kobilarov, Georgi; Lehmann, Jens; Cyganiak, Richard; Ives,
Zachary: DBpedia: A Nucleus for a Web of Open Data. In (Aberer, Karl; Choi, Key-Sun;
Noy, Natasha; Allemang, Dean; Lee, Kyung-Il; Nixon, Lyndon; Golbeck, Jennifer; Mika,
Peter; Maynard, Diana; Mizoguchi, Riichiro; Schreiber, Guus; Cudré-Mauroux, Philippe,
eds): The Semantic Web. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 722–735,
2007.

[BND15] Bhagavatula, Chandra Sekhar; Noraset, Thanapon; Downey, Doug: TabEL: Entity Linking
in Web Tables. In: The Semantic Web - ISWC 2015. Springer International Publishing,
Cham, pp. 425–441, 2015.

[Ca08] Cafarella, Michael J.; Halevy, Alon; Wang, Daisy Zhe; Wu, Eugene; Zhang, Yang:
WebTables: Exploring the Power of Tables on the Web. In: VLDB. volume 1. VLDB
Endowment, p. 538–549, 2008.

[Cu20] Cutrona, Vincenzo; Bianchi, Federico; Jiménez-Ruiz, Ernesto; Palmonari, Matteo: ,
Tough Tables: Carefully Evaluating Entity Linking for Tabular Data, November 2020.
GT and Target files have different formats in 2T and 2T_WD (CEA). 2T complies with
the SemTab2019 CEA format (tab_id, col_id, row_id, entity), while 2T_WD follows the
SemTab2020 CEA format (tab_id, row_id, col_id, entity). Visit the SemTab challenge
website (https://www.cs.ox.ac.uk/isg/challenges/sem-tab/) for more details.

[De19] Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina: BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In: NAACL-HLT 2019.
Association for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186,
June 2019.

[De21] Deng, Xiang; Sun, Huan; Lees, Alyssa; Wu, You; Yu, Cong: TURL: Table Understanding
through Representation Learning. In: VLDB. volume 14. VLDB Endowment, pp. 307 –
319, 2021.

[Di19] Diouf, Rabiyatou; Sarr, Edouard Ngor; Sall, Ousmane; Birregah, Babiga; Bousso,
Mamadou; Mbaye, Sény Ndiaye: Web Scraping: State-of-the-Art and Areas of Application.
In: International Conference on Big Data. pp. 6040–6042, 2019.

[GBM16] Guha, R. V.; Brickley, Dan; Macbeth, Steve: Schema.Org: Evolution of Structured Data
on the Web. Commun. ACM, 59(2):44–51, jan 2016.

[Go22] Google: , Freebase Data Dumps. https://developers.google.com/freebase, 2022.

[Ha19] Hassanzadeh, Oktie; Efthymiou, Vasilis; Chen, Jiaoyan; Jiménez-Ruiz, Ernesto; Srinivas,
Kavitha: , SemTab 2019: Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching Data Sets, October 2019. https://doi.org/10.5281/zenodo.3518539.

[Ha20] Hassanzadeh, Oktie; Efthymiou, Vasilis; Chen, Jiaoyan; Jiménez-Ruiz, Ernesto; Srinivas,
Kavitha: , SemTab 2020: Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching Data Sets, November 2020. https://doi.org/10.5281/zenodo.4282879.

SportsTables: A new Corpus for Semantic Type Detection 1007

https://developers.google.com/freebase

14 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

[Ha21] Hassanzadeh, Oktie; Efthymiou, Vasilis; Chen, Jiaoyan; Jiménez-Ruiz, Ernesto; Srinivas,
Kavitha: , SemTab 2021: Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching Data Sets, November 2021. https://doi.org/10.5281/zenodo.6154708.

[HDD21] Hulsebos, Madelon; Demiralp, Cagatay; Demiralp, Paul: , GitTables benchmark - column
type detection, November 2021. https://doi.org/10.5281/zenodo.5706316.

[HDG21] Hulsebos, Madelon; Demiralp, Çagatay; Groth, Paul: GitTables: A Large-Scale Corpus
of Relational Tables. CoRR, abs/2106.07258, 2021.

[Hu19a] Hu, Kevin; Gaikwad, Snehalkumar ’Neil’ S.; Hulsebos, Madelon; Bakker, Michiel A.;
Zgraggen, Emanuel; Hidalgo, César; Kraska, Tim; Li, Guoliang; Satyanarayan, Arvind;
Demiralp, Çağatay: VizNet: Towards A Large-Scale Visualization Learning and Bench-
marking Repository. In: CHI ’19. CHI ’19, ACM, New York, NY, USA, p. 1–12,
2019.

[Hu19b] Hulsebos, Madelon; Hu, Kevin; Bakker, Michiel; Zgraggen, Emanuel; Satyanarayan,
Arvind; Kraska, Tim; Demiralp, Çagatay; Hidalgo, César: Sherlock: A Deep Learning
Approach to Semantic Data Type Detection. In: SIGKDD. KDD ’19, ACM, New York,
NY, USA, p. 1500–1508, 2019.

[Mi16] Mitlöhner, Johann; Neumaier, Sebastian; Umbrich, Jürgen; Polleres, Axel: Characteristics
of Open Data CSV Files. In (IEEE, ed.): International Conference on Open and Big Data
(OBD). IEEE, pp. 72 – 79, 2016.

[NUP16] Neumaier, Sebastian; Umbrich, Jürgen; Polleres, Axel: Automated Quality Assessment
of Metadata across Open Data Portals. J. Data and Information Quality, 8(1), oct 2016.

[OP21] Oliveira, Daniela; Pesquita, Catia: , SemTab 2021 BioTable Dataset, October 2021.
https://doi.org/10.5281/zenodo.5606585.

[Pl18] Plotly: , Plotly. https://chart-studio.plotly.com/feed/, 2018.

[Sh48] Shannon, Claude Elwood: A Mathematical Theory of Communication. The Bell System
Technical Journal, 27:379–423, 1948.

[Su22] Suhara, Yoshihiko; Li, Jinfeng; Li, Yuliang; Zhang, Dan; Demiralp, Çağatay; Chen,
Chen; Tan, Wang-Chiew: Annotating Columns with Pre-Trained Language Models. In:
SIGMOD. ACM, New York, NY, USA, pp. 1493—-1503, 2022.

[Vi07] Viegas, Fernanda B.; Wattenberg, Martin; van Ham, Frank; Kriss, Jesse; McKeon, Matt:
ManyEyes: A Site for Visualization at Internet Scale. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1121–1128, nov 2007.

[Zh20] Zhang, Dan; Hulsebos, Madelon; Suhara, Yoshihiko; Demiralp, Çağatay; Li, Jinfeng; Tan,
Wang-Chiew: Sato: Contextual Semantic Type Detection in Tables. In: VLDB. volume 13.
VLDB Endowment, p. 1835–1848, jul 2020.

1008 Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Reliable Rules for Relation Extraction in a Multimodal
Setting

Björn Engelmann1, Philipp Schaer 2

Abstract: Relation extraction for automated knowledge base construction typically requires much
training data. If these are not available for a specific information need, relations must be extracted
manually, or by hand-crafted extraction rules [Wu18]. Data Programming can be used to define
heuristics that generate noisy labels for many instances, but this requires programming knowledge
[Di19]. We present an approach to extract relations from multimodal documents using a few training
data. Furthermore, we derive explanations in the form of extraction rules from the underlying model
to ensure the reliability of the extraction. Finally, we will evaluate how reliable (high model fidelity)
extracted rules are and which type of classifier is suitable in terms of F1 Score and explainability.

Keywords: Relation Extraction; Knowledge Extraction; Knowledge Base Construction; Explainable
AI; Multimodal Documents

1 Introduction

Automatic knowledge base construction is a task that typically requires a large amount of
labelled data against which extraction models can be trained. Unfortunately, especially in
relation extraction, these labels are often unavailable since concrete use cases frequently
differ strongly from each other. The corpus documents vary regarding the language used,
data modality, structuredness, and domain. Many documents are also multimodal, which
means that in addition to the text, they contain much other information, such as tables, font
size, and text alignment. For this reason, annotated relations often must first be created in a
laborious and error-prone procedure [Wu18].

An alternative to manual annotation is the application of hand-crafted extraction rules, which
can automatically create noisy labels for many data instances [Ra17]. However, creating
these rules requires programming knowledge, and without gold data, it is impossible to
evaluate whether the applied rules are reliable. Furthermore, the application of complex
language models in the low-resource setting is often infeasible due to the high computational
effort involved [Ga21].

Due to these challenges, we present an approach that finds reliable extraction rules based
on a small number of annotations, which makes the extraction model explainable on the
1 Technische Hochschule Köln, Information Retrieval Research Group bjoern.engelmann@th-koeln.de
2 Technische Hochschule Köln, Information Retrieval Research Group philipp.schaer@th-koeln.de

cba doi:10.18420/BTW2023-69

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1009

mailto:bjoern.engelmann@th-koeln.de
mailto:philipp.schaer@th-koeln.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-69

2 Björn Engelmann, Philipp Schaer

one hand and suitable to annotate new relations on the other hand. This has the advantage
that a user can assess the model’s reliability without having a lot of test data available. A
small amount of training data is called a number less or equal to 10 instances in our context
of information extraction. We follow the convention of few-shot learning, where few-shot
means that only a few labelled training instances are available [De22]. These extraction
rules are presented to a user, who can decide by expert feedback whether a rule fits their
use case. The requirements for such a user are generally the necessary domain knowledge
about the relations of the use case and basic HTML knowledge. A typical user group for this
are data journalists, who often have HTML knowledge but not necessarily programming
knowledge.

This work presents an approach that allows the integration of expert knowledge and expands
the group of potential users for extracting relations in a low-resource setting without much
labeling or programming effort. To ensure this, our model requires only a small amount
of training data and provides extraction rules with high fidelity, which are suitable for
user-driven feedback. For this purpose, we combine approaches from Explainable AI with
those from Data Programming. If these rules are considered reliable by a user, it can reduce
the annotation process for a new data science project.

The remainder of this paper is structured as follows: section 2 describes relevant related
work. Then, in section 3, we introduce our overall approach using the associated pipeline
and the methodological details. Next, our evaluation, experimental settings and the dataset
used are presented in section 4. Finally, section 5 discusses the results and shows future
work.

2 Related Work

The construction of a Knowledge Base is challenging, as Knowledge Bases need to be
accurate, up-to-date, comprehensive, flexible, and efficient as possible. [Di19] propose
automated knowledge base construction requirements that are not fully covered by any of
the systems studied. An important key feature is an option for user feedback in which they
can define or select extraction rules without coding skills.

Fonduer [Wu18] is a tool that implements a complete pipeline for the extraction of relations.
It is based on the fact that users define the extraction rules themselves and evaluate and
constantly improve them in an iterative process. Documents are automatically parsed,
and their multimodal information, such as the membership of a span to a table header,
is preserved. The user-defined extraction rules thus form entity types and relation types.
However, these rules require programming knowledge, and the final extraction model can
only be explained indirectly based on the defined rules.

By 2003, several methods for adaptive information extraction had already been presented.
These focused roughly on two approaches. On the one hand, knowledge extraction with the

1010 Björn Engelmann, Philipp Schaer

Multimodal Relation Extraction 3

help of finite state techniques which are expressed by grammars or automata. On the other
hand, relational rule learning techniques, where rules are learned in a Prolog style [KT03].

Modern approaches based on language models can consider the context of entities (neigh-
bourhood of elements in the DOM tree) in HTML documents for extraction. In a few-shot
setting, attributes can be extracted from a web page by pre-training the model on unlabeled
web pages [De22]. In this way, an average of 10 training websites is sufficient to achieve an
attribute value-level F1 score of 94.2 for an attribute extraction task on a website.

[Ha17] have presented a tool that provides a user with a visual interface to perform simple
information extraction tasks without knowing a programming language. Easy to understand
extraction rules are presented, which are generated from a small set of labelled data. Their
system already has a bunch of predefined rules. These rules can then be refined to improve
extraction performance. However, it is impossible to relate these rules to a trained model,
which makes it impossible to perform more complex extraction tasks.

Explainable Artificial Intelligence is a research field that aims to make AI systems results
more understandable to humans [AB18]. Approaches to make the behaviour of these
black-box systems understandable are, e.g., Rule Extraction or Feature Importance. Lime
[RSG16a] can be used to generate explanations in the form of feature importance scores
within a local neighbourhood around the instance to be explained. To do this, new artificial
instances are sampled near the input to be explained, which are then used to learn a simple
local regression model. The learned coefficients then correspond to the feature scores. To
evaluate the comprehensibility of extracted explanations, [Ji21] conducted a survey and
assessed which types of explanations are well suited to improve the understanding of a
black-box model. Users found extracted rules very helpful, especially when they refer to a
few features.

To link user feedback with Explainable Artifical Intelligence, [TK18] give a user the
possibility to mark a feature for a given training example in such a way that this feature
should not influence the training process. The user can determine whether the model has
mistakenly drawn a connection between this feature and the example through domain
knowledge.

The advantage of our approach is that arbitrary extraction models can be used, from which
explanations can be extracted using Explainable AI. This is not provided for in the classical
techniques of adaptive learning. In principle, our approach is compatible with all black-box
classifiers and all XAI methods that provide extraction rules. Prolog-like rule systems, for
example, do not offer this flexibility since, at most, the rule systems themselves can serve as
explanations.

To our knowledge, no system has been presented that allows users without programming
knowledge to extract reliable relations from multimodal data based on a few training
examples.

Reliable Rules for Relation Extraction in a Multimodal Setting 1011

4 Björn Engelmann, Philipp Schaer

3 Methods

This section describes the individual building blocks of our approach. In Figure 1, the
procedure is roughly shown.

A knowledge base construction framework (Fonduer [Wu18]) parses multimodal docu-
ments, and relation candidates are generated. The user labels a small set of documents
(subsection 3.1).

Relations go through the steps of featurization, dimension reduction and feature combination
(subsection 3.2, subsection 3.3).

The transformed vectors are used to train the model. The model provides predictions and
feedback to the user through a ranked list of explanations (subsection 3.4).

The user gives feedback in the form of a selection of reliable rules (subsection 3.5).

Fonduer

Multimodal

Documents

Define
Mention
Space

F
e
a
tu

riza
tio

n

Relation
Candidates

Parsing and
Candidate Generation

Manual Labeling

Fe
a
tu

re
C

o
m

b
in

a
tio

n

Model

F
e
e
d
b
a
c
k

Reliable
Rules

D
im

e
n
sio

n
a
lity

 R
e
d

u
ctio

n

R
a
n
ke

d

E
x
p
la

n
a
tio

n

List

Relation Transformation Block

Fig. 1: Process of the overall approach in a productive environment. In the relation transformation
block, rows represent instances, columns express individual entity features, and colours symbolise a
component in the feature vector.

3.1 Parsing and Candidate Generation

Parsing multimodal documents is challenging because different kinds of information (font,
table structure, colour) should be preserved. However, as much information as possible
should be available in the database in a uniform and structured way. For this purpose, the
framework Fonduer is used in this work [Wu18]. After parsing, a hierarchically structured
graph is available for each document. For example, a section can contain text, tables, or

1012 Björn Engelmann, Philipp Schaer

Multimodal Relation Extraction 5

figures. The smallest unit consists of sentences. Fonduer captures the context of sentences
and candidates, e.g. information about where they appear in the document. Furthermore,
details such as font size or the HTML class used for an element are preserved.

This form of modelling makes it possible to use the structural information of the document
as a signal for relation extraction. In our case, relation candidates consist of two mentions,
which are two text spans in the document that potentially express the user’s desired relation.
Both correct and incorrect relation candidates are required to train the model to solve the
binary classification problem. Correct relations are those candidates where both entity
mentions are in a predefined connection. Incorrect relations contain entity mentions that are
randomly drawn from the document. Accordingly, all relation candidates are derived from
the cartesian product of both mention sets. Furthermore, we make sure that some incorrect
candidates contain exactly one correct entity mention (details in subsection 4.2). The set of
correct relation candidates is manually assigned. Fonduer then transforms these candidates
into a feature space that embeds textual, structural, visual, and tabular features. We denote
the transformed correct candidates as R𝑝𝑜𝑠 and the incorrect R𝑛𝑒𝑔, respectively.

3.2 Featurization and Dimensionality Reduction

With the Fonduer featurization, each relation candidate is assigned to a feature vector of
dimension 𝐷 derived from the multimodal context of the linked entities. Each feature is
binary and expresses whether a property applies to a relation or not (e.g., the first entity
mention contains the word professional, some instances can be seen in Table 2). This feature
vector is denoted as r = {𝑟1, ..., 𝑟𝐷}. Each component 𝑟𝑖 of the feature vector refers to a
property of the respective entity mention of entity type 𝑒0 or 𝑒1. We denote the set of all
properties of an entity type E0 and E1, respectively. Furthermore, some properties refer to
the context of both entity mentions (e.g., the distance of both mentions from each other),
the total set of which we call G. We denote the set of all features F = E0 ∪ E1 ∪ G.

The dimensionality of a feature vector is typically over 100k for a common set of HTML
documents. However, since we have little training data available and want to make model
decisions explainable, we reduce the dimensionality [Cu08]. This is achieved by filtering
out the vector components that vary least from the difference between the average correct
and incorrect training vectors. We use this form of dimension reduction to obtain binary
features. Since the explainability of single features should be preserved, we cannot use
techniques like singular value decomposition or embeddings because we would obtain a real
feature space. Our dimension reduction approach assumes that those features are particularly
relevant for the classification whose values differ most between the positive and negative
candidates. The 𝑙 most varying components are defined in the following way:

F𝑠𝑖𝑔 = argsort𝑙
(
|r𝑝𝑜𝑠 − r𝑛𝑒𝑔 |

)
. (1)

Reliable Rules for Relation Extraction in a Multimodal Setting 1013

6 Björn Engelmann, Philipp Schaer

r𝑝𝑜𝑠 =
1

|R𝑝𝑜𝑠 |
∑︁

r(𝑖) ∈R𝑝𝑜𝑠

r(𝑖) . (2)

The argsort𝑙 function returns indices of the 𝑙 vector components with the highest value. The
average of all vectors corresponding to the incorrect relations r𝑛𝑒𝑔 is defined respectively.
Thus, F𝑠𝑖𝑔 contains the 𝑙 indices of such components that differ most with respect to correct
and incorrect relations. We assume that the corresponding features are the most important
for our relation classification task and discard the rest.

3.3 Feature Combination

Another approach we take is to combine features from E0 and E1 into one feature. As
explained in subsection 3.1, there are incorrect relations where one of two entity mentions
is correct. This is because each relation, in our case, consists of exactly two entities. Since
individual features are intended to serve as both a classification explanation and an extraction
rule, it is reasonable to require the validity of two relation properties in one rule. Therefore,
explanations and extraction rules should also express both properties in one. Here we
use only those features that are preserved after dimension reduction. We denote the set
of all combinations of E0 and E1 together with the features from G, F𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , where
F𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = (E0 × E1) ∪ G.

3.4 Training and Explanations

For the binary classification task, we use low-complexity models (details in subsection 4.2)
because their training is better suited in the low-resource setting, and there is evidence that
the complexity of models correlates negatively with their explainability [Gu19].

After the training, we extract a set of explanations with Lime. Lime is an approach that
explains the prediction of a specific instance based on the importance weights of the
associated features [RSG16b]. Lime explains a selected instance, but since we want to obtain
extraction rules that explain the overall model and provide valuable explanations, we need
to choose a representative but also a diverse set of instances for Lime. We have chosen this
local approach because the dimension reduction already performs a global selection, and
the local approach results in a multitude of explanations. In addition, this has the advantage
that a user can select one of these explanations. We generate diversified artificial instances
based on our test relations to obtain explanations that cover as many relation patterns as
possible. We build clusters over our test vectors using the k-means procedure to achieve this.
The rounded cluster centres then form our representative, diverse instances based on which
explanations are extracted. We derive a ranked list of feature combinations by summarizing
the weights over all instances and sorting them in descending order. The intuition is that

1014 Björn Engelmann, Philipp Schaer

Multimodal Relation Extraction 7

each feature can be interpreted as a rule to classify unseen data. The higher the explanation
weight of a rule is, the closer its predictions are to the predictions of the explained model.

Another approach to measuring the fidelity of each feature to the model is to apply each
feature, interpreted as a rule, to the test data and then compare the results to the model
predictions. Thus, a baseline is established that assigns an F1 Fidelity to each rule, which
is derived from the F1 Score of the model predictions and the application of each rule
[Gu18a].

3.5 User Feedback

The ranked explanation list can then be presented to a user who selects a reliable rule based
on domain knowledge to classify relation candidates. Under the assumption that the list
position correlates with the actual F1 Score, the advantage is that a user has less effort in
selecting a reliable rule. In subsection 4.4, an example of a ranked list is shown, in addition
to the quantitative analysis, to make plausible that some rules are both understandable
and accurate. We present rules that we assume a user would plausibly choose to find an
appropriate expression based on the context of the use case.

4 Experiments

The following subsections evaluate which classifiers are suitable for relation candidate
classification and generating reliable extraction rules based on different amounts of training
data. The test data labels are only used to evaluate the final results. We never use the test
labels for dimension reduction or hyperparameter selection. Our code and data are available
at https://osf.io/dn9hm/?view_only=7e65fd1d4aae44e1802bb5ddd3465e08.

4.1 Dataset

The Structured Web Data Extraction (SWDE) dataset consists of a collection of 124,291
structured web pages with 8 different verticals [Ha11]. A vertical (e.g., job posting) consists
of 10 differently formatted websites, each consisting of up to 2000 pages. Within a page are
labelled attributes (in the case of job postings: title, company, location, date). For our case,
we want to extract relations between job titles and corresponding locations. All websites
are available in HTML. Since there can be many mentions of job titles and locations on
each website, only those relation mentions are considered correct whose entity mentions
are at the correct position in the document. An example of a job posting can be seen in
Figure 2. We use 400 webpages from the Careerbuilder site. We define the mention space
for all jobtitle entity mentions as n-grams between 1-9 items and 1-6 items for the location
mentions, respectively.

Reliable Rules for Relation Extraction in a Multimodal Setting 1015

https://osf.io/dn9hm/?view_only=7e65fd1d4aae44e1802bb5ddd3465e08

8 Björn Engelmann, Philipp Schaer

Fig. 2: Example excerpt of a job posting from the Careerbuilder website. The entities of the correct
relation are marked in green.

4.2 Experimental Settings

For the experiments, different types of models are used to investigate the relationship
between classification performance and explainability. For all of the following models, the
sklearn default configurations are used: Multi-Layer Perceptron (MLP), Decision Tree (DT),
k-Nearest Neighbors (kNN), Gradient Boosting (GB), Random Forest (RF), Support Vector
Classifier (SVM), Naive Bayes (NB) [Pe11]. Since we want to evaluate our approach for
a small number of training data, we limit the number of correct relations |R𝑝𝑜𝑠 | and test
the following amounts: |R𝑝𝑜𝑠 | ∈ {3, 5, 10, 20, 40}. We sample 10 incorrect relations for
each correct relation, which is a typical ratio for relation extraction [NG15]. Under these 10
incorrect relations are two containing exactly one correct entity span. Since we know that a
document can contain only one correct relation, the remaining combinations of mentions
can serve as the basis of the incorrect relations. We use this variety of simple classifiers to
evaluate whether differences in explainability can be detected. We also use the standard
deviation of classification performance over multiple training runs to assess how reliable a
model is for a given set of training data. The larger the standard deviation of the F1 score of
a model, the less reliable the extraction performance.

1016 Björn Engelmann, Philipp Schaer

Multimodal Relation Extraction 9

4.3 Ablations

We evaluate each module of our pipeline in terms of median F1 Score. Thus, each model
type is evaluated with the totality of all features, with the features after dimensionality
reduction, and with the combined features. Each configuration is evaluated with 10-Fold
cross-validation to determine standard deviation and median values. The scatter values of
the classifiers are particularly important since this is an indicator of model reliability. We
use the scatter of the F1 Score to measure the model’s reliability, as we don’t know the
actual F1 Score in a productive setting where we have no labelled test data. Especially when
little training data is used, a higher scatter of F1 Score results (as seen in Table 1).

For k-means clustering, we use 10 cluster centres, and dimension reduction reduces the
feature space from 382k dimensions to 30. Dimension reduction almost always resulted in
better F1 Scores. This can be seen particularly clearly for Naive Bayes and SVM. When
applying the feature combination, no clear pattern emerges; only the standard deviation for
the Random Forest decreases and a constantly increased F1 Score for Naive Bayes. It is also
noticeable that for the Random Forest model with combined features in the median already,
5 correct training relations are sufficient to achieve an F1 Score of 1.0, with a standard
deviation of 0.1.
Tab. 1: Median F1 Scores and corresponding standard deviations for different training amounts and
model types.

Model / # train 2 3 5 10 20 40
MLP full 0.84±0.06 0.85±0.03 0.87±0.01 0.9±0.02 0.94±0.02 0.95±0.02
MLP red. 0.96±0.08 0.98±0.06 0.99±0.07 1.0±0.02 1.0±0.01 1.0±0.0
MLP comb. 0.96±0.04 0.97±0.02 0.98±0.02 0.99±0.01 1.0±0.01 1.0±0.0
DT full 0.86±0.12 0.79±0.1 0.85±0.06 0.9±0.04 0.94±0.03 0.95±0.01
DT red. 0.86±0.12 0.85±0.06 0.92±0.08 0.94±0.05 0.96±0.03 1.0±0.01
DT comb. 0.93±0.05 0.91±0.07 0.97±0.03 1.0±0.04 1.0±0.01 1.0±0.0
KNN full 0.2±0.32 0.29±0.15 0.42±0.12 0.57±0.11 0.63±0.07 0.72±0.07
KNN red. 0.97±0.01 0.98±0.02 0.99±0.01 1.0±0.01 1.0±0.01 1.0±0.0
KNN comb. 0.97±0.06 0.98±0.01 0.99±0.01 1.0±0.01 1.0±0.01 1.0±0.01
RF full 0.93±0.27 0.97±0.04 0.94±0.03 1.0±0.02 1.0±0.01 1.0±0.0
RF red. 0.93±0.09 0.96±0.09 0.98±0.08 1.0±0.01 1.0±0.01 1.0±0.0
RF comb. 0.98±0.01 0.98±0.02 1.0±0.01 1.0±0.01 1.0±0.01 1.0±0.0
GB full 0.86±0.04 0.85±0.06 0.93±0.07 0.94±0.05 0.96±0.04 0.97±0.01
GB red. 0.86±0.06 0.85±0.07 0.95±0.08 0.96±0.05 0.95±0.03 1.0±0.01
GB comb. 0.97±0.01 0.98±0.02 0.98±0.01 0.99±0.01 1.0±0.02 1.0±0.0
NB full 0.01±0.24 0.07±0.27 0.64±0.26 0.64±0.3 0.96±0.02 0.92±0.03
NB red. 0.74±0.17 0.76±0.12 0.75±0.02 0.78±0.06 0.77±0.04 0.77±0.01
NB comb. 0.9±0.27 0.89±0.06 0.94±0.03 0.92±0.03 0.93±0.03 0.96±0.02
SVM full 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
SVM red. 0.93±0.17 0.96±0.03 0.97±0.03 1.0±0.03 1.0±0.02 1.0±0.0
SVM comb. 0.87±0.17 0.9±0.07 0.92±0.07 0.98±0.05 0.99±0.02 1.0±0.0

Reliable Rules for Relation Extraction in a Multimodal Setting 1017

10 Björn Engelmann, Philipp Schaer

4.4 Explanation Evaluation

Tab. 2: Selection of the 10 extracted rules with the highest F1 Fidelity.

F1 Fidelity Explanation F1 Score
STR_e0_HTML_ATTR_class=job_title AND
STR_e1_NEXT_SIB_TAG_iframe 1.0

STR_e0_HTML_ATTR_class=job_title AND
BASIC_e1_CONTAINS_WORDS_[US] 1.0

STR_e0_HTML_ATTR_class=job_title AND
STR_e1_HTML_ATTR_rel=nofollow 1.0

STR_e0_HTML_ATTR_class=job_title AND
BASIC_e1_CONTAINS_WORDS_[US -] 1.0

STR_e0_HTML_ATTR_class=job_title AND
STR_e1_HTML_ATTR_class=BingMap 1.0

STR_e0_HTML_ATTR_class=job_title AND
STR_e1_HTML_ATTR_id=JobDetails_.. 1.0

STR_e0_ANCESTOR_TAG_[html body ...] AND
STR_e1_NEXT_SIB_TAG_iframe’] 0.98

STR_e0_ANCESTOR_TAG_[html body ...] AND
BASIC_e1_CONTAINS_WORDS_[US] 0.98

STR_e0_ANCESTOR_TAG_[html body ...] AND
STR_e1_HTML_ATTR_rel=nofollow’ 0.98

STR_e0_ANCESTOR_TAG_[html body ...] AND
STR_e1_HTML_ATTR_class=BingMap 0.98

Since our goal is to extract reliable rules, we evaluate the fidelity of the explanations of all
model types using the F1 Fidelity between explanation and prediction [Gu18b]. To evaluate
the quality of the final ranking, we calculate the rank correlation between an optimal ranked
list (according to the F1 Score for a specific rule against the test labels) and a list resulting
from ordering the explanation weight. The set of rules to be ordered is the same here,
only the order may differ. We used the Spearman rank correlation instead of the Pearson
correlation coefficient since the values of the explanation weights are no longer relevant
for the ranking, only their order. Furthermore, the distribution of the explanation weights
does not necessarily follow a normal distribution, which must be assumed for the Pearson
correlation coefficient.

Figure 3 illustrates how the number of training data, the model, and the explanation type
affect the rank correlation. Extracted rules ordered by F1 Fidelity correlate more strongly
with an optimally ranked list than a list ordered by Lime explanation weights. Furthermore,
it is shown that RF and KNN achieve a rank correlation of more than 0.98 from 5 correct
training relations. The Lime explanation weights for SVM and DT were omitted because
they do not have a function to assign pseudo-probabilities to instances. In general, the rank
correlation tends to improve for an increasing number of training data.

In Table 2, the top ten explanations extracted from a Gradient Boost model are shown as an

1018 Björn Engelmann, Philipp Schaer

Multimodal Relation Extraction 11

Fig. 3: Rank correlations for different models and explanation types plotted against the number of
correct training relations. Only for models with combined features.

example. This was trained with 5 correct relations. According to Table 1, this configuration
has an F1 Score of 0.98, while all top six extracted rules have an F1 Score of 1.0. We assume
that a user would select rule #5 as reliable. Based on the HTML classes, the user can infer
the meaning of the entities because the jobtitle class indicates a correct jobtitle mention,
and the BingMap class expresses the presence of a corresponding location (Figure 2). The
authors from [De22] use a complex language model to achieve an attribute value-level F1
score of 94.8 for a similar task. The results cannot be compared directly because their model
does not use candidate generation; therefore, it is not a classification task but an attribute
extraction task. Also, the model is trained on 80 different sites and thus has to recognize a
larger variety of patterns. However, an average number of 10 webpages was used for the
few-shot training.

5 Discussion

In this work, we presented an approach to extract relations and corresponding rules from
multimodal documents using a small amount of training data. Using our example from
Table 2, it can be seen that even a single rule can provide better extraction performance than
the underlying model. The prerequisite for this is that a user would select this rule.

In this way, annotating new websites with less labelling effort is possible. This is the
case because the user would have to use part of the annotated data in a setting without
explanations to evaluate the extraction model. However, more than 5 annotated websites

Reliable Rules for Relation Extraction in a Multimodal Setting 1019

12 Björn Engelmann, Philipp Schaer

would be necessary for a reliable evaluation. Reliable rules can then be used to annotate
unknown data.

Rules extracted by Lime perform worse than those extracted by the baseline method. We
assume this is because Lime is unsuitable for classification problems where many features
provide a strong signal for the correct class. The main area for improvement in this work
is the simplicity of the data set and the associated extraction task. Future work is to apply
the presented approach to more complex data. Furthermore, more advanced approaches to
explanatory extraction, such as Lore [Gu18c], will be used.

Bibliography
[AB18] Adadi, Amina; Berrada, Mohammed: Peeking Inside the Black-Box: A Survey on

Explainable Artificial Intelligence (XAI). IEEE Access, 6:52138–52160, 2018.

[Cu08] Cunningham, Pádraig: Dimension Reduction. In (Cord, Matthieu; Cunningham, Pádraig,
eds): Machine Learning Techniques for Multimedia: Case Studies on Organization and
Retrieval. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 91–112, 2008.

[De22] Deng, Xiang; Shiralkar, Prashant; Lockard, Colin; Huang, Binxuan; Sun, Huan: , DOM-
LM: Learning Generalizable Representations for HTML Documents, 2022.

[Di19] Din, Osman: Towards a Flexible System Architecture for Automated Knowledge Base
Construction Frameworks. In: 2019 IEEE International Conference on Big Data (Big
Data). pp. 3066–3071, 2019.

[Ga21] Ganesh, Prakhar; Chen, Yao; Lou, Xin; Khan, Mohammad Ali; Yang, Yin; Sajjad,
Hassan; Nakov, Preslav; Chen, Deming; Winslett, Marianne: Compressing Large-Scale
Transformer-Based Models: A Case Study on BERT. Transactions of the Association for
Computational Linguistics, 9:1061–1080, 09 2021.

[Gu18a] Guidotti, Riccardo; Monreale, Anna; Ruggieri, Salvatore; Pedreschi, Dino; Turini, Franco;
Giannotti, Fosca: , Local Rule-Based Explanations of Black Box Decision Systems, 2018.

[Gu18b] Guidotti, Riccardo; Monreale, Anna; Ruggieri, Salvatore; Pedreschi, Dino; Turini, Franco;
Giannotti, Fosca: , Local Rule-Based Explanations of Black Box Decision Systems, 2018.

[Gu18c] Guidotti, Riccardo; Monreale, Anna; Ruggieri, Salvatore; Pedreschi, Dino; Turini, Franco;
Giannotti, Fosca: Local Rule-Based Explanations of Black Box Decision Systems. CoRR,
abs/1805.10820, 2018.

[Gu19] Gunning, David; Stefik, Mark; Choi, Jaesik; Miller, Timothy; Stumpf, Simone; Yang,
Guang-Zhong: XAI—Explainable artificial intelligence. Science Robotics,
4(37):eaay7120, 2019.

[Ha11] Hao, Qiang: Structured Web Data Extraction Dataset (SWDE). 2011.

[Ha17] Hanafi, Maeda F.; Abouzied, Azza; Chiticariu, Laura; Li, Yunyao: SEER: Auto-Generating
Information Extraction Rules from User-Specified Examples. In: Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. Association for Computing
Machinery, New York, NY, USA, p. 6672–6682, 2017.

1020 Björn Engelmann, Philipp Schaer

Multimodal Relation Extraction 13

[Ji21] Jin, Weina; Fan, Jianyu; Gromala, Diane; Pasquier, Philippe; Hamarneh, Ghassan: EUCA:
A Practical Prototyping Framework towards End-User-Centered Explainable Artificial
Intelligence. CoRR, abs/2102.02437, 2021.

[KT03] Kushmerick, Nicholas; Thomas, Bernd: Adaptive Information Extraction: Core Technolo-
gies for Information Agents. In (Klusch, Matthias; Bergamaschi, Sonia; Edwards, Pete;
Petta, Paolo, eds): Intelligent Information Agents: The AgentLink Perspective. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 79–103, 2003.

[NG15] Nguyen, Thien Huu; Grishman, Ralph: Relation extraction: Perspective from convolutional
neural networks. In: Proceedings of the 1st workshop on vector space modeling for natural
language processing. pp. 39–48, 2015.

[Pe11] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau,
D.; Brucher, M.; Perrot, M.; Duchesnay, E.: Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[Ra17] Ratner, Alexander; Bach, Stephen H.; Ehrenberg, Henry R.; Fries, Jason Alan; Wu, Sen;
Ré, Christopher: Snorkel: Rapid Training Data Creation with Weak Supervision. CoRR,
abs/1711.10160, 2017.

[RSG16a] Ribeiro, Marco Túlio; Singh, Sameer; Guestrin, Carlos: "Why Should I Trust You?":
Explaining the Predictions of Any Classifier. CoRR, abs/1602.04938, 2016.

[RSG16b] Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos: "Why Should I Trust You?":
Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016. pp. 1135–1144, 2016.

[TK18] Teso, Stefano; Kersting, Kristian: , "Why Should I Trust Interactive Learners?Ëxplaining
Interactive Queries of Classifiers to Users, 2018.

[Wu18] Wu, Sen; Hsiao, Luke; Cheng, Xiao; Hancock, Braden; Rekatsinas, Theodoros; Levis,
Philip; Ré, Christopher: Fonduer: Knowledge Base Construction from Richly Formatted
Data. In: Proceedings of the 2018 International Conference on Management of Data.
SIGMOD ’18, Association for Computing Machinery, New York, NY, USA, p. 1301–1316,
2018.

Reliable Rules for Relation Extraction in a Multimodal Setting 1021

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Predictive Maintenance for the Optical Synchronization
System of the European XFEL: A Systematic Literature
Survey

Arne Grünhagen1,2,3,4, Marina Tropmann-Frick1, Annika Eichler 2,3, Görschwin Fey2

Abstract: The optical synchronization system of the European X-ray Free Electron Laser is a
networked cyber-physical system producing a large amount of data. To maximize the availability
of the optical synchronization system, we are developing a predictive maintenance module that can
evaluate and predict the condition of the system. In this paper, we report on state-of-the-art predictive
maintenance methods by systematically reviewing publications in this field. Guided by three research
questions addressing the type of cyber-physical systems, feature extraction methods, and data analytical
approaches to evaluate the current health status or to predict future system behavior, we identified 144
publications of high quality contributing to research in this area. Our result is that especially neural
networks are used for many predictive maintenance tasks. This review serves as a starting point for a
detailed and systematic evaluation of the different methods applied to the optical synchronization
system.

Keywords: Predictive maintenance; Condition monitoring; Fault analysis; Cyber-physical systems;
Systematic literature review

1 Introduction

The European X-ray Free Electron Laser (EuXFEL) is the largest currently operated linear
particle accelerator in the world and opens cutting-edge research opportunities in molecular
andmaterial science and systembiology on atomic scale [So20]. Those precisemeasurements
require timing with an error margin in the femtosecond range for most subsystems within
the facility. To provide this high-precision timing, an optical synchronization system is
installed at the facility to synchronize critical accelerator components in time. Due to
the high demands on operating the optical synchronization system accurately, even small
decreases in performance can have a huge impact on the overall system [Sc19].
To monitor the health status of the optical synchronization system, different kinds of sensors
are installed for measuring environmental conditions like temperature or relative humidity,
but also for monitoring more complex properties like numerous control loop variables.
1 Hamburg University of Applied Sciences, HAW, Germany firstname.secondname@haw-hamburg.de
2 Hamburg University of Technology, TUHH, Germany firstname.secondname@tuhh.de
3 Deutsches Elektronen-Synchrotron DESY, Germany firstname.secondname@desy.de
4We acknowledge the support by DASHH (Data Science in Hamburg - HELMHOLTZ Graduate School for the
Structure of Matter) with the Grant-No. HIDSS-0002.

cba doi:10.18420/BTW2023-70

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1023

mailto:firstname.secondname@haw-hamburg.de
mailto:firstname.secondname@tuhh.de
mailto:firstname.secondname@desy.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-70

2 Grünhagen, Tropmann-Frick, Eichler, Fey

Especially, the frequency domain of these control loop signals provides information about
electrical, mechanical, and optical disturbances. Since the optical synchronization system
contains several interconnected devices like laser oscillators, controllers, and motors, we
consider the system as a networked cyber-physical system (CPS). Due to the huge complexity
of the optical synchronization system and the partially high data rate (up to 300 kHz),
detecting and tracking all kinds of failures is not feasible for a human. Therefore, we plan to
develop an automated mechanism for the optical synchronization system that identifies and,
if possible, prevents potential failures to decrease machine downtime.
The process of automatically identifying faulty behavior of a system and if possible initiating
countermeasures using data-driven methods is known as Condition Monitoring (CM)
[Ha11]. CMmethods use signal processing techniques and fault analysis tools for evaluating
the overall health of a system. Predictive Maintenance (PM) techniques try to predict future
critical system conditions in advance to initiate countermeasures before potential bad system
states occur [PVB21].
To get a full overview of what kind of PM and CM methods exist and which of them can be
applied to the optical synchronization system, we conducted a systematic literature review
that aims to determine state-of-the-art CM and PM techniques applied to CPS.
The rest of this review paper is organized as follows: Section 2 discusses related publications.
Section 3 describes our approach to conducting a systematic literature review, including
three research questions that we want to answer. Section 4 reports the main findings of the
systematic literature review. Finally, we end with a conclusion in Section 5.

2 Prior research

Most publications reviewing CM, PM, or fault analysis methods give an overview of
methods with respect to their respective research area but do not differentiate between
CM and PM, i.e., robotics [Hu21, ITK19, Ki18a, Le18, MTT21], rotating machinery
[Dr21, NUS21a, NUS21b], energy management [AC20, RTJ21a], transportation systems
[AH20, Zh21b], or wind turbines [De21, RTJ21b].
Literature surveys focussing on predictive maintenance tend to evaluate the methods with
respect to their industrial and economical context, i.e., [HB21, Ji20a, AA21, Ar21, BCC21].
The authors of [Bo19, SYD11, Li21] each report on predictive maintenance algorithms and
future trends in their respective application areas. Literature surveys addressing condition
based monitoring also focus on the concrete methods used in their respective application
area, i.e, offshore-wind turbines [BRK21, Ma20], rail transport systems [KM21], and
hydroelectric plants [dSGC22]. Since anomaly detection is a very prominent way to detect
bad systems states, we are also interested in literature reviews covering anomaly detection for
CPS. In [AC17, AKI21, Na21a, Se22] the authors review state-of-the-art anomaly detection
methods being applied to time series sensor data of different CPS domains.
In conclusion, existing literature reviews focus on publications adhering to a domain different
from ours. Furthermore, most existing publications do not differentiate between condition
monitoring and predictive maintenance. Therefore, we conducted a systematic literature

1024 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 3

review for identifying state-of-the-art methods and techniques that can be used for CM or
PM for CPS.

3 Methodology

A systematic literature review is a formal and well-structured approach to synthesize
evidence and thus allow researchers to come to an understanding of the current status and
current challenges of a specific research area. The methodology of our systematic literature
review follows the guidelines as proposed by [KC07]. A systematic literature review consists
of four consecutive steps, namely Identification, Screening, Eligibility, and Quality (see
Figure 1). First, a set of primary publications was built in the identification step that is
successively reduced in the following steps. The filtering in each step is based on respective
criteria that are based on a set of research questions.

Key words

Research questions

Database

Title
Abstract

Keywords

Exclusion
Inclusion Quality criteria

Identification Screening Eligibility Quality Qualitative
and

quantitative
analysis

1037
studies

560
studies

351
studies

144
studies

Fig. 1: Systematic literature process

3.1 Research questions and contribution

Our systematic literature review is complementary to existing research in the field of CM
and PM for CPS by addressing the research questions depicted in Table 1.

3.2 Selection of primary studies

In the identification step, primary studies were identified by searching for specific keywords
in well-known databases. The keywords are derived from the previously defined research
questions (Table 1). The systematic literature review was carried out in July 2022 without
any restrictions. The primarily identified studies originate from the databases ACM Digital
Library, IEEE Xplore, Elsevier Scopus, Springer Link, andMultidisciplinary Digital
Publishing Institute.
The keywords string is based on three different aspects, namely CM and PM, data analysis,
and Cyber-physical systems. Each aspect is expanded with a list of various synonyms and
phrases that have a similar meaning resulting in an aspect group. The keyword search string

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1025

4 Grünhagen, Tropmann-Frick, Eichler, Fey

Tab. 1: Research questions

Research questions Discussion
RQ1:What kind of data is used for monitoring
and predicting the health of a CPS?

For analysing the health status of CPS it is
required to access sensor data provided by that
system.

RQ2:What methods exist to extract meaningful
features from data provided by CPS?

Sensor data can very often not directly be used
for further machine learning tasks. Therefore
the data recordings need some kind of data
processing to make the data more meaningful.
Thus, an overview of what feature extraction
methods are commonly used in the literature
as well as their respective CPS areas are deter-
mined.

RQ3:What methods exist for CM and PM for
CPS?

The most prominent data driven methods for
PM and CM for CPS are identified.

is created by connecting the phrases and synonyms of each single aspect group with a logical
OR and the three aspect groups are connected with a logical AND. We split the two aspect
groups CM and PM and data analysis. Merging these two aspect groups, we came up with
a lot of publications that do not follow our research goal which is to detect a degradation in
the system. We also generalized the optical synchronization system part, where we found
out that the term CPS is the most general form of a complex system like the optical synchro-
nization system and is the best fit for our research goal. The final search string looks as follows:

(’’predictive maintenance’’ OR ’’health monitoring’’ OR ’’condition

monitoring’’) AND (’’data analysis’’ OR ’’fault diagnosis’’ OR ’’fault

analysis’’ OR ’’fault detection’’ OR ’’anomaly detection’’ OR ’’outlier

detection’’ OR ’’time series forecasting’’ OR ’’time series prediction’’

OR ’’data forecasting’’)

AND (’’Cyber Physical System’’ OR ’’CPS’’ OR ’’Cyber-Physical System’’)

Combining the results of the different databases results in a total of 1037 studies.

3.3 Screening

In the initial screening phase, we filtered the studies following a set of very broad guidelines
to ensure that no important studies are filtered out in the first stage. A publication passed
the first screening phase if it follows one of the following criteria:

• The study describes what kind of data is extracted from a CPS (RQ1)
• The study presents how data coming from a CPS is processed (RQ2)
• The concept of CM or PM in the context of CPS is explained in general (RQ3)

1026 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 5

• The study describes how a specific CM or PM method is considered in the context of
CPS (RQ3)

• Different predictive maintenance methods are compared and evaluated (RQ3)

The number of studies was decreased by 477 to 560 remaining studies.

3.4 Eligibility and Evaluation

The eligibility of the remaining publications was determined by examining the full texts of
the papers against a predefined set of inclusion and exclusion criteria (see Table 2).

Tab. 2: Inclusion and exclusion criteria for the studies

Inclusion Criteria Exclusion Criteria

• Original research study
• Peer-reviewed publication
• Study presents new methods for CM or
PM for CPS

• Study evaluates CM or PM methods for
CPS

• Secondary research and review papers
• Studies that are only available as presen-
tations

• Publications not in English or German
• Studies covering network security of con-
nected CPS

To proceed to the next evaluation phase, a study has to meet three of the four inclusion
criteria and none of the exclusion criteria. In this phase, we reduced the number of studies
by 209 to 351 remaining studies.

3.5 Quality Assessment and Synthesis

Each of the remaining studies is evaluated using a set of quality assessment criteria depicted
in Table 3. Each study gets assigned a score between 0 and 6. All studies with a score of
less or equal to 3 are excluded. After the quality assessment phase, we have a total of 144
publications of high quality according to our guidelines.

4 Data analysis

To provide insights into the current state and future trends in CM and PM for CPS,
we performed a descriptive analysis of the remaining publications attained through the
systematic attrition process (see Fig 1). Afterward, we performed a detailed qualitative
analysis of the selected literature, addressing each research question individually.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1027

6 Grünhagen, Tropmann-Frick, Eichler, Fey

Tab. 3: Quality assessment parameters

Parameter Quality indicator Score
No description of the CPS and the data used 0

CPS environment Basic description of the CPS and the data used 1
Reasoning why data is valuable for PM or CM 2
No description of the methods used 0

Algorithms and modeling Basic description of the methods used 1
Reasoning why methods are used for that specific problem 2
No evaluation of the developed methods 0

Empirical evaluation Basic empirical evaluation of the methods used 1
Reasoning about the performance of the methods 2

4.1 Descriptive analysis

Following the process of filtering the publications as depicted in Figure 1, we were left with
144 publications that fulfill our criteria (Sections 3.3, 3.4, 3.5). This section includes an
analysis of how much research was done in the field of CM or PM for CPS.

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

years

0

10

20

30

nu
m

be
r o

f p
ub

lic
at

io
ns

74.1%
25.9%

CM
PM

Fig. 2: Number of publications of high quality per year addressing CM or PM

The number of publications addressing CM or PM per year is shown in Figure 2. In general,
papers addressing CM problems are published more often than papers addressing PM. The
first CM publication was made in the year 2006, no publications matching our criteria were
made from 2007 to 2012. Just three publications about CM were made in the years 2013,
2015, and 2016. In 2014, we found no publication of high quality about CM or PM for CPS.
The first publications about PM were made in the year 2017. Starting in 2017, the number
of publications about CM and PM increased heavily, such that the number of publications
reached its maximum in the year 2020 to a total number of 35 publications. Since our study
was done in the first half of 2022, the number of publications in the year 2022 is very low
and not representative of a new potential trend.

1028 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 7

4.2 Qualitative analysis

The final set of publications with a quality score of higher than 3 was also used for an
in-depth analysis to answer the research questions (see Table 1). For that, we analyzed the
full texts of each of the publications and extracted the CPS area (RQ1),monitored data
(RQ1), feature engineering technique (RQ2), machine learning type (RQ3), and CM or
PM (RQ3).

4.2.1 RQ1: What kind of data is used for monitoring and predicting the health of a
CPS?

For evaluating the health of a specific system or to predict future system behavior it is
required to gather data coming from that system by using different kinds of sensors. Most of
the sensors interact with the environment and produce an electrical signal, but very often
the electrical signal stands for a different physical unit. Depending on the sensor type, the
electrical signal coming from the sensor is converted into the respective physical unit (i.e.,
temperature, acceleration, acoustics) that is monitored and used for CM or PM.

vibration

temperature
electric

al
pressure

velocity

force or to
rque

positio
n

acoustic
s
image

relative humidity

operating tim
e

oil quality

air quality
0

20

40

nu
m

be
r o

f p
ub

lic
at

io
ns

Fig. 3: Number of monitored data usages

A total of 51 publications from different domains use vibration data, e.g. [AH21, ANA20,
Ki18b, Zh18]. 29 studies report on the successful use of temperature data, e.g. [CL20, Le20],
also, 29 publications use electrical data, e.g. [EW18, GL18], 20 publications use pressure
data, e.g. [Li18a, Ma21a], 19 publications analyze velocity data, e.g. [Bo21, LW19], 13
publications use either a force or torque as input, e.g. [Li20b, Sh21] and twelve publications
use a specific position of the CPS [Ma21a, SG20]. Few papers report on the use of
acoustics [Wu21], images [Vi19], relative humidity [Sy18], oil quality [Li19a], or air
quality [Sy18]. Very often, a publication does not just monitor a single signal but combines
different properties to a multivariate dataset, for instance, the authors of [Ma21b] combined

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1029

8 Grünhagen, Tropmann-Frick, Eichler, Fey

temperatures, velocities, torques, and pressures from an industrial press to a joint monitoring
dataset.

4.2.2 RQ2: What methods exist to extract meaningful features from data provided
by CPS?

Data coming from CPSmay contain noise that could lead to poor learning performance if not
properly handled. Additionally, the high dimensionality of CPS data may lead to potential
dropping performances. Due to these problems, it is very often required to not directly
work on the data, but to extract meaningful features from the data and apply algorithms
to the extracted features. We, therefore, identified feature extraction techniques that are
successfully applied to CPS data. Figure 4 shows which feature extraction techniques are
applied to what type of monitored data.

0 25 50 75 100
number of publications

raw
statistics

wavelet transform
frequency domain

statistics of frequency domain
canonical variate analysis
autoencoder latent space

statistics of wavelet transform vibration
temperature
electrical
pressure
velocity
force or torque
position
acoustics

Fig. 4: Feature extracting methods with respect to the monitored data that are used more than once

Most of the publications do not use a feature extraction method, but they are applying
machine learning algorithms directly to the recorded data. The most frequently used
feature extraction method is to split the data into smaller segments and determine certain
statistics of these segments. For example, in [DK18] the authors use the root mean square
(RMS), kurtosis, crest factor, skewness, and entropy. The authors of [SZ21] calculate basic
statistics (i.e., maximum, mean, root mean square, variance, standard deviation, skewness,
kurtosis) from the time domain, but also from the frequency domain. These features are
then combined into a common dataset as input for machine learning algorithms. The second
most feature extraction method is to calculate the wavelet transform of the monitored
signal [AJW20, Ca20]. Two publications [AJW21, LTT19] also compute certain statistics
of wavelet transform and use these as features. Twelve publications utilize the frequency
domain of the monitored signal, either by calculating the Fourier components or the power
spectral density. Eight publications use the frequency components directly as data, e.g.
[Xu17], and four publications compute certain statistics from the frequency domain [Zh22].
Two publications extract features by training an Autoencoder (AE) such that the latent space
representation of the monitored signal is used as a feature [Fo20, Li18b]. The authors of

1030 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 9

[ALK21, Wa21] use canonical variate analysis for extracting features.
The feature extraction stage results in a dataset consisting of multiple features for every
point in time. Before applying the actual evaluation or forecasting of the system status,
machine learning pipelines might contain dimensionality reduction techniques to decrease
the number of features. Feature reduction techniques can also be applied directly to the
monitored data because different CPS sensors tend to generate correlating signals (e.g.
temperature, spinning speed). In the analyzed publications, twelve publications make use of
principal component analysis, e.g. [CYM15, Ch20a, Fa20, LRN20]. Linear discriminant
analysis [Na21b, KH22] is used by two publications and t-distributed stochastic neighbor
embedding [Se21] by one publication.

4.2.3 RQ3: What methods exist for CM and PM for CPS?

For identifying the most prominent methods, publications processing either simulated data
sets or real industrial case studies are analyzed. As a result of this, existing machine learning
methods or algorithms were identified and evaluated according to their purpose, either PM
or CM. To get a precise overview of methods and algorithms among the publications, we
analyzed CM methods and PM methods separately.

0 20 40 60
number of publications

neural network
SVM

Bayesian
decision tree

random forest
KNN

regression
GMM

DBSCAN
threshold

Kmeans

CM method

0 10 20
number of publications

neural network
regression

SVM
random forest
decision tree

Bayesian
ARIMA

Kmeans
hidden markov model

evidential reasoning
Kriging method

PM method
supervised
unsupervised
semi supervised

Fig. 5: Prominence of CM and PM methods

Figure 5 shows the distribution of the different methods that are used more than once for
CM or PM and their general machine learning type. A general observation is that most
of the described CM and PM problems are addressed by supervised learning approaches,
followed by unsupervised learning and semi-supervised learning.
The machine learning technology that is used most often for both CM and PM is artificial
neural networks since approximately half of the publications apply this technology in some
way (e.g., deep neural networks, Convolutional Neural Networks (CNN), recurrent neural
networks). Most of the publications taking advantage of neural networks use this technology
for supervised learning, but neural networks are also applied in the context of unsupervised
and semi-supervised learning. A more detailed overview of what kind of neural networks
are utilized by the publications is given later in this section.
In the following, we concentrate on methods used in CM applications. The Support Vector

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1031

10 Grünhagen, Tropmann-Frick, Eichler, Fey

Machines (SVM) are used for supervised learning [AJW20, CCH19, GL18], unsupervised
learning [BB21], and semi-supervised learning [YZ21]. Decision trees [Se18, Zh20] and
random forest classifiers [Pa20, Xu19] are both mainly applied for supervised learning
tasks. Different publications use algorithms that are based on Bayes’ theorem (Bayesian
estimation [Ly21, SG20], Bayesian filtering [FT21], Bayesian classification [EW18]). Six
publications use different regression-based technologies, for instance, linear regression
[Du20], polynomial regression [Vi18], or support vector regression [Sh21]. Different
clustering algorithms, namely Gaussian mixture models [Ma21a], Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [Sy19] and K-means clustering [Na21b]
are applied mainly for unsupervised and semi-supervised learning tasks. Few publications
use the result of the feature extraction as an anomaly score to measure the faultiness of
the respective system. By defining a specific threshold [CYM15] on that measure, the
respective data is evaluated. The remaining methods that are used just once are hidden
Markov model [Ki18b], hierarchical clustering [Ka19], a method based on belief rules
[Yi17], AdaBoost [LN21], affinity propagation [Ha16], recursive graph model [Ch20b],
and linear discriminant analysis [KH22].
In the following, we report on PM methods. Different regression-based algorithms are
used second most, namely, linear regression [FHS21, Wu18], support vector regression
[Kh21, Ni21a], and RANSAC regression [JZW17]. The authors of [Le19] use weighted
least squares regression and feasible generalized least squares regression. In [GK20], the
authors evaluate the different regression-based methods (linear, gradient boost, random
forest, extra tree, AdaBoost). SVM [Fe19, GYS21, PK20, Ye19] are utilized third most.
Random forest classifiers [Be19, Yu21] are used four times, and simple decision trees
[Ca20] three times, both just for supervised learning purposes. ARIMA [Ji20b] and methods
that are based on Bayes’ theorem [Li19b] each are used two times. K-means [Li18c], hidden
Markov model [Wu18], and Kriging method [Li19b] each are utilized once.

0 5 10 15 20 25 30
number of publications

convolutional neural network
long short-term memory

feedforward neural network
autoencoder

transfer learning
self organizing maps
stacked autoencoder

genetic algorithm
variational autoencoder

bidirectional LSTM
extreme learning machine

gated recurrent unit
temporal convolutional neural network

deep belief network
recurrent neural network

residual convolutional neural network
restricted Boltzmann machine Condition Monitoring

Predictive Maintenance

Fig. 6: Popularity of neural network types for CM and PM publications. Different architectural choices
are counted individually

1032 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 11

Anoverview of the neural network types used for CMand PMapplications is given in Figure 6.
Most of the neural networks contain either convolutional layers (CM [LRN20, Ni21b], PM
[MK20, Ye19]) or LSTM cells (CM [TC19, VEN20], PM [AJW21, KC21, NZU20]). More
PM publications use LSTM neural networks than convolutional-based neural networks. Pure
feedforward neural networks are addressed by thirteen CM publications [Ad20, MPD18] and
by six PM publications [Fa20]. Four publications use autoencoder for PM [MK20, Ye19] and
14 publications use autoencoder for CM [BB21, DK18, FG21, YZ21]. The remaining neural
network technologies are more special and used less. The remaining technologies are transfer
learning (CM [Ci21, Zh21a], PM [Kh21]), self-organizing maps (CM [Bi18, K.18, Li18a]),
stacked autoencoder (CM [Al20, DK18], PM [Fo20]), genetic algorithms (CM [Ad20],
PM [Fa20, KC21]), variational autoencoder (CM [Li18b, YZ21]), bidirectional LSTM
(CM [So21], PM [Kh21]), extreme learning machine (CM [Xu17]), gated recurrent unit
(CM [Zh21a], PM [Wi20]), temporal convolutional neural network (CM [S.19]), deep
belief network (CM [Zh19]), basic recurrent neural network (CM [Li20a], PM [Ji20b])
residual convolutional neural network (CM [Ni21b], PM [MK20]), and restricted Boltzmann
machines (CM [De22], PM [Fo20]).

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

years

0

10

20

30

40

nu
m

be
r o

f p
ub

lic
at

io
ns

convolutional neural network
long short-term memory
feedforward neural network
autoencoder
transfer learning
genetic algorithm
self organizing maps
stacked autoencoder
variational autoencoder
bidirectional LSTM
extreme learning machine
gated recurrent unit
temporal convolutional neural network
restricted Boltzmann machine
deep belief network
recurrent neural network
residual convolutional neural network

Fig. 7: Yearly distribution of techniques associated with neural networks

Figure 7 displays how the popularity of techniques that can be associated with neural
networks for the purpose of PM or CM for CPS develops over the last decades. The
developments give a good indication of which new trends are on the horizon and help to
understand what techniques were successfully applied over a longer period of time.
CNN, LSTM, and pure feedforward neural networks are applied over the longest period of
time. The number of pure feedforward neural network appearances decreased after 2019.
Self-organizing maps were mainly used in the year 2018 and deep belief networks were only
used in 2019. The number of AE usages grows from 2018 until now. The last appearance of
a stacked AE was in the year 2020 while the number of VAEs increased in recent years. The
number of bidirectional long short-term memory usage grows starting in 2021.
Transfer learning, extreme learning machines, and genetic algorithms are techniques that
address the training process of neural networks. The number of usages increases over time.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1033

12 Grünhagen, Tropmann-Frick, Eichler, Fey

5 Conclusion

The goal of this study was to report on state-of-the-art methods that are used for CM and
PM tasks to fill the data engineering pipeline consisting of feature extraction and modeling.
Our research questions are phrased such that we get an overview of methods that can be
applied to a big variety of CPS. That was necessary since the optical synchronization
system is a collection of several types of CPS. We came up with a list of publications, their
addressed monitored data, feature extraction methods, and CM and PM methods.
The first research question is answered with a list of what kind of CPS data is addressed by
CM and PM. Especially, CPS from different application areas producing vibration data are
considered a lot. For the optical synchronization system, potential vibration sources exist
such as stepper motors or water pumps. Therefore, it is planned to use accelerometers to
directly identify vibration sources and apply the methods found.
The second research question addresses the topic of feature engineering. Most of the
publications apply algorithms directly using the recorded signals. The identified feature
extraction methods focus either on statistical analysis or on features coming from the
frequency domain. The optical synchronization system can make use of that because the
operators are heavily using the frequency domain of key signals for evaluating the health
status of the system.
The third research question asks for CM and PM techniques. The main difference between
PM and CM publications is, that CM uses more fault detection methods like clustering or
anomaly detection while PM uses more regression-based algorithms. Also, the percentage
of recurrent neural networks, including long short-term memory is higher among the PM
publications compared to CM publications. This is because PM techniques are more likely
to address the time-dependent behavior compared to CM techniques, which is a typical
characteristic of recurrent neural networks.
The development of neural network-related techniques shows that recent publications tend
to use more specialized learning algorithms like bidirectional LSTM or transfer learning.
This shows that better planning in the neural network design reduces the costs of training
huge neural networks with a simple structure.
Predictive maintenance often requires prior knowledge to build a model capable to predict
future system states. Therefore, applying predictive maintenance techniques includes a
manual inspection and monitoring of the system state over a longer time.
In conclusion, the review of existing PM and CM work builds an extremely helpful
foundation for systematically evaluating the health status of the optical synchronization
system and predicting future system outages.

1034 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 13

Bibliography
[AA21] Ali, Zainab H.; Ali, Hesham A.: Towards sustainable smart IoT applications architectural

elements and design: opportunities, challenges, and open directions. The Journal of
Supercomputing, 77(6):5668–5725, 2021.

[AC17] Aminikhanghahi, Samaneh; Cook, Diane J: A survey of methods for time series change
point detection. Knowledge and information systems, 51(2):339–367, 2017.

[AC20] Ali, Syed Saqib; Choi, Bong Jun: State-of-the-Art Artificial Intelligence Techniques for
Distributed Smart Grids: A Review. Electronics, 9(6):1030, 2020.

[Ad20] Adnan,Ahmed;Muhammed,Abdullah;AbdGhani, AbdulAzim;Abdullah,Azizol; Hakim,
Fahrul: Hyper-Heuristic Framework for Sequential Semi-Supervised Classification Based
on Core Clustering. Symmetry, 12(8):1292, 2020.

[AH20] Adedeji, Kazeem B.; Hamam, Yskandar: Cyber-Physical Systems for Water Supply
Network Management: Basics, Challenges, and Roadmap. Sustainability, 12(22):9555,
2020.

[AH21] Akpudo, Ugochukwu Ejike; Hur, Jang-Wook: D-dCNN: A Novel Hybrid Deep Learning-
Based Tool for Vibration-Based Diagnostics. Energies, 14(17):5286, 2021.

[AJW20] Akpudo, Ugochukwu Ejike; Jang-Wook, Hur: A Multi-Domain Diagnostics Approach
for Solenoid Pumps Based on Discriminative Features. IEEE Access, 8:175020–175034,
2020.

[AJW21] Akpudo, Ugochukwu Ejike; Jang-Wook, Hur: An Automated Sensor Fusion Approach for
the RUL Prediction of Electromagnetic Pumps. IEEE Access, 9:38920–38933, 2021.

[AKI21] Abid, Anam; Khan, Muhammad Tahir; Iqbal, Javaid: A review on fault detection and
diagnosis techniques: basics and beyond. Artificial Intelligence Review, 54(5):3639–3664,
2021.

[Al20] Alo, Uzoma Rita; Nweke, Henry Friday; Teh, Ying Wah; Murtaza, Ghulam: Smartphone
Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked
Autoencoder Algorithm for Enhanced Smart Healthcare System. Sensors, 20(21), 2020.

[ALK21] Agron, Danielle Jaye S.; Lee, Jae-Min; Kim, Dong-Seong: Nozzle Thermal Estimation for
Fused Filament Fabricating 3D Printer Using Temporal Convolutional Neural Networks.
Applied Sciences, 11(14):6424, 2021.

[ANA20] Anagiannis, Ioannis; Nikolakis, Nikolaos; Alexopoulos, Kosmas: Energy-Based Prognosis
of the Remaining Useful Life of the Coating Segments in Hot Rolling Mill. Applied
Sciences, 10(19):6827, 2020.

[Ar21] Arooj, Ansif; Farooq, Muhammad Shoaib; Akram, Aftab; Iqbal, Razi; Sharma, Ashutosh;
Dhiman, Gaurav: Big Data Processing and Analysis in Internet of Vehicles: Architecture,
Taxonomy, and Open Research Challenges. Archives of Computational Methods in
Engineering, pp. 1–37, 2021.

[BB21] Bulla, Chetan; Birje, Mahantesh N.: Improved data-driven root cause analysis in fog
computing environment. Journal of Reliable Intelligent Environments, 2021.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1035

14 Grünhagen, Tropmann-Frick, Eichler, Fey

[BCC21] Bansal, Maggi; Chana, Inderveer; Clarke, Siobhán: A Survey on IoT Big Data. ACM
Computing Surveys, 53(6):1–59, 2021.

[Be19] Behera, Sourajit; Choubey, Anurag; Kanani, Chandresh S.; Patel, Yashwant Singh; Misra,
Rajiv; Sillitti, Alberto: Ensemble trees learning based improved predictive maintenance
using IIoT for turbofan engines. In (Hung, Chih-Cheng; Papadopoulos, George A., eds):
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. ACM, New
York, NY, USA, pp. 842–850, 2019.

[Bi18] von Birgelen, Alexander; Buratti, Davide; Mager, Jens; Niggemann, Oliver: Self-
Organizing Maps for Anomaly Localization and Predictive Maintenance in Cyber-Physical
Production Systems. Procedia CIRP, 72:480–485, 2018.

[Bo19] Bousdekis, Alexandros; Lepenioti, Katerina; Apostolou, Dimitris; Mentzas, Gregoris:
Decision Making in Predictive Maintenance: Literature Review and Research Agenda
for Industry 4.0. IFAC-PapersOnLine, 52(13):607–612, 2019. 9th IFAC Conference on
Manufacturing Modelling, Management and Control MIM 2019.

[Bo21] Bolbot, Victor; Theotokatos, Gerasimos; Hamann, Rainer; Psarros, George; Boulougouris,
Evangelos: Dynamic Blackout Probability Monitoring System for Cruise Ship Power
Plants. Energies, 14(20):6598, 2021.

[BRK21] Black, Innes Murdo; Richmond, Mark; Kolios, Athanasios: Condition monitoring systems:
a systematic literature review on machine-learning methods improving offshore-wind
turbine operational management. International Journal of Sustainable Energy, 40(10):923–
946, 2021.

[Ca20] de Carvalho Chrysostomo, Giovanni Gravito; de Aguiar Vallim, Marco Vinicius Bhering;
Da Silva, Leilton Santos; Silva, Leandro A.; de Aguiar Vallim Filho, Arnaldo Rabello: A
Framework for Big Data Analytical Process and Mapping—BAProM: Description of an
Application in an Industrial Environment. Energies, 13(22):6014, 2020.

[CCH19] Chang, Ching-Yuan; Chang, En-Chieh; Huang, Chi-Wen: In Situ Diagnosis of Industrial
Motors by Using Vision-Based Smart Sensing Technology. Sensors (Basel, Switzerland),
19(24):5340, 2019.

[Ch20a] Choudhary, Gaurav; Astillo, Philip Virgil; You, Ilsun; Yim, Kangbin; Chen, Ing-Ray; Cho,
Jin-Hee: Lightweight Misbehavior Detection Management of Embedded IoT Devices in
Medical Cyber Physical Systems. IEEETransactions onNetwork and ServiceManagement,
17(4):2496–2510, 2020.

[Ch20b] Chunlin, Guo; Chenliang, Zhang; Tao, Li; Kejia, Zhu; Huiyuan,Ma: Transformer Vibration
Feature Extraction Method Based on Recursive Graph Quantitative Analysis. In: 2020
IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). pp. 1046–1049,
2020.

[Ci21] Cipriani, Giovanni; Manno, Donatella; Dio, Vincenzo Di; Sciortino, Giovanni: Auto-
matic detection of thermal anomalies in induction motors. In: 2021 IEEE International
Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and
Commercial Power Systems Europe (EEEIC / I&CPS Europe). pp. 1–6, 2021.

[CL20] Choi, Jeonghun; Lee, Seung Jun: Consistency Index-Based Sensor Fault Detection System
for Nuclear Power Plant Emergency Situations Using an LSTM Network. Sensors (Basel,
Switzerland), 20(6):1651, 2020.

1036 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 15

[CYM15] Chen, Po-Yu; Yang, Shusen; McCann, Julie A.: Distributed Real-Time Anomaly Detection
in Networked Industrial Sensing Systems. IEEE Transactions on Industrial Electronics,
62(6):3832–3842, 2015.

[De21] De Kooning, Jeroen D. M.; Stockman, Kurt; De Maeyer, Jeroen; Jarquin-Laguna, Antonio;
Vandevelde, Lieven: Digital Twins for Wind Energy Conversion Systems: A Literature
Review of Potential Modelling Techniques Focused on Model Fidelity and Computational
Load. Processes, 9(12), 2021.

[De22] Demertzis, Konstantinos; Iliadis, Lazaros; Pimenidis, Elias; Kikiras, Panagiotis: Varia-
tional restricted Boltzmann machines to automated anomaly detection. Neural Computing
and Applications, pp. 1–14, 2022.

[DK18] Duong, Bach Phi; Kim, Jong-Myon: Non-Mutually Exclusive Deep Neural Network
Classifier for Combined Modes of Bearing Fault Diagnosis. Sensors (Basel, Switzerland),
18(4):1129, 2018.

[Dr21] Drakaki, Maria; Karnavas, Yannis L.; Tzionas, Panagiotis; Chasiotis, Ioannis D.: Recent
Developments Towards Industry 4.0 Oriented Predictive Maintenance in Induction Motors.
Procedia Computer Science, 180:943–949, 2021.

[dSGC22] de Santis, Rodrigo Barbosa; Gontijo, Tiago Silveira; Costa, Marcelo Azevedo: Condition-
based maintenance in hydroelectric plants: A systematic literature review. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
236(5):631–646, 2022.

[Du20] Dutta, Nabanita; Palanisamy, Kaliannan; Subramaniam, Umashankar; Padmanaban, San-
jeevikumar; Holm-Nielsen, Jens Bo; Blaabjerg, Frede; Almakhles, Dhafer Jaber: Identi-
fication of Water Hammering for Centrifugal Pump Drive Systems. Applied Sciences,
10(8):2683, 2020.

[EW18] E. F. Swana; W. Doorsamy: Fault Diagnosis on a Wound Rotor Induction Generator Using
Probabilistic Intelligence. In: 2018 IEEE International Conference on Environment and
Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe
(EEEIC / I&CPS Europe). pp. 1–5, 2018.

[Fa20] Farooq, Basit; Bao, Jinsong; Li, Jie; Liu, Tianyuan; Yin, Shiyong: Data-Driven Predictive
Maintenance Approach for Spinning Cyber-Physical Production System. Journal of
Shanghai Jiaotong University (Science), 25(4):453–462, 2020.

[Fe19] Ferrero Bermejo, Jesús; Gómez Fernández, Juan Francisco; Pino, Rafael; Crespo Márquez,
Adolfo; Guillén López, Antonio Jesús: Review and Comparison of Intelligent Optimization
Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV
Plants. Energies, 12(21):4163, 2019.

[FG21] Favarelli, Elia; Giorgetti, Andrea: Machine Learning for Automatic Processing of Modal
Analysis in Damage Detection of Bridges. IEEE Transactions on Instrumentation and
Measurement, 70:1–13, 2021.

[FHS21] Ferdousi, Rahatara; Hossain, M. Anwar; Saddik, Abdulmotaleb El: Early-Stage Risk
Prediction of Non-Communicable Disease Using Machine Learning in Health CPS. IEEE
Access, 9:96823–96837, 2021.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1037

16 Grünhagen, Tropmann-Frick, Eichler, Fey

[Fo20] Fotiadou, Konstantina; Velivassaki, Terpsichori Helen; Voulkidis, Artemis; Skias, Dim-
itrios; de Santis, Corrado; Zahariadis, Theodore: Proactive Critical Energy Infrastructure
Protection via Deep Feature Learning. Energies, 13(10):2622, 2020.

[FT21] Feng, Cheng; Tian, Pengwei: Time Series Anomaly Detection for Cyber-physical Systems
via Neural System Identification and Bayesian Filtering. In (Zhu, Feida; Chin Ooi, Beng;
Miao, Chunyan, eds): Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. ACM, New York, NY, USA, pp. 2858–2867, 2021.

[GK20] Gupta, Akshita; Kumar, Arun: Mid Term Daily Load Forecasting using ARIMA, Wavelet-
ARIMA and Machine Learning. In: 2020 IEEE International Conference on Environment
and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems
Europe (EEEIC / I&CPS Europe). pp. 1–5, 2020.

[GL18] Guo, Han; Liu, Meng-Kun: Induction motor faults diagnosis using support vector machine
to the motor current signature. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS).
IEEE, pp. 417–421, 2018.

[GYS21] Görür, Orhan Can; Yu, Xin; Sivrikaya, Fikret: Integrating Predictive Maintenance in
Adaptive Process Scheduling for a Safe and Efficient Industrial Process. Applied Sciences,
11(11):5042, 2021.

[Ha11] Hashemian, H. M.: State-of-the-Art Predictive Maintenance Techniques. IEEE Transac-
tions on Instrumentation and Measurement, 60(1):226–236, 2011.

[Ha16] Haeckell, Moritz W.; Rolfes, Raimund; Kane, Michael B.; Lynch, Jerome P.: Three-Tier
Modular Structural Health Monitoring Framework Using Environmental and Operational
Condition Clustering for Data Normalization: Validation on an Operational Wind Turbine
System. Proceedings of the IEEE, 104(8):1632–1646, 2016.

[HB21] Hassankhani Dolatabadi, Sepideh; Budinska, Ivana: Systematic Literature Review Pre-
dictive Maintenance Solutions for SMEs from the Last Decade. Machines, 9(9):191,
2021.

[Hu21] Huang, Ziqi; Shen, Yang; Li, Jiayi; Fey, Marcel; Brecher, Christian: A Survey on AI-Driven
Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors
(Basel, Switzerland), 21(19):6340, 2021.

[ITK19] Ismail, Ahmed; Truong, Hong-Linh; Kastner, Wolfgang: Manufacturing process data
analysis pipelines: a requirements analysis and survey. Journal of Big Data, 6(1), 2019.

[Ji20a] Ji, Shunhui; Li, Qingqiu; Cao, Wennan; Zhang, Pengcheng; Muccini, Henry: Quality
Assurance Technologies of Big Data Applications: A Systematic Literature Review.
Applied Sciences, 10(22):8052, 2020.

[Ji20b] Jimenez-Cortadi, Alberto; Irigoien, Itziar; Boto, Fernando; Sierra, Basilio; Rodriguez,
German: Predictive Maintenance on the Machining Process and Machine Tool. Applied
Sciences, 10(1), 2020.

[JZW17] Jung, Deokwoo; Zhang, Zhenjie; Winslett, Marianne: Vibration Analysis for IoT Enabled
PredictiveMaintenance. In: 2017 IEEE 33rd International Conference onData Engineering
(ICDE). pp. 1271–1282, 2017.

1038 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 17

[K.18] K. Amarasinghe; C. Wickramasinghe; D. Marino; C. Rieger; M. Manicl: Framework for
Data Driven Health Monitoring of Cyber-Physical Systems. In: 2018 Resilience Week
(RWS). pp. 25–30, 2018.

[Ka19] Kawatsu, Kaname: PHM by Using Multi-Physics System-Level Modeling and Simulation
for EMAs of Liquid Rocket Engine. In: 2019 IEEE Aerospace Conference. IEEE, pp.
1–10, 2019.

[KC07] Kitchenham, Barbara; Charters, Stuart: Guidelines for performing Systematic Literature
Reviews in Software Engineering. 2007.

[KC21] Kim, Do-Gyun; Choi, Jin-Young: Optimization of Design Parameters in LSTM Model for
Predictive Maintenance. Applied Sciences, 11(14):6450, 2021.

[Kh21] Khan, Noman; Ullah, Fath U Min; Afnan; Ullah, Amin; Lee, Mi Young; Baik, Sung Wook:
Batteries State of Health Estimation via Efficient Neural Networks With Multiple Channel
Charging Profiles. IEEE Access, 9:7797–7813, 2021.

[KH22] Kim, Doyun; Heo, Tae-Young: Anomaly Detection with Feature Extraction Based on
Machine Learning Using Hydraulic System IoT Sensor Data. Sensors, 22(7), 2022.

[Ki18a] Kim, Dong-Hyeon; Kim, Thomas J. Y.; Wang, Xinlin; Kim, Mincheol; Quan, Ying-Jun;
Oh, Jin Woo; Min, Soo-Hong; Kim, Hyungjung; Bhandari, Binayak; Yang, Insoon;
Ahn, Sung-Hoon: Smart Machining Process Using Machine Learning: A Review and
Perspective on Machining Industry. International Journal of Precision Engineering and
Manufacturing-Green Technology, 5(4):555–568, 2018.

[Ki18b] Kißkalt, Dominik; Fleischmann, Hans; Kreitlein, Sven; Knott, Manuel; Franke, Jörg: A
novel approach for data-driven process and condition monitoring systems on the example
of mill-turn centers. Production Engineering, 12(3-4):525–533, 2018.

[KM21] Kostrzewski, Mariusz; Melnik, Rafał: Condition Monitoring of Rail Transport Systems: A
Bibliometric Performance Analysis and Systematic Literature Review. Sensors, 21(14),
2021.

[Le18] Lee, Gil-Yong; Kim,Mincheol; Quan, Ying-Jun; Kim,Min-Sik; Kim, Thomas Joon Young;
Yoon, Hae-Sung; Min, Sangkee; Kim, Dong-Hyeon; Mun, Jeong-Wook; Oh, Jin Woo;
Choi, In Gyu; Kim, Chung-Soo; Chu, Won-Shik; Yang, Jinkyu; Bhandari, Binayak; Lee,
Choon-Man; Ihn, Jeong-Beom; Ahn, Sung-Hoon: Machine health management in smart
factory: A review. Journal of Mechanical Science and Technology, 32(3):987–1009, 2018.

[Le19] Lee, Chia-Yen; Huang, Ting-Syun; Liu, Meng-Kun; Lan, Chen-Yang: Data Science for
Vibration Heteroscedasticity and Predictive Maintenance of Rotary Bearings. Energies,
12(5):801, 2019.

[Le20] Letzgus, Simon: Change-point detection in wind turbine SCADA data for robust condition
monitoring with normal behaviour models. Wind Energy Science, 5(4):1375–1397, 2020.

[Li18a] Li, Juanli; Xie, Jiacheng; Yang, Zhaojian; Li, Junjie: Fault Diagnosis Method for a Mine
Hoist in the Internet of Things Environment. Sensors (Basel, Switzerland), 18(6):1920,
2018.

[Li18b] Liao, Weixian; Guo, Yifan; Chen, Xuhui; Li, Pan: A Unified Unsupervised Gaussian
Mixture Variational Autoencoder for High Dimensional Outlier Detection. In: 2018 IEEE
International Conference on Big Data (Big Data). IEEE, pp. 1208–1217, 2018.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1039

18 Grünhagen, Tropmann-Frick, Eichler, Fey

[Li18c] Liu, Zongchang; Jin, Chao; Jin, Wenjing; Lee, Jay; Zhang, Zhiqiang; Peng, Chang; Xu,
Guanji: Industrial AI Enabled Prognostics for High-speed Railway Systems. In: 2018
IEEE International Conference on Prognostics and Health Management (ICPHM). pp.
1–8, 2018.

[Li19a] Li, Bao-rui; Wang, Yi; Dai, Guo-hong; Wang, Ke-sheng: Framework and case study of
cognitive maintenance in Industry 4.0. Frontiers of Information Technology & Electronic
Engineering, 20(11):1493–1504, 2019.

[Li19b] Liu, Hanbing; He, Xin; Jiao, Yubo; Wang, Xirui: Reliability Assessment of Deflection
Limit State of a Simply Supported Bridge using vibration data and Dynamic Bayesian
Network Inference. Sensors, 19(4), 2019.

[Li20a] Ling, Jun; Liu, Gao-Jun; Li, Jia-Liang; Shen, Xiao-Cheng; You, Dong-Dong: Fault
prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural
network model. Nuclear Science and Techniques, 31(8), 2020.

[Li20b] Liu, Meng-Kun; Tran, Minh-Quang; Chung, Chunhui; Qui, Yi-Wen: Hybrid model- and
signal-based chatter detection in the milling process. Journal of Mechanical Science and
Technology, 34(1):1–10, 2020.

[Li21] Lima, André Luis da Cunha Dantas; Aranha, Vitor Moraes; Carvalho, Caio Jordão
de Lima; Nascimento, Erick Giovani Sperandio: Smart predictive maintenance for high-
performance computing systems: a literature review. The Journal of Supercomputing,
77(11):13494–13513, 2021.

[LN21] Li, Peng; Niggemann, Oliver: A Nonconvex Archetypal Analysis for One-Class Classi-
fication Based Anomaly Detection in Cyber-Physical Systems. IEEE Transactions on
Industrial Informatics, 17(9):6429–6437, 2021.

[LRN20] Langarica, Saul; Ruffelmacher, Christian; Nunez, Felipe: An Industrial Internet Application
for Real-Time Fault Diagnosis in Industrial Motors. IEEE Transactions on Automation
Science and Engineering, 17(1):284–295, 2020.

[LTT19] Liu, Meng-Kun; Tseng, Yi-Heng; Tran, Minh-Quang: Tool wear monitoring and prediction
based on sound signal. The International Journal of Advanced Manufacturing Technology,
103(9):3361–3373, 2019.

[LW19] Li, Meng; Wang, Shuangxin: Dynamic Fault Monitoring of Pitch System in Wind Turbines
using Selective Ensemble Small-World Neural Networks. Energies, 12(17):3256, 2019.

[Ly21] Lyu, Dongzhen; Niu, Guangxing; Yang, Tao; Gang, Chen; Zhang, Bin: Uncertainty
Analysis in the Application of Fault Diagnosis and Prognosis. In: 2021 4th IEEE
International Conference on Industrial Cyber-Physical Systems (ICPS). IEEE, pp. 686–
690, 2021.

[Ma20] Maldonado-Correa, Jorge; Martín-Martínez, Sergio; Artigao, Estefanía; Gómez-Lázaro,
Emilio: Using SCADA data for wind turbine condition monitoring: A systematic literature
review. Energies, 13(12):3132, 2020.

[Ma21a] Maseda, F. Javier; López, Iker; Martija, Itziar; Alkorta, Patxi; Garrido, Aitor J.; Garrido,
Izaskun: Sensors Data Analysis in Supervisory Control and Data Acquisition (SCADA)
Systems to Foresee Failures with an Undetermined Origin. Sensors (Basel, Switzerland),
21(8):2762, 2021.

1040 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 19

[Ma21b] Mateus, Balduíno César; Mendes, Mateus; Farinha, José Torres; Cardoso, António Mar-
ques: Anticipating Future Behavior of an Industrial Press Using LSTMNetworks. Applied
Sciences, 11(13):6101, 2021.

[MK20] Meesublak, Koonlachat; Klinsukont, Tosapol: A Cyber-Physical System Approach for
Predictive Maintenance. In: 2020 IEEE International Conference on Smart Internet of
Things (SmartIoT). IEEE, pp. 337–341, 2020.

[MPD18] Majdani, Farzan; Petrovski, Andrei; Doolan, Daniel: Evolving ANN-based sensors for
a context-aware cyber physical system of an offshore gas turbine. Evolving Systems,
9(2):119–133, 2018.

[MTT21] Maktoubian, Jamal; Taskhiri, Mohammad Sadegh; Turner, Paul: Intelligent Predictive
Maintenance (IPdM) in Forestry: A Review of Challenges and Opportunities. Forests,
12(11):1495, 2021.

[Na21a] Nacchia, Milena; Fruggiero, Fabio; Lambiase, Alfredo; Bruton, Ken: A Systematic Map-
ping of the Advancing Use of Machine Learning Techniques for Predictive Maintenance
in the Manufacturing Sector. Applied Sciences, 11(6):2546, 2021.

[Na21b] Naik, Kshirasagar; Pandey, Mahesh D.; Panda, Anannya; Albasir, Abdurhman; Taneja,
Kunal: Data Driven Modelling of Nuclear Power Plant Performance Data as Finite State
Machines. Modelling, 2(1):43–62, 2021.

[Ni21a] Nie, Shouren; Jiang, Yuchen; Li, Kuan; Luo, Hao; Li, Xianling; Wu, Yunkai: Remaining
useful life prediction approach for rolling element bearings based on optimized SVRmodel
with reliable time intervals. In: 2021 4th IEEE International Conference on Industrial
Cyber-Physical Systems (ICPS). IEEE, pp. 673–678, 2021.

[Ni21b] Niu, Guangxing; Liu, Enhui; Zhang, Bin; Golda, Michael; Mastro, Stephen: A Deep
Residual Convolutional Neural Network based Bearing Fault Diagnosis with Multi-Sensor
Data. In: 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems
(ICPS). IEEE, pp. 655–660, 2021.

[NUS21a] Nath, Aneesh G.; Udmale, Sandeep S.; Singh, Sanjay Kumar: Role of artificial intelligence
in rotor fault diagnosis: a comprehensive review. Artificial IntelligenceReview, 54(4):2609–
2668, 2021.

[NUS21b] Nath, AneeshG;Udmale, Sandeep S; Singh, SanjayKumar: Role of artificial intelligence in
rotor fault diagnosis: A comprehensive review. Artificial Intelligence Review, 54(4):2609–
2668, 2021.

[NZU20] Niyonambaza, Irene; Zennaro, Marco; Uwitonze, Alfred: Predictive Maintenance (PdM)
Structure Using Internet of Things (IoT) for Mechanical Equipment Used into Hospitals
in Rwanda. Future Internet, 12(12):224, 2020.

[Pa20] Panicucci, Simone; Nikolakis, Nikolaos; Cerquitelli, Tania; Ventura, Francesco; Proto,
Stefano; Macii, Enrico; Makris, Sotiris; Bowden, David; Becker, Paul; O’Mahony, Niamh;
Morabito, Lucrezia; Napione, Chiara; Marguglio, Angelo; Coppo, Guido; Andolina,
Salvatore: A Cloud-to-Edge Approach to Support Predictive Analytics in Robotics
Industry. Electronics, 9(3):492, 2020.

[PK20] Pandit, Ravi; Kolios, Athanasios: SCADA Data-Based Support Vector Machine Wind
Turbine Power Curve Uncertainty Estimation and Its Comparative Studies. Applied
Sciences, 10(23), 2020.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1041

20 Grünhagen, Tropmann-Frick, Eichler, Fey

[PVB21] Pech, Martin; Vrchota, Jaroslav; Bednář, Jiří: Predictive Maintenance and Intelligent
Sensors in Smart Factory: Review. Sensors (Basel, Switzerland), 21(4), 2021.

[RTJ21a] Rinaldi, Giovanni; Thies, Philipp R.; Johanning, Lars: Current Status and Future Trends
in the Operation and Maintenance of Offshore Wind Turbines: A Review. Energies,
14(9):2484, 2021.

[RTJ21b] Rinaldi, Giovanni; Thies, Philipp R.; Johanning, Lars: Current Status and Future Trends
in the Operation and Maintenance of Offshore Wind Turbines: A Review. Energies, 14(9),
2021.

[S.19] S. Afrasiabi; M. Afrasiabi; B. Parang; M. Mohammadi; M. M. Arefi; M. Rastegar: Wind
Turbine Fault Diagnosis with Generative-Temporal Convolutional Neural Network. In:
2019 IEEE International Conference on Environment and Electrical Engineering and
2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe).
pp. 1–5, 2019.

[Sc19] Schulz, Sebastian; Czwalinna, Marie; Felber, Matthias; Fenner, Michael; Gerth, Christo-
pher; Kozak, Tomasz; Lamb, Thorsten; Lautenschlager, Björn; Ludwig, Frank; Mavrič,
Uros; Müller, Jost; Pfeiffer, Sven; Schlarb, Holger; Schmidt, Christian; Sydlo, Cezary; Tit-
beridze, Mikheil; Zummack, Falco, eds. Few-Femtosecond Facility-Wide Synchronization
of the European XFEL: JACoW Publishing, Geneva, Switzerland, 2019.

[Se18] Sezer, Erim; Romero, David; Guedea, Federico; Macchi, Marco; Emmanouilidis, Christos:
An Industry 4.0-Enabled Low Cost Predictive Maintenance Approach for SMEs. In: 2018
IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).
pp. 1–8, 2018.

[Se21] Serradilla, Oscar; Zugasti, Ekhi; Ramirez de Okariz, Julian; Rodriguez, Jon; Zurutuza,
Urko:Adaptable andExplainable PredictiveMaintenance: Semi-SupervisedDeepLearning
for Anomaly Detection and Diagnosis in Press Machine Data. Applied Sciences, 11(16),
2021.

[Se22] Serradilla, Oscar; Zugasti, Ekhi; Rodriguez, Jon; Zurutuza, Urko: Deep learning models
for predictive maintenance: a survey, comparison, challenges and prospects. Applied
Intelligence, pp. 1–31, 2022.

[SG20] Shangguan, Lantian; Gopalswamy, Swaminathan: Health Monitoring for Cyber Physical
Systems. IEEE Systems Journal, 14(1):1457–1467, 2020.

[Sh21] Sheuly, Sharmin Sultana; Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin;
Güclü, Ekrem; Osbakk, Michael: Data analytics using statistical methods and machine
learning: a case study of power transfer units. The International Journal of Advanced
Manufacturing Technology, 114(5-6):1859–1870, 2021.

[So20] Sobolev, Egor; Zolotarev, Sergei; Giewekemeyer, Klaus; Bielecki, Johan; Okamoto,
Kenta; Reddy, Hemanth K. N.; Andreasson, Jakob; Ayyer, Kartik; Barak, Imrich; Bari,
Sadia; Barty, Anton; Bean, Richard; Bobkov, Sergey; Chapman, Henry N.; Chojnowski,
Grzegorz; Daurer, Benedikt J.; Dörner, Katerina; Ekeberg, Tomas; Flückiger, Leonie;
Galzitskaya, Oxana; Gelisio, Luca; Hauf, Steffen; Hogue, Brenda G.; Horke, Daniel A.;
Hosseinizadeh, Ahmad; Ilyin, Vyacheslav; Jung, Chulho; Kim, Chan; Kim, Yoonhee;
Kirian, RichardA.; Kirkwood, Henry; Kulyk, Olena; Küpper, Jochen; Letrun, Romain; Loh,
N. Duane; Lorenzen, Kristina; Messerschmidt, Marc; Mühlig, Kerstin; Ourmazd, Abbas;
Raab, Natascha; Rode, Andrei V.; Rose, Max; Round, Adam; Sato, Takushi; Schubert,

1042 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 21

Robin; Schwander, Peter; Sellberg, Jonas A.; Sikorski, Marcin; Silenzi, Alessandro;
Song, Changyong; Spence, John C. H.; Stern, Stephan; Sztuk-Dambietz, Jolanta; Teslyuk,
Anthon; Timneanu, Nicusor; Trebbin, Martin; Uetrecht, Charlotte; Weinhausen, Britta;
Williams, Garth J.; Xavier, P. Lourdu; Xu, Chen; Vartanyants, Ivan A.; Lamzin, Victor S.;
Mancuso, Adrian;Maia, Filipe R. N. C.:Megahertz single-particle imaging at the European
XFEL. Communications Physics, 3(1), 2020.

[So21] Song, Lin; Wang, Liping; Wu, Jun; Liang, Jianhong; Liu, Zhigui: Integrating Physics and
Data Driven Cyber-Physical System for Condition Monitoring of Critical Transmission
Components in Smart Production Line. Applied Sciences, 11(19), 2021.

[Sy18] Syafrudin,Muhammad;Alfian,Ganjar; Fitriyani, NormaLatif; Rhee, Jongtae: Performance
Analysis of IoT-Based Sensor, Big Data Processing, and Machine Learning Model for Real-
Time Monitoring System in Automotive Manufacturing. Sensors (Basel, Switzerland),
18(9):2946, 2018.

[Sy19] Syafrudin, Muhammad; Fitriyani, Norma; Alfian, Ganjar; Rhee, Jongtae: An Affordable
Fast Early Warning System for Edge Computing in Assembly Line. Applied Sciences,
9(1):84, 2019.

[SYD11] Sharma, Anil; Yadava, GS; Deshmukh, SG: A literature review and future perspectives on
maintenance optimization. Journal of Quality in Maintenance Engineering, 2011.

[SZ21] Sundaram, Sarvesh; Zeid, Abe: Smart Prognostics and Health Management (SPHM)
in Smart Manufacturing: An Interoperable Framework. Sensors (Basel, Switzerland),
21(18):5994, 2021.

[TC19] Tsai, Chien-De; Chiu, Ming-Chuan: Apply Machine Learning to Improve Fault Detection
and Classification in Cyber Physical System. In (Hiekata, Kazuo; Moser, Bryan R.;
Inoue, Masato; Stjepandić, Josip; Wognum, Nel, eds): Transdisciplinary Engineering for
Complex Socio-technical Systems, Advances in Transdisciplinary Engineering. IOS Press,
2019.

[VEN20] Vos, Carlo; Eiteneuer, Benedikt; Niggemann, Oliver: Incorporating Uncertainty into
Unsupervised Machine Learning for Cyber-Physical Systems. In: 2020 IEEE Conference
on Industrial Cyberphysical Systems (ICPS). IEEE, pp. 475–480, 6/10/2020 - 6/12/2020.

[Vi18] Villalonga, Alberto; Beruvides, Gerardo; Castaño, Fernando; Haber, Rodolfo: Industrial
cyber-physical system for condition-based monitoring in manufacturing processes. In:
2018 IEEE Industrial Cyber-Physical Systems (ICPS). pp. 637–642, 2018.

[Vi19] Villalba-Diez, Javier; Schmidt, Daniel; Gevers, Roman; Ordieres-Meré, Joaquín; Buchwitz,
Martin; Wellbrock, Wanja: Deep Learning for Industrial Computer Vision Quality Control
in the Printing Industry 4.0. Sensors (Basel, Switzerland), 19(18):3987, 2019.

[Wa21] Wang, Shubin; Tian, Yukun; Deng, Xiaogang; Cao, Qianlei; Wang, Lei; Sun, Pengxiang:
Disturbance Detection of a Power Transmission System Based on the Enhanced Canonical
Variate Analysis Method. Machines, 9(11):272, 2021.

[Wi20] Wiese, Benedikt; Pedersen, Niels L.; Nadimi, Esmaeil S.; Herp, Jürgen: Estimating the
Remaining Power Generation of Wind Turbines—An Exploratory Study for Main Bearing
Failures. Energies, 13(13), 2020.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1043

22 Grünhagen, Tropmann-Frick, Eichler, Fey

[Wu18] Wu, Zhenyu; Luo, Hao; Yang, Yunong; Lv, Peng; Zhu, Xinning; Ji, Yang; Wu, Bian:
K-PdM: KPI-Oriented Machinery Deterioration Estimation Framework for Predictive
Maintenance Using Cluster-Based Hidden Markov Model. IEEE Access, 6:41676–41687,
2018.

[Wu21] Wu, Huanzhuo; He, Jia; Tomoskozi, Mate; Fitzek, Frank H.P.: Abstraction-based Multi-
object Acoustic Anomaly Detection for Low-complexity Big Data Analysis. In: 2021
IEEE International Conference on Communications Workshops (ICC Workshops). IEEE,
pp. 1–6, 2021.

[Xu17] Xu, Zhao; Hu, Changhua; Yang, Feng; Kuo, Shyh-Hao; Goh, Chi-Keong; Gupta, Amit;
Nadarajan, Sivakumar: Data-Driven Inter-Turn Short Circuit Fault Detection in Induction
Machines. IEEE Access, 5:25055–25068, 2017.

[Xu19] Xu, Gaowei; Liu, Min; Jiang, Zhuofu; Söffker, Dirk; Shen, Weiming: Bearing Fault
Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest
Ensemble Learning. Sensors (Basel, Switzerland), 19(5):1088, 2019.

[Ye19] Yeh, Chia-Hung; Lin, Min-Hui; Lin, Chien-Hung; Yu, Cheng-En; Chen, Mei-Juan:
Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine. Sensors
(Basel, Switzerland), 19(7):1671, 2019.

[Yi17] Yin, Xiaojing; Wang, Zhanli; Zhang, Bangcheng; Zhou, Zhijie; Feng, Zhichao; Hu,
Guanyu; Wei, Hang: A Double Layer BRB Model for Health Prognostics in Complex
Electromechanical System. IEEE Access, 5:23833–23847, 2017.

[Yu21] Yu, Hui; Chen, Chuang; Lu, Ningyun; Wang, Cunsong: Deep Auto-Encoder and Deep
Forest-Assisted Failure Prognosis for Dynamic Predictive Maintenance Scheduling.
Sensors, 21(24), 2021.

[YZ21] Yang, Luoxiao; Zhang, Zijun: Wind Turbine Gearbox Failure Detection Based on SCADA
Data: A Deep Learning-Based Approach. IEEE Transactions on Instrumentation and
Measurement, 70:1–11, 2021.

[Zh18] Zhou, Funa; Hu, Po; Yang, Shuai; Wen, Chenglin: A Multimodal Feature Fusion-Based
Deep Learning Method for Online Fault Diagnosis of Rotating Machinery. Sensors (Basel,
Switzerland), 18(10):3521, 2018.

[Zh19] Zhang, Tianfan; Li, Zhe; Deng, Zhenghong; Hu, Bin: Hybrid Data Fusion DBN for
Intelligent Fault Diagnosis of Vehicle Reducers. Sensors (Basel, Switzerland), 19(11):2504,
2019.

[Zh20] Zhang, Y.; Beudaert, X.; Argandoña, J.; Ratchev, S.; Munoa, J.: A CPPS based on
GBDT for predicting failure events in milling. The International Journal of Advanced
Manufacturing Technology, 111(1-2):341–357, 2020.

[Zh21a] Zhao, Qingsheng;Mu, Juwen; Han, Xiaoqing; Liang, Dingkang;Wang, Xuping: Evaluation
Model of Operation State Based on Deep Learning for SmartMeter. Energies, 14(15):4674,
2021.

[Zh21b] Zhou, Xuan; Ke, Ruimin; Yang, Hao; Liu, Chenxi: When Intelligent Transportation
Systems Sensing Meets Edge Computing: Vision and Challenges. Applied Sciences,
11(20):9680, 2021.

1044 Arne Grünhagen, Marina Tropmann-Frick, Annika Eichler, Görschwin Fey

Predictive maintenance for CPS: a systematic literature survey 23

[Zh22] Zhang, Ning; Chen, Enping; Wu, Yukang; Guo, Baosu; Jiang, Zhanpeng; Wu, Fenghe:
A novel hybrid model integrating residual structure and bi-directional long short-term
memory network for tool wear monitoring. The International Journal of Advanced
Manufacturing Technology, 120(9):6707–6722, 2022.

Predictive Maintenance for the Optical Synchronization System of the European XFEL: A
Systematic Literature Survey 1045

Student Track

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Automated Statement Extraction from Press Briefings

Jüri Keller1, Meik Bittkowski2, Philipp Schaer3

Abstract: Scientific press briefings are a valuable information source. They consist of alternating
expert speeches, questions from the audience and their answers. Therefore, they can contribute to
scientific and fact-based media coverage. Even though press briefings are highly informative, extracting
statements relevant to individual journalistic tasks is challenging and time-consuming. To support
this task, an automated statement extraction system is proposed. Claims are used as the main feature
to identify statements in press briefing transcripts. The statement extraction task is formulated as
a four-step procedure. First, the press briefings are split into sentences and passages, then claim
sentences are identified through sequence classification. Subsequently, topics are detected, and the
sentences are filtered to improve the coherence and assess the length of the statements.

The results indicate that claim detection can be used to identify statements in press briefings. While
many statements can be extracted automatically with this system, they are not always as coherent as
needed to be understood without context and may need further review by knowledgeable persons.

Keywords: Computational Journalism; Claim Detection; Data Mining; Natural Language Processing

1 Introduction

Scientific press briefings are a valuable instrument in scientific communication. They
consist of alternating expert speeches and answers to questions from the audience, which
let scientists and journalists immediately and jointly address the information needs of
journalists. The SMC press briefings4 used in this work, typically begin with an introduction
of the participating experts followed by moderated questions from journalists and answers
from invited experts. Additionally, the key results are concluded in closing statements.
Press briefings can directly contribute to a more fact-based media coverage by connecting
journalists and scientists. Even though press briefings are highly informative, filtering this
information and extracting relevant statements remains challenging and time-consuming
due to the high entropy and domain-specific language used.

In this context, the research question will be answered: To what extent can claim detection
be used to extract statements from scientific press briefings?
1 Technische Hochschule Köln, Claudiusstraße 1, 50678 Köln, Germany jueri.keller@smail.th-koeln.de
2 Science Media Center Germany, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany bittkowski@

sciencemediacenter.de
3 Technische Hochschule Köln, Claudiusstraße 1, 50678 Köln, Germany philipp.schaer@th-koeln.de
4 https://www.sciencemediacenter.de/alle-angebote/alle-angebote/?tx_solr%5Bfilter%5D%5B0%5D=

type%3APress+Briefing

cba doi:10.18420/BTW2023-71

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1049

mailto:jueri.keller@smail.th-koeln.de
mailto:bittkowski@sciencemediacenter.de
mailto:bittkowski@sciencemediacenter.de
mailto:philipp.schaer@th-koeln.de
https://www.sciencemediacenter.de/alle-angebote/alle-angebote/?tx_solr%5Bfilter%5D%5B0%5D=type%3APress+Briefing
https://www.sciencemediacenter.de/alle-angebote/alle-angebote/?tx_solr%5Bfilter%5D%5B0%5D=type%3APress+Briefing
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-71

2 Jüri Keller, Meik Bittkowski, Philipp Schaer

To approach this domain-specific problem and automatically identify relevant statements
from press briefings, a pipeline is proposed, relying on claims as a central element of a
statement. A transformer based language model [CSM20] is used to classify claim sentences,
which are subsequently filtered and clustered to improve the relevance and coherence of the
emerging statements.

For example, a sentence like "We do not yet know what a long covid course of Omicron
infection looks like." is considered a complete claim, while the sentence Ïf I only have mild
symptoms, it doesn’t mean I won’t have problems in the long run." is only considered an
incomplete claim as it can not be understood without context.

The main contribution of this work is the application of state-of-the-art methods in claim
detection to develop a system that extracts statements from transcripts of scientific press
briefings. Additionally, a novel dataset of 53 transcribed German press briefings is created
and partially annotated. The dataset and implementation are made publicly available via
GitHub56 and Zenodo [Ke22].

2 Related Work

Automated extraction of statements from press briefings occurs at the intersection of
journalism and computer science. While the premise and context emerge from journalism,
the technical methods originate from computer science.

Various definitions of a claim exist [Da17; LEC16]. Generically, a claim indicates the
author’s position related to a main concept (topic) of a sentence [Le17]. Therefore, claims
are indicated as the main feature of a statement. Generically, a claim is a short phrase people
can have different opinions on [LEC16; LT16]. Since claims are conceptually complex, it is
often difficult to determine what a claim is and what not [LT15]. To clarify, this work refers
to a claim as a sentence asserting something on the main concept.

Claim detection is an information extraction task often part of a data processing pipeline
solving more complex problems. Automatically detecting claims in texts has a variety of
applications in fields like decision-making, argument mining, fact-checking, or document
processing [Da17; Le18]. As diverse as the applications for claim detection are, so are the
domains it is applied in, such as for example political, debate, legal, and the web [LT16].

Besides binary classification, different claim types or the part of the sentence that is a claim
can be identified [Ko18; LT16]. Levy et al. [Le14] first formally defined the task of automated
claim detection for computational argumentation while working on automatic argument
mining [Le14; Sl21]. The systems developed in the following years can be categorized by
their ability to detect claims without further context or the scope of application, e.g., a

5 Press Briefing Claim Dataset at GitHub: https://github.com/jueri/press_briefing_claim_dataset
6 Statement Extractor at GitHub: https://github.com/jueri/statement_extractor

1050 Jüri Keller, Meik Bittkowski, Philipp Schaer

https://github.com/jueri/press_briefing_claim_dataset
https://github.com/jueri/statement_extractor

Automated Statement Extraction 3

Fig. 1: Schematically visualization of the pipeline approach.

corpus of documents or a single one [Da17; LT15]. Chakrabarty et al. and Daxenberger
et al. provide more extensive overviews of different claim detection models and datasets
[CHM19; Da17].

3 Statement Detection System

Figure 1 visualizes the pipeline approach to extract statements from press briefings. The
press briefing needs to be initially segmented into passages (1). Then, at the system’s core,
a classification model is used to identify sentences containing claims (2). Further, the main
concept of the press briefing and the sentences are detected (3). This information is used in
the last step to filter out the sentences that are not or incomplete claims (4).

1. Segmentation: The press briefings are split by a sentence tokenizer, and neighboring
and coherent sentences are combined into statements of multiple sentences. Therefore,
the sentences are represented in vector space through spaCy [HMB20] and neighboring
sentences are clustered by similarity with the TextSplit [AG15] algorithm. Starting with a
list of vector representations of sentences, TextSplit calculates a score for each segment.
By modifying the segment boundaries, the score changes. The optimal segmentation is
determined by minimizing the aggregated segment scores [AG15; Mo20].

2. Claim Detection: A German language model [CSM20] based on the BERT [De19]
architecture is fine-tuned for the task of sentence classification. The model’s hyperparameters
are tuned to achieve the best results on available training data. The German BERT version
GBERT is used as the foundational model for the classifier [CSM20]. This model is
fine-tuned as a claim sentence classifier using a dataset of 3000 sentences created for this
purpose from the publicly available SMC press briefings7. The dataset contains a total of
53 press briefings from a time span of over four years. It consists of 24,897 sentences with
an average length of 17.31 tokens.

7 https://www.sciencemediacenter.de/alle-angebote

Automated Statement Extraction from Press Briefings 1051

https://www.sciencemediacenter.de/alle-angebote

4 Jüri Keller, Meik Bittkowski, Philipp Schaer

3. Main Concept Detection: Based on the intuitive assertion that a claim sentence with a
topic similar to the overall topic of the press briefing the sentence originates from is most
relevant, the topics of both the sentences and the overall press briefings (i.e., the title and
the introduction text) are detected. Therefore, Wikipedia articles are used as representations
for the topic of a sentence or the whole press briefing. All Wikipedia articles related to
tokens in the sentences and the title and the introduction texts are detected. The sentence is
considered more relevant if a sentence can be linked to the same Wikipedia articles as the
title or introduction text. For this task, the wikification APIs Dandelion8 and TagMe9 are
used [FS10].

4. Sentence Filtering: Two techniques are applied to filter out claim sentences with a low
topical similarity between the main concept of the sentence and the overall main concept to
improve the coherence and relevance. The similarity is measured by two approaches based
on embeddings or Wikipedia concepts. Both approaches create a similarity score that can
be used for filtering with a minimum threshold.

The first approach calculates similarity by creating a vector representation from the title of
the press briefing and the individual sentences and then measuring the cosine similarity
between both. The vector representations are created by combining spaCy [HMB20]
word embeddings. The second approach is based on the Wikipedia concepts detected as
described previously. The confidence scores of shared Wikipedia concepts between the title
or introduction text and the individual sentence are summed to create a score of topical
relatedness.

4 Experimental Evaluation

Three experiments were conducted to evaluate the system’s ability to extract statements
from press briefings. Therefore, three new press briefings with 799 sentences from different
categories were annotated as ground truth.

Claim Detection: For hyperparameter optimization, models with different configurations
were trained for six epochs. The optimal number of epochs was determined in conjunction
with the learning rate by comparing the evaluation loss rates after each epoch. Learning
rates, ranging from 0.00005 to 0.01, were tested. The best results could be achieved with a
learning rate of 1e-5 and three epochs. For the final system, a model with an F1 Score of
0.89, a precision of 0.92 and a recall of 0.86 was used. This model assigned slightly more
false positive than false negative labels, but since the human in the loop can decide on the
misclassified sentences, this behavior is preferred.

To evaluate the claim detection component of the system, claim sentences classified with
minimal confidence scores of 0.7, 0.8 and 0.9 are analyzed independently. Since the

8 https://dandelion.eu/

9 https://sobigdata.d4science.org/web/tagme/tagme-help

1052 Jüri Keller, Meik Bittkowski, Philipp Schaer

https://dandelion.eu/
https://sobigdata.d4science.org/web/tagme/tagme-help

Automated Statement Extraction 5

Tab. 1: Results for detected complete claims. The first three columns hold the results for different
confidence thresholds of the claim detection model. The last three columns contain the results of a
system using a claim detection model threshold of 0.8 and the different main concept methods. The
best results are highlighted in bold.

Confidence 0.9 0.8 0.7 0.8
embedding

0.8
w. title

0.8
w. intro

F1 0.466 0.473 0.450 0.481 0.339 0.341
Precision 0.426 0.378 0.339 0.463 0.456 0.430

Recall 0.513 0.632 0.671 0.500 0.270 0.283

confidence score limits the number of sentences considered as claims by the model, a score
small enough to allow claim sentences to be classified and high enough to exclude non-claim
sentences leads to the best results. The overall best results for detecting claims independent
of their completeness were achieved at a confidence of 0.7 with an F1 score of 0.68, a
precision of 0.89 and a recall of 0.55. By investigating individual results for the claim types,
complete claims (that can stand on their own) and incomplete claims (that can not), it can be
assessed if the filtering and sentence clustering methods improve the coherence. In total, a
maximum of 167 of 224 incomplete claims and 102 of 152 complete claims claim sentences
could be identified with various system configurations. With the claim detection model and
minimum confidence of 0.8, the highest F1 score of 0.47 could be achieved. Raising the
confidence threshold to 0.9 results in a higher precision of 0.43. Decreasing the score to 0.7
leads to a higher recall of 0.67.

Statement Filtering: Based on the results of the first experiments, the claim sentences with
a confidence score of 0.8 are further filtered as this threshold achieved the best F1 score. To
exclude incoherent statements, the similarity between the sentence’s main concept and the
press briefing’s main concept is calculated. The main concepts of the press briefing based on
embeddings, title wikification and introduction wikification are evaluated individually. For
each method, a minimum similarity is chosen by investigating the similarity distribution for
bends. With the introduction wikification based filtering, a precision of 0.43 was achieved.
The title wikification method reaches a precision of 0.456, and the embedding method
exceeds this score with the best precision of 0.463. All results are presented in table 1.

Sentence Clustering: The last experiment evaluates the sentence clustering method. Claim
sentences with a confidence of at least 0.9 are enlarged to statements of multiple sentences.
The statements are then assessed according to their coherence. To measure if the larger
statements created by the similarity-based sentence clustering are more coherent, the
complete claim and incomplete claim ratio for all methods are compared. With 53 %
complete claims, the coherence of the statements extracted exceeds all other methods and
the baseline. 46 % of the statements extracted with the claim detection module and a
minimum confidence score of 0.9 are complete statements. The embedding method of the
main concept module extracts 50 % complete claims.

Automated Statement Extraction from Press Briefings 1053

6 Jüri Keller, Meik Bittkowski, Philipp Schaer

5 Discussion and Conclusion

The analysis shows that the press briefings are very argumentative content full of claims.
While most claims are incomplete and can only be understood with further information,
46 % can stand alone. The sentences extracted by the proposed system are highly likely to
be claims, although not necessarily complete claims. This finding is supported by the low
false-positive rate of the system considering all claims. Missing coherence is the main error
of the statements extracted.

Compared to the initial results of the claim detection model with an accuracy of 0.89,
the results achieved in the experiments are noticeably lower. This may be caused by the
dataset used for training, which only contains complete claims and no claims and should
be improved in future work. By adding a filter based on main concepts, some incoherent
claim sentences could be successfully excluded, and the precision improved. A smaller
confidence threshold of the initial claim detection module could improve these results
further by providing more claim sentences in general. The embedding-based main concept
method provided the best results. The Wikification-based methods come to an extent as
some topics can only be expressed poorly by Wikipedia concepts, and other Wikipedia
concepts may not exist or be captured by the model.

Assessing statements of multiple sentences, some statements previously classified as
incomplete claims can be understood without additional information through the added
neighboring sentences. By systematically adding sentences, more coherent statements could
be created. However, this method sacrifices the conciseness of statements since they get
longer.

In summary, this work investigates how statements can be mined from scientific press
briefings. A dataset is created from publicly available press briefings and used to fine-tune a
claim detection model. Additional methods are tested to improve the quality of the extracted
statements. More context is added to the statements, and the statements are filtered based on
their topic. The results are compared to a gold standard to evaluate the system’s performance.

The results show that the system can differentiate between claims of any type and no claim
sentences with high precision (0.89), but only half of the claims can be recalled (0.55).
Considering only complete claim sentences, the system’s overall performance decreases (F1
0.47), but relatively more complete claims can be identified. These results emphasize the
system’s difficulty differentiating between complete and incomplete claim sentences. The
resulting statements gain coherence by adding more context. Similarly, incomplete claim
sentences can be filtered out by low topical similarity, which improves the results slightly.
The evaluations show that the presence of a claim can be used as an indicator to detect
statements. However, the results leave room for improvement in many aspects. Especially
the coherence of the extracted statements needs to be improved to extract statements that
can stand on their own.

1054 Jüri Keller, Meik Bittkowski, Philipp Schaer

Automated Statement Extraction 7

References

[AG15] Alemi, A. A.; Ginsparg, P.: Text segmentation based on semantic word embed-
dings. CoRR abs/1503.05543/, 2015, url: http://arxiv.org/abs/1503.
05543.

[CHM19] Chakrabarty, T.; Hidey, C.; McKeown, K.: IMHO fine-tuning improves claim
detection. In (Burstein, J.; Doran, C.; Solorio, T., eds.): Proceedings of the 2019
conference of the north american chapter of the association for computational
linguistics: Human language technologies, NAACL-HLT 2019, minneapolis,
MN, USA, june 2-7, 2019, volume 1 (long and short papers). Association for
Computational Linguistics, pp. 558–563, 2019, url: https://doi.org/10.
18653/v1/n19-1054.

[CSM20] Chan, B.; Schweter, S.; Möller, T.: German’s next language model. In (Scott, D.;
Bel, N.; Zong, C., eds.): Proceedings of the 28th international conference on
computational linguistics, COLING 2020, barcelona, spain (online), december
8-13, 2020. International Committee on Computational Linguistics, pp. 6788–
6796, 2020, url: https://doi.org/10.18653/v1/2020.coling-main.598.

[Da17] Daxenberger, J.; Eger, S.; Habernal, I.; Stab, C.; Gurevych, I.: What is the
essence of a claim? Cross-domain claim identification. In (Palmer, M.; Hwa, R.;
Riedel, S., eds.): Proceedings of the 2017 conference on empirical methods in
natural language processing, EMNLP 2017, copenhagen, denmark, september
9-11, 2017. Association for Computational Linguistics, pp. 2055–2066, 2017,
url: https://doi.org/10.18653/v1/d17-1218.

[De19] Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K.: BERT: Pre-training of
deep bidirectional transformers for language understanding. In (Burstein, J.;
Doran, C.; Solorio, T., eds.): Proceedings of the 2019 conference of the north
american chapter of the association for computational linguistics: Human
language technologies, NAACL-HLT 2019, minneapolis, MN, USA, june
2-7, 2019, volume 1 (long and short papers). Association for Computational
Linguistics, pp. 4171–4186, 2019, url: https://doi.org/10.18653/v1/n19-
1423.

[FS10] Ferragina, P.; Scaiella, U.: TAGME: on-the-fly annotation of short text frag-
ments (by wikipedia entities). In: Proceedings of the 19th ACM international
conference on Information and knowledge management - CIKM ’10. ACM
Press, Toronto, ON, Canada, p. 1625, 2010, isbn: 978-1-4503-0099-5, url:
http://portal.acm.org/citation.cfm?doid=1871437.1871689, visited on:
10/07/2021.

[HMB20] Honnibal, M.; Montani, I.; Boyd, S. V. L. A.: spaCy: Industrial-strength Natural
Language Processing in Python, version 0.1, Feb. 2020, url: https://doi.
org/10.5281/zenodo.1212303.

Automated Statement Extraction from Press Briefings 1055

http://arxiv.org/abs/1503.05543
http://arxiv.org/abs/1503.05543
https://doi.org/10.18653/v1/n19-1054
https://doi.org/10.18653/v1/n19-1054
https://doi.org/10.18653/v1/2020.coling-main.598
https://doi.org/10.18653/v1/d17-1218
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://portal.acm.org/citation.cfm?doid=1871437.1871689
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303

8 Jüri Keller, Meik Bittkowski, Philipp Schaer

[Ke22] Keller, J.: Automated Statement Extraction from Press Briefings, version 0.1,
Feb. 2022, url: https://doi.org/10.5281/zenodo.6047551.

[Ko18] Konstantinovskiy, L.; Price, O.; Babakar, M.; Zubiaga, A.: Towards automated
factchecking: Developing an annotation schema and benchmark for consistent
automated claim detection. CoRR abs/1809.08193/, 2018, url: http://arxiv.
org/abs/1809.08193.

[Le14] Levy, R.; Bilu, Y.; Hershcovich, D.; Aharoni, E.; Slonim, N.: Context dependent
claim detection. In (Hajic, J.; Tsujii, J., eds.): COLING 2014, 25th international
conference on computational linguistics, proceedings of the conference: Tech-
nical papers, august 23-29, 2014, dublin, ireland. ACL, pp. 1489–1500, 2014,
url: https://aclanthology.org/C14-1141/.

[Le17] Levy, R.; Gretz, S.; Sznajder, B.; Hummel, S.; Aharonov, R.; Slonim, N.:
Unsupervised corpus-wide claim detection. In (Habernal, I.; Gurevych, I.;
Ashley, K. D.; Cardie, C.; Green, N.; Litman, D. J.; Petasis, G.; Reed, C.;
Slonim, N.; Walker, V. R., eds.): Proceedings of the 4th workshop on argument
mining, ArgMining@EMNLP 2017, copenhagen, denmark, september 8, 2017.
Association for Computational Linguistics, pp. 79–84, 2017, url: https:
//doi.org/10.18653/v1/w17-5110.

[Le18] Levy, R.; Bogin, B.; Gretz, S.; Aharonov, R.; Slonim, N.: Towards an argu-
mentative content search engine using weak supervision. In (Bender, E. M.;
Derczynski, L.; Isabelle, P., eds.): Proceedings of the 27th international confer-
ence on computational linguistics, COLING 2018, santa fe, new mexico, USA,
august 20-26, 2018. Association for Computational Linguistics, pp. 2066–2081,
2018, url: https://aclanthology.org/C18-1176/.

[LEC16] Liebeck, M.; Esau, K.; Conrad, S.: What to do with an airport? Mining arguments
in the german online participation project tempelhofer feld. In: Proceedings of
the third workshop on argument mining, hosted by the 54th annual meeting of
the association for computational linguistics, ArgMining@ACL 2016, august
12, berlin, germany. The Association for Computer Linguistics, 2016, url:
https://doi.org/10.18653/v1/w16-2817.

[LT15] Lippi, M.; Torroni, P.: Context-independent claim detection for argument
mining. In (Yang, Q.; Wooldridge, M. J., eds.): Proceedings of the twenty-
fourth international joint conference on artificial intelligence, ĲCAI 2015,
buenos aires, argentina, july 25-31, 2015. AAAI Press, pp. 185–191, 2015,
url: http://ijcai.org/Abstract/15/033.

[LT16] Lippi, M.; Torroni, P.: Argumentation mining: State of the art and emerging
trends. ACM Trans. Internet Techn. 16/2, 10:1–10:25, 2016, url: https:
//doi.org/10.1145/2850417.

[Mo20] Mody, N.: Finding the best part of your podcast to promote via NLP, en, June
2020, url: https://towardsdatascience.com/finding-the-best-part-of-
your-podcast-to-promote-via-nlp-f844a88b287a, visited on: 09/08/2021.

1056 Jüri Keller, Meik Bittkowski, Philipp Schaer

https://doi.org/10.5281/zenodo.6047551
http://arxiv.org/abs/1809.08193
http://arxiv.org/abs/1809.08193
https://aclanthology.org/C14-1141/
https://doi.org/10.18653/v1/w17-5110
https://doi.org/10.18653/v1/w17-5110
https://aclanthology.org/C18-1176/
https://doi.org/10.18653/v1/w16-2817
http://ijcai.org/Abstract/15/033
https://doi.org/10.1145/2850417
https://doi.org/10.1145/2850417
https://towardsdatascience.com/finding-the-best-part-of-your-podcast-to-promote-via-nlp-f844a88b287a
https://towardsdatascience.com/finding-the-best-part-of-your-podcast-to-promote-via-nlp-f844a88b287a

Automated Statement Extraction 9

[Sl21] Slonim, N.; Bilu, Y.; Alzate, C.; Bar-Haim, R.; Bogin, B.; Bonin, F.;
Choshen, L.; Cohen-Karlik, E.; Dankin, L.; Edelstein, L.; Ein-Dor, L.; Friedman-
Melamed, R.; Gavron, A.; Gera, A.; Gleize, M.; Gretz, S.; Gutfreund, D.;
Halfon, A.; Hershcovich, D.; Hoory, R.; Hou, Y.; Hummel, S.; Jacovi, M.;
Jochim, C.; Kantor, Y.; Katz, Y.; Konopnicki, D.; Kons, Z.; Kotlerman, L.;
Krieger, D.; Lahav, D.; Lavee, T.; Levy, R.; Liberman, N.; Mass, Y.; Menczel, A.;
Mirkin, S.; Moshkowich, G.; Ofek-Koifman, S.; Orbach, M.; Rabinovich, E.;
Rinott, R.; Shechtman, S.; Sheinwald, D.; Shnarch, E.; Shnayderman, I.; Sof-
fer, A.; Spector, A.; Sznajder, B.; Toledo, A.; Toledo-Ronen, O.; Venezian, E.;
Aharonov, R.: An autonomous debating system. en, Nature 591/7850, pp. 379–
384, Mar. 2021, issn: 0028-0836, 1476-4687, url: http://www.nature.com/
articles/s41586-021-03215-w, visited on: 10/20/2021.

Automated Statement Extraction from Press Briefings 1057

http://www.nature.com/articles/s41586-021-03215-w
http://www.nature.com/articles/s41586-021-03215-w

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

MLProvCodeGen: A Tool for Provenance Data Input and
Capture of Customizable Machine Learning Scripts

Tarek Al Mustafa13, Birgitta König-Ries123, Sheeba Samuel123

Abstract: Over the last decade Machine learning (ML) has dramatically changed the application of
and research in computer science. With growing complexity, it becomes increasingly complicated to
assure the transparency and reproducibility of advanced ML systems from raw data to deployment. In
this paper, we describe an approach to supply users with an interface to specify a variety of parameters
that together provide complete provenance information and automatically generate executable ML
code from this information. We introduce MLProvCodeGen (Machine Learning Provenance Code
Generator), a JupyterLab extension to generate custom code for ML experiments from user-defined
metadata. ML workflows can be generated with different data settings, model parameters, methods,
and training parameters and reproduce results in Jupyter Notebooks. We evaluated our approach with
two ML applications, image and multiclass classification, and conducted a user evaluation.

Keywords: Provenance Management; Code Generation; Machine Learning; JupyterLab; Jupyter
Notebooks; Reproducibility

1 Introduction

Machine Learning (ML) is the dominating data science approach today. ML solves various
problems in many sectors. It also benefits the scientific community by supporting scientific
workflows [De19] and database systems [Ma20; Va17]. ML workflows include steps to
obtain results for given problems from raw data. These steps range from data preprocessing
to deployment. Though they are common for every ML workflow, the specifics of the
implementation, metadata of the entire experiment, and history of data points and sources
used, differ for each ML model. Reproducibility of ML experiments, an increasingly
important issue [Ba16; Hu18; SK21], can be enhanced by capturing this information
as provenance data. We propose a method that allows users to generate code for ML
pipelines by filling in templates with pre-defined parameters and variables. These templates
incorporate all information needed for provenance tracking. We argue that this reduces the
complexity of creating ML models while enhancing reproducibility. The main contributions
of this work are: (1) define the minimum requirements to reproduce chosen ML workflows.
(2) use these minimum requirements as a data model to build a template based system
to automatically generate ML code in Jupyter notebooks4 with multiple, user-chosen
1 Heinz Nixdorf Chair for Distributed Information Systems, Jena, Germany
2 Michael Stifel Center Jena, Jena, Germany
3 Friedrich Schiller University Jena {tarek.almustafa, birgitta.koenig-ries, sheeba.samuel}@uni-jena.de
4 https://jupyter-notebook.readthedocs.io/en/stable/

cba doi:10.18420/BTW2023-72

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1059

https://jupyter-notebook.readthedocs.io/en/stable/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-72

2 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

parameters. (3) automatically capture and display provenance data from the generated
notebooks to allow one-to-one reproductions by (4) inputting captured data into the system.

2 Related Work

Provenance Data and Reproducibility. Provenance plays a key role in reproducibility
[Mi16]. Prospective provenance describes the specifications and steps that must be followed
to generate a data product [Fr08]. Retrospective provenance captures what happened during
the execution of a computational task. It is important that both provenance data types are
captured and documented [De15; HDB17]. In our previous work, we investigated more
factors that influence the reproducibility of ML experiments [SLK20].
Provenance Data Models and Ontologies. Provenance data models specify the format of
metadata and which data points are represented. The W3C PROV family of specifications
[MBC13] includes The PROV Data Model (PROV-DM) [Be13] and The Provenance On-
tology (PROV-O) [Le13], an encoding of PROV-DM into OWL2 Web Ontology Language.
Our previous work, the REPRODUCE-ME Ontology [SK17; SK18a], extends PROV-O
and includes the provenance-plan (P-PLAN)5 vocabulary to describe all computational and
non-computational steps and data of scientific experiments in a machine-readable way.
Provenance Capture Systems. There have been a number of applications of these specifica-
tions and ontologies that may adopt or adjust existing data models. Other significant works
include PROV-ML defined in [So19], which uses W3C PROV and ML-Schema to specify a
provenance data model for complex tasks in the computational science and engineering
domains and multiple systems that aim to capture provenance data automatically from either
ML scripts [Na20; Sc17], model outputs [Ma17], computational notebooks [SK18b; SK20],
specific workflow steps like data cleaning [PML20], or whole systems [Sc18].
MLOps. Systems applying DevOps practices to ML [Ta20] include AutoML6, MLflow
[Za18], and ModelDB [Hi04]. They support ML development and deployment, including
workflow management, data engineering, provenance management, and reproducibility.
These systems target complex, custom-made ML products requiring contributions by several
experts including data scientists and developers. In contrast, our work focuses on customizing
predefined ML pipelines by lay users without the need for ML expertise.
Code Generation and Templates. Automatic code generation can increase productivity and
consistency in ML scripts. Code generation tools can assist the development of automatic
programming tools to improve programming productivity [LCB20]. However, supporting
automatic code generation with multiple parameters raises complexity exponentially. Train-
Generator provides and generates custom template code for ML7. It offers multiple options
for preprocessing, model setup, training, and visualization. We build upon this system by
developing a framework that can generate code for multiple ML tasks, generating executable
notebooks, and integrating provenance data capture and visualization.

5 http://vocab.linkeddata.es/p-plan/version/13032014/

6 https://cloud.google.com/automl/docs

7 https://traingenerator.streamlit.app/

1060 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

http://vocab.linkeddata.es/p-plan/version/13032014/
https://cloud.google.com/automl/docs
https://traingenerator.streamlit.app/

MLProvCodeGen 3

3 MLProvCodeGen

In this section, we introduce MLProvCodeGen, a JupyterLab extension that explores how to
support the reproducibility of ML experiments by combining template based code generation
and provenance data capture, input, and visualization into one system. We implemented two
example use cases: Image Classification and Multiclass Classification on tabular data, each
with its set of customizable parameters. MLProvCodeGen was designed such that it can be
extended to others. MLProvCodeGen is available online.8
Fig. 1 shows the system architecture consisting of a frontend plugin to capture information,
and a backend plugin to process that information and generate notebooks from it.

Fig. 1: System Architecture of MLProvCodeGen

Frontend. The frontend plugin provides a user interface as shown in Fig. 2. Users can open

Fig. 2: Excerpt from Image Classification Input Elements in the User Interface

the extension by clicking the MLProvCodeGen button in the other section of JupyterLab’s
home interface. At the bottom, users can submit their selected parameters to the system’s
backend. The user interface also allows users to input a provenance file from an experiment
generated by MLProvCodeGen in the past in order to reproduce it.
Backend. The backend’s main goal is to generate a notebook for either Image Classification
or Multiclass Classification from user inputs. Each use case has a set of templates associated

8 https://mybinder.org/v2/gh/fusion-jena/MLProvCodeGen/main?urlpath=lab

MLProvCodeGen: A Tool for Provenance Data Input and Capture of Customizable
Machine Learning Scripts 1061

https://mybinder.org/v2/gh/fusion-jena/MLProvCodeGen/main?urlpath=lab

4 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

with it from which code can be generated. Therefore, the backend first selects a set of
templates based on the specified use case, and then links variables from the user inputs
to the templates. Since Jupyter Notebooks consist of cells, each cell is generated from a
distinct template. Templates contain placeholder variables that are filled by the backend.
For example, the template contains a placeholder called 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and the backend extracts
a 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 variable from the user inputs using 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑠[′𝑒𝑛𝑡𝑖𝑡𝑦′] [′𝑒𝑥 :
𝐷𝑎𝑡𝑎𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎′] [′𝑒𝑥 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑖𝑑′] that is called 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and has a value [𝑒𝑥 :
𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑖𝑑]. When the templates are rendered, the value 𝑒𝑥 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑖𝑑 is written into the
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 placeholder and the output is appended to a notebook file. This way, a notebook file
that was empty at the start is filled with rendered outputs from templates for all markdown
and code cells. We use Jinja9 as our templating language.
Notebooks. The notebooks are structured as follows: At the top is a markdown cell containing
information about the ML task itself. The code cells below contain the installation command
for the requirements and packages needed to run the notebook. Import statements are added
directly after and provenance data capture is initialized. The remaining cells follow the
structure of an ML pipeline. Each notebook has a cell for data ingestion, data preparation,
data segregation, the model, training, and evaluation. At the bottom of each notebook are
cells to generate a provenance graph, generate a provenance data file in JSON format, and
cells to view the provenance data file and graph.

experiment_info creation_date, file_size, modification_date, task_type, title
hardware_info CPU, GPUs, Operating_System, RAM
packages All Python packages used in the notebook + the package version used
notebook prov:type, creation_date, file_format, name, kernel, programming_language,

programming_language_version
data_ingestion start_time, end_time, execution_time, data_format, dataset_id,

dataset_classes, feature_dimensions, dataset_description, root_location,
training_samples, testing_samples, validation_samples

data_preparation start_time, end_time, execution_time, number_of_operations, operations
data_segregation start_time, end_time, execution_time, training_split, testing_split, valida-

tion_split
model_parameters start_time, end_time, execution_time, gpu_enable, pretrained,

save_checkpoint, model_name, model_description, activation_function,
output_neurons, loss_function, optimizer, optimizer_learning_rate

model_training start_time, end_time, execution_time, random_seed, resulting_model_seed,
batch_size, epochs, print_progress

model_evaluation start_time, end_time, execution_time, evaluation_metrics(accuracy, loss,
AUC, Confusion Matrix, F1, MAE, MSE)

Tab. 1: Provenance Data Model of MLProvCodeGen

Provenance Data Capture. All provenance information captured for notebooks generated
by MLProvCodeGen is listed in Tab. 1. We capture provenance data using the prov10 Python
package. This allows us to specify entities, agents, and activities according to PROV-DM

9 https://jinja.palletsprojects.com/en/3.1.x/

10 https://pypi.org/project/prov/

1062 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

https://jinja.palletsprojects.com/en/3.1.x/
https://pypi.org/project/prov/

MLProvCodeGen 5

specifications and build p-plans and collections adjacent to PROV-O. If a specific function
was used to capture that information, MLProvCodeGen generates an activity describing it.
Each code cell is an entity, has an activity that describes the execution of that cell, and a
second entity that describes the data generated by the execution of that cell. Cell entities are
ordered by specifying how a given cell was influenced by the ones executed before it. At
the end of the notebook, the captured provenance data is saved to a JSON file and used to
generate a provenance graph as seen in Fig. 3 and Fig. 4. A major downside of using the
prov package is that the provenance capture has to be hard coded into the notebook at the
time of notebook generation. This means that changes made by users after that point are
only saved if users write them into the provenance data package themselves.

Fig. 3: Excerpt from a generated provenance JSON file in MLProvCodeGen

Fig. 4: Captured Evaluation Data in the Provenance Graph

Provenance Data Input. Any provenance data file generated by MLProvCodeGen can be
uploaded to the system in the user interface to generate an identical reproduction of the
code described by the provenance data. Uploaded files are processed by the backend in the
exact same way as data input by users through the input elements in the user interface.
Extensibility. Due to the modular nature of MLProvCodeGen, users should have the ability
to add new ML experiments to it. We have published step-by-step instructions in the online
documentation. The different steps include: From an existing notebook (1) Write code

MLProvCodeGen: A Tool for Provenance Data Input and Capture of Customizable
Machine Learning Scripts 1063

6 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

generation templates according to the notebook’s cells, (2) add provenance capture code to
the templates following the data model and prior examples, (3) add new input elements to
the user interface in line with the variables used in the templates, and (4) connect frontend
and backend through a server call for the new ML experiment. Further evaluation would be
necessary to assess the difficulty of extending MLProvCodeGen.

4 Preliminary Evaluation

We conducted a user evaluation to measure MLProvCodeGen’s user experience by combining
an online survey via LimeSurvey11 and a virtual installation of our program via Binder12.
12 entrants successfully completed the survey. All questions and completed answers
are available online13. Our goal was to test the appropriateness and general usability of
MLProvCodeGen for users from the computer science domain who may or may not be
familiar with ML experiments, data provenance, and reproducibility. We asked users to
self assess their level of proficiency with these terms, to complete hands-on user tasks,
and consequently rate their experience using a variety of metrics. Of the 12 participants,
eight answered the question regarding their professional background. All had a background
in computer science or a related field. Prior knowledge about both machine learning and
reproducibility was very mixed with all values from “poor” to “excellent” selected.
The key conclusions of the online survey are: (1) The explanations and instructions given
are adequate to use MLProvCodeGen without outside help. (2) The user interface is intuitive
and easy to use. (3) The generated notebooks have comprehensible structure and, depending
on the users expertise, the code is coherent and understandable. (4) The provenance graph
displays the provenance data as intended. However, for users without domain expertise, the
graph is difficult to interpret. Due to its size, it is also challenging to find specific data points.
Therefore, the provenance graph leaves room for improvement.

5 Conclusions and Future Work

In this paper, we presented MLProvCodeGen, a tool to support the reproducibility of machine
learning experiments by combining template based code generation and provenance data
capture, input, and visualization into one system. We evaluated our system by implementing
two use case ML tasks, image classification and multiclass classification, and conducted a
user evaluation. Future work on MLProvCodeGen includes improvements to the provenance
graph, provenance data export, and adding more examples such as clustering. All source
code, further information, explanations, a tutorial, the documented user evaluation, and an
installation of MLProvCodeGen on a virtual machine are available online.14
11 https://www.limesurvey.org/

12 https://mybinder.org/, available at https://mybinder.org/v2/gh/fusion-jena/MLProvCodeGen/main?
urlpath=lab

13 https://github.com/fusion-jena/MLProvCodeGen/tree/main/EvaluationResults

14 https://github.com/fusion-jena/MLProvCodeGen

1064 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

https://www.limesurvey.org/
https://mybinder.org/
https://mybinder.org/v2/gh/fusion-jena/MLProvCodeGen/main?urlpath=lab
https://mybinder.org/v2/gh/fusion-jena/MLProvCodeGen/main?urlpath=lab
https://github.com/fusion-jena/MLProvCodeGen/tree/main/EvaluationResults
https://github.com/fusion-jena/MLProvCodeGen

MLProvCodeGen 7

References

[Ba16] Baker, M.: 1,500 scientists lift the lid on reproducibility. Nature 533/7604,
2016.

[Be13] Belhajjame, K.; B’Far, R.; Cheney, J.; Coppens, S.; Cresswell, S.; Gil, Y.;
Groth, P.; Klyne, G.; Lebo, T.; McCusker, J., et al.: Prov-dm: The prov data
model. W3C Recommendation 14/, pp. 15–16, 2013.

[De15] Dey, S.; Belhajjame, K.; Koop, D.; Raul, M.; Ludäscher, B.: Linking prospective
and retrospective provenance in scripts. In: 7th USENIX Workshop on the
Theory and Practice of Provenance (TaPP 15). 2015.

[De19] Deelman, E.; Mandal, A.; Jiang, M.; Sakellariou, R.: The role of machine
learning in scientific workflows. The International Journal of High Performance
Computing Applications 33/6, pp. 1128–1139, 2019.

[Fr08] Freire, J.; Koop, D.; Santos, E.; Silva, C. T.: Provenance for computational
tasks: A survey. Computing in science & engineering 10/3, pp. 11–21, 2008.

[HDB17] Herschel, M.; Diestelkämper, R.; Ben Lahmar, H.: A survey on provenance:
What for? What form? What from? The VLDB Journal 26/6, pp. 881–906,
2017.

[Hi04] Hines, M. L.; Morse, T.; Migliore, M.; Carnevale, N. T.; Shepherd, G. M.:
ModelDB: a database to support computational neuroscience. Journal of
computational neuroscience 17/, pp. 7–11, 2004.

[Hu18] Hutson, M.: Artificial intelligence faces reproducibility crisis. Science 359/
6377, pp. 725–726, 2018.

[LCB20] Le, T. H.; Chen, H.; Babar, M. A.: Deep learning for source code modeling and
generation: Models, applications, and challenges. ACM Computing Surveys
(CSUR) 53/3, pp. 1–38, 2020.

[Le13] Lebo, T.; Sahoo, S.; McGuinness, D.; Belhajjame, K.; Cheney, J.; Corsar, D.;
Garĳo, D.; Soiland-Reyes, S.; Zednik, S.; Zhao, J.: Prov-o: The prov ontology./,
2013.

[Ma17] Ma, S.; Aafer, Y.; Xu, Z.; Lee, W.-C.; Zhai, J.; Liu, Y.; Zhang, X.: LAMP: data
provenance for graph based machine learning algorithms through derivative
computation. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. Pp. 786–797, 2017.

[Ma20] Ma, L.; Ding, B.; Das, S.; Swaminathan, A.: Active learning for ML enhanced
database systems. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. Pp. 175–191, 2020.

[MBC13] Missier, P.; Belhajjame, K.; Cheney, J.: The W3C PROV family of specifications
for modelling provenance metadata. In: Proceedings of the 16th International
Conference on Extending Database Technology. Pp. 773–776, 2013.

MLProvCodeGen: A Tool for Provenance Data Input and Capture of Customizable
Machine Learning Scripts 1065

8 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

[Mi16] Missier, P.: The lifecycle of provenance metadata and its associated challenges
and opportunities. Building Trust in Information/, pp. 127–137, 2016.

[Na20] Namaki, M. H.; Floratou, A.; Psallidas, F.; Krishnan, S.; Agrawal, A.; Wu, Y.;
Zhu, Y.; Weimer, M.: Vamsa: Automated provenance tracking in data science
scripts. In: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. Pp. 1542–1551, 2020.

[PML20] Parulian, N. N.; McPhillips, T. M.; Ludäscher, B.: A model and system for query-
ing provenance from data cleaning workflows. In: Provenance and Annotation
of Data and Processes. Springer, pp. 183–197, 2020.

[Sc17] Schelter, S.; Boese, J.-H.; Kirschnick, J.; Klein, T.; Seufert, S.: Automatically
tracking metadata and provenance of machine learning experiments. In: Machine
Learning Systems Workshop at NIPS. Pp. 27–29, 2017.

[Sc18] Schelter, S.; Böse, J.-H.; Kirschnick, J.; Klein, T.; Seufert, S.: Declarative meta-
data management: A missing piece in end-to-end machine learning. Proceedings
of SYSML 18/, 2018.

[SK17] Samuel, S.; König-Ries, B.: REPRODUCE-ME: ontology-based data access
for reproducibility of microscopy experiments. In: European Semantic Web
Conference. Springer, pp. 17–20, 2017.

[SK18a] Samuel, S.; König-Ries, B.: Combining P-Plan and the REPRODUCE-ME
ontology to achieve semantic enrichment of scientific experiments using
interactive notebooks. In: European semantic web conference. Springer, pp. 126–
130, 2018.

[SK18b] Samuel, S.; König-Ries, B.: ProvBook: Provenance-based Semantic
Enrichment of Interactive Notebooks for Reproducibility. In: ISWC
(P&D/Industry/BlueSky). 2018.

[SK20] Samuel, S.; König-Ries, B.: Reproducemegit: a visualization tool for analyzing
reproducibility of jupyter notebooks. In: Provenance and Annotation of Data
and Processes. Springer, pp. 201–206, 2020.

[SK21] Samuel, S.; König-Ries, B.: Understanding experiments and research practices
for reproducibility: an exploratory study. PeerJ 9/, e11140, 2021.

[SLK20] Samuel, S.; Löffler, F.; König-Ries, B.: Machine learning pipelines: provenance,
reproducibility and FAIR data principles. In: Provenance and Annotation of
Data and Processes. Springer, pp. 226–230, 2020.

[So19] Souza, R.; Azevedo, L.; Lourenço, V.; Soares, E.; Thiago, R.; Brandão, R.;
Civitarese, D.; Brazil, E.; Moreno, M.; Valduriez, P., et al.: Provenance data
in the machine learning lifecycle in computational science and engineering.
In: 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS).
IEEE, pp. 1–10, 2019.

1066 Tarek Al Mustafa, Birgitta König-Ries, Sheeba Samuel

MLProvCodeGen 9

[Ta20] Tamburri, D. A.: Sustainable mlops: Trends and challenges. In: 2020 22nd
international symposium on symbolic and numeric algorithms for scientific
computing (SYNASC). IEEE, pp. 17–23, 2020.

[Va17] Van Aken, D.; Pavlo, A.; Gordon, G. J.; Zhang, B.: Automatic database manage-
ment system tuning through large-scale machine learning. In: Proceedings of
the 2017 ACM international conference on management of data. Pp. 1009–1024,
2017.

[Za18] Zaharia, M.; Chen, A.; Davidson, A.; Ghodsi, A.; Hong, S. A.; Konwinski, A.;
Murching, S.; Nykodym, T.; Ogilvie, P.; Parkhe, M., et al.: Accelerating the
machine learning lifecycle with MLflow. IEEE Data Eng. Bull. 41/4, pp. 39–45,
2018.

MLProvCodeGen: A Tool for Provenance Data Input and Capture of Customizable
Machine Learning Scripts 1067

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

To Iterate Is Human, to Recurse Is Divine —
Mapping Iterative Python to Recursive SQL

Tim Fischer1

Abstract: Writing complex algorithms and iterative computations in SQL is difficult at best, commonly
leading to code that intermingles looping control flow with database access. This yields programs
with control flow that rapidly hops in and out of the database, with each roundtrip incurring significant
overhead. We present the ByePy compiler, which can compile entire Python functions directly to plain
recursive SQL:1999 queries. By doing so, the compilation eliminates all but a single roundtrip, leading
to runtime speedups of up to an order of magnitude.

Keywords: SQL; Python; Compilation

1 Introduction

The performance of all applications stands and falls with the efficient use of resources, e.g.,
compute, memory, network, etc. In the realm of database-backed applications, developers
can optimize the usage of many, if not most, of these resources by adhering to the decades-old
mantra of database development: “Move your computation close to the data” [RS87]. To do
so, developers need to express their computations and data in a form that databases can
ingest and process. Nowadays, this usually means storing the data in tables and expressing
the computations over it in terms of the ubiquitous SQL.

Following the mantra and moving all computation into the database is often difficult.
The main stumbling block is the impedance mismatch between the declarative paradigm
underlying SQL and the imperative paradigm most developers are more familiar with.
This mismatch leads developers most comfortable with imperative programming to write
programs that perform the bulk of their computation outside the database, i.e., far away
from the data. Such programs are littered with intermittent database access throughout;
consider the implementation of function march in the left half of Fig. 1 (march computes
the outline of a 2D shape). During the execution of such a program, it will have to perform
many complete round trips , i.e., the program’s control flow has to move from Python
to the database and back again . With each additional round trip incurring resource
overhead.

Intending to reach code that behaves like the right side of Fig. 1, that is, minimizing round
trips while retaining the imperative paradigm, Ramachandra et al. introduced Froid
1 Eberhard Karls Universität Tübingen, Wilhelm Schickard Institut tim.fischer@uni-tuebingen.de

cba doi:10.18420/BTW2023-73

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1069

mailto:tim.fischer@uni-tuebingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-73

2 Tim Fischer

3

õ
103×

103×
103×

103×

1×

1×

1 @compile
2 def march(start: Vec2i) -> list[Vec2i]: def march(start: Vec2i) -> list[Vec2i]:
3 goal : Vec2i | None = None goal : Vec2i | None = None
4 track : bool = False track : bool = False
5 march : list[Vec2i] = [] march : list[Vec2i] = []
6 current : Vec2i = start current : Vec2i = start
7 while not track or current != goal: while not track or current != goal:
8 square: Squares = SQL(square: Squares = SQL(
9 """ """

10 SELECT s :: squares SELECT s :: squares
11 FROM squares AS s FROM squares AS s
12 WHERE s.xy = $1 WHERE s.xy = $1
13 """, """,
14 [current], [current],
15))

16 dir: Directions = SQL(dir: Directions = SQL(
17 """ """
18 SELECT d :: directions SELECT d :: directions
19 FROM directions AS d FROM directions AS d
20 , (VALUES ($1 :: squares)) AS s , (VALUES ($1 :: squares)) AS s
21 WHERE (s.ll, s.lr, s.ul, s.ur) WHERE (s.ll, s.lr, s.ul, s.ur)
22 = (d.ll, d.lr, d.ul, d.ur) = (d.ll, d.lr, d.ul, d.ur)
23 """, """,
24 [square], [square],
25))

26 if not track and dir.track: if not track and dir.track:
27 track, goal = True, current track, goal = True, current
28 if track: if track:
29 march.append(current) march.append(current)

30 current = Vec2i(current = Vec2i(
31 current.x + dir.dir.x, current.x + dir.dir.x,
32 current.y + dir.dir.y, current.y + dir.dir.y
33))
34 return march return march

Fig. 1: Execution context boundaries between Python 3 and the database õ in iterative code with
embedded queries and code compiled with ByePy.

[Ra17]. Focussing on optimizing simple non-iterative PL/SQL functions by compiling them
to SQL, Froid was restricted to code with linear control flow. Building on this idea, Hirn
and Grust introduced a new compilation approach that extended the compilation to support
non-linear control flow constructs, e.g., loops [HDG20; HG20; HG21]. In [FHG22], we
demonstrated the applicability of this approach to languages other than PL/SQL via ByePy,
a Python frontend for [HG21]. Since then, we have been working on extending the set of
language constructs that ByePy can digest. In addition to the features presented in [FHG22],
it now also supports the following:

• dictionaries with string-valued keys and “JSON-valued” entries,
• delete statements on containers (e.g., del some_list[2:5]),
• falsifiability of builtins (e.g, while some_list: ...),
• nested None disambiguation (e.g, if ... and x is not None and ...: ...), and
• arbitrarily nested (augmented-)assignment (e.g., v[0].my_dict["key"] += 1).

1070 Tim Fischer

ByePy 3

Type Checking Desugaring Lowering⇝SSA Backend

source codesource code fully typedfully typed simplifiedsimplified

Python 3 AST𝜏 AST𝑠 SSA+SQL SQL õ

Fig. 2: Intermediate representations in the ByePy frontend.

2 The ByePy Compiler

The ByePy compiler consists of two major parts. The first of which is the novel frontend
which compiles Python to a mix of Static Single Assignment form (SSA) to represent the
general control flow and SQL to represent embedded expressions. Furthermore, the second
part consists of the SSA to SQL compilation pipeline elaborated in [HG21].

ByePy focuses on computations over database-resident data; as such, we limit the supported
language features to a subset most commonly used in conjunction with such computation—
think conditionals, loops, flow control statements like break, and complex assignments
like v[0].att += 1. The frontend wrangles Python programs using this subset into the
SSA+SQL representation in three distinct stages, as depicted in Fig. 2, those being
performing soundness and type checking, simplifying particularly complex statements
and expressions, and lowering the AST into the combined SSA+SQL representation.

Type Checking Aside from the conceptual impedance mismatch between the imperative
paradigm of Python and the declarative paradigm of SQL there is a structural impedance
mismatch. Python is a dynamically typed language, meaning types are reified at runtime.
SQL, on the other hand, is statically typed, where types are already explicitly declared
before runtime. To bridge this gap, ByePy implements a type-checking stage that enriches
a minimally typed AST such that each expression is annotated with an appropriate type.
Minimally typed refers to the fact that ByePy requires type annotations in situations where
the type inference does not have enough information—e.g., function parameters, variable
declarations, or function return types.

Desugaring Following the type checking, we rewrite parts of the AST in terms of simpler
syntactic constructs. Doing so simplifies the subsequent steps greatly as it limits the amount
of different syntactic constructs they are required to handle. These rewrites include the
following:

• reducing the set of used operators by rewriting more complicated ones in terms of simpler
one (e.g., x not in y ↦→ not (x in y)),

• placing appropriate “casting expression” where Python’s duck-typing would do so during
runtime (e.g., if some_list: ... ↦→ if len(some_list) > 0: ...),

• replacing stateful expressions with an equivalent series of assignments and variables, and
• rewriting of arbitrarily complex assignments into their simplest equivalents (e.g.,

v[0]["key"] += 1 ↦→ v = [{**v[0], "key": v[0]["key"] + 1}] + v[1:]).

To Iterate Is Human, to Recurse Is Divine — Mapping Iterative Python to Recursive SQL
1071

4 Tim Fischer

Frontend Lowering⇝ANF Trampolining Code Generation

iterativeiterative gotogoto recursiverecursive single loopsingle loop with recursivewith recursive

Python 3 SSA ANF ANF + SQL õ

Fig. 3: Intermediate representations in the ByePy backend.

Lowering⇝SSA The desugaring produces an equivalent AST in which all stateful
computation is expressed solely through single variable assignments and statement-level
control flow. With such an AST in hand, we can finally apply the lowering. In short,
we translate all control flow constructs into equivalent labeled blocks and GOTOs while
translating the remainder directly to equivalent SQL queries.

Once the frontend has compiled all Python specifics away, the backend pipeline designed
by Hirn and Grust comes into play. In short, it applies a series of three transformations
depicted in Fig. 3 which results in an equivalent recursive SQL:1999 query, i.e., a recursive
common table expression (CTE).

Lowering⇝ANF The control flow, which is expressed in terms of SSA, is lowered to
Administrative Normal Form (ANF) using a transformation described by Chakravarty et al.
in [CKZ04]. In short, we turn all blocks into functions, all GOTOs into calls of those functions,
and all assignments into LET-expressions. Of particular note is that the lowering to ANF
places the calls replacing the GOTOs in the tail position.

Trampolining Lowering to ANF, generally, leads to a family of recursive functions. To
facilitate the compilation into the SQL-based CTE form, we subject this family of functions
to the trampoline transformation [GFW99], which yields a single-loop computation that fits
the CTE semantics.

Code Generation The last step is to generate SQL code equivalent to the program in
trampolined ANF. We can do so by encoding LET-expressions as LATERAL-joins, recursive
calls as SELECT-clauses containing the parameters, and conditional expressions as UNIONs of
the individual branches with mutually exclusive WHERE-clauses.

The generated query implements the trampoline through a recursive CTE in which each
recursive step handles one trampoline transition. Thus, all program state resides within
the working table; this includes both the state of the control flow and the bindings of the
program’s live variables. Each recursive step generates a new row representing the result of
the transition, containing both new variable bindings and copies of the unchanged bindings.
This behavior can lead to performance impacts for functions whose local variables carry
sizable data structures—like long arrays. The right edge of Fig. 4a exemplifies this.

1072 Tim Fischer

ByePy 5

Tab. 1: A collection of Python functions with roundtrips before and speedup after compilation.

Function CC Loops # Runtime (Speedup)
per call after compilation

march track border of 2D object (Marching Squares) 5 q 2000 13% (7.6×)
savings optimize supply chain of a TPC-H order 4 qq qqqq 18 5% (19.5×)
packing pack TPC-H lineitems tightly into containers 9 qq q 45 16% (6.3×)

force 𝑛-body simulation (Barnes-Hut quad tree) 5 q q 126 27% (3.9×)
margin buy/sell TPC-H orders to maximize margin 5 q qq 61 24% (4.2×)
markov Markov-chain based robot control 5 qqq 3000 39% (2.6×)

vm-collatz calculate the collatz conjecture on a simple VM 17 q 67 30% (3.3×)
vm-padovan calculate the padovan sequence on a simple VM 17 q 7100 12% (8.5×)

3 Experimenting with the Divine

We claim that compiling Python to SQL using the ByePy pipeline has the capability of
speeding up programs quite drastically depending on their complexity. This section supports
this claim through eight sample functions with varying complexity and quantifies how the
compilation affects their runtimes. We performed all measurements with PostgreSQL 11.3
and Python 3.8 running on a 64-bit Linux x86 host (2× AMD EPYC™ CPUs at 2.8 GHz, 2
TB of DDR4 RAM). All presented results represent the median of five runs.

Tab. 1 lists the eight sample functions; you can find the original Python source code, compiled
SQL queries, and appropriate data generators on GitHub2. They cover a wide range of use
cases and classes algorithms, e.g., optimization problems over TPC-H data, simulation of
VMs, or algorithms over 2D point data. The columns CC (cyclomatic complexity) and
Loops give some insight into the structure of the functions without looking at the source
code. Especially the latter gives a sense of where the embedded queries (q) sit inside the
functions control flow.

Zooming in on march in Fig. 4a, we can see that the performance of the compiled functions
can be sensitive to the size of the data they operate on. In the lower-left corner, the planning
required for the query outweighs to performance benefits introduced by the compilation.
Fig. 4b shows us the expected effect on the number of roundtrips; increasing the number of
iterations and invocations also increases the round trips a program encounters. Furthermore,
we can also see that compilation significantly decreases the required round trips .

4 Wrapping Up

When working with database-resident data, most Python developers opt to perform complex
computations outside of the database. Embedding database access in (potentially deeply
nested) loops raises significant performance concerns. To minimize the resulting round

2 https://github.com/ByePy/examples

To Iterate Is Human, to Recurse Is Divine — Mapping Iterative Python to Recursive SQL
1073

https://github.com/ByePy/examples

6 Tim Fischer

4 8 16 32 64 128 256

4

8

16

32

64

128

256

iteration factor

#
in

vo
ca

tio
n

fa
ct

or

50

42

31

22

19

15

15

32

27

13

15

11

17

9

23

21

13

10

13

10

9

19

15

11

10

9

9

9

15

11

11

10

10

10

10

14

12

11

10

10

10

10

16

15

15

15

15

14

14

(a) Runtime (in % of Python 3)
after compilation

4 8 16 32 64 128 256

101

102

103

104

105

106

#
ro

un
d

tri
ps

iteration factor

/march

0.05 %
1

2000

Python 3Python 3

ByePy õByePy õ

(b) Comparison of round trips
along the diagonal of Fig. 4a

Fig. 4: Deeper analysis of the runtimes and round trips of the march function.

trips such code experiences during runtime, we developed ByePy; a Python frontend for the
PL/SQL to SQL compilation pipeline described in [HG21]. The compilation yields runtime
speedups of up to an order of magnitude on a wide range of functions, from optimization
problems to stochastic processes.

Currently, we are in the process of introducing PostgreSQL’s geometric types, functions,
and operators as optional extensions to the ByePy dialect. Beyond these extensions, we plan
to expand the set of Python language features ByePy supports. Extensions that appear to be
in immediate reach include things like multi-variable assignments (e.g., a, b = 1, 2) and
comprehensions (e.g., [f(e) for e in some_list if p(e)]). In the not so near future,
we hope to integrate the compilation directly into the @compile decorator, enabling easier
use of ByePy in the wild.

References
[CKZ04] Chakravarty, M. M.; Keller, G.; Zadarnowski, P.: A Functional Perspective on

SSA Optimisation Algorithms. COCV’03/, 2004.
[FHG22] Fischer, T.; Hirn, D.; Grust, T.: Snakes on a Plan: Compiling Python Functions

into Plain SQL Queries. In. SIGMOD ’22, 2022.
[GFW99] Ganz, S. E.; Friedman, D. P.; Wand, M.: Trampolined Style. In. ICFP ’99, 1999.
[HDG20] Hirn, D.; Duta, C.; Grust, T.: Compiling PL/SQL Away. In. CIDR ’20, 2020.
[HG20] Hirn, D.; Grust, T.: PL/SQL Without the PL. In. SIGMOD ’20, 2020.
[HG21] Hirn, D.; Grust, T.: One WITH RECURSIVE is Worth Many GOTOs. In.

SIGMOD ’21, 2021.
[Ra17] Ramachandra, K.; Park, K.; Emani, V.; Halverson, A.; Galindo-Legaria, C.;

Cunningham, C.: Froid: Optimization of Imperative Programs in a Relational
Database. In. VLDB ’17, 2017.

[RS87] Rowe, L.; Stonebraker, M.: The POSTGRES Data Model. In. VLDB ’87, 1987.

1074 Tim Fischer

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Optimizing Query Processing in PostgreSQL Through
Learned Optimizer Hints

Jerome Thiessat1, Lucas Woltmann1, Claudio Hartmann1, Dirk Habich1

Abstract:

Query optimization in database systems is a crucial issue and despite decades of research, it is still
far from being solved. Nowadays, query optimizers usually provide hints to be able to steer the
optimization on a query-by-query basis. However, setting the best-fitting optimizer hints is challenging.
To tackle that, we present a learning-based approach to predict the best-fitting hints for each incoming
query. In particular, our learning approach is based on simple gradient boosting, where we learn
one model per query context for fine-grained predictions rather than a single global context-agnostic
model as proposed in related work. We demonstrate the efficiency as well as effectiveness of our
learning-based approach using the open-source database system PostgreSQL and show that our
approach outperforms related work in that context.

Keywords: Query Optimization; Hint Set Prediction; Gradient Boosting

1 Introduction

Every database system features a query compiler that converts each incoming declarative
SQL query into a query execution plan (QEP). The most important component of such a
query compiler is the query optimizer. The task of this optimizer is to determine the most
efficient QEP. Despite decades of research activities, query optimization is still far from
being solved [Le15]. According to [Ch98], the most challenging issues for the optimization
of complex SQL queries are: (i) finding a good join order and (ii) selecting the best-fitting
physical join implementation for each join within the chosen join order. To solve these
challenges, a traditional query optimizer uses three components: the enumerator which
spans – according to the relational algebra – the search space of all possible QEPs, the
cost model to assess the cost of any given QEP prior to its execution, and the cardinality
estimator which delivers the size of intermediate results and base tables as most crucial
input to the cost model.

Such a traditional query optimizer can be found in open-source database systems, e.g.,
PostgreSQL [Po]. However, a disadvantage of this traditional optimizer approach is that the
determined QEP for a query can vary widely in quality [Le15]. The quality variance possibly
originates from miss-predicted intermediate results from PostgreSQL’s cost estimator and
1 Technische Universität Dresden, Dresden Database Research Group, 01062 Dresden, Germany,
{jerome.thiessat,lucas.woltmann,claudio.hartmann,dirk.habich}@tu-dresden.de

cba doi:10.18420/BTW2023-74

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1075

mailto:{jerome.thiessat,lucas.woltmann,claudio.hartmann,dirk.habich}@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-74

2 Thiessat et al.

PostgreSQL w/ default hints PostgreSQL w/ our learned hint approach
Stack-Benchmark 5,445.78 sec 2,802.54 sec

Tab. 1: Workload execution times of the real-world Stack benchmark [Ma22] with default and our
learned optimal physical operator hints (PostgreSQL v14.2). More details in Section 4.

PostgreSQL falling back to a genetic optimizer upon surpassing a certain amount of joins in
a query. To overcome this issue, PostgreSQL provides a set of well-defined optimizer hints
to steer the optimizer on a query-by-query basis. For instance, the usage of the physical join
operator hash join can be enabled or disabled using a specific hint. In general, PostgreSQL
features six Boolean hints for physical operators; three for joins and three for scans. In
the default setting, all six physical operator hints are activated to allow the optimizer’s
enumerator to span the largest possible search space.

To show the significance of hinting, Table 1 compares the workload execution times of the
real-world Stack benchmark [Ma22] for PostgreSQL using (i) the default hint setting and
(ii) our learned hint approach for the six physical optimizer hints. As shown, the utilization
of our learned hints dramatically reduces the workload execution time. We achieve this
benefit by learning a simple gradient boosting model per query context for fine-grained
hint predictions. Moreover, our learning component is intentionally designed as a separate
loosely-coupled component for PostgreSQL to guarantee broad applicability for different
PostgreSQL versions. To sum up, our contributions in this paper are:

• In Section 2, we introduce preliminaries and describe the related work in this context.
• Based on these considerations, we describe the key features of our context-aware

learning approach for hint sets in Section 3.
• Then, we present selected evaluation results to show the efficiency and effectiveness

of our approach compared to state-of-the-art and related work in Section 4.

Finally, we conclude our findings with a short summary in Section 5.

2 Preliminaries and Related Work

Fundamental for our contribution is the procedure of hinting the PostgreSQL query compiler.
PostgreSQL offers various hints as planner method options2. In the following, we use the
terminology hint as PostgreSQL’s planner methods options, hint set as a combination of
hints, and hinting as the procedure of setting the planner method options in PostgreSQL
accordingly. Hinting in PostgreSQL is syntactically a trivial task and can be realized by e.g.,
set enable_hashjoin = false; to disable hash joins as a prefix annotation to an SQL
query. As already stated in Section 1, we focus on the six Boolean hints that are considered
by PostgreSQL’s planner3 for physical operators. These hints consider three joins, i.e., hash,

2 https://www.postgresql.org/docs/current/runtime-config-query
3 https://www.postgresql.org/docs/14/planner-optimizer.html

1076 Jerome Thiessat, Lucas Woltmann, Claudio Hartmann, Dirk Habich

Compiler Hint Optimization 3

nested-loop, and merge join as well as three scan operations, i.e., index, sequential, and
index-only scan. These hints only allow to enable or disable the corresponding physical
operators which however influence the whole optimization procedure.

As clearly demonstrated in [Ma22], these six physical operator hints can be efficiently used
to steer the query optimization to produce more efficient QEPs, but hinting is a challenging
task in general. To tackle that challenge, [Ma22] proposed a learning-based approach called
BAO – the bandit optimizer, which is the most relevant related work for our approach.
From a high-level perspective, BAO learns a mapping between an incoming query and the
optimizer hints the query optimizer should use for that query using reinforcement learning.
For that, BAO treats each hint set as an arm in a contextual multi-armed bandit problem
and learns a single model that predicts which hints will provide the best run-time for an
incoming query. In general, BAO works as follows: For every SQL query, the underlying
PostgreSQL query optimizer produces 𝑛 QEPs; one for each hint set. Afterwards, each
QEP is transformed into a vector tree and the resulting vector trees are fed into a tree
convolutional neural network (BAO’s single model) predicting the execution time of each
QEP. The QEP with the least predicted execution time is finally selected for execution.
Once the QEP is executed, the selected QEP and the real execution time is added to BAO’s
experience. These experiences are used to periodically retrain the single model.

To the best of our knowledge, BAO is the only work that relates closely to our challenge of
predicting hint sets for incoming queries. However, BAO has the following shortcomings.
Firstly, BAO uses a single global model across all incoming queries to predict hint sets. This
does not allow for fine-grained nuanced predictions for queries that differ only marginally, for
example in predicates. Secondly, BAO predicts hint sets indirectly by predicting execution
times and then inferring on the best hint set afterward. This indirection step is not necessarily
beneficial, as multiple hint combinations need to be evaluated during query optimization
time to determine the best-performing QEP. Lastly, BAO only investigates a reduced amount
of hint sets to keep the necessary additional effort during query optimization time as low as
possible. That means, for the six physical operator hints, there are 26 = 64 possible hint
sets, but only 25 are considered in BAO. In these 25 hint sets, the globally optimal solution
might not even be included.

3 Context-Aware Hinting

To overcome the above presented shortcomings of BAO, we introduce a novel learning-based
approach called POSGB to predict the best-fitting hints for each incoming query in this
section. The key features of POSGB are: Firstly, we deploy context-sensitive models, where
we build a learned model for each set of joined tables of a workload. The idea behind
this is that each set of joined tables represents a self-contained context, since the queries
per context are thus reasonably homogeneous with respect to the joins and differ only in
the filter predicates. Using this divide-and-conquer approach allows us to predict on a
fine-grained basis, where BAO uses a context-agnostic approach. Secondly, within each

Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints 1077

4 Thiessat et al.

context, our models follow supervised classification. This means that we directly predict a
hint set from a query, rather than inferring indirectly on multiple QEPs with estimated costs.
By relying on a classification task, we are also able to consider the whole search space of the
26 possible hint sets rather than a reduced subset. Lastly, to reduce the additional effort of
using these models during query optimization time, we utilize a classical gradient boosting
model within each context, rather than one single global neural network. Gradient boosting
models are a learning method using a sequential ensemble of smaller models (i.e., weak base
learners) typtically trained using momentum based optimization (e.g., gradient descent).
Based on that, for each query during query optimization time, a context classification and
a prediction with one small simple model has to be conducted. Naturally, these learned
context models traverse a training phase before being able to predict an incoming query.

Training Phase: POSGB’s training phase follows the same principle for every context.
Within each context, a set of input queries is first featurized query compiler independently
(i.e., not relying on QEPs) in the fashion of [Ki19; Wo19] by encoding filter predicates.
Moreover, since we deploy supervised learning, we also label each training query with the
optimal hint set by exhaustively evaluating each query-hint-set combination. Notably, we
also investigated the use of PostgreSQL’s EXPLAIN functionality to reduce our labeling
effort to a minimum. However, evaluating the Pearson correlation coefficient between
guessed and real cost of an appropriate sample did not result in any notable correlation.
Since we could not even observe any relation in the order of best-to-worst hint set, we
deemed EXPLAIN not suitable for our task. This requires the execution of all training queries
with all hint sets. Then, the hint set that produces the least execution time is determined and
used as a label for each query.

Query
Query

Execution
Query Optimizer

Hint Set

Retraining

POSGB

PostgreSQL
GB Model
POSGB

Fig. 1: Workflow of POSGB

Model Inference: POSGB’s query inference follows Figure 1. Firstly, the optimal hint set
of an incoming query is predicted by POSGB. There, the query is assigned to a context
and featurized analogously to the training phase. POSGB then predicts the label – a hint
set – from the featurized input query. Secondly, the query with the predicted hint set is
propagated to PostgreSQL for query optimization and execution.

1078 Jerome Thiessat, Lucas Woltmann, Claudio Hartmann, Dirk Habich

Compiler Hint Optimization 5

10 20 30 40 50 60 70 80 90 100
Training Data in Percent

1.0

1.5

2.0

2.5

3.0

Ti
m

e
Fa

ct
or

 re
ga

rd
in

g
OP

T
Workload Evaluation

PG
BAO
POSGB INIT
POSGB FINAL
OPT

Fig. 2: Workload Evaluation of Multiple Data Splits

An important challenge in hint set prediction and generally learned query optimization, is
handling unseen, badly performing queries. Generally, our model does not support detection
of unusually long executing queries. For this reason, we provide a model adaptation by
detecting such queries. Each query is executed with a timeout (i.e., statement timeout in
PostgreSQL), where the timeout is context-sensitive and based on already executed queries
within the specific context. The longest running seen query per context defines the timeout.
By doing so, any query that exceeds the specified context-sensitive timeout threshold is
considered as critical. On the one hand, such critical queries are canceled and re-executed
with the PostgreSQL default hints. On the other hand, the critical queries are exhaustively
evaluated in an asynchronous manner to determine the optimal hint set. Based on this new
experience, an updated model for the specific context is trained. Upon having the newly
trained model ready, the old model is exchanged by the new one.

4 Evaluation

To show the efficiency as well as effectiveness of POSGB, we conducted a comprehensive
evaluation on a machine with an Intel Xeon Gold 6126 CPU, an ASPEED Graphics
Family GPU, and 95 GiB memory. Our whole evaluation is based on the Stack benchmark,
consisting of 100 GB data as well as 6191 queries from real-world examples [Ma22]. We
evaluated four different scenarios: (i) PostgreSQL native with default hint setting (PG), (ii)
BAO [Ma22], (iii) the initial evaluating of POSGB (INIT), and (iv) after retraining has been
deployed (FINAL). Figure 2 shows the most important result. Depicted are training splits
on the x-axis and the relative workload time factor regarding the global optimal solution
on the y-axis. We determined the global optimal solution by an exhaustive search over all

Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints 1079

6 Thiessat et al.

queries and all hint sets. Important to note is that the Stack queries are classified into eleven
contexts and that the training splits are fully random. Additionally, the 100% split marks
representative learning, which uses all data for training and testing. Notably, every but the
100% split are vaulted (i.e., test queries are not seen by the model).

The most important results can be summarized as follows. Firstly, we observe that POSGB dra-
matically reduces the workload execution times for all training splits compared to PostgreSQL
native as well as to the most related approach BAO [Ma22]. In particular, the workload
times using POSGB are much closer to the global optimal solution. Secondly, with more
training data, the workload times are continuously reduced, which is not the case with BAO
as already shown in [He22] due to catastrophic forgetting. Moreover, POSGB performs
well even for the small splits like 10%. Notably, this performance comes with a caveat as
each query has to be labeled. This sums up to roughly 12h for the 10% split. However,
we deem this time still feasible as it is not impractical and does not interfere with the
model’s on-line behavior. Furthermore, representative learning shows our model is capable
of learning all data that it has been confronted with, which is not the case for BAO. Lastly,
our refinement of detecting critical queries shows that the model improves. Deploying this
model refinement naturally implies labeling and retraining phases. However, these phases
can be handled asynchronously.

5 Summary and Outlook

In this paper, we showed that proper hinting of SQL queries in PostgreSQL can have a positive
impact on the overall query execution time. For that, we started by describing PostgreSQL
and BAO [Ma22], the state-of-the-art approaches of predicting hint sets, and elaborated
on its shortcomings, which we tackled in our novel approach called POSGB. POSGB is a
learning-based approach based on simple gradient boosting, where we learn one model per
query context for fine-grained predictions rather than a single global context-agnostic model
as done in BAO. In our evaluation, we demonstrated that hinting with POSGB produces better
QEPs than BAO using the Stack benchmark [Ma22]. In particular, POSGB is consistently
better than BAO resulting in much lower workload execution times over all training splits
– closer to the optimal solution found throughout labeling. Nevertheless, we have not yet
reached the optimal solution and rely on hintable, sub-optimally performing query compilers,
which offers enough potential for further work in this area.

References

[Ch98] Chaudhuri, S.: An Overview of Query Optimization in Relational Systems. In
(Mendelzon, A. O.; Paredaens, J., eds.): Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 1-3, 1998, Seattle, Washington, USA. ACM Press, pp. 34–43, 1998, url:
https://doi.org/10.1145/275487.275492.

1080 Jerome Thiessat, Lucas Woltmann, Claudio Hartmann, Dirk Habich

https://doi.org/10.1145/275487.275492

Compiler Hint Optimization 7

[He22] Hertzschuch, A.; Hartmann, C.; Habich, D.; Lehner, W.: Turbo-Charging SPJ
Query Plans with Learned Physical Join Operator Selections. Proc. VLDB Endow.
15/11, pp. 2706–2718, 2022, url: https://www.vldb.org/pvldb/vol15/p2706-
hertzschuch.pdf.

[Ki19] Kipf, A.; Kipf, T.; Radke, B.; Leis, V.; Boncz, P. A.; Kemper, A.: Learned
Cardinalities: Estimating Correlated Joins with Deep Learning. In: 9th Biennial
Conference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA,
USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019, url:
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf.

[Le15] Leis, V.; Gubichev, A.; Mirchev, A.; Boncz, P. A.; Kemper, A.; Neumann, T.: How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 9/3, pp. 204–215,
2015, url: http://www.vldb.org/pvldb/vol9/p204-leis.pdf.

[Ma22] Marcus, R.; Negi, P.; Mao, H.; Tatbul, N.; Alizadeh, M.; Kraska, T.: Bao: Making
Learned Query Optimization Practical. SIGMOD Rec. 51/1, pp. 6–13, 2022, url:
https://doi.org/10.1145/3542700.3542703.

[Po] PostgreSQL: The World’s Most Advanced Open Source Relational Database,
url: https://www.postgresql.org.

[Wo19] Woltmann, L.; Hartmann, C.; Thiele, M.; Habich, D.; Lehner, W.: Cardinality
estimation with local deep learning models. In (Bordawekar, R.; Shmueli, O.,
eds.): Proceedings of the Second International Workshop on Exploiting Arti-
ficial Intelligence Techniques for Data Management, aiDM@SIGMOD 2019,
Amsterdam, The Netherlands, July 5, 2019. ACM, 5:1–5:8, 2019, url: https:
//doi.org/10.1145/3329859.3329875.

Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints 1081

https://www.vldb.org/pvldb/vol15/p2706-hertzschuch.pdf
https://www.vldb.org/pvldb/vol15/p2706-hertzschuch.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.1145/3542700.3542703
https://www.postgresql.org
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.1145/3329859.3329875

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

WebTensor: Towards high-performance raster data
analysis in the browser

Lucas Fabian Naumann12

Abstract: We present WebTensor, a chunked tensor implementation for WebAssembly (Wasm)
compiled from a self-written C++ library and designed to efficiently analyze raster data directly
in the browser. WebTensor allows loading (chunked) data from various backends, manipulating
it by aggregations and forwarding computed results in a zero-copy manner to JavaScript so that
they can be further processed or visualized. We demonstrate the performance of WebTensor by
benchmarking data access and aggregation operations and compare it against a JavaScript version
compiled from the same C++ code.

Keywords: WebAssembly; Raster Data; Tensor Processing; Visual Analytics

1 Introduction
With climate change research becoming increasingly important in the last years, so are raster
datasets used in it, for example, from the Copernicus project3 or the MOSAiC expedition4.
Analysis of raster data is often done using visual analytics, a method where domain experts
analyze the data with interactive visualization and exploration tools [Cu19]. Easy and
platform-independent access to such tools could be realized by a browser application that is
able to load the desired datasets and process them. However, such applications were not
feasible in the past, as processing the data in the browser with JavaScript would be too
inefficient due to performance limitations of the language, and doing the processing on the
server side instead would introduce a too large overhead regarding requesting and receiving
data [LH14]. This infeasibility changed when WebAssembly (Wasm), a binary instruction
format for a virtual machine, was launched in 2017 [Ha17]. With being supported by most
browser engines and achieving a performance comparable to those of languages like C++
[Ja19], it is suited for high-performance data analysis in the browser.
So far, only a few data processing tools utilizing Wasm have been proposed, like the
embeddable SQL database DuckDB-Wasm [Ko22] or a Wasm backend for TensorFlow.js5.
None of those tools is suitable for analyzing raster datasets. Existing tensor implementations
for browsers like TensorFlow.js focus on machine learning and thus lack features needed for
analysis tasks. For example, tensors should be chunked to perform aggregations needed for
the analysis efficiently and, as the data typically originates from a multitude of different
sensors, data of varying backends, types and layouts should be processable in a single tensor.
1 Technische Universität Dresden, lucas_fabian.naumann@mailbox.tu-dresden.de
2 German Aerospace Center, Institute of Data Science
3 https://copernicus.eu
4 https://mosaic-expedition.org
5 https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html

cba doi:10.18420/BTW2023-75

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1083

mailto:lucas_fabian.naumann@mailbox.tu-dresden.de
https://copernicus.eu
https://mosaic-expedition.org
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-75

12 Lucas Fabian Naumann

Fig. 1: Memory layouts for a three-dimensional tensor: (I) row-major order, (II) column-major order
(row-/column-major order indicate data along the last/first dimension to be contiguous).

In this paper, we present WebTensor, a chunked tensor implementation for Wasm
designed for raster data analysis and intended to serve as a backend for JavaScript
programs. Furthermore, we evaluate the performance of WebTensor on various data
access and aggregation operations and compare the results against an equivalent tensor
implementation in JavaScript.

2 Background
Tensor Data Processing Multidimensional data is often represented as a datacube, which,
in its most basic form, is a tensor. In order to store multidimensional data, it is mapped onto
the one-dimensional index space of storage devices (cf. Figure 1). The resulting memory
layout has a significant impact on I/O performance. Due to the performance implications of
data locality, multidimensional data is commonly chunked to reduce latency when the data
access pattern might change over time6. Analyzing such data requires two kinds of queries:
data accesses and aggregations. Data is accessed either at a single index of the tensor or
along index ranges per dimension. The latter one is commonly called dicing or, if the index
is static for one dimension, slicing. Aggregation reduces data along selected dimensions by
applying a numeric operation. Consider, for example, a four-dimensional tensor with three
spatial and one temporal dimension. Aggregating over the temporal dimension by taking a
minimum, results in a three-dimensional tensor containing the minimum value over time at
all spatial locations.
WebAssembly & Compilation Toolchain In the past, JavaScript has been the only
programming language natively supported in browsers. Consequently, developing applica-
tions for the web required its usage, restricting the feasibility of computationally intensive
applications because of its limited performance [Ha17]. In order to overcome this issue,
Wasm, a binary instruction format for a virtual machine usable in browsers, was introduced
as a compilation target for high-level languages like C++ [Ha17]. Jangda et al. showed that
Wasm is not only faster than JavaScript but even comparable to code executed natively on
x86 [Ja19]. Currently, the Wasm heap is limited to 4 GiB in size as a 32-bit addressing space
model is used [Ha17]. Furthermore, the interaction between JavaScript and Wasm is
one-sided since the Wasm heap can be accessed by JavaScript but accessing JavaScript
memory by Wasm is not possible.

6 https://www.unidata.ucar.edu/blogs/developer/en//entry/chunking_data_why_it_matters

1084 Lucas Fabian Naumann

https://www.unidata.ucar.edu/blogs/developer/en//entry/chunking_data_why_it_matters

WebTensor: Towards high-performance raster data analysis in the browser 13

WebTensor Browser

Reading API

Backend

Loading API

User

Tensor API

Object Store

Local Filesystem

Dedicated Server

Fig. 2: Architecture of WebTensor (orange: JavaScript components, blue: Wasm components).

There are two major toolchains for compiling C++ code to Wasm: Cheerp7 (commercial)
and Emscripten8 (non-commercial, open source), with Emscripten achieving a better
performance as reported by Yan et al. [Ya21]. Once installed, the Emscripten compiler
frontend em++ can be used as a drop-in replacement for regular C++ compilers. For the
compilation process, Emscripten uses Clang and LLVM. Additionally to compiling to
Wasm, Emscripten allows to compile C++ to JavaScript.

3 Raster Data Analysis in the Browser
Figure 2 depicts an overview of WebTensor and subsequent components (JavaScript
components in orange, Wasm components in blue). We compiled WebTensor from a
self-written C++ library to Wasm using Emscripten. JavaScript programs can interact
with it by utilizing three APIs, which were initially written in C++ and then compiled to
Wasm and bound to JavaScript methods using Embind9. These APIs enable WebTensor
to be used straightforwardly in JavaScript programs and allow arbitrary post-processing
or visualization of tensor data, making it a flexible tool for various applications.

3.1 WebTensor
Memory Layout To maximize spatial data access locality, WebTensor stores raw data
in a binary buffer with data of fixed-sized rectangular chunks lying contiguously in it. For
accessing the values corresponding to the bytes stored in this buffer, the tensor stores chunk
objects, each one having pointers to one of those contiguous blocks and additional metadata,
e.g., the chunk type, the value type of the data and the internal memory layout (cf. Figure 3).
This decoupling of raw data and metadata has additionally the advantage that different
chunk types (e.g., dense and sparse chunks), varying data types (e.g., float and int) and
arbitrary internal memory layouts (e.g., row- and column-major) can be freely combined in
a single tensor.

Data Access As the user should not have to care about the internal memory layout of
WebTensor, accessing its data is done by specifying indices regarding its dimensions,
which are then transformed into offsets within the binary buffer. Such a transformation
requires using the chunks as only these contain necessary metadata, like the type of the
stored values. Since all chunks have a fixed shape, the one containing a user-provided index
can easily be obtained and, with that, also an offset to the first element in it. In a second
step, the metadata of the chunk can be used to determine the offset from its beginning.

7 https://leaningtech.com/cheerp
8 https://emscripten.org
9 https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html

WebTensor : Towards high-performance raster data analysis in the browser 1085

https://leaningtech.com/cheerp
https://emscripten.org
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html

14 Lucas Fabian Naumann

1 2 5.0 7.0

3 4 6.0 8.0

(a) Two-dimensional data.

- dense chunk
- int
- row-major

- dense chunk
- float
- column-major

1 2 3 4 5.0 6.0 7.0 8.0

(b) Buffer-Chunk structure of WebTensor.

Fig. 3: Chunked data representation in WebTensor (orange and blue color mark different chunks).

Features WebTensor provides methods for accessing data at single indices as well as for
dicing and slicing operations. Slicing and dicing operations thereby only return a view to
existing data, which offers the same functionalities as a tensor regarding data access and
aggregations and can be materialized to a new independent tensor at a later stage. Regarding
aggregates, the computation of basic statistics, i.e., minimum, maximum, mean and standard
deviation, on arbitrary dimensions is supported. Furthermore, it is possible to rechunk a
tensor, thereby changing the in-memory order of its data, and thus favor access patterns and
aggregations over specific dimensions.

3.2 APIs

Loading The Loading API enables JavaScript programs to load data from various
backends to WebTensor. For this, parts of Apache Arrow10 (compiled to Wasm) are
used to process data in the Arrow IPC and Parquet format. Since Wasm programs cannot
access JavaScript memory, data should be loaded directly from the backend onto the
Wasm heap to avoid unnecessary copies. Currently, WebTensor offers loading data in
this way from a dedicated server using a WebSocket connection and the IPC format for
serialization. Loading data in the Parquet format from object stores or the local file system
is also possible, but at the moment, only by loading the data first in JavaScript and then
copying it to Wasm using the API, thus having an increased overhead.

Tensor This API binds the slicing, dicing and materializing, as well as the aggregate
functions of WebTensor to JavaScript methods using Emscriptens Embind. Hence, it
enables the manipulation of tensor data and the construction of new views and tensors from
the JavaScript side.

Reading Using this API, WebTensor data can be accessed from JavaScript programs,
where further processing or visualization (e.g., with the library D311) is possible. Accessing
the data is done by first obtaining its begin and end addresses in the corresponding chunks, as
well as information about the chunk types, data types and memory layouts. Then, zero-copy,
typed views of the data on the Wasm heap are created with this information and returned to
the JavaScript side through the API.

10 https://arrow.apache.org
11 https://d3js.org/

1086 Lucas Fabian Naumann

https://arrow.apache.org
https://d3js.org/

WebTensor: Towards high-performance raster data analysis in the browser 15

Dice
Shape

Wasm
[ms]

js
[ms]

[400, 20, 20, 20] 11.01 27.41
[20, 20, 20, 20] 1.34 2.78
[20, 30, 72, 72] 1.00 1.55
[20, 30, 20, 72] 0.94 1.49

Tab. 1: Runtimes for dicing varying shapes.

Aggregated
Dimensions

Wasm
[ms]

js
[ms]

time, alt, lat, lon 444.4 2439.0
time, alt, lat 1136.4 2439.0
time, alt 980.4 2777.8
time 574.7 3030.3

Tab. 2: Runtimes for aggregating the minimum
over varying dimensions.

4 Experimental Evaluation
Setup & Methodology We compare WebTensor against a JavaScript baseline imple-
mentation, compiled from the same C++ code using Emscripten, for various data access
and aggregation operations. As baseline to compare against, we use a compiler-generated
JavaScript implementation as it has been shown to consistently outperform equivalent
manual implementations [Ya21]. We executed all benchmarks with benchmark.js12 on a
machine with an Intel i5-6440HQ CPU @2.6 GHz and 32 GiB RAM using a Firefox browser
(version 107.0). As noted before by Yan et al., the specified optimization options for the
compilation of the Wasm and JavaScript code sometimes show unexpected behaviour,
e.g., building with -O1 results in more efficient code than with -O3 [Ya21]. We used, in all
cases, the -Os optimization flag, as it led to consistently good performance results.

Dataset For our evaluation, we use a space weather dataset provided by the German
Aerospace Center. This dataset has four dimensions: time, altitude (alt), longitude (lon)
and latitude (lat), along with multiple variables. The data is organized in row-major order,
i.e., the values for varying latitudes lie contiguously in memory. With about 13 GB, the
dataset is too large to be processed at once in Wasm with its 32-bit addressing space
model. It is planned to support processing datasets larger than 4 GiB by implementing a
lazy loading strategy for dataset chunks and replacing the least recently used one when no
further memory is available. However, this has not been implemented yet. To still show
the performance of WebTensor, we restrict ourselves to a data size of 250 MB by only
regarding a [400,30,72,72]-shaped region of the dataset and one of its 32-bit floating point
variables. The original dataset is not chunked, but for the benchmarks, we rechunk the data
into 12 chunks of shape [100,30,40,40] (all dense chunks, with row-major order and floats
as value type) having a size of approximately 21 MB.

Benchmarks First, we measured the access times for single indices. For this, we generated
100 random indices, measured their mean access times individually, and afterwards, took
the mean over the 100 values received in this way. The resulting mean access time amounts
to 1.35 · 10−2 ms for Wasm and 1.63 · 10−2 ms for JavaScript, with a standard error of
0.1% for both.
12 https://benchmarkjs.com

WebTensor : Towards high-performance raster data analysis in the browser 1087

https://benchmarkjs.com

16 Lucas Fabian Naumann

After the access of single values, we evaluated the performance of dicing operations. We
did this by specifying four fixed dice shapes and, in a similar fashion as before, randomly
generated 100 concrete dices (with varying start and end points) for each of those shapes,
measured their mean runtimes individually and then computed the mean of the resulting
100 values. The received runtimes are shown in Table 1, the standard error is omitted in the
table as it amounted to less than 0.16% for all shapes and is thus neglectable.
Lastly, we measured the execution times of aggregation operations. Table 2 shows the
execution times for aggregating the minimum over the tensor dimensions specified by the
“Aggregated Dimensions” column of the table. Again, the standard error is with at most 1.6%
neglectable and not shown. The results for computing the maximum, mean and standard
deviation are similar, hence we omit them here due to lack of space.

Discussion The Wasm version of WebTensor always achieves better results than its
JavaScript counterpart. For point data access, Wasm outperforms JavaScript by 21%,
and for dicing and aggregating, it is, on average, faster by 92% and 294%, respectively. The
performances differ thereby not by a constant factor but vary. Furthermore, while the results
for the Wasm and JavaScript columns in Table 1 are expected due to data locality and the
number of operations to be performed, this is only the case for the Wasm values in Table 2
and not for the ones of JavaScript. As the number of aggregated dimensions in Table 2
decreases from top to bottom, so does the number of operations needed to aggregate over
them. Thus, the runtimes are expected to decrease too, besides when aggregating over all
dimensions, as in this case, the data to be considered lies contiguously in memory, allowing
optimizations. This expected behaviour can be observed for Wasm. Regarding JavaScript,
however, equal runtimes were obtained when aggregating over all four dimensions as when
only considering time, altitude and latitude. For fewer dimensions, the runtimes increased
even further. Currently, no satisfying explanation for this discrepancy could be found, but
as the same observation was made in multiple repetitions of the benchmarks, it should be
subjected to further studies in the future.

5 Summary & Next Steps
We presented WebTensor, a chunked tensor implementation for Wasm capable of
efficient raster data analysis in the browser. Our initial experimental results indicate that a
Wasm-based tensor implementation can significantly outperform comparable JavaScript
implementations on raster data access and aggregation operations. As a next step, we plan
to extend WebTensor such that larger datasets and more complex data analysis tasks
become possible. More specifically, we plan to implement lazy loading of chunks from the
backend such that complete datasets can be analyzed, as well as loading data from other
backends without making unnecessary copies. Additionally, we intend to implement more
aggregation operations (e.g., resampling, computing histograms) and a data cube layer on
top of WebTensor to provide more metadata information (e.g., physical coordinates of
tensor indices).

1088 Lucas Fabian Naumann

WebTensor: Towards high-performance raster data analysis in the browser 17

Bibliography
[Cu19] Cui, Wenqiang: Visual Analytics: A Comprehensive Overview. IEEE Access, 7, 2019.

[Ha17] Haas, Andreas; Rossberg, Andreas; Schuff, Derek L.; Titzer, Ben L.; Holman, Michael;
Gohman, Dan; Wagner, Luke; Zakai, Alon; Bastien, JF: Bringing the Web up to Speed with
WebAssembly. SIGPLAN Not., 52(6), 2017.

[Ja19] Jangda, Abhinav; Powers, Bobby; Guha, Arjun; Berger, Emery D.: Mind the Gap: Analyzing
the Performance of WebAssembly vs. Native Code. CoRR, abs/1901.09056, 2019.

[Ko22] Kohn, André; Moritz, Dominik; Raasveldt, Mark; Mühleisen, Hannes; Neumann, Thomas:
DuckDB-Wasm: Fast Analytical Processing for the Web. Proc. VLDB Endow., 15(12), 2022.

[LH14] Liu, Zhicheng; Heer, Jeffrey: The Effects of Interactive Latency on Exploratory Visual
Analysis. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2014.

[Ya21] Yan, Yutian; Tu, Tengfei; Zhao, Lĳian; Zhou, Yuchen; Wang, Weihang: Understanding the
Performance of Webassembly Applications. In: Proceedings of the IMC’21. 2021.

WebTensor : Towards high-performance raster data analysis in the browser 1089

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Which Rules Entail this Fact?
An Efficient Approach Using RDBMSs

Tim Gutberlet1, Janik Sauerbier2

Abstract: Knowledge graphs (KGs) are used to store information about relationships between
real-world entities in various fields. Learned rules over KGs describe patterns of KGs and allow for
knowledge inference. In this paper, we focus on the problem of identifying all rules that entail a certain
target fact given a KG and a set of previously learned rules. This can enable link prediction as well as
help explain connections between rules and (potential) facts. Solving this problem time-efficiently for
large rulesets and KGs is a challenge. To tackle this challenge, we propose an approach relying solely
on RDBMSs including indexing, filtering and pre-computing methods. Our experiments demonstrate
the efficiency of our approach and the effect of various optimizations on different datasets like
YAGO3-10, WN18RR and FB15k-237 using rules learned by the bottom up rule learner AnyBURL.

Keywords: Knowledge graphs; Relational databases; Link prediction; Explainability.

1 Introduction

Many practically relevant large KGs are incomplete. Therefore, the prediction of missing
or additional information, also known as link prediction, is highly relevant in contexts
such as biomedicine [Br20] or social networks [Wa18]. Rules describing patterns of
KGs, which are learned by rule learning tools, can enable link prediction. The rule
(𝑋, 𝑐𝑖𝑡𝑖𝑧𝑒𝑛𝑂 𝑓 , 𝑔𝑒𝑟𝑚𝑎𝑛𝑦) ← (𝑋, 𝑏𝑜𝑟𝑛𝐼𝑛, 𝑚𝑎𝑛𝑛ℎ𝑒𝑖𝑚) describes for example the impli-
cation that someone (𝑋) born in Mannheim is a citizen of Germany. To determine the
confidence of a potential new fact (link), one must know from which rules it can be derived.
The confidence of a fact refers to the probability that a particular fact within the graph is
correct. In our example: If we know that 𝑋 was born in Mannheim it can help us determine
the confidence of the fact that 𝑋 is a citizen of Germany. Knowing the confidence is needed
for rule-based link prediction models [Me19]. Moreover, the confidence is used for building
ensembles with link prediction embedding models [Me18] and for improving link prediction
embedding models [Gu18]. Therefore, it is important to identify all previously learned
rules of a KG entailing certain target facts. Moreover, it is generally helpful to be able to
explain the connections between rules and (potential) facts. To illustrate the performance of
traditional RDBMSs in solving the problem in case of large rulesets and KGs, we create and
analyze an efficient approach to this problem using PostgreSQL. As further discussed in the
preliminaries, we are interested in the non-recursive application of rules and in finding all
1 University of Mannheim, tim.gutberlet@students.uni-mannheim.de
2 University of Mannheim, janik.sauerbier@students.uni-mannheim.de

cba doi:10.18420/BTW2023-76

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1091

mailto:tim.gutberlet@students.uni-mannheim.de
mailto:janik.sauerbier@students.uni-mannheim.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-76

2 Tim Gutberlet, Janik Sauerbier

applicable rules for a given target fact. Therefore, our approach is limited to binary relations
and conjunctive queries, in contrast to employing deductive databases. Our approach uses
indexing, filtering and pre-computing methods tailored to the natural structure of a KG
and its respective rules. We ran several experiments testing our approach on different KGs
(YAGO3-10 [MBS14], WN18RR [De18] and FB15k-237 [TC15]). Additionally, we show
how different database setups impact the performance for different rule lengths. For the rule
learning, we use AnyBURL, a fast bottom up rule learner for KGs [Me19].

2 Preliminaries

A KG is a set of (subject, relation, object)-triples also called facts. There is a set of entities
present as subjects and objects, as well as a set of relations in a KG. Here is an example KG
with the entities 𝑝𝑒𝑡𝑒𝑟, 𝑎𝑛𝑛𝑎 and 𝑔𝑒𝑟𝑚𝑎𝑛𝑦 and the relations 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜 and 𝑏𝑜𝑟𝑛𝐼𝑛.

KG = {(𝑎𝑛𝑛𝑎, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜, 𝑝𝑒𝑡𝑒𝑟), (𝑝𝑒𝑡𝑒𝑟, 𝑏𝑜𝑟𝑛𝐼𝑛, 𝑔𝑒𝑟𝑚𝑎𝑛𝑦)}

For our purposes, we are concerned about first-order logic Horn rules, which describe
patterns of KGs. Here are two example rules. We capitalize the variables and lowercase the
constants representing entities.

(𝑋, 𝑐𝑖𝑡𝑖𝑧𝑒𝑛𝑂 𝑓 , 𝑔𝑒𝑟𝑚𝑎𝑛𝑦) ← (𝑋, 𝑏𝑜𝑟𝑛𝐼𝑛, 𝑚𝑎𝑛𝑛ℎ𝑒𝑖𝑚) (1)
(𝑋, 𝑙𝑖𝑣𝑒𝑠𝐼𝑛, 𝑔𝑒𝑟𝑚𝑎𝑛𝑦) ← (𝑋, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜, 𝐴1), (𝐴1, 𝑏𝑜𝑟𝑛𝐼𝑛, 𝑔𝑒𝑟𝑚𝑎𝑛𝑦) (2)

Each rule has a head (e.g., (𝑋, 𝑐𝑖𝑡𝑖𝑧𝑒𝑛𝑂 𝑓 , 𝑔𝑒𝑟𝑚𝑎𝑛𝑦)) consisting of one atom and a body
(e.g., (𝑋, 𝑏𝑜𝑟𝑛𝐼𝑛, 𝑚𝑎𝑛𝑛ℎ𝑒𝑖𝑚)) consisting of one or more atoms. A grounding of a rule
assigns values to all variables of the rule, resulting in a ground rule. A true body grounding
refers to a grounding of the body of a rule for which all (ground) atoms appear in the KG.
The problem we are solving is identifying all rules that entail certain target facts based
on the KG and a previously learned set of rules. This means we are interested in whether
there exists a true body grounding and the head atom can be unified with the target fact. To
illustrate the problem, think of the following target fact.

Target fact = (𝑎𝑛𝑛𝑎, 𝑙𝑖𝑣𝑒𝑠𝐼𝑛, 𝑔𝑒𝑟𝑚𝑎𝑛𝑦)

Rule (1) does not entail this fact because its head atom cannot be unified with the target fact.
The head of rule (2) can be unified with the target fact by assigning 𝑋 = 𝑎𝑛𝑛𝑎. Therefore, it
would entail the target fact if ∃𝐴1 ((𝑎𝑛𝑛𝑎, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜, 𝐴1) ∧ (𝐴1, 𝑏𝑜𝑟𝑛𝐼𝑛, 𝑔𝑒𝑟𝑚𝑎𝑛𝑦)). The
KG contains the facts (𝑎𝑛𝑛𝑎, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑇𝑜, 𝑝𝑒𝑡𝑒𝑟) and (𝑝𝑒𝑡𝑒𝑟, 𝑏𝑜𝑟𝑛𝐼𝑛, 𝑔𝑒𝑟𝑚𝑎𝑛𝑦). Together
with the target fact, this results in a true body grounding for rule (2) with 𝑋 = 𝑎𝑛𝑛𝑎 and
𝐴1 = 𝑝𝑒𝑡𝑒𝑟 . Therefore, rule (2) is part of the solution.

1092 Tim Gutberlet, Janik Sauerbier

Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs 3

3 Proposed Approach

The given KG is stored in one table of the relational database (kg_table with columns
sub for subjects, rel for relations and obj for objects). The basic idea behind our approach
is creating SQL queries which check whether a certain rule entails a certain target fact.
Those individual queries are then combined using UNION ALL operations over all rules,
where the head can unify with the target fact. To improve this basic idea, we employ several
optimizations listed below. Every rule has a specific rule ID which is returned if the rule
entails the target fact. This would be the query for rule (2) and the target fact given in the
preliminaries:

SELECT rule_id_2 FROM kg_table t0, kg_table t1 WHERE t0.sub = anna AND t0.rel =
marriedTo AND t0.obj = t1.sub AND t1.rel = bornIn AND t1.obj = germany LIMIT 1;

3.1 Database Structure

Alternative to having one big table for all facts, our approach uses one table for each relation
in the KG, with two columns for the subjects and the objects.

To speed up the search and enable direct access to the table contents through B-trees,
we employ unique clustered indexes. We duplicate the knowledge graph tables and use
once (subject, object) as key and once (object, subject) as key for the indexes. Within the
generated SQL statements, the tables with the order (subject, object) are used in case of
a fixed subject. The tables with the order (object, subject) are used in the case of a fixed
object or no fixed subject and object. This ensures that the indexes are used efficiently.

3.2 Advanced Rule Pre-filtering

Firstly, we only consider rules that can unify with the target fact for the query. This can be
done by naively testing each rule. However, it can also be done more efficiently. The easiest
way is storing each rule under its head as key in a hash map. The head stays unchanged, but
we use “X” and “Y” as variable descriptors.

Let (s, r, o) be a target triple with the entities s and o and the relation r. Then we only use
the rules stored under the keys (X, r, Y), (s, r, X), (X, r, o) or (s, r, o) for the query of the
target triple. Additionally, when it is true that 𝑠 = 𝑜, we also use the key (X, r, X). Instead of
looping through n rules naively in O(n), this allows for pre-filtering of the rules in O(1).

3.3 Pre-computing of Expensive Rules

As we will illustrate in our experiments (4.3), certain rules result in way more cost in terms
of execution time than others. To address that, we pre-compute a portion of those rules. To

Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs 1093

4 Tim Gutberlet, Janik Sauerbier

identify the most expensive rules, we gather an independent set of n target facts from the
KG and run their queries with the EXPLAIN ANALYZE command to get the execution time
for the individual rule sub-queries. Afterward, we rank all rules which appear in the results
by their average execution time multiplied with their number of appearances in the results.

The top x% of rules are then pre-computed, by calculating all potential assignments for
variables in the rule head that form a grounding together with a set of facts from the KG. We
then store these combinations in a table for the rule. If the subject or the object is a variable
and the other one a constant, then the table only contains the column for the variable. For
the implementation, we use indexed materialized views to 𝑆𝐸𝐿𝐸𝐶𝑇 from the KG with all
the conditions we already know from the rule. Consequently, the 𝐶𝑅𝐸𝐴𝑇𝐸 statement for
pre-computing rule (2) and the query for the target fact from the preliminaries would be:

CREATE MATERIALIZED VIEW view_rule_2 SELECT t0.sub AS sub FROM kg_table
t0, kg_table t1 WHERE t0.rel = marriedTo AND t0.obj = t1.sub AND t1.rel = bornIn AND
t1.obj = germany;

SELECT rule_id_2 FROM view_rule_2 WHERE sub = anna LIMIT 1;

We exclude rules with one body atom, as pre-computing does not improve their performance.
Beyond that, we limit the pre-computation to rules with two body atoms for illustration
purposes, as rules with more body atoms incur a pre-computation time two orders of
magnitude higher than rules with two body atoms.

4 Experiments

The goal of our experiments is to benchmark the performance of our approach on different
datasets and rulesets, as well as to measure the effects of different optimizations. Furthermore,
we analyze the execution time for individual rules.

For the implementation of our approach, we used the open-source object-relational
database system PostgreSQL. Additionally, we used Java with the PostgreSQL JDBC
driver. The source code and datasets, we used for the experiments, can be found at
https://github.com/timgutberlet/Which-Rules-Entail-This-Fact. We conducted all experi-
ments on a Fujitsu Esprimo P957 (construction year 2017) with 32 GB RAM, 512 GB SSD,
an Intel i7-7700 @ 3.6 GHz CPU and Ubuntu 22.04.1 LTS as an operating system. The rule
learning with AnyBURL was mostly done with the standard configuration of AnyBURL-22
available at https://web.informatik.uni-mannheim.de/AnyBURL/. We only extended the
limit of body atoms from one to three for acyclic rules to match the cyclic rules, as we do
not intend to discriminate between them. This means the rulesets only include rules with up
to three body atoms. The relations in the rule bodies are always extensional (defined by
facts), never intensional (defined by other rules).

1094 Tim Gutberlet, Janik Sauerbier

Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs 5

AnyBURL - 10s AnyBURL - 50s AnyBURL - 100s

YAGO3-10 4.2 10.4 14.3
WN18RR 34.8 65.0 77.3
FB15k-237 5.4 26.2 42.9

Tab. 1: Performance results (avg. execution time per target fact in ms)

#entities #relations #facts of KG 10s 50s 100s

YAGO3-10 123,182 37 1,079,040 27k 107k 165k
WN18RR 40,943 11 86,835 6k 20k 30k
FB15k-237 14,505 237 272,115 33k 135k 252k

Tab. 2: Dataset properties & #rules per ruleset learned by AnyBURL

Experiment Avg. execution time (in ms)

All optimizations enabled 10.4

Advanced rule pre-filtering disabled 55.0
Tables for each relation disabled 132.9
Indexing disabled 1720.2
Pre-computing of expensive rules disabled 14.1

Tab. 3: Ablation study of optimizations using YAGO3-10 & 107k rules

4.1 Overall Performance

As illustrated in Tab. 1, our approach works for different datasets and rulesets learned by
AnyBURL. For every dataset, we learned rules for 10s, 50s, and 100s (Tab. 2). We used the
training sets as the KGs and the test sets as the target triples (3k-20k triples). The validation
sets (3k-20k triples) were used as target triples to create the rule rankings to pre-compute
the top 1% most expensive rules with two body atoms.

4.2 Ablation Study - Optimizations

For the ablation study in Tab. 3, we used YAGO3-10 as the benchmark dataset and the
AnyBURL 50s ruleset (107k rules). We didn’t analyze versions with multiple optimizations
disabled due to very high execution times. The “tables for each relation” optimization
described in 3.1 specifically reduces the execution time for long rules. We tested this, by
measuring the average execution time of different rule lengths in the version where the
“table for each relation” optimization is enabled versus the version where the “table for each
relation” optimization is disabled. In both runs, the rule pre-computation was disabled. In
this experiment, the execution time for rules with one body atom was reduced by 12%, for

Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs 1095

6 Tim Gutberlet, Janik Sauerbier

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
0

500

1,000

1,500

Percentile of rules

to
ta

lc
os

tp
er

ru
le

(m
s)

Fig. 1: Quantile performance analysis of rules using YAGO3-10 & 107k rules

two body atoms by 25% and for three body atoms by 74% when the “table for each relation”
optimization is enabled. This might be caused by the increased use of the indexes during
execution for longer rules.

4.3 Rule Quantile Performance Analysis

The quantile analysis in Fig. 1 is based on the total cost per rule after using the validation set
as target triples, as described in 3.3. The total cost per rule is calculated by multiplying the
number of appearances with the average execution time. Here, the number of appearances
is a count for how often a rule appears as a result of the queries for all target triples. It
indicates that only few rules incur a major share of the cost. The most expensive rules
are predominantly rules with two variables in the rule head and two or three body atoms.
Excluding those rules (978 rules) reduced the average execution time for YAGO3-10 & the
AnyBURL 50s ruleset (107k rules) to 0.14 ms per query using all optimizations. In the
given example (YAGO3-10 & 107k rules), we achieved an 98.8% execution time reduction
for the pre-computed rules. The pre-computation took 15 minutes. This reduced our average
execution time from 14.1 ms to 10.4 ms, as illustrated in Tab. 3.

5 Conclusions

We have designed an efficient approach for finding all rules that entail a certain target fact
given a knowledge graph and a set of previously learned rules. Our experiments specifically
demonstrate the effect of indexing, filtering and pre-computing methods. Potential next steps
include a further analysis of our approach on various datasets, an empirical comparison of
different database technologies (particularly triplestores and deductive DBMS), exploring
the use of multithreading, investigating the use of multidimensional indexes and creating a
dedicated solution only using the main memory.

Acknowledgement. This paper would not have been possible without the exceptional
support of our supervisor, Prof. Dr. Rainer Gemulla.

1096 Tim Gutberlet, Janik Sauerbier

Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs 7

Bibliography
[Br20] Breit, Anna; Ott, Simon; Agibetov, Asan; Samwald, Matthias: OpenBioLink: a benchmark-

ing framework for large-scale biomedical link prediction. Bioinformatics, 36(13):4097–
4098, 2020.

[De18] Dettmers, Tim; Minervini, Pasquale; Stenetorp, Pontus; Riedel, Sebastian: Convolutional
2d knowledge graph embeddings. In: Proceedings of the AAAI conference on artificial
intelligence. volume 32, 2018.

[Gu18] Guo, Shu; Wang, Quan; Wang, Lihong; Wang, Bin; Guo, Li: Knowledge Graph Embedding
With Iterative Guidance From Soft Rules. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), 2018.

[MBS14] Mahdisoltani, Farzaneh; Biega, Joanna; Suchanek, Fabian: Yago3: A knowledge base from
multilingual wikipedias. In: 7th biennial conference on innovative data systems research.
CIDR Conference, 2014.

[Me18] Meilicke, Christian; Fink, Manuel; Wang, Yanjie; Ruffinelli, Daniel; Gemulla, Rainer;
Stuckenschmidt, Heiner: Fine-Grained Evaluation of Rule- and Embedding-Based Systems
for Knowledge Graph Completion. In: The Semantic Web – ISWC 2018. pp. 3–20, 2018.

[Me19] Meilicke, Christian; Chekol, Melisachew Wudage; Ruffinelli, Daniel; Stuckenschmidt,
Heiner: Anytime Bottom-Up Rule Learning for Knowledge Graph Completion. In:
Proceedings of the 28th International Joint Conference on Artificial Intelligence, ĲCAI’19.
pp. 3137–3143, 2019.

[TC15] Toutanova, Kristina; Chen, Danqi: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd workshop on continuous vector space models
and their compositionality. pp. 57–66, 2015.

[Wa18] Wang, Zhouxia; Chen, Tianshui; Ren, Jimmy; Yu, Weihao; Cheng, Hui; Lin, Liang:
Deep Reasoning with Knowledge Graph for Social Relationship Understanding. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence. ĲCAI’18,
p. 1021–1028, 2018.

Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs 1097

cbe

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Explainable Data Matching: Selecting Representative Pairs
with Active Learning Pair-Selection Strategies

Lukas Laskowski, Florian Sold1

Abstract: In both research and enterprise, dirty data poses numerous challenges. Many data cleaning
pipelines include a data deduplication step that detects and removes entries within a given dataset which
refer to the same real-world entity. Throughout the development of such deduplication techniques,
data scientists have to make sense of the large result sets that their matching solutions generate to
quickly identify changes in behavior or to discover opportunities for improvements. We propose an
approach that aims to select a small subset of pairs from the result set of a data matching solution
which is representative of the matching solution’s overall behavior. To evaluate our approach, we
show that the performance of a matching solution trained on pairs selected according to our strategy
outperforms a randomly selected subset of pairs.

Keywords: Entity Resolution; Data Matching; ExplainableDM; Pair Selection; Benchmark

1 Explainable Data Matching

Improving data matching systems is an iterative process: Insights on matching behavior
derived from the set of output labels of the matching solution serve as the basis for
improvements in the next iteration. To accelerate this optimization process, we have
developed a data matching benchmark platform, called Frost [Gr22]. Frost combines
existing benchmarks, established quality metrics, cost and effort measures for evaluating
and comparing data matching solutions. Furthermore, the platform includes techniques
which enable the systematic exploration of matching results. However, as real-world datasets
can contain millions of records, it is unrealistic to examine all pairs within a result set.
Consequently, there is the need to summarize data matching results such that only a
representative subset of the most meaningful pairs remains. Based upon a matching result
set of size 𝑚 generated with a data matcher on a dataset of size 𝑛, we aim to select a subset
of well-distinguishable pairs of size 𝑘 with 𝑘 ≪ 𝑚 that are representative of a matching
solution’s behavior.

To achieve this goal, we leverage instance selection strategies from the field of active
learning, a semi-supervised learning method, where the initial seeded training dataset is
very small or empty. Therefore, to sufficiently train the data matching classifier, more label
1 Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam,
{lukas.laskowski, florian.sold}@student.hpi.de

cba doi:10.18420/BTW2023-77

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1099

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-77

2 Lukas Laskowski, Florian Sold

candidates are iteratively selected and, after a manual labeling process, added to the training
dataset. Since manual labeling is costly, a variety of pair selection approaches exist that aim
to achieve a target matching quality in as few iterations as possible. Our goal to select a
subset of pairs which summarize the matching classifier as good as possible is similar to
the pair-selection task in active learning. Nevertheless, we differ in how the pair-selection
algorithm is applied since our use case works upon a fully labelled result set and therefore
lacks the iterative procedure.

Within the field of active learning for data matching, Christen et al. [CCR20] recently
proposed an iterative pair-selection strategy based upon their novel informativeness measure,
which outperforms prior works. Hence, we base our non-iterative pair-selection approach
upon the informativeness measure by Christen et al. With an informativeness score for each
pair, we choose the representative subset as the set of pairs with the highest score.

In the following sections, we first introduce related work to explainable data matching
(Section 2) and then introduce our proposed approach (Section 3). Next, in Section 4, we
show the effectiveness of this strategy by experimentally analyzing its behavior. Finally, we
conclude and discuss next steps (Section 5).

2 Related Work

Explaining data matching decisions is generally a challenging task. Especially with complex
machine learning or deep learning models like DITTO [Li21], results are difficult to
interpret but often superior to those achieved with approaches based upon simple classifiers
or rule-based approaches. Without specific tools, it is close to impossible to understand how
a certain black-box matcher assigns labels, as the underlying model can be very complex.
Additionally, result sets are large and make it difficult to select pair instances for further
analysis. While explanation techniques already exist in the machine learning community,
Thirumuruganathan et al. found that these techniques do not suit the needs of data matching
scientists and propose a variety of research opportunities [TOT19].

Baraldi et al. [Ba21] propose, with their Landmark explanation framework, a new framework
for local pair-specific explanations specifically tailored towards data matching. Landmark
introduces two main innovations: First, it generates per pair two explanations by fixing either
record (called landmark) and perturbing the other record (called varying entity). Second, it
produces an artificial entity by attribute-wise concatenating both entities. The MOJITO
framework [Di19] analyzes the influence of individual attributes on the matching decision.
Their results show that black-box entity matching models might rely on untrustworthy
attributes. Hence, they conclude that quality metrics are not sufficient to quantify real-world
performance of a data matching model, but rather emphasize the need for explanations.

Nevertheless, surprisingly little work has been done so far towards matching solution-
agnostic filtering or selection of representative (or summarized) result subsets. Explanation
frameworks like Landmark can then be executed upon pairs within a representative subset.

1100 Lukas Laskowski, Florian Sold

ExplainableDM: Selecting Representative Pairs 3

3 Informativeness-based Selection of Pairs

To explain the behavior of a matcher, we present an approach that selects pairs out of the
result set labeled by a matching solution. As described in Section 1, we base our selection
strategy upon the informativeness measure developed by Christen et al. [CCR20].

informativeness(𝑢, 𝑅) = (1 − 𝛼) ∗ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑢, 𝑅) + 𝛼 ∗ 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑢, 𝑅)

The informativeness-score for 𝑢 in respect to the result set 𝑅 is the weighted average of the
uncertainty and the entropy. The balancing factor is given as 𝛼 and set to 𝛼 = 0.5.

To each labeled pair within 𝑅, we assign a similarity vector 𝑢, which consists of the pair-wise
similarity for each attribute of the two records 𝑟1, 𝑟2 with (𝑟1, 𝑟2) ∈ 𝑅. To calculate the
informativeness, we use an additional similarity measure between a pair of pair vectors 𝑢, 𝑣,
in our case cosine similarity, called 𝑠𝑖𝑚(𝑢, 𝑣) that we assume to already exist. For a pair 𝑢,
we define the set 𝑅𝑆 as all pairs from the result set that were assigned the same label as 𝑢
and as 𝑅𝑂 those assigned the opposite label. An environment 𝑆 of supporting pairs for a
pair 𝑢 is bounded by the closest instance classified contrary to the target pair, and defined as:

𝑆(𝑢, 𝑅) = {𝑣 ∈ 𝑅𝑆 |𝑠𝑖𝑚(𝑢, 𝑣) > 𝑚𝑎𝑥{𝑠𝑖𝑚(𝑢, 𝑤) |𝑤 ∈ 𝑅𝑂}}

uncertainty(𝑢, 𝑅) = 1
1 + |𝑅 ∩ 𝑆(𝑢, 𝑅) |

Uncertainty quantifies how certain a label assignment is. In case only very few similar pairs
reside within the environment 𝑆 around a target pair, the label assigned to it is uncertain.
Hence, its uncertainty score will be higher. Compared to a pair with plenty of confirmations,
a pair with high uncertainty might be especially valuable and representative of the matching
classifier’s behavior.

entropy(𝑢, 𝑅) = −[
∑

𝑣∈𝑅𝑆𝐸
𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 | − 1

∗ 𝑙𝑜𝑔(
∑

𝑣∈𝑅𝑆𝐸
𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 | − 1

)

+
∑

𝑣∈𝑅𝑂𝐸
𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 | ∗ 𝑙𝑜𝑔(

∑
𝑣∈𝑅𝑂𝐸

𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 |)]

The entropy value represents how diverse the environment around a certain pair 𝑢 is. It can
only yield a high value in case both summands are high negative values. Again, this can
only be true in case we have both very similar pairs of the same and the opposite class.
Pairs that fulfill this requirement are considered to have high entropy, as they help to form
the decision boundary and are therefore, again, representative of the classifier’s behavior.
Compared to the active learning setting, our approach does not work iteratively, and we do
have already all pair labels available (as assigned by the matching solution). Therefore, we
would need to consider all pairs for entropy calculation, which in return would lead to a
very similar entropy value for all pairs. Hence, we restrict the pairs considered for entropy
calculation to those pairs whose similarity to the target pair 𝑢 is higher than the entropy
environment limit 𝑒. We define the environment boundary 𝑒 relative to the S-Environment

Explainable Data Matching: Selecting Representative Pairs with Active Learning
Pair-Selection Strategies 1101

4 Lukas Laskowski, Florian Sold

Fig. 1: Evaluation Process. This figure shows the two phases of our evaluation approach: “Matching
Phase” and “Learning Phase”.

as 𝑒(𝑢, 𝑅) = 𝑆(𝑢, 𝑅) ∗ 𝑙 with 𝑙 ∈ [0, 1] and set to 𝑙 = 0.4. The set 𝑅𝑆𝐸 includes all pairs of
the same class as 𝑢 and a similarity larger than 𝑒(𝑢, 𝑅) to 𝑢. Similarly, we define the set
𝑅𝑂𝐸 with pairs of opposite class. Since the entropy base metric requires a similarity value
for all pairs of pairs, the proposed approach has a runtime complexity of 𝑂 (𝑛4) with 𝑛 as
the amount of records in the base dataset.

Under the assumption that machine learning models benefit similarly from a representative
pair subsets as humans do, we select the top 𝑘 pairs by informativeness measure as the
representative subset. Hence, this particular subset summarizes the matching behavior of
the matching solution better than any other equally sized subset could. In case one chooses
𝑘 small enough, the selected pairs now serve as a basis for a human analysis.

4 Evaluation

We evaluate our approach by training a matching solution only upon the ground truth labels
of pairs within the representative subset, and then comparing its quality using F1-Score
against two baselines. Figure 1 outlines the overall evaluation-process: We first produce
results for informativeness-calculation by predicting labels on unseen testing data, which
serve as the basis for the informativeness score (“Matching Phase”). During the subsequent
“Learning Phase”, we select the 𝑘 pairs with the highest informativeness score as our subset
of pairs. These pairs and their respective ground truth label are then used to train the same
(but untrained) classification model. Afterwards, we predict and evaluate against the full
gold standard.

We perform experiments using the matching solution “Cyber-Punk” which is one of the
winning concepts of the SIGMOD programming contest in 20212. As the dataset, we used
“SIGMOD AltoSight Z4”, which contains mainly textual data about SD cards. Besides our
informativeness selection strategy, we compare up with two naïve baseline subsets:

2 https://dbgroup.ing.unimore.it/sigmod21contest/index.shtml

1102 Lukas Laskowski, Florian Sold

https://dbgroup.ing.unimore.it/sigmod21contest/index.shtml

ExplainableDM: Selecting Representative Pairs 5

Fig. 2: Retraining on Selected Pairs. Comparing the results for the presented selection strategies
on multiple subset sizes on dataset Z4 using the “Cyber-Punk” matcher. We use subset sizes of
𝑘 ∈ {100, 500, 1000, 5000, 10000}.

• Averaged Random (fully sampled): For this strategy, we sample randomly 𝑘 different
pairs out of the set of pairs. In practice, this resembles a human who scrolls through
the entire result set with no further filters or selections available.

• Averaged Random (same split): In most datasets, the majority of pairs are easy to
label as non-matches. Therefore, the previous strategy predominantly selects such
pairs and only few (if any) duplicate pairs. In contrast, this strategy samples 𝑘 pairs
with the same proportion of duplicates and non-duplicates (according to the ground
truth annotation) as can be found in the selected subset. Although we sample randomly,
this subset implicitly comes with a substantial advantage as its proportions are based
upon the informativeness-based subset with respect to the ground truth annotation.

As shown in Figure 2 the informativeness-based selection strategy indeed outperforms the
completely randomly sampled selection strategy at any subset size. This observation is
reasonable, as likely many trivial non-matches were sampled into the subset. Consequently,
a smaller subset size 𝑘 causes a larger difference between the two solutions: At a subset size
of 100, the informativeness-based strategy (𝑓1 = 0.03) has a 15x higher F1-Score compared
to the randomly based selection strategy (𝑓1 = 0.002). With more pairs in the subset, we see
a similar effect. For instance, the informativeness-based strategy (𝑓1 = 0.986) has a subset
size of 5,000 an F1-Score which is 11.6x higher than the randomly based selection strategy
(𝑓1 = 0.085). Even in comparison to the random sampling of same split, our approach
achieves the highest scores on small subsets and matches on subsets of size 𝑘 ≥ 5000.

Since our use-case is mainly targeted towards subsets of size 1000 or less that a human can

Explainable Data Matching: Selecting Representative Pairs with Active Learning
Pair-Selection Strategies 1103

6 Lukas Laskowski, Florian Sold

grasp or look through, and we do significantly outperform both sampling approaches in this
area, our approach does indeed work as anticipated. This shows that a subset selected using
the informativeness score includes pairs that bear more information compared to random
sampling – and therefore offers insights into the behavior of a matching solution.

5 Conclusion and Outlook

We set out to select a representative subset of pairs out of a potentially very large result
set. Our results do indeed indicate that the informativeness-based subset outperforms
random selection by far. More importantly, these results now serve as a baseline for further
improvements towards reducing the overall runtime or developing novel approaches.

Beyond our current results, we see further research opportunities in this area. For example,
our existent evaluation can be underlined with additional test settings including multiple
datasets as well as a diverse set of matching solutions from various domains. Furthermore,
one could further extend this approach by indicating for each selected pair how many similar
non-selected pairs exist in the result set. In case these pairs were accessible to a data scientist,
he could better make sense of this particular pair’s properties.

Acknowledgements. This paper is the result of a seminar supervised by Felix Naumann
and Luca Zecchini. We thank them for their valuable input and support during our project.

References
[Ba21] Baraldi, Andrea; Del Buono, Francesco; Paganelli, Matteo; Guerra, Francesco: Landmark

Explanation: An Explainer for Entity Matching Models. In: Proceedings of the International
Conference on Information and Knowledge Management. ACM, pp. 4680 – 4684, 2021.

[CCR20] Christen, Victor; Christen, Peter; Rahm, Erhard: Informativeness-Based Active Learning for
Entity Resolution. In: European Conference on Principles of Data Mining and Knowledge
Discovery. Springer International Publishing, pp. 125–141, 2020.

[Di19] Di Cicco, Vincenzo; Firmani, Donatella; Koudas, Nick; Merialdo, Paolo; Srivastava, Divesh:
Interpreting Deep Learning Models for Entity Resolution: An Experience Report Using
LIME. In: Proceedings of the Second International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. ACM, 2019.

[Gr22] Graf, Martin; Laskowski, Lukas; Papsdorf, Florian; Sold, Florian; Gremmelspacher, Roland;
Naumann, Felix; Panse, Fabian: Frost: a platform for benchmarking and exploring data
matching results. PVLDB, 15(12):3292–3305, 2022.

[Li21] Li, Yuliang; Li, Jinfeng; Suhara, Yoshihiko; Doan, AnHai; Tan, Wang-Chiew: Deep Entity
Matching with Pre-Trained Language Models. PVLDB, 14(01):50–60, 2021.

[TOT19] Thirumuruganathan, Saravanan; Ouzzani, Mourad; Tang, Nan: Explaining Entity Resolution
Predictions: Where are we and What needs to be done? In: Proceedings of the Workshop
on Human-In-the-Loop Data Analytics. ACM, pp. 1–6, 2019.

1104 Lukas Laskowski, Florian Sold

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

Efficient handling of recursive relationships in ORM
frameworks using Entity Framework Core as an example

Benjamin Uwe Killisch1, Florian Scheffler2, Thomas Kudraß3

Abstract: ORM frameworks are a popular method to bridge the differences between object-oriented
programming and relational data management. At the same time, recursive relationships are present
in many schemas to represent tree-like or net-like structures. This paper discusses how to efficiently
build and execute queries for data with recursive relationships in ORM frameworks, mainly Entity
Framework Core (EF Core). Five possible solutions are conceived and implemented, while making
sure that they can be used like regular LINQ queries. Next, the solutions are tested with different SQL
dialects. The results of these tests are then analyzed by a variety of test parameters. This analysis
shows that queries with recursive common table expressions and queries using key loading are the
most efficient. Queries with auxiliary property, vertical unrolling or horizontal unrolling, are either
too slow or only usable under particular circumstances. The analysis also shows that the performance
of the solutions is always dependent on the circumstances, especially the SQL dialect.

Keywords: Object-Relational Mapping; Recursive; Relationships; Queries

1 Introduction

Object-oriented programming and relational databases are currently the most popular
paradigms for programming and persistent data storage. Since they are different, object-
relational mapping (ORM) is needed to bridge their differences when using them together.
One challenge when using an ORM framework is loading data with recursive relationships
from the database. The motivation for this paper was the challenge of loading article at-
tributes in a recursive relationship for a REST API developed by the e-commerce company
Relaxdays GmbH. Performance is critical, because hundreds of articles have to be updated
per day. The topic of recursive queries has already been covered by Szumowska et al. [Sz11]
for the framework Hibernate. This paper will cover Entity Framework Core (EF Core) for
C# [Mi21]. EF Core can automatically map classes and their relationships to a database,
and convert the results of database queries into objects. Its most distinguishing feature is
LINQ (Language-Integrated Query) [Mi22a]. Using LINQ, one can create database queries
using method chains and type-safe lambda expressions based on the classes mapped to the
database. There is no need to write SQL queries as strings, and therefore, EF Core can be
used independently of the underlying database.
1 HTWK Leipzig, Fakultät Informatik und Medien, benjamin_uwe.killisch@stud.htwk-leipzig.de
2 Relaxdays GmbH, florian.scheffler@relaxdays.de
3 HTWK Leipzig, Fakultät Informatik und Medien, thomas.kudrass@htwk-leipzig.de

cba doi:10.18420/BTW2023-78

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1105

mailto:benjamin_uwe.killisch@stud.htwk-leipzig.de
mailto:florian.scheffler@relaxdays.de
mailto:thomas.kudrass@htwk-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-78

12 Benjamin Uwe Killisch, Prof. Dr.-Ing. Thomas Kudraß, Dr. rer. nat. Florian Scheffler

2 Solutions

There are multiple requirements for possible solutions. Solutions should be as fast as pos-
sible, while also being convenient to use. They should also be able to handle cyclical data
and still terminate while returning the correct result. In the context of EF Core, the solu-
tions should function regardless of the SQL dialect. Furthermore, they should accept two
lambda expressions, one for the initial condition and one for the navigation property of the
recursive relationship. Navigation properties represent relationships between two classes
that are mapped to tables in the database via EF Core. The first class will have a navigation
property that is a single reference or a list of the second class. An example of this is shown
in Listing 1. The query will be created for the recursive relationship represented by the
navigation property employee.Subordinates.

List. 1: Usage of the solution implemented in section 2.1.

context.Employees.RecursiveQuery(context, employee => employee.EmployeeId == 1, employee =>
employee.Subordinates);

2.1 Recursive CTEs

Common Table Expressions (CTEs) were specified in the SQL:1999 standard and allow for
queries to be named and reused again later, as described by Heuer et al. [HSS18]. CTEs can
be used as recursive queries by adding the RECURSIVE keyword. A recursive CTE consist
of the initial query, the recursive query, and the actual query. Only the recursive query can
reference the CTE it is a part of. If we use this to join the CTE with the table we want
to query, we can query the table recursively. The recursive CTE can then be referenced
in the actual query. There are some problems with this solution, the main one being that
the syntax of recursive CTEs is not standardized across the different SQL dialects [SQ22]
[Or22] [Po22] [Mi22b]. Furthermore, not all SQL dialects can handle cyclical data properly.
Out of the four dialects examined in this paper, Transact-SQL can not, but the other three
can. The query will terminate with an error after reaching the maximum recursion depth of
1000. Furthermore, CTEs can not be used as subqueries in Transact-SQL. Recursive CTEs
can be used in an ORM framework like any other query, although they are more complex.
It gets more complicated when using a framework like EF Core. The following steps are
executed to transform two lambda expressions into a recursive CTE:

1. The navigation property of the recursive relationship needs to be read from the first
lambda expression. EF Core stores the mapping of the classes to the database schema,
including the relationships between tables, so the columns of the relevant table and
the corresponding primary keys and foreign keys can be loaded from there.

2. The second lambda expression, which contains the initial query, must be converted
into a query string. For that purpose, EF Core provides the ToQueryString() method.

1106 Benjamin Uwe Killisch, Thomas Kudraß, Florian Scheffler

Recursive relationships in ORM frameworks 13

3. The resulting string must be slightly adjusted to account for parameterized queries.
The values of query parameters must also be read from the second lambda expression.

4. Based on the type of the relationship (1:1, 1:n, m:n) and the schema data loaded in the
first step, the relevant table names, column names and key comparisons are selected.

5. The final query string is built while considering the used SQL dialect.

6. The final query string and the parameter values are passed to FromSQLRaw().

FromSQLRaw() returns an instance of IQueryable (the interface used to query data sources),
which can be chained to further LINQ methods to extend the query. However, EF Core only
allows this if the query string passed to FromSQLRaw() starts with SELECT. A CTE always
starts with the keyword WITH, so the query string has to be surrounded with SELECT ∗
FROM (query). But, as mentioned above, CTEs may not be used as subqueries in Transact-
SQL. So, if Transact-SQL is used, the query is immediately evaluated, and an IN subquery
based on the returned objects is created. Not only does this worsen the performance, but it
also violates lazy evaluation, which is usually expected from instances of IQueryable in C#.
An alternative would be to keep track of the search path in an additional column, and to
check that column in the where clause of the recursive query. This, however, has not been
implemented for this paper.

2.2 Vertical Unrolling

Boniewicz et al. [BSW12] describe alternatives to CTEs for recursive queries. One of them
is vertical unrolling, which works by combining multiple LEFT JOINs. The number of joins
is equal to the maximum recursion depth of the table. In the best-case scenario, this depth
is known. Otherwise one must make an educated guess with the risk of incomplete query
results. The size of the query increases with the depth of the recursive structure, which can
make this very impractical to implement when using query strings. In EF Core, however,
this solution can be implemented easily with a loop and the ThenInclude() method. In EF
Core, Include() and ThenInclude() are used to load related data and are translated to JOINs. The
query method accepts the recursion depth as an additional parameter and calls ThenInclude()
accordingly.

2.3 Horizontal Unrolling

In addition to vertical unrolling, Boniewicz et al. [BSW12] also describe horizontal un-
rolling. Horizontal unrolling creates a temporary table for each level of the recursive struc-
ture, creating each one based on the previous table. These temporary tables are then com-
bined using UNION. Similarly to vertical unrolling, this approach also requires knowledge
about the maximum recursion depth. It can be implemented using a loop, and the resulting

Efficient handling of recursive relationships in ORM frameworks using Entity Framework
Core as an example 1107

14 Benjamin Uwe Killisch, Prof. Dr.-Ing. Thomas Kudraß, Dr. rer. nat. Florian Scheffler

queries will be simpler than vertical unrolling. However, temporary tables are not conve-
nient to use in EF Core. Among other things, the name and columns of a temporary table
must be known at compile time, making them impractical since one needs a specific tem-
porary table for each entity and recursion level. Because of this, a different approach is
implemented in this paper. The queries for the temporary tables are all executed immedi-
ately. The resulting entities are then used to create the next query. In the end, a final IN
subquery is created based on all the loaded entities. This approach creates a lot of database
roundtrips, but makes the recursion-depth parameter obsolete. Instead, a new query is only
executed if the last query returned at least one unknown entity.

2.4 Using an auxiliary property

In some cases, the table with the recursive relationship has a column for which all records
of the same recursive structure share the same value. Such a column can be used to create
a simple recursive query. First, all the values of the aforementioned column (the auxiliary
property) are loaded for the records that match the initial query. Then, an IN subquery
for the auxiliary property is executed based on the loaded values. This is exactly how this
approach is implemented in EF Core. While this approach is simple, it has a few drawbacks:

1. Such a column must either exist already in the current schema or be added to it. If it
is added, it also needs to be maintained on every insert or update operation.

2. The auxiliary column should have an index to improve the performance.

3. This approach always loads the entire recursive structure, even if only a part of it is
required.

4. To use this approach for an m:n relationship, one would have to create an additional
table that links every record in the original table to the roots of the structures it is a
part of. Since this would make the query more complex, and such a table would be
much harder to maintain than just a column, this approach is only implemented for
1:1 and 1:n relationships.

2.5 Key loading

The idea of key loading is to load the values of the primary and foreign keys of all records in
the table, and then use this data to find the primary key values of the records in the recursive
structures to load. For this, the primary keys of the records matching the initial query must
also be loaded. Finally, the relevant records are loaded with an IN subquery. This approach
uses the fact that object-oriented programming languages are turing complete, while SQL
is not. A disadvantage of this approach is that a lot of data could be loaded unnecessarily if
only a small amount of records of a big table is required. Usually, one can easily implement

1108 Benjamin Uwe Killisch, Thomas Kudraß, Florian Scheffler

Recursive relationships in ORM frameworks 15

this approach with three queries. In EF Core, it is a bit more complex, mainly because
simple primary keys must be handled as well as composite primary keys. To do this, both
kinds of keys are represented as value tuples. This has the advantage that C# compares
value tuples by value, not by reference.

3 Performance comparison

Each one of the described approaches was tested in many different scenarios, varying in
SQL dialect (MySQL, SQLite, PostgreSQL, Transact-SQL), relationship type (1:1, 1:n,
m:n), recursion depth (3, 4), the amount of branches per layer (2, 5, always 1 for 1:1 rela-
tionships) and the amount of recursive structures in the database (5, 10, only one structure
was loaded per query execution). Every table usually had one or two columns additionally
to the key columns. Every approach was repeated and measured 150 times for each resulting
scenario. For vertical unrolling, the correct recursion depth was passed to the query method.
This is the ideal scenario, while in reality one might have to use a higher maximum recur-
sion depth, to make sure to always load all the data. All tests were executed using an Intel®
CoreTM 5 i7-10510U Processor and 32 GB RAM. The databases for MySQL, Transact-
SQL and PostgreSQL were hosted in docker containers, while the SQLite database was
stored in a file. The results were then analyzed by the different parameters. Since the aux-
iliary property approach is not implemented for m:n relationships (cf. section 2.4), there
is always one analysis for all approaches and 1:1/1:n relationships and another without the
auxiliary property approach but for all relationship types. Figure 1 and 2 show the analysis
results by SQL dialect with and without the auxiliary property.

Fig. 1: Average query duration, by SQL dialect, for 1:1 and 1:n relationships

MySQL PostgreSQL SQLite Transact-SQL
0

5

10

15

20

25 22
.5

20
.4

4

11
.8

6

23
.4

1

11
.5

10
.4

8

6.
47

11
.9

1

6.
65

5.
3

3.
36

17
.6

7

6.
49

6.
75

5.
43

3.
21

9.
92

9.
03

5.
98 9.

32

SQL dialect

Av
g.

du
ra

tio
n

in
m

s

Horizontal unrolling Key loading CTE Vertical unrolling Auxiliary property

Efficient handling of recursive relationships in ORM frameworks using Entity Framework
Core as an example 1109

16 Benjamin Uwe Killisch, Prof. Dr.-Ing. Thomas Kudraß, Dr. rer. nat. Florian Scheffler

Fig. 2: Average query duration, by SQL dialect, for 1:1, 1:n and m:n relationships

MySQL PostgresSQL SQLite Transact-SQL
0

100

200

300

400

500

600

700

51
.0

2

46
.3

6

49
.4

1

29
2.

81

31
.9

4

29
.6

9

33
.7

27
1.

53

21
.5

5

20
.1

2

21
.5

2

29
9.

94

15
9.

08

21
5

57
0.

64

14
6.

36

SQL dialect

Av
g.

du
ra

tio
n

in
m

s

Horizontal unrolling Key loading CTE Vertical unrolling

The figures show that recursive CTEs are a lot slower when using Transact-SQL, as it was
anticipated. They also show a pattern consistent across all results: When there is no join
table (1:1 and 1:n relationships), and the recursion depth is low, vertical unrolling is quite
fast. But vertical unrolling becomes very slow when there is a join table (m:n relation-
ship), especially when using SQLite. The same goes for higher recursion depth, although
the corresponding analysis is not shown here for brevity. This slowdown happens because
the number of join s increases in both cases. Also, horizontal unrolling and queries with
auxiliary property are usually slower than at least one other approach, while key loading is
usually faster than those two methods but slower than recursive CTEs.

4 Conclusion and further research

Recursive CTEs are the fastest approach in many scenarios; even when they are not, they
are usually not far behind. They also scale well with larger amounts of data. The same goes
for key loading, but it is a bit slower. For these reasons, recursive CTEs are the most efficient
solution, but depend on the used SQL dialect. They should not be used with Transact-SQL,
because of the slow performance and the missing handling of cyclical data. One should
use key loading instead if one wants to avoid these disadvantages. If smaller amounts of
data and a low recursion depth can be assumed, one can also use vertical unrolling, since it
performs well in these situations. The use of horizontal unrolling can not be recommended
since there is no scenario where it is the fastest. Queries with auxiliary property are also not
recommended since this approach can only be used in specific situations and is also slower
than vertical unrolling in many of them. Further research could be done using further SQL
dialects like PL/SQL, and/or using another ORM Framework. More extensive testing could
also be done with higher recursion depths and more entities.

1110 Benjamin Uwe Killisch, Thomas Kudraß, Florian Scheffler

Recursive relationships in ORM frameworks 17

References

[BSW12] Boniewicz, A.; Stencel, K.; Wiśniewski, P.: Unrolling SQL: 1999 Recursive
Queries. In (Kim, T.-h.; Ma, J.; Fang, W.-c.; Zhang, Y.; Cuzzocrea, A., eds.):
Computer Applications for Database, Education and Ubiquitous Computing.
Springer, 2012.

[HSS18] Heuer, A.; Saake, G.; Sattler, K.-U.: Datenbanken: Konzepte und Sprachen.
mitp, 2018.

[Mi21] Microsoft: Entity Framework Core, 2021, URL: https : / / learn .
microsoft.com/en-us/ef/core/, visited on: 12/15/2022.

[Mi22a] Microsoft: Language Integrated Query (LINQ) (C#), 2022, URL: https://
docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
concepts/linq/, visited on: 12/15/2022.

[Mi22b] Microsoft: WITH common_table_expression (Transact-SQL), 2022, URL:
https://docs.microsoft.com/en-us/sql/t-sql/queries/with-
common-table-expression-transact-sql?view=sql-server-ver16,
visited on: 12/15/2022.

[Or22] Oracle: 13.2.15 WITH (Common Table Expressions), 2022, URL: https://
dev.mysql.com/doc/refman/8.0/en/with.html, visited on: 12/15/2022.

[Po22] PostgreSQL-Global-Development-Group: 7.8. WITH Queries (Common Ta-
ble Expressions), 2022, URL: https://www.postgresql.org/docs/14/
queries-with.html, visited on: 12/15/2022.

[SQ22] SQLite-Team: The WITH Clause, 2022, URL: https://www.sqlite.org/
lang_with.html, visited on: 12/15/2022.

[Sz11] Szumowska, A.; Boniewicz, A.; Burzańska, M.; Wiśniewski, P.: Hibernate the
Recursive Queries - Defining the Recursive Queries Using Hibernate ORM. In
(Eder, J.; Bielikova, M.; Tjoa, A. M., eds.): 15th East-European Conference on
Advances in Databases and Information Systems. Faculty of Mathematics and
Computer Science, Nicolaus Copernicus University, Toruń, Poland, 2011.

Efficient handling of recursive relationships in ORM frameworks using Entity Framework
Core as an example 1111

https://learn.microsoft.com/en-us/ef/core/
https://learn.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://www.postgresql.org/docs/14/queries-with.html
https://www.postgresql.org/docs/14/queries-with.html
https://www.sqlite.org/lang_with.html
https://www.sqlite.org/lang_with.html

cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

Witness Generation for JSON Schema Patterns

Christoph Köhnen1

Abstract: JSON Schema is a schema language for the popular data exchange format JSON. This paper
introduces an approach to convert regular expressions, which appear in ECMA-262 syntax in JSON
Schema, into an alternative syntax, such that they may be compiled to finite-state automata. Specifically,
we address the challenge that the ECMA-262 pattern syntax uses anchor symbols to mark the beginning
and end of a word, which is not compatible with available libraries for automata manipulation. This
is a step towards generating witnesses, i.e., JSON instances which are valid w.r.t. the given JSON
Schema specification. We implement an algorithm proposed by Dominik Freydenberger to convert
regular expressions into brics syntax. We show that we successfully address over 97% of the unique
patterns found in a collection of thousands of JSON Schema specifications collected from GitHub.

1 Introduction

JSON Schema is a language for describing collections of JSON instances, where JSON
is a widely adopted format for data exchange. This article describes a student Bachelor
thesis project which targets a key problem in generating a witness for a given JSON Schema
specification (short schema), which is a JSON instance valid w.r.t. this given schema. Witness
generation has several important applications, such as checking schema containment [At22],
a challenge also researched in [Ha21] for type-checking data science pipelines.

For example, consider the JSON Schema specification in Figure 1. Any witness must be
of type object, as required in line 1. If the object has a property (line 2) whose name
matches the pattern ^(sur)?name$ (line 3), so "surname" or "name", then its value must
be a string (line 4) matching the regular expression in line 5 with at least three characters
(line 6). As this example illustrates, JSON Schema patterns can describe property keys (via
patternProperties) or string-typed values (via the keyword pattern).

JSON Schema patterns are encoded in ECMA-262 syntax2 and are actively used in practice:
In analyzing a corpus of approx. 80K open source JSON Schema documents [Ba21], we
found that 21% of the schemas contain patterns. Our approach cannot handle lookahead
and lookbehind as well as the word boundaries \b and \B. The former one matches between
a word and a non-word character without consuming one. But this concerns less than 3% of
the unique patterns found in this corpus. We further found that the bulk of patterns actually
describes regular languages. Some patterns in ECMA-262 can exceed the expressiveness of
1 Universität Passau, Fakultät für Informatik und Mathematik, Lehrstuhl für Informatik mit Schwerpunkt

Skalierbare Datenbanksysteme, Innstraße 33, 94032 Passau, Deutschland, koehne02@ads.uni-passau.de
2 https://json-schema.org/draft/2020-12/json-schema-core.html#rfc.section.6.4

cba doi:10.18420/BTW2023-79

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1113

mailto:koehne02@ads.uni-passau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-79

12 Christoph Köhnen

regular languages, due to backreferences [FS19]. We consider such occurrences as normal
characters.

Translating the remaining patterns into finite-state-automata [HU79], we can generate string
witnesses for patterns, simply by traversing a path from the initial state to some accepting
state. From product automata, we can generate string witnesses that adhere to several
constraints, e.g., matching several patterns as well as minimum and maximum lengths.

1 { "type": "object",
2 "patternProperties": {
3 "^(sur)?name$": {
4 "type": "string",
5 "pattern": "^[A-Z][a-z]*$",
6 "minLength": 3 }}}

Fig. 1: A JSON Schema specification.

Our Java implementation of a tool for JSON
Schema witness generation [At22] uses the au-
tomaton library brics [Mø17] for creating au-
tomata from regular expressions, as well as
for computing automaton operations. However,
brics relies on the syntax for regular expres-
sions accustomed from computer science text-
books [HU79], assuming expressions to be
bounded. Thus, the expression bc* matches "b" and "bc", but not "abcd". Yet in ECMA-262
syntax, the equivalent regular expression would have to be explicitly bounded as ^bc*$.

Contributions. (1) We implement a novel algorithm to convert patterns from ECMA-262 to
brics syntax. The conversion was suggested to us by Dominik Freydenberger. (2) We have
integrated our implementation in a tool for JSON Schema witness generation [At22]. (3) We
further present an empirical study on the applicability of our approach to patterns as they
appear in tens of thousands of real-world schemas crawled from GitHub and provide a fully
automated reproduction package of it. We can show that for 97% of the unique patterns
found in this corpus, we can successfully apply our rewriting.

Structure. Section 2 introduces preliminaries and presents the conversion of regular
expressions in ECMA-262 syntax to brics syntax. Section 3 presents and discusses our
empirical evaluation. Section 4 reviews related work. Section 5 concludes.

2 Patterns and Witness Generation

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ::= 𝑏𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 | 𝑜𝑏 𝑗𝑒𝑐𝑡 | 𝑎𝑟𝑟𝑎𝑦 ;
𝑏𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 ::= null | true | false | 𝑥 | 𝑠 ;

𝑜𝑏 𝑗𝑒𝑐𝑡 ::= {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛} ;
𝑎𝑟𝑟𝑎𝑦 ::= [𝐽1, . . . , 𝐽𝑛] ;

Fig. 2: JSON grammar, adapted from [At22].

Preliminaries. The JavaScript Object Notation
(JSON) is a data format where a JSON document
(or JSON expression) has a syntax which is
defined by the grammar in Figure 2, where 𝑛 ≥ 0,
𝑥 is a number, 𝑠 is a string, 𝐽1, . . . , 𝐽𝑛 are JSON
expressions, and all 𝑘𝑖 are pairwise different key
strings. JSON Schema also uses JSON syntax. A

formal semantics is defined in [At22; Pe16]. Specifically, we are interested in the keywords
patternProperties and pattern, as illustrated in Figure 1.

1114 Christoph Köhnen

JSON Schema Patterns 13

𝑒𝑥𝑝𝑟 ::= (𝑒𝑥𝑝𝑟 alt)? 𝑠𝑒𝑞 ;
𝑠𝑒𝑞 ::= (𝑐ℎ𝑎𝑟 | 𝑔𝑟𝑜𝑢𝑝 | 𝑞𝐸𝑥𝑝𝑟)∗ ;

𝑞𝐸𝑥𝑝𝑟 ::= (𝑐ℎ𝑎𝑟 | 𝑔𝑟𝑜𝑢𝑝) 𝑞𝑢𝑎𝑛𝑡 ;

Fig. 3: JSON Schema pattern grammar.

Approach. We denote a regular expression extracted
from a JSON Schema document as JSON Schema
pattern (or short pattern). Since such a pattern follows
the ECMA-262 syntax it can be defined by the grammar in
Figure 3 with the following tokens: alt is the alternation

symbol |, group one of the alternatives (expr), (?:expr), (?<str>expr), (?!expr), (?=expr),
(?<!expr), (?<=expr), char a character (or its unicode representation), a character class
(like [abc], [a-z], [abcA-Z] or [ˆa-z]) or an anchor symbol (ˆ or $), str a sequence of
characters and quant a simple (+, * or ?) or range quantifier ({m}, {m,n} or {m,}, 𝑛 ≥ 𝑚 ≥ 0).

The speciality of the ECMA-262 language is the use of the anchor symbols ˆ for the beginning
of a word and $ for the end. The expression ^abc$ in ECMA-262 syntax matches the string
"abc" and nothing else while abc matches any string with "abc" inside, for example
"012abcdef. To generate a string which matches a given regular expression in ECMA-262
syntax it can be helpful to create a finite-state automaton, since every regular language can
be defined by such an automaton. The Java library dk.brics [Mø17] supports the creation of
finite-state automata with regular expressions as well as the common operations of automata
like concatenation, union, intersection or negation. Matching operations are also supported.
Regular expressions are defined in the class dk.brics.automaton.RegExp.

A regular expression in brics syntax consists of the tokens listed in Figure 3, the symbols
@ for any string and # for the empty language, but without anchor symbols, non- and
named-capturing grouping and lookahead/-behind. It follows the same grammar with the
exception that grouping only stands for simple grouping. Lookahead and lookbehind exceed
the power of regular expressions. Freydenberger and Schmid worked that out in [FS19].

We now introduce an algorithm3 to convert patterns from ECMA-262 to brics syntax, i.e.
removes the anchor symbols, which works for nearly all patterns found in the corpus of
JSON files from open-source projects on GitHub [Ba21]. To get rid of ˆ resp. $we define the
functions h and nh (short for hat and nohat) resp. d and nd (short for dollar and nodollar).
h and nh compute regular expressions which do not use a symbol for the beginning of the
word, h(𝛼) matches the same language as the part of 𝛼, where ˆ is used, nh(𝛼) the same
language as the part of 𝛼, where ˆ is not used. d and nd compute regular expressions which
do not use symbols for the beginning or end of the word, d(𝛽) matches the same language
as the part of 𝛽, where $ is used, nd(𝛽) the same language as the part of 𝛽, where $ is not
used. First we define a special predicate.

Definition 2.1 Let𝛼 be a regular expression in ECMA-262 syntax. The predicate nullable(𝛼)
is true if and only if the empty word is contained in the language defined by 𝛼.

Examples for nullable patterns are (^a$)*, (a|b?) or ^$ which only accepts the empty word.
Now we can define functions to compute the anchor and non-anchor parts of a pattern.

3 Idea, algorithm, and replacement rules by Dr. Dominik D. Freydenberger (not published).

Witness Generation for JSON Schema Patterns 1115

14 Christoph Köhnen

Tab. 1: Rules to compute the values h(𝛼), nh(𝛼), d(𝛼) and nd(𝛼) for a regular expression 𝛼 recursively.

𝛼 h(𝛼) nh(𝛼) d(𝛼) nd(𝛼)

𝛼 ∈ {(), @, #} ∪ CHAR # 𝛼 # 𝛼

ˆ () # # ˆ

$ # $ () #

𝛼1 | 𝛼2 h(𝛼1) | h(𝛼2) nh(𝛼1) | nh(𝛼2) d(𝛼1) | d(𝛼2) nd(𝛼1) | nd(𝛼2)
�̃�+ h(�̃�) · nh(�̃�)∗ nh(�̃�)+ nd(�̃�)∗ · d(�̃�) nd(�̃�)+
�̃�∗ h(�̃�) · nh(�̃�)∗ nh(�̃�)∗ nd(�̃�)∗ · d(�̃�) nd(�̃�)∗
�̃�? h(�̃�) nh(�̃�)? d(�̃�) nd(�̃�)?
𝛼1𝛼2 h(𝛼1) · nh(𝛼2) | hn𝛼1 (𝛼2) nh(𝛼1) · nh(𝛼2) dn𝛼2 (𝛼1) | nd(𝛼1) · d(𝛼2) nd(𝛼1) · nd(𝛼2)
�̃�{𝑚} h(�̃�{𝑚,𝑚}) nh(�̃�{𝑚,𝑚}) d(�̃�{𝑚,𝑚}) nd(�̃�{𝑚,𝑚})
�̃�{𝑚,𝑛} (𝑚 < 2, 𝑛 > 0) h(�̃�) · nh(�̃�){0,𝑛−1} nh(�̃�){𝑚,𝑛} nd(�̃�){0,𝑛−1} · d(�̃�) nd(�̃�){𝑚,𝑛}

�̃�{𝑚,} (𝑚 < 2) h(�̃�) · nh(�̃�)∗ nh(�̃�){𝑚,} nd(�̃�)∗ · d(�̃�) nd(�̃�){𝑚,}

�̃�{𝑚,𝑛} (𝑚 ≥ 2, 𝑛 > 0) h(�̃� · �̃� · �̃�{𝑚−2,𝑛−2}) nh(�̃�){𝑚,𝑛} d(�̃�{𝑚−2,𝑛−2} · �̃� · �̃�) nd(�̃�){𝑚,𝑛}

�̃�{𝑚,} (𝑚 ≥ 2) h(�̃� · �̃� · �̃�{𝑚−2,}) nh(�̃�){𝑚,} d(�̃�{𝑚−2,} · �̃� · �̃�) nd(�̃�){𝑚,}

Definition 2.2 Denote the set of all regular expressions by REGEXP and the set of all non-
anchor character symbols and classes by CHAR. Let 𝛼 be a regular expression in ECMA-262
syntax. Define the functions h, nh : REGEXP→ REGEXP as follows. Let �̃�, 𝛼1, 𝛼2 be regular
expressions in ECMA-262 syntax and hn𝛼1

(𝛼2) be h(𝛼2) if nullable(𝛼1) and # otherwise.
Compute h(𝛼) and nh(𝛼) by applying recursively the rules from Table 1. Analoguously, for
a regular expression 𝛽 in ECMA-262 syntax which does not use a symbol for the beginning of
the word define the functions d, nd : REGEXP→ REGEXP as follows. Let 𝛽, 𝛽1, 𝛽2 be regular
expressions in ECMA-262 syntax which does not use a symbol for the beginning of the
word and dn

𝛽2
(𝛽1) be d(𝛽1) if nullable(𝛽2) and # otherwise. Compute d(𝛽) and nd(𝛽) by

applying recursively the rules from Table 1.

The rules in Table 1 are complete for all possible patterns in ECMA-262 syntax not containing
word boundaries, lookahead or lookbehind since these features can match inside a pattern
without consuming a character. Finally, we can formulate the algorithm.

Algorithm 1 Algorithm to convert a regular expression from ECMA-262 to brics syntax.
Input: regular expression 𝛼 in ECMA-262 syntax without word boundaries, lookahead or lookbehind

1: 𝛽← h(𝛼) | @ · nh(𝛼) with h(𝛼) and nh(𝛼) computed using Definition 2.2.
2: 𝛾 ← d(𝛽) | nd(𝛽) · @ with d(𝛽) and nd(𝛽) computed using Definition 2.2.

Output: regular expression 𝛾 in brics syntax

Example 2.3 For 𝛼 = (ˆa$ | b)? in ECMA-262 syntax we apply Algorithm 1. First, we remove
ˆ by applying the rules from Table 1. We obtain

h(𝛼) = h((ˆa$ | b)?) = h(ˆa$ | b) = h(ˆa$) | h(b)︸︷︷︸
=#

= h(ˆ)︸︷︷︸
=()

· nh(a$)︸ ︷︷ ︸
=a$

| h(a$)︸︷︷︸
=#

= a$,

nh(𝛼) = nh((ˆa$ | b)?) = nh(ˆa$ | b)? = (nh(ˆa$) | nh(b))? = (# | b)? = b?

1116 Christoph Köhnen

JSON Schema Patterns 15

since nh(ˆa$) = nh(ˆ) · nh(a$) = # · nh(a$) = #, ˆa is nullable and by using the shortcuts
h(�̃�) = # if �̃� does not contain a ˆ, # | �̃� = �̃� | # = �̃� and () · �̃� = �̃�. We get 𝛽 = a$ | @ · b?.
Then we remove $ analoguously by applying the rules from Table 1 and obtain

d(𝛽) = d(a$) | d(@ · b?) = d(a$) | # = d(a) | nd(a) · d($) = # | a · () = a,
nd(𝛽) = nd(a) · nd($) | nd(@) · nd(b)? = a · # | @ · b? = # | @ · b? = @ · b?

since $ is nullable and by using the shortcuts d(𝛽) = # if 𝛽 does not contain a $,
| 𝛽 = 𝛽 | # = 𝛽 and 𝛽 · () = 𝛽. The last step gives us the result 𝛾 = a | @ · b? · @, which is a
regular expression in brics syntax that defines the same language as 𝛼 in ECMA-262 syntax.

3 Evaluation and Discussion

JSON Schema patterns do not only occur with a clause "pattern": regExp but also as a
pattern definition of a property name as mentioned in Section 2. Occurrences of both types are
considered in the evaluation together. The numbers are based on a dataset of schemas found
in open-source projects on GitHub [Ba21]. This corpus consists of 82,094 files. 17,747 of
these files contain at least one pattern. This is 21.62%, so more than one fifth. Hence the goal
to translate each JSON Schema pattern in an automaton-compatible syntax is relevant. After
collecting all these patterns and eliminating duplicates we obtained 3,232 unique patterns.
Our reproduction package is available at https://doi.org/10.5281/zenodo.7586341.

The implementation handles non- and named-capturing groups as capturing groups. In
Table 2 we consider the numbers for syntactically invalid patterns and patterns for which
we do not support a conversion. The former ones are 0.4% of the unique patterns and are
mostly due to unescaped slashes, which are not allowed in ECMA-262. The latter ones are
patterns containing word boundaries or lookaround, that is lookahead or lookbehind. These
kind of patterns occurs in 2.44% of the unique patterns. These are the only possible cases
for patterns which the algorithm cannot convert to brics syntax. For all the other ones,
which is over 97% of the unique patterns, the procedure is successful.

In Table 3 we consider numbers for these brics-manageable patterns, where over 84% of
them contain at least one anchor symbol, i.e. ˆ or $. However, in nearly all of these patterns
the anchors are not inside the regular expression, which means that ˆ resp. $ stands at the
beginning resp. end of the expression. Only 0.67% of the brics-manageable patterns have
anchors inside. If a pattern contains a non-nullable part before a starting or after an ending
marker this pattern is unsatisfiable, i.e. it accepts the empty language. Fortunately, such
patterns are scarce. Also nullable patterns, that are patterns which match the empty word
(see Definition 2.1), are rare, they amount to less than 6% of the unique patterns.

As we can see in the experimental results, there are less than 3% of the unique patterns for
which our approach fails. These are due to invalid patterns, word boundaries and lookaround.
However, these kinds of patterns are also not supported by the former approach in [Ha21].

Witness Generation for JSON Schema Patterns 1117

https://doi.org/10.5281/zenodo.7586341

16 Christoph Köhnen

Tab. 2: Patterns extracted from the corpus.

Total %

Unique patterns 3,232 100.00
Invalid patterns 13 0.40
Not supported patterns 79 2.44
Manageable in brics 3,140 97.15

Tab. 3: Patterns manageable in brics.

Total %

Patterns with anchors 2,648 84.33
Anchors inside 21 0.67
Patterns without anchors 492 15.67
Nullable patterns (Def. 2.1) 183 5.83

4 Related Work

Our implementation is integrated in a tool which can generate witnesses for JSON Schema
documents [At22]. This tool can be used to check schema containment. An earlier approach
to containment checking (not based on witness generation) is presented in [Ha21] . It also
relies on an external automaton library, the Python greenery library 4, which also uses a
non-anchored syntax. Habib et al. unanchor the patterns from the schemas and unescape
the anchor symbols before using greenery especially for computing intersections of two
regular expressions. These steps are only executed on the string representation of the regular
expression, without parsing its structure. Thus, there are instances when the approach by
Habib et al. fails to preserve pattern semantics, e.g. for patterns containing anchors inside
and not at its beginning or end – different from our well-principled approach.

5 Conclusion

We have successfully integrated our syntax conversion in a tool for JSON Schema witness
generation. The experiments in [At22] reveal that the generation of automata from complex
patterns in JSON Schema can cause severe performance problems. This motivates a range
of follow-up research, for instance, caching of reoccurring patterns, or a lazy computation
of automata for the purpose of witness generation.

Acknowledgments. This article describes the results of a bachelor thesis project at the University of Passau,
supervised by Stefanie Scherzinger. I thank Dominik Freydenberger for suggesting the conversion algorithm.
I further thank the authors of [At22], specifically Lyes Attouche, Mohamed Amine-Baazizi, Dario Colazzo,
Giorgio Ghelli, and Dario Colazzo for guidance and support. This contribution was partly funded by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) grant #385808805.

4 https://github.com/qntm/greenery

1118 Christoph Köhnen

https://github.com/qntm/greenery

JSON Schema Patterns 17

References

[At22] Attouche, L.; Baazizi, M.-a.; Colazzo, D.; Ghelli, G.; Sartiani, C.; Scherzinger, S.:
Witness Generation for JSON Schema. Proc. VLDB Endow. 15/13, pp. 4002–
4014, 2022, url: https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf.

[Ba21] Baazizi, M.-A.; Ghelli, G.; Colazzo, D.; Sartiani, C.; Scherzinger, S.: sdbs-uni-
p/json-schema-corpus: JSON Schema Corpus Release 07/2021, using the updated
data from https://github.com/sdbs-uni-p/json-schema-corpus, commit
hash #79f808b, July 2021, url: https://doi.org/10.5281/zenodo.5141199.

[FS19] Freydenberger, D. D.; Schmid, M. L.: Deterministic regular expressions with
back-references. In: Journal of Computer and System Sciences. 105, pp. 1–39,
2019, url: https://doi.org/10.1016/j.jcss.2019.04.001.

[Ha21] Habib, A.; Shinnar, A.; Hirzel, M.; Pradel, M.: Finding Data Compatibility Bugs
with JSON Subschema Checking. In: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2021, pp. 620–
632, 2021, url: https://doi.org/10.1145/3460319.3464796.

[HU79] Hopcroft, J. E.; Ullman, J. D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, 1979.

[Mø17] Møller, A.: dk.brics.automaton – Finite-State Automata and Regular Expressions
for Java, version 1.12-1, 2017, url: http://www.brics.dk/automaton/.

[Pe16] Pezoa, F.; Reutter, J. L.; Suarez, F.; Ugarte, M.; Vrgoč, D.: Foundations of JSON
Schema. In: Proceedings of the 25th International Conference on World Wide
Web. WWW ’16, pp. 263–273, 2016, url: https://doi.org/10.1145/2872427.
2883029.

Witness Generation for JSON Schema Patterns 1119

https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf
https://github.com/sdbs-uni-p/json-schema-corpus
https://doi.org/10.5281/zenodo.5141199
https://doi.org/10.1016/j.jcss.2019.04.001
https://doi.org/10.1145/3460319.3464796
http://www.brics.dk/automaton/
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029

List of Authors

A
Abdelmageed, Aly, 879
Abedjan, Ziawasch, 367
Ahn, Minseon, 751
Algergawy, Alsayed, 879
Alhomssi, Adnan, 259
Auer, Sören, 367
Aumiller, Dennis, 195

B
Babalou, Samira, 951
Bang, Tiemo, 641
Baumstark, Alexander, 105, 797
Bayer, Mirjam, 657
Behr, Henriette, 535
Beilschmidt, Christian, 837
Benson, Lawrence, 757
Bergmann, Rico, 283
Binnig, Carsten, 157, 711, 995
Bittkowski, Meik, 1049
Bodensohn, Jan-Micha, 157
Boehm, Matthias, 707, 815
Boissier, Martin, 47
Bornschlegl, Marco Xaver, 901
Brass, Stefan, 607
Broneske, David, 697
Bruchhaus, Sebastian, 901
Burrell, David, 943

C
Chatziliadis, Xenofon, 943
Christen, Peter, 485
Christen, Victor, 439
Christmann, Philipp, 579
Conrad, Stefan, 595

Cordova, José Andrés, 595

D
Damme, Patrick, 815
Das, Pronaya Prosun, 981
Drönner, Johannes, 837
Dunkelau, Jannik, 595
Duong, Manh Khoi, 595

E
Eichler, Annika, 1023
Elkafrawy, Passent, 879
Ellakwa, Susan F., 879
El-Shaikh, Alex, 773
Engelmann, Björn, 1009
Eppinger, Florian, 93
Esmailoghli, Mahdi, 367

F
Faeskorn-Woyke, Heide, 621
Fan, Jing, 195
Fett, Johannes, 763
Fey, Görschwin, 1023
Fischer, Tim, 1069
Focken, Mareike, 621
Franke, Martin, 439
Freitag, Michael, 235
Fruth, Leon, 829

G
Gertz, Michael, 195
Geyer, Andreas, 751
Ghazimatin, Azin, 633
Göllner, Sabrina, 933
Gomez, Kevin, 485
Gradl, Tobias, 829

Graefe, Goetz, 27
Grünhagen, Arne, 1023
Gutberlet, Tim, 1091

H
Habich, Dirk, 283, 697, 751, 763
Hahn, Tobias, 729
Hansen, Yorik Timo, 657
Hartmann, Claudio, 283
Hasler, Charlotte, 621
Hatem, Shahenda, 879
Hättasch, Benjamin, 157
Haubenschild, Michael, 259
Heinz, Florian, 687, 821
Hemmje, Matthias, 901
Henneberg, Justus, 665
Henrich, Andreas, 701, 829
Hertzschuch, Axel, 283
Hinneburg, Alexander, 607
Hübscher, Leonardo, 417
Hurdelhey, Ben, 47

I
Ilic, Ivan, 305
Islam, Tamjidul, 719

J
Jack, Thomas, 981
Jegan, Robin, 829
Jiang, Lan, 417
Jibril, Muhammad Attahir, 105, 797
Jörz, Simon, 131

K
Kaoudi, Zoi, 535
Karam, Naouel, 701
Keller, Jüri, 1049
Kemper, Alfons, 183
Kerth, Alexander, 665

Kerzel, Dominik, 965
Killisch, Benjamin Uwe, 1105
Kipf, Andreas, 707
Klan, Friederike, 851
Kleest-Meißner, Sarah, 511
Kleinsteuber, Erik, 951
Kless, André, 621
Klettke, Meike, 917
Knolle, Harm, 621
Kober, Urs, 763
Koch, Maximilian, 367
Köhnen, Christoph, 1113
König-Ries, Birgitta, 701, 851, 879,

951, 965, 1059
Kosbü, Kimberley, 657
Krause, Alexander, 751
Kröger, Peer, 657
Kudraß, Thomas, 1105
Kulow, Andrea, 657

L
Lambert, Jens, 621
Langenecker, Sven, 995
Laskowski, Lukas, 1099
Lee, Dong Hun, 751
Lehner, Wolfgang, 283, 751, 763
Leis, Viktor, 259
Lindenau, Arvid, 821
Löffler, Felicitas, 851
Luthra, Manisha, 707
Lutsch, Adrian, 711

M
Markl, Volker, 535, 943
Mast, Marcel, 981
Mattig, Michael, 837
Mayerl, Maximilian, 555
Medhat, Walaa, 879

Mertová, Lukrécia, 865
Mogk, Ragnar, 711
Moosleitner, Manfred, 221
Müller, Wolfgang, 865
Mundt, Martin, 711
Mustafa, Tarek Al, 1059

N
Naumann, Felix, 417
Naumann, Lucas Fabian, 1083
Neumann, Thomas, 183, 235

O
Olijnyk, Andreas, 821
Osterthun, Arne, 681

P
Papenbrock, Thorsten, 391, 461
Paradies, Marcus, 681
Pensel, Lukas, 665
Pietrzyk, Johannes, 751

R
Rabl, Tilmann, 305, 757
Rahm, Erhard, 439, 485
Rakow, Thomas C., 621
Reibert, Joshua, 681
Reis, Thoralf, 901
Restat, Valerie, 917
Rey, Alice, 235
Ritter, Daniel, 751
Rohde, Florens, 439
Rost, Christopher, 485
Roy, Rishiraj Saha, 579

S
Saatz, Inga Marina, 621
Samuel, Sheeba, 965, 1059
Sattler, Kai-Uwe, 105, 797

Sattler, Rebecca, 511
Sauerbier, Janik, 1091
Schaer, Philipp, 1009, 1049
Schalles, Christian, 995
Scheffler, Florian, 1105
Schenkel, Ralf, 705
Scherp, Ansgar, 705
Schildgen, Johannes, 687, 821
Schmid, Markus L., 511
Schmidl, Sebastian, 391, 461
Schuhknecht, Felix, 131, 665, 719
Schüle, Maximilian E., 183, 931
Schüll, Daniel, 729
Schwarz, Christian, 763
Schweikardt, Nicole, 511
Schweitzer, Philip, 837
Seeger, Bernhard, 701, 773, 837
Seeger, Marcian, 391
Shafiei, Fateme, 851
Singh, Gagandeep, 711
Sold, Florian, 1099
Specht, Günther, 221, 555
Störl, Uta, 93, 901, 917
Sturm, Christoph, 995

T
Teich, Jürgen, 729
Tolovski, Ilin, 305
Tropmann-Frick, Marina, 933, 1023

U
Urban, Matthias, 157

V
Vielhauer, Alexander, 391
Vogel, Liane, 157
Vötter, Michael, 555

W
Wael, Tasneem, 879

Weidlich, Matthias, 511
Weikum, Gerhard, 579
Weisgut, Marcel, 47, 757
Wenig, Phillip, 461
Wiese, Lena, 981
Wildermann, Stefan, 729

Witte, René, 851
Wulff, Antje, 981

Z
Zacharatou, Eleni Tzirita, 943
Zangerle, Eva, 221, 555
Zeuch, Steffen, 943

	Titelseite
	Vorwort
	Sponsors
	Conference Chairs
	Program Commitee
	Organizing Team
	Contents
	Scientific Program
	Session 1
	Priority queues for database query processing – Goetz Graefe
	Workload-Driven Data Placement for Tierless In-Memory Database Systems – Ben Hurdelhey , Marcel Weisgut , Martin Boissier
	Workload-Aware Contention-Management in Indexes for Hierarchical Data – Kevin Wellenzohn , Michael H. Böhlen , Sven Helmer , Marcel Reutegger
	Tuning Cassandra through Machine Learning – Florian Eppinger , Uta Störl
	GTPC: Towards a Hybrid OLTP-OLAP Graph Benchmark – Muhammad Attahir Jibril , Alexander Baumstark , Kai-Uwe Sattler
	IBM Data Gate: Making On-Premises Mainframe Databases Available to Cloud Applications – Knut Stolze , Felix Beier , Vassil Dimov , Eirini Kalogeiton , Mateo Tošić
	The Easiest Way of Turning your Relational Database into a Blockchain — and the Cost of Doing So – Felix Schuhknecht , Simon Jörz

	Session 2
	WannaDB: Ad-hoc SQL Queries over Text Collections – Benjamin Hättasch , Jan-Micha Bodensohn , Liane Vogel , Matthias Urban , Carsten Binnig
	NN2SQL: Let SQL Think for Neural Networks – Maximilian E. Schüle , Alfons Kemper , Thomas Neumann
	On the State of German (Abstractive) Text Summarization – Dennis Aumiller , Jing Fan , Michael Gertz
	Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution: Predictive Performance vs. Resourcefulness – Manfred Moosleitner , Günther Specht , Eva Zangerle

	Session 3
	Seamless Integration of Parquet Files into Data Processing – Alice Rey , Michael Freitag , Thomas Neumann
	The Evolution of LeanStore – Adnan Alhomssi , Michael Haubenschild , Viktor Leis
	PostBOUND: PostgreSQL with Upper Bound SPJ Query Optimization – Rico Bergmann , Axel Hertzschuch , Claudio Hartmann , Dirk Habich , Wolfgang Lehner
	RMG Sort: Radix-Partitioning-Based Multi-GPU Sorting – Ivan Ilic , Ilin Tolovski , Tilmann Rabl
	Approach to Synthetic Data Generation for Imbalanced Multi-class Problems with Heterogeneous Groups – Dennis Treder-Tschechlov , Peter Reimann , Holger Schwarz , Bernhard Mitschang
	No Mayfly: Detection and Analysis of Long-term Twitter Trends – John Ziegler , Michael Gertz

	Session 4
	Duplicate Table Discovery with Xash – Maximilian Koch , Mahdi Esmailoghli , Sören Auer , Ziawasch Abedjan
	DPQL: The Data Profiling Query Language – Marcian Seeger , Sebastian Schmidl , Alexander Vielhauer , Thorsten Papenbrock
	ExtracTable: Extracting Tables from Raw Data Files – Leonardo Hübscher , Lan Jiang , Felix Naumann
	Value-specific Weighting for Record-level Encodings in Privacy-Preserving Record Linkage – Florens Rohde , Martin Franke , Victor Christen , Erhard Rahm
	HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection – Sebastian Schmidl , Phillip Wenig , Thorsten Papenbrock
	Evolution of Degree Metrics in Large Temporal Graphs – Christopher Rost , Kevin Gomez , Peter Christen , Erhard Rahm

	Session 5
	Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to Practice – Sarah Kleest-Meißner , Rebecca Sattler , Markus L. Schmid , Nicole Schweikardt , Matthias Weidlich
	Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization – Henriette Behr , Volker Markl , Zoi Kaoudi
	Pairwise Learning to Rank for Hit Song Prediction – Maximilian Mayerl , Michael Vötter , Günther Specht , Eva Zangerle
	Communication-Optimal Parallel Reservoir Sampling – Christian Winter , Moritz Sichert , Altan Birler , Thomas Neumann , Alfons Kemper
	CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases – Philipp Christmann , Rishiraj Saha Roy , Gerhard Weikum

	Session 6
	RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in Educational Institutes – Manh Khoi Duong , Jannik Dunkelau , José Andrés Cordova , Stefan Conrad
	Semantic Watermarks for Detecting Cheating in Online Database Exams – Stefan Brass , Alexander Hinneburg
	Developing OERs for Teaching Database Systems – Thomas C. Rakow , André Kless , Charlotte Hasler , Harm Knolle , Heide Faeskorn-Woyke , Inga Marina Saatz , Jens Lambert , Mareike Focken
	Enhancing Explainability and Scrutability of Recommender Systems – Azin Ghazimatin
	Adaptive Architectures for Robust Data Management Systems – Tiemo Bang

	Demo Track
	JumpXClass: Explainable AI for Jump Classification in Trampoline Sports – Lucas Woltmann , Katja Ferger , Claudio Hartmann , Wolfgang Lehner
	UniDash: Interactive Dashboard for Data Driven Insights on Universities – Mirjam Bayer , Yorik Timo Hansen , Kimberley Kosbü , Andrea Kulow , Peer Kröger
	Better Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study – Alexander Kerth , Felix Schuhknecht , Lukas Pensel , Justus Henneberg
	JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable – Eric Tröbs , Stefan Hagedorn , Kai-Uwe Sattler
	Meduse : Interactive and Visual Exploration of Ionospheric Data – Joshua Reibert , Arne Osterthun , Marcus Paradies
	Interactive SQL Queries and Program Code in Presentations – Johannes Schildgen , Florian Heinz

	Workshop Track
	Second Workshop on Novel Data Management Ideas on Heterogeneous (Co-)Processors (NoDMC) – Dirk Habich , David Broneske
	Fourth Workshop on Big (and Small) Data in Science and Humanities (BigDS) – Andreas Henrich , Naouel Karam , Birgitta König-Ries , Bernhard Seeger
	Workshop on Data Engineering for Data Science (DE4DS) – Ralf Schenkel , Ansgar Scherp
	A Tutorial Workshop on ML for Systems and Systems for ML – Manisha Luthra , Andreas Kipf , Matthias Boehm

	Workshop on Novel Data Management Ideas on Heterogeneous Hardware Architectures (NoDMC)
	Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads – Adrian Lutsch , Gagandeep Singh , Martin Mundt , Ragnar Mogk , Carsten Binnig
	Inter-Query Parallelism on Heterogeneous Multi-Core CPUs – Felix Schuhknecht , Tamjidul Islam
	An FPGA Avro Parser Generator for Accelerated Data Stream Processing – Tobias Hahn , Daniel Schüll , Stefan Wildermann , Jürgen Teich
	Working with Disaggregated Systems. What are the Challenges and Opportunities of RDMA and CXL? – Andreas Geyer , Daniel Ritter , Dong Hun Lee , Minseon Ahn , Johannes Pietrzyk , Alexander Krause , Dirk Habich , Wolfgang Lehner
	What We Can Learn from Persistent Memory for CXL – Lawrence Benson , Marcel Weisgut , Tilmann Rabl
	Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and Compression – Johannes Fett , Christian Schwarz , Urs Kober , Dirk Habich , Wolfgang Lehner
	DNAContainer: An object-based storage architecture on DNA – Alex El-Shaikh , Bernhard Seeger
	Accelerating Large Table Scan using Processing-In-Memory Technology – Alexander Baumstark , Muhammad Attahir Jibril , Kai-Uwe Sattler
	Enabling Integrated Data Analysis Pipelines on Heterogeneous Hardware through Holistic Extensibility – Patrick Damme , Matthias Boehm

	Workshop on Big (and Small) Data in Science and Humanities (BigDS)
	Using SQL/MED to Query Heterogeneous Data Sources with Alexa Voice Commands – Johannes Schildgen , Florian Heinz , Andreas Olijnyk , Arvid Lindenau
	Integrating Access to Authority Data for Improved Interoperability of Research Data in the Digital Humanities – Robin Jegan , Leon Fruth , Tobias Gradl , Andreas Henrich
	Geo Engine: Workflow-backed Geo Data Portals – Christian Beilschmidt , Johannes Drönner , Michael Mattig , Philip Schweitzer , Bernhard Seeger
	Semantic Search for Biological Datasets: A Usability Study on Modes of Querying and Explaining Search Results – Felicitas Löffler , Fateme Shafiei , René Witte , Birgitta König-Ries , Friederike Klan
	ReStoRunT: Simple Recording, Storing, Running and Tracing changes in Spreadsheets – Wolfgang Müller, Lukrécia Mertová
	A Core Ontology to Support Agricultural Data Interoperability – Aly Abdelmageed , Shahenda Hatem , Tasneem Wael , Walaa Medhat , Birgitta König-Ries , Susan F. Ellakwa , Passent Elkafrawy , Alsayed Algergawy
	The InsightsNet Climate Change Corpus (ICCC) – Elena Volkanovska , Sherry Tan , Changxu Duan , Sabine Bartsch and Wolfgang Stille
	Towards a User-Empowering Architecture for Trustability Analytics – Sebastian Bruchhaus , Thoralf Reis , Marco Xaver Bornschlegl , Uta Störl , Matthias Hemmje

	Workshop on Data Engineering for Data Science (DE4DS)
	``FAIR '' is not enough – A Metrics Framework to ensure Data Quality through Data Preparation – Valerie Restat , Meike Klettke , Uta Störl
	Recursive SQL and GPU-Support for In-Database Machine Learning – Maximilian E. Schüle
	VERIFAI - A Step Towards Evaluating the Responsibility of AI-Systems – Sabrina Göllner , Marina Tropmann-Frick
	Workload Prediction for IoT Data Management Systems – David Burrell , Xenofon Chatziliadis , Eleni Tzirita Zacharatou , Steffen Zeuch , Volker Markl
	A Provenance Management Framework for Knowledge Graph Generation in a Web Portal – Erik Kleinsteuber , Samira Babalou , Birgitta König-Ries
	MLProvLab: Provenance Management for Data Science Notebooks – Dominik Kerzel , Birgitta König-Ries , Sheeba Samuel
	Data Extraction for Associative Classification using Mined Rules in Pediatric Intensive Care Data – Pronaya Prosun Das , Marcel Mast , Lena Wiese , Thomas Jack , Antje Wulff
	SportsTables: A new Corpus for Semantic Type Detection – Sven Langenecker , Christoph Sturm , Christian Schalles , Carsten Binnig
	Reliable Rules for Relation Extraction in a Multimodal Setting – Björn Engelmann , Philipp Schaer
	Predictive Maintenance for the Optical Synchronization System of the European XFEL: A Systematic Literature Survey – Arne Grünhagen , Marina Tropmann-Frick , Annika Eichler , Görschwin Fey

	Student Track
	Automated Statement Extraction from Press Briefings – Jüri Keller , Meik Bittkowski , Philipp Schaer
	MLProvCodeGen: A Tool for Provenance Data Input and Capture of Customizable Machine Learning Scripts – Tarek Al Mustafa , Birgitta König-Ries , Sheeba Samuel
	To Iterate Is Human, to Recurse Is Divine — Mapping Iterative Python to Recursive SQL – Tim Fischer
	Optimizing Query Processing in PostgreSQL Through Learned Optimizer Hints – Jerome Thiessat , Lucas Woltmann , Claudio Hartmann , Dirk Habich
	WebTensor : Towards high-performance raster data analysis in the browser – Lucas Fabian Naumann
	Which Rules Entail this Fact? - An Efficient Approach Using RDBMSs – Tim Gutberlet , Janik Sauerbier
	Explainable Data Matching: Selecting Representative Pairs with Active Learning Pair-Selection Strategies – Lukas Laskowski , Florian Sold
	Efficient handling of recursive relationships in ORM frameworks using Entity Framework Core as an example – Benjamin Uwe Killisch , Thomas Kudraß , Florian Scheffler
	Witness Generation for JSON Schema Patterns – Christoph Köhnen

	List of Authors

